Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 return sb->s_fs_info;
136 }
137
138 /*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213 }
214
215 /**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
240 }
241 }
242
243 /*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248 {
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264 }
265
266 /*
267 * Like add_to_page_cache_locked, but error if expected item has gone.
268 */
269 static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
272 {
273 int error = 0;
274
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
277
278 if (!expected)
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 if (!error) {
281 page_cache_get(page);
282 page->mapping = mapping;
283 page->index = index;
284
285 spin_lock_irq(&mapping->tree_lock);
286 if (!expected)
287 error = radix_tree_insert(&mapping->page_tree,
288 index, page);
289 else
290 error = shmem_radix_tree_replace(mapping, index,
291 expected, page);
292 if (!error) {
293 mapping->nrpages++;
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
297 } else {
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
301 }
302 if (!expected)
303 radix_tree_preload_end();
304 }
305 if (error)
306 mem_cgroup_uncharge_cache_page(page);
307 return error;
308 }
309
310 /*
311 * Like delete_from_page_cache, but substitutes swap for page.
312 */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 struct address_space *mapping = page->mapping;
316 int error;
317
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
321 mapping->nrpages--;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 BUG_ON(error);
327 }
328
329 /*
330 * Like find_get_pages, but collecting swap entries as well as pages.
331 */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
335 {
336 unsigned int i;
337 unsigned int ret;
338 unsigned int nr_found;
339
340 rcu_read_lock();
341 restart:
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
344 ret = 0;
345 for (i = 0; i < nr_found; i++) {
346 struct page *page;
347 repeat:
348 page = radix_tree_deref_slot((void **)pages[i]);
349 if (unlikely(!page))
350 continue;
351 if (radix_tree_exception(page)) {
352 if (radix_tree_deref_retry(page))
353 goto restart;
354 /*
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
358 */
359 goto export;
360 }
361 if (!page_cache_get_speculative(page))
362 goto repeat;
363
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
367 goto repeat;
368 }
369 export:
370 indices[ret] = indices[i];
371 pages[ret] = page;
372 ret++;
373 }
374 if (unlikely(!ret && nr_found))
375 goto restart;
376 rcu_read_unlock();
377 return ret;
378 }
379
380 /*
381 * Remove swap entry from radix tree, free the swap and its page cache.
382 */
383 static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
385 {
386 int error;
387
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
391 if (!error)
392 free_swap_and_cache(radix_to_swp_entry(radswap));
393 return error;
394 }
395
396 /*
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
398 */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 int i, j;
402
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
407 }
408 pvec->nr = j;
409 }
410
411 /*
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413 */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 struct pagevec pvec;
417 pgoff_t indices[PAGEVEC_SIZE];
418 pgoff_t index = 0;
419
420 pagevec_init(&pvec, 0);
421 /*
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 */
424 while (!mapping_unevictable(mapping)) {
425 /*
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 */
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
431 if (!pvec.nr)
432 break;
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
437 cond_resched();
438 }
439 }
440
441 /*
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444 */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 bool unfalloc)
447 {
448 struct address_space *mapping = inode->i_mapping;
449 struct shmem_inode_info *info = SHMEM_I(inode);
450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 struct pagevec pvec;
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
457 pgoff_t index;
458 int i;
459
460 if (lend == -1)
461 end = -1; /* unsigned, so actually very big */
462
463 pagevec_init(&pvec, 0);
464 index = start;
465 while (index < end) {
466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 pvec.pages, indices);
469 if (!pvec.nr)
470 break;
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
474
475 index = indices[i];
476 if (index >= end)
477 break;
478
479 if (radix_tree_exceptional_entry(page)) {
480 if (unfalloc)
481 continue;
482 nr_swaps_freed += !shmem_free_swap(mapping,
483 index, page);
484 continue;
485 }
486
487 if (!trylock_page(page))
488 continue;
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
493 }
494 }
495 unlock_page(page);
496 }
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
499 mem_cgroup_uncharge_end();
500 cond_resched();
501 index++;
502 }
503
504 if (partial_start) {
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 if (page) {
508 unsigned int top = PAGE_CACHE_SIZE;
509 if (start > end) {
510 top = partial_end;
511 partial_end = 0;
512 }
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
515 unlock_page(page);
516 page_cache_release(page);
517 }
518 }
519 if (partial_end) {
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 if (page) {
523 zero_user_segment(page, 0, partial_end);
524 set_page_dirty(page);
525 unlock_page(page);
526 page_cache_release(page);
527 }
528 }
529 if (start >= end)
530 return;
531
532 index = start;
533 for ( ; ; ) {
534 cond_resched();
535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 pvec.pages, indices);
538 if (!pvec.nr) {
539 if (index == start || unfalloc)
540 break;
541 index = start;
542 continue;
543 }
544 if ((index == start || unfalloc) && indices[0] >= end) {
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
547 break;
548 }
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
552
553 index = indices[i];
554 if (index >= end)
555 break;
556
557 if (radix_tree_exceptional_entry(page)) {
558 if (unfalloc)
559 continue;
560 nr_swaps_freed += !shmem_free_swap(mapping,
561 index, page);
562 continue;
563 }
564
565 lock_page(page);
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
570 }
571 }
572 unlock_page(page);
573 }
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
576 mem_cgroup_uncharge_end();
577 index++;
578 }
579
580 spin_lock(&info->lock);
581 info->swapped -= nr_swaps_freed;
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
584 }
585
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 shmem_undo_range(inode, lstart, lend, false);
589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 struct inode *inode = dentry->d_inode;
596 int error;
597
598 error = inode_change_ok(inode, attr);
599 if (error)
600 return error;
601
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
605
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 }
617 }
618
619 setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr->ia_valid & ATTR_MODE)
622 error = generic_acl_chmod(inode);
623 #endif
624 return error;
625 }
626
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 struct shmem_xattr *xattr, *nxattr;
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 kfree(xattr->name);
646 kfree(xattr);
647 }
648 BUG_ON(inode->i_blocks);
649 shmem_free_inode(inode->i_sb);
650 clear_inode(inode);
651 }
652
653 /*
654 * If swap found in inode, free it and move page from swapcache to filecache.
655 */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 swp_entry_t swap, struct page **pagep)
658 {
659 struct address_space *mapping = info->vfs_inode.i_mapping;
660 void *radswap;
661 pgoff_t index;
662 gfp_t gfp;
663 int error = 0;
664
665 radswap = swp_to_radix_entry(swap);
666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 if (index == -1)
668 return 0;
669
670 /*
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
675 */
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
678
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
684 /*
685 * We needed to drop mutex to make that restrictive page
686 * allocation, but the inode might have been freed while we
687 * dropped it: although a racing shmem_evict_inode() cannot
688 * complete without emptying the radix_tree, our page lock
689 * on this swapcache page is not enough to prevent that -
690 * free_swap_and_cache() of our swap entry will only
691 * trylock_page(), removing swap from radix_tree whatever.
692 *
693 * We must not proceed to shmem_add_to_page_cache() if the
694 * inode has been freed, but of course we cannot rely on
695 * inode or mapping or info to check that. However, we can
696 * safely check if our swap entry is still in use (and here
697 * it can't have got reused for another page): if it's still
698 * in use, then the inode cannot have been freed yet, and we
699 * can safely proceed (if it's no longer in use, that tells
700 * nothing about the inode, but we don't need to unuse swap).
701 */
702 if (!page_swapcount(*pagep))
703 error = -ENOENT;
704 }
705
706 /*
707 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 * beneath us (pagelock doesn't help until the page is in pagecache).
710 */
711 if (!error)
712 error = shmem_add_to_page_cache(*pagep, mapping, index,
713 GFP_NOWAIT, radswap);
714 if (error != -ENOMEM) {
715 /*
716 * Truncation and eviction use free_swap_and_cache(), which
717 * only does trylock page: if we raced, best clean up here.
718 */
719 delete_from_swap_cache(*pagep);
720 set_page_dirty(*pagep);
721 if (!error) {
722 spin_lock(&info->lock);
723 info->swapped--;
724 spin_unlock(&info->lock);
725 swap_free(swap);
726 }
727 error = 1; /* not an error, but entry was found */
728 }
729 return error;
730 }
731
732 /*
733 * Search through swapped inodes to find and replace swap by page.
734 */
735 int shmem_unuse(swp_entry_t swap, struct page *page)
736 {
737 struct list_head *this, *next;
738 struct shmem_inode_info *info;
739 int found = 0;
740 int error = 0;
741
742 /*
743 * There's a faint possibility that swap page was replaced before
744 * caller locked it: caller will come back later with the right page.
745 */
746 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
747 goto out;
748
749 /*
750 * Charge page using GFP_KERNEL while we can wait, before taking
751 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 * Charged back to the user (not to caller) when swap account is used.
753 */
754 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755 if (error)
756 goto out;
757 /* No radix_tree_preload: swap entry keeps a place for page in tree */
758
759 mutex_lock(&shmem_swaplist_mutex);
760 list_for_each_safe(this, next, &shmem_swaplist) {
761 info = list_entry(this, struct shmem_inode_info, swaplist);
762 if (info->swapped)
763 found = shmem_unuse_inode(info, swap, &page);
764 else
765 list_del_init(&info->swaplist);
766 cond_resched();
767 if (found)
768 break;
769 }
770 mutex_unlock(&shmem_swaplist_mutex);
771
772 if (found < 0)
773 error = found;
774 out:
775 unlock_page(page);
776 page_cache_release(page);
777 return error;
778 }
779
780 /*
781 * Move the page from the page cache to the swap cache.
