Merge 4.4.88 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
385 pagevec_remove_exceptionals(&pvec);
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390 }
391
392 /*
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395 */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct shmem_inode_info *info = SHMEM_I(inode);
401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
413
414 pagevec_init(&pvec, 0);
415 index = start;
416 while (index < end) {
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
420 if (!pvec.nr)
421 break;
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
425 index = indices[i];
426 if (index >= end)
427 break;
428
429 if (radix_tree_exceptional_entry(page)) {
430 if (unfalloc)
431 continue;
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
434 continue;
435 }
436
437 if (!trylock_page(page))
438 continue;
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
441 VM_BUG_ON_PAGE(PageWriteback(page), page);
442 truncate_inode_page(mapping, page);
443 }
444 }
445 unlock_page(page);
446 }
447 pagevec_remove_exceptionals(&pvec);
448 pagevec_release(&pvec);
449 cond_resched();
450 index++;
451 }
452
453 if (partial_start) {
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
461 }
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
466 }
467 }
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
476 }
477 }
478 if (start >= end)
479 return;
480
481 index = start;
482 while (index < end) {
483 cond_resched();
484
485 pvec.nr = find_get_entries(mapping, index,
486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 pvec.pages, indices);
488 if (!pvec.nr) {
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
491 break;
492 /* But if truncating, restart to make sure all gone */
493 index = start;
494 continue;
495 }
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
498
499 index = indices[i];
500 if (index >= end)
501 break;
502
503 if (radix_tree_exceptional_entry(page)) {
504 if (unfalloc)
505 continue;
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
510 }
511 nr_swaps_freed++;
512 continue;
513 }
514
515 lock_page(page);
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
518 VM_BUG_ON_PAGE(PageWriteback(page), page);
519 truncate_inode_page(mapping, page);
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
525 }
526 }
527 unlock_page(page);
528 }
529 pagevec_remove_exceptionals(&pvec);
530 pagevec_release(&pvec);
531 index++;
532 }
533
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 shmem_undo_range(inode, lstart, lend, false);
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 struct kstat *stat)
549 {
550 struct inode *inode = dentry->d_inode;
551 struct shmem_inode_info *info = SHMEM_I(inode);
552
553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 spin_lock(&info->lock);
555 shmem_recalc_inode(inode);
556 spin_unlock(&info->lock);
557 }
558 generic_fillattr(inode, stat);
559 return 0;
560 }
561
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564 struct inode *inode = d_inode(dentry);
565 struct shmem_inode_info *info = SHMEM_I(inode);
566 int error;
567
568 error = inode_change_ok(inode, attr);
569 if (error)
570 return error;
571
572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 loff_t oldsize = inode->i_size;
574 loff_t newsize = attr->ia_size;
575
576 /* protected by i_mutex */
577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 return -EPERM;
580
581 if (newsize != oldsize) {
582 error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 oldsize, newsize);
584 if (error)
585 return error;
586 i_size_write(inode, newsize);
587 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588 }
589 if (newsize <= oldsize) {
590 loff_t holebegin = round_up(newsize, PAGE_SIZE);
591 if (oldsize > holebegin)
592 unmap_mapping_range(inode->i_mapping,
593 holebegin, 0, 1);
594 if (info->alloced)
595 shmem_truncate_range(inode,
596 newsize, (loff_t)-1);
597 /* unmap again to remove racily COWed private pages */
598 if (oldsize > holebegin)
599 unmap_mapping_range(inode->i_mapping,
600 holebegin, 0, 1);
601 }
602 }
603
604 setattr_copy(inode, attr);
605 if (attr->ia_valid & ATTR_MODE)
606 error = posix_acl_chmod(inode, inode->i_mode);
607 return error;
608 }
609
610 static void shmem_evict_inode(struct inode *inode)
611 {
612 struct shmem_inode_info *info = SHMEM_I(inode);
613
614 if (inode->i_mapping->a_ops == &shmem_aops) {
615 shmem_unacct_size(info->flags, inode->i_size);
616 inode->i_size = 0;
617 shmem_truncate_range(inode, 0, (loff_t)-1);
618 if (!list_empty(&info->swaplist)) {
619 mutex_lock(&shmem_swaplist_mutex);
620 list_del_init(&info->swaplist);
621 mutex_unlock(&shmem_swaplist_mutex);
622 }
623 }
624
625 simple_xattrs_free(&info->xattrs);
626 WARN_ON(inode->i_blocks);
627 shmem_free_inode(inode->i_sb);
628 clear_inode(inode);
629 }
630
631 /*
632 * If swap found in inode, free it and move page from swapcache to filecache.
