[PATCH] struct seq_operations and struct file_operations constification
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
111
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
115
116 /*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127 #ifdef CONFIG_DEBUG_SLAB
128 #define DEBUG 1
129 #define STATS 1
130 #define FORCED_DEBUG 1
131 #else
132 #define DEBUG 0
133 #define STATS 0
134 #define FORCED_DEBUG 0
135 #endif
136
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
139
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
142 #endif
143
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
155
156 #ifndef ARCH_SLAB_MINALIGN
157 /*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
166
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
170
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
185
186 /*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
225 };
226
227 /*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243 struct slab_rcu {
244 struct rcu_head head;
245 struct kmem_cache *cachep;
246 void *addr;
247 };
248
249 /*
250 * struct array_cache
251 *
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261 struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
273 };
274
275 /*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
278 */
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void *entries[BOOT_CPUCACHE_ENTRIES];
283 };
284
285 /*
286 * The slab lists for all objects.
287 */
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned int free_limit;
294 unsigned int colour_next; /* Per-node cache coloring */
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
300 };
301
302 /*
303 * Need this for bootstrapping a per node allocator.
304 */
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
310
311 static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(struct work_struct *unused);
317
318 /*
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
321 */
322 static __always_inline int index_of(const size_t size)
323 {
324 extern void __bad_size(void);
325
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329 #define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 __bad_size();
337 } else
338 __bad_size();
339 return 0;
340 }
341
342 static int slab_early_init = 1;
343
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
346
347 static void kmem_list3_init(struct kmem_list3 *parent)
348 {
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
354 parent->colour_next = 0;
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358 }
359
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
364 } while (0)
365
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
372
373 /*
374 * struct kmem_cache
375 *
376 * manages a cache.
377 */
378
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
386
387 unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3 *nodelists[MAX_NUMNODES];
390
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
393
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder;
397
398 /* force GFP flags, e.g. GFP_DMA */
399 gfp_t gfpflags;
400
401 size_t colour; /* cache colouring range */
402 unsigned int colour_off; /* colour offset */
403 struct kmem_cache *slabp_cache;
404 unsigned int slab_size;
405 unsigned int dflags; /* dynamic flags */
406
407 /* constructor func */
408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
409
410 /* de-constructor func */
411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
412
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
416
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
443 #endif
444 };
445
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449 #define BATCHREFILL_LIMIT 16
450 /*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
453 *
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
456 */
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
459
460 #if STATS
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484 #else
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
500 #endif
501
502 #if DEBUG
503
504 /*
505 * memory layout of objects:
506 * 0 : objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
516 */
517 static int obj_offset(struct kmem_cache *cachep)
518 {
519 return cachep->obj_offset;
520 }
521
522 static int obj_size(struct kmem_cache *cachep)
523 {
524 return cachep->obj_size;
525 }
526
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528 {
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531 }
532
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534 {
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
537 return (unsigned long *)(objp + cachep->buffer_size -
538 2 * BYTES_PER_WORD);
539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540 }
541
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543 {
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 }
547
548 #else
549
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556 #endif
557
558 /*
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
561 */
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
568 #else
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
571 #endif
572
573 /*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
580 /*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
584 */
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 {
587 page->lru.next = (struct list_head *)cache;
588 }
589
590 static inline struct kmem_cache *page_get_cache(struct page *page)
591 {
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
594 BUG_ON(!PageSlab(page));
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 BUG_ON(!PageSlab(page));
608 return (struct slab *)page->lru.prev;
609 }
610
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 {
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615 }
616
617 static inline struct slab *virt_to_slab(const void *obj)
618 {
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621 }
622
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625 {
626 return slab->s_mem + cache->buffer_size * idx;
627 }
628
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631 {
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633 }
634
635 /*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
643 };
644 EXPORT_SYMBOL(malloc_sizes);
645
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
650 };
651
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
657 };
658
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
674 };
675
676 #define BAD_ALIEN_MAGIC 0x01020304ul
677
678 #ifdef CONFIG_LOCKDEP
679
680 /*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
693
694 static inline void init_lock_keys(void)
695
696 {
697 int q;
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
725 }
726 }
727 #else
728 static inline void init_lock_keys(void)
729 {
730 }
731 #endif
732
733 /*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
739
740 /*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744 static enum {
745 NONE,
746 PARTIAL_AC,
747 PARTIAL_L3,
748 FULL
749 } g_cpucache_up;
750
751 /*
752 * used by boot code to determine if it can use slab based allocator
753 */
754 int slab_is_available(void)
755 {
756 return g_cpucache_up == FULL;
757 }
758
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
760
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762 {
763 return cachep->array[smp_processor_id()];
764 }
765
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
768 {
769 struct cache_sizes *csizep = malloc_sizes;
770
771 #if DEBUG
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
775 */
776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 while (size > csizep->cs_size)
779 csizep++;
780
781 /*
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
785 */
786 if (unlikely(gfpflags & GFP_DMA))
787 return csizep->cs_dmacachep;
788 return csizep->cs_cachep;
789 }
790
791 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792 {
793 return __find_general_cachep(size, gfpflags);
794 }
795
796 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
797 {
798 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799 }
800
801 /*
802 * Calculate the number of objects and left-over bytes for a given buffer size.
803 */
804 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
805 size_t align, int flags, size_t *left_over,
806 unsigned int *num)
807 {
808 int nr_objs;
809 size_t mgmt_size;
810 size_t slab_size = PAGE_SIZE << gfporder;
811
812 /*
813 * The slab management structure can be either off the slab or
814 * on it. For the latter case, the memory allocated for a
815 * slab is used for:
816 *
817 * - The struct slab
818 * - One kmem_bufctl_t for each object
819 * - Padding to respect alignment of @align
820 * - @buffer_size bytes for each object
821 *
822 * If the slab management structure is off the slab, then the
823 * alignment will already be calculated into the size. Because
824 * the slabs are all pages aligned, the objects will be at the
825 * correct alignment when allocated.
826 */
827 if (flags & CFLGS_OFF_SLAB) {
828 mgmt_size = 0;
829 nr_objs = slab_size / buffer_size;
830
831 if (nr_objs > SLAB_LIMIT)
832 nr_objs = SLAB_LIMIT;
833 } else {
834 /*
835 * Ignore padding for the initial guess. The padding
836 * is at most @align-1 bytes, and @buffer_size is at
837 * least @align. In the worst case, this result will
838 * be one greater than the number of objects that fit
839 * into the memory allocation when taking the padding
840 * into account.
841 */
842 nr_objs = (slab_size - sizeof(struct slab)) /
843 (buffer_size + sizeof(kmem_bufctl_t));
844
845 /*
846 * This calculated number will be either the right
847 * amount, or one greater than what we want.
848 */
849 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
850 > slab_size)
851 nr_objs--;
852
853 if (nr_objs > SLAB_LIMIT)
854 nr_objs = SLAB_LIMIT;
855
856 mgmt_size = slab_mgmt_size(nr_objs, align);
857 }
858 *num = nr_objs;
859 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
860 }
861
862 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
863
864 static void __slab_error(const char *function, struct kmem_cache *cachep,
865 char *msg)
866 {
867 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
868 function, cachep->name, msg);
869 dump_stack();
870 }
871
872 /*
873 * By default on NUMA we use alien caches to stage the freeing of
874 * objects allocated from other nodes. This causes massive memory
875 * inefficiencies when using fake NUMA setup to split memory into a
876 * large number of small nodes, so it can be disabled on the command
877 * line
878 */
879
880 static int use_alien_caches __read_mostly = 1;
881 static int __init noaliencache_setup(char *s)
882 {
883 use_alien_caches = 0;
884 return 1;
885 }
886 __setup("noaliencache", noaliencache_setup);
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Special reaping functions for NUMA systems called from cache_reap().
891 * These take care of doing round robin flushing of alien caches (containing
892 * objects freed on different nodes from which they were allocated) and the
893 * flushing of remote pcps by calling drain_node_pages.
894 */
895 static DEFINE_PER_CPU(unsigned long, reap_node);
896
897 static void init_reap_node(int cpu)
898 {
899 int node;
900
901 node = next_node(cpu_to_node(cpu), node_online_map);
902 if (node == MAX_NUMNODES)
903 node = first_node(node_online_map);
904
905 per_cpu(reap_node, cpu) = node;
906 }
907
908 static void next_reap_node(void)
909 {
910 int node = __get_cpu_var(reap_node);
911
912 /*
913 * Also drain per cpu pages on remote zones
914 */
915 if (node != numa_node_id())
916 drain_node_pages(node);
917
918 node = next_node(node, node_online_map);
919 if (unlikely(node >= MAX_NUMNODES))
920 node = first_node(node_online_map);
921 __get_cpu_var(reap_node) = node;
922 }
923
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
928
929 /*
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
935 */
936 static void __devinit start_cpu_timer(int cpu)
937 {
938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
939
940 /*
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
943 * at that time.
944 */
945 if (keventd_up() && reap_work->work.func == NULL) {
946 init_reap_node(cpu);
947 INIT_DELAYED_WORK(reap_work, cache_reap);
948 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
949 }
950 }
951
952 static struct array_cache *alloc_arraycache(int node, int entries,
953 int batchcount)
954 {
955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
956 struct array_cache *nc = NULL;
957
958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
964 spin_lock_init(&nc->lock);
965 }
966 return nc;
967 }
968
969 /*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975 static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977 {
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991 }
992
993 #ifndef CONFIG_NUMA
994
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
997
998 static inline struct array_cache **alloc_alien_cache(int node, int limit)
999 {
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001 }
1002
1003 static inline void free_alien_cache(struct array_cache **ac_ptr)
1004 {
1005 }
1006
1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008 {
1009 return 0;
1010 }
1011
1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014 {
1015 return NULL;
1016 }
1017
1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019 gfp_t flags, int nodeid)
1020 {
1021 return NULL;
1022 }
1023
1024 #else /* CONFIG_NUMA */
1025
1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028
1029 static struct array_cache **alloc_alien_cache(int node, int limit)
1030 {
1031 struct array_cache **ac_ptr;
1032 int memsize = sizeof(void *) * MAX_NUMNODES;
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
1046 for (i--; i <= 0; i--)
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054 }
1055
1056 static void free_alien_cache(struct array_cache **ac_ptr)
1057 {
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
1062 for_each_node(i)
1063 kfree(ac_ptr[i]);
1064 kfree(ac_ptr);
1065 }
1066
1067 static void __drain_alien_cache(struct kmem_cache *cachep,
1068 struct array_cache *ac, int node)
1069 {
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
1081
1082 free_block(cachep, ac->entry, ac->avail, node);
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086 }
1087
1088 /*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092 {
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103 }
1104
1105 static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
1107 {
1108 int i = 0;
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
1113 ac = alien[i];
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120 }
1121
1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123 {
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1128 int node;
1129
1130 node = numa_node_id();
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
1136 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137 return 0;
1138
1139 l3 = cachep->nodelists[node];
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
1143 spin_lock(&alien->lock);
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156 }
1157 #endif
1158
1159 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1160 unsigned long action, void *hcpu)
1161 {
1162 long cpu = (long)hcpu;
1163 struct kmem_cache *cachep;
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
1166 int memsize = sizeof(struct kmem_list3);
1167
1168 switch (action) {
1169 case CPU_UP_PREPARE:
1170 mutex_lock(&cache_chain_mutex);
1171 /*
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_list3 and not this cpu's kmem_list3
1176 */
1177
1178 list_for_each_entry(cachep, &cache_chain, next) {
1179 /*
1180 * Set up the size64 kmemlist for cpu before we can
1181 * begin anything. Make sure some other cpu on this
1182 * node has not already allocated this
1183 */
1184 if (!cachep->nodelists[node]) {
1185 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186 if (!l3)
1187 goto bad;
1188 kmem_list3_init(l3);
1189 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191
1192 /*
1193 * The l3s don't come and go as CPUs come and
1194 * go. cache_chain_mutex is sufficient
1195 * protection here.