782 */
783 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784 {
785 struct shmem_inode_info *info;
786 struct address_space *mapping;
787 struct inode *inode;
788 swp_entry_t swap;
789 pgoff_t index;
790
791 BUG_ON(!PageLocked(page));
792 mapping = page->mapping;
793 index = page->index;
794 inode = mapping->host;
795 info = SHMEM_I(inode);
796 if (info->flags & VM_LOCKED)
797 goto redirty;
798 if (!total_swap_pages)
799 goto redirty;
800
801 /*
802 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 * sync from ever calling shmem_writepage; but a stacking filesystem
804 * might use ->writepage of its underlying filesystem, in which case
805 * tmpfs should write out to swap only in response to memory pressure,
806 * and not for the writeback threads or sync.
807 */
808 if (!wbc->for_reclaim) {
809 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
810 goto redirty;
811 }
812
813 /*
814 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 * value into swapfile.c, the only way we can correctly account for a
816 * fallocated page arriving here is now to initialize it and write it.
817 *
818 * That's okay for a page already fallocated earlier, but if we have
819 * not yet completed the fallocation, then (a) we want to keep track
820 * of this page in case we have to undo it, and (b) it may not be a
821 * good idea to continue anyway, once we're pushing into swap. So
822 * reactivate the page, and let shmem_fallocate() quit when too many.
823 */
824 if (!PageUptodate(page)) {
825 if (inode->i_private) {
826 struct shmem_falloc *shmem_falloc;
827 spin_lock(&inode->i_lock);
828 shmem_falloc = inode->i_private;
829 if (shmem_falloc &&
830 index >= shmem_falloc->start &&
831 index < shmem_falloc->next)
832 shmem_falloc->nr_unswapped++;
833 else
834 shmem_falloc = NULL;
835 spin_unlock(&inode->i_lock);
836 if (shmem_falloc)
837 goto redirty;
838 }
839 clear_highpage(page);
840 flush_dcache_page(page);
841 SetPageUptodate(page);
842 }
843
844 swap = get_swap_page();
845 if (!swap.val)
846 goto redirty;
847
848 /*
849 * Add inode to shmem_unuse()'s list of swapped-out inodes,
850 * if it's not already there. Do it now before the page is
851 * moved to swap cache, when its pagelock no longer protects
852 * the inode from eviction. But don't unlock the mutex until
853 * we've incremented swapped, because shmem_unuse_inode() will
854 * prune a !swapped inode from the swaplist under this mutex.
855 */
856 mutex_lock(&shmem_swaplist_mutex);
857 if (list_empty(&info->swaplist))
858 list_add_tail(&info->swaplist, &shmem_swaplist);
859
860 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
861 swap_shmem_alloc(swap);
862 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
863
864 spin_lock(&info->lock);
865 info->swapped++;
866 shmem_recalc_inode(inode);
867 spin_unlock(&info->lock);
868
869 mutex_unlock(&shmem_swaplist_mutex);
870 BUG_ON(page_mapped(page));
871 swap_writepage(page, wbc);
872 return 0;
873 }
874
875 mutex_unlock(&shmem_swaplist_mutex);
876 swapcache_free(swap, NULL);
877 redirty:
878 set_page_dirty(page);
879 if (wbc->for_reclaim)
880 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
881 unlock_page(page);
882 return 0;
883 }
884
885 #ifdef CONFIG_NUMA
886 #ifdef CONFIG_TMPFS
887 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 char buffer[64];
890
891 if (!mpol || mpol->mode == MPOL_DEFAULT)
892 return; /* show nothing */
893
894 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
895
896 seq_printf(seq, ",mpol=%s", buffer);
897 }
898
899 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
900 {
901 struct mempolicy *mpol = NULL;
902 if (sbinfo->mpol) {
903 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
904 mpol = sbinfo->mpol;
905 mpol_get(mpol);
906 spin_unlock(&sbinfo->stat_lock);
907 }
908 return mpol;
909 }
910 #endif /* CONFIG_TMPFS */
911
912 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
913 struct shmem_inode_info *info, pgoff_t index)
914 {
915 struct mempolicy mpol, *spol;
916 struct vm_area_struct pvma;
917
918 spol = mpol_cond_copy(&mpol,
919 mpol_shared_policy_lookup(&info->policy, index));
920
921 /* Create a pseudo vma that just contains the policy */
922 pvma.vm_start = 0;
923 pvma.vm_pgoff = index;
924 pvma.vm_ops = NULL;
925 pvma.vm_policy = spol;
926 return swapin_readahead(swap, gfp, &pvma, 0);
927 }
928
929 static struct page *shmem_alloc_page(gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931 {
932 struct vm_area_struct pvma;
933
934 /* Create a pseudo vma that just contains the policy */
935 pvma.vm_start = 0;
936 pvma.vm_pgoff = index;
937 pvma.vm_ops = NULL;
938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939
940 /*
941 * alloc_page_vma() will drop the shared policy reference
942 */
943 return alloc_page_vma(gfp, &pvma, 0);
944 }
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948 {
949 }
950 #endif /* CONFIG_TMPFS */
951
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 struct shmem_inode_info *info, pgoff_t index)
954 {
955 return swapin_readahead(swap, gfp, NULL, 0);
956 }
957
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 struct shmem_inode_info *info, pgoff_t index)
960 {
961 return alloc_page(gfp);
962 }
963 #endif /* CONFIG_NUMA */
964
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 return NULL;
969 }
970 #endif
971
972 /*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985 {
986 return page_zonenum(page) > gfp_zone(gfp);
987 }
988
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 struct shmem_inode_info *info, pgoff_t index)
991 {
992 struct page *oldpage, *newpage;
993 struct address_space *swap_mapping;
994 pgoff_t swap_index;
995 int error;
996
997 oldpage = *pagep;
998 swap_index = page_private(oldpage);
999 swap_mapping = page_mapping(oldpage);
1000
1001 /*
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1004 */
1005 gfp &= ~GFP_CONSTRAINT_MASK;
1006 newpage = shmem_alloc_page(gfp, info, index);
1007 if (!newpage)
1008 return -ENOMEM;
1009
1010 page_cache_get(newpage);
1011 copy_highpage(newpage, oldpage);
1012 flush_dcache_page(newpage);
1013
1014 __set_page_locked(newpage);
1015 SetPageUptodate(newpage);
1016 SetPageSwapBacked(newpage);
1017 set_page_private(newpage, swap_index);
1018 SetPageSwapCache(newpage);
1019
1020 /*
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1023 */
1024 spin_lock_irq(&swap_mapping->tree_lock);
1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 newpage);
1027 if (!error) {
1028 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 }
1031 spin_unlock_irq(&swap_mapping->tree_lock);
1032
1033 if (unlikely(error)) {
1034 /*
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1038 */
1039 oldpage = newpage;
1040 } else {
1041 mem_cgroup_replace_page_cache(oldpage, newpage);
1042 lru_cache_add_anon(newpage);
1043 *pagep = newpage;
1044 }
1045
1046 ClearPageSwapCache(oldpage);
1047 set_page_private(oldpage, 0);
1048
1049 unlock_page(oldpage);
1050 page_cache_release(oldpage);
1051 page_cache_release(oldpage);
1052 return error;
1053 }
1054
1055 /*
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064 {
1065 struct address_space *mapping = inode->i_mapping;
1066 struct shmem_inode_info *info;
1067 struct shmem_sb_info *sbinfo;
1068 struct page *page;
1069 swp_entry_t swap;
1070 int error;
1071 int once = 0;
1072 int alloced = 0;
1073
1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 return -EFBIG;
1076 repeat:
1077 swap.val = 0;
1078 page = find_lock_page(mapping, index);
1079 if (radix_tree_exceptional_entry(page)) {
1080 swap = radix_to_swp_entry(page);
1081 page = NULL;
1082 }
1083
1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 error = -EINVAL;
1087 goto failed;
1088 }
1089
1090 /* fallocated page? */
1091 if (page && !PageUptodate(page)) {
1092 if (sgp != SGP_READ)
1093 goto clear;
1094 unlock_page(page);
1095 page_cache_release(page);
1096 page = NULL;
1097 }
1098 if (page || (sgp == SGP_READ && !swap.val)) {
1099 *pagep = page;
1100 return 0;
1101 }
1102
1103 /*
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
1106 */
1107 info = SHMEM_I(inode);
1108 sbinfo = SHMEM_SB(inode->i_sb);
1109
1110 if (swap.val) {
1111 /* Look it up and read it in.. */
1112 page = lookup_swap_cache(swap);
1113 if (!page) {
1114 /* here we actually do the io */
1115 if (fault_type)
1116 *fault_type |= VM_FAULT_MAJOR;
1117 page = shmem_swapin(swap, gfp, info, index);
1118 if (!page) {
1119 error = -ENOMEM;
1120 goto failed;
1121 }
1122 }
1123
1124 /* We have to do this with page locked to prevent races */
1125 lock_page(page);
1126 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 page->mapping) {
1128 error = -EEXIST; /* try again */
1129 goto failed;
1130 }
1131 if (!PageUptodate(page)) {
1132 error = -EIO;
1133 goto failed;
1134 }
1135 wait_on_page_writeback(page);
1136
1137 if (shmem_should_replace_page(page, gfp)) {
1138 error = shmem_replace_page(&page, gfp, info, index);
1139 if (error)
1140 goto failed;
1141 }
1142
1143 error = mem_cgroup_cache_charge(page, current->mm,
1144 gfp & GFP_RECLAIM_MASK);
1145 if (!error)
1146 error = shmem_add_to_page_cache(page, mapping, index,
1147 gfp, swp_to_radix_entry(swap));
1148 if (error)
1149 goto failed;
1150
1151 spin_lock(&info->lock);
1152 info->swapped--;
1153 shmem_recalc_inode(inode);
1154 spin_unlock(&info->lock);
1155
1156 delete_from_swap_cache(page);
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1164 }
1165 if (sbinfo->max_blocks) {
1166 if (percpu_counter_compare(&sbinfo->used_blocks,
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
1171 percpu_counter_inc(&sbinfo->used_blocks);
1172 }
1173
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1178 }
1179
1180 SetPageSwapBacked(page);
1181 __set_page_locked(page);
1182 error = mem_cgroup_cache_charge(page, current->mm,
1183 gfp & GFP_RECLAIM_MASK);
1184 if (!error)
1185 error = shmem_add_to_page_cache(page, mapping, index,
1186 gfp, NULL);
1187 if (error)
1188 goto decused;
1189 lru_cache_add_anon(page);
1190
1191 spin_lock(&info->lock);
1192 info->alloced++;
1193 inode->i_blocks += BLOCKS_PER_PAGE;
1194 shmem_recalc_inode(inode);
1195 spin_unlock(&info->lock);
1196 alloced = true;
1197
1198 /*
1199 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1200 */
1201 if (sgp == SGP_FALLOC)
1202 sgp = SGP_WRITE;
1203 clear:
1204 /*
1205 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 * it now, lest undo on failure cancel our earlier guarantee.
