Merge 4.14.73 into android-4.14-p
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
130 {
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 return sb->s_fs_info;
138 }
139
140 /*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160 {
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169 }
170
171 /*
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264 }
265
266 /**
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
288 }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
295
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
298
299 spin_lock_irqsave(&info->lock, flags);
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
303 spin_unlock_irqrestore(&info->lock, flags);
304 inode->i_mapping->nrpages += pages;
305
306 return true;
307 }
308
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 struct shmem_inode_info *info = SHMEM_I(inode);
312 unsigned long flags;
313
314 spin_lock_irqsave(&info->lock, flags);
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
318 spin_unlock_irqrestore(&info->lock, flags);
319
320 shmem_inode_unacct_blocks(inode, pages);
321 }
322
323 /*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328 {
329 struct radix_tree_node *node;
330 void **pslot;
331 void *item;
332
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 if (!item)
337 return -ENOENT;
338 if (item != expected)
339 return -ENOENT;
340 __radix_tree_replace(&mapping->page_tree, node, pslot,
341 replacement, NULL, NULL);
342 return 0;
343 }
344
345 /*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354 {
355 void *item;
356
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->page_tree, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361 }
362
363 /*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
381
382 /*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
394
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397
398 int shmem_huge __read_mostly;
399
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416 }
417
418 static const char *shmem_format_huge(int huge)
419 {
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437 }
438 #endif
439
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 LIST_HEAD(list), *pos, *next;
444 LIST_HEAD(to_remove);
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 list_move(&info->shrinklist, &to_remove);
472 removed++;
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477 next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
498
499 page = find_get_page(inode->i_mapping,
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page)) {
506 put_page(page);
507 goto drop;
508 }
509
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
529
530 split++;
531 drop:
532 list_del_init(&info->shrinklist);
533 removed++;
534 leave:
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544 }
545
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548 {
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556
557 static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559 {
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564
565 #define shmem_huge SHMEM_HUGE_DENY
566
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573
574 /*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577 static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
579 pgoff_t index, void *expected)
580 {
581 int error, nr = hpage_nr_pages(page);
582
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
587 VM_BUG_ON(expected && PageTransHuge(page));
588
589 page_ref_add(page, nr);
590 page->mapping = mapping;
591 page->index = index;
592
593 spin_lock_irq(&mapping->tree_lock);
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
600 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
608 error = radix_tree_insert(&mapping->page_tree,
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
615 error = radix_tree_insert(&mapping->page_tree, index, page);
616 } else {
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
619 }
620
621 if (!error) {
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 spin_unlock_irq(&mapping->tree_lock);
628 } else {
629 page->mapping = NULL;
630 spin_unlock_irq(&mapping->tree_lock);
631 page_ref_sub(page, nr);
632 }
633 return error;
634 }
635
636 /*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 struct address_space *mapping = page->mapping;
642 int error;
643
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
646 spin_lock_irq(&mapping->tree_lock);
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
652 spin_unlock_irq(&mapping->tree_lock);
653 put_page(page);
654 BUG_ON(error);
655 }
656
657 /*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660 static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662 {
663 void *old;
664
665 spin_lock_irq(&mapping->tree_lock);
666 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
667 spin_unlock_irq(&mapping->tree_lock);
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
672 }
673
674 /*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
677 *
678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
683 {
684 struct radix_tree_iter iter;
685 void **slot;
686 struct page *page;
687 unsigned long swapped = 0;
688
689 rcu_read_lock();
690
691 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
706 slot = radix_tree_iter_resume(slot, &iter);
707 cond_resched_rcu();
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714 }
715
716 /*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
720 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748 }
749
750 /*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
759 pagevec_init(&pvec, 0);
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
773 pagevec_remove_exceptionals(&pvec);
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
778 }
779
780 /*
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783 */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
786 {
787 struct address_space *mapping = inode->i_mapping;
788 struct shmem_inode_info *info = SHMEM_I(inode);
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 struct pagevec pvec;
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
796 pgoff_t index;
797 int i;
798
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
801
802 pagevec_init(&pvec, 0);
803 index = start;
804 while (index < end) {
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
808 if (!pvec.nr)
809 break;
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
813 index = indices[i];
814 if (index >= end)
815 break;
816
817 if (radix_tree_exceptional_entry(page)) {
818 if (unfalloc)
819 continue;
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
822 continue;
823 }
824
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
827 if (!trylock_page(page))
828 continue;
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
849 if (!unfalloc || !PageUptodate(page)) {
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
852 VM_BUG_ON_PAGE(PageWriteback(page), page);
853 truncate_inode_page(mapping, page);
854 }
855 }
856 unlock_page(page);
857 }
858 pagevec_remove_exceptionals(&pvec);
859 pagevec_release(&pvec);
860 cond_resched();
861 index++;
862 }
863
864 if (partial_start) {
865 struct page *page = NULL;
866 shmem_getpage(inode, start - 1, &page, SGP_READ);
867 if (page) {
868 unsigned int top = PAGE_SIZE;
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
881 shmem_getpage(inode, end, &page, SGP_READ);
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
887 }
888 }
889 if (start >= end)
890 return;
891
892 index = start;
893 while (index < end) {
894 cond_resched();
895
896 pvec.nr = find_get_entries(mapping, index,
897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 pvec.pages, indices);
899 if (!pvec.nr) {
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
902 break;
903 /* But if truncating, restart to make sure all gone */
904 index = start;
905 continue;
906 }
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
910 index = indices[i];
911 if (index >= end)
912 break;
913
914 if (radix_tree_exceptional_entry(page)) {
915 if (unfalloc)
916 continue;
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
923 continue;
924 }
925
926 lock_page(page);
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
954 if (!unfalloc || !PageUptodate(page)) {
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
957 VM_BUG_ON_PAGE(PageWriteback(page), page);
958 truncate_inode_page(mapping, page);
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
964 }
965 }
966 unlock_page(page);
967 }
968 pagevec_remove_exceptionals(&pvec);
969 pagevec_release(&pvec);
970 index++;
971 }
972
973 spin_lock_irq(&info->lock);
974 info->swapped -= nr_swaps_freed;
975 shmem_recalc_inode(inode);
976 spin_unlock_irq(&info->lock);
977 }
978
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 shmem_undo_range(inode, lstart, lend, false);
982 inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
988 {
989 struct inode *inode = path->dentry->d_inode;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 spin_lock_irq(&info->lock);
994 shmem_recalc_inode(inode);
995 spin_unlock_irq(&info->lock);
996 }
997 generic_fillattr(inode, stat);
998 return 0;
999 }
1000
1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002 {
1003 struct inode *inode = d_inode(dentry);
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006 int error;
1007
1008 error = setattr_prepare(dentry, attr);
1009 if (error)
1010 return error;
1011
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
1015
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
1021 if (newsize != oldsize) {
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
1026 i_size_write(inode, newsize);
1027 inode->i_ctime = inode->i_mtime = current_time(inode);
1028 }
1029 if (newsize <= oldsize) {
1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
1037 /* unmap again to remove racily COWed private pages */
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
1059 }
1060 }
1061
1062 setattr_copy(inode, attr);
1063 if (attr->ia_valid & ATTR_MODE)
1064 error = posix_acl_chmod(inode, inode->i_mode);
1065 return error;
1066 }
1067
1068 static void shmem_evict_inode(struct inode *inode)
1069 {
1070 struct shmem_inode_info *info = SHMEM_I(inode);
1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072
1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
1076 shmem_truncate_range(inode, 0, (loff_t)-1);
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1085 if (!list_empty(&info->swaplist)) {
1086 mutex_lock(&shmem_swaplist_mutex);
1087 list_del_init(&info->swaplist);
1088 mutex_unlock(&shmem_swaplist_mutex);
1089 }
1090 }
1091
1092 simple_xattrs_free(&info->xattrs);
1093 WARN_ON(inode->i_blocks);
1094 shmem_free_inode(inode->i_sb);
1095 clear_inode(inode);
1096 }
1097
1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099 {
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120 }
1121
1122 /*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
1125 static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 swp_entry_t swap, struct page **pagep)
1127 {
1128 struct address_space *mapping = info->vfs_inode.i_mapping;
1129 void *radswap;
1130 pgoff_t index;
1131 gfp_t gfp;
1132 int error = 0;
1133
1134 radswap = swp_to_radix_entry(swap);
1135 index = find_swap_entry(&mapping->page_tree, radswap);
1136 if (index == -1)
1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
1138
1139 /*
1140 * Move _head_ to start search for next from here.
1141 * But be careful: shmem_evict_inode checks list_empty without taking
1142 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 * would appear empty, if it were the only one on shmem_swaplist.
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
1175 /*
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 */
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 radswap);
1183 if (error != -ENOMEM) {
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
1190 if (!error) {
1191 spin_lock_irq(&info->lock);
1192 info->swapped--;
1193 spin_unlock_irq(&info->lock);
1194 swap_free(swap);
1195 }
1196 }
1197 return error;
1198 }
1199
1200 /*
1201 * Search through swapped inodes to find and replace swap by page.
1202 */
1203 int shmem_unuse(swp_entry_t swap, struct page *page)
1204 {
1205 struct list_head *this, *next;
1206 struct shmem_inode_info *info;
1207 struct mem_cgroup *memcg;
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
1212 * caller locked it: caller will come back later with the right page.
1213 */
1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 goto out;
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
1221 */
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
1224 if (error)
1225 goto out;
1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 error = -EAGAIN;
1228
1229 mutex_lock(&shmem_swaplist_mutex);
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
1232 if (info->swapped)
1233 error = shmem_unuse_inode(info, swap, &page);
1234 else
1235 list_del_init(&info->swaplist);
1236 cond_resched();
1237 if (error != -EAGAIN)
1238 break;
1239 /* found nothing in this: move on to search the next */
1240 }
1241 mutex_unlock(&shmem_swaplist_mutex);
1242
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
1246 mem_cgroup_cancel_charge(page, memcg, false);
1247 } else
1248 mem_cgroup_commit_charge(page, memcg, true, false);
1249 out:
1250 unlock_page(page);
1251 put_page(page);
1252 return error;
1253 }
1254
1255 /*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259 {
1260 struct shmem_inode_info *info;
1261 struct address_space *mapping;
1262 struct inode *inode;
1263 swp_entry_t swap;
1264 pgoff_t index;
1265
1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1267 BUG_ON(!PageLocked(page));
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
1274 if (!total_swap_pages)
1275 goto redirty;
1276
1277 /*
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
1283 */
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 */
1300 if (!PageUptodate(page)) {
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
1306 !shmem_falloc->waitq &&
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
1321 swap = get_swap_page(page);
1322 if (!swap.val)
1323 goto redirty;
1324
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
1332 * the inode from eviction. But don't unlock the mutex until
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
1335 */
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 spin_lock_irq(&info->lock);
1342 shmem_recalc_inode(inode);
1343 info->swapped++;
1344 spin_unlock_irq(&info->lock);
1345
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349 mutex_unlock(&shmem_swaplist_mutex);
1350 BUG_ON(page_mapped(page));
1351 swap_writepage(page, wbc);
1352 return 0;
1353 }
1354
1355 mutex_unlock(&shmem_swaplist_mutex);
1356 free_swap:
1357 put_swap_page(page, swap);
1358 redirty:
1359 set_page_dirty(page);
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1364 }
1365
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 char buffer[64];
1370
1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 return; /* show nothing */
1373
1374 mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412 }
1413
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415 {
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418 }
1419
1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 struct vm_area_struct pvma;
1424 struct page *page;
1425
1426 shmem_pseudo_vma_init(&pvma, info, index);
1427 page = swapin_readahead(swap, gfp, &pvma, 0);
1428 shmem_pseudo_vma_destroy(&pvma);
1429
1430 return page;
1431 }
1432
1433 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 struct vm_area_struct pvma;
1437 struct inode *inode = &info->vfs_inode;
1438 struct address_space *mapping = inode->i_mapping;
1439 pgoff_t idx, hindex;
1440 void __rcu **results;
1441 struct page *page;
1442
1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1444 return NULL;
1445
1446 hindex = round_down(index, HPAGE_PMD_NR);
1447 rcu_read_lock();
1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 rcu_read_unlock();
1451 return NULL;
1452 }
1453 rcu_read_unlock();
1454
1455 shmem_pseudo_vma_init(&pvma, info, hindex);
1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 shmem_pseudo_vma_destroy(&pvma);
1459 if (page)
1460 prep_transhuge_page(page);
1461 return page;
1462 }
1463
1464 static struct page *shmem_alloc_page(gfp_t gfp,
1465 struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 struct vm_area_struct pvma;
1468 struct page *page;
1469
1470 shmem_pseudo_vma_init(&pvma, info, index);
1471 page = alloc_page_vma(gfp, &pvma, 0);
1472 shmem_pseudo_vma_destroy(&pvma);
1473
1474 return page;
1475 }
1476
1477 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1478 struct inode *inode,
1479 pgoff_t index, bool huge)
1480 {
1481 struct shmem_inode_info *info = SHMEM_I(inode);
1482 struct page *page;
1483 int nr;
1484 int err = -ENOSPC;
1485
1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1487 huge = false;
1488 nr = huge ? HPAGE_PMD_NR : 1;
1489
1490 if (!shmem_inode_acct_block(inode, nr))
1491 goto failed;
1492
1493 if (huge)
1494 page = shmem_alloc_hugepage(gfp, info, index);
1495 else
1496 page = shmem_alloc_page(gfp, info, index);
1497 if (page) {
1498 __SetPageLocked(page);
1499 __SetPageSwapBacked(page);
1500 return page;
1501 }
1502
1503 err = -ENOMEM;
1504 shmem_inode_unacct_blocks(inode, nr);
1505 failed:
1506 return ERR_PTR(err);
1507 }
1508
1509 /*
1510 * When a page is moved from swapcache to shmem filecache (either by the
1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513 * ignorance of the mapping it belongs to. If that mapping has special
1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515 * we may need to copy to a suitable page before moving to filecache.
