mm: shmem: use new radix tree iterator
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 /*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85 struct shmem_falloc {
86 pgoff_t start; /* start of range currently being fallocated */
87 pgoff_t next; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
90 };
91
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94 SGP_READ, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, int *fault_type)
121 {
122 return shmem_getpage_gfp(inode, index, pagep, sgp,
123 mapping_gfp_mask(inode->i_mapping), fault_type);
124 }
125
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127 {
128 return sb->s_fs_info;
129 }
130
131 /*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
138 {
139 return (flags & VM_NORESERVE) ?
140 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141 }
142
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144 {
145 if (!(flags & VM_NORESERVE))
146 vm_unacct_memory(VM_ACCT(size));
147 }
148
149 /*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155 static inline int shmem_acct_block(unsigned long flags)
156 {
157 return (flags & VM_NORESERVE) ?
158 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159 }
160
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162 {
163 if (flags & VM_NORESERVE)
164 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165 }
166
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
174
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
176 .ra_pages = 0, /* No readahead */
177 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178 };
179
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183 static int shmem_reserve_inode(struct super_block *sb)
184 {
185 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 if (sbinfo->max_inodes) {
187 spin_lock(&sbinfo->stat_lock);
188 if (!sbinfo->free_inodes) {
189 spin_unlock(&sbinfo->stat_lock);
190 return -ENOSPC;
191 }
192 sbinfo->free_inodes--;
193 spin_unlock(&sbinfo->stat_lock);
194 }
195 return 0;
196 }
197
198 static void shmem_free_inode(struct super_block *sb)
199 {
200 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 if (sbinfo->max_inodes) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_inodes++;
204 spin_unlock(&sbinfo->stat_lock);
205 }
206 }
207
208 /**
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220 static void shmem_recalc_inode(struct inode *inode)
221 {
222 struct shmem_inode_info *info = SHMEM_I(inode);
223 long freed;
224
225 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 if (freed > 0) {
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_add(&sbinfo->used_blocks, -freed);
230 info->alloced -= freed;
231 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232 shmem_unacct_blocks(info->flags, freed);
233 }
234 }
235
236 /*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240 pgoff_t index, void *expected, void *replacement)
241 {
242 void **pslot;
243 void *item = NULL;
244
245 VM_BUG_ON(!expected);
246 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 if (pslot)
248 item = radix_tree_deref_slot_protected(pslot,
249 &mapping->tree_lock);
250 if (item != expected)
251 return -ENOENT;
252 if (replacement)
253 radix_tree_replace_slot(pslot, replacement);
254 else
255 radix_tree_delete(&mapping->page_tree, index);
256 return 0;
257 }
258
259 /*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268 {
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283 {
284 int error;
285
286 VM_BUG_ON(!PageLocked(page));
287 VM_BUG_ON(!PageSwapBacked(page));
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310 }
311
312 /*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329 }
330
331 /*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 pgoff_t start, unsigned int nr_pages,
336 struct page **pages, pgoff_t *indices)
337 {
338 void **slot;
339 unsigned int ret = 0;
340 struct radix_tree_iter iter;
341
342 if (!nr_pages)
343 return 0;
344
345 rcu_read_lock();
346 restart:
347 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
348 struct page *page;
349 repeat:
350 page = radix_tree_deref_slot(slot);
351 if (unlikely(!page))
352 continue;
353 if (radix_tree_exception(page)) {
354 if (radix_tree_deref_retry(page))
355 goto restart;
356 /*
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
360 */
361 goto export;
362 }
363 if (!page_cache_get_speculative(page))
364 goto repeat;
365
366 /* Has the page moved? */
367 if (unlikely(page != *slot)) {
368 page_cache_release(page);
369 goto repeat;
370 }
371 export:
372 indices[ret] = iter.index;
373 pages[ret] = page;
374 if (++ret == nr_pages)
375 break;
376 }
377 rcu_read_unlock();
378 return ret;
379 }
380
381 /*
382 * Remove swap entry from radix tree, free the swap and its page cache.
383 */
384 static int shmem_free_swap(struct address_space *mapping,
385 pgoff_t index, void *radswap)
386 {
387 int error;
388
389 spin_lock_irq(&mapping->tree_lock);
390 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
391 spin_unlock_irq(&mapping->tree_lock);
392 if (!error)
393 free_swap_and_cache(radix_to_swp_entry(radswap));
394 return error;
395 }
396
397 /*
398 * Pagevec may contain swap entries, so shuffle up pages before releasing.
399 */
400 static void shmem_deswap_pagevec(struct pagevec *pvec)
401 {
402 int i, j;
403
404 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
405 struct page *page = pvec->pages[i];
406 if (!radix_tree_exceptional_entry(page))
407 pvec->pages[j++] = page;
408 }
409 pvec->nr = j;
410 }
411
412 /*
413 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
414 */
415 void shmem_unlock_mapping(struct address_space *mapping)
416 {
417 struct pagevec pvec;
418 pgoff_t indices[PAGEVEC_SIZE];
419 pgoff_t index = 0;
420
421 pagevec_init(&pvec, 0);
422 /*
423 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
424 */
425 while (!mapping_unevictable(mapping)) {
426 /*
427 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
428 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
429 */
430 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
431 PAGEVEC_SIZE, pvec.pages, indices);
432 if (!pvec.nr)
433 break;
434 index = indices[pvec.nr - 1] + 1;
435 shmem_deswap_pagevec(&pvec);
436 check_move_unevictable_pages(pvec.pages, pvec.nr);
437 pagevec_release(&pvec);
438 cond_resched();
439 }
440 }
441
442 /*
443 * Remove range of pages and swap entries from radix tree, and free them.
444 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
445 */
446 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
447 bool unfalloc)
448 {
449 struct address_space *mapping = inode->i_mapping;
450 struct shmem_inode_info *info = SHMEM_I(inode);
451 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
452 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
453 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
454 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
455 struct pagevec pvec;
456 pgoff_t indices[PAGEVEC_SIZE];
457 long nr_swaps_freed = 0;
458 pgoff_t index;
459 int i;
460
461 if (lend == -1)
462 end = -1; /* unsigned, so actually very big */
463
464 pagevec_init(&pvec, 0);
465 index = start;
466 while (index < end) {
467 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
468 min(end - index, (pgoff_t)PAGEVEC_SIZE),
469 pvec.pages, indices);
470 if (!pvec.nr)
471 break;
472 mem_cgroup_uncharge_start();
473 for (i = 0; i < pagevec_count(&pvec); i++) {
474 struct page *page = pvec.pages[i];
475
476 index = indices[i];
477 if (index >= end)
478 break;
479
480 if (radix_tree_exceptional_entry(page)) {
481 if (unfalloc)
482 continue;
483 nr_swaps_freed += !shmem_free_swap(mapping,
484 index, page);
485 continue;
486 }
487
488 if (!trylock_page(page))
489 continue;
490 if (!unfalloc || !PageUptodate(page)) {
491 if (page->mapping == mapping) {
492 VM_BUG_ON(PageWriteback(page));
493 truncate_inode_page(mapping, page);
494 }
495 }
496 unlock_page(page);
497 }
498 shmem_deswap_pagevec(&pvec);
499 pagevec_release(&pvec);
500 mem_cgroup_uncharge_end();
501 cond_resched();
502 index++;
503 }
504
505 if (partial_start) {
506 struct page *page = NULL;
507 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
508 if (page) {
509 unsigned int top = PAGE_CACHE_SIZE;
510 if (start > end) {
511 top = partial_end;
512 partial_end = 0;
513 }
514 zero_user_segment(page, partial_start, top);
515 set_page_dirty(page);
516 unlock_page(page);
517 page_cache_release(page);
518 }
519 }
520 if (partial_end) {
521 struct page *page = NULL;
522 shmem_getpage(inode, end, &page, SGP_READ, NULL);
523 if (page) {
524 zero_user_segment(page, 0, partial_end);
525 set_page_dirty(page);
526 unlock_page(page);
527 page_cache_release(page);
528 }
529 }
530 if (start >= end)
531 return;
532
533 index = start;
534 for ( ; ; ) {
535 cond_resched();
536 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
537 min(end - index, (pgoff_t)PAGEVEC_SIZE),
538 pvec.pages, indices);
539 if (!pvec.nr) {
540 if (index == start || unfalloc)
541 break;
542 index = start;
543 continue;
544 }
545 if ((index == start || unfalloc) && indices[0] >= end) {
546 shmem_deswap_pagevec(&pvec);
547 pagevec_release(&pvec);
548 break;
549 }
550 mem_cgroup_uncharge_start();
551 for (i = 0; i < pagevec_count(&pvec); i++) {
552 struct page *page = pvec.pages[i];
553
554 index = indices[i];
555 if (index >= end)
556 break;
557
558 if (radix_tree_exceptional_entry(page)) {
559 if (unfalloc)
560 continue;
561 nr_swaps_freed += !shmem_free_swap(mapping,
562 index, page);
563 continue;
564 }
565
566 lock_page(page);
567 if (!unfalloc || !PageUptodate(page)) {
568 if (page->mapping == mapping) {
569 VM_BUG_ON(PageWriteback(page));
570 truncate_inode_page(mapping, page);
571 }
572 }
573 unlock_page(page);
574 }
575 shmem_deswap_pagevec(&pvec);
576 pagevec_release(&pvec);
577 mem_cgroup_uncharge_end();
578 index++;
579 }
580
581 spin_lock(&info->lock);
582 info->swapped -= nr_swaps_freed;
583 shmem_recalc_inode(inode);
584 spin_unlock(&info->lock);
585 }
586
587 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
588 {
589 shmem_undo_range(inode, lstart, lend, false);
590 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
591 }
592 EXPORT_SYMBOL_GPL(shmem_truncate_range);
593
594 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
595 {
596 struct inode *inode = dentry->d_inode;
597 int error;
598
599 error = inode_change_ok(inode, attr);
600 if (error)
601 return error;
602
603 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
604 loff_t oldsize = inode->i_size;
605 loff_t newsize = attr->ia_size;
606
607 if (newsize != oldsize) {
608 i_size_write(inode, newsize);
609 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
610 }
611 if (newsize < oldsize) {
612 loff_t holebegin = round_up(newsize, PAGE_SIZE);
613 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
614 shmem_truncate_range(inode, newsize, (loff_t)-1);
615 /* unmap again to remove racily COWed private pages */
616 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
617 }
618 }
619
620 setattr_copy(inode, attr);
621 #ifdef CONFIG_TMPFS_POSIX_ACL
622 if (attr->ia_valid & ATTR_MODE)
623 error = generic_acl_chmod(inode);
624 #endif
625 return error;
626 }
627
628 static void shmem_evict_inode(struct inode *inode)
629 {
630 struct shmem_inode_info *info = SHMEM_I(inode);
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 simple_xattrs_free(&info->xattrs);
645 WARN_ON(inode->i_blocks);
646 shmem_free_inode(inode->i_sb);
647 clear_inode(inode);
648 }
649
650 /*
651 * If swap found in inode, free it and move page from swapcache to filecache.
