Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32
33 static struct vfsmount *shm_mnt;
34
35 #ifdef CONFIG_SHMEM
36 /*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/posix_acl.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
62
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
66
67 /*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
79 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81
82 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84
85 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92 #define SHMEM_PAGEIN VM_READ
93 #define SHMEM_TRUNCATE VM_WRITE
94
95 /* Definition to limit shmem_truncate's steps between cond_rescheds */
96 #define LATENCY_LIMIT 64
97
98 /* Pretend that each entry is of this size in directory's i_size */
99 #define BOGO_DIRENT_SIZE 20
100
101 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102 enum sgp_type {
103 SGP_READ, /* don't exceed i_size, don't allocate page */
104 SGP_CACHE, /* don't exceed i_size, may allocate page */
105 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
106 SGP_WRITE, /* may exceed i_size, may allocate page */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static int shmem_getpage(struct inode *inode, unsigned long idx,
122 struct page **pagep, enum sgp_type sgp, int *type);
123
124 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125 {
126 /*
127 * The above definition of ENTRIES_PER_PAGE, and the use of
128 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129 * might be reconsidered if it ever diverges from PAGE_SIZE.
130 *
131 * Mobility flags are masked out as swap vectors cannot move
132 */
133 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134 PAGE_CACHE_SHIFT-PAGE_SHIFT);
135 }
136
137 static inline void shmem_dir_free(struct page *page)
138 {
139 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140 }
141
142 static struct page **shmem_dir_map(struct page *page)
143 {
144 return (struct page **)kmap_atomic(page, KM_USER0);
145 }
146
147 static inline void shmem_dir_unmap(struct page **dir)
148 {
149 kunmap_atomic(dir, KM_USER0);
150 }
151
152 static swp_entry_t *shmem_swp_map(struct page *page)
153 {
154 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155 }
156
157 static inline void shmem_swp_balance_unmap(void)
158 {
159 /*
160 * When passing a pointer to an i_direct entry, to code which
161 * also handles indirect entries and so will shmem_swp_unmap,
162 * we must arrange for the preempt count to remain in balance.
163 * What kmap_atomic of a lowmem page does depends on config
164 * and architecture, so pretend to kmap_atomic some lowmem page.
165 */
166 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167 }
168
169 static inline void shmem_swp_unmap(swp_entry_t *entry)
170 {
171 kunmap_atomic(entry, KM_USER1);
172 }
173
174 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175 {
176 return sb->s_fs_info;
177 }
178
179 /*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185 static inline int shmem_acct_size(unsigned long flags, loff_t size)
186 {
187 return (flags & VM_NORESERVE) ?
188 0 : security_vm_enough_memory_kern(VM_ACCT(size));
189 }
190
191 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192 {
193 if (!(flags & VM_NORESERVE))
194 vm_unacct_memory(VM_ACCT(size));
195 }
196
197 /*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203 static inline int shmem_acct_block(unsigned long flags)
204 {
205 return (flags & VM_NORESERVE) ?
206 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213 }
214
215 static const struct super_operations shmem_ops;
216 static const struct address_space_operations shmem_aops;
217 static const struct file_operations shmem_file_operations;
218 static const struct inode_operations shmem_inode_operations;
219 static const struct inode_operations shmem_dir_inode_operations;
220 static const struct inode_operations shmem_special_inode_operations;
221 static const struct vm_operations_struct shmem_vm_ops;
222
223 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
224 .ra_pages = 0, /* No readahead */
225 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226 .unplug_io_fn = default_unplug_io_fn,
227 };
228
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232 static void shmem_free_blocks(struct inode *inode, long pages)
233 {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks) {
236 spin_lock(&sbinfo->stat_lock);
237 sbinfo->free_blocks += pages;
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&sbinfo->stat_lock);
240 }
241 }
242
243 static int shmem_reserve_inode(struct super_block *sb)
244 {
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
251 }
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
254 }
255 return 0;
256 }
257
258 static void shmem_free_inode(struct super_block *sb)
259 {
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
265 }
266 }
267
268 /**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280 static void shmem_recalc_inode(struct inode *inode)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
284
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
290 }
291 }
292
293 /**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
319 * |
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
324 * |
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
329 */
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331 {
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
335
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
339 }
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
344 }
345 return NULL; /* need another page */
346 }
347
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
352
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
362 }
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
365 }
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
368 }
369
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
376 }
377 *dir = subdir;
378 *page = NULL;
379 }
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
382 }
383
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385 {
386 long incdec = value? 1: -1;
387
388 entry->val = value;
389 info->swapped += incdec;
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
393 }
394 }
395
396 /**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405 {
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
410
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
414
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
418 /*
419 * Test free_blocks against 1 not 0, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
422 */
423 if (sbinfo->max_blocks) {
424 spin_lock(&sbinfo->stat_lock);
425 if (sbinfo->free_blocks <= 1) {
426 spin_unlock(&sbinfo->stat_lock);
427 return ERR_PTR(-ENOSPC);
428 }
429 sbinfo->free_blocks--;
430 inode->i_blocks += BLOCKS_PER_PAGE;
431 spin_unlock(&sbinfo->stat_lock);
432 }
433
434 spin_unlock(&info->lock);
435 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436 spin_lock(&info->lock);
437
438 if (!page) {
439 shmem_free_blocks(inode, 1);
440 return ERR_PTR(-ENOMEM);
441 }
442 if (sgp != SGP_WRITE &&
443 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444 entry = ERR_PTR(-EINVAL);
445 break;
446 }
447 if (info->next_index <= index)
448 info->next_index = index + 1;
449 }
450 if (page) {
451 /* another task gave its page, or truncated the file */
452 shmem_free_blocks(inode, 1);
453 shmem_dir_free(page);
454 }
455 if (info->next_index <= index && !IS_ERR(entry))
456 info->next_index = index + 1;
457 return entry;
458 }
459
460 /**
461 * shmem_free_swp - free some swap entries in a directory
462 * @dir: pointer to the directory
463 * @edir: pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 */
466 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467 spinlock_t *punch_lock)
468 {
469 spinlock_t *punch_unlock = NULL;
470 swp_entry_t *ptr;
471 int freed = 0;
472
473 for (ptr = dir; ptr < edir; ptr++) {
474 if (ptr->val) {
475 if (unlikely(punch_lock)) {
476 punch_unlock = punch_lock;
477 punch_lock = NULL;
478 spin_lock(punch_unlock);
479 if (!ptr->val)
480 continue;
481 }
482 free_swap_and_cache(*ptr);
483 *ptr = (swp_entry_t){0};
484 freed++;
485 }
486 }
487 if (punch_unlock)
488 spin_unlock(punch_unlock);
489 return freed;
490 }
491
492 static int shmem_map_and_free_swp(struct page *subdir, int offset,
493 int limit, struct page ***dir, spinlock_t *punch_lock)
494 {
495 swp_entry_t *ptr;
496 int freed = 0;
497
498 ptr = shmem_swp_map(subdir);
499 for (; offset < limit; offset += LATENCY_LIMIT) {
500 int size = limit - offset;
501 if (size > LATENCY_LIMIT)
502 size = LATENCY_LIMIT;
503 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504 punch_lock);
505 if (need_resched()) {
506 shmem_swp_unmap(ptr);
507 if (*dir) {
508 shmem_dir_unmap(*dir);
509 *dir = NULL;
510 }
511 cond_resched();
512 ptr = shmem_swp_map(subdir);
513 }
514 }
515 shmem_swp_unmap(ptr);
516 return freed;
517 }
518
519 static void shmem_free_pages(struct list_head *next)
520 {
521 struct page *page;
522 int freed = 0;
523
524 do {
525 page = container_of(next, struct page, lru);
526 next = next->next;
527 shmem_dir_free(page);
528 freed++;
529 if (freed >= LATENCY_LIMIT) {
530 cond_resched();
531 freed = 0;
532 }
533 } while (next);
534 }
535
536 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537 {
538 struct shmem_inode_info *info = SHMEM_I(inode);
539 unsigned long idx;
540 unsigned long size;
541 unsigned long limit;
542 unsigned long stage;
543 unsigned long diroff;
544 struct page **dir;
545 struct page *topdir;
546 struct page *middir;
547 struct page *subdir;
548 swp_entry_t *ptr;
549 LIST_HEAD(pages_to_free);
550 long nr_pages_to_free = 0;
551 long nr_swaps_freed = 0;
552 int offset;
553 int freed;
554 int punch_hole;
555 spinlock_t *needs_lock;
556 spinlock_t *punch_lock;
557 unsigned long upper_limit;
558
559 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561 if (idx >= info->next_index)
562 return;
563
564 spin_lock(&info->lock);
565 info->flags |= SHMEM_TRUNCATE;
566 if (likely(end == (loff_t) -1)) {
567 limit = info->next_index;
568 upper_limit = SHMEM_MAX_INDEX;
569 info->next_index = idx;
570 needs_lock = NULL;
571 punch_hole = 0;
572 } else {
573 if (end + 1 >= inode->i_size) { /* we may free a little more */
574 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575 PAGE_CACHE_SHIFT;
576 upper_limit = SHMEM_MAX_INDEX;
577 } else {
578 limit = (end + 1) >> PAGE_CACHE_SHIFT;
579 upper_limit = limit;
580 }
581 needs_lock = &info->lock;
582 punch_hole = 1;
583 }
584
585 topdir = info->i_indirect;
586 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587 info->i_indirect = NULL;
588 nr_pages_to_free++;
589 list_add(&topdir->lru, &pages_to_free);
590 }
591 spin_unlock(&info->lock);
592
593 if (info->swapped && idx < SHMEM_NR_DIRECT) {
594 ptr = info->i_direct;
595 size = limit;
596 if (size > SHMEM_NR_DIRECT)
597 size = SHMEM_NR_DIRECT;
598 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
599 }
600
601 /*
602 * If there are no indirect blocks or we are punching a hole
603 * below indirect blocks, nothing to be done.