633 */
634 static int shmem_unuse_inode(struct shmem_inode_info *info,
635 swp_entry_t swap, struct page **pagep)
636 {
637 struct address_space *mapping = info->vfs_inode.i_mapping;
638 void *radswap;
639 pgoff_t index;
640 gfp_t gfp;
641 int error = 0;
642
643 radswap = swp_to_radix_entry(swap);
644 index = radix_tree_locate_item(&mapping->page_tree, radswap);
645 if (index == -1)
646 return -EAGAIN; /* tell shmem_unuse we found nothing */
647
648 /*
649 * Move _head_ to start search for next from here.
650 * But be careful: shmem_evict_inode checks list_empty without taking
651 * mutex, and there's an instant in list_move_tail when info->swaplist
652 * would appear empty, if it were the only one on shmem_swaplist.
653 */
654 if (shmem_swaplist.next != &info->swaplist)
655 list_move_tail(&shmem_swaplist, &info->swaplist);
656
657 gfp = mapping_gfp_mask(mapping);
658 if (shmem_should_replace_page(*pagep, gfp)) {
659 mutex_unlock(&shmem_swaplist_mutex);
660 error = shmem_replace_page(pagep, gfp, info, index);
661 mutex_lock(&shmem_swaplist_mutex);
662 /*
663 * We needed to drop mutex to make that restrictive page
664 * allocation, but the inode might have been freed while we
665 * dropped it: although a racing shmem_evict_inode() cannot
666 * complete without emptying the radix_tree, our page lock
667 * on this swapcache page is not enough to prevent that -
668 * free_swap_and_cache() of our swap entry will only
669 * trylock_page(), removing swap from radix_tree whatever.
670 *
671 * We must not proceed to shmem_add_to_page_cache() if the
672 * inode has been freed, but of course we cannot rely on
673 * inode or mapping or info to check that. However, we can
674 * safely check if our swap entry is still in use (and here
675 * it can't have got reused for another page): if it's still
676 * in use, then the inode cannot have been freed yet, and we
677 * can safely proceed (if it's no longer in use, that tells
678 * nothing about the inode, but we don't need to unuse swap).
679 */
680 if (!page_swapcount(*pagep))
681 error = -ENOENT;
682 }
683
684 /*
685 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
686 * but also to hold up shmem_evict_inode(): so inode cannot be freed
687 * beneath us (pagelock doesn't help until the page is in pagecache).
688 */
689 if (!error)
690 error = shmem_add_to_page_cache(*pagep, mapping, index,
691 radswap);
692 if (error != -ENOMEM) {
693 /*
694 * Truncation and eviction use free_swap_and_cache(), which
695 * only does trylock page: if we raced, best clean up here.
696 */
697 delete_from_swap_cache(*pagep);
698 set_page_dirty(*pagep);
699 if (!error) {
700 spin_lock(&info->lock);
701 info->swapped--;
702 spin_unlock(&info->lock);
703 swap_free(swap);
704 }
705 }
706 return error;
707 }
708
709 /*
710 * Search through swapped inodes to find and replace swap by page.
711 */
712 int shmem_unuse(swp_entry_t swap, struct page *page)
713 {
714 struct list_head *this, *next;
715 struct shmem_inode_info *info;
716 struct mem_cgroup *memcg;
717 int error = 0;
718
719 /*
720 * There's a faint possibility that swap page was replaced before
721 * caller locked it: caller will come back later with the right page.