652 */
653 static int shmem_unuse_inode(struct shmem_inode_info *info,
654 swp_entry_t swap, struct page **pagep)
655 {
656 struct address_space *mapping = info->vfs_inode.i_mapping;
657 void *radswap;
658 pgoff_t index;
659 gfp_t gfp;
660 int error = 0;
661
662 radswap = swp_to_radix_entry(swap);
663 index = radix_tree_locate_item(&mapping->page_tree, radswap);
664 if (index == -1)
665 return 0;
666
667 /*
668 * Move _head_ to start search for next from here.
669 * But be careful: shmem_evict_inode checks list_empty without taking
670 * mutex, and there's an instant in list_move_tail when info->swaplist
671 * would appear empty, if it were the only one on shmem_swaplist.
672 */
673 if (shmem_swaplist.next != &info->swaplist)
674 list_move_tail(&shmem_swaplist, &info->swaplist);
675
676 gfp = mapping_gfp_mask(mapping);
677 if (shmem_should_replace_page(*pagep, gfp)) {
678 mutex_unlock(&shmem_swaplist_mutex);
679 error = shmem_replace_page(pagep, gfp, info, index);
680 mutex_lock(&shmem_swaplist_mutex);
681 /*
682 * We needed to drop mutex to make that restrictive page
683 * allocation, but the inode might have been freed while we
684 * dropped it: although a racing shmem_evict_inode() cannot
685 * complete without emptying the radix_tree, our page lock
686 * on this swapcache page is not enough to prevent that -
687 * free_swap_and_cache() of our swap entry will only
688 * trylock_page(), removing swap from radix_tree whatever.
689 *
690 * We must not proceed to shmem_add_to_page_cache() if the
691 * inode has been freed, but of course we cannot rely on
692 * inode or mapping or info to check that. However, we can
693 * safely check if our swap entry is still in use (and here
694 * it can't have got reused for another page): if it's still
695 * in use, then the inode cannot have been freed yet, and we
696 * can safely proceed (if it's no longer in use, that tells
697 * nothing about the inode, but we don't need to unuse swap).
698 */
699 if (!page_swapcount(*pagep))
700 error = -ENOENT;
701 }
702
703 /*
704 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706 * beneath us (pagelock doesn't help until the page is in pagecache).
707 */
708 if (!error)
709 error = shmem_add_to_page_cache(*pagep, mapping, index,
710 GFP_NOWAIT, radswap);
711 if (error != -ENOMEM) {
712 /*
713 * Truncation and eviction use free_swap_and_cache(), which
714 * only does trylock page: if we raced, best clean up here.
715 */
716 delete_from_swap_cache(*pagep);
717 set_page_dirty(*pagep);
718 if (!error) {
719 spin_lock(&info->lock);
720 info->swapped--;
721 spin_unlock(&info->lock);
722 swap_free(swap);
723 }
724 error = 1; /* not an error, but entry was found */
725 }
726 return error;
727 }
728
729 /*
730 * Search through swapped inodes to find and replace swap by page.
731 */
732 int shmem_unuse(swp_entry_t swap, struct page *page)
733 {
734 struct list_head *this, *next;
735 struct shmem_inode_info *info;
736 int found = 0;
737 int error = 0;
738
739 /*
740 * There's a faint possibility that swap page was replaced before
741 * caller locked it: caller will come back later with the right page.
742 */
743 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
744 goto out;
745
746 /*
747 * Charge page using GFP_KERNEL while we can wait, before taking
748 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749 * Charged back to the user (not to caller) when swap account is used.
750 */
751 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
752 if (error)
753 goto out;
754 /* No radix_tree_preload: swap entry keeps a place for page in tree */
755
756 mutex_lock(&shmem_swaplist_mutex);
757 list_for_each_safe(this, next, &shmem_swaplist) {
758 info = list_entry(this, struct shmem_inode_info, swaplist);
759 if (info->swapped)
760 found = shmem_unuse_inode(info, swap, &page);
761 else
762 list_del_init(&info->swaplist);
763 cond_resched();
764 if (found)
765 break;
766 }
767 mutex_unlock(&shmem_swaplist_mutex);
768
769 if (found < 0)
770 error = found;
771 out:
772 unlock_page(page);
773 page_cache_release(page);
774 return error;
775 }
776
777 /*
778 * Move the page from the page cache to the swap cache.
779 */
780 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
781 {
782 struct shmem_inode_info *info;
783 struct address_space *mapping;
784 struct inode *inode;
785 swp_entry_t swap;
786 pgoff_t index;
787
788 BUG_ON(!PageLocked(page));
789 mapping = page->mapping;
790 index = page->index;
791 inode = mapping->host;
792 info = SHMEM_I(inode);
793 if (info->flags & VM_LOCKED)
794 goto redirty;
795 if (!total_swap_pages)
796 goto redirty;
797
798 /*
799 * shmem_backing_dev_info's capabilities prevent regular writeback or
800 * sync from ever calling shmem_writepage; but a stacking filesystem
801 * might use ->writepage of its underlying filesystem, in which case
802 * tmpfs should write out to swap only in response to memory pressure,
803 * and not for the writeback threads or sync.
804 */
805 if (!wbc->for_reclaim) {
806 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
807 goto redirty;
808 }
809
810 /*
811 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812 * value into swapfile.c, the only way we can correctly account for a
813 * fallocated page arriving here is now to initialize it and write it.
814 *
815 * That's okay for a page already fallocated earlier, but if we have
816 * not yet completed the fallocation, then (a) we want to keep track
817 * of this page in case we have to undo it, and (b) it may not be a
818 * good idea to continue anyway, once we're pushing into swap. So
819 * reactivate the page, and let shmem_fallocate() quit when too many.
820 */
821 if (!PageUptodate(page)) {
822 if (inode->i_private) {
823 struct shmem_falloc *shmem_falloc;
824 spin_lock(&inode->i_lock);
825 shmem_falloc = inode->i_private;
826 if (shmem_falloc &&
827 index >= shmem_falloc->start &&
828 index < shmem_falloc->next)
829 shmem_falloc->nr_unswapped++;
830 else
831 shmem_falloc = NULL;
832 spin_unlock(&inode->i_lock);
833 if (shmem_falloc)
834 goto redirty;
835 }
836 clear_highpage(page);
837 flush_dcache_page(page);
838 SetPageUptodate(page);
839 }
840
841 swap = get_swap_page();
842 if (!swap.val)
843 goto redirty;
844
845 /*
846 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847 * if it's not already there. Do it now before the page is
848 * moved to swap cache, when its pagelock no longer protects
849 * the inode from eviction. But don't unlock the mutex until
850 * we've incremented swapped, because shmem_unuse_inode() will
851 * prune a !swapped inode from the swaplist under this mutex.
852 */
853 mutex_lock(&shmem_swaplist_mutex);
854 if (list_empty(&info->swaplist))
855 list_add_tail(&info->swaplist, &shmem_swaplist);
856
857 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
858 swap_shmem_alloc(swap);
859 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
860
861 spin_lock(&info->lock);
862 info->swapped++;
863 shmem_recalc_inode(inode);
864 spin_unlock(&info->lock);
865
866 mutex_unlock(&shmem_swaplist_mutex);
867 BUG_ON(page_mapped(page));
868 swap_writepage(page, wbc);
869 return 0;
870 }
871
872 mutex_unlock(&shmem_swaplist_mutex);
873 swapcache_free(swap, NULL);
874 redirty:
875 set_page_dirty(page);
876 if (wbc->for_reclaim)
877 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
878 unlock_page(page);
879 return 0;
880 }
881
882 #ifdef CONFIG_NUMA
883 #ifdef CONFIG_TMPFS
884 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
885 {
886 char buffer[64];
887
888 if (!mpol || mpol->mode == MPOL_DEFAULT)
889 return; /* show nothing */
890
891 mpol_to_str(buffer, sizeof(buffer), mpol);
892
893 seq_printf(seq, ",mpol=%s", buffer);
894 }
895
896 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897 {
898 struct mempolicy *mpol = NULL;
899 if (sbinfo->mpol) {
900 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
901 mpol = sbinfo->mpol;
902 mpol_get(mpol);
903 spin_unlock(&sbinfo->stat_lock);
904 }
905 return mpol;
906 }
907 #endif /* CONFIG_TMPFS */
908
909 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910 struct shmem_inode_info *info, pgoff_t index)
911 {
912 struct vm_area_struct pvma;
913 struct page *page;
914
915 /* Create a pseudo vma that just contains the policy */
916 pvma.vm_start = 0;
917 /* Bias interleave by inode number to distribute better across nodes */
918 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
919 pvma.vm_ops = NULL;
920 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
921
922 page = swapin_readahead(swap, gfp, &pvma, 0);
923
924 /* Drop reference taken by mpol_shared_policy_lookup() */
925 mpol_cond_put(pvma.vm_policy);
926
927 return page;
928 }
929
930 static struct page *shmem_alloc_page(gfp_t gfp,
931 struct shmem_inode_info *info, pgoff_t index)
932 {
933 struct vm_area_struct pvma;
934 struct page *page;
935
936 /* Create a pseudo vma that just contains the policy */
937 pvma.vm_start = 0;
938 /* Bias interleave by inode number to distribute better across nodes */
939 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
940 pvma.vm_ops = NULL;
941 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943 page = alloc_page_vma(gfp, &pvma, 0);
944
945 /* Drop reference taken by mpol_shared_policy_lookup() */
946 mpol_cond_put(pvma.vm_policy);
947
948 return page;
949 }
950 #else /* !CONFIG_NUMA */
951 #ifdef CONFIG_TMPFS
952 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953 {
954 }
955 #endif /* CONFIG_TMPFS */
956
957 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
958 struct shmem_inode_info *info, pgoff_t index)
959 {
960 return swapin_readahead(swap, gfp, NULL, 0);
961 }
962
963 static inline struct page *shmem_alloc_page(gfp_t gfp,
964 struct shmem_inode_info *info, pgoff_t index)
965 {
966 return alloc_page(gfp);
967 }
968 #endif /* CONFIG_NUMA */
969
970 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
972 {
973 return NULL;
974 }
975 #endif
976
977 /*
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to. If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
984 *
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
988 */
989 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
990 {
991 return page_zonenum(page) > gfp_zone(gfp);
992 }
993
994 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
995 struct shmem_inode_info *info, pgoff_t index)
996 {
997 struct page *oldpage, *newpage;
998 struct address_space *swap_mapping;
999 pgoff_t swap_index;
1000 int error;
1001
1002 oldpage = *pagep;
1003 swap_index = page_private(oldpage);
1004 swap_mapping = page_mapping(oldpage);
1005
1006 /*
1007 * We have arrived here because our zones are constrained, so don't
1008 * limit chance of success by further cpuset and node constraints.