604 */
605 if (!topdir || limit <= SHMEM_NR_DIRECT)
606 goto done2;
607
608 /*
609 * The truncation case has already dropped info->lock, and we're safe
610 * because i_size and next_index have already been lowered, preventing
611 * access beyond. But in the punch_hole case, we still need to take
612 * the lock when updating the swap directory, because there might be
613 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614 * shmem_writepage. However, whenever we find we can remove a whole
615 * directory page (not at the misaligned start or end of the range),
616 * we first NULLify its pointer in the level above, and then have no
617 * need to take the lock when updating its contents: needs_lock and
618 * punch_lock (either pointing to info->lock or NULL) manage this.
619 */
620
621 upper_limit -= SHMEM_NR_DIRECT;
622 limit -= SHMEM_NR_DIRECT;
623 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624 offset = idx % ENTRIES_PER_PAGE;
625 idx -= offset;
626
627 dir = shmem_dir_map(topdir);
628 stage = ENTRIES_PER_PAGEPAGE/2;
629 if (idx < ENTRIES_PER_PAGEPAGE/2) {
630 middir = topdir;
631 diroff = idx/ENTRIES_PER_PAGE;
632 } else {
633 dir += ENTRIES_PER_PAGE/2;
634 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635 while (stage <= idx)
636 stage += ENTRIES_PER_PAGEPAGE;
637 middir = *dir;
638 if (*dir) {
639 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641 if (!diroff && !offset && upper_limit >= stage) {
642 if (needs_lock) {
643 spin_lock(needs_lock);
644 *dir = NULL;
645 spin_unlock(needs_lock);
646 needs_lock = NULL;
647 } else
648 *dir = NULL;
649 nr_pages_to_free++;
650 list_add(&middir->lru, &pages_to_free);
651 }
652 shmem_dir_unmap(dir);
653 dir = shmem_dir_map(middir);
654 } else {
655 diroff = 0;
656 offset = 0;
657 idx = stage;
658 }
659 }
660
661 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662 if (unlikely(idx == stage)) {
663 shmem_dir_unmap(dir);
664 dir = shmem_dir_map(topdir) +
665 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666 while (!*dir) {
667 dir++;
668 idx += ENTRIES_PER_PAGEPAGE;
669 if (idx >= limit)
670 goto done1;
671 }
672 stage = idx + ENTRIES_PER_PAGEPAGE;
673 middir = *dir;
674 if (punch_hole)
675 needs_lock = &info->lock;
676 if (upper_limit >= stage) {
677 if (needs_lock) {
678 spin_lock(needs_lock);
679 *dir = NULL;
680 spin_unlock(needs_lock);
681 needs_lock = NULL;
682 } else
683 *dir = NULL;
684 nr_pages_to_free++;
685 list_add(&middir->lru, &pages_to_free);
686 }
687 shmem_dir_unmap(dir);
688 cond_resched();
689 dir = shmem_dir_map(middir);
690 diroff = 0;
691 }
692 punch_lock = needs_lock;
693 subdir = dir[diroff];
694 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695 if (needs_lock) {
696 spin_lock(needs_lock);
697 dir[diroff] = NULL;
698 spin_unlock(needs_lock);
699 punch_lock = NULL;
700 } else
701 dir[diroff] = NULL;
702 nr_pages_to_free++;
703 list_add(&subdir->lru, &pages_to_free);
704 }
705 if (subdir && page_private(subdir) /* has swap entries */) {
706 size = limit - idx;
707 if (size > ENTRIES_PER_PAGE)
708 size = ENTRIES_PER_PAGE;
709 freed = shmem_map_and_free_swp(subdir,
710 offset, size, &dir, punch_lock);
711 if (!dir)
712 dir = shmem_dir_map(middir);
713 nr_swaps_freed += freed;
714 if (offset || punch_lock) {
715 spin_lock(&info->lock);
716 set_page_private(subdir,
717 page_private(subdir) - freed);
718 spin_unlock(&info->lock);
719 } else
720 BUG_ON(page_private(subdir) != freed);
721 }
722 offset = 0;
723 }
724 done1:
725 shmem_dir_unmap(dir);
726 done2:
727 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728 /*
729 * Call truncate_inode_pages again: racing shmem_unuse_inode
730 * may have swizzled a page in from swap since
731 * truncate_pagecache or generic_delete_inode did it, before we
732 * lowered next_index. Also, though shmem_getpage checks
733 * i_size before adding to cache, no recheck after: so fix the
734 * narrow window there too.
735 *
736 * Recalling truncate_inode_pages_range and unmap_mapping_range
737 * every time for punch_hole (which never got a chance to clear
738 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739 * yet hardly ever necessary: try to optimize them out later.
740 */
741 truncate_inode_pages_range(inode->i_mapping, start, end);
742 if (punch_hole)
743 unmap_mapping_range(inode->i_mapping, start,
744 end - start, 1);
745 }
746
747 spin_lock(&info->lock);
748 info->flags &= ~SHMEM_TRUNCATE;
749 info->swapped -= nr_swaps_freed;
750 if (nr_pages_to_free)
751 shmem_free_blocks(inode, nr_pages_to_free);
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
754
755 /*
756 * Empty swap vector directory pages to be freed?
757 */
758 if (!list_empty(&pages_to_free)) {
759 pages_to_free.prev->next = NULL;
760 shmem_free_pages(pages_to_free.next);
761 }
762 }
763
764 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
765 {
766 struct inode *inode = dentry->d_inode;
767 int error;
768
769 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
770 loff_t newsize = attr->ia_size;
771 struct page *page = NULL;
772
773 if (newsize < inode->i_size) {
774 /*
775 * If truncating down to a partial page, then
776 * if that page is already allocated, hold it
777 * in memory until the truncation is over, so
778 * truncate_partial_page cannnot miss it were
779 * it assigned to swap.
780 */
781 if (newsize & (PAGE_CACHE_SIZE-1)) {
782 (void) shmem_getpage(inode,
783 newsize >> PAGE_CACHE_SHIFT,
784 &page, SGP_READ, NULL);
785 if (page)
786 unlock_page(page);
787 }
788 /*
789 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
790 * detect if any pages might have been added to cache
791 * after truncate_inode_pages. But we needn't bother
792 * if it's being fully truncated to zero-length: the
793 * nrpages check is efficient enough in that case.
794 */
795 if (newsize) {
796 struct shmem_inode_info *info = SHMEM_I(inode);
797 spin_lock(&info->lock);
798 info->flags &= ~SHMEM_PAGEIN;
799 spin_unlock(&info->lock);
800 }
801 }
802
803 error = simple_setsize(inode, newsize);
804 if (page)
805 page_cache_release(page);
806 if (error)
807 return error;
808 shmem_truncate_range(inode, newsize, (loff_t)-1);
809 }
810
811 error = inode_change_ok(inode, attr);
812 if (!error)
813 generic_setattr(inode, attr);
814 #ifdef CONFIG_TMPFS_POSIX_ACL
815 if (!error && (attr->ia_valid & ATTR_MODE))
816 error = generic_acl_chmod(inode);
817 #endif
818 return error;
819 }
820
821 static void shmem_delete_inode(struct inode *inode)
822 {
823 struct shmem_inode_info *info = SHMEM_I(inode);
824
825 if (inode->i_mapping->a_ops == &shmem_aops) {
826 truncate_inode_pages(inode->i_mapping, 0);
827 shmem_unacct_size(info->flags, inode->i_size);
828 inode->i_size = 0;
829 shmem_truncate_range(inode, 0, (loff_t)-1);
830 if (!list_empty(&info->swaplist)) {
831 mutex_lock(&shmem_swaplist_mutex);
832 list_del_init(&info->swaplist);
833 mutex_unlock(&shmem_swaplist_mutex);
834 }
835 }
836 BUG_ON(inode->i_blocks);
837 shmem_free_inode(inode->i_sb);
838 clear_inode(inode);
839 }
840
841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842 {
843 swp_entry_t *ptr;
844
845 for (ptr = dir; ptr < edir; ptr++) {
846 if (ptr->val == entry.val)
847 return ptr - dir;
848 }
849 return -1;
850 }
851
852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853 {
854 struct inode *inode;
855 unsigned long idx;
856 unsigned long size;
857 unsigned long limit;
858 unsigned long stage;
859 struct page **dir;
860 struct page *subdir;
861 swp_entry_t *ptr;
862 int offset;
863 int error;
864
865 idx = 0;
866 ptr = info->i_direct;
867 spin_lock(&info->lock);
868 if (!info->swapped) {
869 list_del_init(&info->swaplist);
870 goto lost2;
871 }
872 limit = info->next_index;
873 size = limit;
874 if (size > SHMEM_NR_DIRECT)
875 size = SHMEM_NR_DIRECT;
876 offset = shmem_find_swp(entry, ptr, ptr+size);
877 if (offset >= 0)
878 goto found;
879 if (!info->i_indirect)
880 goto lost2;
881
882 dir = shmem_dir_map(info->i_indirect);
883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884
885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886 if (unlikely(idx == stage)) {
887 shmem_dir_unmap(dir-1);
888 if (cond_resched_lock(&info->lock)) {
889 /* check it has not been truncated */
890 if (limit > info->next_index) {
891 limit = info->next_index;
892 if (idx >= limit)
893 goto lost2;
894 }
895 }
896 dir = shmem_dir_map(info->i_indirect) +
897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898 while (!*dir) {
899 dir++;
900 idx += ENTRIES_PER_PAGEPAGE;
901 if (idx >= limit)
902 goto lost1;
903 }
904 stage = idx + ENTRIES_PER_PAGEPAGE;
905 subdir = *dir;
906 shmem_dir_unmap(dir);
907 dir = shmem_dir_map(subdir);
908 }
909 subdir = *dir;
910 if (subdir && page_private(subdir)) {
911 ptr = shmem_swp_map(subdir);