1196 */
1197 cachep->nodelists[node] = l3;
1198 }
1199
1200 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201 cachep->nodelists[node]->free_limit =
1202 (1 + nr_cpus_node(node)) *
1203 cachep->batchcount + cachep->num;
1204 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205 }
1206
1207 /*
1208 * Now we can go ahead with allocating the shared arrays and
1209 * array caches
1210 */
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 struct array_cache *nc;
1213 struct array_cache *shared;
1214 struct array_cache **alien = NULL;
1215
1216 nc = alloc_arraycache(node, cachep->limit,
1217 cachep->batchcount);
1218 if (!nc)
1219 goto bad;
1220 shared = alloc_arraycache(node,
1221 cachep->shared * cachep->batchcount,
1222 0xbaadf00d);
1223 if (!shared)
1224 goto bad;
1225
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit);
1228 if (!alien)
1229 goto bad;
1230 }
1231 cachep->array[cpu] = nc;
1232 l3 = cachep->nodelists[node];
1233 BUG_ON(!l3);
1234
1235 spin_lock_irq(&l3->list_lock);
1236 if (!l3->shared) {
1237 /*
1238 * We are serialised from CPU_DEAD or
1239 * CPU_UP_CANCELLED by the cpucontrol lock
1240 */
1241 l3->shared = shared;
1242 shared = NULL;
1243 }
1244 #ifdef CONFIG_NUMA
1245 if (!l3->alien) {
1246 l3->alien = alien;
1247 alien = NULL;
1248 }
1249 #endif
1250 spin_unlock_irq(&l3->list_lock);
1251 kfree(shared);
1252 free_alien_cache(alien);
1253 }
1254 break;
1255 case CPU_ONLINE:
1256 mutex_unlock(&cache_chain_mutex);
1257 start_cpu_timer(cpu);
1258 break;
1259 #ifdef CONFIG_HOTPLUG_CPU
1260 case CPU_DOWN_PREPARE:
1261 mutex_lock(&cache_chain_mutex);
1262 break;
1263 case CPU_DOWN_FAILED:
1264 mutex_unlock(&cache_chain_mutex);
1265 break;
1266 case CPU_DEAD:
1267 /*
1268 * Even if all the cpus of a node are down, we don't free the
1269 * kmem_list3 of any cache. This to avoid a race between
1270 * cpu_down, and a kmalloc allocation from another cpu for
1271 * memory from the node of the cpu going down. The list3
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1274 */
1275 /* fall thru */
1276 #endif
1277 case CPU_UP_CANCELED:
1278 list_for_each_entry(cachep, &cache_chain, next) {
1279 struct array_cache *nc;
1280 struct array_cache *shared;
1281 struct array_cache **alien;
1282 cpumask_t mask;
1283
1284 mask = node_to_cpumask(node);
1285 /* cpu is dead; no one can alloc from it. */
1286 nc = cachep->array[cpu];
1287 cachep->array[cpu] = NULL;
1288 l3 = cachep->nodelists[node];
1289
1290 if (!l3)
1291 goto free_array_cache;
1292
1293 spin_lock_irq(&l3->list_lock);
1294
1295 /* Free limit for this kmem_list3 */
1296 l3->free_limit -= cachep->batchcount;
1297 if (nc)
1298 free_block(cachep, nc->entry, nc->avail, node);
1299
1300 if (!cpus_empty(mask)) {
1301 spin_unlock_irq(&l3->list_lock);
1302 goto free_array_cache;
1303 }
1304
1305 shared = l3->shared;
1306 if (shared) {
1307 free_block(cachep, l3->shared->entry,
1308 l3->shared->avail, node);
1309 l3->shared = NULL;
1310 }
1311
1312 alien = l3->alien;
1313 l3->alien = NULL;
1314
1315 spin_unlock_irq(&l3->list_lock);
1316
1317 kfree(shared);
1318 if (alien) {
1319 drain_alien_cache(cachep, alien);
1320 free_alien_cache(alien);
1321 }
1322 free_array_cache:
1323 kfree(nc);
1324 }
1325 /*
1326 * In the previous loop, all the objects were freed to
1327 * the respective cache's slabs, now we can go ahead and
1328 * shrink each nodelist to its limit.
1329 */
1330 list_for_each_entry(cachep, &cache_chain, next) {
1331 l3 = cachep->nodelists[node];
1332 if (!l3)
1333 continue;
1334 drain_freelist(cachep, l3, l3->free_objects);
1335 }
1336 mutex_unlock(&cache_chain_mutex);
1337 break;
1338 }
1339 return NOTIFY_OK;
1340 bad:
1341 return NOTIFY_BAD;
1342 }
1343
1344 static struct notifier_block __cpuinitdata cpucache_notifier = {
1345 &cpuup_callback, NULL, 0
1346 };
1347
1348 /*
1349 * swap the static kmem_list3 with kmalloced memory
1350 */
1351 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1352 int nodeid)
1353 {
1354 struct kmem_list3 *ptr;
1355
1356 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1357 BUG_ON(!ptr);
1358
1359 local_irq_disable();
1360 memcpy(ptr, list, sizeof(struct kmem_list3));
1361 /*
1362 * Do not assume that spinlocks can be initialized via memcpy:
1363 */
1364 spin_lock_init(&ptr->list_lock);
1365
1366 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1367 cachep->nodelists[nodeid] = ptr;
1368 local_irq_enable();
1369 }
1370
1371 /*
1372 * Initialisation. Called after the page allocator have been initialised and
1373 * before smp_init().
1374 */
1375 void __init kmem_cache_init(void)
1376 {
1377 size_t left_over;
1378 struct cache_sizes *sizes;
1379 struct cache_names *names;
1380 int i;
1381 int order;
1382 int node;
1383
1384 for (i = 0; i < NUM_INIT_LISTS; i++) {
1385 kmem_list3_init(&initkmem_list3[i]);
1386 if (i < MAX_NUMNODES)
1387 cache_cache.nodelists[i] = NULL;
1388 }
1389
1390 /*
1391 * Fragmentation resistance on low memory - only use bigger
1392 * page orders on machines with more than 32MB of memory.
1393 */
1394 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1395 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1396
1397 /* Bootstrap is tricky, because several objects are allocated
1398 * from caches that do not exist yet:
1399 * 1) initialize the cache_cache cache: it contains the struct
1400 * kmem_cache structures of all caches, except cache_cache itself:
1401 * cache_cache is statically allocated.
1402 * Initially an __init data area is used for the head array and the
1403 * kmem_list3 structures, it's replaced with a kmalloc allocated
1404 * array at the end of the bootstrap.
1405 * 2) Create the first kmalloc cache.
1406 * The struct kmem_cache for the new cache is allocated normally.
1407 * An __init data area is used for the head array.
1408 * 3) Create the remaining kmalloc caches, with minimally sized
1409 * head arrays.
1410 * 4) Replace the __init data head arrays for cache_cache and the first
1411 * kmalloc cache with kmalloc allocated arrays.
1412 * 5) Replace the __init data for kmem_list3 for cache_cache and
1413 * the other cache's with kmalloc allocated memory.
1414 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1415 */
1416
1417 node = numa_node_id();
1418
1419 /* 1) create the cache_cache */
1420 INIT_LIST_HEAD(&cache_chain);
1421 list_add(&cache_cache.next, &cache_chain);
1422 cache_cache.colour_off = cache_line_size();
1423 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1424 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1425
1426 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1427 cache_line_size());
1428
1429 for (order = 0; order < MAX_ORDER; order++) {
1430 cache_estimate(order, cache_cache.buffer_size,
1431 cache_line_size(), 0, &left_over, &cache_cache.num);
1432 if (cache_cache.num)
1433 break;
1434 }
1435 BUG_ON(!cache_cache.num);
1436 cache_cache.gfporder = order;
1437 cache_cache.colour = left_over / cache_cache.colour_off;
1438 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1439 sizeof(struct slab), cache_line_size());
1440
1441 /* 2+3) create the kmalloc caches */
1442 sizes = malloc_sizes;
1443 names = cache_names;
1444
1445 /*
1446 * Initialize the caches that provide memory for the array cache and the
1447 * kmem_list3 structures first. Without this, further allocations will
1448 * bug.
1449 */
1450
1451 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1452 sizes[INDEX_AC].cs_size,
1453 ARCH_KMALLOC_MINALIGN,
1454 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1455 NULL, NULL);
1456
1457 if (INDEX_AC != INDEX_L3) {
1458 sizes[INDEX_L3].cs_cachep =
1459 kmem_cache_create(names[INDEX_L3].name,
1460 sizes[INDEX_L3].cs_size,
1461 ARCH_KMALLOC_MINALIGN,
1462 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1463 NULL, NULL);
1464 }
1465
1466 slab_early_init = 0;
1467
1468 while (sizes->cs_size != ULONG_MAX) {
1469 /*
1470 * For performance, all the general caches are L1 aligned.
1471 * This should be particularly beneficial on SMP boxes, as it
1472 * eliminates "false sharing".
1473 * Note for systems short on memory removing the alignment will
1474 * allow tighter packing of the smaller caches.
1475 */
1476 if (!sizes->cs_cachep) {
1477 sizes->cs_cachep = kmem_cache_create(names->name,
1478 sizes->cs_size,
1479 ARCH_KMALLOC_MINALIGN,
1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 NULL, NULL);
1482 }
1483
1484 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1485 sizes->cs_size,
1486 ARCH_KMALLOC_MINALIGN,
1487 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1488 SLAB_PANIC,
1489 NULL, NULL);
1490 sizes++;
1491 names++;
1492 }
1493 /* 4) Replace the bootstrap head arrays */
1494 {
1495 struct array_cache *ptr;
1496
1497 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1498
1499 local_irq_disable();
1500 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1501 memcpy(ptr, cpu_cache_get(&cache_cache),
1502 sizeof(struct arraycache_init));
1503 /*
1504 * Do not assume that spinlocks can be initialized via memcpy:
1505 */
1506 spin_lock_init(&ptr->lock);
1507
1508 cache_cache.array[smp_processor_id()] = ptr;
1509 local_irq_enable();
1510
1511 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1512
1513 local_irq_disable();
1514 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1515 != &initarray_generic.cache);
1516 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1517 sizeof(struct arraycache_init));
1518 /*
1519 * Do not assume that spinlocks can be initialized via memcpy:
1520 */
1521 spin_lock_init(&ptr->lock);
1522
1523 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1524 ptr;
1525 local_irq_enable();
1526 }
1527 /* 5) Replace the bootstrap kmem_list3's */
1528 {
1529 int nid;
1530
1531 /* Replace the static kmem_list3 structures for the boot cpu */
1532 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1533
1534 for_each_online_node(nid) {
1535 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1536 &initkmem_list3[SIZE_AC + nid], nid);
1537
1538 if (INDEX_AC != INDEX_L3) {
1539 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1540 &initkmem_list3[SIZE_L3 + nid], nid);
1541 }
1542 }
1543 }
1544
1545 /* 6) resize the head arrays to their final sizes */
1546 {
1547 struct kmem_cache *cachep;
1548 mutex_lock(&cache_chain_mutex);
1549 list_for_each_entry(cachep, &cache_chain, next)
1550 if (enable_cpucache(cachep))
1551 BUG();
1552 mutex_unlock(&cache_chain_mutex);
1553 }
1554
1555 /* Annotate slab for lockdep -- annotate the malloc caches */
1556 init_lock_keys();
1557
1558
1559 /* Done! */
1560 g_cpucache_up = FULL;
1561
1562 /*
1563 * Register a cpu startup notifier callback that initializes
1564 * cpu_cache_get for all new cpus
1565 */
1566 register_cpu_notifier(&cpucache_notifier);
1567
1568 /*
1569 * The reap timers are started later, with a module init call: That part
1570 * of the kernel is not yet operational.
1571 */
1572 }
1573
1574 static int __init cpucache_init(void)
1575 {
1576 int cpu;
1577
1578 /*
1579 * Register the timers that return unneeded pages to the page allocator
1580 */
1581 for_each_online_cpu(cpu)
1582 start_cpu_timer(cpu);
1583 return 0;
1584 }
1585 __initcall(cpucache_init);
1586
1587 /*
1588 * Interface to system's page allocator. No need to hold the cache-lock.
1589 *
1590 * If we requested dmaable memory, we will get it. Even if we
1591 * did not request dmaable memory, we might get it, but that
1592 * would be relatively rare and ignorable.
1593 */
1594 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1595 {
1596 struct page *page;
1597 int nr_pages;
1598 int i;
1599
1600 #ifndef CONFIG_MMU
1601 /*
1602 * Nommu uses slab's for process anonymous memory allocations, and thus
1603 * requires __GFP_COMP to properly refcount higher order allocations
1604 */
1605 flags |= __GFP_COMP;
1606 #endif
1607
1608 flags |= cachep->gfpflags;
1609
1610 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1611 if (!page)
1612 return NULL;
1613
1614 nr_pages = (1 << cachep->gfporder);
1615 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1616 add_zone_page_state(page_zone(page),
1617 NR_SLAB_RECLAIMABLE, nr_pages);
1618 else
1619 add_zone_page_state(page_zone(page),
1620 NR_SLAB_UNRECLAIMABLE, nr_pages);
1621 for (i = 0; i < nr_pages; i++)
1622 __SetPageSlab(page + i);
1623 return page_address(page);
1624 }
1625
1626 /*
1627 * Interface to system's page release.