1009 */
1010 gfp &= ~GFP_CONSTRAINT_MASK;
1011 newpage = shmem_alloc_page(gfp, info, index);
1012 if (!newpage)
1013 return -ENOMEM;
1014
1015 page_cache_get(newpage);
1016 copy_highpage(newpage, oldpage);
1017 flush_dcache_page(newpage);
1018
1019 __set_page_locked(newpage);
1020 SetPageUptodate(newpage);
1021 SetPageSwapBacked(newpage);
1022 set_page_private(newpage, swap_index);
1023 SetPageSwapCache(newpage);
1024
1025 /*
1026 * Our caller will very soon move newpage out of swapcache, but it's
1027 * a nice clean interface for us to replace oldpage by newpage there.
1028 */
1029 spin_lock_irq(&swap_mapping->tree_lock);
1030 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1031 newpage);
1032 if (!error) {
1033 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1034 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1035 }
1036 spin_unlock_irq(&swap_mapping->tree_lock);
1037
1038 if (unlikely(error)) {
1039 /*
1040 * Is this possible? I think not, now that our callers check
1041 * both PageSwapCache and page_private after getting page lock;
1042 * but be defensive. Reverse old to newpage for clear and free.
1043 */
1044 oldpage = newpage;
1045 } else {
1046 mem_cgroup_replace_page_cache(oldpage, newpage);
1047 lru_cache_add_anon(newpage);
1048 *pagep = newpage;
1049 }
1050
1051 ClearPageSwapCache(oldpage);
1052 set_page_private(oldpage, 0);
1053
1054 unlock_page(oldpage);
1055 page_cache_release(oldpage);
1056 page_cache_release(oldpage);
1057 return error;
1058 }
1059
1060 /*
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1062 *
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1066 */
1067 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1068 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1069 {
1070 struct address_space *mapping = inode->i_mapping;
1071 struct shmem_inode_info *info;
1072 struct shmem_sb_info *sbinfo;
1073 struct page *page;
1074 swp_entry_t swap;
1075 int error;
1076 int once = 0;
1077 int alloced = 0;
1078
1079 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1080 return -EFBIG;
1081 repeat:
1082 swap.val = 0;
1083 page = find_lock_page(mapping, index);
1084 if (radix_tree_exceptional_entry(page)) {
1085 swap = radix_to_swp_entry(page);
1086 page = NULL;
1087 }
1088
1089 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1090 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1091 error = -EINVAL;
1092 goto failed;
1093 }
1094
1095 /* fallocated page? */
1096 if (page && !PageUptodate(page)) {
1097 if (sgp != SGP_READ)
1098 goto clear;
1099 unlock_page(page);
1100 page_cache_release(page);
1101 page = NULL;
1102 }
1103 if (page || (sgp == SGP_READ && !swap.val)) {
1104 *pagep = page;
1105 return 0;
1106 }
1107
1108 /*
1109 * Fast cache lookup did not find it:
1110 * bring it back from swap or allocate.
1111 */
1112 info = SHMEM_I(inode);
1113 sbinfo = SHMEM_SB(inode->i_sb);
1114
1115 if (swap.val) {
1116 /* Look it up and read it in.. */
1117 page = lookup_swap_cache(swap);
1118 if (!page) {
1119 /* here we actually do the io */
1120 if (fault_type)
1121 *fault_type |= VM_FAULT_MAJOR;
1122 page = shmem_swapin(swap, gfp, info, index);
1123 if (!page) {
1124 error = -ENOMEM;
1125 goto failed;
1126 }
1127 }
1128
1129 /* We have to do this with page locked to prevent races */
1130 lock_page(page);
1131 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1132 !shmem_confirm_swap(mapping, index, swap)) {
1133 error = -EEXIST; /* try again */
1134 goto unlock;
1135 }
1136 if (!PageUptodate(page)) {
1137 error = -EIO;
1138 goto failed;
1139 }
1140 wait_on_page_writeback(page);
1141
1142 if (shmem_should_replace_page(page, gfp)) {
1143 error = shmem_replace_page(&page, gfp, info, index);
1144 if (error)
1145 goto failed;
1146 }
1147
1148 error = mem_cgroup_cache_charge(page, current->mm,
1149 gfp & GFP_RECLAIM_MASK);
1150 if (!error) {
1151 error = shmem_add_to_page_cache(page, mapping, index,
1152 gfp, swp_to_radix_entry(swap));
1153 /*
1154 * We already confirmed swap under page lock, and make
1155 * no memory allocation here, so usually no possibility
1156 * of error; but free_swap_and_cache() only trylocks a
1157 * page, so it is just possible that the entry has been
1158 * truncated or holepunched since swap was confirmed.
1159 * shmem_undo_range() will have done some of the
1160 * unaccounting, now delete_from_swap_cache() will do
1161 * the rest (including mem_cgroup_uncharge_swapcache).
1162 * Reset swap.val? No, leave it so "failed" goes back to
1163 * "repeat": reading a hole and writing should succeed.
1164 */
1165 if (error)
1166 delete_from_swap_cache(page);
1167 }
1168 if (error)
1169 goto failed;
1170
1171 spin_lock(&info->lock);
1172 info->swapped--;
1173 shmem_recalc_inode(inode);
1174 spin_unlock(&info->lock);
1175
1176 delete_from_swap_cache(page);
1177 set_page_dirty(page);
1178 swap_free(swap);
1179
1180 } else {
1181 if (shmem_acct_block(info->flags)) {
1182 error = -ENOSPC;
1183 goto failed;
1184 }
1185 if (sbinfo->max_blocks) {
1186 if (percpu_counter_compare(&sbinfo->used_blocks,
1187 sbinfo->max_blocks) >= 0) {
1188 error = -ENOSPC;
1189 goto unacct;
1190 }
1191 percpu_counter_inc(&sbinfo->used_blocks);
1192 }
1193
1194 page = shmem_alloc_page(gfp, info, index);
1195 if (!page) {
1196 error = -ENOMEM;
1197 goto decused;
1198 }
1199
1200 SetPageSwapBacked(page);
1201 __set_page_locked(page);
1202 error = mem_cgroup_cache_charge(page, current->mm,
1203 gfp & GFP_RECLAIM_MASK);
1204 if (error)
1205 goto decused;
1206 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1207 if (!error) {
1208 error = shmem_add_to_page_cache(page, mapping, index,
1209 gfp, NULL);
1210 radix_tree_preload_end();
1211 }
1212 if (error) {
1213 mem_cgroup_uncharge_cache_page(page);
1214 goto decused;
1215 }
1216 lru_cache_add_anon(page);
1217
1218 spin_lock(&info->lock);
1219 info->alloced++;
1220 inode->i_blocks += BLOCKS_PER_PAGE;
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 alloced = true;
1224
1225 /*
1226 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227 */
1228 if (sgp == SGP_FALLOC)
1229 sgp = SGP_WRITE;
1230 clear:
1231 /*
1232 * Let SGP_WRITE caller clear ends if write does not fill page;
1233 * but SGP_FALLOC on a page fallocated earlier must initialize
1234 * it now, lest undo on failure cancel our earlier guarantee.
1235 */
1236 if (sgp != SGP_WRITE) {
1237 clear_highpage(page);
1238 flush_dcache_page(page);
1239 SetPageUptodate(page);
1240 }
1241 if (sgp == SGP_DIRTY)
1242 set_page_dirty(page);
1243 }
1244
1245 /* Perhaps the file has been truncated since we checked */
1246 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248 error = -EINVAL;
1249 if (alloced)
1250 goto trunc;
1251 else
1252 goto failed;
1253 }
1254 *pagep = page;
1255 return 0;
1256
1257 /*
1258 * Error recovery.