912 size = limit - idx;
913 if (size > ENTRIES_PER_PAGE)
914 size = ENTRIES_PER_PAGE;
915 offset = shmem_find_swp(entry, ptr, ptr+size);
916 shmem_swp_unmap(ptr);
917 if (offset >= 0) {
918 shmem_dir_unmap(dir);
919 goto found;
920 }
921 }
922 }
923 lost1:
924 shmem_dir_unmap(dir-1);
925 lost2:
926 spin_unlock(&info->lock);
927 return 0;
928 found:
929 idx += offset;
930 inode = igrab(&info->vfs_inode);
931 spin_unlock(&info->lock);
932
933 /*
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_delete_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
939 */
940 if (shmem_swaplist.next != &info->swaplist)
941 list_move_tail(&shmem_swaplist, &info->swaplist);
942 mutex_unlock(&shmem_swaplist_mutex);
943
944 error = 1;
945 if (!inode)
946 goto out;
947 /*
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
951 */
952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953 if (error)
954 goto out;
955 error = radix_tree_preload(GFP_KERNEL);
956 if (error) {
957 mem_cgroup_uncharge_cache_page(page);
958 goto out;
959 }
960 error = 1;
961
962 spin_lock(&info->lock);
963 ptr = shmem_swp_entry(info, idx, NULL);
964 if (ptr && ptr->val == entry.val) {
965 error = add_to_page_cache_locked(page, inode->i_mapping,
966 idx, GFP_NOWAIT);
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page);
970
971 if (error == -EEXIST) {
972 struct page *filepage = find_get_page(inode->i_mapping, idx);
973 error = 1;
974 if (filepage) {
975 /*
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
978 */
979 if (PageUptodate(filepage))
980 error = 0;
981 page_cache_release(filepage);
982 }
983 }
984 if (!error) {
985 delete_from_swap_cache(page);
986 set_page_dirty(page);
987 info->flags |= SHMEM_PAGEIN;
988 shmem_swp_set(info, ptr, 0);
989 swap_free(entry);
990 error = 1; /* not an error, but entry was found */
991 }
992 if (ptr)
993 shmem_swp_unmap(ptr);
994 spin_unlock(&info->lock);
995 radix_tree_preload_end();
996 out:
997 unlock_page(page);
998 page_cache_release(page);
999 iput(inode); /* allows for NULL */
1000 return error;
1001 }
1002
1003 /*
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1005 */
1006 int shmem_unuse(swp_entry_t entry, struct page *page)
1007 {
1008 struct list_head *p, *next;
1009 struct shmem_inode_info *info;
1010 int found = 0;
1011
1012 mutex_lock(&shmem_swaplist_mutex);
1013 list_for_each_safe(p, next, &shmem_swaplist) {
1014 info = list_entry(p, struct shmem_inode_info, swaplist);
1015 found = shmem_unuse_inode(info, entry, page);
1016 cond_resched();
1017 if (found)
1018 goto out;
1019 }
1020 mutex_unlock(&shmem_swaplist_mutex);
1021 /*
1022 * Can some race bring us here? We've been holding page lock,
1023 * so I think not; but would rather try again later than BUG()
1024 */
1025 unlock_page(page);
1026 page_cache_release(page);
1027 out:
1028 return (found < 0) ? found : 0;
1029 }
1030
1031 /*
1032 * Move the page from the page cache to the swap cache.
1033 */
1034 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1035 {
1036 struct shmem_inode_info *info;
1037 swp_entry_t *entry, swap;
1038 struct address_space *mapping;
1039 unsigned long index;
1040 struct inode *inode;
1041
1042 BUG_ON(!PageLocked(page));
1043 mapping = page->mapping;
1044 index = page->index;
1045 inode = mapping->host;
1046 info = SHMEM_I(inode);
1047 if (info->flags & VM_LOCKED)
1048 goto redirty;
1049 if (!total_swap_pages)
1050 goto redirty;
1051
1052 /*
1053 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054 * sync from ever calling shmem_writepage; but a stacking filesystem
1055 * may use the ->writepage of its underlying filesystem, in which case
1056 * tmpfs should write out to swap only in response to memory pressure,
1057 * and not for the writeback threads or sync. However, in those cases,
1058 * we do still want to check if there's a redundant swappage to be
1059 * discarded.
1060 */
1061 if (wbc->for_reclaim)
1062 swap = get_swap_page();
1063 else
1064 swap.val = 0;
1065
1066 spin_lock(&info->lock);
1067 if (index >= info->next_index) {
1068 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069 goto unlock;
1070 }
1071 entry = shmem_swp_entry(info, index, NULL);
1072 if (entry->val) {
1073 /*
1074 * The more uptodate page coming down from a stacked
1075 * writepage should replace our old swappage.
1076 */
1077 free_swap_and_cache(*entry);
1078 shmem_swp_set(info, entry, 0);
1079 }
1080 shmem_recalc_inode(inode);
1081
1082 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1083 remove_from_page_cache(page);
1084 shmem_swp_set(info, entry, swap.val);
1085 shmem_swp_unmap(entry);
1086 if (list_empty(&info->swaplist))
1087 inode = igrab(inode);
1088 else
1089 inode = NULL;
1090 spin_unlock(&info->lock);
1091 swap_shmem_alloc(swap);
1092 BUG_ON(page_mapped(page));
1093 page_cache_release(page); /* pagecache ref */
1094 swap_writepage(page, wbc);
1095 if (inode) {
1096 mutex_lock(&shmem_swaplist_mutex);
1097 /* move instead of add in case we're racing */
1098 list_move_tail(&info->swaplist, &shmem_swaplist);
1099 mutex_unlock(&shmem_swaplist_mutex);
1100 iput(inode);
1101 }
1102 return 0;
1103 }
1104
1105 shmem_swp_unmap(entry);
1106 unlock:
1107 spin_unlock(&info->lock);
1108 /*
1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110 * clear SWAP_HAS_CACHE flag.
1111 */
1112 swapcache_free(swap, NULL);
1113 redirty:
1114 set_page_dirty(page);
1115 if (wbc->for_reclaim)
1116 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1117 unlock_page(page);
1118 return 0;
1119 }
1120
1121 #ifdef CONFIG_NUMA
1122 #ifdef CONFIG_TMPFS
1123 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1124 {
1125 char buffer[64];
1126
1127 if (!mpol || mpol->mode == MPOL_DEFAULT)
1128 return; /* show nothing */
1129
1130 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1131
1132 seq_printf(seq, ",mpol=%s", buffer);
1133 }
1134
1135 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1136 {
1137 struct mempolicy *mpol = NULL;
1138 if (sbinfo->mpol) {
1139 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1140 mpol = sbinfo->mpol;
1141 mpol_get(mpol);
1142 spin_unlock(&sbinfo->stat_lock);
1143 }
1144 return mpol;
1145 }
1146 #endif /* CONFIG_TMPFS */
1147
1148 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149 struct shmem_inode_info *info, unsigned long idx)
1150 {
1151 struct mempolicy mpol, *spol;
1152 struct vm_area_struct pvma;
1153 struct page *page;
1154
1155 spol = mpol_cond_copy(&mpol,
1156 mpol_shared_policy_lookup(&info->policy, idx));
1157
1158 /* Create a pseudo vma that just contains the policy */
1159 pvma.vm_start = 0;
1160 pvma.vm_pgoff = idx;
1161 pvma.vm_ops = NULL;
1162 pvma.vm_policy = spol;
1163 page = swapin_readahead(entry, gfp, &pvma, 0);
1164 return page;
1165 }
1166
1167 static struct page *shmem_alloc_page(gfp_t gfp,
1168 struct shmem_inode_info *info, unsigned long idx)
1169 {
1170 struct vm_area_struct pvma;
1171
1172 /* Create a pseudo vma that just contains the policy */
1173 pvma.vm_start = 0;
1174 pvma.vm_pgoff = idx;
1175 pvma.vm_ops = NULL;
1176 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1177
1178 /*
1179 * alloc_page_vma() will drop the shared policy reference
1180 */
1181 return alloc_page_vma(gfp, &pvma, 0);
1182 }
1183 #else /* !CONFIG_NUMA */
1184 #ifdef CONFIG_TMPFS
1185 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1186 {
1187 }
1188 #endif /* CONFIG_TMPFS */
1189
1190 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191 struct shmem_inode_info *info, unsigned long idx)
1192 {
1193 return swapin_readahead(entry, gfp, NULL, 0);
1194 }
1195
1196 static inline struct page *shmem_alloc_page(gfp_t gfp,
1197 struct shmem_inode_info *info, unsigned long idx)
1198 {
1199 return alloc_page(gfp);
1200 }
1201 #endif /* CONFIG_NUMA */
1202
1203 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1205 {
1206 return NULL;
1207 }
1208 #endif
1209
1210 /*
1211 * shmem_getpage - either get the page from swap or allocate a new one
1212 *
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1216 */
1217 static int shmem_getpage(struct inode *inode, unsigned long idx,
1218 struct page **pagep, enum sgp_type sgp, int *type)
1219 {
1220 struct address_space *mapping = inode->i_mapping;
1221 struct shmem_inode_info *info = SHMEM_I(inode);
1222 struct shmem_sb_info *sbinfo;
1223 struct page *filepage = *pagep;
1224 struct page *swappage;
1225 swp_entry_t *entry;
1226 swp_entry_t swap;
1227 gfp_t gfp;
1228 int error;
1229
1230 if (idx >= SHMEM_MAX_INDEX)
1231 return -EFBIG;
1232
1233 if (type)
1234 *type = 0;
1235
1236 /*
1237 * Normally, filepage is NULL on entry, and either found
1238 * uptodate immediately, or allocated and zeroed, or read
1239 * in under swappage, which is then assigned to filepage.