1516 *
1517 * In a future release, this may well be extended to respect cpuset and
1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519 * but for now it is a simple matter of zone.
1520 */
1521 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522 {
1523 return page_zonenum(page) > gfp_zone(gfp);
1524 }
1525
1526 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 struct shmem_inode_info *info, pgoff_t index)
1528 {
1529 struct page *oldpage, *newpage;
1530 struct address_space *swap_mapping;
1531 pgoff_t swap_index;
1532 int error;
1533
1534 oldpage = *pagep;
1535 swap_index = page_private(oldpage);
1536 swap_mapping = page_mapping(oldpage);
1537
1538 /*
1539 * We have arrived here because our zones are constrained, so don't
1540 * limit chance of success by further cpuset and node constraints.
1541 */
1542 gfp &= ~GFP_CONSTRAINT_MASK;
1543 newpage = shmem_alloc_page(gfp, info, index);
1544 if (!newpage)
1545 return -ENOMEM;
1546
1547 get_page(newpage);
1548 copy_highpage(newpage, oldpage);
1549 flush_dcache_page(newpage);
1550
1551 __SetPageLocked(newpage);
1552 __SetPageSwapBacked(newpage);
1553 SetPageUptodate(newpage);
1554 set_page_private(newpage, swap_index);
1555 SetPageSwapCache(newpage);
1556
1557 /*
1558 * Our caller will very soon move newpage out of swapcache, but it's
1559 * a nice clean interface for us to replace oldpage by newpage there.
1560 */
1561 spin_lock_irq(&swap_mapping->tree_lock);
1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 newpage);
1564 if (!error) {
1565 __inc_node_page_state(newpage, NR_FILE_PAGES);
1566 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1567 }
1568 spin_unlock_irq(&swap_mapping->tree_lock);
1569
1570 if (unlikely(error)) {
1571 /*
1572 * Is this possible? I think not, now that our callers check
1573 * both PageSwapCache and page_private after getting page lock;
1574 * but be defensive. Reverse old to newpage for clear and free.
1575 */
1576 oldpage = newpage;
1577 } else {
1578 mem_cgroup_migrate(oldpage, newpage);
1579 lru_cache_add_anon(newpage);
1580 *pagep = newpage;
1581 }
1582
1583 ClearPageSwapCache(oldpage);
1584 set_page_private(oldpage, 0);
1585
1586 unlock_page(oldpage);
1587 put_page(oldpage);
1588 put_page(oldpage);
1589 return error;
1590 }
1591
1592 /*
1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1594 *
1595 * If we allocate a new one we do not mark it dirty. That's up to the
1596 * vm. If we swap it in we mark it dirty since we also free the swap
1597 * entry since a page cannot live in both the swap and page cache.
1598 *
1599 * fault_mm and fault_type are only supplied by shmem_fault:
1600 * otherwise they are NULL.
1601 */
1602 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1605 {
1606 struct address_space *mapping = inode->i_mapping;
1607 struct shmem_inode_info *info = SHMEM_I(inode);
1608 struct shmem_sb_info *sbinfo;
1609 struct mm_struct *charge_mm;
1610 struct mem_cgroup *memcg;
1611 struct page *page;
1612 swp_entry_t swap;
1613 enum sgp_type sgp_huge = sgp;
1614 pgoff_t hindex = index;
1615 int error;
1616 int once = 0;
1617 int alloced = 0;
1618
1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1620 return -EFBIG;
1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 sgp = SGP_CACHE;
1623 repeat:
1624 swap.val = 0;
1625 page = find_lock_entry(mapping, index);
1626 if (radix_tree_exceptional_entry(page)) {
1627 swap = radix_to_swp_entry(page);
1628 page = NULL;
1629 }
1630
1631 if (sgp <= SGP_CACHE &&
1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1633 error = -EINVAL;
1634 goto unlock;
1635 }
1636
1637 if (page && sgp == SGP_WRITE)
1638 mark_page_accessed(page);
1639
1640 /* fallocated page? */
1641 if (page && !PageUptodate(page)) {
1642 if (sgp != SGP_READ)
1643 goto clear;
1644 unlock_page(page);
1645 put_page(page);
1646 page = NULL;
1647 }
1648 if (page || (sgp == SGP_READ && !swap.val)) {
1649 *pagep = page;
1650 return 0;
1651 }
1652
1653 /*
1654 * Fast cache lookup did not find it:
1655 * bring it back from swap or allocate.
1656 */
1657 sbinfo = SHMEM_SB(inode->i_sb);
1658 charge_mm = vma ? vma->vm_mm : current->mm;
1659
1660 if (swap.val) {
1661 /* Look it up and read it in.. */
1662 page = lookup_swap_cache(swap, NULL, 0);
1663 if (!page) {
1664 /* Or update major stats only when swapin succeeds?? */
1665 if (fault_type) {
1666 *fault_type |= VM_FAULT_MAJOR;
1667 count_vm_event(PGMAJFAULT);
1668 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1669 }
1670 /* Here we actually start the io */
1671 page = shmem_swapin(swap, gfp, info, index);
1672 if (!page) {
1673 error = -ENOMEM;
1674 goto failed;
1675 }
1676 }
1677
1678 /* We have to do this with page locked to prevent races */
1679 lock_page(page);
1680 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1681 !shmem_confirm_swap(mapping, index, swap)) {
1682 error = -EEXIST; /* try again */
1683 goto unlock;
1684 }
1685 if (!PageUptodate(page)) {
1686 error = -EIO;
1687 goto failed;
1688 }
1689 wait_on_page_writeback(page);
1690
1691 if (shmem_should_replace_page(page, gfp)) {
1692 error = shmem_replace_page(&page, gfp, info, index);
1693 if (error)
1694 goto failed;
1695 }
1696
1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1698 false);
1699 if (!error) {
1700 error = shmem_add_to_page_cache(page, mapping, index,
1701 swp_to_radix_entry(swap));
1702 /*
1703 * We already confirmed swap under page lock, and make
1704 * no memory allocation here, so usually no possibility
1705 * of error; but free_swap_and_cache() only trylocks a
1706 * page, so it is just possible that the entry has been
1707 * truncated or holepunched since swap was confirmed.
1708 * shmem_undo_range() will have done some of the
1709 * unaccounting, now delete_from_swap_cache() will do
1710 * the rest.
1711 * Reset swap.val? No, leave it so "failed" goes back to
1712 * "repeat": reading a hole and writing should succeed.
1713 */
1714 if (error) {
1715 mem_cgroup_cancel_charge(page, memcg, false);
1716 delete_from_swap_cache(page);
1717 }
1718 }
1719 if (error)
1720 goto failed;
1721
1722 mem_cgroup_commit_charge(page, memcg, true, false);
1723
1724 spin_lock_irq(&info->lock);
1725 info->swapped--;
1726 shmem_recalc_inode(inode);
1727 spin_unlock_irq(&info->lock);
1728
1729 if (sgp == SGP_WRITE)
1730 mark_page_accessed(page);
1731
1732 delete_from_swap_cache(page);
1733 set_page_dirty(page);
1734 swap_free(swap);
1735
1736 } else {
1737 if (vma && userfaultfd_missing(vma)) {
1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 return 0;
1740 }
1741
1742 /* shmem_symlink() */
1743 if (mapping->a_ops != &shmem_aops)
1744 goto alloc_nohuge;
1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_FORCE)
1748 goto alloc_huge;
1749 switch (sbinfo->huge) {
1750 loff_t i_size;
1751 pgoff_t off;
1752 case SHMEM_HUGE_NEVER:
1753 goto alloc_nohuge;
1754 case SHMEM_HUGE_WITHIN_SIZE:
1755 off = round_up(index, HPAGE_PMD_NR);
1756 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 if (i_size >= HPAGE_PMD_SIZE &&
1758 i_size >> PAGE_SHIFT >= off)
1759 goto alloc_huge;
1760 /* fallthrough */
1761 case SHMEM_HUGE_ADVISE:
1762 if (sgp_huge == SGP_HUGE)
1763 goto alloc_huge;
1764 /* TODO: implement fadvise() hints */
1765 goto alloc_nohuge;
1766 }
1767
1768 alloc_huge:
1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1770 if (IS_ERR(page)) {
1771 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1772 index, false);
1773 }
1774 if (IS_ERR(page)) {
1775 int retry = 5;
1776 error = PTR_ERR(page);
1777 page = NULL;
1778 if (error != -ENOSPC)
1779 goto failed;
1780 /*
1781 * Try to reclaim some spece by splitting a huge page
1782 * beyond i_size on the filesystem.
1783 */
1784 while (retry--) {
1785 int ret;
1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 if (ret == SHRINK_STOP)
1788 break;
1789 if (ret)
1790 goto alloc_nohuge;
1791 }
1792 goto failed;
1793 }
1794
1795 if (PageTransHuge(page))
1796 hindex = round_down(index, HPAGE_PMD_NR);
1797 else
1798 hindex = index;
1799
1800 if (sgp == SGP_WRITE)
1801 __SetPageReferenced(page);
1802
1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1804 PageTransHuge(page));
1805 if (error)
1806 goto unacct;
1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 compound_order(page));
1809 if (!error) {
1810 error = shmem_add_to_page_cache(page, mapping, hindex,
1811 NULL);
1812 radix_tree_preload_end();
1813 }
1814 if (error) {
1815 mem_cgroup_cancel_charge(page, memcg,
1816 PageTransHuge(page));
1817 goto unacct;
1818 }
1819 mem_cgroup_commit_charge(page, memcg, false,
1820 PageTransHuge(page));
1821 lru_cache_add_anon(page);
1822
1823 spin_lock_irq(&info->lock);
1824 info->alloced += 1 << compound_order(page);
1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1826 shmem_recalc_inode(inode);
1827 spin_unlock_irq(&info->lock);
1828 alloced = true;
1829
1830 if (PageTransHuge(page) &&
1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 hindex + HPAGE_PMD_NR - 1) {
1833 /*
1834 * Part of the huge page is beyond i_size: subject
1835 * to shrink under memory pressure.
1836 */
1837 spin_lock(&sbinfo->shrinklist_lock);
1838 /*
1839 * _careful to defend against unlocked access to
1840 * ->shrink_list in shmem_unused_huge_shrink()
1841 */
1842 if (list_empty_careful(&info->shrinklist)) {
1843 list_add_tail(&info->shrinklist,
1844 &sbinfo->shrinklist);
1845 sbinfo->shrinklist_len++;
1846 }
1847 spin_unlock(&sbinfo->shrinklist_lock);
1848 }
1849
1850 /*
1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 */
1853 if (sgp == SGP_FALLOC)
1854 sgp = SGP_WRITE;
1855 clear:
1856 /*
1857 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 * it now, lest undo on failure cancel our earlier guarantee.
1860 */
1861 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 struct page *head = compound_head(page);
1863 int i;
1864
1865 for (i = 0; i < (1 << compound_order(head)); i++) {
1866 clear_highpage(head + i);
1867 flush_dcache_page(head + i);
1868 }
1869 SetPageUptodate(head);
1870 }
1871 }
1872
1873 /* Perhaps the file has been truncated since we checked */
1874 if (sgp <= SGP_CACHE &&
1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 if (alloced) {
1877 ClearPageDirty(page);
1878 delete_from_page_cache(page);
1879 spin_lock_irq(&info->lock);
1880 shmem_recalc_inode(inode);
1881 spin_unlock_irq(&info->lock);
1882 }
1883 error = -EINVAL;
1884 goto unlock;
1885 }
1886 *pagep = page + index - hindex;
1887 return 0;
1888
1889 /*
1890 * Error recovery.