1628 */
1629 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1630 {
1631 unsigned long i = (1 << cachep->gfporder);
1632 struct page *page = virt_to_page(addr);
1633 const unsigned long nr_freed = i;
1634
1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 sub_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_freed);
1638 else
1639 sub_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_freed);
1641 while (i--) {
1642 BUG_ON(!PageSlab(page));
1643 __ClearPageSlab(page);
1644 page++;
1645 }
1646 if (current->reclaim_state)
1647 current->reclaim_state->reclaimed_slab += nr_freed;
1648 free_pages((unsigned long)addr, cachep->gfporder);
1649 }
1650
1651 static void kmem_rcu_free(struct rcu_head *head)
1652 {
1653 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1654 struct kmem_cache *cachep = slab_rcu->cachep;
1655
1656 kmem_freepages(cachep, slab_rcu->addr);
1657 if (OFF_SLAB(cachep))
1658 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1659 }
1660
1661 #if DEBUG
1662
1663 #ifdef CONFIG_DEBUG_PAGEALLOC
1664 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1665 unsigned long caller)
1666 {
1667 int size = obj_size(cachep);
1668
1669 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1670
1671 if (size < 5 * sizeof(unsigned long))
1672 return;
1673
1674 *addr++ = 0x12345678;
1675 *addr++ = caller;
1676 *addr++ = smp_processor_id();
1677 size -= 3 * sizeof(unsigned long);
1678 {
1679 unsigned long *sptr = &caller;
1680 unsigned long svalue;
1681
1682 while (!kstack_end(sptr)) {
1683 svalue = *sptr++;
1684 if (kernel_text_address(svalue)) {
1685 *addr++ = svalue;
1686 size -= sizeof(unsigned long);
1687 if (size <= sizeof(unsigned long))
1688 break;
1689 }
1690 }
1691
1692 }
1693 *addr++ = 0x87654321;
1694 }
1695 #endif
1696
1697 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1698 {
1699 int size = obj_size(cachep);
1700 addr = &((char *)addr)[obj_offset(cachep)];
1701
1702 memset(addr, val, size);
1703 *(unsigned char *)(addr + size - 1) = POISON_END;
1704 }
1705
1706 static void dump_line(char *data, int offset, int limit)
1707 {
1708 int i;
1709 unsigned char error = 0;
1710 int bad_count = 0;
1711
1712 printk(KERN_ERR "%03x:", offset);
1713 for (i = 0; i < limit; i++) {
1714 if (data[offset + i] != POISON_FREE) {
1715 error = data[offset + i];
1716 bad_count++;
1717 }
1718 printk(" %02x", (unsigned char)data[offset + i]);
1719 }
1720 printk("\n");
1721
1722 if (bad_count == 1) {
1723 error ^= POISON_FREE;
1724 if (!(error & (error - 1))) {
1725 printk(KERN_ERR "Single bit error detected. Probably "
1726 "bad RAM.\n");
1727 #ifdef CONFIG_X86
1728 printk(KERN_ERR "Run memtest86+ or a similar memory "
1729 "test tool.\n");
1730 #else
1731 printk(KERN_ERR "Run a memory test tool.\n");
1732 #endif
1733 }
1734 }
1735 }
1736 #endif
1737
1738 #if DEBUG
1739
1740 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1741 {
1742 int i, size;
1743 char *realobj;
1744
1745 if (cachep->flags & SLAB_RED_ZONE) {
1746 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1747 *dbg_redzone1(cachep, objp),
1748 *dbg_redzone2(cachep, objp));
1749 }
1750
1751 if (cachep->flags & SLAB_STORE_USER) {
1752 printk(KERN_ERR "Last user: [<%p>]",
1753 *dbg_userword(cachep, objp));
1754 print_symbol("(%s)",
1755 (unsigned long)*dbg_userword(cachep, objp));
1756 printk("\n");
1757 }
1758 realobj = (char *)objp + obj_offset(cachep);
1759 size = obj_size(cachep);
1760 for (i = 0; i < size && lines; i += 16, lines--) {
1761 int limit;
1762 limit = 16;
1763 if (i + limit > size)
1764 limit = size - i;
1765 dump_line(realobj, i, limit);
1766 }
1767 }
1768
1769 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1770 {
1771 char *realobj;
1772 int size, i;
1773 int lines = 0;
1774
1775 realobj = (char *)objp + obj_offset(cachep);
1776 size = obj_size(cachep);
1777
1778 for (i = 0; i < size; i++) {
1779 char exp = POISON_FREE;
1780 if (i == size - 1)
1781 exp = POISON_END;
1782 if (realobj[i] != exp) {
1783 int limit;
1784 /* Mismatch ! */
1785 /* Print header */
1786 if (lines == 0) {
1787 printk(KERN_ERR
1788 "Slab corruption: start=%p, len=%d\n",
1789 realobj, size);
1790 print_objinfo(cachep, objp, 0);
1791 }
1792 /* Hexdump the affected line */
1793 i = (i / 16) * 16;
1794 limit = 16;
1795 if (i + limit > size)
1796 limit = size - i;
1797 dump_line(realobj, i, limit);
1798 i += 16;
1799 lines++;
1800 /* Limit to 5 lines */
1801 if (lines > 5)
1802 break;
1803 }
1804 }
1805 if (lines != 0) {
1806 /* Print some data about the neighboring objects, if they
1807 * exist:
1808 */
1809 struct slab *slabp = virt_to_slab(objp);
1810 unsigned int objnr;
1811
1812 objnr = obj_to_index(cachep, slabp, objp);
1813 if (objnr) {
1814 objp = index_to_obj(cachep, slabp, objnr - 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 if (objnr + 1 < cachep->num) {
1821 objp = index_to_obj(cachep, slabp, objnr + 1);
1822 realobj = (char *)objp + obj_offset(cachep);
1823 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1824 realobj, size);
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 }
1828 }
1829 #endif
1830
1831 #if DEBUG
1832 /**
1833 * slab_destroy_objs - destroy a slab and its objects
1834 * @cachep: cache pointer being destroyed
1835 * @slabp: slab pointer being destroyed
1836 *
1837 * Call the registered destructor for each object in a slab that is being
1838 * destroyed.
1839 */
1840 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1841 {
1842 int i;
1843 for (i = 0; i < cachep->num; i++) {
1844 void *objp = index_to_obj(cachep, slabp, i);
1845
1846 if (cachep->flags & SLAB_POISON) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1849 OFF_SLAB(cachep))
1850 kernel_map_pages(virt_to_page(objp),
1851 cachep->buffer_size / PAGE_SIZE, 1);
1852 else
1853 check_poison_obj(cachep, objp);
1854 #else
1855 check_poison_obj(cachep, objp);
1856 #endif
1857 }
1858 if (cachep->flags & SLAB_RED_ZONE) {
1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860 slab_error(cachep, "start of a freed object "
1861 "was overwritten");
1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863 slab_error(cachep, "end of a freed object "
1864 "was overwritten");
1865 }
1866 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1867 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1868 }
1869 }
1870 #else
1871 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872 {
1873 if (cachep->dtor) {
1874 int i;
1875 for (i = 0; i < cachep->num; i++) {
1876 void *objp = index_to_obj(cachep, slabp, i);
1877 (cachep->dtor) (objp, cachep, 0);
1878 }
1879 }
1880 }
1881 #endif
1882
1883 /**
1884 * slab_destroy - destroy and release all objects in a slab
1885 * @cachep: cache pointer being destroyed
1886 * @slabp: slab pointer being destroyed
1887 *
1888 * Destroy all the objs in a slab, and release the mem back to the system.
1889 * Before calling the slab must have been unlinked from the cache. The
1890 * cache-lock is not held/needed.
1891 */
1892 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1893 {
1894 void *addr = slabp->s_mem - slabp->colouroff;
1895
1896 slab_destroy_objs(cachep, slabp);
1897 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1898 struct slab_rcu *slab_rcu;
1899
1900 slab_rcu = (struct slab_rcu *)slabp;
1901 slab_rcu->cachep = cachep;
1902 slab_rcu->addr = addr;
1903 call_rcu(&slab_rcu->head, kmem_rcu_free);
1904 } else {
1905 kmem_freepages(cachep, addr);
1906 if (OFF_SLAB(cachep))
1907 kmem_cache_free(cachep->slabp_cache, slabp);
1908 }
1909 }
1910
1911 /*
1912 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1913 * size of kmem_list3.
1914 */
1915 static void set_up_list3s(struct kmem_cache *cachep, int index)
1916 {
1917 int node;
1918
1919 for_each_online_node(node) {
1920 cachep->nodelists[node] = &initkmem_list3[index + node];
1921 cachep->nodelists[node]->next_reap = jiffies +
1922 REAPTIMEOUT_LIST3 +
1923 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1924 }
1925 }
1926
1927 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1928 {
1929 int i;
1930 struct kmem_list3 *l3;
1931
1932 for_each_online_cpu(i)
1933 kfree(cachep->array[i]);
1934
1935 /* NUMA: free the list3 structures */
1936 for_each_online_node(i) {
1937 l3 = cachep->nodelists[i];
1938 if (l3) {
1939 kfree(l3->shared);
1940 free_alien_cache(l3->alien);
1941 kfree(l3);
1942 }
1943 }
1944 kmem_cache_free(&cache_cache, cachep);
1945 }
1946
1947
1948 /**
1949 * calculate_slab_order - calculate size (page order) of slabs
1950 * @cachep: pointer to the cache that is being created
1951 * @size: size of objects to be created in this cache.
1952 * @align: required alignment for the objects.
1953 * @flags: slab allocation flags
1954 *
1955 * Also calculates the number of objects per slab.
1956 *
1957 * This could be made much more intelligent. For now, try to avoid using
1958 * high order pages for slabs. When the gfp() functions are more friendly
1959 * towards high-order requests, this should be changed.
1960 */
1961 static size_t calculate_slab_order(struct kmem_cache *cachep,
1962 size_t size, size_t align, unsigned long flags)
1963 {
1964 unsigned long offslab_limit;
1965 size_t left_over = 0;
1966 int gfporder;
1967
1968 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1969 unsigned int num;
1970 size_t remainder;
1971
1972 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1973 if (!num)
1974 continue;
1975
1976 if (flags & CFLGS_OFF_SLAB) {
1977 /*
1978 * Max number of objs-per-slab for caches which
1979 * use off-slab slabs. Needed to avoid a possible
1980 * looping condition in cache_grow().
1981 */
1982 offslab_limit = size - sizeof(struct slab);
1983 offslab_limit /= sizeof(kmem_bufctl_t);
1984
1985 if (num > offslab_limit)
1986 break;
1987 }
1988
1989 /* Found something acceptable - save it away */
1990 cachep->num = num;
1991 cachep->gfporder = gfporder;
1992 left_over = remainder;
1993
1994 /*
1995 * A VFS-reclaimable slab tends to have most allocations
1996 * as GFP_NOFS and we really don't want to have to be allocating
1997 * higher-order pages when we are unable to shrink dcache.
1998 */
1999 if (flags & SLAB_RECLAIM_ACCOUNT)
2000 break;
2001
2002 /*
2003 * Large number of objects is good, but very large slabs are
2004 * currently bad for the gfp()s.
2005 */
2006 if (gfporder >= slab_break_gfp_order)
2007 break;
2008
2009 /*
2010 * Acceptable internal fragmentation?
2011 */
2012 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2013 break;
2014 }
2015 return left_over;
2016 }
2017
2018 static int setup_cpu_cache(struct kmem_cache *cachep)
2019 {
2020 if (g_cpucache_up == FULL)
2021 return enable_cpucache(cachep);
2022
2023 if (g_cpucache_up == NONE) {
2024 /*
2025 * Note: the first kmem_cache_create must create the cache
2026 * that's used by kmalloc(24), otherwise the creation of
2027 * further caches will BUG().
2028 */
2029 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2030
2031 /*
2032 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2033 * the first cache, then we need to set up all its list3s,
2034 * otherwise the creation of further caches will BUG().
2035 */
2036 set_up_list3s(cachep, SIZE_AC);
2037 if (INDEX_AC == INDEX_L3)
2038 g_cpucache_up = PARTIAL_L3;
2039 else
2040 g_cpucache_up = PARTIAL_AC;
2041 } else {
2042 cachep->array[smp_processor_id()] =
2043 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2044
2045 if (g_cpucache_up == PARTIAL_AC) {
2046 set_up_list3s(cachep, SIZE_L3);
2047 g_cpucache_up = PARTIAL_L3;
2048 } else {
2049 int node;
2050 for_each_online_node(node) {
2051 cachep->nodelists[node] =
2052 kmalloc_node(sizeof(struct kmem_list3),
2053 GFP_KERNEL, node);
2054 BUG_ON(!cachep->nodelists[node]);
2055 kmem_list3_init(cachep->nodelists[node]);
2056 }
2057 }
2058 }
2059 cachep->nodelists[numa_node_id()]->next_reap =
2060 jiffies + REAPTIMEOUT_LIST3 +
2061 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2062
2063 cpu_cache_get(cachep)->avail = 0;
2064 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2065 cpu_cache_get(cachep)->batchcount = 1;
2066 cpu_cache_get(cachep)->touched = 0;
2067 cachep->batchcount = 1;
2068 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2069 return 0;
2070 }
2071
2072 /**
2073 * kmem_cache_create - Create a cache.
2074 * @name: A string which is used in /proc/slabinfo to identify this cache.
2075 * @size: The size of objects to be created in this cache.
2076 * @align: The required alignment for the objects.
2077 * @flags: SLAB flags
2078 * @ctor: A constructor for the objects.
2079 * @dtor: A destructor for the objects.
2080 *
2081 * Returns a ptr to the cache on success, NULL on failure.
2082 * Cannot be called within a int, but can be interrupted.
2083 * The @ctor is run when new pages are allocated by the cache
2084 * and the @dtor is run before the pages are handed back.
2085 *
2086 * @name must be valid until the cache is destroyed. This implies that
2087 * the module calling this has to destroy the cache before getting unloaded.
2088 *
2089 * The flags are
2090 *
2091 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2092 * to catch references to uninitialised memory.
2093 *
2094 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2095 * for buffer overruns.
2096 *
2097 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2098 * cacheline. This can be beneficial if you're counting cycles as closely
2099 * as davem.
2100 */
2101 struct kmem_cache *
2102 kmem_cache_create (const char *name, size_t size, size_t align,
2103 unsigned long flags,
2104 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2105 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2106 {
2107 size_t left_over, slab_size, ralign;
2108 struct kmem_cache *cachep = NULL, *pc;
2109
2110 /*
2111 * Sanity checks... these are all serious usage bugs.
2112 */
2113 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2114 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2115 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2116 name);
2117 BUG();
2118 }
2119
2120 /*
2121 * We use cache_chain_mutex to ensure a consistent view of
2122 * cpu_online_map as well. Please see cpuup_callback
2123 */
2124 mutex_lock(&cache_chain_mutex);
2125
2126 list_for_each_entry(pc, &cache_chain, next) {
2127 char tmp;
2128 int res;
2129
2130 /*
2131 * This happens when the module gets unloaded and doesn't
2132 * destroy its slab cache and no-one else reuses the vmalloc
2133 * area of the module. Print a warning.