1240 * But shmem_readpage (required for splice) passes in a locked
1241 * filepage, which may be found not uptodate by other callers
1242 * too, and may need to be copied from the swappage read in.
1243 */
1244 repeat:
1245 if (!filepage)
1246 filepage = find_lock_page(mapping, idx);
1247 if (filepage && PageUptodate(filepage))
1248 goto done;
1249 error = 0;
1250 gfp = mapping_gfp_mask(mapping);
1251 if (!filepage) {
1252 /*
1253 * Try to preload while we can wait, to not make a habit of
1254 * draining atomic reserves; but don't latch on to this cpu.
1255 */
1256 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257 if (error)
1258 goto failed;
1259 radix_tree_preload_end();
1260 }
1261
1262 spin_lock(&info->lock);
1263 shmem_recalc_inode(inode);
1264 entry = shmem_swp_alloc(info, idx, sgp);
1265 if (IS_ERR(entry)) {
1266 spin_unlock(&info->lock);
1267 error = PTR_ERR(entry);
1268 goto failed;
1269 }
1270 swap = *entry;
1271
1272 if (swap.val) {
1273 /* Look it up and read it in.. */
1274 swappage = lookup_swap_cache(swap);
1275 if (!swappage) {
1276 shmem_swp_unmap(entry);
1277 /* here we actually do the io */
1278 if (type && !(*type & VM_FAULT_MAJOR)) {
1279 __count_vm_event(PGMAJFAULT);
1280 *type |= VM_FAULT_MAJOR;
1281 }
1282 spin_unlock(&info->lock);
1283 swappage = shmem_swapin(swap, gfp, info, idx);
1284 if (!swappage) {
1285 spin_lock(&info->lock);
1286 entry = shmem_swp_alloc(info, idx, sgp);
1287 if (IS_ERR(entry))
1288 error = PTR_ERR(entry);
1289 else {
1290 if (entry->val == swap.val)
1291 error = -ENOMEM;
1292 shmem_swp_unmap(entry);
1293 }
1294 spin_unlock(&info->lock);
1295 if (error)
1296 goto failed;
1297 goto repeat;
1298 }
1299 wait_on_page_locked(swappage);
1300 page_cache_release(swappage);
1301 goto repeat;
1302 }
1303
1304 /* We have to do this with page locked to prevent races */
1305 if (!trylock_page(swappage)) {
1306 shmem_swp_unmap(entry);
1307 spin_unlock(&info->lock);
1308 wait_on_page_locked(swappage);
1309 page_cache_release(swappage);
1310 goto repeat;
1311 }
1312 if (PageWriteback(swappage)) {
1313 shmem_swp_unmap(entry);
1314 spin_unlock(&info->lock);
1315 wait_on_page_writeback(swappage);
1316 unlock_page(swappage);
1317 page_cache_release(swappage);
1318 goto repeat;
1319 }
1320 if (!PageUptodate(swappage)) {
1321 shmem_swp_unmap(entry);
1322 spin_unlock(&info->lock);
1323 unlock_page(swappage);
1324 page_cache_release(swappage);
1325 error = -EIO;
1326 goto failed;
1327 }
1328
1329 if (filepage) {
1330 shmem_swp_set(info, entry, 0);
1331 shmem_swp_unmap(entry);
1332 delete_from_swap_cache(swappage);
1333 spin_unlock(&info->lock);
1334 copy_highpage(filepage, swappage);
1335 unlock_page(swappage);
1336 page_cache_release(swappage);
1337 flush_dcache_page(filepage);
1338 SetPageUptodate(filepage);
1339 set_page_dirty(filepage);
1340 swap_free(swap);
1341 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1342 idx, GFP_NOWAIT))) {
1343 info->flags |= SHMEM_PAGEIN;
1344 shmem_swp_set(info, entry, 0);
1345 shmem_swp_unmap(entry);
1346 delete_from_swap_cache(swappage);
1347 spin_unlock(&info->lock);
1348 filepage = swappage;
1349 set_page_dirty(filepage);
1350 swap_free(swap);
1351 } else {
1352 shmem_swp_unmap(entry);
1353 spin_unlock(&info->lock);
1354 if (error == -ENOMEM) {
1355 /*
1356 * reclaim from proper memory cgroup and
1357 * call memcg's OOM if needed.
1358 */
1359 error = mem_cgroup_shmem_charge_fallback(
1360 swappage,
1361 current->mm,
1362 gfp);
1363 if (error) {
1364 unlock_page(swappage);
1365 page_cache_release(swappage);
1366 goto failed;
1367 }
1368 }
1369 unlock_page(swappage);
1370 page_cache_release(swappage);
1371 goto repeat;
1372 }
1373 } else if (sgp == SGP_READ && !filepage) {
1374 shmem_swp_unmap(entry);
1375 filepage = find_get_page(mapping, idx);
1376 if (filepage &&
1377 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1378 spin_unlock(&info->lock);
1379 wait_on_page_locked(filepage);
1380 page_cache_release(filepage);
1381 filepage = NULL;
1382 goto repeat;
1383 }
1384 spin_unlock(&info->lock);
1385 } else {
1386 shmem_swp_unmap(entry);
1387 sbinfo = SHMEM_SB(inode->i_sb);
1388 if (sbinfo->max_blocks) {
1389 spin_lock(&sbinfo->stat_lock);
1390 if (sbinfo->free_blocks == 0 ||
1391 shmem_acct_block(info->flags)) {
1392 spin_unlock(&sbinfo->stat_lock);
1393 spin_unlock(&info->lock);
1394 error = -ENOSPC;
1395 goto failed;
1396 }
1397 sbinfo->free_blocks--;
1398 inode->i_blocks += BLOCKS_PER_PAGE;
1399 spin_unlock(&sbinfo->stat_lock);
1400 } else if (shmem_acct_block(info->flags)) {
1401 spin_unlock(&info->lock);
1402 error = -ENOSPC;
1403 goto failed;
1404 }
1405
1406 if (!filepage) {
1407 int ret;
1408
1409 spin_unlock(&info->lock);
1410 filepage = shmem_alloc_page(gfp, info, idx);
1411 if (!filepage) {
1412 shmem_unacct_blocks(info->flags, 1);
1413 shmem_free_blocks(inode, 1);
1414 error = -ENOMEM;
1415 goto failed;
1416 }
1417 SetPageSwapBacked(filepage);
1418
1419 /* Precharge page while we can wait, compensate after */
1420 error = mem_cgroup_cache_charge(filepage, current->mm,
1421 GFP_KERNEL);
1422 if (error) {
1423 page_cache_release(filepage);
1424 shmem_unacct_blocks(info->flags, 1);
1425 shmem_free_blocks(inode, 1);
1426 filepage = NULL;
1427 goto failed;
1428 }
1429
1430 spin_lock(&info->lock);
1431 entry = shmem_swp_alloc(info, idx, sgp);
1432 if (IS_ERR(entry))
1433 error = PTR_ERR(entry);
1434 else {
1435 swap = *entry;
1436 shmem_swp_unmap(entry);
1437 }
1438 ret = error || swap.val;
1439 if (ret)
1440 mem_cgroup_uncharge_cache_page(filepage);
1441 else
1442 ret = add_to_page_cache_lru(filepage, mapping,
1443 idx, GFP_NOWAIT);
1444 /*
1445 * At add_to_page_cache_lru() failure, uncharge will
1446 * be done automatically.