1891 */
1892 unacct:
1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1894
1895 if (PageTransHuge(page)) {
1896 unlock_page(page);
1897 put_page(page);
1898 goto alloc_nohuge;
1899 }
1900 failed:
1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1902 error = -EEXIST;
1903 unlock:
1904 if (page) {
1905 unlock_page(page);
1906 put_page(page);
1907 }
1908 if (error == -ENOSPC && !once++) {
1909 spin_lock_irq(&info->lock);
1910 shmem_recalc_inode(inode);
1911 spin_unlock_irq(&info->lock);
1912 goto repeat;
1913 }
1914 if (error == -EEXIST) /* from above or from radix_tree_insert */
1915 goto repeat;
1916 return error;
1917 }
1918
1919 /*
1920 * This is like autoremove_wake_function, but it removes the wait queue
1921 * entry unconditionally - even if something else had already woken the
1922 * target.
1923 */
1924 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1925 {
1926 int ret = default_wake_function(wait, mode, sync, key);
1927 list_del_init(&wait->entry);
1928 return ret;
1929 }
1930
1931 static int shmem_fault(struct vm_fault *vmf)
1932 {
1933 struct vm_area_struct *vma = vmf->vma;
1934 struct inode *inode = file_inode(vma->vm_file);
1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1936 enum sgp_type sgp;
1937 int error;
1938 int ret = VM_FAULT_LOCKED;
1939
1940 /*
1941 * Trinity finds that probing a hole which tmpfs is punching can
1942 * prevent the hole-punch from ever completing: which in turn
1943 * locks writers out with its hold on i_mutex. So refrain from
1944 * faulting pages into the hole while it's being punched. Although
1945 * shmem_undo_range() does remove the additions, it may be unable to
1946 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 *
1949 * It does not matter if we sometimes reach this check just before the
1950 * hole-punch begins, so that one fault then races with the punch:
1951 * we just need to make racing faults a rare case.
1952 *
1953 * The implementation below would be much simpler if we just used a
1954 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 * and bloating every shmem inode for this unlikely case would be sad.
1956 */
1957 if (unlikely(inode->i_private)) {
1958 struct shmem_falloc *shmem_falloc;
1959
1960 spin_lock(&inode->i_lock);
1961 shmem_falloc = inode->i_private;
1962 if (shmem_falloc &&
1963 shmem_falloc->waitq &&
1964 vmf->pgoff >= shmem_falloc->start &&
1965 vmf->pgoff < shmem_falloc->next) {
1966 wait_queue_head_t *shmem_falloc_waitq;
1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1968
1969 ret = VM_FAULT_NOPAGE;
1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1972 /* It's polite to up mmap_sem if we can */
1973 up_read(&vma->vm_mm->mmap_sem);
1974 ret = VM_FAULT_RETRY;
1975 }
1976
1977 shmem_falloc_waitq = shmem_falloc->waitq;
1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 TASK_UNINTERRUPTIBLE);
1980 spin_unlock(&inode->i_lock);
1981 schedule();
1982
1983 /*
1984 * shmem_falloc_waitq points into the shmem_fallocate()
1985 * stack of the hole-punching task: shmem_falloc_waitq
1986 * is usually invalid by the time we reach here, but
1987 * finish_wait() does not dereference it in that case;
1988 * though i_lock needed lest racing with wake_up_all().
1989 */
1990 spin_lock(&inode->i_lock);
1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 spin_unlock(&inode->i_lock);
1993 return ret;
1994 }
1995 spin_unlock(&inode->i_lock);
1996 }
1997
1998 sgp = SGP_CACHE;
1999
2000 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2002 sgp = SGP_NOHUGE;
2003 else if (vma->vm_flags & VM_HUGEPAGE)
2004 sgp = SGP_HUGE;
2005
2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2007 gfp, vma, vmf, &ret);
2008 if (error)
2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2010 return ret;
2011 }
2012
2013 unsigned long shmem_get_unmapped_area(struct file *file,
2014 unsigned long uaddr, unsigned long len,
2015 unsigned long pgoff, unsigned long flags)
2016 {
2017 unsigned long (*get_area)(struct file *,
2018 unsigned long, unsigned long, unsigned long, unsigned long);
2019 unsigned long addr;
2020 unsigned long offset;
2021 unsigned long inflated_len;
2022 unsigned long inflated_addr;
2023 unsigned long inflated_offset;
2024
2025 if (len > TASK_SIZE)
2026 return -ENOMEM;
2027
2028 get_area = current->mm->get_unmapped_area;
2029 addr = get_area(file, uaddr, len, pgoff, flags);
2030
2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2032 return addr;
2033 if (IS_ERR_VALUE(addr))
2034 return addr;
2035 if (addr & ~PAGE_MASK)
2036 return addr;
2037 if (addr > TASK_SIZE - len)
2038 return addr;
2039
2040 if (shmem_huge == SHMEM_HUGE_DENY)
2041 return addr;
2042 if (len < HPAGE_PMD_SIZE)
2043 return addr;
2044 if (flags & MAP_FIXED)
2045 return addr;
2046 /*
2047 * Our priority is to support MAP_SHARED mapped hugely;
2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 * But if caller specified an address hint, respect that as before.
2050 */
2051 if (uaddr)
2052 return addr;
2053
2054 if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 struct super_block *sb;
2056
2057 if (file) {
2058 VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 sb = file_inode(file)->i_sb;
2060 } else {
2061 /*
2062 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 * for "/dev/zero", to create a shared anonymous object.
2064 */
2065 if (IS_ERR(shm_mnt))
2066 return addr;
2067 sb = shm_mnt->mnt_sb;
2068 }
2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2070 return addr;
2071 }
2072
2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 return addr;
2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 return addr;
2078
2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 if (inflated_len > TASK_SIZE)
2081 return addr;
2082 if (inflated_len < len)
2083 return addr;
2084
2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 if (IS_ERR_VALUE(inflated_addr))
2087 return addr;
2088 if (inflated_addr & ~PAGE_MASK)
2089 return addr;
2090
2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 inflated_addr += offset - inflated_offset;
2093 if (inflated_offset > offset)
2094 inflated_addr += HPAGE_PMD_SIZE;
2095
2096 if (inflated_addr > TASK_SIZE - len)
2097 return addr;
2098 return inflated_addr;
2099 }
2100
2101 #ifdef CONFIG_NUMA
2102 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2103 {
2104 struct inode *inode = file_inode(vma->vm_file);
2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2106 }
2107
2108 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 unsigned long addr)
2110 {
2111 struct inode *inode = file_inode(vma->vm_file);
2112 pgoff_t index;
2113
2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2116 }
2117 #endif
2118
2119 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120 {
2121 struct inode *inode = file_inode(file);
2122 struct shmem_inode_info *info = SHMEM_I(inode);
2123 int retval = -ENOMEM;
2124
2125 spin_lock_irq(&info->lock);
2126 if (lock && !(info->flags & VM_LOCKED)) {
2127 if (!user_shm_lock(inode->i_size, user))
2128 goto out_nomem;
2129 info->flags |= VM_LOCKED;
2130 mapping_set_unevictable(file->f_mapping);
2131 }
2132 if (!lock && (info->flags & VM_LOCKED) && user) {
2133 user_shm_unlock(inode->i_size, user);
2134 info->flags &= ~VM_LOCKED;
2135 mapping_clear_unevictable(file->f_mapping);
2136 }
2137 retval = 0;
2138
2139 out_nomem:
2140 spin_unlock_irq(&info->lock);
2141 return retval;
2142 }
2143
2144 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2145 {
2146 file_accessed(file);
2147 vma->vm_ops = &shmem_vm_ops;
2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 (vma->vm_end & HPAGE_PMD_MASK)) {
2151 khugepaged_enter(vma, vma->vm_flags);
2152 }
2153 return 0;
2154 }
2155
2156 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2157 umode_t mode, dev_t dev, unsigned long flags)
2158 {
2159 struct inode *inode;
2160 struct shmem_inode_info *info;
2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2162
2163 if (shmem_reserve_inode(sb))
2164 return NULL;
2165
2166 inode = new_inode(sb);
2167 if (inode) {
2168 inode->i_ino = get_next_ino();
2169 inode_init_owner(inode, dir, mode);
2170 inode->i_blocks = 0;
2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2172 inode->i_generation = get_seconds();
2173 info = SHMEM_I(inode);
2174 memset(info, 0, (char *)inode - (char *)info);
2175 spin_lock_init(&info->lock);
2176 info->seals = F_SEAL_SEAL;
2177 info->flags = flags & VM_NORESERVE;
2178 INIT_LIST_HEAD(&info->shrinklist);
2179 INIT_LIST_HEAD(&info->swaplist);
2180 simple_xattrs_init(&info->xattrs);
2181 cache_no_acl(inode);
2182
2183 switch (mode & S_IFMT) {
2184 default:
2185 inode->i_op = &shmem_special_inode_operations;
2186 init_special_inode(inode, mode, dev);
2187 break;
2188 case S_IFREG:
2189 inode->i_mapping->a_ops = &shmem_aops;
2190 inode->i_op = &shmem_inode_operations;
2191 inode->i_fop = &shmem_file_operations;
2192 mpol_shared_policy_init(&info->policy,
2193 shmem_get_sbmpol(sbinfo));
2194 break;
2195 case S_IFDIR:
2196 inc_nlink(inode);
2197 /* Some things misbehave if size == 0 on a directory */
2198 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 inode->i_op = &shmem_dir_inode_operations;
2200 inode->i_fop = &simple_dir_operations;
2201 break;
2202 case S_IFLNK:
2203 /*
2204 * Must not load anything in the rbtree,
2205 * mpol_free_shared_policy will not be called.