2134 */
2135 res = probe_kernel_address(pc->name, tmp);
2136 if (res) {
2137 printk("SLAB: cache with size %d has lost its name\n",
2138 pc->buffer_size);
2139 continue;
2140 }
2141
2142 if (!strcmp(pc->name, name)) {
2143 printk("kmem_cache_create: duplicate cache %s\n", name);
2144 dump_stack();
2145 goto oops;
2146 }
2147 }
2148
2149 #if DEBUG
2150 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2151 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2152 /* No constructor, but inital state check requested */
2153 printk(KERN_ERR "%s: No con, but init state check "
2154 "requested - %s\n", __FUNCTION__, name);
2155 flags &= ~SLAB_DEBUG_INITIAL;
2156 }
2157 #if FORCED_DEBUG
2158 /*
2159 * Enable redzoning and last user accounting, except for caches with
2160 * large objects, if the increased size would increase the object size
2161 * above the next power of two: caches with object sizes just above a
2162 * power of two have a significant amount of internal fragmentation.
2163 */
2164 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2165 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2166 if (!(flags & SLAB_DESTROY_BY_RCU))
2167 flags |= SLAB_POISON;
2168 #endif
2169 if (flags & SLAB_DESTROY_BY_RCU)
2170 BUG_ON(flags & SLAB_POISON);
2171 #endif
2172 if (flags & SLAB_DESTROY_BY_RCU)
2173 BUG_ON(dtor);
2174
2175 /*
2176 * Always checks flags, a caller might be expecting debug support which
2177 * isn't available.
2178 */
2179 BUG_ON(flags & ~CREATE_MASK);
2180
2181 /*
2182 * Check that size is in terms of words. This is needed to avoid
2183 * unaligned accesses for some archs when redzoning is used, and makes
2184 * sure any on-slab bufctl's are also correctly aligned.
2185 */
2186 if (size & (BYTES_PER_WORD - 1)) {
2187 size += (BYTES_PER_WORD - 1);
2188 size &= ~(BYTES_PER_WORD - 1);
2189 }
2190
2191 /* calculate the final buffer alignment: */
2192
2193 /* 1) arch recommendation: can be overridden for debug */
2194 if (flags & SLAB_HWCACHE_ALIGN) {
2195 /*
2196 * Default alignment: as specified by the arch code. Except if
2197 * an object is really small, then squeeze multiple objects into
2198 * one cacheline.
2199 */
2200 ralign = cache_line_size();
2201 while (size <= ralign / 2)
2202 ralign /= 2;
2203 } else {
2204 ralign = BYTES_PER_WORD;
2205 }
2206
2207 /*
2208 * Redzoning and user store require word alignment. Note this will be
2209 * overridden by architecture or caller mandated alignment if either
2210 * is greater than BYTES_PER_WORD.
2211 */
2212 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2213 ralign = BYTES_PER_WORD;
2214
2215 /* 2) arch mandated alignment */
2216 if (ralign < ARCH_SLAB_MINALIGN) {
2217 ralign = ARCH_SLAB_MINALIGN;
2218 }
2219 /* 3) caller mandated alignment */
2220 if (ralign < align) {
2221 ralign = align;
2222 }
2223 /* disable debug if necessary */
2224 if (ralign > BYTES_PER_WORD)
2225 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2226 /*
2227 * 4) Store it.
2228 */
2229 align = ralign;
2230
2231 /* Get cache's description obj. */
2232 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2233 if (!cachep)
2234 goto oops;
2235
2236 #if DEBUG
2237 cachep->obj_size = size;
2238
2239 /*
2240 * Both debugging options require word-alignment which is calculated
2241 * into align above.
2242 */
2243 if (flags & SLAB_RED_ZONE) {
2244 /* add space for red zone words */
2245 cachep->obj_offset += BYTES_PER_WORD;
2246 size += 2 * BYTES_PER_WORD;
2247 }
2248 if (flags & SLAB_STORE_USER) {
2249 /* user store requires one word storage behind the end of
2250 * the real object.
2251 */
2252 size += BYTES_PER_WORD;
2253 }
2254 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2255 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2256 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2257 cachep->obj_offset += PAGE_SIZE - size;
2258 size = PAGE_SIZE;
2259 }
2260 #endif
2261 #endif
2262
2263 /*
2264 * Determine if the slab management is 'on' or 'off' slab.
2265 * (bootstrapping cannot cope with offslab caches so don't do
2266 * it too early on.)
2267 */
2268 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2269 /*
2270 * Size is large, assume best to place the slab management obj
2271 * off-slab (should allow better packing of objs).
2272 */
2273 flags |= CFLGS_OFF_SLAB;
2274
2275 size = ALIGN(size, align);
2276
2277 left_over = calculate_slab_order(cachep, size, align, flags);
2278
2279 if (!cachep->num) {
2280 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2281 kmem_cache_free(&cache_cache, cachep);
2282 cachep = NULL;
2283 goto oops;
2284 }
2285 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2286 + sizeof(struct slab), align);
2287
2288 /*
2289 * If the slab has been placed off-slab, and we have enough space then
2290 * move it on-slab. This is at the expense of any extra colouring.
2291 */
2292 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2293 flags &= ~CFLGS_OFF_SLAB;
2294 left_over -= slab_size;
2295 }
2296
2297 if (flags & CFLGS_OFF_SLAB) {
2298 /* really off slab. No need for manual alignment */
2299 slab_size =
2300 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2301 }
2302
2303 cachep->colour_off = cache_line_size();
2304 /* Offset must be a multiple of the alignment. */
2305 if (cachep->colour_off < align)
2306 cachep->colour_off = align;
2307 cachep->colour = left_over / cachep->colour_off;
2308 cachep->slab_size = slab_size;
2309 cachep->flags = flags;
2310 cachep->gfpflags = 0;
2311 if (flags & SLAB_CACHE_DMA)
2312 cachep->gfpflags |= GFP_DMA;
2313 cachep->buffer_size = size;
2314
2315 if (flags & CFLGS_OFF_SLAB) {
2316 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2317 /*
2318 * This is a possibility for one of the malloc_sizes caches.
2319 * But since we go off slab only for object size greater than
2320 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2321 * this should not happen at all.
2322 * But leave a BUG_ON for some lucky dude.
2323 */
2324 BUG_ON(!cachep->slabp_cache);
2325 }
2326 cachep->ctor = ctor;
2327 cachep->dtor = dtor;
2328 cachep->name = name;
2329
2330 if (setup_cpu_cache(cachep)) {
2331 __kmem_cache_destroy(cachep);
2332 cachep = NULL;
2333 goto oops;
2334 }
2335
2336 /* cache setup completed, link it into the list */
2337 list_add(&cachep->next, &cache_chain);
2338 oops:
2339 if (!cachep && (flags & SLAB_PANIC))
2340 panic("kmem_cache_create(): failed to create slab `%s'\n",
2341 name);
2342 mutex_unlock(&cache_chain_mutex);
2343 return cachep;
2344 }
2345 EXPORT_SYMBOL(kmem_cache_create);
2346
2347 #if DEBUG
2348 static void check_irq_off(void)
2349 {
2350 BUG_ON(!irqs_disabled());
2351 }
2352
2353 static void check_irq_on(void)
2354 {
2355 BUG_ON(irqs_disabled());
2356 }
2357
2358 static void check_spinlock_acquired(struct kmem_cache *cachep)
2359 {
2360 #ifdef CONFIG_SMP
2361 check_irq_off();
2362 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2363 #endif
2364 }
2365
2366 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2367 {
2368 #ifdef CONFIG_SMP
2369 check_irq_off();
2370 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2371 #endif
2372 }
2373
2374 #else
2375 #define check_irq_off() do { } while(0)
2376 #define check_irq_on() do { } while(0)
2377 #define check_spinlock_acquired(x) do { } while(0)
2378 #define check_spinlock_acquired_node(x, y) do { } while(0)
2379 #endif
2380
2381 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2382 struct array_cache *ac,
2383 int force, int node);
2384
2385 static void do_drain(void *arg)
2386 {
2387 struct kmem_cache *cachep = arg;
2388 struct array_cache *ac;
2389 int node = numa_node_id();
2390
2391 check_irq_off();
2392 ac = cpu_cache_get(cachep);
2393 spin_lock(&cachep->nodelists[node]->list_lock);
2394 free_block(cachep, ac->entry, ac->avail, node);
2395 spin_unlock(&cachep->nodelists[node]->list_lock);
2396 ac->avail = 0;
2397 }
2398
2399 static void drain_cpu_caches(struct kmem_cache *cachep)
2400 {
2401 struct kmem_list3 *l3;
2402 int node;
2403
2404 on_each_cpu(do_drain, cachep, 1, 1);
2405 check_irq_on();
2406 for_each_online_node(node) {
2407 l3 = cachep->nodelists[node];
2408 if (l3 && l3->alien)
2409 drain_alien_cache(cachep, l3->alien);
2410 }
2411
2412 for_each_online_node(node) {
2413 l3 = cachep->nodelists[node];
2414 if (l3)
2415 drain_array(cachep, l3, l3->shared, 1, node);
2416 }
2417 }
2418
2419 /*
2420 * Remove slabs from the list of free slabs.
2421 * Specify the number of slabs to drain in tofree.
2422 *
2423 * Returns the actual number of slabs released.
2424 */
2425 static int drain_freelist(struct kmem_cache *cache,
2426 struct kmem_list3 *l3, int tofree)
2427 {
2428 struct list_head *p;
2429 int nr_freed;
2430 struct slab *slabp;
2431
2432 nr_freed = 0;
2433 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2434
2435 spin_lock_irq(&l3->list_lock);
2436 p = l3->slabs_free.prev;
2437 if (p == &l3->slabs_free) {
2438 spin_unlock_irq(&l3->list_lock);
2439 goto out;
2440 }
2441
2442 slabp = list_entry(p, struct slab, list);
2443 #if DEBUG
2444 BUG_ON(slabp->inuse);
2445 #endif
2446 list_del(&slabp->list);
2447 /*
2448 * Safe to drop the lock. The slab is no longer linked
2449 * to the cache.
2450 */
2451 l3->free_objects -= cache->num;
2452 spin_unlock_irq(&l3->list_lock);
2453 slab_destroy(cache, slabp);
2454 nr_freed++;
2455 }
2456 out:
2457 return nr_freed;
2458 }
2459
2460 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2461 static int __cache_shrink(struct kmem_cache *cachep)
2462 {
2463 int ret = 0, i = 0;
2464 struct kmem_list3 *l3;
2465
2466 drain_cpu_caches(cachep);
2467
2468 check_irq_on();
2469 for_each_online_node(i) {
2470 l3 = cachep->nodelists[i];
2471 if (!l3)
2472 continue;
2473
2474 drain_freelist(cachep, l3, l3->free_objects);
2475
2476 ret += !list_empty(&l3->slabs_full) ||
2477 !list_empty(&l3->slabs_partial);
2478 }
2479 return (ret ? 1 : 0);
2480 }
2481
2482 /**
2483 * kmem_cache_shrink - Shrink a cache.
2484 * @cachep: The cache to shrink.
2485 *
2486 * Releases as many slabs as possible for a cache.
2487 * To help debugging, a zero exit status indicates all slabs were released.
2488 */
2489 int kmem_cache_shrink(struct kmem_cache *cachep)
2490 {
2491 int ret;
2492 BUG_ON(!cachep || in_interrupt());
2493
2494 mutex_lock(&cache_chain_mutex);
2495 ret = __cache_shrink(cachep);
2496 mutex_unlock(&cache_chain_mutex);
2497 return ret;
2498 }
2499 EXPORT_SYMBOL(kmem_cache_shrink);
2500
2501 /**
2502 * kmem_cache_destroy - delete a cache
2503 * @cachep: the cache to destroy
2504 *
2505 * Remove a struct kmem_cache object from the slab cache.
2506 *
2507 * It is expected this function will be called by a module when it is
2508 * unloaded. This will remove the cache completely, and avoid a duplicate
2509 * cache being allocated each time a module is loaded and unloaded, if the
2510 * module doesn't have persistent in-kernel storage across loads and unloads.
2511 *
2512 * The cache must be empty before calling this function.
2513 *
2514 * The caller must guarantee that noone will allocate memory from the cache
2515 * during the kmem_cache_destroy().
2516 */
2517 void kmem_cache_destroy(struct kmem_cache *cachep)
2518 {
2519 BUG_ON(!cachep || in_interrupt());
2520
2521 /* Find the cache in the chain of caches. */
2522 mutex_lock(&cache_chain_mutex);
2523 /*
2524 * the chain is never empty, cache_cache is never destroyed
2525 */
2526 list_del(&cachep->next);
2527 if (__cache_shrink(cachep)) {
2528 slab_error(cachep, "Can't free all objects");
2529 list_add(&cachep->next, &cache_chain);
2530 mutex_unlock(&cache_chain_mutex);
2531 return;
2532 }
2533
2534 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2535 synchronize_rcu();
2536
2537 __kmem_cache_destroy(cachep);
2538 mutex_unlock(&cache_chain_mutex);
2539 }
2540 EXPORT_SYMBOL(kmem_cache_destroy);
2541
2542 /*
2543 * Get the memory for a slab management obj.
2544 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2545 * always come from malloc_sizes caches. The slab descriptor cannot
2546 * come from the same cache which is getting created because,
2547 * when we are searching for an appropriate cache for these
2548 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2549 * If we are creating a malloc_sizes cache here it would not be visible to
2550 * kmem_find_general_cachep till the initialization is complete.
2551 * Hence we cannot have slabp_cache same as the original cache.