1447 */
1448 if (ret) {
1449 spin_unlock(&info->lock);
1450 page_cache_release(filepage);
1451 shmem_unacct_blocks(info->flags, 1);
1452 shmem_free_blocks(inode, 1);
1453 filepage = NULL;
1454 if (error)
1455 goto failed;
1456 goto repeat;
1457 }
1458 info->flags |= SHMEM_PAGEIN;
1459 }
1460
1461 info->alloced++;
1462 spin_unlock(&info->lock);
1463 clear_highpage(filepage);
1464 flush_dcache_page(filepage);
1465 SetPageUptodate(filepage);
1466 if (sgp == SGP_DIRTY)
1467 set_page_dirty(filepage);
1468 }
1469 done:
1470 *pagep = filepage;
1471 return 0;
1472
1473 failed:
1474 if (*pagep != filepage) {
1475 unlock_page(filepage);
1476 page_cache_release(filepage);
1477 }
1478 return error;
1479 }
1480
1481 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1482 {
1483 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1484 int error;
1485 int ret;
1486
1487 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1488 return VM_FAULT_SIGBUS;
1489
1490 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1491 if (error)
1492 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1493
1494 return ret | VM_FAULT_LOCKED;
1495 }
1496
1497 #ifdef CONFIG_NUMA
1498 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1499 {
1500 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1501 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1502 }
1503
1504 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1505 unsigned long addr)
1506 {
1507 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1508 unsigned long idx;
1509
1510 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1511 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1512 }
1513 #endif
1514
1515 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1516 {
1517 struct inode *inode = file->f_path.dentry->d_inode;
1518 struct shmem_inode_info *info = SHMEM_I(inode);
1519 int retval = -ENOMEM;
1520
1521 spin_lock(&info->lock);
1522 if (lock && !(info->flags & VM_LOCKED)) {
1523 if (!user_shm_lock(inode->i_size, user))
1524 goto out_nomem;
1525 info->flags |= VM_LOCKED;
1526 mapping_set_unevictable(file->f_mapping);
1527 }
1528 if (!lock && (info->flags & VM_LOCKED) && user) {
1529 user_shm_unlock(inode->i_size, user);
1530 info->flags &= ~VM_LOCKED;
1531 mapping_clear_unevictable(file->f_mapping);
1532 scan_mapping_unevictable_pages(file->f_mapping);
1533 }
1534 retval = 0;
1535
1536 out_nomem:
1537 spin_unlock(&info->lock);
1538 return retval;
1539 }
1540
1541 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1542 {
1543 file_accessed(file);
1544 vma->vm_ops = &shmem_vm_ops;
1545 vma->vm_flags |= VM_CAN_NONLINEAR;
1546 return 0;
1547 }
1548
1549 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1550 int mode, dev_t dev, unsigned long flags)
1551 {
1552 struct inode *inode;
1553 struct shmem_inode_info *info;
1554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1555
1556 if (shmem_reserve_inode(sb))
1557 return NULL;
1558
1559 inode = new_inode(sb);
1560 if (inode) {
1561 inode_init_owner(inode, dir, mode);
1562 inode->i_blocks = 0;
1563 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1564 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1565 inode->i_generation = get_seconds();
1566 info = SHMEM_I(inode);
1567 memset(info, 0, (char *)inode - (char *)info);
1568 spin_lock_init(&info->lock);
1569 info->flags = flags & VM_NORESERVE;
1570 INIT_LIST_HEAD(&info->swaplist);
1571 cache_no_acl(inode);
1572
1573 switch (mode & S_IFMT) {
1574 default:
1575 inode->i_op = &shmem_special_inode_operations;
1576 init_special_inode(inode, mode, dev);
1577 break;
1578 case S_IFREG:
1579 inode->i_mapping->a_ops = &shmem_aops;
1580 inode->i_op = &shmem_inode_operations;
1581 inode->i_fop = &shmem_file_operations;
1582 mpol_shared_policy_init(&info->policy,
1583 shmem_get_sbmpol(sbinfo));
1584 break;
1585 case S_IFDIR:
1586 inc_nlink(inode);
1587 /* Some things misbehave if size == 0 on a directory */
1588 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1589 inode->i_op = &shmem_dir_inode_operations;
1590 inode->i_fop = &simple_dir_operations;
1591 break;
1592 case S_IFLNK:
1593 /*
1594 * Must not load anything in the rbtree,
1595 * mpol_free_shared_policy will not be called.
1596 */
1597 mpol_shared_policy_init(&info->policy, NULL);
1598 break;
1599 }
1600 } else
1601 shmem_free_inode(sb);
1602 return inode;
1603 }
1604
1605 #ifdef CONFIG_TMPFS
1606 static const struct inode_operations shmem_symlink_inode_operations;
1607 static const struct inode_operations shmem_symlink_inline_operations;
1608
1609 /*
1610 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1611 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1612 * below the loop driver, in the generic fashion that many filesystems support.
1613 */
1614 static int shmem_readpage(struct file *file, struct page *page)
1615 {
1616 struct inode *inode = page->mapping->host;
1617 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1618 unlock_page(page);
1619 return error;
1620 }
1621
1622 static int
1623 shmem_write_begin(struct file *file, struct address_space *mapping,
1624 loff_t pos, unsigned len, unsigned flags,
1625 struct page **pagep, void **fsdata)
1626 {
1627 struct inode *inode = mapping->host;
1628 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1629 *pagep = NULL;
1630 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1631 }
1632
1633 static int
1634 shmem_write_end(struct file *file, struct address_space *mapping,
1635 loff_t pos, unsigned len, unsigned copied,
1636 struct page *page, void *fsdata)
1637 {
1638 struct inode *inode = mapping->host;
1639
1640 if (pos + copied > inode->i_size)
1641 i_size_write(inode, pos + copied);
1642
1643 set_page_dirty(page);
1644 unlock_page(page);
1645 page_cache_release(page);
1646
1647 return copied;
1648 }
1649
1650 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1651 {
1652 struct inode *inode = filp->f_path.dentry->d_inode;
1653 struct address_space *mapping = inode->i_mapping;
1654 unsigned long index, offset;
1655 enum sgp_type sgp = SGP_READ;
1656
1657 /*
1658 * Might this read be for a stacking filesystem? Then when reading
1659 * holes of a sparse file, we actually need to allocate those pages,
1660 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1661 */
1662 if (segment_eq(get_fs(), KERNEL_DS))
1663 sgp = SGP_DIRTY;
1664
1665 index = *ppos >> PAGE_CACHE_SHIFT;
1666 offset = *ppos & ~PAGE_CACHE_MASK;
1667
1668 for (;;) {
1669 struct page *page = NULL;
1670 unsigned long end_index, nr, ret;
1671 loff_t i_size = i_size_read(inode);
1672
1673 end_index = i_size >> PAGE_CACHE_SHIFT;
1674 if (index > end_index)
1675 break;
1676 if (index == end_index) {
1677 nr = i_size & ~PAGE_CACHE_MASK;
1678 if (nr <= offset)
1679 break;
1680 }
1681
1682 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1683 if (desc->error) {
1684 if (desc->error == -EINVAL)
1685 desc->error = 0;
1686 break;
1687 }
1688 if (page)
1689 unlock_page(page);
1690
1691 /*
1692 * We must evaluate after, since reads (unlike writes)
1693 * are called without i_mutex protection against truncate
1694 */
1695 nr = PAGE_CACHE_SIZE;
1696 i_size = i_size_read(inode);
1697 end_index = i_size >> PAGE_CACHE_SHIFT;
1698 if (index == end_index) {
1699 nr = i_size & ~PAGE_CACHE_MASK;
1700 if (nr <= offset) {
1701 if (page)
1702 page_cache_release(page);
1703 break;
1704 }
1705 }
1706 nr -= offset;
1707
1708 if (page) {
1709 /*
1710 * If users can be writing to this page using arbitrary
1711 * virtual addresses, take care about potential aliasing
1712 * before reading the page on the kernel side.
1713 */
1714 if (mapping_writably_mapped(mapping))
1715 flush_dcache_page(page);
1716 /*
1717 * Mark the page accessed if we read the beginning.
1718 */
1719 if (!offset)
1720 mark_page_accessed(page);
1721 } else {
1722 page = ZERO_PAGE(0);
1723 page_cache_get(page);
1724 }
1725
1726 /*
1727 * Ok, we have the page, and it's up-to-date, so
1728 * now we can copy it to user space...
1729 *
1730 * The actor routine returns how many bytes were actually used..
1731 * NOTE! This may not be the same as how much of a user buffer
1732 * we filled up (we may be padding etc), so we can only update
1733 * "pos" here (the actor routine has to update the user buffer
1734 * pointers and the remaining count).
1735 */
1736 ret = actor(desc, page, offset, nr);
1737 offset += ret;
1738 index += offset >> PAGE_CACHE_SHIFT;
1739 offset &= ~PAGE_CACHE_MASK;
1740
1741 page_cache_release(page);
1742 if (ret != nr || !desc->count)
1743 break;
1744
1745 cond_resched();
1746 }
1747
1748 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1749 file_accessed(filp);
1750 }
1751
1752 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1753 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1754 {
1755 struct file *filp = iocb->ki_filp;
1756 ssize_t retval;
1757 unsigned long seg;
1758 size_t count;
1759 loff_t *ppos = &iocb->ki_pos;
1760
1761 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1762 if (retval)
1763 return retval;
1764
1765 for (seg = 0; seg < nr_segs; seg++) {
1766 read_descriptor_t desc;
1767
1768 desc.written = 0;
1769 desc.arg.buf = iov[seg].iov_base;
1770 desc.count = iov[seg].iov_len;
1771 if (desc.count == 0)
1772 continue;
1773 desc.error = 0;
1774 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1775 retval += desc.written;
1776 if (desc.error) {
1777 retval = retval ?: desc.error;
1778 break;
1779 }
1780 if (desc.count > 0)
1781 break;
1782 }
1783 return retval;
1784 }
1785
1786 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1787 {
1788 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1789
1790 buf->f_type = TMPFS_MAGIC;
1791 buf->f_bsize = PAGE_CACHE_SIZE;
1792 buf->f_namelen = NAME_MAX;
1793 spin_lock(&sbinfo->stat_lock);
1794 if (sbinfo->max_blocks) {
1795 buf->f_blocks = sbinfo->max_blocks;
1796 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1797 }
1798 if (sbinfo->max_inodes) {
1799 buf->f_files = sbinfo->max_inodes;
1800 buf->f_ffree = sbinfo->free_inodes;
1801 }
1802 /* else leave those fields 0 like simple_statfs */
1803 spin_unlock(&sbinfo->stat_lock);
1804 return 0;
1805 }
1806
1807 /*
1808 * File creation. Allocate an inode, and we're done..