2206 */
2207 mpol_shared_policy_init(&info->policy, NULL);
2208 break;
2209 }
2210
2211 lockdep_annotate_inode_mutex_key(inode);
2212 } else
2213 shmem_free_inode(sb);
2214 return inode;
2215 }
2216
2217 bool shmem_mapping(struct address_space *mapping)
2218 {
2219 return mapping->a_ops == &shmem_aops;
2220 }
2221
2222 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2223 pmd_t *dst_pmd,
2224 struct vm_area_struct *dst_vma,
2225 unsigned long dst_addr,
2226 unsigned long src_addr,
2227 bool zeropage,
2228 struct page **pagep)
2229 {
2230 struct inode *inode = file_inode(dst_vma->vm_file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 struct address_space *mapping = inode->i_mapping;
2233 gfp_t gfp = mapping_gfp_mask(mapping);
2234 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2235 struct mem_cgroup *memcg;
2236 spinlock_t *ptl;
2237 void *page_kaddr;
2238 struct page *page;
2239 pte_t _dst_pte, *dst_pte;
2240 int ret;
2241
2242 ret = -ENOMEM;
2243 if (!shmem_inode_acct_block(inode, 1))
2244 goto out;
2245
2246 if (!*pagep) {
2247 page = shmem_alloc_page(gfp, info, pgoff);
2248 if (!page)
2249 goto out_unacct_blocks;
2250
2251 if (!zeropage) { /* mcopy_atomic */
2252 page_kaddr = kmap_atomic(page);
2253 ret = copy_from_user(page_kaddr,
2254 (const void __user *)src_addr,
2255 PAGE_SIZE);
2256 kunmap_atomic(page_kaddr);
2257
2258 /* fallback to copy_from_user outside mmap_sem */
2259 if (unlikely(ret)) {
2260 *pagep = page;
2261 shmem_inode_unacct_blocks(inode, 1);
2262 /* don't free the page */
2263 return -EFAULT;
2264 }
2265 } else { /* mfill_zeropage_atomic */
2266 clear_highpage(page);
2267 }
2268 } else {
2269 page = *pagep;
2270 *pagep = NULL;
2271 }
2272
2273 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2274 __SetPageLocked(page);
2275 __SetPageSwapBacked(page);
2276 __SetPageUptodate(page);
2277
2278 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2279 if (ret)
2280 goto out_release;
2281
2282 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2283 if (!ret) {
2284 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2285 radix_tree_preload_end();
2286 }
2287 if (ret)
2288 goto out_release_uncharge;
2289
2290 mem_cgroup_commit_charge(page, memcg, false, false);
2291
2292 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2293 if (dst_vma->vm_flags & VM_WRITE)
2294 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2295
2296 ret = -EEXIST;
2297 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2298 if (!pte_none(*dst_pte))
2299 goto out_release_uncharge_unlock;
2300
2301 lru_cache_add_anon(page);
2302
2303 spin_lock(&info->lock);
2304 info->alloced++;
2305 inode->i_blocks += BLOCKS_PER_PAGE;
2306 shmem_recalc_inode(inode);
2307 spin_unlock(&info->lock);
2308
2309 inc_mm_counter(dst_mm, mm_counter_file(page));
2310 page_add_file_rmap(page, false);
2311 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2312
2313 /* No need to invalidate - it was non-present before */
2314 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2315 unlock_page(page);
2316 pte_unmap_unlock(dst_pte, ptl);
2317 ret = 0;
2318 out:
2319 return ret;
2320 out_release_uncharge_unlock:
2321 pte_unmap_unlock(dst_pte, ptl);
2322 out_release_uncharge:
2323 mem_cgroup_cancel_charge(page, memcg, false);
2324 out_release:
2325 unlock_page(page);
2326 put_page(page);
2327 out_unacct_blocks:
2328 shmem_inode_unacct_blocks(inode, 1);
2329 goto out;
2330 }
2331
2332 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2333 pmd_t *dst_pmd,
2334 struct vm_area_struct *dst_vma,
2335 unsigned long dst_addr,
2336 unsigned long src_addr,
2337 struct page **pagep)
2338 {
2339 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2340 dst_addr, src_addr, false, pagep);
2341 }
2342
2343 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr)
2347 {
2348 struct page *page = NULL;
2349
2350 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2351 dst_addr, 0, true, &page);
2352 }
2353
2354 #ifdef CONFIG_TMPFS
2355 static const struct inode_operations shmem_symlink_inode_operations;
2356 static const struct inode_operations shmem_short_symlink_operations;
2357
2358 #ifdef CONFIG_TMPFS_XATTR
2359 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2360 #else
2361 #define shmem_initxattrs NULL
2362 #endif
2363
2364 static int
2365 shmem_write_begin(struct file *file, struct address_space *mapping,
2366 loff_t pos, unsigned len, unsigned flags,
2367 struct page **pagep, void **fsdata)
2368 {
2369 struct inode *inode = mapping->host;
2370 struct shmem_inode_info *info = SHMEM_I(inode);
2371 pgoff_t index = pos >> PAGE_SHIFT;
2372
2373 /* i_mutex is held by caller */
2374 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2375 if (info->seals & F_SEAL_WRITE)
2376 return -EPERM;
2377 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2378 return -EPERM;
2379 }
2380
2381 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2382 }
2383
2384 static int
2385 shmem_write_end(struct file *file, struct address_space *mapping,
2386 loff_t pos, unsigned len, unsigned copied,
2387 struct page *page, void *fsdata)
2388 {
2389 struct inode *inode = mapping->host;
2390
2391 if (pos + copied > inode->i_size)
2392 i_size_write(inode, pos + copied);
2393
2394 if (!PageUptodate(page)) {
2395 struct page *head = compound_head(page);
2396 if (PageTransCompound(page)) {
2397 int i;
2398
2399 for (i = 0; i < HPAGE_PMD_NR; i++) {
2400 if (head + i == page)
2401 continue;
2402 clear_highpage(head + i);
2403 flush_dcache_page(head + i);
2404 }
2405 }
2406 if (copied < PAGE_SIZE) {
2407 unsigned from = pos & (PAGE_SIZE - 1);
2408 zero_user_segments(page, 0, from,
2409 from + copied, PAGE_SIZE);
2410 }
2411 SetPageUptodate(head);
2412 }
2413 set_page_dirty(page);
2414 unlock_page(page);
2415 put_page(page);
2416
2417 return copied;
2418 }
2419
2420 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2421 {
2422 struct file *file = iocb->ki_filp;
2423 struct inode *inode = file_inode(file);
2424 struct address_space *mapping = inode->i_mapping;
2425 pgoff_t index;
2426 unsigned long offset;
2427 enum sgp_type sgp = SGP_READ;
2428 int error = 0;
2429 ssize_t retval = 0;
2430 loff_t *ppos = &iocb->ki_pos;
2431
2432 /*
2433 * Might this read be for a stacking filesystem? Then when reading
2434 * holes of a sparse file, we actually need to allocate those pages,
2435 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2436 */
2437 if (!iter_is_iovec(to))
2438 sgp = SGP_CACHE;
2439
2440 index = *ppos >> PAGE_SHIFT;
2441 offset = *ppos & ~PAGE_MASK;
2442
2443 for (;;) {
2444 struct page *page = NULL;
2445 pgoff_t end_index;
2446 unsigned long nr, ret;
2447 loff_t i_size = i_size_read(inode);
2448
2449 end_index = i_size >> PAGE_SHIFT;
2450 if (index > end_index)
2451 break;
2452 if (index == end_index) {
2453 nr = i_size & ~PAGE_MASK;
2454 if (nr <= offset)
2455 break;
2456 }
2457
2458 error = shmem_getpage(inode, index, &page, sgp);
2459 if (error) {
2460 if (error == -EINVAL)
2461 error = 0;
2462 break;
2463 }
2464 if (page) {
2465 if (sgp == SGP_CACHE)
2466 set_page_dirty(page);
2467 unlock_page(page);
2468 }
2469
2470 /*
2471 * We must evaluate after, since reads (unlike writes)
2472 * are called without i_mutex protection against truncate
2473 */
2474 nr = PAGE_SIZE;
2475 i_size = i_size_read(inode);
2476 end_index = i_size >> PAGE_SHIFT;
2477 if (index == end_index) {
2478 nr = i_size & ~PAGE_MASK;
2479 if (nr <= offset) {
2480 if (page)
2481 put_page(page);
2482 break;
2483 }
2484 }
2485 nr -= offset;
2486
2487 if (page) {
2488 /*
2489 * If users can be writing to this page using arbitrary
2490 * virtual addresses, take care about potential aliasing
2491 * before reading the page on the kernel side.
2492 */
2493 if (mapping_writably_mapped(mapping))
2494 flush_dcache_page(page);
2495 /*
2496 * Mark the page accessed if we read the beginning.
2497 */
2498 if (!offset)
2499 mark_page_accessed(page);
2500 } else {
2501 page = ZERO_PAGE(0);
2502 get_page(page);
2503 }
2504
2505 /*
2506 * Ok, we have the page, and it's up-to-date, so
2507 * now we can copy it to user space...
2508 */
2509 ret = copy_page_to_iter(page, offset, nr, to);
2510 retval += ret;
2511 offset += ret;
2512 index += offset >> PAGE_SHIFT;
2513 offset &= ~PAGE_MASK;
2514
2515 put_page(page);
2516 if (!iov_iter_count(to))
2517 break;
2518 if (ret < nr) {
2519 error = -EFAULT;
2520 break;
2521 }
2522 cond_resched();
2523 }
2524
2525 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2526 file_accessed(file);
2527 return retval ? retval : error;
2528 }
2529
2530 /*
2531 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2532 */
2533 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2534 pgoff_t index, pgoff_t end, int whence)
2535 {
2536 struct page *page;
2537 struct pagevec pvec;
2538 pgoff_t indices[PAGEVEC_SIZE];
2539 bool done = false;
2540 int i;
2541
2542 pagevec_init(&pvec, 0);
2543 pvec.nr = 1; /* start small: we may be there already */
2544 while (!done) {
2545 pvec.nr = find_get_entries(mapping, index,
2546 pvec.nr, pvec.pages, indices);
2547 if (!pvec.nr) {
2548 if (whence == SEEK_DATA)
2549 index = end;
2550 break;
2551 }
2552 for (i = 0; i < pvec.nr; i++, index++) {
2553 if (index < indices[i]) {
2554 if (whence == SEEK_HOLE) {
2555 done = true;
2556 break;
2557 }
2558 index = indices[i];
2559 }
2560 page = pvec.pages[i];
2561 if (page && !radix_tree_exceptional_entry(page)) {
2562 if (!PageUptodate(page))
2563 page = NULL;
2564 }
2565 if (index >= end ||
2566 (page && whence == SEEK_DATA) ||
2567 (!page && whence == SEEK_HOLE)) {
2568 done = true;
2569 break;
2570 }
2571 }
2572 pagevec_remove_exceptionals(&pvec);
2573 pagevec_release(&pvec);
2574 pvec.nr = PAGEVEC_SIZE;
2575 cond_resched();
2576 }
2577 return index;
2578 }
2579
2580 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2581 {
2582 struct address_space *mapping = file->f_mapping;
2583 struct inode *inode = mapping->host;
2584 pgoff_t start, end;
2585 loff_t new_offset;
2586
2587 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2588 return generic_file_llseek_size(file, offset, whence,
2589 MAX_LFS_FILESIZE, i_size_read(inode));
2590 inode_lock(inode);
2591 /* We're holding i_mutex so we can access i_size directly */
2592
2593 if (offset < 0)
2594 offset = -EINVAL;
2595 else if (offset >= inode->i_size)
2596 offset = -ENXIO;
2597 else {
2598 start = offset >> PAGE_SHIFT;
2599 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2600 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2601 new_offset <<= PAGE_SHIFT;
2602 if (new_offset > offset) {
2603 if (new_offset < inode->i_size)
2604 offset = new_offset;
2605 else if (whence == SEEK_DATA)
2606 offset = -ENXIO;
2607 else
2608 offset = inode->i_size;
2609 }
2610 }
2611
2612 if (offset >= 0)
2613 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2614 inode_unlock(inode);
2615 return offset;
2616 }
2617
2618 /*
2619 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2620 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2621 */
2622 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2623 #define LAST_SCAN 4 /* about 150ms max */
2624
2625 static void shmem_tag_pins(struct address_space *mapping)
2626 {
2627 struct radix_tree_iter iter;
2628 void **slot;
2629 pgoff_t start;
2630 struct page *page;
2631
2632 lru_add_drain();
2633 start = 0;
2634 rcu_read_lock();
2635
2636 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2637 page = radix_tree_deref_slot(slot);
2638 if (!page || radix_tree_exception(page)) {
2639 if (radix_tree_deref_retry(page)) {
2640 slot = radix_tree_iter_retry(&iter);
2641 continue;
2642 }
2643 } else if (page_count(page) - page_mapcount(page) > 1) {
2644 spin_lock_irq(&mapping->tree_lock);
2645 radix_tree_tag_set(&mapping->page_tree, iter.index,
2646 SHMEM_TAG_PINNED);
2647 spin_unlock_irq(&mapping->tree_lock);
2648 }
2649
2650 if (need_resched()) {
2651 slot = radix_tree_iter_resume(slot, &iter);
2652 cond_resched_rcu();
2653 }
2654 }
2655 rcu_read_unlock();
2656 }
2657
2658 /*
2659 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2660 * via get_user_pages(), drivers might have some pending I/O without any active
2661 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2662 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2663 * them to be dropped.
2664 * The caller must guarantee that no new user will acquire writable references
2665 * to those pages to avoid races.
2666 */
2667 static int shmem_wait_for_pins(struct address_space *mapping)
2668 {
2669 struct radix_tree_iter iter;
2670 void **slot;
2671 pgoff_t start;
2672 struct page *page;
2673 int error, scan;
2674
2675 shmem_tag_pins(mapping);
2676
2677 error = 0;
2678 for (scan = 0; scan <= LAST_SCAN; scan++) {
2679 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2680 break;
2681
2682 if (!scan)
2683 lru_add_drain_all();
2684 else if (schedule_timeout_killable((HZ << scan) / 200))
2685 scan = LAST_SCAN;
2686
2687 start = 0;
2688 rcu_read_lock();
2689 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2690 start, SHMEM_TAG_PINNED) {
2691
2692 page = radix_tree_deref_slot(slot);
2693 if (radix_tree_exception(page)) {
2694 if (radix_tree_deref_retry(page)) {
2695 slot = radix_tree_iter_retry(&iter);
2696 continue;
2697 }
2698
2699 page = NULL;
2700 }
2701
2702 if (page &&
2703 page_count(page) - page_mapcount(page) != 1) {
2704 if (scan < LAST_SCAN)
2705 goto continue_resched;
2706
2707 /*
2708 * On the last scan, we clean up all those tags
2709 * we inserted; but make a note that we still
2710 * found pages pinned.