1259 */
1260 trunc:
1261 info = SHMEM_I(inode);
1262 ClearPageDirty(page);
1263 delete_from_page_cache(page);
1264 spin_lock(&info->lock);
1265 info->alloced--;
1266 inode->i_blocks -= BLOCKS_PER_PAGE;
1267 spin_unlock(&info->lock);
1268 decused:
1269 sbinfo = SHMEM_SB(inode->i_sb);
1270 if (sbinfo->max_blocks)
1271 percpu_counter_add(&sbinfo->used_blocks, -1);
1272 unacct:
1273 shmem_unacct_blocks(info->flags, 1);
1274 failed:
1275 if (swap.val && error != -EINVAL &&
1276 !shmem_confirm_swap(mapping, index, swap))
1277 error = -EEXIST;
1278 unlock:
1279 if (page) {
1280 unlock_page(page);
1281 page_cache_release(page);
1282 }
1283 if (error == -ENOSPC && !once++) {
1284 info = SHMEM_I(inode);
1285 spin_lock(&info->lock);
1286 shmem_recalc_inode(inode);
1287 spin_unlock(&info->lock);
1288 goto repeat;
1289 }
1290 if (error == -EEXIST) /* from above or from radix_tree_insert */
1291 goto repeat;
1292 return error;
1293 }
1294
1295 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1296 {
1297 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1298 int error;
1299 int ret = VM_FAULT_LOCKED;
1300
1301 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1302 if (error)
1303 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1304
1305 if (ret & VM_FAULT_MAJOR) {
1306 count_vm_event(PGMAJFAULT);
1307 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1308 }
1309 return ret;
1310 }
1311
1312 #ifdef CONFIG_NUMA
1313 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1314 {
1315 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1316 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1317 }
1318
1319 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1320 unsigned long addr)
1321 {
1322 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1323 pgoff_t index;
1324
1325 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1326 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1327 }
1328 #endif
1329
1330 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1331 {
1332 struct inode *inode = file->f_path.dentry->d_inode;
1333 struct shmem_inode_info *info = SHMEM_I(inode);
1334 int retval = -ENOMEM;
1335
1336 spin_lock(&info->lock);
1337 if (lock && !(info->flags & VM_LOCKED)) {
1338 if (!user_shm_lock(inode->i_size, user))
1339 goto out_nomem;
1340 info->flags |= VM_LOCKED;
1341 mapping_set_unevictable(file->f_mapping);
1342 }
1343 if (!lock && (info->flags & VM_LOCKED) && user) {
1344 user_shm_unlock(inode->i_size, user);
1345 info->flags &= ~VM_LOCKED;
1346 mapping_clear_unevictable(file->f_mapping);
1347 }
1348 retval = 0;
1349
1350 out_nomem:
1351 spin_unlock(&info->lock);
1352 return retval;
1353 }
1354
1355 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1356 {
1357 file_accessed(file);
1358 vma->vm_ops = &shmem_vm_ops;
1359 return 0;
1360 }
1361
1362 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1363 umode_t mode, dev_t dev, unsigned long flags)
1364 {
1365 struct inode *inode;
1366 struct shmem_inode_info *info;
1367 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1368
1369 if (shmem_reserve_inode(sb))
1370 return NULL;
1371
1372 inode = new_inode(sb);
1373 if (inode) {
1374 inode->i_ino = get_next_ino();
1375 inode_init_owner(inode, dir, mode);
1376 inode->i_blocks = 0;
1377 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1378 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1379 inode->i_generation = get_seconds();
1380 info = SHMEM_I(inode);
1381 memset(info, 0, (char *)inode - (char *)info);
1382 spin_lock_init(&info->lock);
1383 info->flags = flags & VM_NORESERVE;
1384 INIT_LIST_HEAD(&info->swaplist);
1385 simple_xattrs_init(&info->xattrs);
1386 cache_no_acl(inode);
1387
1388 switch (mode & S_IFMT) {
1389 default:
1390 inode->i_op = &shmem_special_inode_operations;
1391 init_special_inode(inode, mode, dev);
1392 break;
1393 case S_IFREG:
1394 inode->i_mapping->a_ops = &shmem_aops;
1395 inode->i_op = &shmem_inode_operations;
1396 inode->i_fop = &shmem_file_operations;
1397 mpol_shared_policy_init(&info->policy,
1398 shmem_get_sbmpol(sbinfo));
1399 break;
1400 case S_IFDIR:
1401 inc_nlink(inode);
1402 /* Some things misbehave if size == 0 on a directory */
1403 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1404 inode->i_op = &shmem_dir_inode_operations;
1405 inode->i_fop = &simple_dir_operations;
1406 break;
1407 case S_IFLNK:
1408 /*
1409 * Must not load anything in the rbtree,
1410 * mpol_free_shared_policy will not be called.
1411 */
1412 mpol_shared_policy_init(&info->policy, NULL);
1413 break;
1414 }
1415 } else
1416 shmem_free_inode(sb);
1417 return inode;
1418 }
1419
1420 #ifdef CONFIG_TMPFS
1421 static const struct inode_operations shmem_symlink_inode_operations;
1422 static const struct inode_operations shmem_short_symlink_operations;
1423
1424 #ifdef CONFIG_TMPFS_XATTR
1425 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1426 #else
1427 #define shmem_initxattrs NULL
1428 #endif
1429
1430 static int
1431 shmem_write_begin(struct file *file, struct address_space *mapping,
1432 loff_t pos, unsigned len, unsigned flags,
1433 struct page **pagep, void **fsdata)
1434 {
1435 struct inode *inode = mapping->host;
1436 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1437 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1438 }
1439
1440 static int
1441 shmem_write_end(struct file *file, struct address_space *mapping,
1442 loff_t pos, unsigned len, unsigned copied,
1443 struct page *page, void *fsdata)
1444 {
1445 struct inode *inode = mapping->host;
1446
1447 if (pos + copied > inode->i_size)
1448 i_size_write(inode, pos + copied);
1449
1450 if (!PageUptodate(page)) {
1451 if (copied < PAGE_CACHE_SIZE) {
1452 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1453 zero_user_segments(page, 0, from,
1454 from + copied, PAGE_CACHE_SIZE);
1455 }
1456 SetPageUptodate(page);
1457 }
1458 set_page_dirty(page);
1459 unlock_page(page);
1460 page_cache_release(page);
1461
1462 return copied;
1463 }
1464
1465 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1466 {
1467 struct inode *inode = filp->f_path.dentry->d_inode;
1468 struct address_space *mapping = inode->i_mapping;
1469 pgoff_t index;
1470 unsigned long offset;
1471 enum sgp_type sgp = SGP_READ;
1472
1473 /*
1474 * Might this read be for a stacking filesystem? Then when reading
1475 * holes of a sparse file, we actually need to allocate those pages,
1476 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1477 */
1478 if (segment_eq(get_fs(), KERNEL_DS))
1479 sgp = SGP_DIRTY;
1480
1481 index = *ppos >> PAGE_CACHE_SHIFT;
1482 offset = *ppos & ~PAGE_CACHE_MASK;
1483
1484 for (;;) {
1485 struct page *page = NULL;
1486 pgoff_t end_index;
1487 unsigned long nr, ret;
1488 loff_t i_size = i_size_read(inode);
1489
1490 end_index = i_size >> PAGE_CACHE_SHIFT;
1491 if (index > end_index)
1492 break;
1493 if (index == end_index) {
1494 nr = i_size & ~PAGE_CACHE_MASK;
1495 if (nr <= offset)
1496 break;
1497 }
1498
1499 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1500 if (desc->error) {
1501 if (desc->error == -EINVAL)
1502 desc->error = 0;
1503 break;
1504 }
1505 if (page)
1506 unlock_page(page);
1507
1508 /*
1509 * We must evaluate after, since reads (unlike writes)
1510 * are called without i_mutex protection against truncate
1511 */
1512 nr = PAGE_CACHE_SIZE;
1513 i_size = i_size_read(inode);
1514 end_index = i_size >> PAGE_CACHE_SHIFT;
1515 if (index == end_index) {
1516 nr = i_size & ~PAGE_CACHE_MASK;
1517 if (nr <= offset) {
1518 if (page)
1519 page_cache_release(page);
1520 break;
1521 }
1522 }
1523 nr -= offset;
1524
1525 if (page) {
1526 /*
1527 * If users can be writing to this page using arbitrary
1528 * virtual addresses, take care about potential aliasing
1529 * before reading the page on the kernel side.
1530 */
1531 if (mapping_writably_mapped(mapping))
1532 flush_dcache_page(page);
1533 /*
1534 * Mark the page accessed if we read the beginning.
1535 */
1536 if (!offset)
1537 mark_page_accessed(page);
1538 } else {
1539 page = ZERO_PAGE(0);
1540 page_cache_get(page);
1541 }
1542
1543 /*
1544 * Ok, we have the page, and it's up-to-date, so
1545 * now we can copy it to user space...
1546 *
1547 * The actor routine returns how many bytes were actually used..
1548 * NOTE! This may not be the same as how much of a user buffer
1549 * we filled up (we may be padding etc), so we can only update
1550 * "pos" here (the actor routine has to update the user buffer
1551 * pointers and the remaining count).