1809 */
1810 static int
1811 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1812 {
1813 struct inode *inode;
1814 int error = -ENOSPC;
1815
1816 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1817 if (inode) {
1818 error = security_inode_init_security(inode, dir, NULL, NULL,
1819 NULL);
1820 if (error) {
1821 if (error != -EOPNOTSUPP) {
1822 iput(inode);
1823 return error;
1824 }
1825 }
1826 #ifdef CONFIG_TMPFS_POSIX_ACL
1827 error = generic_acl_init(inode, dir);
1828 if (error) {
1829 iput(inode);
1830 return error;
1831 }
1832 #else
1833 error = 0;
1834 #endif
1835 dir->i_size += BOGO_DIRENT_SIZE;
1836 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1837 d_instantiate(dentry, inode);
1838 dget(dentry); /* Extra count - pin the dentry in core */
1839 }
1840 return error;
1841 }
1842
1843 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1844 {
1845 int error;
1846
1847 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1848 return error;
1849 inc_nlink(dir);
1850 return 0;
1851 }
1852
1853 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1854 struct nameidata *nd)
1855 {
1856 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1857 }
1858
1859 /*
1860 * Link a file..
1861 */
1862 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1863 {
1864 struct inode *inode = old_dentry->d_inode;
1865 int ret;
1866
1867 /*
1868 * No ordinary (disk based) filesystem counts links as inodes;
1869 * but each new link needs a new dentry, pinning lowmem, and
1870 * tmpfs dentries cannot be pruned until they are unlinked.
1871 */
1872 ret = shmem_reserve_inode(inode->i_sb);
1873 if (ret)
1874 goto out;
1875
1876 dir->i_size += BOGO_DIRENT_SIZE;
1877 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1878 inc_nlink(inode);
1879 atomic_inc(&inode->i_count); /* New dentry reference */
1880 dget(dentry); /* Extra pinning count for the created dentry */
1881 d_instantiate(dentry, inode);
1882 out:
1883 return ret;
1884 }
1885
1886 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1887 {
1888 struct inode *inode = dentry->d_inode;
1889
1890 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1891 shmem_free_inode(inode->i_sb);
1892
1893 dir->i_size -= BOGO_DIRENT_SIZE;
1894 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1895 drop_nlink(inode);
1896 dput(dentry); /* Undo the count from "create" - this does all the work */
1897 return 0;
1898 }
1899
1900 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1901 {
1902 if (!simple_empty(dentry))
1903 return -ENOTEMPTY;
1904
1905 drop_nlink(dentry->d_inode);
1906 drop_nlink(dir);
1907 return shmem_unlink(dir, dentry);
1908 }
1909
1910 /*
1911 * The VFS layer already does all the dentry stuff for rename,
1912 * we just have to decrement the usage count for the target if
1913 * it exists so that the VFS layer correctly free's it when it
1914 * gets overwritten.
1915 */
1916 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1917 {
1918 struct inode *inode = old_dentry->d_inode;
1919 int they_are_dirs = S_ISDIR(inode->i_mode);
1920
1921 if (!simple_empty(new_dentry))
1922 return -ENOTEMPTY;
1923
1924 if (new_dentry->d_inode) {
1925 (void) shmem_unlink(new_dir, new_dentry);
1926 if (they_are_dirs)
1927 drop_nlink(old_dir);
1928 } else if (they_are_dirs) {
1929 drop_nlink(old_dir);
1930 inc_nlink(new_dir);
1931 }
1932
1933 old_dir->i_size -= BOGO_DIRENT_SIZE;
1934 new_dir->i_size += BOGO_DIRENT_SIZE;
1935 old_dir->i_ctime = old_dir->i_mtime =
1936 new_dir->i_ctime = new_dir->i_mtime =
1937 inode->i_ctime = CURRENT_TIME;
1938 return 0;
1939 }
1940
1941 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1942 {
1943 int error;
1944 int len;
1945 struct inode *inode;
1946 struct page *page = NULL;
1947 char *kaddr;
1948 struct shmem_inode_info *info;
1949
1950 len = strlen(symname) + 1;
1951 if (len > PAGE_CACHE_SIZE)
1952 return -ENAMETOOLONG;
1953
1954 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1955 if (!inode)
1956 return -ENOSPC;
1957
1958 error = security_inode_init_security(inode, dir, NULL, NULL,
1959 NULL);
1960 if (error) {
1961 if (error != -EOPNOTSUPP) {
1962 iput(inode);
1963 return error;
1964 }
1965 error = 0;
1966 }
1967
1968 info = SHMEM_I(inode);
1969 inode->i_size = len-1;
1970 if (len <= (char *)inode - (char *)info) {
1971 /* do it inline */
1972 memcpy(info, symname, len);
1973 inode->i_op = &shmem_symlink_inline_operations;
1974 } else {
1975 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1976 if (error) {
1977 iput(inode);
1978 return error;
1979 }
1980 inode->i_mapping->a_ops = &shmem_aops;
1981 inode->i_op = &shmem_symlink_inode_operations;
1982 kaddr = kmap_atomic(page, KM_USER0);
1983 memcpy(kaddr, symname, len);
1984 kunmap_atomic(kaddr, KM_USER0);
1985 set_page_dirty(page);
1986 unlock_page(page);
1987 page_cache_release(page);
1988 }
1989 dir->i_size += BOGO_DIRENT_SIZE;
1990 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1991 d_instantiate(dentry, inode);
1992 dget(dentry);
1993 return 0;
1994 }
1995
1996 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1997 {
1998 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1999 return NULL;
2000 }
2001
2002 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2003 {
2004 struct page *page = NULL;
2005 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2006 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2007 if (page)
2008 unlock_page(page);
2009 return page;
2010 }
2011
2012 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2013 {
2014 if (!IS_ERR(nd_get_link(nd))) {
2015 struct page *page = cookie;
2016 kunmap(page);
2017 mark_page_accessed(page);
2018 page_cache_release(page);
2019 }
2020 }
2021
2022 static const struct inode_operations shmem_symlink_inline_operations = {
2023 .readlink = generic_readlink,
2024 .follow_link = shmem_follow_link_inline,
2025 };
2026
2027 static const struct inode_operations shmem_symlink_inode_operations = {
2028 .readlink = generic_readlink,
2029 .follow_link = shmem_follow_link,
2030 .put_link = shmem_put_link,
2031 };
2032
2033 #ifdef CONFIG_TMPFS_POSIX_ACL
2034 /*
2035 * Superblocks without xattr inode operations will get security.* xattr
2036 * support from the VFS "for free". As soon as we have any other xattrs
2037 * like ACLs, we also need to implement the security.* handlers at
2038 * filesystem level, though.
2039 */
2040
2041 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2042 size_t list_len, const char *name,
2043 size_t name_len, int handler_flags)
2044 {
2045 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2046 }
2047
2048 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2049 void *buffer, size_t size, int handler_flags)
2050 {
2051 if (strcmp(name, "") == 0)
2052 return -EINVAL;
2053 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2054 }
2055
2056 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2057 const void *value, size_t size, int flags, int handler_flags)
2058 {
2059 if (strcmp(name, "") == 0)
2060 return -EINVAL;
2061 return security_inode_setsecurity(dentry->d_inode, name, value,
2062 size, flags);
2063 }
2064
2065 static const struct xattr_handler shmem_xattr_security_handler = {
2066 .prefix = XATTR_SECURITY_PREFIX,
2067 .list = shmem_xattr_security_list,
2068 .get = shmem_xattr_security_get,
2069 .set = shmem_xattr_security_set,
2070 };
2071
2072 static const struct xattr_handler *shmem_xattr_handlers[] = {
2073 &generic_acl_access_handler,
2074 &generic_acl_default_handler,
2075 &shmem_xattr_security_handler,
2076 NULL
2077 };
2078 #endif
2079
2080 static struct dentry *shmem_get_parent(struct dentry *child)
2081 {
2082 return ERR_PTR(-ESTALE);
2083 }
2084
2085 static int shmem_match(struct inode *ino, void *vfh)
2086 {
2087 __u32 *fh = vfh;
2088 __u64 inum = fh[2];
2089 inum = (inum << 32) | fh[1];
2090 return ino->i_ino == inum && fh[0] == ino->i_generation;
2091 }
2092
2093 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2094 struct fid *fid, int fh_len, int fh_type)
2095 {
2096 struct inode *inode;
2097 struct dentry *dentry = NULL;
2098 u64 inum = fid->raw[2];
2099 inum = (inum << 32) | fid->raw[1];
2100
2101 if (fh_len < 3)
2102 return NULL;
2103
2104 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2105 shmem_match, fid->raw);
2106 if (inode) {
2107 dentry = d_find_alias(inode);
2108 iput(inode);
2109 }
2110
2111 return dentry;
2112 }
2113
2114 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2115 int connectable)
2116 {
2117 struct inode *inode = dentry->d_inode;
2118
2119 if (*len < 3)
2120 return 255;
2121
2122 if (hlist_unhashed(&inode->i_hash)) {
2123 /* Unfortunately insert_inode_hash is not idempotent,
2124 * so as we hash inodes here rather than at creation
2125 * time, we need a lock to ensure we only try
2126 * to do it once
2127 */
2128 static DEFINE_SPINLOCK(lock);
2129 spin_lock(&lock);
2130 if (hlist_unhashed(&inode->i_hash))
2131 __insert_inode_hash(inode,
2132 inode->i_ino + inode->i_generation);
2133 spin_unlock(&lock);
2134 }
2135
2136 fh[0] = inode->i_generation;
2137 fh[1] = inode->i_ino;
2138 fh[2] = ((__u64)inode->i_ino) >> 32;
2139
2140 *len = 3;
2141 return 1;
2142 }
2143
2144 static const struct export_operations shmem_export_ops = {
2145 .get_parent = shmem_get_parent,
2146 .encode_fh = shmem_encode_fh,
2147 .fh_to_dentry = shmem_fh_to_dentry,
2148 };
2149
2150 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2151 bool remount)
2152 {
2153 char *this_char, *value, *rest;
2154
2155 while (options != NULL) {
2156 this_char = options;
2157 for (;;) {
2158 /*
2159 * NUL-terminate this option: unfortunately,
2160 * mount options form a comma-separated list,
2161 * but mpol's nodelist may also contain commas.