1208 */
1209 if (sgp != SGP_WRITE) {
1210 clear_highpage(page);
1211 flush_dcache_page(page);
1212 SetPageUptodate(page);
1213 }
1214 if (sgp == SGP_DIRTY)
1215 set_page_dirty(page);
1216 }
1217
1218 /* Perhaps the file has been truncated since we checked */
1219 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1220 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1221 error = -EINVAL;
1222 if (alloced)
1223 goto trunc;
1224 else
1225 goto failed;
1226 }
1227 *pagep = page;
1228 return 0;
1229
1230 /*
1231 * Error recovery.
1232 */
1233 trunc:
1234 info = SHMEM_I(inode);
1235 ClearPageDirty(page);
1236 delete_from_page_cache(page);
1237 spin_lock(&info->lock);
1238 info->alloced--;
1239 inode->i_blocks -= BLOCKS_PER_PAGE;
1240 spin_unlock(&info->lock);
1241 decused:
1242 sbinfo = SHMEM_SB(inode->i_sb);
1243 if (sbinfo->max_blocks)
1244 percpu_counter_add(&sbinfo->used_blocks, -1);
1245 unacct:
1246 shmem_unacct_blocks(info->flags, 1);
1247 failed:
1248 if (swap.val && error != -EINVAL) {
1249 struct page *test = find_get_page(mapping, index);
1250 if (test && !radix_tree_exceptional_entry(test))
1251 page_cache_release(test);
1252 /* Have another try if the entry has changed */
1253 if (test != swp_to_radix_entry(swap))
1254 error = -EEXIST;
1255 }
1256 if (page) {
1257 unlock_page(page);
1258 page_cache_release(page);
1259 }
1260 if (error == -ENOSPC && !once++) {
1261 info = SHMEM_I(inode);
1262 spin_lock(&info->lock);
1263 shmem_recalc_inode(inode);
1264 spin_unlock(&info->lock);
1265 goto repeat;
1266 }
1267 if (error == -EEXIST)
1268 goto repeat;
1269 return error;
1270 }
1271
1272 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 {
1274 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1275 int error;
1276 int ret = VM_FAULT_LOCKED;
1277
1278 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1279 if (error)
1280 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1281
1282 if (ret & VM_FAULT_MAJOR) {
1283 count_vm_event(PGMAJFAULT);
1284 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1285 }
1286 return ret;
1287 }
1288
1289 #ifdef CONFIG_NUMA
1290 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1291 {
1292 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1294 }
1295
1296 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1297 unsigned long addr)
1298 {
1299 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1300 pgoff_t index;
1301
1302 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1303 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1304 }
1305 #endif
1306
1307 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1308 {
1309 struct inode *inode = file->f_path.dentry->d_inode;
1310 struct shmem_inode_info *info = SHMEM_I(inode);
1311 int retval = -ENOMEM;
1312
1313 spin_lock(&info->lock);
1314 if (lock && !(info->flags & VM_LOCKED)) {
1315 if (!user_shm_lock(inode->i_size, user))
1316 goto out_nomem;
1317 info->flags |= VM_LOCKED;
1318 mapping_set_unevictable(file->f_mapping);
1319 }
1320 if (!lock && (info->flags & VM_LOCKED) && user) {
1321 user_shm_unlock(inode->i_size, user);
1322 info->flags &= ~VM_LOCKED;
1323 mapping_clear_unevictable(file->f_mapping);
1324 }
1325 retval = 0;
1326
1327 out_nomem:
1328 spin_unlock(&info->lock);
1329 return retval;
1330 }
1331
1332 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1333 {
1334 file_accessed(file);
1335 vma->vm_ops = &shmem_vm_ops;
1336 vma->vm_flags |= VM_CAN_NONLINEAR;
1337 return 0;
1338 }
1339
1340 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1341 umode_t mode, dev_t dev, unsigned long flags)
1342 {
1343 struct inode *inode;
1344 struct shmem_inode_info *info;
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346
1347 if (shmem_reserve_inode(sb))
1348 return NULL;
1349
1350 inode = new_inode(sb);
1351 if (inode) {
1352 inode->i_ino = get_next_ino();
1353 inode_init_owner(inode, dir, mode);
1354 inode->i_blocks = 0;
1355 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1356 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1357 inode->i_generation = get_seconds();
1358 info = SHMEM_I(inode);
1359 memset(info, 0, (char *)inode - (char *)info);
1360 spin_lock_init(&info->lock);
1361 info->flags = flags & VM_NORESERVE;
1362 INIT_LIST_HEAD(&info->swaplist);
1363 INIT_LIST_HEAD(&info->xattr_list);
1364 cache_no_acl(inode);
1365
1366 switch (mode & S_IFMT) {
1367 default:
1368 inode->i_op = &shmem_special_inode_operations;
1369 init_special_inode(inode, mode, dev);
1370 break;
1371 case S_IFREG:
1372 inode->i_mapping->a_ops = &shmem_aops;
1373 inode->i_op = &shmem_inode_operations;
1374 inode->i_fop = &shmem_file_operations;
1375 mpol_shared_policy_init(&info->policy,
1376 shmem_get_sbmpol(sbinfo));
1377 break;
1378 case S_IFDIR:
1379 inc_nlink(inode);
1380 /* Some things misbehave if size == 0 on a directory */
1381 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1382 inode->i_op = &shmem_dir_inode_operations;
1383 inode->i_fop = &simple_dir_operations;
1384 break;
1385 case S_IFLNK:
1386 /*
1387 * Must not load anything in the rbtree,
1388 * mpol_free_shared_policy will not be called.
1389 */
1390 mpol_shared_policy_init(&info->policy, NULL);
1391 break;
1392 }
1393 } else
1394 shmem_free_inode(sb);
1395 return inode;
1396 }
1397
1398 #ifdef CONFIG_TMPFS
1399 static const struct inode_operations shmem_symlink_inode_operations;
1400 static const struct inode_operations shmem_short_symlink_operations;
1401
1402 #ifdef CONFIG_TMPFS_XATTR
1403 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1404 #else
1405 #define shmem_initxattrs NULL
1406 #endif
1407
1408 static int
1409 shmem_write_begin(struct file *file, struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned flags,
1411 struct page **pagep, void **fsdata)
1412 {
1413 struct inode *inode = mapping->host;
1414 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1415 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1416 }
1417
1418 static int
1419 shmem_write_end(struct file *file, struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1422 {
1423 struct inode *inode = mapping->host;
1424
1425 if (pos + copied > inode->i_size)
1426 i_size_write(inode, pos + copied);
1427
1428 if (!PageUptodate(page)) {
1429 if (copied < PAGE_CACHE_SIZE) {
1430 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1431 zero_user_segments(page, 0, from,
1432 from + copied, PAGE_CACHE_SIZE);
1433 }
1434 SetPageUptodate(page);
1435 }
1436 set_page_dirty(page);
1437 unlock_page(page);
1438 page_cache_release(page);
1439
1440 return copied;
1441 }
1442
1443 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1444 {
1445 struct inode *inode = filp->f_path.dentry->d_inode;
1446 struct address_space *mapping = inode->i_mapping;
1447 pgoff_t index;
1448 unsigned long offset;
1449 enum sgp_type sgp = SGP_READ;
1450
1451 /*
1452 * Might this read be for a stacking filesystem? Then when reading
1453 * holes of a sparse file, we actually need to allocate those pages,
1454 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1455 */
1456 if (segment_eq(get_fs(), KERNEL_DS))
1457 sgp = SGP_DIRTY;
1458
1459 index = *ppos >> PAGE_CACHE_SHIFT;
1460 offset = *ppos & ~PAGE_CACHE_MASK;
1461
1462 for (;;) {
1463 struct page *page = NULL;
1464 pgoff_t end_index;
1465 unsigned long nr, ret;
1466 loff_t i_size = i_size_read(inode);
1467
1468 end_index = i_size >> PAGE_CACHE_SHIFT;
1469 if (index > end_index)
1470 break;
1471 if (index == end_index) {
1472 nr = i_size & ~PAGE_CACHE_MASK;
1473 if (nr <= offset)
1474 break;
1475 }
1476
1477 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1478 if (desc->error) {
1479 if (desc->error == -EINVAL)
1480 desc->error = 0;
1481 break;
1482 }
1483 if (page)
1484 unlock_page(page);
1485
1486 /*
1487 * We must evaluate after, since reads (unlike writes)
1488 * are called without i_mutex protection against truncate
1489 */
1490 nr = PAGE_CACHE_SIZE;
1491 i_size = i_size_read(inode);
1492 end_index = i_size >> PAGE_CACHE_SHIFT;
1493 if (index == end_index) {
1494 nr = i_size & ~PAGE_CACHE_MASK;
1495 if (nr <= offset) {
1496 if (page)
1497 page_cache_release(page);
1498 break;
1499 }
1500 }
1501 nr -= offset;
1502
1503 if (page) {
1504 /*
1505 * If users can be writing to this page using arbitrary
1506 * virtual addresses, take care about potential aliasing
1507 * before reading the page on the kernel side.