2552 */
2553 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2554 int colour_off, gfp_t local_flags,
2555 int nodeid)
2556 {
2557 struct slab *slabp;
2558
2559 if (OFF_SLAB(cachep)) {
2560 /* Slab management obj is off-slab. */
2561 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2562 local_flags & ~GFP_THISNODE, nodeid);
2563 if (!slabp)
2564 return NULL;
2565 } else {
2566 slabp = objp + colour_off;
2567 colour_off += cachep->slab_size;
2568 }
2569 slabp->inuse = 0;
2570 slabp->colouroff = colour_off;
2571 slabp->s_mem = objp + colour_off;
2572 slabp->nodeid = nodeid;
2573 return slabp;
2574 }
2575
2576 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2577 {
2578 return (kmem_bufctl_t *) (slabp + 1);
2579 }
2580
2581 static void cache_init_objs(struct kmem_cache *cachep,
2582 struct slab *slabp, unsigned long ctor_flags)
2583 {
2584 int i;
2585
2586 for (i = 0; i < cachep->num; i++) {
2587 void *objp = index_to_obj(cachep, slabp, i);
2588 #if DEBUG
2589 /* need to poison the objs? */
2590 if (cachep->flags & SLAB_POISON)
2591 poison_obj(cachep, objp, POISON_FREE);
2592 if (cachep->flags & SLAB_STORE_USER)
2593 *dbg_userword(cachep, objp) = NULL;
2594
2595 if (cachep->flags & SLAB_RED_ZONE) {
2596 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2597 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2598 }
2599 /*
2600 * Constructors are not allowed to allocate memory from the same
2601 * cache which they are a constructor for. Otherwise, deadlock.
2602 * They must also be threaded.
2603 */
2604 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2605 cachep->ctor(objp + obj_offset(cachep), cachep,
2606 ctor_flags);
2607
2608 if (cachep->flags & SLAB_RED_ZONE) {
2609 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2610 slab_error(cachep, "constructor overwrote the"
2611 " end of an object");
2612 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2613 slab_error(cachep, "constructor overwrote the"
2614 " start of an object");
2615 }
2616 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2617 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2618 kernel_map_pages(virt_to_page(objp),
2619 cachep->buffer_size / PAGE_SIZE, 0);
2620 #else
2621 if (cachep->ctor)
2622 cachep->ctor(objp, cachep, ctor_flags);
2623 #endif
2624 slab_bufctl(slabp)[i] = i + 1;
2625 }
2626 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2627 slabp->free = 0;
2628 }
2629
2630 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2631 {
2632 if (flags & GFP_DMA)
2633 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2634 else
2635 BUG_ON(cachep->gfpflags & GFP_DMA);
2636 }
2637
2638 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2639 int nodeid)
2640 {
2641 void *objp = index_to_obj(cachep, slabp, slabp->free);
2642 kmem_bufctl_t next;
2643
2644 slabp->inuse++;
2645 next = slab_bufctl(slabp)[slabp->free];
2646 #if DEBUG
2647 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2648 WARN_ON(slabp->nodeid != nodeid);
2649 #endif
2650 slabp->free = next;
2651
2652 return objp;
2653 }
2654
2655 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2656 void *objp, int nodeid)
2657 {
2658 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2659
2660 #if DEBUG
2661 /* Verify that the slab belongs to the intended node */
2662 WARN_ON(slabp->nodeid != nodeid);
2663
2664 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2665 printk(KERN_ERR "slab: double free detected in cache "
2666 "'%s', objp %p\n", cachep->name, objp);
2667 BUG();
2668 }
2669 #endif
2670 slab_bufctl(slabp)[objnr] = slabp->free;
2671 slabp->free = objnr;
2672 slabp->inuse--;
2673 }
2674
2675 /*
2676 * Map pages beginning at addr to the given cache and slab. This is required
2677 * for the slab allocator to be able to lookup the cache and slab of a
2678 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2679 */
2680 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2681 void *addr)
2682 {
2683 int nr_pages;
2684 struct page *page;
2685
2686 page = virt_to_page(addr);
2687
2688 nr_pages = 1;
2689 if (likely(!PageCompound(page)))
2690 nr_pages <<= cache->gfporder;
2691
2692 do {
2693 page_set_cache(page, cache);
2694 page_set_slab(page, slab);
2695 page++;
2696 } while (--nr_pages);
2697 }
2698
2699 /*
2700 * Grow (by 1) the number of slabs within a cache. This is called by
2701 * kmem_cache_alloc() when there are no active objs left in a cache.
2702 */
2703 static int cache_grow(struct kmem_cache *cachep,
2704 gfp_t flags, int nodeid, void *objp)
2705 {
2706 struct slab *slabp;
2707 size_t offset;
2708 gfp_t local_flags;
2709 unsigned long ctor_flags;
2710 struct kmem_list3 *l3;
2711
2712 /*
2713 * Be lazy and only check for valid flags here, keeping it out of the
2714 * critical path in kmem_cache_alloc().
2715 */
2716 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2717 if (flags & __GFP_NO_GROW)
2718 return 0;
2719
2720 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2721 local_flags = (flags & GFP_LEVEL_MASK);
2722 if (!(local_flags & __GFP_WAIT))
2723 /*
2724 * Not allowed to sleep. Need to tell a constructor about
2725 * this - it might need to know...
2726 */
2727 ctor_flags |= SLAB_CTOR_ATOMIC;
2728
2729 /* Take the l3 list lock to change the colour_next on this node */
2730 check_irq_off();
2731 l3 = cachep->nodelists[nodeid];
2732 spin_lock(&l3->list_lock);
2733
2734 /* Get colour for the slab, and cal the next value. */
2735 offset = l3->colour_next;
2736 l3->colour_next++;
2737 if (l3->colour_next >= cachep->colour)
2738 l3->colour_next = 0;
2739 spin_unlock(&l3->list_lock);
2740
2741 offset *= cachep->colour_off;
2742
2743 if (local_flags & __GFP_WAIT)
2744 local_irq_enable();
2745
2746 /*
2747 * The test for missing atomic flag is performed here, rather than
2748 * the more obvious place, simply to reduce the critical path length
2749 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2750 * will eventually be caught here (where it matters).
2751 */
2752 kmem_flagcheck(cachep, flags);
2753
2754 /*
2755 * Get mem for the objs. Attempt to allocate a physical page from
2756 * 'nodeid'.
2757 */
2758 if (!objp)
2759 objp = kmem_getpages(cachep, flags, nodeid);
2760 if (!objp)
2761 goto failed;
2762
2763 /* Get slab management. */
2764 slabp = alloc_slabmgmt(cachep, objp, offset,
2765 local_flags & ~GFP_THISNODE, nodeid);
2766 if (!slabp)
2767 goto opps1;
2768
2769 slabp->nodeid = nodeid;
2770 slab_map_pages(cachep, slabp, objp);
2771
2772 cache_init_objs(cachep, slabp, ctor_flags);
2773
2774 if (local_flags & __GFP_WAIT)
2775 local_irq_disable();
2776 check_irq_off();
2777 spin_lock(&l3->list_lock);
2778
2779 /* Make slab active. */
2780 list_add_tail(&slabp->list, &(l3->slabs_free));
2781 STATS_INC_GROWN(cachep);
2782 l3->free_objects += cachep->num;
2783 spin_unlock(&l3->list_lock);
2784 return 1;
2785 opps1:
2786 kmem_freepages(cachep, objp);
2787 failed:
2788 if (local_flags & __GFP_WAIT)
2789 local_irq_disable();
2790 return 0;
2791 }
2792
2793 #if DEBUG
2794
2795 /*
2796 * Perform extra freeing checks:
2797 * - detect bad pointers.
2798 * - POISON/RED_ZONE checking
2799 * - destructor calls, for caches with POISON+dtor
2800 */
2801 static void kfree_debugcheck(const void *objp)
2802 {
2803 struct page *page;
2804
2805 if (!virt_addr_valid(objp)) {
2806 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2807 (unsigned long)objp);
2808 BUG();
2809 }
2810 page = virt_to_page(objp);
2811 if (!PageSlab(page)) {
2812 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2813 (unsigned long)objp);
2814 BUG();
2815 }
2816 }
2817
2818 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2819 {
2820 unsigned long redzone1, redzone2;
2821
2822 redzone1 = *dbg_redzone1(cache, obj);
2823 redzone2 = *dbg_redzone2(cache, obj);
2824
2825 /*
2826 * Redzone is ok.
2827 */
2828 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2829 return;
2830
2831 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2832 slab_error(cache, "double free detected");
2833 else
2834 slab_error(cache, "memory outside object was overwritten");
2835
2836 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2837 obj, redzone1, redzone2);
2838 }
2839
2840 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2841 void *caller)
2842 {
2843 struct page *page;
2844 unsigned int objnr;
2845 struct slab *slabp;
2846
2847 objp -= obj_offset(cachep);
2848 kfree_debugcheck(objp);
2849 page = virt_to_page(objp);
2850
2851 slabp = page_get_slab(page);
2852
2853 if (cachep->flags & SLAB_RED_ZONE) {
2854 verify_redzone_free(cachep, objp);
2855 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2856 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2857 }
2858 if (cachep->flags & SLAB_STORE_USER)
2859 *dbg_userword(cachep, objp) = caller;
2860
2861 objnr = obj_to_index(cachep, slabp, objp);
2862
2863 BUG_ON(objnr >= cachep->num);
2864 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2865
2866 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2867 /*
2868 * Need to call the slab's constructor so the caller can
2869 * perform a verify of its state (debugging). Called without
2870 * the cache-lock held.
2871 */
2872 cachep->ctor(objp + obj_offset(cachep),
2873 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2874 }
2875 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2876 /* we want to cache poison the object,
2877 * call the destruction callback
2878 */
2879 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2880 }
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2882 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2883 #endif
2884 if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2887 store_stackinfo(cachep, objp, (unsigned long)caller);
2888 kernel_map_pages(virt_to_page(objp),
2889 cachep->buffer_size / PAGE_SIZE, 0);
2890 } else {
2891 poison_obj(cachep, objp, POISON_FREE);
2892 }
2893 #else
2894 poison_obj(cachep, objp, POISON_FREE);
2895 #endif
2896 }
2897 return objp;
2898 }
2899
2900 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2901 {
2902 kmem_bufctl_t i;
2903 int entries = 0;
2904
2905 /* Check slab's freelist to see if this obj is there. */
2906 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2907 entries++;
2908 if (entries > cachep->num || i >= cachep->num)
2909 goto bad;
2910 }
2911 if (entries != cachep->num - slabp->inuse) {
2912 bad:
2913 printk(KERN_ERR "slab: Internal list corruption detected in "
2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 cachep->name, cachep->num, slabp, slabp->inuse);
2916 for (i = 0;
2917 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2918 i++) {
2919 if (i % 16 == 0)
2920 printk("\n%03x:", i);
2921 printk(" %02x", ((unsigned char *)slabp)[i]);
2922 }
2923 printk("\n");
2924 BUG();
2925 }
2926 }
2927 #else
2928 #define kfree_debugcheck(x) do { } while(0)
2929 #define cache_free_debugcheck(x,objp,z) (objp)
2930 #define check_slabp(x,y) do { } while(0)
2931 #endif
2932
2933 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2934 {
2935 int batchcount;
2936 struct kmem_list3 *l3;
2937 struct array_cache *ac;
2938 int node;
2939
2940 node = numa_node_id();
2941
2942 check_irq_off();
2943 ac = cpu_cache_get(cachep);
2944 retry:
2945 batchcount = ac->batchcount;
2946 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2947 /*
2948 * If there was little recent activity on this cache, then
2949 * perform only a partial refill. Otherwise we could generate
2950 * refill bouncing.