2711 */
2712 error = -EBUSY;
2713 }
2714
2715 spin_lock_irq(&mapping->tree_lock);
2716 radix_tree_tag_clear(&mapping->page_tree,
2717 iter.index, SHMEM_TAG_PINNED);
2718 spin_unlock_irq(&mapping->tree_lock);
2719 continue_resched:
2720 if (need_resched()) {
2721 slot = radix_tree_iter_resume(slot, &iter);
2722 cond_resched_rcu();
2723 }
2724 }
2725 rcu_read_unlock();
2726 }
2727
2728 return error;
2729 }
2730
2731 #define F_ALL_SEALS (F_SEAL_SEAL | \
2732 F_SEAL_SHRINK | \
2733 F_SEAL_GROW | \
2734 F_SEAL_WRITE)
2735
2736 int shmem_add_seals(struct file *file, unsigned int seals)
2737 {
2738 struct inode *inode = file_inode(file);
2739 struct shmem_inode_info *info = SHMEM_I(inode);
2740 int error;
2741
2742 /*
2743 * SEALING
2744 * Sealing allows multiple parties to share a shmem-file but restrict
2745 * access to a specific subset of file operations. Seals can only be
2746 * added, but never removed. This way, mutually untrusted parties can
2747 * share common memory regions with a well-defined policy. A malicious
2748 * peer can thus never perform unwanted operations on a shared object.
2749 *
2750 * Seals are only supported on special shmem-files and always affect
2751 * the whole underlying inode. Once a seal is set, it may prevent some
2752 * kinds of access to the file. Currently, the following seals are
2753 * defined:
2754 * SEAL_SEAL: Prevent further seals from being set on this file
2755 * SEAL_SHRINK: Prevent the file from shrinking
2756 * SEAL_GROW: Prevent the file from growing
2757 * SEAL_WRITE: Prevent write access to the file
2758 *
2759 * As we don't require any trust relationship between two parties, we
2760 * must prevent seals from being removed. Therefore, sealing a file
2761 * only adds a given set of seals to the file, it never touches
2762 * existing seals. Furthermore, the "setting seals"-operation can be
2763 * sealed itself, which basically prevents any further seal from being
2764 * added.
2765 *
2766 * Semantics of sealing are only defined on volatile files. Only
2767 * anonymous shmem files support sealing. More importantly, seals are
2768 * never written to disk. Therefore, there's no plan to support it on
2769 * other file types.
2770 */
2771
2772 if (file->f_op != &shmem_file_operations)
2773 return -EINVAL;
2774 if (!(file->f_mode & FMODE_WRITE))
2775 return -EPERM;
2776 if (seals & ~(unsigned int)F_ALL_SEALS)
2777 return -EINVAL;
2778
2779 inode_lock(inode);
2780
2781 if (info->seals & F_SEAL_SEAL) {
2782 error = -EPERM;
2783 goto unlock;
2784 }
2785
2786 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2787 error = mapping_deny_writable(file->f_mapping);
2788 if (error)
2789 goto unlock;
2790
2791 error = shmem_wait_for_pins(file->f_mapping);
2792 if (error) {
2793 mapping_allow_writable(file->f_mapping);
2794 goto unlock;
2795 }
2796 }
2797
2798 info->seals |= seals;
2799 error = 0;
2800
2801 unlock:
2802 inode_unlock(inode);
2803 return error;
2804 }
2805 EXPORT_SYMBOL_GPL(shmem_add_seals);
2806
2807 int shmem_get_seals(struct file *file)
2808 {
2809 if (file->f_op != &shmem_file_operations)
2810 return -EINVAL;
2811
2812 return SHMEM_I(file_inode(file))->seals;
2813 }
2814 EXPORT_SYMBOL_GPL(shmem_get_seals);
2815
2816 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2817 {
2818 long error;
2819
2820 switch (cmd) {
2821 case F_ADD_SEALS:
2822 /* disallow upper 32bit */
2823 if (arg > UINT_MAX)
2824 return -EINVAL;
2825
2826 error = shmem_add_seals(file, arg);
2827 break;
2828 case F_GET_SEALS:
2829 error = shmem_get_seals(file);
2830 break;
2831 default:
2832 error = -EINVAL;
2833 break;
2834 }
2835
2836 return error;
2837 }
2838
2839 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2840 loff_t len)
2841 {
2842 struct inode *inode = file_inode(file);
2843 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2844 struct shmem_inode_info *info = SHMEM_I(inode);
2845 struct shmem_falloc shmem_falloc;
2846 pgoff_t start, index, end;
2847 int error;
2848
2849 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2850 return -EOPNOTSUPP;
2851
2852 inode_lock(inode);
2853
2854 if (mode & FALLOC_FL_PUNCH_HOLE) {
2855 struct address_space *mapping = file->f_mapping;
2856 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2857 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2858 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2859
2860 /* protected by i_mutex */
2861 if (info->seals & F_SEAL_WRITE) {
2862 error = -EPERM;
2863 goto out;
2864 }
2865
2866 shmem_falloc.waitq = &shmem_falloc_waitq;
2867 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2868 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2869 spin_lock(&inode->i_lock);
2870 inode->i_private = &shmem_falloc;
2871 spin_unlock(&inode->i_lock);
2872
2873 if ((u64)unmap_end > (u64)unmap_start)
2874 unmap_mapping_range(mapping, unmap_start,
2875 1 + unmap_end - unmap_start, 0);
2876 shmem_truncate_range(inode, offset, offset + len - 1);
2877 /* No need to unmap again: hole-punching leaves COWed pages */
2878
2879 spin_lock(&inode->i_lock);
2880 inode->i_private = NULL;
2881 wake_up_all(&shmem_falloc_waitq);
2882 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2883 spin_unlock(&inode->i_lock);
2884 error = 0;
2885 goto out;
2886 }
2887
2888 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2889 error = inode_newsize_ok(inode, offset + len);
2890 if (error)
2891 goto out;
2892
2893 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2894 error = -EPERM;
2895 goto out;
2896 }
2897
2898 start = offset >> PAGE_SHIFT;
2899 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2900 /* Try to avoid a swapstorm if len is impossible to satisfy */
2901 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2902 error = -ENOSPC;
2903 goto out;
2904 }
2905
2906 shmem_falloc.waitq = NULL;
2907 shmem_falloc.start = start;
2908 shmem_falloc.next = start;
2909 shmem_falloc.nr_falloced = 0;
2910 shmem_falloc.nr_unswapped = 0;
2911 spin_lock(&inode->i_lock);
2912 inode->i_private = &shmem_falloc;
2913 spin_unlock(&inode->i_lock);
2914
2915 for (index = start; index < end; index++) {
2916 struct page *page;
2917
2918 /*
2919 * Good, the fallocate(2) manpage permits EINTR: we may have
2920 * been interrupted because we are using up too much memory.
2921 */
2922 if (signal_pending(current))
2923 error = -EINTR;
2924 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2925 error = -ENOMEM;
2926 else
2927 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2928 if (error) {
2929 /* Remove the !PageUptodate pages we added */
2930 if (index > start) {
2931 shmem_undo_range(inode,
2932 (loff_t)start << PAGE_SHIFT,
2933 ((loff_t)index << PAGE_SHIFT) - 1, true);
2934 }
2935 goto undone;
2936 }
2937
2938 /*
2939 * Inform shmem_writepage() how far we have reached.
2940 * No need for lock or barrier: we have the page lock.
2941 */
2942 shmem_falloc.next++;
2943 if (!PageUptodate(page))
2944 shmem_falloc.nr_falloced++;
2945
2946 /*
2947 * If !PageUptodate, leave it that way so that freeable pages
2948 * can be recognized if we need to rollback on error later.
2949 * But set_page_dirty so that memory pressure will swap rather
2950 * than free the pages we are allocating (and SGP_CACHE pages
2951 * might still be clean: we now need to mark those dirty too).
2952 */
2953 set_page_dirty(page);
2954 unlock_page(page);
2955 put_page(page);
2956 cond_resched();
2957 }
2958
2959 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2960 i_size_write(inode, offset + len);
2961 inode->i_ctime = current_time(inode);
2962 undone:
2963 spin_lock(&inode->i_lock);
2964 inode->i_private = NULL;
2965 spin_unlock(&inode->i_lock);
2966 out:
2967 inode_unlock(inode);
2968 return error;
2969 }
2970
2971 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2972 {
2973 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2974
2975 buf->f_type = TMPFS_MAGIC;
2976 buf->f_bsize = PAGE_SIZE;
2977 buf->f_namelen = NAME_MAX;
2978 if (sbinfo->max_blocks) {
2979 buf->f_blocks = sbinfo->max_blocks;
2980 buf->f_bavail =
2981 buf->f_bfree = sbinfo->max_blocks -
2982 percpu_counter_sum(&sbinfo->used_blocks);
2983 }
2984 if (sbinfo->max_inodes) {
2985 buf->f_files = sbinfo->max_inodes;
2986 buf->f_ffree = sbinfo->free_inodes;
2987 }
2988 /* else leave those fields 0 like simple_statfs */
2989 return 0;
2990 }
2991
2992 /*
2993 * File creation. Allocate an inode, and we're done..
2994 */
2995 static int
2996 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2997 {
2998 struct inode *inode;
2999 int error = -ENOSPC;
3000
3001 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3002 if (inode) {
3003 error = simple_acl_create(dir, inode);
3004 if (error)
3005 goto out_iput;
3006 error = security_inode_init_security(inode, dir,
3007 &dentry->d_name,
3008 shmem_initxattrs, NULL);
3009 if (error && error != -EOPNOTSUPP)
3010 goto out_iput;
3011
3012 error = 0;
3013 dir->i_size += BOGO_DIRENT_SIZE;
3014 dir->i_ctime = dir->i_mtime = current_time(dir);
3015 d_instantiate(dentry, inode);
3016 dget(dentry); /* Extra count - pin the dentry in core */
3017 }
3018 return error;
3019 out_iput:
3020 iput(inode);
3021 return error;
3022 }
3023
3024 static int
3025 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3026 {
3027 struct inode *inode;
3028 int error = -ENOSPC;
3029
3030 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3031 if (inode) {
3032 error = security_inode_init_security(inode, dir,
3033 NULL,
3034 shmem_initxattrs, NULL);
3035 if (error && error != -EOPNOTSUPP)
3036 goto out_iput;
3037 error = simple_acl_create(dir, inode);
3038 if (error)
3039 goto out_iput;
3040 d_tmpfile(dentry, inode);
3041 }
3042 return error;
3043 out_iput:
3044 iput(inode);
3045 return error;
3046 }
3047
3048 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3049 {
3050 int error;
3051
3052 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3053 return error;
3054 inc_nlink(dir);
3055 return 0;
3056 }
3057
3058 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3059 bool excl)
3060 {
3061 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3062 }
3063
3064 /*
3065 * Link a file..
3066 */
3067 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3068 {
3069 struct inode *inode = d_inode(old_dentry);
3070 int ret;
3071
3072 /*
3073 * No ordinary (disk based) filesystem counts links as inodes;
3074 * but each new link needs a new dentry, pinning lowmem, and
3075 * tmpfs dentries cannot be pruned until they are unlinked.
3076 */
3077 ret = shmem_reserve_inode(inode->i_sb);
3078 if (ret)
3079 goto out;
3080
3081 dir->i_size += BOGO_DIRENT_SIZE;
3082 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3083 inc_nlink(inode);
3084 ihold(inode); /* New dentry reference */
3085 dget(dentry); /* Extra pinning count for the created dentry */
3086 d_instantiate(dentry, inode);
3087 out:
3088 return ret;
3089 }
3090
3091 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3092 {
3093 struct inode *inode = d_inode(dentry);
3094
3095 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3096 shmem_free_inode(inode->i_sb);
3097
3098 dir->i_size -= BOGO_DIRENT_SIZE;
3099 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3100 drop_nlink(inode);
3101 dput(dentry); /* Undo the count from "create" - this does all the work */
3102 return 0;
3103 }
3104
3105 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3106 {
3107 if (!simple_empty(dentry))
3108 return -ENOTEMPTY;
3109
3110 drop_nlink(d_inode(dentry));
3111 drop_nlink(dir);
3112 return shmem_unlink(dir, dentry);
3113 }
3114
3115 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3116 {
3117 bool old_is_dir = d_is_dir(old_dentry);
3118 bool new_is_dir = d_is_dir(new_dentry);
3119
3120 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3121 if (old_is_dir) {
3122 drop_nlink(old_dir);
3123 inc_nlink(new_dir);
3124 } else {
3125 drop_nlink(new_dir);
3126 inc_nlink(old_dir);
3127 }
3128 }
3129 old_dir->i_ctime = old_dir->i_mtime =
3130 new_dir->i_ctime = new_dir->i_mtime =
3131 d_inode(old_dentry)->i_ctime =
3132 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3133
3134 return 0;
3135 }
3136
3137 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3138 {
3139 struct dentry *whiteout;
3140 int error;
3141
3142 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3143 if (!whiteout)
3144 return -ENOMEM;
3145
3146 error = shmem_mknod(old_dir, whiteout,
3147 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3148 dput(whiteout);
3149 if (error)
3150 return error;
3151
3152 /*
3153 * Cheat and hash the whiteout while the old dentry is still in
3154 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3155 *
3156 * d_lookup() will consistently find one of them at this point,
3157 * not sure which one, but that isn't even important.