1508 */
1509 if (mapping_writably_mapped(mapping))
1510 flush_dcache_page(page);
1511 /*
1512 * Mark the page accessed if we read the beginning.
1513 */
1514 if (!offset)
1515 mark_page_accessed(page);
1516 } else {
1517 page = ZERO_PAGE(0);
1518 page_cache_get(page);
1519 }
1520
1521 /*
1522 * Ok, we have the page, and it's up-to-date, so
1523 * now we can copy it to user space...
1524 *
1525 * The actor routine returns how many bytes were actually used..
1526 * NOTE! This may not be the same as how much of a user buffer
1527 * we filled up (we may be padding etc), so we can only update
1528 * "pos" here (the actor routine has to update the user buffer
1529 * pointers and the remaining count).
1530 */
1531 ret = actor(desc, page, offset, nr);
1532 offset += ret;
1533 index += offset >> PAGE_CACHE_SHIFT;
1534 offset &= ~PAGE_CACHE_MASK;
1535
1536 page_cache_release(page);
1537 if (ret != nr || !desc->count)
1538 break;
1539
1540 cond_resched();
1541 }
1542
1543 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1544 file_accessed(filp);
1545 }
1546
1547 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1548 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1549 {
1550 struct file *filp = iocb->ki_filp;
1551 ssize_t retval;
1552 unsigned long seg;
1553 size_t count;
1554 loff_t *ppos = &iocb->ki_pos;
1555
1556 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1557 if (retval)
1558 return retval;
1559
1560 for (seg = 0; seg < nr_segs; seg++) {
1561 read_descriptor_t desc;
1562
1563 desc.written = 0;
1564 desc.arg.buf = iov[seg].iov_base;
1565 desc.count = iov[seg].iov_len;
1566 if (desc.count == 0)
1567 continue;
1568 desc.error = 0;
1569 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 retval += desc.written;
1571 if (desc.error) {
1572 retval = retval ?: desc.error;
1573 break;
1574 }
1575 if (desc.count > 0)
1576 break;
1577 }
1578 return retval;
1579 }
1580
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 struct pipe_inode_info *pipe, size_t len,
1583 unsigned int flags)
1584 {
1585 struct address_space *mapping = in->f_mapping;
1586 struct inode *inode = mapping->host;
1587 unsigned int loff, nr_pages, req_pages;
1588 struct page *pages[PIPE_DEF_BUFFERS];
1589 struct partial_page partial[PIPE_DEF_BUFFERS];
1590 struct page *page;
1591 pgoff_t index, end_index;
1592 loff_t isize, left;
1593 int error, page_nr;
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
1597 .nr_pages_max = PIPE_DEF_BUFFERS,
1598 .flags = flags,
1599 .ops = &page_cache_pipe_buf_ops,
1600 .spd_release = spd_release_page,
1601 };
1602
1603 isize = i_size_read(inode);
1604 if (unlikely(*ppos >= isize))
1605 return 0;
1606
1607 left = isize - *ppos;
1608 if (unlikely(left < len))
1609 len = left;
1610
1611 if (splice_grow_spd(pipe, &spd))
1612 return -ENOMEM;
1613
1614 index = *ppos >> PAGE_CACHE_SHIFT;
1615 loff = *ppos & ~PAGE_CACHE_MASK;
1616 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617 nr_pages = min(req_pages, pipe->buffers);
1618
1619 spd.nr_pages = find_get_pages_contig(mapping, index,
1620 nr_pages, spd.pages);
1621 index += spd.nr_pages;
1622 error = 0;
1623
1624 while (spd.nr_pages < nr_pages) {
1625 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 if (error)
1627 break;
1628 unlock_page(page);
1629 spd.pages[spd.nr_pages++] = page;
1630 index++;
1631 }
1632
1633 index = *ppos >> PAGE_CACHE_SHIFT;
1634 nr_pages = spd.nr_pages;
1635 spd.nr_pages = 0;
1636
1637 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 unsigned int this_len;
1639
1640 if (!len)
1641 break;
1642
1643 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 page = spd.pages[page_nr];
1645
1646 if (!PageUptodate(page) || page->mapping != mapping) {
1647 error = shmem_getpage(inode, index, &page,
1648 SGP_CACHE, NULL);
1649 if (error)
1650 break;
1651 unlock_page(page);
1652 page_cache_release(spd.pages[page_nr]);
1653 spd.pages[page_nr] = page;
1654 }
1655
1656 isize = i_size_read(inode);
1657 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 if (unlikely(!isize || index > end_index))
1659 break;
1660
1661 if (end_index == index) {
1662 unsigned int plen;
1663
1664 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 if (plen <= loff)
1666 break;
1667
1668 this_len = min(this_len, plen - loff);
1669 len = this_len;
1670 }
1671
1672 spd.partial[page_nr].offset = loff;
1673 spd.partial[page_nr].len = this_len;
1674 len -= this_len;
1675 loff = 0;
1676 spd.nr_pages++;
1677 index++;
1678 }
1679
1680 while (page_nr < nr_pages)
1681 page_cache_release(spd.pages[page_nr++]);
1682
1683 if (spd.nr_pages)
1684 error = splice_to_pipe(pipe, &spd);
1685
1686 splice_shrink_spd(&spd);
1687
1688 if (error > 0) {
1689 *ppos += error;
1690 file_accessed(in);
1691 }
1692 return error;
1693 }
1694
1695 /*
1696 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697 */
1698 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1699 pgoff_t index, pgoff_t end, int origin)
1700 {
1701 struct page *page;
1702 struct pagevec pvec;
1703 pgoff_t indices[PAGEVEC_SIZE];
1704 bool done = false;
1705 int i;
1706
1707 pagevec_init(&pvec, 0);
1708 pvec.nr = 1; /* start small: we may be there already */
1709 while (!done) {
1710 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1711 pvec.nr, pvec.pages, indices);
1712 if (!pvec.nr) {
1713 if (origin == SEEK_DATA)
1714 index = end;
1715 break;
1716 }
1717 for (i = 0; i < pvec.nr; i++, index++) {
1718 if (index < indices[i]) {
1719 if (origin == SEEK_HOLE) {
1720 done = true;
1721 break;
1722 }
1723 index = indices[i];
1724 }
1725 page = pvec.pages[i];
1726 if (page && !radix_tree_exceptional_entry(page)) {
1727 if (!PageUptodate(page))
1728 page = NULL;
1729 }
1730 if (index >= end ||
1731 (page && origin == SEEK_DATA) ||
1732 (!page && origin == SEEK_HOLE)) {
1733 done = true;
1734 break;
1735 }
1736 }
1737 shmem_deswap_pagevec(&pvec);
1738 pagevec_release(&pvec);
1739 pvec.nr = PAGEVEC_SIZE;
1740 cond_resched();
1741 }
1742 return index;
1743 }
1744
1745 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1746 {
1747 struct address_space *mapping;
1748 struct inode *inode;
1749 pgoff_t start, end;
1750 loff_t new_offset;
1751
1752 if (origin != SEEK_DATA && origin != SEEK_HOLE)
1753 return generic_file_llseek_size(file, offset, origin,
1754 MAX_LFS_FILESIZE);
1755 mapping = file->f_mapping;
1756 inode = mapping->host;
1757 mutex_lock(&inode->i_mutex);
1758 /* We're holding i_mutex so we can access i_size directly */
1759
1760 if (offset < 0)
1761 offset = -EINVAL;
1762 else if (offset >= inode->i_size)
1763 offset = -ENXIO;
1764 else {
1765 start = offset >> PAGE_CACHE_SHIFT;
1766 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1767 new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1768 new_offset <<= PAGE_CACHE_SHIFT;
1769 if (new_offset > offset) {
1770 if (new_offset < inode->i_size)
1771 offset = new_offset;
1772 else if (origin == SEEK_DATA)
1773 offset = -ENXIO;
1774 else
1775 offset = inode->i_size;
1776 }
1777 }
1778
1779 if (offset >= 0 && offset != file->f_pos) {
1780 file->f_pos = offset;
1781 file->f_version = 0;
1782 }
1783 mutex_unlock(&inode->i_mutex);
1784 return offset;
1785 }
1786
1787 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1788 loff_t len)
1789 {
1790 struct inode *inode = file->f_path.dentry->d_inode;
1791 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1792 struct shmem_falloc shmem_falloc;
1793 pgoff_t start, index, end;
1794 int error;
1795
1796 mutex_lock(&inode->i_mutex);
1797
1798 if (mode & FALLOC_FL_PUNCH_HOLE) {
1799 struct address_space *mapping = file->f_mapping;
1800 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1801 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1802
1803 if ((u64)unmap_end > (u64)unmap_start)
1804 unmap_mapping_range(mapping, unmap_start,
1805 1 + unmap_end - unmap_start, 0);
1806 shmem_truncate_range(inode, offset, offset + len - 1);
1807 /* No need to unmap again: hole-punching leaves COWed pages */
1808 error = 0;
1809 goto out;
1810 }
1811
1812 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1813 error = inode_newsize_ok(inode, offset + len);
1814 if (error)
1815 goto out;
1816
1817 start = offset >> PAGE_CACHE_SHIFT;
1818 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1819 /* Try to avoid a swapstorm if len is impossible to satisfy */
1820 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1821 error = -ENOSPC;
1822 goto out;
1823 }
1824
1825 shmem_falloc.start = start;
1826 shmem_falloc.next = start;
1827 shmem_falloc.nr_falloced = 0;
1828 shmem_falloc.nr_unswapped = 0;
1829 spin_lock(&inode->i_lock);
1830 inode->i_private = &shmem_falloc;
1831 spin_unlock(&inode->i_lock);
1832
1833 for (index = start; index < end; index++) {
1834 struct page *page;
1835
1836 /*
1837 * Good, the fallocate(2) manpage permits EINTR: we may have
1838 * been interrupted because we are using up too much memory.