1552 */
1553 ret = actor(desc, page, offset, nr);
1554 offset += ret;
1555 index += offset >> PAGE_CACHE_SHIFT;
1556 offset &= ~PAGE_CACHE_MASK;
1557
1558 page_cache_release(page);
1559 if (ret != nr || !desc->count)
1560 break;
1561
1562 cond_resched();
1563 }
1564
1565 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1566 file_accessed(filp);
1567 }
1568
1569 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1570 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1571 {
1572 struct file *filp = iocb->ki_filp;
1573 ssize_t retval;
1574 unsigned long seg;
1575 size_t count;
1576 loff_t *ppos = &iocb->ki_pos;
1577
1578 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1579 if (retval)
1580 return retval;
1581
1582 for (seg = 0; seg < nr_segs; seg++) {
1583 read_descriptor_t desc;
1584
1585 desc.written = 0;
1586 desc.arg.buf = iov[seg].iov_base;
1587 desc.count = iov[seg].iov_len;
1588 if (desc.count == 0)
1589 continue;
1590 desc.error = 0;
1591 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1592 retval += desc.written;
1593 if (desc.error) {
1594 retval = retval ?: desc.error;
1595 break;
1596 }
1597 if (desc.count > 0)
1598 break;
1599 }
1600 return retval;
1601 }
1602
1603 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1604 struct pipe_inode_info *pipe, size_t len,
1605 unsigned int flags)
1606 {
1607 struct address_space *mapping = in->f_mapping;
1608 struct inode *inode = mapping->host;
1609 unsigned int loff, nr_pages, req_pages;
1610 struct page *pages[PIPE_DEF_BUFFERS];
1611 struct partial_page partial[PIPE_DEF_BUFFERS];
1612 struct page *page;
1613 pgoff_t index, end_index;
1614 loff_t isize, left;
1615 int error, page_nr;
1616 struct splice_pipe_desc spd = {
1617 .pages = pages,
1618 .partial = partial,
1619 .nr_pages_max = PIPE_DEF_BUFFERS,
1620 .flags = flags,
1621 .ops = &page_cache_pipe_buf_ops,
1622 .spd_release = spd_release_page,
1623 };
1624
1625 isize = i_size_read(inode);
1626 if (unlikely(*ppos >= isize))
1627 return 0;
1628
1629 left = isize - *ppos;
1630 if (unlikely(left < len))
1631 len = left;
1632
1633 if (splice_grow_spd(pipe, &spd))
1634 return -ENOMEM;
1635
1636 index = *ppos >> PAGE_CACHE_SHIFT;
1637 loff = *ppos & ~PAGE_CACHE_MASK;
1638 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1639 nr_pages = min(req_pages, pipe->buffers);
1640
1641 spd.nr_pages = find_get_pages_contig(mapping, index,
1642 nr_pages, spd.pages);
1643 index += spd.nr_pages;
1644 error = 0;
1645
1646 while (spd.nr_pages < nr_pages) {
1647 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1648 if (error)
1649 break;
1650 unlock_page(page);
1651 spd.pages[spd.nr_pages++] = page;
1652 index++;
1653 }
1654
1655 index = *ppos >> PAGE_CACHE_SHIFT;
1656 nr_pages = spd.nr_pages;
1657 spd.nr_pages = 0;
1658
1659 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1660 unsigned int this_len;
1661
1662 if (!len)
1663 break;
1664
1665 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1666 page = spd.pages[page_nr];
1667
1668 if (!PageUptodate(page) || page->mapping != mapping) {
1669 error = shmem_getpage(inode, index, &page,
1670 SGP_CACHE, NULL);
1671 if (error)
1672 break;
1673 unlock_page(page);
1674 page_cache_release(spd.pages[page_nr]);
1675 spd.pages[page_nr] = page;
1676 }
1677
1678 isize = i_size_read(inode);
1679 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1680 if (unlikely(!isize || index > end_index))
1681 break;
1682
1683 if (end_index == index) {
1684 unsigned int plen;
1685
1686 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1687 if (plen <= loff)
1688 break;
1689
1690 this_len = min(this_len, plen - loff);
1691 len = this_len;
1692 }
1693
1694 spd.partial[page_nr].offset = loff;
1695 spd.partial[page_nr].len = this_len;
1696 len -= this_len;
1697 loff = 0;
1698 spd.nr_pages++;
1699 index++;
1700 }
1701
1702 while (page_nr < nr_pages)
1703 page_cache_release(spd.pages[page_nr++]);
1704
1705 if (spd.nr_pages)
1706 error = splice_to_pipe(pipe, &spd);
1707
1708 splice_shrink_spd(&spd);
1709
1710 if (error > 0) {
1711 *ppos += error;
1712 file_accessed(in);
1713 }
1714 return error;
1715 }
1716
1717 /*
1718 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1719 */
1720 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1721 pgoff_t index, pgoff_t end, int whence)
1722 {
1723 struct page *page;
1724 struct pagevec pvec;
1725 pgoff_t indices[PAGEVEC_SIZE];
1726 bool done = false;
1727 int i;
1728
1729 pagevec_init(&pvec, 0);
1730 pvec.nr = 1; /* start small: we may be there already */
1731 while (!done) {
1732 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1733 pvec.nr, pvec.pages, indices);
1734 if (!pvec.nr) {
1735 if (whence == SEEK_DATA)
1736 index = end;
1737 break;
1738 }
1739 for (i = 0; i < pvec.nr; i++, index++) {
1740 if (index < indices[i]) {
1741 if (whence == SEEK_HOLE) {
1742 done = true;
1743 break;
1744 }
1745 index = indices[i];
1746 }
1747 page = pvec.pages[i];
1748 if (page && !radix_tree_exceptional_entry(page)) {
1749 if (!PageUptodate(page))
1750 page = NULL;
1751 }
1752 if (index >= end ||
1753 (page && whence == SEEK_DATA) ||
1754 (!page && whence == SEEK_HOLE)) {
1755 done = true;
1756 break;
1757 }
1758 }
1759 shmem_deswap_pagevec(&pvec);
1760 pagevec_release(&pvec);
1761 pvec.nr = PAGEVEC_SIZE;
1762 cond_resched();
1763 }
1764 return index;
1765 }
1766
1767 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1768 {
1769 struct address_space *mapping = file->f_mapping;
1770 struct inode *inode = mapping->host;
1771 pgoff_t start, end;
1772 loff_t new_offset;
1773
1774 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1775 return generic_file_llseek_size(file, offset, whence,
1776 MAX_LFS_FILESIZE, i_size_read(inode));
1777 mutex_lock(&inode->i_mutex);
1778 /* We're holding i_mutex so we can access i_size directly */
1779
1780 if (offset < 0)
1781 offset = -EINVAL;
1782 else if (offset >= inode->i_size)
1783 offset = -ENXIO;
1784 else {
1785 start = offset >> PAGE_CACHE_SHIFT;
1786 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1787 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1788 new_offset <<= PAGE_CACHE_SHIFT;
1789 if (new_offset > offset) {
1790 if (new_offset < inode->i_size)
1791 offset = new_offset;
1792 else if (whence == SEEK_DATA)
1793 offset = -ENXIO;
1794 else
1795 offset = inode->i_size;
1796 }
1797 }
1798
1799 if (offset >= 0 && offset != file->f_pos) {
1800 file->f_pos = offset;
1801 file->f_version = 0;
1802 }
1803 mutex_unlock(&inode->i_mutex);
1804 return offset;
1805 }
1806
1807 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1808 loff_t len)
1809 {
1810 struct inode *inode = file->f_path.dentry->d_inode;
1811 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1812 struct shmem_falloc shmem_falloc;
1813 pgoff_t start, index, end;
1814 int error;
1815
1816 mutex_lock(&inode->i_mutex);
1817
1818 if (mode & FALLOC_FL_PUNCH_HOLE) {
1819 struct address_space *mapping = file->f_mapping;
1820 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1821 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1822
1823 if ((u64)unmap_end > (u64)unmap_start)
1824 unmap_mapping_range(mapping, unmap_start,
1825 1 + unmap_end - unmap_start, 0);
1826 shmem_truncate_range(inode, offset, offset + len - 1);
1827 /* No need to unmap again: hole-punching leaves COWed pages */
1828 error = 0;
1829 goto out;
1830 }
1831
1832 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1833 error = inode_newsize_ok(inode, offset + len);
1834 if (error)
1835 goto out;
1836
1837 start = offset >> PAGE_CACHE_SHIFT;
1838 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1839 /* Try to avoid a swapstorm if len is impossible to satisfy */
1840 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1841 error = -ENOSPC;
1842 goto out;
1843 }
1844
1845 shmem_falloc.start = start;
1846 shmem_falloc.next = start;
1847 shmem_falloc.nr_falloced = 0;
1848 shmem_falloc.nr_unswapped = 0;
1849 spin_lock(&inode->i_lock);
1850 inode->i_private = &shmem_falloc;
1851 spin_unlock(&inode->i_lock);
1852
1853 for (index = start; index < end; index++) {
1854 struct page *page;
1855
1856 /*
1857 * Good, the fallocate(2) manpage permits EINTR: we may have
1858 * been interrupted because we are using up too much memory.
1859 */
1860 if (signal_pending(current))
1861 error = -EINTR;
1862 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1863 error = -ENOMEM;
1864 else
1865 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1866 NULL);
1867 if (error) {
1868 /* Remove the !PageUptodate pages we added */
1869 shmem_undo_range(inode,
1870 (loff_t)start << PAGE_CACHE_SHIFT,
1871 (loff_t)index << PAGE_CACHE_SHIFT, true);
1872 goto undone;
1873 }
1874
1875 /*
1876 * Inform shmem_writepage() how far we have reached.
1877 * No need for lock or barrier: we have the page lock.
1878 */
1879 shmem_falloc.next++;
1880 if (!PageUptodate(page))
1881 shmem_falloc.nr_falloced++;
1882
1883 /*
1884 * If !PageUptodate, leave it that way so that freeable pages
1885 * can be recognized if we need to rollback on error later.
1886 * But set_page_dirty so that memory pressure will swap rather
1887 * than free the pages we are allocating (and SGP_CACHE pages
1888 * might still be clean: we now need to mark those dirty too).
1889 */
1890 set_page_dirty(page);
1891 unlock_page(page);
1892 page_cache_release(page);
1893 cond_resched();
1894 }
1895
1896 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1897 i_size_write(inode, offset + len);
1898 inode->i_ctime = CURRENT_TIME;
1899 undone:
1900 spin_lock(&inode->i_lock);
1901 inode->i_private = NULL;
1902 spin_unlock(&inode->i_lock);
1903 out:
1904 mutex_unlock(&inode->i_mutex);
1905 return error;
1906 }
1907
1908 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1909 {
1910 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1911
1912 buf->f_type = TMPFS_MAGIC;
1913 buf->f_bsize = PAGE_CACHE_SIZE;
1914 buf->f_namelen = NAME_MAX;
1915 if (sbinfo->max_blocks) {
1916 buf->f_blocks = sbinfo->max_blocks;
1917 buf->f_bavail =
1918 buf->f_bfree = sbinfo->max_blocks -
1919 percpu_counter_sum(&sbinfo->used_blocks);
1920 }
1921 if (sbinfo->max_inodes) {
1922 buf->f_files = sbinfo->max_inodes;
1923 buf->f_ffree = sbinfo->free_inodes;
1924 }
1925 /* else leave those fields 0 like simple_statfs */
1926 return 0;
1927 }
1928
1929 /*
1930 * File creation. Allocate an inode, and we're done..
1931 */
1932 static int
1933 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1934 {
1935 struct inode *inode;
1936 int error = -ENOSPC;
1937
1938 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1939 if (inode) {
1940 error = security_inode_init_security(inode, dir,
1941 &dentry->d_name,
1942 shmem_initxattrs, NULL);
1943 if (error) {
1944 if (error != -EOPNOTSUPP) {
1945 iput(inode);
1946 return error;
1947 }
1948 }
1949 #ifdef CONFIG_TMPFS_POSIX_ACL
1950 error = generic_acl_init(inode, dir);
1951 if (error) {
1952 iput(inode);
1953 return error;
1954 }
1955 #else
1956 error = 0;
1957 #endif
1958 dir->i_size += BOGO_DIRENT_SIZE;
1959 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1960 d_instantiate(dentry, inode);
1961 dget(dentry); /* Extra count - pin the dentry in core */
1962 }
1963 return error;
1964 }
1965
1966 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1967 {
1968 int error;
1969
1970 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1971 return error;
1972 inc_nlink(dir);
1973 return 0;
1974 }
1975
1976 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1977 bool excl)
1978 {
1979 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1980 }
1981
1982 /*
1983 * Link a file..