2162 */
2163 options = strchr(options, ',');
2164 if (options == NULL)
2165 break;
2166 options++;
2167 if (!isdigit(*options)) {
2168 options[-1] = '\0';
2169 break;
2170 }
2171 }
2172 if (!*this_char)
2173 continue;
2174 if ((value = strchr(this_char,'=')) != NULL) {
2175 *value++ = 0;
2176 } else {
2177 printk(KERN_ERR
2178 "tmpfs: No value for mount option '%s'\n",
2179 this_char);
2180 return 1;
2181 }
2182
2183 if (!strcmp(this_char,"size")) {
2184 unsigned long long size;
2185 size = memparse(value,&rest);
2186 if (*rest == '%') {
2187 size <<= PAGE_SHIFT;
2188 size *= totalram_pages;
2189 do_div(size, 100);
2190 rest++;
2191 }
2192 if (*rest)
2193 goto bad_val;
2194 sbinfo->max_blocks =
2195 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2196 } else if (!strcmp(this_char,"nr_blocks")) {
2197 sbinfo->max_blocks = memparse(value, &rest);
2198 if (*rest)
2199 goto bad_val;
2200 } else if (!strcmp(this_char,"nr_inodes")) {
2201 sbinfo->max_inodes = memparse(value, &rest);
2202 if (*rest)
2203 goto bad_val;
2204 } else if (!strcmp(this_char,"mode")) {
2205 if (remount)
2206 continue;
2207 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2208 if (*rest)
2209 goto bad_val;
2210 } else if (!strcmp(this_char,"uid")) {
2211 if (remount)
2212 continue;
2213 sbinfo->uid = simple_strtoul(value, &rest, 0);
2214 if (*rest)
2215 goto bad_val;
2216 } else if (!strcmp(this_char,"gid")) {
2217 if (remount)
2218 continue;
2219 sbinfo->gid = simple_strtoul(value, &rest, 0);
2220 if (*rest)
2221 goto bad_val;
2222 } else if (!strcmp(this_char,"mpol")) {
2223 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2224 goto bad_val;
2225 } else {
2226 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2227 this_char);
2228 return 1;
2229 }
2230 }
2231 return 0;
2232
2233 bad_val:
2234 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2235 value, this_char);
2236 return 1;
2237
2238 }
2239
2240 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2241 {
2242 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2243 struct shmem_sb_info config = *sbinfo;
2244 unsigned long blocks;
2245 unsigned long inodes;
2246 int error = -EINVAL;
2247
2248 if (shmem_parse_options(data, &config, true))
2249 return error;
2250
2251 spin_lock(&sbinfo->stat_lock);
2252 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2253 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2254 if (config.max_blocks < blocks)
2255 goto out;
2256 if (config.max_inodes < inodes)
2257 goto out;
2258 /*
2259 * Those tests also disallow limited->unlimited while any are in
2260 * use, so i_blocks will always be zero when max_blocks is zero;
2261 * but we must separately disallow unlimited->limited, because
2262 * in that case we have no record of how much is already in use.
2263 */
2264 if (config.max_blocks && !sbinfo->max_blocks)
2265 goto out;
2266 if (config.max_inodes && !sbinfo->max_inodes)
2267 goto out;
2268
2269 error = 0;
2270 sbinfo->max_blocks = config.max_blocks;
2271 sbinfo->free_blocks = config.max_blocks - blocks;
2272 sbinfo->max_inodes = config.max_inodes;
2273 sbinfo->free_inodes = config.max_inodes - inodes;
2274
2275 mpol_put(sbinfo->mpol);
2276 sbinfo->mpol = config.mpol; /* transfers initial ref */
2277 out:
2278 spin_unlock(&sbinfo->stat_lock);
2279 return error;
2280 }
2281
2282 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2283 {
2284 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2285
2286 if (sbinfo->max_blocks != shmem_default_max_blocks())
2287 seq_printf(seq, ",size=%luk",
2288 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2289 if (sbinfo->max_inodes != shmem_default_max_inodes())
2290 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2291 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2292 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2293 if (sbinfo->uid != 0)
2294 seq_printf(seq, ",uid=%u", sbinfo->uid);
2295 if (sbinfo->gid != 0)
2296 seq_printf(seq, ",gid=%u", sbinfo->gid);
2297 shmem_show_mpol(seq, sbinfo->mpol);
2298 return 0;
2299 }
2300 #endif /* CONFIG_TMPFS */
2301
2302 static void shmem_put_super(struct super_block *sb)
2303 {
2304 kfree(sb->s_fs_info);
2305 sb->s_fs_info = NULL;
2306 }
2307
2308 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2309 {
2310 struct inode *inode;
2311 struct dentry *root;
2312 struct shmem_sb_info *sbinfo;
2313 int err = -ENOMEM;
2314
2315 /* Round up to L1_CACHE_BYTES to resist false sharing */
2316 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2317 L1_CACHE_BYTES), GFP_KERNEL);
2318 if (!sbinfo)
2319 return -ENOMEM;
2320
2321 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2322 sbinfo->uid = current_fsuid();
2323 sbinfo->gid = current_fsgid();
2324 sb->s_fs_info = sbinfo;
2325
2326 #ifdef CONFIG_TMPFS
2327 /*
2328 * Per default we only allow half of the physical ram per
2329 * tmpfs instance, limiting inodes to one per page of lowmem;
2330 * but the internal instance is left unlimited.
2331 */
2332 if (!(sb->s_flags & MS_NOUSER)) {
2333 sbinfo->max_blocks = shmem_default_max_blocks();
2334 sbinfo->max_inodes = shmem_default_max_inodes();
2335 if (shmem_parse_options(data, sbinfo, false)) {
2336 err = -EINVAL;
2337 goto failed;
2338 }
2339 }
2340 sb->s_export_op = &shmem_export_ops;
2341 #else
2342 sb->s_flags |= MS_NOUSER;
2343 #endif
2344
2345 spin_lock_init(&sbinfo->stat_lock);
2346 sbinfo->free_blocks = sbinfo->max_blocks;
2347 sbinfo->free_inodes = sbinfo->max_inodes;
2348
2349 sb->s_maxbytes = SHMEM_MAX_BYTES;
2350 sb->s_blocksize = PAGE_CACHE_SIZE;
2351 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2352 sb->s_magic = TMPFS_MAGIC;
2353 sb->s_op = &shmem_ops;
2354 sb->s_time_gran = 1;
2355 #ifdef CONFIG_TMPFS_POSIX_ACL
2356 sb->s_xattr = shmem_xattr_handlers;
2357 sb->s_flags |= MS_POSIXACL;
2358 #endif
2359
2360 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2361 if (!inode)
2362 goto failed;
2363 inode->i_uid = sbinfo->uid;
2364 inode->i_gid = sbinfo->gid;
2365 root = d_alloc_root(inode);
2366 if (!root)
2367 goto failed_iput;
2368 sb->s_root = root;
2369 return 0;
2370
2371 failed_iput:
2372 iput(inode);
2373 failed:
2374 shmem_put_super(sb);
2375 return err;
2376 }
2377
2378 static struct kmem_cache *shmem_inode_cachep;
2379
2380 static struct inode *shmem_alloc_inode(struct super_block *sb)
2381 {
2382 struct shmem_inode_info *p;
2383 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2384 if (!p)
2385 return NULL;
2386 return &p->vfs_inode;
2387 }
2388
2389 static void shmem_destroy_inode(struct inode *inode)
2390 {
2391 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2392 /* only struct inode is valid if it's an inline symlink */
2393 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2394 }
2395 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2396 }
2397
2398 static void init_once(void *foo)
2399 {
2400 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2401
2402 inode_init_once(&p->vfs_inode);
2403 }
2404
2405 static int init_inodecache(void)
2406 {
2407 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2408 sizeof(struct shmem_inode_info),
2409 0, SLAB_PANIC, init_once);
2410 return 0;
2411 }
2412
2413 static void destroy_inodecache(void)
2414 {
2415 kmem_cache_destroy(shmem_inode_cachep);
2416 }
2417
2418 static const struct address_space_operations shmem_aops = {
2419 .writepage = shmem_writepage,
2420 .set_page_dirty = __set_page_dirty_no_writeback,
2421 #ifdef CONFIG_TMPFS
2422 .readpage = shmem_readpage,
2423 .write_begin = shmem_write_begin,
2424 .write_end = shmem_write_end,
2425 #endif
2426 .migratepage = migrate_page,
2427 .error_remove_page = generic_error_remove_page,
2428 };
2429
2430 static const struct file_operations shmem_file_operations = {
2431 .mmap = shmem_mmap,
2432 #ifdef CONFIG_TMPFS
2433 .llseek = generic_file_llseek,
2434 .read = do_sync_read,
2435 .write = do_sync_write,
2436 .aio_read = shmem_file_aio_read,
2437 .aio_write = generic_file_aio_write,
2438 .fsync = noop_fsync,
2439 .splice_read = generic_file_splice_read,
2440 .splice_write = generic_file_splice_write,
2441 #endif
2442 };
2443
2444 static const struct inode_operations shmem_inode_operations = {
2445 .setattr = shmem_notify_change,
2446 .truncate_range = shmem_truncate_range,
2447 #ifdef CONFIG_TMPFS_POSIX_ACL
2448 .setxattr = generic_setxattr,
2449 .getxattr = generic_getxattr,
2450 .listxattr = generic_listxattr,
2451 .removexattr = generic_removexattr,