1839 */
1840 if (signal_pending(current))
1841 error = -EINTR;
1842 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1843 error = -ENOMEM;
1844 else
1845 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1846 NULL);
1847 if (error) {
1848 /* Remove the !PageUptodate pages we added */
1849 shmem_undo_range(inode,
1850 (loff_t)start << PAGE_CACHE_SHIFT,
1851 (loff_t)index << PAGE_CACHE_SHIFT, true);
1852 goto undone;
1853 }
1854
1855 /*
1856 * Inform shmem_writepage() how far we have reached.
1857 * No need for lock or barrier: we have the page lock.
1858 */
1859 shmem_falloc.next++;
1860 if (!PageUptodate(page))
1861 shmem_falloc.nr_falloced++;
1862
1863 /*
1864 * If !PageUptodate, leave it that way so that freeable pages
1865 * can be recognized if we need to rollback on error later.
1866 * But set_page_dirty so that memory pressure will swap rather
1867 * than free the pages we are allocating (and SGP_CACHE pages
1868 * might still be clean: we now need to mark those dirty too).
1869 */
1870 set_page_dirty(page);
1871 unlock_page(page);
1872 page_cache_release(page);
1873 cond_resched();
1874 }
1875
1876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1877 i_size_write(inode, offset + len);
1878 inode->i_ctime = CURRENT_TIME;
1879 undone:
1880 spin_lock(&inode->i_lock);
1881 inode->i_private = NULL;
1882 spin_unlock(&inode->i_lock);
1883 out:
1884 mutex_unlock(&inode->i_mutex);
1885 return error;
1886 }
1887
1888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1889 {
1890 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1891
1892 buf->f_type = TMPFS_MAGIC;
1893 buf->f_bsize = PAGE_CACHE_SIZE;
1894 buf->f_namelen = NAME_MAX;
1895 if (sbinfo->max_blocks) {
1896 buf->f_blocks = sbinfo->max_blocks;
1897 buf->f_bavail =
1898 buf->f_bfree = sbinfo->max_blocks -
1899 percpu_counter_sum(&sbinfo->used_blocks);
1900 }
1901 if (sbinfo->max_inodes) {
1902 buf->f_files = sbinfo->max_inodes;
1903 buf->f_ffree = sbinfo->free_inodes;
1904 }
1905 /* else leave those fields 0 like simple_statfs */
1906 return 0;
1907 }
1908
1909 /*
1910 * File creation. Allocate an inode, and we're done..
1911 */
1912 static int
1913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1914 {
1915 struct inode *inode;
1916 int error = -ENOSPC;
1917
1918 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1919 if (inode) {
1920 error = security_inode_init_security(inode, dir,
1921 &dentry->d_name,
1922 shmem_initxattrs, NULL);
1923 if (error) {
1924 if (error != -EOPNOTSUPP) {
1925 iput(inode);
1926 return error;
1927 }
1928 }
1929 #ifdef CONFIG_TMPFS_POSIX_ACL
1930 error = generic_acl_init(inode, dir);
1931 if (error) {
1932 iput(inode);
1933 return error;
1934 }
1935 #else
1936 error = 0;
1937 #endif
1938 dir->i_size += BOGO_DIRENT_SIZE;
1939 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1940 d_instantiate(dentry, inode);
1941 dget(dentry); /* Extra count - pin the dentry in core */
1942 }
1943 return error;
1944 }
1945
1946 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1947 {
1948 int error;
1949
1950 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1951 return error;
1952 inc_nlink(dir);
1953 return 0;
1954 }
1955
1956 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1957 struct nameidata *nd)
1958 {
1959 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1960 }
1961
1962 /*
1963 * Link a file..
1964 */
1965 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1966 {
1967 struct inode *inode = old_dentry->d_inode;
1968 int ret;
1969
1970 /*
1971 * No ordinary (disk based) filesystem counts links as inodes;
1972 * but each new link needs a new dentry, pinning lowmem, and
1973 * tmpfs dentries cannot be pruned until they are unlinked.
1974 */
1975 ret = shmem_reserve_inode(inode->i_sb);
1976 if (ret)
1977 goto out;
1978
1979 dir->i_size += BOGO_DIRENT_SIZE;
1980 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1981 inc_nlink(inode);
1982 ihold(inode); /* New dentry reference */
1983 dget(dentry); /* Extra pinning count for the created dentry */
1984 d_instantiate(dentry, inode);
1985 out:
1986 return ret;
1987 }
1988
1989 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1990 {
1991 struct inode *inode = dentry->d_inode;
1992
1993 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1994 shmem_free_inode(inode->i_sb);
1995
1996 dir->i_size -= BOGO_DIRENT_SIZE;
1997 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1998 drop_nlink(inode);
1999 dput(dentry); /* Undo the count from "create" - this does all the work */
2000 return 0;
2001 }
2002
2003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2004 {
2005 if (!simple_empty(dentry))
2006 return -ENOTEMPTY;
2007
2008 drop_nlink(dentry->d_inode);
2009 drop_nlink(dir);
2010 return shmem_unlink(dir, dentry);
2011 }
2012
2013 /*
2014 * The VFS layer already does all the dentry stuff for rename,
2015 * we just have to decrement the usage count for the target if
2016 * it exists so that the VFS layer correctly free's it when it
2017 * gets overwritten.
2018 */
2019 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2020 {
2021 struct inode *inode = old_dentry->d_inode;
2022 int they_are_dirs = S_ISDIR(inode->i_mode);
2023
2024 if (!simple_empty(new_dentry))
2025 return -ENOTEMPTY;
2026
2027 if (new_dentry->d_inode) {
2028 (void) shmem_unlink(new_dir, new_dentry);
2029 if (they_are_dirs)
2030 drop_nlink(old_dir);
2031 } else if (they_are_dirs) {
2032 drop_nlink(old_dir);
2033 inc_nlink(new_dir);
2034 }
2035
2036 old_dir->i_size -= BOGO_DIRENT_SIZE;
2037 new_dir->i_size += BOGO_DIRENT_SIZE;
2038 old_dir->i_ctime = old_dir->i_mtime =
2039 new_dir->i_ctime = new_dir->i_mtime =
2040 inode->i_ctime = CURRENT_TIME;
2041 return 0;
2042 }
2043
2044 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2045 {
2046 int error;
2047 int len;
2048 struct inode *inode;
2049 struct page *page;
2050 char *kaddr;
2051 struct shmem_inode_info *info;
2052
2053 len = strlen(symname) + 1;
2054 if (len > PAGE_CACHE_SIZE)
2055 return -ENAMETOOLONG;
2056
2057 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2058 if (!inode)
2059 return -ENOSPC;
2060
2061 error = security_inode_init_security(inode, dir, &dentry->d_name,
2062 shmem_initxattrs, NULL);
2063 if (error) {
2064 if (error != -EOPNOTSUPP) {
2065 iput(inode);
2066 return error;
2067 }
2068 error = 0;
2069 }
2070
2071 info = SHMEM_I(inode);
2072 inode->i_size = len-1;
2073 if (len <= SHORT_SYMLINK_LEN) {
2074 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2075 if (!info->symlink) {
2076 iput(inode);
2077 return -ENOMEM;
2078 }
2079 inode->i_op = &shmem_short_symlink_operations;
2080 } else {
2081 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2082 if (error) {
2083 iput(inode);
2084 return error;
2085 }
2086 inode->i_mapping->a_ops = &shmem_aops;
2087 inode->i_op = &shmem_symlink_inode_operations;
2088 kaddr = kmap_atomic(page);
2089 memcpy(kaddr, symname, len);
2090 kunmap_atomic(kaddr);
2091 SetPageUptodate(page);
2092 set_page_dirty(page);
2093 unlock_page(page);
2094 page_cache_release(page);
2095 }
2096 dir->i_size += BOGO_DIRENT_SIZE;
2097 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2098 d_instantiate(dentry, inode);
2099 dget(dentry);
2100 return 0;
2101 }
2102
2103 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2104 {
2105 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2106 return NULL;
2107 }
2108
2109 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2110 {
2111 struct page *page = NULL;
2112 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2113 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2114 if (page)
2115 unlock_page(page);
2116 return page;
2117 }
2118
2119 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2120 {
2121 if (!IS_ERR(nd_get_link(nd))) {
2122 struct page *page = cookie;
2123 kunmap(page);
2124 mark_page_accessed(page);
2125 page_cache_release(page);
2126 }
2127 }
2128
2129 #ifdef CONFIG_TMPFS_XATTR
2130 /*
2131 * Superblocks without xattr inode operations may get some security.* xattr
2132 * support from the LSM "for free". As soon as we have any other xattrs
2133 * like ACLs, we also need to implement the security.* handlers at
2134 * filesystem level, though.
2135 */
2136
2137 /*
2138 * Allocate new xattr and copy in the value; but leave the name to callers.