2951 */
2952 batchcount = BATCHREFILL_LIMIT;
2953 }
2954 l3 = cachep->nodelists[node];
2955
2956 BUG_ON(ac->avail > 0 || !l3);
2957 spin_lock(&l3->list_lock);
2958
2959 /* See if we can refill from the shared array */
2960 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2961 goto alloc_done;
2962
2963 while (batchcount > 0) {
2964 struct list_head *entry;
2965 struct slab *slabp;
2966 /* Get slab alloc is to come from. */
2967 entry = l3->slabs_partial.next;
2968 if (entry == &l3->slabs_partial) {
2969 l3->free_touched = 1;
2970 entry = l3->slabs_free.next;
2971 if (entry == &l3->slabs_free)
2972 goto must_grow;
2973 }
2974
2975 slabp = list_entry(entry, struct slab, list);
2976 check_slabp(cachep, slabp);
2977 check_spinlock_acquired(cachep);
2978 while (slabp->inuse < cachep->num && batchcount--) {
2979 STATS_INC_ALLOCED(cachep);
2980 STATS_INC_ACTIVE(cachep);
2981 STATS_SET_HIGH(cachep);
2982
2983 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2984 node);
2985 }
2986 check_slabp(cachep, slabp);
2987
2988 /* move slabp to correct slabp list: */
2989 list_del(&slabp->list);
2990 if (slabp->free == BUFCTL_END)
2991 list_add(&slabp->list, &l3->slabs_full);
2992 else
2993 list_add(&slabp->list, &l3->slabs_partial);
2994 }
2995
2996 must_grow:
2997 l3->free_objects -= ac->avail;
2998 alloc_done:
2999 spin_unlock(&l3->list_lock);
3000
3001 if (unlikely(!ac->avail)) {
3002 int x;
3003 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3004
3005 /* cache_grow can reenable interrupts, then ac could change. */
3006 ac = cpu_cache_get(cachep);
3007 if (!x && ac->avail == 0) /* no objects in sight? abort */
3008 return NULL;
3009
3010 if (!ac->avail) /* objects refilled by interrupt? */
3011 goto retry;
3012 }
3013 ac->touched = 1;
3014 return ac->entry[--ac->avail];
3015 }
3016
3017 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3018 gfp_t flags)
3019 {
3020 might_sleep_if(flags & __GFP_WAIT);
3021 #if DEBUG
3022 kmem_flagcheck(cachep, flags);
3023 #endif
3024 }
3025
3026 #if DEBUG
3027 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3028 gfp_t flags, void *objp, void *caller)
3029 {
3030 if (!objp)
3031 return objp;
3032 if (cachep->flags & SLAB_POISON) {
3033 #ifdef CONFIG_DEBUG_PAGEALLOC
3034 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3035 kernel_map_pages(virt_to_page(objp),
3036 cachep->buffer_size / PAGE_SIZE, 1);
3037 else
3038 check_poison_obj(cachep, objp);
3039 #else
3040 check_poison_obj(cachep, objp);
3041 #endif
3042 poison_obj(cachep, objp, POISON_INUSE);
3043 }
3044 if (cachep->flags & SLAB_STORE_USER)
3045 *dbg_userword(cachep, objp) = caller;
3046
3047 if (cachep->flags & SLAB_RED_ZONE) {
3048 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3049 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3050 slab_error(cachep, "double free, or memory outside"
3051 " object was overwritten");
3052 printk(KERN_ERR
3053 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3054 objp, *dbg_redzone1(cachep, objp),
3055 *dbg_redzone2(cachep, objp));
3056 }
3057 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3058 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3059 }
3060 #ifdef CONFIG_DEBUG_SLAB_LEAK
3061 {
3062 struct slab *slabp;
3063 unsigned objnr;
3064
3065 slabp = page_get_slab(virt_to_page(objp));
3066 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3067 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3068 }
3069 #endif
3070 objp += obj_offset(cachep);
3071 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3072 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3073
3074 if (!(flags & __GFP_WAIT))
3075 ctor_flags |= SLAB_CTOR_ATOMIC;
3076
3077 cachep->ctor(objp, cachep, ctor_flags);
3078 }
3079 #if ARCH_SLAB_MINALIGN
3080 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3081 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3082 objp, ARCH_SLAB_MINALIGN);
3083 }
3084 #endif
3085 return objp;
3086 }
3087 #else
3088 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3089 #endif
3090
3091 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3092 {
3093 void *objp;
3094 struct array_cache *ac;
3095
3096 check_irq_off();
3097 ac = cpu_cache_get(cachep);
3098 if (likely(ac->avail)) {
3099 STATS_INC_ALLOCHIT(cachep);
3100 ac->touched = 1;
3101 objp = ac->entry[--ac->avail];
3102 } else {
3103 STATS_INC_ALLOCMISS(cachep);
3104 objp = cache_alloc_refill(cachep, flags);
3105 }
3106 return objp;
3107 }
3108
3109 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3110 gfp_t flags, void *caller)
3111 {
3112 unsigned long save_flags;
3113 void *objp = NULL;
3114
3115 cache_alloc_debugcheck_before(cachep, flags);
3116
3117 local_irq_save(save_flags);
3118
3119 if (unlikely(NUMA_BUILD &&
3120 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3121 objp = alternate_node_alloc(cachep, flags);
3122
3123 if (!objp)
3124 objp = ____cache_alloc(cachep, flags);
3125 /*
3126 * We may just have run out of memory on the local node.
3127 * ____cache_alloc_node() knows how to locate memory on other nodes
3128 */
3129 if (NUMA_BUILD && !objp)
3130 objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3131 local_irq_restore(save_flags);
3132 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3133 caller);
3134 prefetchw(objp);
3135 return objp;
3136 }
3137
3138 #ifdef CONFIG_NUMA
3139 /*
3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141 *
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3144 */
3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146 {
3147 int nid_alloc, nid_here;
3148
3149 if (in_interrupt() || (flags & __GFP_THISNODE))
3150 return NULL;
3151 nid_alloc = nid_here = numa_node_id();
3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153 nid_alloc = cpuset_mem_spread_node();
3154 else if (current->mempolicy)
3155 nid_alloc = slab_node(current->mempolicy);
3156 if (nid_alloc != nid_here)
3157 return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 return NULL;
3159 }
3160
3161 /*
3162 * Fallback function if there was no memory available and no objects on a
3163 * certain node and fall back is permitted. First we scan all the
3164 * available nodelists for available objects. If that fails then we
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
3168 */
3169 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170 {
3171 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3172 ->node_zonelists[gfp_zone(flags)];
3173 struct zone **z;
3174 void *obj = NULL;
3175 int nid;
3176
3177 retry:
3178 /*
3179 * Look through allowed nodes for objects available
3180 * from existing per node queues.
3181 */
3182 for (z = zonelist->zones; *z && !obj; z++) {
3183 nid = zone_to_nid(*z);
3184
3185 if (cpuset_zone_allowed(*z, flags) &&
3186 cache->nodelists[nid] &&
3187 cache->nodelists[nid]->free_objects)
3188 obj = ____cache_alloc_node(cache,
3189 flags | GFP_THISNODE, nid);
3190 }
3191
3192 if (!obj) {
3193 /*
3194 * This allocation will be performed within the constraints
3195 * of the current cpuset / memory policy requirements.
3196 * We may trigger various forms of reclaim on the allowed
3197 * set and go into memory reserves if necessary.
3198 */
3199 obj = kmem_getpages(cache, flags, -1);
3200 if (obj) {
3201 /*
3202 * Insert into the appropriate per node queues
3203 */
3204 nid = page_to_nid(virt_to_page(obj));
3205 if (cache_grow(cache, flags, nid, obj)) {
3206 obj = ____cache_alloc_node(cache,
3207 flags | GFP_THISNODE, nid);
3208 if (!obj)
3209 /*
3210 * Another processor may allocate the
3211 * objects in the slab since we are
3212 * not holding any locks.
3213 */
3214 goto retry;
3215 } else {
3216 kmem_freepages(cache, obj);
3217 obj = NULL;
3218 }
3219 }
3220 }
3221 return obj;
3222 }
3223
3224 /*
3225 * A interface to enable slab creation on nodeid
3226 */
3227 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3228 int nodeid)
3229 {
3230 struct list_head *entry;
3231 struct slab *slabp;
3232 struct kmem_list3 *l3;
3233 void *obj;
3234 int x;
3235
3236 l3 = cachep->nodelists[nodeid];
3237 BUG_ON(!l3);
3238
3239 retry:
3240 check_irq_off();
3241 spin_lock(&l3->list_lock);
3242 entry = l3->slabs_partial.next;
3243 if (entry == &l3->slabs_partial) {
3244 l3->free_touched = 1;
3245 entry = l3->slabs_free.next;
3246 if (entry == &l3->slabs_free)
3247 goto must_grow;
3248 }
3249
3250 slabp = list_entry(entry, struct slab, list);
3251 check_spinlock_acquired_node(cachep, nodeid);
3252 check_slabp(cachep, slabp);
3253
3254 STATS_INC_NODEALLOCS(cachep);
3255 STATS_INC_ACTIVE(cachep);
3256 STATS_SET_HIGH(cachep);
3257
3258 BUG_ON(slabp->inuse == cachep->num);
3259
3260 obj = slab_get_obj(cachep, slabp, nodeid);
3261 check_slabp(cachep, slabp);
3262 l3->free_objects--;
3263 /* move slabp to correct slabp list: */
3264 list_del(&slabp->list);
3265
3266 if (slabp->free == BUFCTL_END)
3267 list_add(&slabp->list, &l3->slabs_full);
3268 else
3269 list_add(&slabp->list, &l3->slabs_partial);
3270
3271 spin_unlock(&l3->list_lock);
3272 goto done;
3273
3274 must_grow:
3275 spin_unlock(&l3->list_lock);
3276 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3277 if (x)
3278 goto retry;
3279
3280 if (!(flags & __GFP_THISNODE))
3281 /* Unable to grow the cache. Fall back to other nodes. */
3282 return fallback_alloc(cachep, flags);
3283
3284 return NULL;
3285
3286 done:
3287 return obj;
3288 }
3289 #endif
3290
3291 /*
3292 * Caller needs to acquire correct kmem_list's list_lock
3293 */
3294 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3295 int node)
3296 {
3297 int i;
3298 struct kmem_list3 *l3;
3299
3300 for (i = 0; i < nr_objects; i++) {
3301 void *objp = objpp[i];
3302 struct slab *slabp;
3303
3304 slabp = virt_to_slab(objp);
3305 l3 = cachep->nodelists[node];
3306 list_del(&slabp->list);
3307 check_spinlock_acquired_node(cachep, node);
3308 check_slabp(cachep, slabp);
3309 slab_put_obj(cachep, slabp, objp, node);
3310 STATS_DEC_ACTIVE(cachep);
3311 l3->free_objects++;
3312 check_slabp(cachep, slabp);
3313
3314 /* fixup slab chains */
3315 if (slabp->inuse == 0) {
3316 if (l3->free_objects > l3->free_limit) {
3317 l3->free_objects -= cachep->num;
3318 /* No need to drop any previously held
3319 * lock here, even if we have a off-slab slab
3320 * descriptor it is guaranteed to come from
3321 * a different cache, refer to comments before
3322 * alloc_slabmgmt.
3323 */
3324 slab_destroy(cachep, slabp);
3325 } else {
3326 list_add(&slabp->list, &l3->slabs_free);
3327 }
3328 } else {
3329 /* Unconditionally move a slab to the end of the
3330 * partial list on free - maximum time for the
3331 * other objects to be freed, too.
3332 */
3333 list_add_tail(&slabp->list, &l3->slabs_partial);
3334 }
3335 }
3336 }
3337
3338 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3339 {
3340 int batchcount;
3341 struct kmem_list3 *l3;
3342 int node = numa_node_id();
3343
3344 batchcount = ac->batchcount;
3345 #if DEBUG
3346 BUG_ON(!batchcount || batchcount > ac->avail);
3347 #endif
3348 check_irq_off();
3349 l3 = cachep->nodelists[node];
3350 spin_lock(&l3->list_lock);
3351 if (l3->shared) {
3352 struct array_cache *shared_array = l3->shared;
3353 int max = shared_array->limit - shared_array->avail;
3354 if (max) {
3355 if (batchcount > max)
3356 batchcount = max;
3357 memcpy(&(shared_array->entry[shared_array->avail]),
3358 ac->entry, sizeof(void *) * batchcount);
3359 shared_array->avail += batchcount;
3360 goto free_done;
3361 }
3362 }
3363
3364 free_block(cachep, ac->entry, batchcount, node);
3365 free_done:
3366 #if STATS
3367 {
3368 int i = 0;
3369 struct list_head *p;
3370
3371 p = l3->slabs_free.next;
3372 while (p != &(l3->slabs_free)) {
3373 struct slab *slabp;
3374
3375 slabp = list_entry(p, struct slab, list);
3376 BUG_ON(slabp->inuse);
3377
3378 i++;
3379 p = p->next;
3380 }
3381 STATS_SET_FREEABLE(cachep, i);
3382 }
3383 #endif
3384 spin_unlock(&l3->list_lock);
3385 ac->avail -= batchcount;
3386 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3387 }
3388
3389 /*
3390 * Release an obj back to its cache. If the obj has a constructed state, it must
3391 * be in this state _before_ it is released. Called with disabled ints.
3392 */
3393 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3394 {
3395 struct array_cache *ac = cpu_cache_get(cachep);
3396
3397 check_irq_off();
3398 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3399
3400 if (cache_free_alien(cachep, objp))
3401 return;
3402
3403 if (likely(ac->avail < ac->limit)) {
3404 STATS_INC_FREEHIT(cachep);
3405 ac->entry[ac->avail++] = objp;
3406 return;
3407 } else {
3408 STATS_INC_FREEMISS(cachep);
3409 cache_flusharray(cachep, ac);
3410 ac->entry[ac->avail++] = objp;
3411 }
3412 }
3413
3414 /**
3415 * kmem_cache_alloc - Allocate an object
3416 * @cachep: The cache to allocate from.
3417 * @flags: See kmalloc().
3418 *
3419 * Allocate an object from this cache. The flags are only relevant
3420 * if the cache has no available objects.
3421 */
3422 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3423 {
3424 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3425 }
3426 EXPORT_SYMBOL(kmem_cache_alloc);
3427
3428 /**
3429 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3430 * @cache: The cache to allocate from.
3431 * @flags: See kmalloc().
3432 *
3433 * Allocate an object from this cache and set the allocated memory to zero.
3434 * The flags are only relevant if the cache has no available objects.
3435 */
3436 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3437 {
3438 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3439 if (ret)
3440 memset(ret, 0, obj_size(cache));
3441 return ret;
3442 }
3443 EXPORT_SYMBOL(kmem_cache_zalloc);
3444
3445 /**
3446 * kmem_ptr_validate - check if an untrusted pointer might
3447 * be a slab entry.
3448 * @cachep: the cache we're checking against
3449 * @ptr: pointer to validate
3450 *
3451 * This verifies that the untrusted pointer looks sane:
3452 * it is _not_ a guarantee that the pointer is actually
3453 * part of the slab cache in question, but it at least
3454 * validates that the pointer can be dereferenced and
3455 * looks half-way sane.
3456 *
3457 * Currently only used for dentry validation.