3158 */
3159 d_rehash(whiteout);
3160 return 0;
3161 }
3162
3163 /*
3164 * The VFS layer already does all the dentry stuff for rename,
3165 * we just have to decrement the usage count for the target if
3166 * it exists so that the VFS layer correctly free's it when it
3167 * gets overwritten.
3168 */
3169 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3170 {
3171 struct inode *inode = d_inode(old_dentry);
3172 int they_are_dirs = S_ISDIR(inode->i_mode);
3173
3174 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3175 return -EINVAL;
3176
3177 if (flags & RENAME_EXCHANGE)
3178 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3179
3180 if (!simple_empty(new_dentry))
3181 return -ENOTEMPTY;
3182
3183 if (flags & RENAME_WHITEOUT) {
3184 int error;
3185
3186 error = shmem_whiteout(old_dir, old_dentry);
3187 if (error)
3188 return error;
3189 }
3190
3191 if (d_really_is_positive(new_dentry)) {
3192 (void) shmem_unlink(new_dir, new_dentry);
3193 if (they_are_dirs) {
3194 drop_nlink(d_inode(new_dentry));
3195 drop_nlink(old_dir);
3196 }
3197 } else if (they_are_dirs) {
3198 drop_nlink(old_dir);
3199 inc_nlink(new_dir);
3200 }
3201
3202 old_dir->i_size -= BOGO_DIRENT_SIZE;
3203 new_dir->i_size += BOGO_DIRENT_SIZE;
3204 old_dir->i_ctime = old_dir->i_mtime =
3205 new_dir->i_ctime = new_dir->i_mtime =
3206 inode->i_ctime = current_time(old_dir);
3207 return 0;
3208 }
3209
3210 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3211 {
3212 int error;
3213 int len;
3214 struct inode *inode;
3215 struct page *page;
3216 struct shmem_inode_info *info;
3217
3218 len = strlen(symname) + 1;
3219 if (len > PAGE_SIZE)
3220 return -ENAMETOOLONG;
3221
3222 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3223 if (!inode)
3224 return -ENOSPC;
3225
3226 error = security_inode_init_security(inode, dir, &dentry->d_name,
3227 shmem_initxattrs, NULL);
3228 if (error) {
3229 if (error != -EOPNOTSUPP) {
3230 iput(inode);
3231 return error;
3232 }
3233 error = 0;
3234 }
3235
3236 info = SHMEM_I(inode);
3237 inode->i_size = len-1;
3238 if (len <= SHORT_SYMLINK_LEN) {
3239 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3240 if (!inode->i_link) {
3241 iput(inode);
3242 return -ENOMEM;
3243 }
3244 inode->i_op = &shmem_short_symlink_operations;
3245 } else {
3246 inode_nohighmem(inode);
3247 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3248 if (error) {
3249 iput(inode);
3250 return error;
3251 }
3252 inode->i_mapping->a_ops = &shmem_aops;
3253 inode->i_op = &shmem_symlink_inode_operations;
3254 memcpy(page_address(page), symname, len);
3255 SetPageUptodate(page);
3256 set_page_dirty(page);
3257 unlock_page(page);
3258 put_page(page);
3259 }
3260 dir->i_size += BOGO_DIRENT_SIZE;
3261 dir->i_ctime = dir->i_mtime = current_time(dir);
3262 d_instantiate(dentry, inode);
3263 dget(dentry);
3264 return 0;
3265 }
3266
3267 static void shmem_put_link(void *arg)
3268 {
3269 mark_page_accessed(arg);
3270 put_page(arg);
3271 }
3272
3273 static const char *shmem_get_link(struct dentry *dentry,
3274 struct inode *inode,
3275 struct delayed_call *done)
3276 {
3277 struct page *page = NULL;
3278 int error;
3279 if (!dentry) {
3280 page = find_get_page(inode->i_mapping, 0);
3281 if (!page)
3282 return ERR_PTR(-ECHILD);
3283 if (!PageUptodate(page)) {
3284 put_page(page);
3285 return ERR_PTR(-ECHILD);
3286 }
3287 } else {
3288 error = shmem_getpage(inode, 0, &page, SGP_READ);
3289 if (error)
3290 return ERR_PTR(error);
3291 unlock_page(page);
3292 }
3293 set_delayed_call(done, shmem_put_link, page);
3294 return page_address(page);
3295 }
3296
3297 #ifdef CONFIG_TMPFS_XATTR
3298 /*
3299 * Superblocks without xattr inode operations may get some security.* xattr
3300 * support from the LSM "for free". As soon as we have any other xattrs
3301 * like ACLs, we also need to implement the security.* handlers at
3302 * filesystem level, though.
3303 */
3304
3305 /*
3306 * Callback for security_inode_init_security() for acquiring xattrs.
3307 */
3308 static int shmem_initxattrs(struct inode *inode,
3309 const struct xattr *xattr_array,
3310 void *fs_info)
3311 {
3312 struct shmem_inode_info *info = SHMEM_I(inode);
3313 const struct xattr *xattr;
3314 struct simple_xattr *new_xattr;
3315 size_t len;
3316
3317 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3318 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3319 if (!new_xattr)
3320 return -ENOMEM;
3321
3322 len = strlen(xattr->name) + 1;
3323 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3324 GFP_KERNEL);
3325 if (!new_xattr->name) {
3326 kfree(new_xattr);
3327 return -ENOMEM;
3328 }
3329
3330 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3331 XATTR_SECURITY_PREFIX_LEN);
3332 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3333 xattr->name, len);
3334
3335 simple_xattr_list_add(&info->xattrs, new_xattr);
3336 }
3337
3338 return 0;
3339 }
3340
3341 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3342 struct dentry *unused, struct inode *inode,
3343 const char *name, void *buffer, size_t size)
3344 {
3345 struct shmem_inode_info *info = SHMEM_I(inode);
3346
3347 name = xattr_full_name(handler, name);
3348 return simple_xattr_get(&info->xattrs, name, buffer, size);
3349 }
3350
3351 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3352 struct dentry *unused, struct inode *inode,
3353 const char *name, const void *value,
3354 size_t size, int flags)
3355 {
3356 struct shmem_inode_info *info = SHMEM_I(inode);
3357
3358 name = xattr_full_name(handler, name);
3359 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3360 }
3361
3362 static const struct xattr_handler shmem_security_xattr_handler = {
3363 .prefix = XATTR_SECURITY_PREFIX,
3364 .get = shmem_xattr_handler_get,
3365 .set = shmem_xattr_handler_set,
3366 };
3367
3368 static const struct xattr_handler shmem_trusted_xattr_handler = {
3369 .prefix = XATTR_TRUSTED_PREFIX,
3370 .get = shmem_xattr_handler_get,
3371 .set = shmem_xattr_handler_set,
3372 };
3373
3374 static const struct xattr_handler *shmem_xattr_handlers[] = {
3375 #ifdef CONFIG_TMPFS_POSIX_ACL
3376 &posix_acl_access_xattr_handler,
3377 &posix_acl_default_xattr_handler,
3378 #endif
3379 &shmem_security_xattr_handler,
3380 &shmem_trusted_xattr_handler,
3381 NULL
3382 };
3383
3384 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3385 {
3386 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3387 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3388 }
3389 #endif /* CONFIG_TMPFS_XATTR */
3390
3391 static const struct inode_operations shmem_short_symlink_operations = {
3392 .get_link = simple_get_link,
3393 #ifdef CONFIG_TMPFS_XATTR
3394 .listxattr = shmem_listxattr,
3395 #endif
3396 };
3397
3398 static const struct inode_operations shmem_symlink_inode_operations = {
3399 .get_link = shmem_get_link,
3400 #ifdef CONFIG_TMPFS_XATTR
3401 .listxattr = shmem_listxattr,
3402 #endif
3403 };
3404
3405 static struct dentry *shmem_get_parent(struct dentry *child)
3406 {
3407 return ERR_PTR(-ESTALE);
3408 }
3409
3410 static int shmem_match(struct inode *ino, void *vfh)
3411 {
3412 __u32 *fh = vfh;
3413 __u64 inum = fh[2];
3414 inum = (inum << 32) | fh[1];
3415 return ino->i_ino == inum && fh[0] == ino->i_generation;
3416 }
3417
3418 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3419 struct fid *fid, int fh_len, int fh_type)
3420 {
3421 struct inode *inode;
3422 struct dentry *dentry = NULL;
3423 u64 inum;
3424
3425 if (fh_len < 3)
3426 return NULL;
3427
3428 inum = fid->raw[2];
3429 inum = (inum << 32) | fid->raw[1];
3430
3431 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3432 shmem_match, fid->raw);
3433 if (inode) {
3434 dentry = d_find_alias(inode);
3435 iput(inode);
3436 }
3437
3438 return dentry;
3439 }
3440
3441 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3442 struct inode *parent)
3443 {
3444 if (*len < 3) {
3445 *len = 3;
3446 return FILEID_INVALID;
3447 }
3448
3449 if (inode_unhashed(inode)) {
3450 /* Unfortunately insert_inode_hash is not idempotent,
3451 * so as we hash inodes here rather than at creation
3452 * time, we need a lock to ensure we only try
3453 * to do it once
3454 */
3455 static DEFINE_SPINLOCK(lock);
3456 spin_lock(&lock);
3457 if (inode_unhashed(inode))
3458 __insert_inode_hash(inode,
3459 inode->i_ino + inode->i_generation);
3460 spin_unlock(&lock);
3461 }
3462
3463 fh[0] = inode->i_generation;
3464 fh[1] = inode->i_ino;
3465 fh[2] = ((__u64)inode->i_ino) >> 32;
3466
3467 *len = 3;
3468 return 1;
3469 }
3470
3471 static const struct export_operations shmem_export_ops = {
3472 .get_parent = shmem_get_parent,
3473 .encode_fh = shmem_encode_fh,
3474 .fh_to_dentry = shmem_fh_to_dentry,
3475 };
3476
3477 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3478 bool remount)
3479 {
3480 char *this_char, *value, *rest;
3481 struct mempolicy *mpol = NULL;
3482 uid_t uid;
3483 gid_t gid;
3484
3485 while (options != NULL) {
3486 this_char = options;
3487 for (;;) {
3488 /*
3489 * NUL-terminate this option: unfortunately,
3490 * mount options form a comma-separated list,
3491 * but mpol's nodelist may also contain commas.