2452 .check_acl = generic_check_acl,
2453 #endif
2454
2455 };
2456
2457 static const struct inode_operations shmem_dir_inode_operations = {
2458 #ifdef CONFIG_TMPFS
2459 .create = shmem_create,
2460 .lookup = simple_lookup,
2461 .link = shmem_link,
2462 .unlink = shmem_unlink,
2463 .symlink = shmem_symlink,
2464 .mkdir = shmem_mkdir,
2465 .rmdir = shmem_rmdir,
2466 .mknod = shmem_mknod,
2467 .rename = shmem_rename,
2468 #endif
2469 #ifdef CONFIG_TMPFS_POSIX_ACL
2470 .setattr = shmem_notify_change,
2471 .setxattr = generic_setxattr,
2472 .getxattr = generic_getxattr,
2473 .listxattr = generic_listxattr,
2474 .removexattr = generic_removexattr,
2475 .check_acl = generic_check_acl,
2476 #endif
2477 };
2478
2479 static const struct inode_operations shmem_special_inode_operations = {
2480 #ifdef CONFIG_TMPFS_POSIX_ACL
2481 .setattr = shmem_notify_change,
2482 .setxattr = generic_setxattr,
2483 .getxattr = generic_getxattr,
2484 .listxattr = generic_listxattr,
2485 .removexattr = generic_removexattr,
2486 .check_acl = generic_check_acl,
2487 #endif
2488 };
2489
2490 static const struct super_operations shmem_ops = {
2491 .alloc_inode = shmem_alloc_inode,
2492 .destroy_inode = shmem_destroy_inode,
2493 #ifdef CONFIG_TMPFS
2494 .statfs = shmem_statfs,
2495 .remount_fs = shmem_remount_fs,
2496 .show_options = shmem_show_options,
2497 #endif
2498 .delete_inode = shmem_delete_inode,
2499 .drop_inode = generic_delete_inode,
2500 .put_super = shmem_put_super,
2501 };
2502
2503 static const struct vm_operations_struct shmem_vm_ops = {
2504 .fault = shmem_fault,
2505 #ifdef CONFIG_NUMA
2506 .set_policy = shmem_set_policy,
2507 .get_policy = shmem_get_policy,
2508 #endif
2509 };
2510
2511
2512 static int shmem_get_sb(struct file_system_type *fs_type,
2513 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2514 {
2515 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2516 }
2517
2518 static struct file_system_type tmpfs_fs_type = {
2519 .owner = THIS_MODULE,
2520 .name = "tmpfs",
2521 .get_sb = shmem_get_sb,
2522 .kill_sb = kill_litter_super,
2523 };
2524
2525 int __init init_tmpfs(void)
2526 {
2527 int error;
2528
2529 error = bdi_init(&shmem_backing_dev_info);
2530 if (error)
2531 goto out4;
2532
2533 error = init_inodecache();
2534 if (error)
2535 goto out3;
2536
2537 error = register_filesystem(&tmpfs_fs_type);
2538 if (error) {
2539 printk(KERN_ERR "Could not register tmpfs\n");
2540 goto out2;
2541 }
2542
2543 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2544 tmpfs_fs_type.name, NULL);
2545 if (IS_ERR(shm_mnt)) {
2546 error = PTR_ERR(shm_mnt);
2547 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2548 goto out1;
2549 }
2550 return 0;
2551
2552 out1:
2553 unregister_filesystem(&tmpfs_fs_type);
2554 out2:
2555 destroy_inodecache();
2556 out3:
2557 bdi_destroy(&shmem_backing_dev_info);
2558 out4:
2559 shm_mnt = ERR_PTR(error);
2560 return error;
2561 }
2562
2563 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2564 /**
2565 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2566 * @inode: the inode to be searched
2567 * @pgoff: the offset to be searched
2568 * @pagep: the pointer for the found page to be stored
2569 * @ent: the pointer for the found swap entry to be stored
2570 *
2571 * If a page is found, refcount of it is incremented. Callers should handle
2572 * these refcount.
2573 */
2574 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2575 struct page **pagep, swp_entry_t *ent)
2576 {
2577 swp_entry_t entry = { .val = 0 }, *ptr;
2578 struct page *page = NULL;
2579 struct shmem_inode_info *info = SHMEM_I(inode);
2580
2581 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2582 goto out;
2583
2584 spin_lock(&info->lock);
2585 ptr = shmem_swp_entry(info, pgoff, NULL);
2586 #ifdef CONFIG_SWAP
2587 if (ptr && ptr->val) {
2588 entry.val = ptr->val;
2589 page = find_get_page(&swapper_space, entry.val);
2590 } else
2591 #endif
2592 page = find_get_page(inode->i_mapping, pgoff);
2593 if (ptr)
2594 shmem_swp_unmap(ptr);
2595 spin_unlock(&info->lock);
2596 out:
2597 *pagep = page;
2598 *ent = entry;
2599 }
2600 #endif
2601
2602 #else /* !CONFIG_SHMEM */
2603
2604 /*
2605 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2606 *
2607 * This is intended for small system where the benefits of the full
2608 * shmem code (swap-backed and resource-limited) are outweighed by
2609 * their complexity. On systems without swap this code should be
2610 * effectively equivalent, but much lighter weight.
2611 */
2612
2613 #include <linux/ramfs.h>
2614
2615 static struct file_system_type tmpfs_fs_type = {
2616 .name = "tmpfs",
2617 .get_sb = ramfs_get_sb,
2618 .kill_sb = kill_litter_super,
2619 };
2620
2621 int __init init_tmpfs(void)
2622 {
2623 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2624
2625 shm_mnt = kern_mount(&tmpfs_fs_type);
2626 BUG_ON(IS_ERR(shm_mnt));
2627
2628 return 0;
2629 }
2630
2631 int shmem_unuse(swp_entry_t entry, struct page *page)
2632 {
2633 return 0;
2634 }
2635
2636 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2637 {
2638 return 0;
2639 }
2640
2641 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2642 /**
2643 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2644 * @inode: the inode to be searched
2645 * @pgoff: the offset to be searched
2646 * @pagep: the pointer for the found page to be stored
2647 * @ent: the pointer for the found swap entry to be stored
2648 *
2649 * If a page is found, refcount of it is incremented. Callers should handle
2650 * these refcount.
2651 */
2652 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2653 struct page **pagep, swp_entry_t *ent)
2654 {
2655 struct page *page = NULL;
2656
2657 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2658 goto out;
2659 page = find_get_page(inode->i_mapping, pgoff);
2660 out:
2661 *pagep = page;
2662 *ent = (swp_entry_t){ .val = 0 };
2663 }
2664 #endif
2665
2666 #define shmem_vm_ops generic_file_vm_ops
2667 #define shmem_file_operations ramfs_file_operations
2668 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2669 #define shmem_acct_size(flags, size) 0
2670 #define shmem_unacct_size(flags, size) do {} while (0)
2671 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2672
2673 #endif /* CONFIG_SHMEM */
2674
2675 /* common code */
2676
2677 /**
2678 * shmem_file_setup - get an unlinked file living in tmpfs
2679 * @name: name for dentry (to be seen in /proc/<pid>/maps
2680 * @size: size to be set for the file
2681 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2682 */
2683 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2684 {
2685 int error;
2686 struct file *file;
2687 struct inode *inode;
2688 struct path path;
2689 struct dentry *root;
2690 struct qstr this;
2691
2692 if (IS_ERR(shm_mnt))
2693 return (void *)shm_mnt;
2694
2695 if (size < 0 || size > SHMEM_MAX_BYTES)
2696 return ERR_PTR(-EINVAL);
2697
2698 if (shmem_acct_size(flags, size))
2699 return ERR_PTR(-ENOMEM);
2700
2701 error = -ENOMEM;
2702 this.name = name;
2703 this.len = strlen(name);
2704 this.hash = 0; /* will go */
2705 root = shm_mnt->mnt_root;
2706 path.dentry = d_alloc(root, &this);
2707 if (!path.dentry)
2708 goto put_memory;
2709 path.mnt = mntget(shm_mnt);
2710
2711 error = -ENOSPC;
2712 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2713 if (!inode)
2714 goto put_dentry;
2715
2716 d_instantiate(path.dentry, inode);
2717 inode->i_size = size;
2718 inode->i_nlink = 0; /* It is unlinked */
2719 #ifndef CONFIG_MMU
2720 error = ramfs_nommu_expand_for_mapping(inode, size);
2721 if (error)
2722 goto put_dentry;
2723 #endif
2724
2725 error = -ENFILE;
2726 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2727 &shmem_file_operations);
2728 if (!file)
2729 goto put_dentry;
2730
2731 return file;
2732
2733 put_dentry:
2734 path_put(&path);
2735 put_memory:
2736 shmem_unacct_size(flags, size);
2737 return ERR_PTR(error);
2738 }
2739 EXPORT_SYMBOL_GPL(shmem_file_setup);
2740
2741 /**
2742 * shmem_zero_setup - setup a shared anonymous mapping
2743 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2744 */
2745 int shmem_zero_setup(struct vm_area_struct *vma)
2746 {
2747 struct file *file;
2748 loff_t size = vma->vm_end - vma->vm_start;
2749
2750 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2751 if (IS_ERR(file))
2752 return PTR_ERR(file);
2753
2754 if (vma->vm_file)
2755 fput(vma->vm_file);
2756 vma->vm_file = file;
2757 vma->vm_ops = &shmem_vm_ops;
2758 return 0;
2759 }