2139 */
2140 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2141 {
2142 struct shmem_xattr *new_xattr;
2143 size_t len;
2144
2145 /* wrap around? */
2146 len = sizeof(*new_xattr) + size;
2147 if (len <= sizeof(*new_xattr))
2148 return NULL;
2149
2150 new_xattr = kmalloc(len, GFP_KERNEL);
2151 if (!new_xattr)
2152 return NULL;
2153
2154 new_xattr->size = size;
2155 memcpy(new_xattr->value, value, size);
2156 return new_xattr;
2157 }
2158
2159 /*
2160 * Callback for security_inode_init_security() for acquiring xattrs.
2161 */
2162 static int shmem_initxattrs(struct inode *inode,
2163 const struct xattr *xattr_array,
2164 void *fs_info)
2165 {
2166 struct shmem_inode_info *info = SHMEM_I(inode);
2167 const struct xattr *xattr;
2168 struct shmem_xattr *new_xattr;
2169 size_t len;
2170
2171 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2172 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2173 if (!new_xattr)
2174 return -ENOMEM;
2175
2176 len = strlen(xattr->name) + 1;
2177 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2178 GFP_KERNEL);
2179 if (!new_xattr->name) {
2180 kfree(new_xattr);
2181 return -ENOMEM;
2182 }
2183
2184 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2185 XATTR_SECURITY_PREFIX_LEN);
2186 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2187 xattr->name, len);
2188
2189 spin_lock(&info->lock);
2190 list_add(&new_xattr->list, &info->xattr_list);
2191 spin_unlock(&info->lock);
2192 }
2193
2194 return 0;
2195 }
2196
2197 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2198 void *buffer, size_t size)
2199 {
2200 struct shmem_inode_info *info;
2201 struct shmem_xattr *xattr;
2202 int ret = -ENODATA;
2203
2204 info = SHMEM_I(dentry->d_inode);
2205
2206 spin_lock(&info->lock);
2207 list_for_each_entry(xattr, &info->xattr_list, list) {
2208 if (strcmp(name, xattr->name))
2209 continue;
2210
2211 ret = xattr->size;
2212 if (buffer) {
2213 if (size < xattr->size)
2214 ret = -ERANGE;
2215 else
2216 memcpy(buffer, xattr->value, xattr->size);
2217 }
2218 break;
2219 }
2220 spin_unlock(&info->lock);
2221 return ret;
2222 }
2223
2224 static int shmem_xattr_set(struct inode *inode, const char *name,
2225 const void *value, size_t size, int flags)
2226 {
2227 struct shmem_inode_info *info = SHMEM_I(inode);
2228 struct shmem_xattr *xattr;
2229 struct shmem_xattr *new_xattr = NULL;
2230 int err = 0;
2231
2232 /* value == NULL means remove */
2233 if (value) {
2234 new_xattr = shmem_xattr_alloc(value, size);
2235 if (!new_xattr)
2236 return -ENOMEM;
2237
2238 new_xattr->name = kstrdup(name, GFP_KERNEL);
2239 if (!new_xattr->name) {
2240 kfree(new_xattr);
2241 return -ENOMEM;
2242 }
2243 }
2244
2245 spin_lock(&info->lock);
2246 list_for_each_entry(xattr, &info->xattr_list, list) {
2247 if (!strcmp(name, xattr->name)) {
2248 if (flags & XATTR_CREATE) {
2249 xattr = new_xattr;
2250 err = -EEXIST;
2251 } else if (new_xattr) {
2252 list_replace(&xattr->list, &new_xattr->list);
2253 } else {
2254 list_del(&xattr->list);
2255 }
2256 goto out;
2257 }
2258 }
2259 if (flags & XATTR_REPLACE) {
2260 xattr = new_xattr;
2261 err = -ENODATA;
2262 } else {
2263 list_add(&new_xattr->list, &info->xattr_list);
2264 xattr = NULL;
2265 }
2266 out:
2267 spin_unlock(&info->lock);
2268 if (xattr)
2269 kfree(xattr->name);
2270 kfree(xattr);
2271 return err;
2272 }
2273
2274 static const struct xattr_handler *shmem_xattr_handlers[] = {
2275 #ifdef CONFIG_TMPFS_POSIX_ACL
2276 &generic_acl_access_handler,
2277 &generic_acl_default_handler,
2278 #endif
2279 NULL
2280 };
2281
2282 static int shmem_xattr_validate(const char *name)
2283 {
2284 struct { const char *prefix; size_t len; } arr[] = {
2285 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2286 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2287 };
2288 int i;
2289
2290 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2291 size_t preflen = arr[i].len;
2292 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2293 if (!name[preflen])
2294 return -EINVAL;
2295 return 0;
2296 }
2297 }
2298 return -EOPNOTSUPP;
2299 }
2300
2301 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2302 void *buffer, size_t size)
2303 {
2304 int err;
2305
2306 /*
2307 * If this is a request for a synthetic attribute in the system.*
2308 * namespace use the generic infrastructure to resolve a handler
2309 * for it via sb->s_xattr.
2310 */
2311 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2312 return generic_getxattr(dentry, name, buffer, size);
2313
2314 err = shmem_xattr_validate(name);
2315 if (err)
2316 return err;
2317
2318 return shmem_xattr_get(dentry, name, buffer, size);
2319 }
2320
2321 static int shmem_setxattr(struct dentry *dentry, const char *name,
2322 const void *value, size_t size, int flags)
2323 {
2324 int err;
2325
2326 /*
2327 * If this is a request for a synthetic attribute in the system.*
2328 * namespace use the generic infrastructure to resolve a handler
2329 * for it via sb->s_xattr.
2330 */
2331 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2332 return generic_setxattr(dentry, name, value, size, flags);
2333
2334 err = shmem_xattr_validate(name);
2335 if (err)
2336 return err;
2337
2338 if (size == 0)
2339 value = ""; /* empty EA, do not remove */
2340
2341 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2342
2343 }
2344
2345 static int shmem_removexattr(struct dentry *dentry, const char *name)
2346 {
2347 int err;
2348
2349 /*
2350 * If this is a request for a synthetic attribute in the system.*
2351 * namespace use the generic infrastructure to resolve a handler
2352 * for it via sb->s_xattr.
2353 */
2354 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2355 return generic_removexattr(dentry, name);
2356
2357 err = shmem_xattr_validate(name);
2358 if (err)
2359 return err;
2360
2361 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2362 }
2363
2364 static bool xattr_is_trusted(const char *name)
2365 {
2366 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2367 }
2368
2369 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2370 {
2371 bool trusted = capable(CAP_SYS_ADMIN);
2372 struct shmem_xattr *xattr;
2373 struct shmem_inode_info *info;
2374 size_t used = 0;
2375
2376 info = SHMEM_I(dentry->d_inode);
2377
2378 spin_lock(&info->lock);
2379 list_for_each_entry(xattr, &info->xattr_list, list) {
2380 size_t len;
2381
2382 /* skip "trusted." attributes for unprivileged callers */
2383 if (!trusted && xattr_is_trusted(xattr->name))
2384 continue;
2385
2386 len = strlen(xattr->name) + 1;
2387 used += len;
2388 if (buffer) {
2389 if (size < used) {
2390 used = -ERANGE;
2391 break;
2392 }
2393 memcpy(buffer, xattr->name, len);
2394 buffer += len;
2395 }
2396 }
2397 spin_unlock(&info->lock);
2398
2399 return used;
2400 }
2401 #endif /* CONFIG_TMPFS_XATTR */
2402
2403 static const struct inode_operations shmem_short_symlink_operations = {
2404 .readlink = generic_readlink,
2405 .follow_link = shmem_follow_short_symlink,
2406 #ifdef CONFIG_TMPFS_XATTR
2407 .setxattr = shmem_setxattr,
2408 .getxattr = shmem_getxattr,
2409 .listxattr = shmem_listxattr,
2410 .removexattr = shmem_removexattr,
2411 #endif
2412 };
2413
2414 static const struct inode_operations shmem_symlink_inode_operations = {
2415 .readlink = generic_readlink,
2416 .follow_link = shmem_follow_link,
2417 .put_link = shmem_put_link,
2418 #ifdef CONFIG_TMPFS_XATTR
2419 .setxattr = shmem_setxattr,
2420 .getxattr = shmem_getxattr,
2421 .listxattr = shmem_listxattr,
2422 .removexattr = shmem_removexattr,
2423 #endif
2424 };
2425
2426 static struct dentry *shmem_get_parent(struct dentry *child)
2427 {
2428 return ERR_PTR(-ESTALE);
2429 }
2430
2431 static int shmem_match(struct inode *ino, void *vfh)
2432 {
2433 __u32 *fh = vfh;
2434 __u64 inum = fh[2];
2435 inum = (inum << 32) | fh[1];
2436 return ino->i_ino == inum && fh[0] == ino->i_generation;
2437 }
2438
2439 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2440 struct fid *fid, int fh_len, int fh_type)
2441 {
2442 struct inode *inode;
2443 struct dentry *dentry = NULL;
2444 u64 inum = fid->raw[2];
2445 inum = (inum << 32) | fid->raw[1];
2446
2447 if (fh_len < 3)
2448 return NULL;
2449
2450 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2451 shmem_match, fid->raw);
2452 if (inode) {
2453 dentry = d_find_alias(inode);
2454 iput(inode);
2455 }
2456
2457 return dentry;
2458 }
2459
2460 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2461 struct inode *parent)
2462 {
2463 if (*len < 3) {
2464 *len = 3;
2465 return 255;
2466 }
2467
2468 if (inode_unhashed(inode)) {
2469 /* Unfortunately insert_inode_hash is not idempotent,
2470 * so as we hash inodes here rather than at creation
2471 * time, we need a lock to ensure we only try
2472 * to do it once
2473 */
2474 static DEFINE_SPINLOCK(lock);
2475 spin_lock(&lock);
2476 if (inode_unhashed(inode))
2477 __insert_inode_hash(inode,
2478 inode->i_ino + inode->i_generation);
2479 spin_unlock(&lock);
2480 }
2481
2482 fh[0] = inode->i_generation;
2483 fh[1] = inode->i_ino;
2484 fh[2] = ((__u64)inode->i_ino) >> 32;
2485
2486 *len = 3;
2487 return 1;
2488 }
2489
2490 static const struct export_operations shmem_export_ops = {
2491 .get_parent = shmem_get_parent,
2492 .encode_fh = shmem_encode_fh,
2493 .fh_to_dentry = shmem_fh_to_dentry,
2494 };
2495
2496 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2497 bool remount)
2498 {
2499 char *this_char, *value, *rest;
2500 uid_t uid;
2501 gid_t gid;
2502
2503 while (options != NULL) {
2504 this_char = options;
2505 for (;;) {
2506 /*
2507 * NUL-terminate this option: unfortunately,
2508 * mount options form a comma-separated list,
2509 * but mpol's nodelist may also contain commas.