3492 */
3493 options = strchr(options, ',');
3494 if (options == NULL)
3495 break;
3496 options++;
3497 if (!isdigit(*options)) {
3498 options[-1] = '\0';
3499 break;
3500 }
3501 }
3502 if (!*this_char)
3503 continue;
3504 if ((value = strchr(this_char,'=')) != NULL) {
3505 *value++ = 0;
3506 } else {
3507 pr_err("tmpfs: No value for mount option '%s'\n",
3508 this_char);
3509 goto error;
3510 }
3511
3512 if (!strcmp(this_char,"size")) {
3513 unsigned long long size;
3514 size = memparse(value,&rest);
3515 if (*rest == '%') {
3516 size <<= PAGE_SHIFT;
3517 size *= totalram_pages;
3518 do_div(size, 100);
3519 rest++;
3520 }
3521 if (*rest)
3522 goto bad_val;
3523 sbinfo->max_blocks =
3524 DIV_ROUND_UP(size, PAGE_SIZE);
3525 } else if (!strcmp(this_char,"nr_blocks")) {
3526 sbinfo->max_blocks = memparse(value, &rest);
3527 if (*rest)
3528 goto bad_val;
3529 } else if (!strcmp(this_char,"nr_inodes")) {
3530 sbinfo->max_inodes = memparse(value, &rest);
3531 if (*rest)
3532 goto bad_val;
3533 } else if (!strcmp(this_char,"mode")) {
3534 if (remount)
3535 continue;
3536 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3537 if (*rest)
3538 goto bad_val;
3539 } else if (!strcmp(this_char,"uid")) {
3540 if (remount)
3541 continue;
3542 uid = simple_strtoul(value, &rest, 0);
3543 if (*rest)
3544 goto bad_val;
3545 sbinfo->uid = make_kuid(current_user_ns(), uid);
3546 if (!uid_valid(sbinfo->uid))
3547 goto bad_val;
3548 } else if (!strcmp(this_char,"gid")) {
3549 if (remount)
3550 continue;
3551 gid = simple_strtoul(value, &rest, 0);
3552 if (*rest)
3553 goto bad_val;
3554 sbinfo->gid = make_kgid(current_user_ns(), gid);
3555 if (!gid_valid(sbinfo->gid))
3556 goto bad_val;
3557 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3558 } else if (!strcmp(this_char, "huge")) {
3559 int huge;
3560 huge = shmem_parse_huge(value);
3561 if (huge < 0)
3562 goto bad_val;
3563 if (!has_transparent_hugepage() &&
3564 huge != SHMEM_HUGE_NEVER)
3565 goto bad_val;
3566 sbinfo->huge = huge;
3567 #endif
3568 #ifdef CONFIG_NUMA
3569 } else if (!strcmp(this_char,"mpol")) {
3570 mpol_put(mpol);
3571 mpol = NULL;
3572 if (mpol_parse_str(value, &mpol))
3573 goto bad_val;
3574 #endif
3575 } else {
3576 pr_err("tmpfs: Bad mount option %s\n", this_char);
3577 goto error;
3578 }
3579 }
3580 sbinfo->mpol = mpol;
3581 return 0;
3582
3583 bad_val:
3584 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3585 value, this_char);
3586 error:
3587 mpol_put(mpol);
3588 return 1;
3589
3590 }
3591
3592 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3593 {
3594 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3595 struct shmem_sb_info config = *sbinfo;
3596 unsigned long inodes;
3597 int error = -EINVAL;
3598
3599 config.mpol = NULL;
3600 if (shmem_parse_options(data, &config, true))
3601 return error;
3602
3603 spin_lock(&sbinfo->stat_lock);
3604 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3605 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3606 goto out;
3607 if (config.max_inodes < inodes)
3608 goto out;
3609 /*
3610 * Those tests disallow limited->unlimited while any are in use;
3611 * but we must separately disallow unlimited->limited, because
3612 * in that case we have no record of how much is already in use.
3613 */
3614 if (config.max_blocks && !sbinfo->max_blocks)
3615 goto out;
3616 if (config.max_inodes && !sbinfo->max_inodes)
3617 goto out;
3618
3619 error = 0;
3620 sbinfo->huge = config.huge;
3621 sbinfo->max_blocks = config.max_blocks;
3622 sbinfo->max_inodes = config.max_inodes;
3623 sbinfo->free_inodes = config.max_inodes - inodes;
3624
3625 /*
3626 * Preserve previous mempolicy unless mpol remount option was specified.
3627 */
3628 if (config.mpol) {
3629 mpol_put(sbinfo->mpol);
3630 sbinfo->mpol = config.mpol; /* transfers initial ref */
3631 }
3632 out:
3633 spin_unlock(&sbinfo->stat_lock);
3634 return error;
3635 }
3636
3637 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3638 {
3639 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3640
3641 if (sbinfo->max_blocks != shmem_default_max_blocks())
3642 seq_printf(seq, ",size=%luk",
3643 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3644 if (sbinfo->max_inodes != shmem_default_max_inodes())
3645 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3646 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3647 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3648 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3649 seq_printf(seq, ",uid=%u",
3650 from_kuid_munged(&init_user_ns, sbinfo->uid));
3651 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3652 seq_printf(seq, ",gid=%u",
3653 from_kgid_munged(&init_user_ns, sbinfo->gid));
3654 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3655 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3656 if (sbinfo->huge)
3657 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3658 #endif
3659 shmem_show_mpol(seq, sbinfo->mpol);
3660 return 0;
3661 }
3662
3663 #define MFD_NAME_PREFIX "memfd:"
3664 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3665 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3666
3667 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3668
3669 SYSCALL_DEFINE2(memfd_create,
3670 const char __user *, uname,
3671 unsigned int, flags)
3672 {
3673 struct shmem_inode_info *info;
3674 struct file *file;
3675 int fd, error;
3676 char *name;
3677 long len;
3678
3679 if (!(flags & MFD_HUGETLB)) {
3680 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3681 return -EINVAL;
3682 } else {
3683 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3684 if (flags & MFD_ALLOW_SEALING)
3685 return -EINVAL;
3686 /* Allow huge page size encoding in flags. */
3687 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3688 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3689 return -EINVAL;
3690 }
3691
3692 /* length includes terminating zero */
3693 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3694 if (len <= 0)
3695 return -EFAULT;
3696 if (len > MFD_NAME_MAX_LEN + 1)
3697 return -EINVAL;
3698
3699 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3700 if (!name)
3701 return -ENOMEM;
3702
3703 strcpy(name, MFD_NAME_PREFIX);
3704 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3705 error = -EFAULT;
3706 goto err_name;
3707 }
3708
3709 /* terminating-zero may have changed after strnlen_user() returned */
3710 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3711 error = -EFAULT;
3712 goto err_name;
3713 }
3714
3715 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3716 if (fd < 0) {
3717 error = fd;
3718 goto err_name;
3719 }
3720
3721 if (flags & MFD_HUGETLB) {
3722 struct user_struct *user = NULL;
3723
3724 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3725 HUGETLB_ANONHUGE_INODE,
3726 (flags >> MFD_HUGE_SHIFT) &
3727 MFD_HUGE_MASK);
3728 } else
3729 file = shmem_file_setup(name, 0, VM_NORESERVE);
3730 if (IS_ERR(file)) {
3731 error = PTR_ERR(file);
3732 goto err_fd;
3733 }
3734 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3735 file->f_flags |= O_RDWR | O_LARGEFILE;
3736
3737 if (flags & MFD_ALLOW_SEALING) {
3738 /*
3739 * flags check at beginning of function ensures
3740 * this is not a hugetlbfs (MFD_HUGETLB) file.
3741 */
3742 info = SHMEM_I(file_inode(file));
3743 info->seals &= ~F_SEAL_SEAL;
3744 }
3745
3746 fd_install(fd, file);
3747 kfree(name);
3748 return fd;
3749
3750 err_fd:
3751 put_unused_fd(fd);
3752 err_name:
3753 kfree(name);
3754 return error;
3755 }
3756
3757 #endif /* CONFIG_TMPFS */
3758
3759 static void shmem_put_super(struct super_block *sb)
3760 {
3761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3762
3763 percpu_counter_destroy(&sbinfo->used_blocks);
3764 mpol_put(sbinfo->mpol);
3765 kfree(sbinfo);
3766 sb->s_fs_info = NULL;
3767 }
3768
3769 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3770 {
3771 struct inode *inode;
3772 struct shmem_sb_info *sbinfo;
3773 int err = -ENOMEM;
3774
3775 /* Round up to L1_CACHE_BYTES to resist false sharing */
3776 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3777 L1_CACHE_BYTES), GFP_KERNEL);
3778 if (!sbinfo)
3779 return -ENOMEM;
3780
3781 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3782 sbinfo->uid = current_fsuid();
3783 sbinfo->gid = current_fsgid();
3784 sb->s_fs_info = sbinfo;
3785
3786 #ifdef CONFIG_TMPFS
3787 /*
3788 * Per default we only allow half of the physical ram per
3789 * tmpfs instance, limiting inodes to one per page of lowmem;
3790 * but the internal instance is left unlimited.
3791 */
3792 if (!(sb->s_flags & MS_KERNMOUNT)) {
3793 sbinfo->max_blocks = shmem_default_max_blocks();
3794 sbinfo->max_inodes = shmem_default_max_inodes();
3795 if (shmem_parse_options(data, sbinfo, false)) {
3796 err = -EINVAL;
3797 goto failed;
3798 }
3799 } else {
3800 sb->s_flags |= MS_NOUSER;
3801 }
3802 sb->s_export_op = &shmem_export_ops;
3803 sb->s_flags |= MS_NOSEC;
3804 #else
3805 sb->s_flags |= MS_NOUSER;
3806 #endif
3807
3808 spin_lock_init(&sbinfo->stat_lock);
3809 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3810 goto failed;
3811 sbinfo->free_inodes = sbinfo->max_inodes;
3812 spin_lock_init(&sbinfo->shrinklist_lock);
3813 INIT_LIST_HEAD(&sbinfo->shrinklist);
3814
3815 sb->s_maxbytes = MAX_LFS_FILESIZE;
3816 sb->s_blocksize = PAGE_SIZE;
3817 sb->s_blocksize_bits = PAGE_SHIFT;
3818 sb->s_magic = TMPFS_MAGIC;
3819 sb->s_op = &shmem_ops;
3820 sb->s_time_gran = 1;
3821 #ifdef CONFIG_TMPFS_XATTR
3822 sb->s_xattr = shmem_xattr_handlers;
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825 sb->s_flags |= MS_POSIXACL;
3826 #endif
3827 uuid_gen(&sb->s_uuid);
3828
3829 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3830 if (!inode)
3831 goto failed;
3832 inode->i_uid = sbinfo->uid;
3833 inode->i_gid = sbinfo->gid;
3834 sb->s_root = d_make_root(inode);
3835 if (!sb->s_root)
3836 goto failed;
3837 return 0;
3838
3839 failed:
3840 shmem_put_super(sb);
3841 return err;
3842 }
3843
3844 static struct kmem_cache *shmem_inode_cachep;
3845
3846 static struct inode *shmem_alloc_inode(struct super_block *sb)
3847 {
3848 struct shmem_inode_info *info;
3849 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3850 if (!info)
3851 return NULL;
3852 return &info->vfs_inode;
3853 }
3854
3855 static void shmem_destroy_callback(struct rcu_head *head)
3856 {
3857 struct inode *inode = container_of(head, struct inode, i_rcu);
3858 if (S_ISLNK(inode->i_mode))
3859 kfree(inode->i_link);
3860 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3861 }
3862
3863 static void shmem_destroy_inode(struct inode *inode)
3864 {
3865 if (S_ISREG(inode->i_mode))
3866 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3867 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3868 }
3869
3870 static void shmem_init_inode(void *foo)
3871 {
3872 struct shmem_inode_info *info = foo;
3873 inode_init_once(&info->vfs_inode);
3874 }
3875
3876 static int shmem_init_inodecache(void)
3877 {
3878 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3879 sizeof(struct shmem_inode_info),
3880 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3881 return 0;
3882 }
3883
3884 static void shmem_destroy_inodecache(void)
3885 {
3886 kmem_cache_destroy(shmem_inode_cachep);
3887 }
3888
3889 static const struct address_space_operations shmem_aops = {
3890 .writepage = shmem_writepage,
3891 .set_page_dirty = __set_page_dirty_no_writeback,
3892 #ifdef CONFIG_TMPFS
3893 .write_begin = shmem_write_begin,
3894 .write_end = shmem_write_end,
3895 #endif
3896 #ifdef CONFIG_MIGRATION
3897 .migratepage = migrate_page,
3898 #endif
3899 .error_remove_page = generic_error_remove_page,
3900 };
3901
3902 static const struct file_operations shmem_file_operations = {
3903 .mmap = shmem_mmap,
3904 .get_unmapped_area = shmem_get_unmapped_area,
3905 #ifdef CONFIG_TMPFS
3906 .llseek = shmem_file_llseek,
3907 .read_iter = shmem_file_read_iter,
3908 .write_iter = generic_file_write_iter,
3909 .fsync = noop_fsync,
3910 .splice_read = generic_file_splice_read,
3911 .splice_write = iter_file_splice_write,
3912 .fallocate = shmem_fallocate,
3913 #endif
3914 };
3915
3916 static const struct inode_operations shmem_inode_operations = {
3917 .getattr = shmem_getattr,
3918 .setattr = shmem_setattr,
3919 #ifdef CONFIG_TMPFS_XATTR
3920 .listxattr = shmem_listxattr,
3921 .set_acl = simple_set_acl,
3922 #endif
3923 };
3924
3925 static const struct inode_operations shmem_dir_inode_operations = {