1984 */
1985 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1986 {
1987 struct inode *inode = old_dentry->d_inode;
1988 int ret;
1989
1990 /*
1991 * No ordinary (disk based) filesystem counts links as inodes;
1992 * but each new link needs a new dentry, pinning lowmem, and
1993 * tmpfs dentries cannot be pruned until they are unlinked.
1994 */
1995 ret = shmem_reserve_inode(inode->i_sb);
1996 if (ret)
1997 goto out;
1998
1999 dir->i_size += BOGO_DIRENT_SIZE;
2000 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2001 inc_nlink(inode);
2002 ihold(inode); /* New dentry reference */
2003 dget(dentry); /* Extra pinning count for the created dentry */
2004 d_instantiate(dentry, inode);
2005 out:
2006 return ret;
2007 }
2008
2009 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2010 {
2011 struct inode *inode = dentry->d_inode;
2012
2013 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2014 shmem_free_inode(inode->i_sb);
2015
2016 dir->i_size -= BOGO_DIRENT_SIZE;
2017 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018 drop_nlink(inode);
2019 dput(dentry); /* Undo the count from "create" - this does all the work */
2020 return 0;
2021 }
2022
2023 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2024 {
2025 if (!simple_empty(dentry))
2026 return -ENOTEMPTY;
2027
2028 drop_nlink(dentry->d_inode);
2029 drop_nlink(dir);
2030 return shmem_unlink(dir, dentry);
2031 }
2032
2033 /*
2034 * The VFS layer already does all the dentry stuff for rename,
2035 * we just have to decrement the usage count for the target if
2036 * it exists so that the VFS layer correctly free's it when it
2037 * gets overwritten.
2038 */
2039 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2040 {
2041 struct inode *inode = old_dentry->d_inode;
2042 int they_are_dirs = S_ISDIR(inode->i_mode);
2043
2044 if (!simple_empty(new_dentry))
2045 return -ENOTEMPTY;
2046
2047 if (new_dentry->d_inode) {
2048 (void) shmem_unlink(new_dir, new_dentry);
2049 if (they_are_dirs)
2050 drop_nlink(old_dir);
2051 } else if (they_are_dirs) {
2052 drop_nlink(old_dir);
2053 inc_nlink(new_dir);
2054 }
2055
2056 old_dir->i_size -= BOGO_DIRENT_SIZE;
2057 new_dir->i_size += BOGO_DIRENT_SIZE;
2058 old_dir->i_ctime = old_dir->i_mtime =
2059 new_dir->i_ctime = new_dir->i_mtime =
2060 inode->i_ctime = CURRENT_TIME;
2061 return 0;
2062 }
2063
2064 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2065 {
2066 int error;
2067 int len;
2068 struct inode *inode;
2069 struct page *page;
2070 char *kaddr;
2071 struct shmem_inode_info *info;
2072
2073 len = strlen(symname) + 1;
2074 if (len > PAGE_CACHE_SIZE)
2075 return -ENAMETOOLONG;
2076
2077 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2078 if (!inode)
2079 return -ENOSPC;
2080
2081 error = security_inode_init_security(inode, dir, &dentry->d_name,
2082 shmem_initxattrs, NULL);
2083 if (error) {
2084 if (error != -EOPNOTSUPP) {
2085 iput(inode);
2086 return error;
2087 }
2088 error = 0;
2089 }
2090
2091 info = SHMEM_I(inode);
2092 inode->i_size = len-1;
2093 if (len <= SHORT_SYMLINK_LEN) {
2094 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2095 if (!info->symlink) {
2096 iput(inode);
2097 return -ENOMEM;
2098 }
2099 inode->i_op = &shmem_short_symlink_operations;
2100 } else {
2101 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2102 if (error) {
2103 iput(inode);
2104 return error;
2105 }
2106 inode->i_mapping->a_ops = &shmem_aops;
2107 inode->i_op = &shmem_symlink_inode_operations;
2108 kaddr = kmap_atomic(page);
2109 memcpy(kaddr, symname, len);
2110 kunmap_atomic(kaddr);
2111 SetPageUptodate(page);
2112 set_page_dirty(page);
2113 unlock_page(page);
2114 page_cache_release(page);
2115 }
2116 dir->i_size += BOGO_DIRENT_SIZE;
2117 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2118 d_instantiate(dentry, inode);
2119 dget(dentry);
2120 return 0;
2121 }
2122
2123 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2124 {
2125 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2126 return NULL;
2127 }
2128
2129 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2130 {
2131 struct page *page = NULL;
2132 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2133 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2134 if (page)
2135 unlock_page(page);
2136 return page;
2137 }
2138
2139 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2140 {
2141 if (!IS_ERR(nd_get_link(nd))) {
2142 struct page *page = cookie;
2143 kunmap(page);
2144 mark_page_accessed(page);
2145 page_cache_release(page);
2146 }
2147 }
2148
2149 #ifdef CONFIG_TMPFS_XATTR
2150 /*
2151 * Superblocks without xattr inode operations may get some security.* xattr
2152 * support from the LSM "for free". As soon as we have any other xattrs
2153 * like ACLs, we also need to implement the security.* handlers at
2154 * filesystem level, though.
2155 */
2156
2157 /*
2158 * Callback for security_inode_init_security() for acquiring xattrs.
2159 */
2160 static int shmem_initxattrs(struct inode *inode,
2161 const struct xattr *xattr_array,
2162 void *fs_info)
2163 {
2164 struct shmem_inode_info *info = SHMEM_I(inode);
2165 const struct xattr *xattr;
2166 struct simple_xattr *new_xattr;
2167 size_t len;
2168
2169 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2170 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2171 if (!new_xattr)
2172 return -ENOMEM;
2173
2174 len = strlen(xattr->name) + 1;
2175 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2176 GFP_KERNEL);
2177 if (!new_xattr->name) {
2178 kfree(new_xattr);
2179 return -ENOMEM;
2180 }
2181
2182 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2183 XATTR_SECURITY_PREFIX_LEN);
2184 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2185 xattr->name, len);
2186
2187 simple_xattr_list_add(&info->xattrs, new_xattr);
2188 }
2189
2190 return 0;
2191 }
2192
2193 static const struct xattr_handler *shmem_xattr_handlers[] = {
2194 #ifdef CONFIG_TMPFS_POSIX_ACL
2195 &generic_acl_access_handler,
2196 &generic_acl_default_handler,
2197 #endif
2198 NULL
2199 };
2200
2201 static int shmem_xattr_validate(const char *name)
2202 {
2203 struct { const char *prefix; size_t len; } arr[] = {
2204 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2205 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2206 };
2207 int i;
2208
2209 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2210 size_t preflen = arr[i].len;
2211 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2212 if (!name[preflen])
2213 return -EINVAL;
2214 return 0;
2215 }
2216 }
2217 return -EOPNOTSUPP;
2218 }
2219
2220 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2221 void *buffer, size_t size)
2222 {
2223 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2224 int err;
2225
2226 /*
2227 * If this is a request for a synthetic attribute in the system.*
2228 * namespace use the generic infrastructure to resolve a handler
2229 * for it via sb->s_xattr.
2230 */
2231 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2232 return generic_getxattr(dentry, name, buffer, size);
2233
2234 err = shmem_xattr_validate(name);
2235 if (err)
2236 return err;
2237
2238 return simple_xattr_get(&info->xattrs, name, buffer, size);
2239 }
2240
2241 static int shmem_setxattr(struct dentry *dentry, const char *name,
2242 const void *value, size_t size, int flags)
2243 {
2244 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2245 int err;
2246
2247 /*
2248 * If this is a request for a synthetic attribute in the system.*
2249 * namespace use the generic infrastructure to resolve a handler
2250 * for it via sb->s_xattr.
2251 */
2252 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2253 return generic_setxattr(dentry, name, value, size, flags);
2254
2255 err = shmem_xattr_validate(name);
2256 if (err)
2257 return err;
2258
2259 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2260 }
2261
2262 static int shmem_removexattr(struct dentry *dentry, const char *name)
2263 {
2264 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2265 int err;
2266
2267 /*
2268 * If this is a request for a synthetic attribute in the system.*
2269 * namespace use the generic infrastructure to resolve a handler
2270 * for it via sb->s_xattr.