722 */
723 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
724 goto out;
725
726 /*
727 * Charge page using GFP_KERNEL while we can wait, before taking
728 * the shmem_swaplist_mutex which might hold up shmem_writepage().
729 * Charged back to the user (not to caller) when swap account is used.
730 */
731 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
732 if (error)
733 goto out;
734 /* No radix_tree_preload: swap entry keeps a place for page in tree */
735 error = -EAGAIN;
736
737 mutex_lock(&shmem_swaplist_mutex);
738 list_for_each_safe(this, next, &shmem_swaplist) {
739 info = list_entry(this, struct shmem_inode_info, swaplist);
740 if (info->swapped)
741 error = shmem_unuse_inode(info, swap, &page);
742 else
743 list_del_init(&info->swaplist);
744 cond_resched();
745 if (error != -EAGAIN)
746 break;
747 /* found nothing in this: move on to search the next */
748 }
749 mutex_unlock(&shmem_swaplist_mutex);
750
751 if (error) {
752 if (error != -ENOMEM)
753 error = 0;
754 mem_cgroup_cancel_charge(page, memcg);
755 } else
756 mem_cgroup_commit_charge(page, memcg, true);
757 out:
758 unlock_page(page);
759 page_cache_release(page);
760 return error;
761 }
762
763 /*
764 * Move the page from the page cache to the swap cache.
765 */
766 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
767 {
768 struct shmem_inode_info *info;
769 struct address_space *mapping;
770 struct inode *inode;
771 swp_entry_t swap;
772 pgoff_t index;
773
774 BUG_ON(!PageLocked(page));
775 mapping = page->mapping;
776 index = page->index;
777 inode = mapping->host;
778 info = SHMEM_I(inode);
779 if (info->flags & VM_LOCKED)
780 goto redirty;
781 if (!total_swap_pages)
782 goto redirty;
783
784 /*
785 * Our capabilities prevent regular writeback or sync from ever calling
786 * shmem_writepage; but a stacking filesystem might use ->writepage of
787 * its underlying filesystem, in which case tmpfs should write out to
788 * swap only in response to memory pressure, and not for the writeback
789 * threads or sync.
790 */
791 if (!wbc->for_reclaim) {
792 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
793 goto redirty;
794 }
795
796 /*
797 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
798 * value into swapfile.c, the only way we can correctly account for a
799 * fallocated page arriving here is now to initialize it and write it.
800 *
801 * That's okay for a page already fallocated earlier, but if we have
802 * not yet completed the fallocation, then (a) we want to keep track
803 * of this page in case we have to undo it, and (b) it may not be a
804 * good idea to continue anyway, once we're pushing into swap. So
805 * reactivate the page, and let shmem_fallocate() quit when too many.
806 */
807 if (!PageUptodate(page)) {
808 if (inode->i_private) {
809 struct shmem_falloc *shmem_falloc;
810 spin_lock(&inode->i_lock);
811 shmem_falloc = inode->i_private;
812 if (shmem_falloc &&
813 !shmem_falloc->waitq &&
814 index >= shmem_falloc->start &&
815 index < shmem_falloc->next)
816 shmem_falloc->nr_unswapped++;
817 else
818 shmem_falloc = NULL;
819 spin_unlock(&inode->i_lock);
820 if (shmem_falloc)
821 goto redirty;
822 }
823 clear_highpage(page);
824 flush_dcache_page(page);
825 SetPageUptodate(page);
826 }
827
828 swap = get_swap_page();
829 if (!swap.val)
830 goto redirty;
831
832 /*
833 * Add inode to shmem_unuse()'s list of swapped-out inodes,
834 * if it's not already there. Do it now before the page is
835 * moved to swap cache, when its pagelock no longer protects
836 * the inode from eviction. But don't unlock the mutex until
837 * we've incremented swapped, because shmem_unuse_inode() will
838 * prune a !swapped inode from the swaplist under this mutex.