3926 #ifdef CONFIG_TMPFS
3927 .create = shmem_create,
3928 .lookup = simple_lookup,
3929 .link = shmem_link,
3930 .unlink = shmem_unlink,
3931 .symlink = shmem_symlink,
3932 .mkdir = shmem_mkdir,
3933 .rmdir = shmem_rmdir,
3934 .mknod = shmem_mknod,
3935 .rename = shmem_rename2,
3936 .tmpfile = shmem_tmpfile,
3937 #endif
3938 #ifdef CONFIG_TMPFS_XATTR
3939 .listxattr = shmem_listxattr,
3940 #endif
3941 #ifdef CONFIG_TMPFS_POSIX_ACL
3942 .setattr = shmem_setattr,
3943 .set_acl = simple_set_acl,
3944 #endif
3945 };
3946
3947 static const struct inode_operations shmem_special_inode_operations = {
3948 #ifdef CONFIG_TMPFS_XATTR
3949 .listxattr = shmem_listxattr,
3950 #endif
3951 #ifdef CONFIG_TMPFS_POSIX_ACL
3952 .setattr = shmem_setattr,
3953 .set_acl = simple_set_acl,
3954 #endif
3955 };
3956
3957 static const struct super_operations shmem_ops = {
3958 .alloc_inode = shmem_alloc_inode,
3959 .destroy_inode = shmem_destroy_inode,
3960 #ifdef CONFIG_TMPFS
3961 .statfs = shmem_statfs,
3962 .remount_fs = shmem_remount_fs,
3963 .show_options = shmem_show_options,
3964 #endif
3965 .evict_inode = shmem_evict_inode,
3966 .drop_inode = generic_delete_inode,
3967 .put_super = shmem_put_super,
3968 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3969 .nr_cached_objects = shmem_unused_huge_count,
3970 .free_cached_objects = shmem_unused_huge_scan,
3971 #endif
3972 };
3973
3974 static const struct vm_operations_struct shmem_vm_ops = {
3975 .fault = shmem_fault,
3976 .map_pages = filemap_map_pages,
3977 #ifdef CONFIG_NUMA
3978 .set_policy = shmem_set_policy,
3979 .get_policy = shmem_get_policy,
3980 #endif
3981 };
3982
3983 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3984 int flags, const char *dev_name, void *data)
3985 {
3986 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3987 }
3988
3989 static struct file_system_type shmem_fs_type = {
3990 .owner = THIS_MODULE,
3991 .name = "tmpfs",
3992 .mount = shmem_mount,
3993 .kill_sb = kill_litter_super,
3994 .fs_flags = FS_USERNS_MOUNT,
3995 };
3996
3997 int __init shmem_init(void)
3998 {
3999 int error;
4000
4001 /* If rootfs called this, don't re-init */
4002 if (shmem_inode_cachep)
4003 return 0;
4004
4005 error = shmem_init_inodecache();
4006 if (error)
4007 goto out3;
4008
4009 error = register_filesystem(&shmem_fs_type);
4010 if (error) {
4011 pr_err("Could not register tmpfs\n");
4012 goto out2;
4013 }
4014
4015 shm_mnt = kern_mount(&shmem_fs_type);
4016 if (IS_ERR(shm_mnt)) {
4017 error = PTR_ERR(shm_mnt);
4018 pr_err("Could not kern_mount tmpfs\n");
4019 goto out1;
4020 }
4021
4022 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4023 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4024 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4025 else
4026 shmem_huge = 0; /* just in case it was patched */
4027 #endif
4028 return 0;
4029
4030 out1:
4031 unregister_filesystem(&shmem_fs_type);
4032 out2:
4033 shmem_destroy_inodecache();
4034 out3:
4035 shm_mnt = ERR_PTR(error);
4036 return error;
4037 }
4038
4039 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4040 static ssize_t shmem_enabled_show(struct kobject *kobj,
4041 struct kobj_attribute *attr, char *buf)
4042 {
4043 int values[] = {
4044 SHMEM_HUGE_ALWAYS,
4045 SHMEM_HUGE_WITHIN_SIZE,
4046 SHMEM_HUGE_ADVISE,
4047 SHMEM_HUGE_NEVER,
4048 SHMEM_HUGE_DENY,
4049 SHMEM_HUGE_FORCE,
4050 };
4051 int i, count;
4052
4053 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4054 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4055
4056 count += sprintf(buf + count, fmt,
4057 shmem_format_huge(values[i]));
4058 }
4059 buf[count - 1] = '\n';
4060 return count;
4061 }
4062
4063 static ssize_t shmem_enabled_store(struct kobject *kobj,
4064 struct kobj_attribute *attr, const char *buf, size_t count)
4065 {
4066 char tmp[16];
4067 int huge;
4068
4069 if (count + 1 > sizeof(tmp))
4070 return -EINVAL;
4071 memcpy(tmp, buf, count);
4072 tmp[count] = '\0';
4073 if (count && tmp[count - 1] == '\n')
4074 tmp[count - 1] = '\0';
4075
4076 huge = shmem_parse_huge(tmp);
4077 if (huge == -EINVAL)
4078 return -EINVAL;
4079 if (!has_transparent_hugepage() &&
4080 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4081 return -EINVAL;
4082
4083 shmem_huge = huge;
4084 if (shmem_huge > SHMEM_HUGE_DENY)
4085 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4086 return count;
4087 }
4088
4089 struct kobj_attribute shmem_enabled_attr =
4090 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4091 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4092
4093 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4094 bool shmem_huge_enabled(struct vm_area_struct *vma)
4095 {
4096 struct inode *inode = file_inode(vma->vm_file);
4097 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4098 loff_t i_size;
4099 pgoff_t off;
4100
4101 if (shmem_huge == SHMEM_HUGE_FORCE)
4102 return true;
4103 if (shmem_huge == SHMEM_HUGE_DENY)
4104 return false;
4105 switch (sbinfo->huge) {
4106 case SHMEM_HUGE_NEVER:
4107 return false;
4108 case SHMEM_HUGE_ALWAYS:
4109 return true;
4110 case SHMEM_HUGE_WITHIN_SIZE:
4111 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4112 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4113 if (i_size >= HPAGE_PMD_SIZE &&
4114 i_size >> PAGE_SHIFT >= off)
4115 return true;
4116 case SHMEM_HUGE_ADVISE:
4117 /* TODO: implement fadvise() hints */
4118 return (vma->vm_flags & VM_HUGEPAGE);
4119 default:
4120 VM_BUG_ON(1);
4121 return false;
4122 }
4123 }
4124 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4125
4126 #else /* !CONFIG_SHMEM */
4127
4128 /*
4129 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4130 *
4131 * This is intended for small system where the benefits of the full
4132 * shmem code (swap-backed and resource-limited) are outweighed by
4133 * their complexity. On systems without swap this code should be
4134 * effectively equivalent, but much lighter weight.
4135 */
4136
4137 static struct file_system_type shmem_fs_type = {
4138 .name = "tmpfs",
4139 .mount = ramfs_mount,
4140 .kill_sb = kill_litter_super,
4141 .fs_flags = FS_USERNS_MOUNT,
4142 };
4143
4144 int __init shmem_init(void)
4145 {
4146 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4147
4148 shm_mnt = kern_mount(&shmem_fs_type);
4149 BUG_ON(IS_ERR(shm_mnt));
4150
4151 return 0;
4152 }
4153
4154 int shmem_unuse(swp_entry_t swap, struct page *page)
4155 {
4156 return 0;
4157 }
4158
4159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4160 {
4161 return 0;
4162 }
4163
4164 void shmem_unlock_mapping(struct address_space *mapping)
4165 {
4166 }
4167
4168 #ifdef CONFIG_MMU
4169 unsigned long shmem_get_unmapped_area(struct file *file,
4170 unsigned long addr, unsigned long len,
4171 unsigned long pgoff, unsigned long flags)
4172 {
4173 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4174 }
4175 #endif
4176
4177 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4178 {
4179 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4180 }
4181 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4182
4183 #define shmem_vm_ops generic_file_vm_ops
4184 #define shmem_file_operations ramfs_file_operations
4185 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4186 #define shmem_acct_size(flags, size) 0
4187 #define shmem_unacct_size(flags, size) do {} while (0)
4188
4189 #endif /* CONFIG_SHMEM */
4190
4191 /* common code */
4192
4193 static const struct dentry_operations anon_ops = {
4194 .d_dname = simple_dname
4195 };
4196
4197 static struct file *__shmem_file_setup(const char *name, loff_t size,
4198 unsigned long flags, unsigned int i_flags)
4199 {
4200 struct file *res;
4201 struct inode *inode;
4202 struct path path;
4203 struct super_block *sb;
4204 struct qstr this;
4205
4206 if (IS_ERR(shm_mnt))
4207 return ERR_CAST(shm_mnt);
4208
4209 if (size < 0 || size > MAX_LFS_FILESIZE)
4210 return ERR_PTR(-EINVAL);
4211
4212 if (shmem_acct_size(flags, size))
4213 return ERR_PTR(-ENOMEM);
4214
4215 res = ERR_PTR(-ENOMEM);
4216 this.name = name;
4217 this.len = strlen(name);
4218 this.hash = 0; /* will go */
4219 sb = shm_mnt->mnt_sb;
4220 path.mnt = mntget(shm_mnt);
4221 path.dentry = d_alloc_pseudo(sb, &this);
4222 if (!path.dentry)
4223 goto put_memory;
4224 d_set_d_op(path.dentry, &anon_ops);
4225
4226 res = ERR_PTR(-ENOSPC);
4227 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4228 if (!inode)
4229 goto put_memory;
4230
4231 inode->i_flags |= i_flags;
4232 d_instantiate(path.dentry, inode);
4233 inode->i_size = size;
4234 clear_nlink(inode); /* It is unlinked */
4235 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4236 if (IS_ERR(res))
4237 goto put_path;
4238
4239 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4240 &shmem_file_operations);
4241 if (IS_ERR(res))
4242 goto put_path;
4243
4244 return res;
4245
4246 put_memory:
4247 shmem_unacct_size(flags, size);
4248 put_path:
4249 path_put(&path);
4250 return res;
4251 }
4252
4253 /**
4254 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4255 * kernel internal. There will be NO LSM permission checks against the
4256 * underlying inode. So users of this interface must do LSM checks at a
4257 * higher layer. The users are the big_key and shm implementations. LSM
4258 * checks are provided at the key or shm level rather than the inode.
4259 * @name: name for dentry (to be seen in /proc/<pid>/maps
4260 * @size: size to be set for the file
4261 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4262 */
4263 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4264 {
4265 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4266 }
4267
4268 /**
4269 * shmem_file_setup - get an unlinked file living in tmpfs
4270 * @name: name for dentry (to be seen in /proc/<pid>/maps
4271 * @size: size to be set for the file
4272 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4273 */
4274 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4275 {
4276 return __shmem_file_setup(name, size, flags, 0);
4277 }
4278 EXPORT_SYMBOL_GPL(shmem_file_setup);
4279
4280 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
4281 {
4282 if (vma->vm_file)
4283 fput(vma->vm_file);
4284 vma->vm_file = file;
4285 vma->vm_ops = &shmem_vm_ops;
4286 }
4287
4288 /**
4289 * shmem_zero_setup - setup a shared anonymous mapping
4290 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4291 */
4292 int shmem_zero_setup(struct vm_area_struct *vma)
4293 {
4294 struct file *file;
4295 loff_t size = vma->vm_end - vma->vm_start;
4296
4297 /*
4298 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4299 * between XFS directory reading and selinux: since this file is only
4300 * accessible to the user through its mapping, use S_PRIVATE flag to
4301 * bypass file security, in the same way as shmem_kernel_file_setup().
4302 */
4303 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4304 if (IS_ERR(file))
4305 return PTR_ERR(file);
4306
4307 shmem_set_file(vma, file);
4308
4309 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4310 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4311 (vma->vm_end & HPAGE_PMD_MASK)) {
4312 khugepaged_enter(vma, vma->vm_flags);
4313 }
4314
4315 return 0;
4316 }
4317
4318 /**
4319 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4320 * @mapping: the page's address_space
4321 * @index: the page index
4322 * @gfp: the page allocator flags to use if allocating
4323 *
4324 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4325 * with any new page allocations done using the specified allocation flags.
4326 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4327 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4328 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4329 *
4330 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4331 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4332 */
4333 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4334 pgoff_t index, gfp_t gfp)
4335 {
4336 #ifdef CONFIG_SHMEM
4337 struct inode *inode = mapping->host;
4338 struct page *page;
4339 int error;
4340
4341 BUG_ON(mapping->a_ops != &shmem_aops);
4342 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4343 gfp, NULL, NULL, NULL);
4344 if (error)
4345 page = ERR_PTR(error);
4346 else
4347 unlock_page(page);
4348 return page;
4349 #else
4350 /*
4351 * The tiny !SHMEM case uses ramfs without swap
4352 */
4353 return read_cache_page_gfp(mapping, index, gfp);
4354 #endif
4355 }
4356 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);