2271 */
2272 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2273 return generic_removexattr(dentry, name);
2274
2275 err = shmem_xattr_validate(name);
2276 if (err)
2277 return err;
2278
2279 return simple_xattr_remove(&info->xattrs, name);
2280 }
2281
2282 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2283 {
2284 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2285 return simple_xattr_list(&info->xattrs, buffer, size);
2286 }
2287 #endif /* CONFIG_TMPFS_XATTR */
2288
2289 static const struct inode_operations shmem_short_symlink_operations = {
2290 .readlink = generic_readlink,
2291 .follow_link = shmem_follow_short_symlink,
2292 #ifdef CONFIG_TMPFS_XATTR
2293 .setxattr = shmem_setxattr,
2294 .getxattr = shmem_getxattr,
2295 .listxattr = shmem_listxattr,
2296 .removexattr = shmem_removexattr,
2297 #endif
2298 };
2299
2300 static const struct inode_operations shmem_symlink_inode_operations = {
2301 .readlink = generic_readlink,
2302 .follow_link = shmem_follow_link,
2303 .put_link = shmem_put_link,
2304 #ifdef CONFIG_TMPFS_XATTR
2305 .setxattr = shmem_setxattr,
2306 .getxattr = shmem_getxattr,
2307 .listxattr = shmem_listxattr,
2308 .removexattr = shmem_removexattr,
2309 #endif
2310 };
2311
2312 static struct dentry *shmem_get_parent(struct dentry *child)
2313 {
2314 return ERR_PTR(-ESTALE);
2315 }
2316
2317 static int shmem_match(struct inode *ino, void *vfh)
2318 {
2319 __u32 *fh = vfh;
2320 __u64 inum = fh[2];
2321 inum = (inum << 32) | fh[1];
2322 return ino->i_ino == inum && fh[0] == ino->i_generation;
2323 }
2324
2325 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2326 struct fid *fid, int fh_len, int fh_type)
2327 {
2328 struct inode *inode;
2329 struct dentry *dentry = NULL;
2330 u64 inum;
2331
2332 if (fh_len < 3)
2333 return NULL;
2334
2335 inum = fid->raw[2];
2336 inum = (inum << 32) | fid->raw[1];
2337
2338 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2339 shmem_match, fid->raw);
2340 if (inode) {
2341 dentry = d_find_alias(inode);
2342 iput(inode);
2343 }
2344
2345 return dentry;
2346 }
2347
2348 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2349 struct inode *parent)
2350 {
2351 if (*len < 3) {
2352 *len = 3;
2353 return 255;
2354 }
2355
2356 if (inode_unhashed(inode)) {
2357 /* Unfortunately insert_inode_hash is not idempotent,
2358 * so as we hash inodes here rather than at creation
2359 * time, we need a lock to ensure we only try
2360 * to do it once
2361 */
2362 static DEFINE_SPINLOCK(lock);
2363 spin_lock(&lock);
2364 if (inode_unhashed(inode))
2365 __insert_inode_hash(inode,
2366 inode->i_ino + inode->i_generation);
2367 spin_unlock(&lock);
2368 }
2369
2370 fh[0] = inode->i_generation;
2371 fh[1] = inode->i_ino;
2372 fh[2] = ((__u64)inode->i_ino) >> 32;
2373
2374 *len = 3;
2375 return 1;
2376 }
2377
2378 static const struct export_operations shmem_export_ops = {
2379 .get_parent = shmem_get_parent,
2380 .encode_fh = shmem_encode_fh,
2381 .fh_to_dentry = shmem_fh_to_dentry,
2382 };
2383
2384 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2385 bool remount)
2386 {
2387 char *this_char, *value, *rest;
2388 uid_t uid;
2389 gid_t gid;
2390
2391 while (options != NULL) {
2392 this_char = options;
2393 for (;;) {
2394 /*
2395 * NUL-terminate this option: unfortunately,
2396 * mount options form a comma-separated list,
2397 * but mpol's nodelist may also contain commas.
2398 */
2399 options = strchr(options, ',');
2400 if (options == NULL)
2401 break;
2402 options++;
2403 if (!isdigit(*options)) {
2404 options[-1] = '\0';
2405 break;
2406 }
2407 }
2408 if (!*this_char)
2409 continue;
2410 if ((value = strchr(this_char,'=')) != NULL) {
2411 *value++ = 0;
2412 } else {
2413 printk(KERN_ERR
2414 "tmpfs: No value for mount option '%s'\n",
2415 this_char);
2416 return 1;
2417 }
2418
2419 if (!strcmp(this_char,"size")) {
2420 unsigned long long size;
2421 size = memparse(value,&rest);
2422 if (*rest == '%') {
2423 size <<= PAGE_SHIFT;
2424 size *= totalram_pages;
2425 do_div(size, 100);
2426 rest++;
2427 }
2428 if (*rest)
2429 goto bad_val;
2430 sbinfo->max_blocks =
2431 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2432 } else if (!strcmp(this_char,"nr_blocks")) {
2433 sbinfo->max_blocks = memparse(value, &rest);
2434 if (*rest)
2435 goto bad_val;
2436 } else if (!strcmp(this_char,"nr_inodes")) {
2437 sbinfo->max_inodes = memparse(value, &rest);
2438 if (*rest)
2439 goto bad_val;
2440 } else if (!strcmp(this_char,"mode")) {
2441 if (remount)
2442 continue;
2443 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2444 if (*rest)
2445 goto bad_val;
2446 } else if (!strcmp(this_char,"uid")) {
2447 if (remount)
2448 continue;
2449 uid = simple_strtoul(value, &rest, 0);
2450 if (*rest)
2451 goto bad_val;
2452 sbinfo->uid = make_kuid(current_user_ns(), uid);
2453 if (!uid_valid(sbinfo->uid))
2454 goto bad_val;
2455 } else if (!strcmp(this_char,"gid")) {
2456 if (remount)
2457 continue;
2458 gid = simple_strtoul(value, &rest, 0);
2459 if (*rest)
2460 goto bad_val;
2461 sbinfo->gid = make_kgid(current_user_ns(), gid);
2462 if (!gid_valid(sbinfo->gid))
2463 goto bad_val;
2464 } else if (!strcmp(this_char,"mpol")) {
2465 if (mpol_parse_str(value, &sbinfo->mpol))
2466 goto bad_val;
2467 } else {
2468 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2469 this_char);
2470 return 1;
2471 }
2472 }
2473 return 0;
2474
2475 bad_val:
2476 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2477 value, this_char);
2478 return 1;
2479
2480 }
2481
2482 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2483 {
2484 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2485 struct shmem_sb_info config = *sbinfo;
2486 unsigned long inodes;
2487 int error = -EINVAL;
2488
2489 if (shmem_parse_options(data, &config, true))
2490 return error;
2491
2492 spin_lock(&sbinfo->stat_lock);
2493 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2494 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2495 goto out;
2496 if (config.max_inodes < inodes)
2497 goto out;
2498 /*
2499 * Those tests disallow limited->unlimited while any are in use;
2500 * but we must separately disallow unlimited->limited, because
2501 * in that case we have no record of how much is already in use.
2502 */
2503 if (config.max_blocks && !sbinfo->max_blocks)
2504 goto out;
2505 if (config.max_inodes && !sbinfo->max_inodes)
2506 goto out;
2507
2508 error = 0;
2509 sbinfo->max_blocks = config.max_blocks;
2510 sbinfo->max_inodes = config.max_inodes;
2511 sbinfo->free_inodes = config.max_inodes - inodes;
2512
2513 mpol_put(sbinfo->mpol);
2514 sbinfo->mpol = config.mpol; /* transfers initial ref */
2515 out:
2516 spin_unlock(&sbinfo->stat_lock);
2517 return error;
2518 }
2519
2520 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2521 {
2522 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2523
2524 if (sbinfo->max_blocks != shmem_default_max_blocks())
2525 seq_printf(seq, ",size=%luk",
2526 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2527 if (sbinfo->max_inodes != shmem_default_max_inodes())
2528 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2529 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2530 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2531 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2532 seq_printf(seq, ",uid=%u",
2533 from_kuid_munged(&init_user_ns, sbinfo->uid));
2534 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2535 seq_printf(seq, ",gid=%u",
2536 from_kgid_munged(&init_user_ns, sbinfo->gid));
2537 shmem_show_mpol(seq, sbinfo->mpol);
2538 return 0;
2539 }
2540 #endif /* CONFIG_TMPFS */
2541
2542 static void shmem_put_super(struct super_block *sb)
2543 {
2544 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2545
2546 percpu_counter_destroy(&sbinfo->used_blocks);
2547 kfree(sbinfo);
2548 sb->s_fs_info = NULL;
2549 }
2550
2551 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2552 {
2553 struct inode *inode;
2554 struct shmem_sb_info *sbinfo;
2555 int err = -ENOMEM;
2556
2557 /* Round up to L1_CACHE_BYTES to resist false sharing */
2558 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2559 L1_CACHE_BYTES), GFP_KERNEL);
2560 if (!sbinfo)
2561 return -ENOMEM;
2562
2563 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2564 sbinfo->uid = current_fsuid();
2565 sbinfo->gid = current_fsgid();
2566 sb->s_fs_info = sbinfo;
2567
2568 #ifdef CONFIG_TMPFS
2569 /*
2570 * Per default we only allow half of the physical ram per
2571 * tmpfs instance, limiting inodes to one per page of lowmem;
2572 * but the internal instance is left unlimited.