2510 */
2511 options = strchr(options, ',');
2512 if (options == NULL)
2513 break;
2514 options++;
2515 if (!isdigit(*options)) {
2516 options[-1] = '\0';
2517 break;
2518 }
2519 }
2520 if (!*this_char)
2521 continue;
2522 if ((value = strchr(this_char,'=')) != NULL) {
2523 *value++ = 0;
2524 } else {
2525 printk(KERN_ERR
2526 "tmpfs: No value for mount option '%s'\n",
2527 this_char);
2528 return 1;
2529 }
2530
2531 if (!strcmp(this_char,"size")) {
2532 unsigned long long size;
2533 size = memparse(value,&rest);
2534 if (*rest == '%') {
2535 size <<= PAGE_SHIFT;
2536 size *= totalram_pages;
2537 do_div(size, 100);
2538 rest++;
2539 }
2540 if (*rest)
2541 goto bad_val;
2542 sbinfo->max_blocks =
2543 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2544 } else if (!strcmp(this_char,"nr_blocks")) {
2545 sbinfo->max_blocks = memparse(value, &rest);
2546 if (*rest)
2547 goto bad_val;
2548 } else if (!strcmp(this_char,"nr_inodes")) {
2549 sbinfo->max_inodes = memparse(value, &rest);
2550 if (*rest)
2551 goto bad_val;
2552 } else if (!strcmp(this_char,"mode")) {
2553 if (remount)
2554 continue;
2555 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2556 if (*rest)
2557 goto bad_val;
2558 } else if (!strcmp(this_char,"uid")) {
2559 if (remount)
2560 continue;
2561 uid = simple_strtoul(value, &rest, 0);
2562 if (*rest)
2563 goto bad_val;
2564 sbinfo->uid = make_kuid(current_user_ns(), uid);
2565 if (!uid_valid(sbinfo->uid))
2566 goto bad_val;
2567 } else if (!strcmp(this_char,"gid")) {
2568 if (remount)
2569 continue;
2570 gid = simple_strtoul(value, &rest, 0);
2571 if (*rest)
2572 goto bad_val;
2573 sbinfo->gid = make_kgid(current_user_ns(), gid);
2574 if (!gid_valid(sbinfo->gid))
2575 goto bad_val;
2576 } else if (!strcmp(this_char,"mpol")) {
2577 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2578 goto bad_val;
2579 } else {
2580 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2581 this_char);
2582 return 1;
2583 }
2584 }
2585 return 0;
2586
2587 bad_val:
2588 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2589 value, this_char);
2590 return 1;
2591
2592 }
2593
2594 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2595 {
2596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597 struct shmem_sb_info config = *sbinfo;
2598 unsigned long inodes;
2599 int error = -EINVAL;
2600
2601 if (shmem_parse_options(data, &config, true))
2602 return error;
2603
2604 spin_lock(&sbinfo->stat_lock);
2605 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2606 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2607 goto out;
2608 if (config.max_inodes < inodes)
2609 goto out;
2610 /*
2611 * Those tests disallow limited->unlimited while any are in use;
2612 * but we must separately disallow unlimited->limited, because
2613 * in that case we have no record of how much is already in use.
2614 */
2615 if (config.max_blocks && !sbinfo->max_blocks)
2616 goto out;
2617 if (config.max_inodes && !sbinfo->max_inodes)
2618 goto out;
2619
2620 error = 0;
2621 sbinfo->max_blocks = config.max_blocks;
2622 sbinfo->max_inodes = config.max_inodes;
2623 sbinfo->free_inodes = config.max_inodes - inodes;
2624
2625 mpol_put(sbinfo->mpol);
2626 sbinfo->mpol = config.mpol; /* transfers initial ref */
2627 out:
2628 spin_unlock(&sbinfo->stat_lock);
2629 return error;
2630 }
2631
2632 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2633 {
2634 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2635
2636 if (sbinfo->max_blocks != shmem_default_max_blocks())
2637 seq_printf(seq, ",size=%luk",
2638 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2639 if (sbinfo->max_inodes != shmem_default_max_inodes())
2640 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2641 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2642 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2643 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2644 seq_printf(seq, ",uid=%u",
2645 from_kuid_munged(&init_user_ns, sbinfo->uid));
2646 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2647 seq_printf(seq, ",gid=%u",
2648 from_kgid_munged(&init_user_ns, sbinfo->gid));
2649 shmem_show_mpol(seq, sbinfo->mpol);
2650 return 0;
2651 }
2652 #endif /* CONFIG_TMPFS */
2653
2654 static void shmem_put_super(struct super_block *sb)
2655 {
2656 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2657
2658 percpu_counter_destroy(&sbinfo->used_blocks);
2659 kfree(sbinfo);
2660 sb->s_fs_info = NULL;
2661 }
2662
2663 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2664 {
2665 struct inode *inode;
2666 struct shmem_sb_info *sbinfo;
2667 int err = -ENOMEM;
2668
2669 /* Round up to L1_CACHE_BYTES to resist false sharing */
2670 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2671 L1_CACHE_BYTES), GFP_KERNEL);
2672 if (!sbinfo)
2673 return -ENOMEM;
2674
2675 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2676 sbinfo->uid = current_fsuid();
2677 sbinfo->gid = current_fsgid();
2678 sb->s_fs_info = sbinfo;
2679
2680 #ifdef CONFIG_TMPFS
2681 /*
2682 * Per default we only allow half of the physical ram per
2683 * tmpfs instance, limiting inodes to one per page of lowmem;
2684 * but the internal instance is left unlimited.
2685 */
2686 if (!(sb->s_flags & MS_NOUSER)) {
2687 sbinfo->max_blocks = shmem_default_max_blocks();
2688 sbinfo->max_inodes = shmem_default_max_inodes();
2689 if (shmem_parse_options(data, sbinfo, false)) {
2690 err = -EINVAL;
2691 goto failed;
2692 }
2693 }
2694 sb->s_export_op = &shmem_export_ops;
2695 sb->s_flags |= MS_NOSEC;
2696 #else
2697 sb->s_flags |= MS_NOUSER;
2698 #endif
2699
2700 spin_lock_init(&sbinfo->stat_lock);
2701 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2702 goto failed;
2703 sbinfo->free_inodes = sbinfo->max_inodes;
2704
2705 sb->s_maxbytes = MAX_LFS_FILESIZE;
2706 sb->s_blocksize = PAGE_CACHE_SIZE;
2707 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2708 sb->s_magic = TMPFS_MAGIC;
2709 sb->s_op = &shmem_ops;
2710 sb->s_time_gran = 1;
2711 #ifdef CONFIG_TMPFS_XATTR
2712 sb->s_xattr = shmem_xattr_handlers;
2713 #endif
2714 #ifdef CONFIG_TMPFS_POSIX_ACL
2715 sb->s_flags |= MS_POSIXACL;
2716 #endif
2717
2718 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2719 if (!inode)
2720 goto failed;
2721 inode->i_uid = sbinfo->uid;
2722 inode->i_gid = sbinfo->gid;
2723 sb->s_root = d_make_root(inode);
2724 if (!sb->s_root)
2725 goto failed;
2726 return 0;
2727
2728 failed:
2729 shmem_put_super(sb);
2730 return err;
2731 }
2732
2733 static struct kmem_cache *shmem_inode_cachep;
2734
2735 static struct inode *shmem_alloc_inode(struct super_block *sb)
2736 {
2737 struct shmem_inode_info *info;
2738 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2739 if (!info)
2740 return NULL;
2741 return &info->vfs_inode;
2742 }
2743
2744 static void shmem_destroy_callback(struct rcu_head *head)
2745 {
2746 struct inode *inode = container_of(head, struct inode, i_rcu);
2747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2748 }
2749
2750 static void shmem_destroy_inode(struct inode *inode)
2751 {
2752 if (S_ISREG(inode->i_mode))
2753 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2754 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2755 }
2756
2757 static void shmem_init_inode(void *foo)
2758 {
2759 struct shmem_inode_info *info = foo;
2760 inode_init_once(&info->vfs_inode);
2761 }
2762
2763 static int shmem_init_inodecache(void)
2764 {
2765 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2766 sizeof(struct shmem_inode_info),
2767 0, SLAB_PANIC, shmem_init_inode);
2768 return 0;
2769 }
2770
2771 static void shmem_destroy_inodecache(void)
2772 {
2773 kmem_cache_destroy(shmem_inode_cachep);
2774 }
2775
2776 static const struct address_space_operations shmem_aops = {
2777 .writepage = shmem_writepage,
2778 .set_page_dirty = __set_page_dirty_no_writeback,
2779 #ifdef CONFIG_TMPFS
2780 .write_begin = shmem_write_begin,
2781 .write_end = shmem_write_end,
2782 #endif
2783 .migratepage = migrate_page,
2784 .error_remove_page = generic_error_remove_page,
2785 };
2786
2787 static const struct file_operations shmem_file_operations = {
2788 .mmap = shmem_mmap,
2789 #ifdef CONFIG_TMPFS
2790 .llseek = shmem_file_llseek,
2791 .read = do_sync_read,
2792 .write = do_sync_write,
2793 .aio_read = shmem_file_aio_read,
2794 .aio_write = generic_file_aio_write,