3458 */
3459 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3460 {
3461 unsigned long addr = (unsigned long)ptr;
3462 unsigned long min_addr = PAGE_OFFSET;
3463 unsigned long align_mask = BYTES_PER_WORD - 1;
3464 unsigned long size = cachep->buffer_size;
3465 struct page *page;
3466
3467 if (unlikely(addr < min_addr))
3468 goto out;
3469 if (unlikely(addr > (unsigned long)high_memory - size))
3470 goto out;
3471 if (unlikely(addr & align_mask))
3472 goto out;
3473 if (unlikely(!kern_addr_valid(addr)))
3474 goto out;
3475 if (unlikely(!kern_addr_valid(addr + size - 1)))
3476 goto out;
3477 page = virt_to_page(ptr);
3478 if (unlikely(!PageSlab(page)))
3479 goto out;
3480 if (unlikely(page_get_cache(page) != cachep))
3481 goto out;
3482 return 1;
3483 out:
3484 return 0;
3485 }
3486
3487 #ifdef CONFIG_NUMA
3488 /**
3489 * kmem_cache_alloc_node - Allocate an object on the specified node
3490 * @cachep: The cache to allocate from.
3491 * @flags: See kmalloc().
3492 * @nodeid: node number of the target node.
3493 *
3494 * Identical to kmem_cache_alloc but it will allocate memory on the given
3495 * node, which can improve the performance for cpu bound structures.
3496 *
3497 * Fallback to other node is possible if __GFP_THISNODE is not set.
3498 */
3499 static __always_inline void *
3500 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3501 int nodeid, void *caller)
3502 {
3503 unsigned long save_flags;
3504 void *ptr = NULL;
3505
3506 cache_alloc_debugcheck_before(cachep, flags);
3507 local_irq_save(save_flags);
3508
3509 if (unlikely(nodeid == -1))
3510 nodeid = numa_node_id();
3511
3512 if (likely(cachep->nodelists[nodeid])) {
3513 if (nodeid == numa_node_id()) {
3514 /*
3515 * Use the locally cached objects if possible.
3516 * However ____cache_alloc does not allow fallback
3517 * to other nodes. It may fail while we still have
3518 * objects on other nodes available.
3519 */
3520 ptr = ____cache_alloc(cachep, flags);
3521 }
3522 if (!ptr) {
3523 /* ___cache_alloc_node can fall back to other nodes */
3524 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3525 }
3526 } else {
3527 /* Node not bootstrapped yet */
3528 if (!(flags & __GFP_THISNODE))
3529 ptr = fallback_alloc(cachep, flags);
3530 }
3531
3532 local_irq_restore(save_flags);
3533 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3534
3535 return ptr;
3536 }
3537
3538 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3539 {
3540 return __cache_alloc_node(cachep, flags, nodeid,
3541 __builtin_return_address(0));
3542 }
3543 EXPORT_SYMBOL(kmem_cache_alloc_node);
3544
3545 static __always_inline void *
3546 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3547 {
3548 struct kmem_cache *cachep;
3549
3550 cachep = kmem_find_general_cachep(size, flags);
3551 if (unlikely(cachep == NULL))
3552 return NULL;
3553 return kmem_cache_alloc_node(cachep, flags, node);
3554 }
3555
3556 #ifdef CONFIG_DEBUG_SLAB
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558 {
3559 return __do_kmalloc_node(size, flags, node,
3560 __builtin_return_address(0));
3561 }
3562 EXPORT_SYMBOL(__kmalloc_node);
3563
3564 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3565 int node, void *caller)
3566 {
3567 return __do_kmalloc_node(size, flags, node, caller);
3568 }
3569 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3570 #else
3571 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3572 {
3573 return __do_kmalloc_node(size, flags, node, NULL);
3574 }
3575 EXPORT_SYMBOL(__kmalloc_node);
3576 #endif /* CONFIG_DEBUG_SLAB */
3577 #endif /* CONFIG_NUMA */
3578
3579 /**
3580 * __do_kmalloc - allocate memory
3581 * @size: how many bytes of memory are required.
3582 * @flags: the type of memory to allocate (see kmalloc).
3583 * @caller: function caller for debug tracking of the caller
3584 */
3585 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3586 void *caller)
3587 {
3588 struct kmem_cache *cachep;
3589
3590 /* If you want to save a few bytes .text space: replace
3591 * __ with kmem_.
3592 * Then kmalloc uses the uninlined functions instead of the inline
3593 * functions.
3594 */
3595 cachep = __find_general_cachep(size, flags);
3596 if (unlikely(cachep == NULL))
3597 return NULL;
3598 return __cache_alloc(cachep, flags, caller);
3599 }
3600
3601
3602 #ifdef CONFIG_DEBUG_SLAB
3603 void *__kmalloc(size_t size, gfp_t flags)
3604 {
3605 return __do_kmalloc(size, flags, __builtin_return_address(0));
3606 }
3607 EXPORT_SYMBOL(__kmalloc);
3608
3609 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3610 {
3611 return __do_kmalloc(size, flags, caller);
3612 }
3613 EXPORT_SYMBOL(__kmalloc_track_caller);
3614
3615 #else
3616 void *__kmalloc(size_t size, gfp_t flags)
3617 {
3618 return __do_kmalloc(size, flags, NULL);
3619 }
3620 EXPORT_SYMBOL(__kmalloc);
3621 #endif
3622
3623 /**
3624 * kmem_cache_free - Deallocate an object
3625 * @cachep: The cache the allocation was from.
3626 * @objp: The previously allocated object.
3627 *
3628 * Free an object which was previously allocated from this
3629 * cache.
3630 */
3631 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3632 {
3633 unsigned long flags;
3634
3635 BUG_ON(virt_to_cache(objp) != cachep);
3636
3637 local_irq_save(flags);
3638 __cache_free(cachep, objp);
3639 local_irq_restore(flags);
3640 }
3641 EXPORT_SYMBOL(kmem_cache_free);
3642
3643 /**
3644 * kfree - free previously allocated memory
3645 * @objp: pointer returned by kmalloc.
3646 *
3647 * If @objp is NULL, no operation is performed.
3648 *
3649 * Don't free memory not originally allocated by kmalloc()
3650 * or you will run into trouble.
3651 */
3652 void kfree(const void *objp)
3653 {
3654 struct kmem_cache *c;
3655 unsigned long flags;
3656
3657 if (unlikely(!objp))
3658 return;
3659 local_irq_save(flags);
3660 kfree_debugcheck(objp);
3661 c = virt_to_cache(objp);
3662 debug_check_no_locks_freed(objp, obj_size(c));
3663 __cache_free(c, (void *)objp);
3664 local_irq_restore(flags);
3665 }
3666 EXPORT_SYMBOL(kfree);
3667
3668 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3669 {
3670 return obj_size(cachep);
3671 }
3672 EXPORT_SYMBOL(kmem_cache_size);
3673
3674 const char *kmem_cache_name(struct kmem_cache *cachep)
3675 {
3676 return cachep->name;
3677 }
3678 EXPORT_SYMBOL_GPL(kmem_cache_name);
3679
3680 /*
3681 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3682 */
3683 static int alloc_kmemlist(struct kmem_cache *cachep)
3684 {
3685 int node;
3686 struct kmem_list3 *l3;
3687 struct array_cache *new_shared;
3688 struct array_cache **new_alien = NULL;
3689
3690 for_each_online_node(node) {
3691
3692 if (use_alien_caches) {
3693 new_alien = alloc_alien_cache(node, cachep->limit);
3694 if (!new_alien)
3695 goto fail;
3696 }
3697
3698 new_shared = alloc_arraycache(node,
3699 cachep->shared*cachep->batchcount,
3700 0xbaadf00d);
3701 if (!new_shared) {
3702 free_alien_cache(new_alien);
3703 goto fail;
3704 }
3705
3706 l3 = cachep->nodelists[node];
3707 if (l3) {
3708 struct array_cache *shared = l3->shared;
3709
3710 spin_lock_irq(&l3->list_lock);
3711
3712 if (shared)
3713 free_block(cachep, shared->entry,
3714 shared->avail, node);
3715
3716 l3->shared = new_shared;
3717 if (!l3->alien) {
3718 l3->alien = new_alien;
3719 new_alien = NULL;
3720 }
3721 l3->free_limit = (1 + nr_cpus_node(node)) *
3722 cachep->batchcount + cachep->num;
3723 spin_unlock_irq(&l3->list_lock);
3724 kfree(shared);
3725 free_alien_cache(new_alien);
3726 continue;
3727 }
3728 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3729 if (!l3) {
3730 free_alien_cache(new_alien);
3731 kfree(new_shared);
3732 goto fail;
3733 }
3734
3735 kmem_list3_init(l3);
3736 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3737 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3738 l3->shared = new_shared;
3739 l3->alien = new_alien;
3740 l3->free_limit = (1 + nr_cpus_node(node)) *
3741 cachep->batchcount + cachep->num;
3742 cachep->nodelists[node] = l3;
3743 }
3744 return 0;
3745
3746 fail:
3747 if (!cachep->next.next) {
3748 /* Cache is not active yet. Roll back what we did */
3749 node--;
3750 while (node >= 0) {
3751 if (cachep->nodelists[node]) {
3752 l3 = cachep->nodelists[node];
3753
3754 kfree(l3->shared);
3755 free_alien_cache(l3->alien);
3756 kfree(l3);
3757 cachep->nodelists[node] = NULL;
3758 }
3759 node--;
3760 }
3761 }
3762 return -ENOMEM;
3763 }
3764
3765 struct ccupdate_struct {
3766 struct kmem_cache *cachep;
3767 struct array_cache *new[NR_CPUS];
3768 };
3769
3770 static void do_ccupdate_local(void *info)
3771 {
3772 struct ccupdate_struct *new = info;
3773 struct array_cache *old;
3774
3775 check_irq_off();
3776 old = cpu_cache_get(new->cachep);
3777
3778 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3779 new->new[smp_processor_id()] = old;
3780 }
3781
3782 /* Always called with the cache_chain_mutex held */
3783 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3784 int batchcount, int shared)
3785 {
3786 struct ccupdate_struct *new;
3787 int i;
3788
3789 new = kzalloc(sizeof(*new), GFP_KERNEL);
3790 if (!new)
3791 return -ENOMEM;
3792
3793 for_each_online_cpu(i) {
3794 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3795 batchcount);
3796 if (!new->new[i]) {
3797 for (i--; i >= 0; i--)
3798 kfree(new->new[i]);
3799 kfree(new);
3800 return -ENOMEM;
3801 }
3802 }
3803 new->cachep = cachep;
3804
3805 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3806
3807 check_irq_on();
3808 cachep->batchcount = batchcount;
3809 cachep->limit = limit;
3810 cachep->shared = shared;
3811
3812 for_each_online_cpu(i) {
3813 struct array_cache *ccold = new->new[i];
3814 if (!ccold)
3815 continue;
3816 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3817 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3818 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3819 kfree(ccold);
3820 }
3821 kfree(new);
3822 return alloc_kmemlist(cachep);
3823 }
3824
3825 /* Called with cache_chain_mutex held always */
3826 static int enable_cpucache(struct kmem_cache *cachep)
3827 {
3828 int err;
3829 int limit, shared;
3830
3831 /*
3832 * The head array serves three purposes:
3833 * - create a LIFO ordering, i.e. return objects that are cache-warm
3834 * - reduce the number of spinlock operations.
3835 * - reduce the number of linked list operations on the slab and
3836 * bufctl chains: array operations are cheaper.
3837 * The numbers are guessed, we should auto-tune as described by
3838 * Bonwick.
3839 */
3840 if (cachep->buffer_size > 131072)
3841 limit = 1;
3842 else if (cachep->buffer_size > PAGE_SIZE)
3843 limit = 8;
3844 else if (cachep->buffer_size > 1024)
3845 limit = 24;
3846 else if (cachep->buffer_size > 256)
3847 limit = 54;
3848 else
3849 limit = 120;
3850
3851 /*
3852 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3853 * allocation behaviour: Most allocs on one cpu, most free operations
3854 * on another cpu. For these cases, an efficient object passing between
3855 * cpus is necessary. This is provided by a shared array. The array
3856 * replaces Bonwick's magazine layer.
3857 * On uniprocessor, it's functionally equivalent (but less efficient)
3858 * to a larger limit. Thus disabled by default.
3859 */
3860 shared = 0;
3861 #ifdef CONFIG_SMP
3862 if (cachep->buffer_size <= PAGE_SIZE)
3863 shared = 8;
3864 #endif
3865
3866 #if DEBUG
3867 /*
3868 * With debugging enabled, large batchcount lead to excessively long
3869 * periods with disabled local interrupts. Limit the batchcount
3870 */
3871 if (limit > 32)
3872 limit = 32;
3873 #endif
3874 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3875 if (err)
3876 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3877 cachep->name, -err);
3878 return err;
3879 }
3880
3881 /*
3882 * Drain an array if it contains any elements taking the l3 lock only if
3883 * necessary. Note that the l3 listlock also protects the array_cache
3884 * if drain_array() is used on the shared array.
3885 */
3886 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3887 struct array_cache *ac, int force, int node)
3888 {
3889 int tofree;
3890
3891 if (!ac || !ac->avail)
3892 return;
3893 if (ac->touched && !force) {
3894 ac->touched = 0;
3895 } else {
3896 spin_lock_irq(&l3->list_lock);
3897 if (ac->avail) {
3898 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3899 if (tofree > ac->avail)
3900 tofree = (ac->avail + 1) / 2;
3901 free_block(cachep, ac->entry, tofree, node);
3902 ac->avail -= tofree;
3903 memmove(ac->entry, &(ac->entry[tofree]),
3904 sizeof(void *) * ac->avail);
3905 }
3906 spin_unlock_irq(&l3->list_lock);
3907 }
3908 }
3909
3910 /**
3911 * cache_reap - Reclaim memory from caches.
3912 * @unused: unused parameter
3913 *
3914 * Called from workqueue/eventd every few seconds.
3915 * Purpose:
3916 * - clear the per-cpu caches for this CPU.