2573 */
2574 if (!(sb->s_flags & MS_NOUSER)) {
2575 sbinfo->max_blocks = shmem_default_max_blocks();
2576 sbinfo->max_inodes = shmem_default_max_inodes();
2577 if (shmem_parse_options(data, sbinfo, false)) {
2578 err = -EINVAL;
2579 goto failed;
2580 }
2581 }
2582 sb->s_export_op = &shmem_export_ops;
2583 sb->s_flags |= MS_NOSEC;
2584 #else
2585 sb->s_flags |= MS_NOUSER;
2586 #endif
2587
2588 spin_lock_init(&sbinfo->stat_lock);
2589 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2590 goto failed;
2591 sbinfo->free_inodes = sbinfo->max_inodes;
2592
2593 sb->s_maxbytes = MAX_LFS_FILESIZE;
2594 sb->s_blocksize = PAGE_CACHE_SIZE;
2595 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2596 sb->s_magic = TMPFS_MAGIC;
2597 sb->s_op = &shmem_ops;
2598 sb->s_time_gran = 1;
2599 #ifdef CONFIG_TMPFS_XATTR
2600 sb->s_xattr = shmem_xattr_handlers;
2601 #endif
2602 #ifdef CONFIG_TMPFS_POSIX_ACL
2603 sb->s_flags |= MS_POSIXACL;
2604 #endif
2605
2606 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2607 if (!inode)
2608 goto failed;
2609 inode->i_uid = sbinfo->uid;
2610 inode->i_gid = sbinfo->gid;
2611 sb->s_root = d_make_root(inode);
2612 if (!sb->s_root)
2613 goto failed;
2614 return 0;
2615
2616 failed:
2617 shmem_put_super(sb);
2618 return err;
2619 }
2620
2621 static struct kmem_cache *shmem_inode_cachep;
2622
2623 static struct inode *shmem_alloc_inode(struct super_block *sb)
2624 {
2625 struct shmem_inode_info *info;
2626 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2627 if (!info)
2628 return NULL;
2629 return &info->vfs_inode;
2630 }
2631
2632 static void shmem_destroy_callback(struct rcu_head *head)
2633 {
2634 struct inode *inode = container_of(head, struct inode, i_rcu);
2635 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2636 }
2637
2638 static void shmem_destroy_inode(struct inode *inode)
2639 {
2640 if (S_ISREG(inode->i_mode))
2641 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2642 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2643 }
2644
2645 static void shmem_init_inode(void *foo)
2646 {
2647 struct shmem_inode_info *info = foo;
2648 inode_init_once(&info->vfs_inode);
2649 }
2650
2651 static int shmem_init_inodecache(void)
2652 {
2653 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2654 sizeof(struct shmem_inode_info),
2655 0, SLAB_PANIC, shmem_init_inode);
2656 return 0;
2657 }
2658
2659 static void shmem_destroy_inodecache(void)
2660 {
2661 kmem_cache_destroy(shmem_inode_cachep);
2662 }
2663
2664 static const struct address_space_operations shmem_aops = {
2665 .writepage = shmem_writepage,
2666 .set_page_dirty = __set_page_dirty_no_writeback,
2667 #ifdef CONFIG_TMPFS
2668 .write_begin = shmem_write_begin,
2669 .write_end = shmem_write_end,
2670 #endif
2671 .migratepage = migrate_page,
2672 .error_remove_page = generic_error_remove_page,
2673 };
2674
2675 static const struct file_operations shmem_file_operations = {
2676 .mmap = shmem_mmap,
2677 #ifdef CONFIG_TMPFS
2678 .llseek = shmem_file_llseek,
2679 .read = do_sync_read,
2680 .write = do_sync_write,
2681 .aio_read = shmem_file_aio_read,
2682 .aio_write = generic_file_aio_write,
2683 .fsync = noop_fsync,
2684 .splice_read = shmem_file_splice_read,
2685 .splice_write = generic_file_splice_write,
2686 .fallocate = shmem_fallocate,
2687 #endif
2688 };
2689
2690 static const struct inode_operations shmem_inode_operations = {
2691 .setattr = shmem_setattr,
2692 #ifdef CONFIG_TMPFS_XATTR
2693 .setxattr = shmem_setxattr,
2694 .getxattr = shmem_getxattr,
2695 .listxattr = shmem_listxattr,
2696 .removexattr = shmem_removexattr,
2697 #endif
2698 };
2699
2700 static const struct inode_operations shmem_dir_inode_operations = {
2701 #ifdef CONFIG_TMPFS
2702 .create = shmem_create,
2703 .lookup = simple_lookup,
2704 .link = shmem_link,
2705 .unlink = shmem_unlink,
2706 .symlink = shmem_symlink,
2707 .mkdir = shmem_mkdir,
2708 .rmdir = shmem_rmdir,
2709 .mknod = shmem_mknod,
2710 .rename = shmem_rename,
2711 #endif
2712 #ifdef CONFIG_TMPFS_XATTR
2713 .setxattr = shmem_setxattr,
2714 .getxattr = shmem_getxattr,
2715 .listxattr = shmem_listxattr,
2716 .removexattr = shmem_removexattr,
2717 #endif
2718 #ifdef CONFIG_TMPFS_POSIX_ACL
2719 .setattr = shmem_setattr,
2720 #endif
2721 };
2722
2723 static const struct inode_operations shmem_special_inode_operations = {
2724 #ifdef CONFIG_TMPFS_XATTR
2725 .setxattr = shmem_setxattr,
2726 .getxattr = shmem_getxattr,
2727 .listxattr = shmem_listxattr,
2728 .removexattr = shmem_removexattr,
2729 #endif
2730 #ifdef CONFIG_TMPFS_POSIX_ACL
2731 .setattr = shmem_setattr,
2732 #endif
2733 };
2734
2735 static const struct super_operations shmem_ops = {
2736 .alloc_inode = shmem_alloc_inode,
2737 .destroy_inode = shmem_destroy_inode,
2738 #ifdef CONFIG_TMPFS
2739 .statfs = shmem_statfs,
2740 .remount_fs = shmem_remount_fs,
2741 .show_options = shmem_show_options,
2742 #endif
2743 .evict_inode = shmem_evict_inode,
2744 .drop_inode = generic_delete_inode,
2745 .put_super = shmem_put_super,
2746 };
2747
2748 static const struct vm_operations_struct shmem_vm_ops = {
2749 .fault = shmem_fault,
2750 #ifdef CONFIG_NUMA
2751 .set_policy = shmem_set_policy,
2752 .get_policy = shmem_get_policy,
2753 #endif
2754 .remap_pages = generic_file_remap_pages,
2755 };
2756
2757 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2758 int flags, const char *dev_name, void *data)
2759 {
2760 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2761 }
2762
2763 static struct file_system_type shmem_fs_type = {
2764 .owner = THIS_MODULE,
2765 .name = "tmpfs",
2766 .mount = shmem_mount,
2767 .kill_sb = kill_litter_super,
2768 };
2769
2770 int __init shmem_init(void)
2771 {
2772 int error;
2773
2774 error = bdi_init(&shmem_backing_dev_info);
2775 if (error)
2776 goto out4;
2777
2778 error = shmem_init_inodecache();
2779 if (error)
2780 goto out3;
2781
2782 error = register_filesystem(&shmem_fs_type);
2783 if (error) {
2784 printk(KERN_ERR "Could not register tmpfs\n");
2785 goto out2;
2786 }
2787
2788 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2789 shmem_fs_type.name, NULL);
2790 if (IS_ERR(shm_mnt)) {
2791 error = PTR_ERR(shm_mnt);
2792 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2793 goto out1;
2794 }
2795 return 0;
2796
2797 out1:
2798 unregister_filesystem(&shmem_fs_type);
2799 out2:
2800 shmem_destroy_inodecache();
2801 out3:
2802 bdi_destroy(&shmem_backing_dev_info);
2803 out4:
2804 shm_mnt = ERR_PTR(error);
2805 return error;
2806 }
2807
2808 #else /* !CONFIG_SHMEM */
2809
2810 /*
2811 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2812 *
2813 * This is intended for small system where the benefits of the full
2814 * shmem code (swap-backed and resource-limited) are outweighed by
2815 * their complexity. On systems without swap this code should be
2816 * effectively equivalent, but much lighter weight.
2817 */
2818
2819 #include <linux/ramfs.h>
2820
2821 static struct file_system_type shmem_fs_type = {
2822 .name = "tmpfs",
2823 .mount = ramfs_mount,
2824 .kill_sb = kill_litter_super,
2825 };
2826
2827 int __init shmem_init(void)
2828 {
2829 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2830
2831 shm_mnt = kern_mount(&shmem_fs_type);
2832 BUG_ON(IS_ERR(shm_mnt));
2833
2834 return 0;
2835 }
2836
2837 int shmem_unuse(swp_entry_t swap, struct page *page)
2838 {
2839 return 0;
2840 }
2841
2842 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2843 {
2844 return 0;
2845 }
2846
2847 void shmem_unlock_mapping(struct address_space *mapping)
2848 {
2849 }
2850
2851 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2852 {
2853 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2854 }
2855 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2856
2857 #define shmem_vm_ops generic_file_vm_ops
2858 #define shmem_file_operations ramfs_file_operations
2859 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2860 #define shmem_acct_size(flags, size) 0
2861 #define shmem_unacct_size(flags, size) do {} while (0)
2862
2863 #endif /* CONFIG_SHMEM */
2864
2865 /* common code */
2866
2867 /**
2868 * shmem_file_setup - get an unlinked file living in tmpfs
2869 * @name: name for dentry (to be seen in /proc/<pid>/maps
2870 * @size: size to be set for the file
2871 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2872 */
2873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2874 {
2875 int error;
2876 struct file *file;
2877 struct inode *inode;
2878 struct path path;
2879 struct dentry *root;
2880 struct qstr this;
2881
2882 if (IS_ERR(shm_mnt))
2883 return (void *)shm_mnt;
2884
2885 if (size < 0 || size > MAX_LFS_FILESIZE)
2886 return ERR_PTR(-EINVAL);
2887
2888 if (shmem_acct_size(flags, size))
2889 return ERR_PTR(-ENOMEM);
2890
2891 error = -ENOMEM;
2892 this.name = name;
2893 this.len = strlen(name);
2894 this.hash = 0; /* will go */
2895 root = shm_mnt->mnt_root;
2896 path.dentry = d_alloc(root, &this);
2897 if (!path.dentry)
2898 goto put_memory;
2899 path.mnt = mntget(shm_mnt);
2900
2901 error = -ENOSPC;
2902 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2903 if (!inode)
2904 goto put_dentry;
2905
2906 d_instantiate(path.dentry, inode);
2907 inode->i_size = size;
2908 clear_nlink(inode); /* It is unlinked */
2909 #ifndef CONFIG_MMU
2910 error = ramfs_nommu_expand_for_mapping(inode, size);
2911 if (error)
2912 goto put_dentry;
2913 #endif
2914
2915 error = -ENFILE;
2916 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2917 &shmem_file_operations);
2918 if (!file)
2919 goto put_dentry;
2920
2921 return file;
2922
2923 put_dentry:
2924 path_put(&path);
2925 put_memory:
2926 shmem_unacct_size(flags, size);
2927 return ERR_PTR(error);
2928 }
2929 EXPORT_SYMBOL_GPL(shmem_file_setup);
2930
2931 /**
2932 * shmem_zero_setup - setup a shared anonymous mapping
2933 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2934 */
2935 int shmem_zero_setup(struct vm_area_struct *vma)
2936 {
2937 struct file *file;
2938 loff_t size = vma->vm_end - vma->vm_start;
2939
2940 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2941 if (IS_ERR(file))
2942 return PTR_ERR(file);
2943
2944 if (vma->vm_file)
2945 fput(vma->vm_file);
2946 vma->vm_file = file;
2947 vma->vm_ops = &shmem_vm_ops;
2948 return 0;
2949 }
2950
2951 /**
2952 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2953 * @mapping: the page's address_space
2954 * @index: the page index
2955 * @gfp: the page allocator flags to use if allocating
2956 *
2957 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2958 * with any new page allocations done using the specified allocation flags.
2959 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2960 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2961 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2962 *
2963 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2964 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2965 */
2966 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2967 pgoff_t index, gfp_t gfp)
2968 {
2969 #ifdef CONFIG_SHMEM
2970 struct inode *inode = mapping->host;
2971 struct page *page;
2972 int error;
2973
2974 BUG_ON(mapping->a_ops != &shmem_aops);
2975 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2976 if (error)
2977 page = ERR_PTR(error);
2978 else
2979 unlock_page(page);
2980 return page;
2981 #else
2982 /*
2983 * The tiny !SHMEM case uses ramfs without swap
2984 */
2985 return read_cache_page_gfp(mapping, index, gfp);
2986 #endif
2987 }
2988 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);