2795 .fsync = noop_fsync,
2796 .splice_read = shmem_file_splice_read,
2797 .splice_write = generic_file_splice_write,
2798 .fallocate = shmem_fallocate,
2799 #endif
2800 };
2801
2802 static const struct inode_operations shmem_inode_operations = {
2803 .setattr = shmem_setattr,
2804 #ifdef CONFIG_TMPFS_XATTR
2805 .setxattr = shmem_setxattr,
2806 .getxattr = shmem_getxattr,
2807 .listxattr = shmem_listxattr,
2808 .removexattr = shmem_removexattr,
2809 #endif
2810 };
2811
2812 static const struct inode_operations shmem_dir_inode_operations = {
2813 #ifdef CONFIG_TMPFS
2814 .create = shmem_create,
2815 .lookup = simple_lookup,
2816 .link = shmem_link,
2817 .unlink = shmem_unlink,
2818 .symlink = shmem_symlink,
2819 .mkdir = shmem_mkdir,
2820 .rmdir = shmem_rmdir,
2821 .mknod = shmem_mknod,
2822 .rename = shmem_rename,
2823 #endif
2824 #ifdef CONFIG_TMPFS_XATTR
2825 .setxattr = shmem_setxattr,
2826 .getxattr = shmem_getxattr,
2827 .listxattr = shmem_listxattr,
2828 .removexattr = shmem_removexattr,
2829 #endif
2830 #ifdef CONFIG_TMPFS_POSIX_ACL
2831 .setattr = shmem_setattr,
2832 #endif
2833 };
2834
2835 static const struct inode_operations shmem_special_inode_operations = {
2836 #ifdef CONFIG_TMPFS_XATTR
2837 .setxattr = shmem_setxattr,
2838 .getxattr = shmem_getxattr,
2839 .listxattr = shmem_listxattr,
2840 .removexattr = shmem_removexattr,
2841 #endif
2842 #ifdef CONFIG_TMPFS_POSIX_ACL
2843 .setattr = shmem_setattr,
2844 #endif
2845 };
2846
2847 static const struct super_operations shmem_ops = {
2848 .alloc_inode = shmem_alloc_inode,
2849 .destroy_inode = shmem_destroy_inode,
2850 #ifdef CONFIG_TMPFS
2851 .statfs = shmem_statfs,
2852 .remount_fs = shmem_remount_fs,
2853 .show_options = shmem_show_options,
2854 #endif
2855 .evict_inode = shmem_evict_inode,
2856 .drop_inode = generic_delete_inode,
2857 .put_super = shmem_put_super,
2858 };
2859
2860 static const struct vm_operations_struct shmem_vm_ops = {
2861 .fault = shmem_fault,
2862 #ifdef CONFIG_NUMA
2863 .set_policy = shmem_set_policy,
2864 .get_policy = shmem_get_policy,
2865 #endif
2866 };
2867
2868 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2869 int flags, const char *dev_name, void *data)
2870 {
2871 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2872 }
2873
2874 static struct file_system_type shmem_fs_type = {
2875 .owner = THIS_MODULE,
2876 .name = "tmpfs",
2877 .mount = shmem_mount,
2878 .kill_sb = kill_litter_super,
2879 };
2880
2881 int __init shmem_init(void)
2882 {
2883 int error;
2884
2885 error = bdi_init(&shmem_backing_dev_info);
2886 if (error)
2887 goto out4;
2888
2889 error = shmem_init_inodecache();
2890 if (error)
2891 goto out3;
2892
2893 error = register_filesystem(&shmem_fs_type);
2894 if (error) {
2895 printk(KERN_ERR "Could not register tmpfs\n");
2896 goto out2;
2897 }
2898
2899 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2900 shmem_fs_type.name, NULL);
2901 if (IS_ERR(shm_mnt)) {
2902 error = PTR_ERR(shm_mnt);
2903 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2904 goto out1;
2905 }
2906 return 0;
2907
2908 out1:
2909 unregister_filesystem(&shmem_fs_type);
2910 out2:
2911 shmem_destroy_inodecache();
2912 out3:
2913 bdi_destroy(&shmem_backing_dev_info);
2914 out4:
2915 shm_mnt = ERR_PTR(error);
2916 return error;
2917 }
2918
2919 #else /* !CONFIG_SHMEM */
2920
2921 /*
2922 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2923 *
2924 * This is intended for small system where the benefits of the full
2925 * shmem code (swap-backed and resource-limited) are outweighed by
2926 * their complexity. On systems without swap this code should be
2927 * effectively equivalent, but much lighter weight.
2928 */
2929
2930 #include <linux/ramfs.h>
2931
2932 static struct file_system_type shmem_fs_type = {
2933 .name = "tmpfs",
2934 .mount = ramfs_mount,
2935 .kill_sb = kill_litter_super,
2936 };
2937
2938 int __init shmem_init(void)
2939 {
2940 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2941
2942 shm_mnt = kern_mount(&shmem_fs_type);
2943 BUG_ON(IS_ERR(shm_mnt));
2944
2945 return 0;
2946 }
2947
2948 int shmem_unuse(swp_entry_t swap, struct page *page)
2949 {
2950 return 0;
2951 }
2952
2953 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2954 {
2955 return 0;
2956 }
2957
2958 void shmem_unlock_mapping(struct address_space *mapping)
2959 {
2960 }
2961
2962 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2963 {
2964 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2965 }
2966 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2967
2968 #define shmem_vm_ops generic_file_vm_ops
2969 #define shmem_file_operations ramfs_file_operations
2970 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2971 #define shmem_acct_size(flags, size) 0
2972 #define shmem_unacct_size(flags, size) do {} while (0)
2973
2974 #endif /* CONFIG_SHMEM */
2975
2976 /* common code */
2977
2978 /**
2979 * shmem_file_setup - get an unlinked file living in tmpfs
2980 * @name: name for dentry (to be seen in /proc/<pid>/maps
2981 * @size: size to be set for the file
2982 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2983 */
2984 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2985 {
2986 int error;
2987 struct file *file;
2988 struct inode *inode;
2989 struct path path;
2990 struct dentry *root;
2991 struct qstr this;
2992
2993 if (IS_ERR(shm_mnt))
2994 return (void *)shm_mnt;
2995
2996 if (size < 0 || size > MAX_LFS_FILESIZE)
2997 return ERR_PTR(-EINVAL);
2998
2999 if (shmem_acct_size(flags, size))
3000 return ERR_PTR(-ENOMEM);
3001
3002 error = -ENOMEM;
3003 this.name = name;
3004 this.len = strlen(name);
3005 this.hash = 0; /* will go */
3006 root = shm_mnt->mnt_root;
3007 path.dentry = d_alloc(root, &this);
3008 if (!path.dentry)
3009 goto put_memory;
3010 path.mnt = mntget(shm_mnt);
3011
3012 error = -ENOSPC;
3013 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3014 if (!inode)
3015 goto put_dentry;
3016
3017 d_instantiate(path.dentry, inode);
3018 inode->i_size = size;
3019 clear_nlink(inode); /* It is unlinked */
3020 #ifndef CONFIG_MMU
3021 error = ramfs_nommu_expand_for_mapping(inode, size);
3022 if (error)
3023 goto put_dentry;
3024 #endif
3025
3026 error = -ENFILE;
3027 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3028 &shmem_file_operations);
3029 if (!file)
3030 goto put_dentry;
3031
3032 return file;
3033
3034 put_dentry:
3035 path_put(&path);
3036 put_memory:
3037 shmem_unacct_size(flags, size);
3038 return ERR_PTR(error);
3039 }
3040 EXPORT_SYMBOL_GPL(shmem_file_setup);
3041
3042 /**
3043 * shmem_zero_setup - setup a shared anonymous mapping
3044 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3045 */
3046 int shmem_zero_setup(struct vm_area_struct *vma)
3047 {
3048 struct file *file;
3049 loff_t size = vma->vm_end - vma->vm_start;
3050
3051 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3052 if (IS_ERR(file))
3053 return PTR_ERR(file);
3054
3055 if (vma->vm_file)
3056 fput(vma->vm_file);
3057 vma->vm_file = file;
3058 vma->vm_ops = &shmem_vm_ops;
3059 vma->vm_flags |= VM_CAN_NONLINEAR;
3060 return 0;
3061 }
3062
3063 /**
3064 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3065 * @mapping: the page's address_space
3066 * @index: the page index
3067 * @gfp: the page allocator flags to use if allocating
3068 *
3069 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3070 * with any new page allocations done using the specified allocation flags.
3071 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3072 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3073 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3074 *
3075 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3076 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3077 */
3078 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3079 pgoff_t index, gfp_t gfp)
3080 {
3081 #ifdef CONFIG_SHMEM
3082 struct inode *inode = mapping->host;
3083 struct page *page;
3084 int error;
3085
3086 BUG_ON(mapping->a_ops != &shmem_aops);
3087 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3088 if (error)
3089 page = ERR_PTR(error);
3090 else
3091 unlock_page(page);
3092 return page;
3093 #else
3094 /*
3095 * The tiny !SHMEM case uses ramfs without swap
3096 */
3097 return read_cache_page_gfp(mapping, index, gfp);
3098 #endif
3099 }
3100 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);