3917 * - return freeable pages to the main free memory pool.
3918 *
3919 * If we cannot acquire the cache chain mutex then just give up - we'll try
3920 * again on the next iteration.
3921 */
3922 static void cache_reap(struct work_struct *unused)
3923 {
3924 struct kmem_cache *searchp;
3925 struct kmem_list3 *l3;
3926 int node = numa_node_id();
3927
3928 if (!mutex_trylock(&cache_chain_mutex)) {
3929 /* Give up. Setup the next iteration. */
3930 schedule_delayed_work(&__get_cpu_var(reap_work),
3931 REAPTIMEOUT_CPUC);
3932 return;
3933 }
3934
3935 list_for_each_entry(searchp, &cache_chain, next) {
3936 check_irq_on();
3937
3938 /*
3939 * We only take the l3 lock if absolutely necessary and we
3940 * have established with reasonable certainty that
3941 * we can do some work if the lock was obtained.
3942 */
3943 l3 = searchp->nodelists[node];
3944
3945 reap_alien(searchp, l3);
3946
3947 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3948
3949 /*
3950 * These are racy checks but it does not matter
3951 * if we skip one check or scan twice.
3952 */
3953 if (time_after(l3->next_reap, jiffies))
3954 goto next;
3955
3956 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3957
3958 drain_array(searchp, l3, l3->shared, 0, node);
3959
3960 if (l3->free_touched)
3961 l3->free_touched = 0;
3962 else {
3963 int freed;
3964
3965 freed = drain_freelist(searchp, l3, (l3->free_limit +
3966 5 * searchp->num - 1) / (5 * searchp->num));
3967 STATS_ADD_REAPED(searchp, freed);
3968 }
3969 next:
3970 cond_resched();
3971 }
3972 check_irq_on();
3973 mutex_unlock(&cache_chain_mutex);
3974 next_reap_node();
3975 refresh_cpu_vm_stats(smp_processor_id());
3976 /* Set up the next iteration */
3977 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3978 }
3979
3980 #ifdef CONFIG_PROC_FS
3981
3982 static void print_slabinfo_header(struct seq_file *m)
3983 {
3984 /*
3985 * Output format version, so at least we can change it
3986 * without _too_ many complaints.
3987 */
3988 #if STATS
3989 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3990 #else
3991 seq_puts(m, "slabinfo - version: 2.1\n");
3992 #endif
3993 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3994 "<objperslab> <pagesperslab>");
3995 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3996 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3997 #if STATS
3998 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3999 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4000 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4001 #endif
4002 seq_putc(m, '\n');
4003 }
4004
4005 static void *s_start(struct seq_file *m, loff_t *pos)
4006 {
4007 loff_t n = *pos;
4008 struct list_head *p;
4009
4010 mutex_lock(&cache_chain_mutex);
4011 if (!n)
4012 print_slabinfo_header(m);
4013 p = cache_chain.next;
4014 while (n--) {
4015 p = p->next;
4016 if (p == &cache_chain)
4017 return NULL;
4018 }
4019 return list_entry(p, struct kmem_cache, next);
4020 }
4021
4022 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4023 {
4024 struct kmem_cache *cachep = p;
4025 ++*pos;
4026 return cachep->next.next == &cache_chain ?
4027 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4028 }
4029
4030 static void s_stop(struct seq_file *m, void *p)
4031 {
4032 mutex_unlock(&cache_chain_mutex);
4033 }
4034
4035 static int s_show(struct seq_file *m, void *p)
4036 {
4037 struct kmem_cache *cachep = p;
4038 struct slab *slabp;
4039 unsigned long active_objs;
4040 unsigned long num_objs;
4041 unsigned long active_slabs = 0;
4042 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4043 const char *name;
4044 char *error = NULL;
4045 int node;
4046 struct kmem_list3 *l3;
4047
4048 active_objs = 0;
4049 num_slabs = 0;
4050 for_each_online_node(node) {
4051 l3 = cachep->nodelists[node];
4052 if (!l3)
4053 continue;
4054
4055 check_irq_on();
4056 spin_lock_irq(&l3->list_lock);
4057
4058 list_for_each_entry(slabp, &l3->slabs_full, list) {
4059 if (slabp->inuse != cachep->num && !error)
4060 error = "slabs_full accounting error";
4061 active_objs += cachep->num;
4062 active_slabs++;
4063 }
4064 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4065 if (slabp->inuse == cachep->num && !error)
4066 error = "slabs_partial inuse accounting error";
4067 if (!slabp->inuse && !error)
4068 error = "slabs_partial/inuse accounting error";
4069 active_objs += slabp->inuse;
4070 active_slabs++;
4071 }
4072 list_for_each_entry(slabp, &l3->slabs_free, list) {
4073 if (slabp->inuse && !error)
4074 error = "slabs_free/inuse accounting error";
4075 num_slabs++;
4076 }
4077 free_objects += l3->free_objects;
4078 if (l3->shared)
4079 shared_avail += l3->shared->avail;
4080
4081 spin_unlock_irq(&l3->list_lock);
4082 }
4083 num_slabs += active_slabs;
4084 num_objs = num_slabs * cachep->num;
4085 if (num_objs - active_objs != free_objects && !error)
4086 error = "free_objects accounting error";
4087
4088 name = cachep->name;
4089 if (error)
4090 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4091
4092 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4093 name, active_objs, num_objs, cachep->buffer_size,
4094 cachep->num, (1 << cachep->gfporder));
4095 seq_printf(m, " : tunables %4u %4u %4u",
4096 cachep->limit, cachep->batchcount, cachep->shared);
4097 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4098 active_slabs, num_slabs, shared_avail);
4099 #if STATS
4100 { /* list3 stats */
4101 unsigned long high = cachep->high_mark;
4102 unsigned long allocs = cachep->num_allocations;
4103 unsigned long grown = cachep->grown;
4104 unsigned long reaped = cachep->reaped;
4105 unsigned long errors = cachep->errors;
4106 unsigned long max_freeable = cachep->max_freeable;
4107 unsigned long node_allocs = cachep->node_allocs;
4108 unsigned long node_frees = cachep->node_frees;
4109 unsigned long overflows = cachep->node_overflow;
4110
4111 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4112 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4113 reaped, errors, max_freeable, node_allocs,
4114 node_frees, overflows);
4115 }
4116 /* cpu stats */
4117 {
4118 unsigned long allochit = atomic_read(&cachep->allochit);
4119 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4120 unsigned long freehit = atomic_read(&cachep->freehit);
4121 unsigned long freemiss = atomic_read(&cachep->freemiss);
4122
4123 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4124 allochit, allocmiss, freehit, freemiss);
4125 }
4126 #endif
4127 seq_putc(m, '\n');
4128 return 0;
4129 }
4130
4131 /*
4132 * slabinfo_op - iterator that generates /proc/slabinfo
4133 *
4134 * Output layout:
4135 * cache-name
4136 * num-active-objs
4137 * total-objs
4138 * object size
4139 * num-active-slabs
4140 * total-slabs
4141 * num-pages-per-slab
4142 * + further values on SMP and with statistics enabled
4143 */
4144
4145 const struct seq_operations slabinfo_op = {
4146 .start = s_start,
4147 .next = s_next,
4148 .stop = s_stop,
4149 .show = s_show,
4150 };
4151
4152 #define MAX_SLABINFO_WRITE 128
4153 /**
4154 * slabinfo_write - Tuning for the slab allocator
4155 * @file: unused
4156 * @buffer: user buffer
4157 * @count: data length
4158 * @ppos: unused
4159 */
4160 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4161 size_t count, loff_t *ppos)
4162 {
4163 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4164 int limit, batchcount, shared, res;
4165 struct kmem_cache *cachep;
4166
4167 if (count > MAX_SLABINFO_WRITE)
4168 return -EINVAL;
4169 if (copy_from_user(&kbuf, buffer, count))
4170 return -EFAULT;
4171 kbuf[MAX_SLABINFO_WRITE] = '\0';
4172
4173 tmp = strchr(kbuf, ' ');
4174 if (!tmp)
4175 return -EINVAL;
4176 *tmp = '\0';
4177 tmp++;
4178 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4179 return -EINVAL;
4180
4181 /* Find the cache in the chain of caches. */
4182 mutex_lock(&cache_chain_mutex);
4183 res = -EINVAL;
4184 list_for_each_entry(cachep, &cache_chain, next) {
4185 if (!strcmp(cachep->name, kbuf)) {
4186 if (limit < 1 || batchcount < 1 ||
4187 batchcount > limit || shared < 0) {
4188 res = 0;
4189 } else {
4190 res = do_tune_cpucache(cachep, limit,
4191 batchcount, shared);
4192 }
4193 break;
4194 }
4195 }
4196 mutex_unlock(&cache_chain_mutex);
4197 if (res >= 0)
4198 res = count;
4199 return res;
4200 }
4201
4202 #ifdef CONFIG_DEBUG_SLAB_LEAK
4203
4204 static void *leaks_start(struct seq_file *m, loff_t *pos)
4205 {
4206 loff_t n = *pos;
4207 struct list_head *p;
4208
4209 mutex_lock(&cache_chain_mutex);
4210 p = cache_chain.next;
4211 while (n--) {
4212 p = p->next;
4213 if (p == &cache_chain)
4214 return NULL;
4215 }
4216 return list_entry(p, struct kmem_cache, next);
4217 }
4218
4219 static inline int add_caller(unsigned long *n, unsigned long v)
4220 {
4221 unsigned long *p;
4222 int l;
4223 if (!v)
4224 return 1;
4225 l = n[1];
4226 p = n + 2;
4227 while (l) {
4228 int i = l/2;
4229 unsigned long *q = p + 2 * i;
4230 if (*q == v) {
4231 q[1]++;
4232 return 1;
4233 }
4234 if (*q > v) {
4235 l = i;
4236 } else {
4237 p = q + 2;
4238 l -= i + 1;
4239 }
4240 }
4241 if (++n[1] == n[0])
4242 return 0;
4243 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4244 p[0] = v;
4245 p[1] = 1;
4246 return 1;
4247 }
4248
4249 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4250 {
4251 void *p;
4252 int i;
4253 if (n[0] == n[1])
4254 return;
4255 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4256 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4257 continue;
4258 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4259 return;
4260 }
4261 }
4262
4263 static void show_symbol(struct seq_file *m, unsigned long address)
4264 {
4265 #ifdef CONFIG_KALLSYMS
4266 char *modname;
4267 const char *name;
4268 unsigned long offset, size;
4269 char namebuf[KSYM_NAME_LEN+1];
4270
4271 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4272
4273 if (name) {
4274 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4275 if (modname)
4276 seq_printf(m, " [%s]", modname);
4277 return;
4278 }
4279 #endif
4280 seq_printf(m, "%p", (void *)address);
4281 }
4282
4283 static int leaks_show(struct seq_file *m, void *p)
4284 {
4285 struct kmem_cache *cachep = p;
4286 struct slab *slabp;
4287 struct kmem_list3 *l3;
4288 const char *name;
4289 unsigned long *n = m->private;
4290 int node;
4291 int i;
4292
4293 if (!(cachep->flags & SLAB_STORE_USER))
4294 return 0;
4295 if (!(cachep->flags & SLAB_RED_ZONE))
4296 return 0;
4297
4298 /* OK, we can do it */
4299
4300 n[1] = 0;
4301
4302 for_each_online_node(node) {
4303 l3 = cachep->nodelists[node];
4304 if (!l3)
4305 continue;
4306
4307 check_irq_on();
4308 spin_lock_irq(&l3->list_lock);
4309
4310 list_for_each_entry(slabp, &l3->slabs_full, list)
4311 handle_slab(n, cachep, slabp);
4312 list_for_each_entry(slabp, &l3->slabs_partial, list)
4313 handle_slab(n, cachep, slabp);
4314 spin_unlock_irq(&l3->list_lock);
4315 }
4316 name = cachep->name;
4317 if (n[0] == n[1]) {
4318 /* Increase the buffer size */
4319 mutex_unlock(&cache_chain_mutex);
4320 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4321 if (!m->private) {
4322 /* Too bad, we are really out */
4323 m->private = n;
4324 mutex_lock(&cache_chain_mutex);
4325 return -ENOMEM;
4326 }
4327 *(unsigned long *)m->private = n[0] * 2;
4328 kfree(n);
4329 mutex_lock(&cache_chain_mutex);
4330 /* Now make sure this entry will be retried */
4331 m->count = m->size;
4332 return 0;
4333 }
4334 for (i = 0; i < n[1]; i++) {
4335 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4336 show_symbol(m, n[2*i+2]);
4337 seq_putc(m, '\n');
4338 }
4339
4340 return 0;
4341 }
4342
4343 const struct seq_operations slabstats_op = {
4344 .start = leaks_start,
4345 .next = s_next,
4346 .stop = s_stop,
4347 .show = leaks_show,
4348 };
4349 #endif
4350 #endif
4351
4352 /**
4353 * ksize - get the actual amount of memory allocated for a given object
4354 * @objp: Pointer to the object
4355 *
4356 * kmalloc may internally round up allocations and return more memory
4357 * than requested. ksize() can be used to determine the actual amount of
4358 * memory allocated. The caller may use this additional memory, even though
4359 * a smaller amount of memory was initially specified with the kmalloc call.
4360 * The caller must guarantee that objp points to a valid object previously
4361 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4362 * must not be freed during the duration of the call.
4363 */
4364 unsigned int ksize(const void *objp)
4365 {
4366 if (unlikely(objp == NULL))
4367 return 0;
4368
4369 return obj_size(virt_to_cache(objp));
4370 }