839 */
840 mutex_lock(&shmem_swaplist_mutex);
841 if (list_empty(&info->swaplist))
842 list_add_tail(&info->swaplist, &shmem_swaplist);
843
844 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
845 spin_lock(&info->lock);
846 shmem_recalc_inode(inode);
847 info->swapped++;
848 spin_unlock(&info->lock);
849
850 swap_shmem_alloc(swap);
851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
852
853 mutex_unlock(&shmem_swaplist_mutex);
854 BUG_ON(page_mapped(page));
855 swap_writepage(page, wbc);
856 return 0;
857 }
858
859 mutex_unlock(&shmem_swaplist_mutex);
860 swapcache_free(swap);
861 redirty:
862 set_page_dirty(page);
863 if (wbc->for_reclaim)
864 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
865 unlock_page(page);
866 return 0;
867 }
868
869 #ifdef CONFIG_NUMA
870 #ifdef CONFIG_TMPFS
871 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
872 {
873 char buffer[64];
874
875 if (!mpol || mpol->mode == MPOL_DEFAULT)
876 return; /* show nothing */
877
878 mpol_to_str(buffer, sizeof(buffer), mpol);
879
880 seq_printf(seq, ",mpol=%s", buffer);
881 }
882
883 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
884 {
885 struct mempolicy *mpol = NULL;
886 if (sbinfo->mpol) {
887 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
888 mpol = sbinfo->mpol;
889 mpol_get(mpol);
890 spin_unlock(&sbinfo->stat_lock);
891 }
892 return mpol;
893 }
894 #endif /* CONFIG_TMPFS */
895
896 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
897 struct shmem_inode_info *info, pgoff_t index)
898 {
899 struct vm_area_struct pvma;
900 struct page *page;
901
902 /* Create a pseudo vma that just contains the policy */
903 pvma.vm_start = 0;
904 /* Bias interleave by inode number to distribute better across nodes */
905 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
906 pvma.vm_ops = NULL;
907 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
908
909 page = swapin_readahead(swap, gfp, &pvma, 0);
910
911 /* Drop reference taken by mpol_shared_policy_lookup() */
912 mpol_cond_put(pvma.vm_policy);
913
914 return page;
915 }
916
917 static struct page *shmem_alloc_page(gfp_t gfp,
918 struct shmem_inode_info *info, pgoff_t index)
919 {
920 struct vm_area_struct pvma;
921 struct page *page;
922
923 /* Create a pseudo vma that just contains the policy */
924 pvma.vm_start = 0;
925 /* Bias interleave by inode number to distribute better across nodes */
926 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
927 pvma.vm_ops = NULL;
928 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
929
930 page = alloc_page_vma(gfp, &pvma, 0);
931
932 /* Drop reference taken by mpol_shared_policy_lookup() */
933 mpol_cond_put(pvma.vm_policy);
934
935 return page;
936 }
937 #else /* !CONFIG_NUMA */
938 #ifdef CONFIG_TMPFS
939 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
940 {
941 }
942 #endif /* CONFIG_TMPFS */
943
944 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
945 struct shmem_inode_info *info, pgoff_t index)
946 {
947 return swapin_readahead(swap, gfp, NULL, 0);
948 }
949
950 static inline struct page *shmem_alloc_page(gfp_t gfp,
951 struct shmem_inode_info *info, pgoff_t index)
952 {
953 return alloc_page(gfp);
954 }
955 #endif /* CONFIG_NUMA */
956
957 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
958 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
959 {
960 return NULL;
961 }
962 #endif
963
964 /*
965 * When a page is moved from swapcache to shmem filecache (either by the
966 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
967 * shmem_unuse_inode()), it may have been read in earlier from swap, in
968 * ignorance of the mapping it belongs to. If that mapping has special
969 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
970 * we may need to copy to a suitable page before moving to filecache.
971 *
972 * In a future release, this may well be extended to respect cpuset and
973 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
974 * but for now it is a simple matter of zone.
975 */
976 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
977 {
978 return page_zonenum(page) > gfp_zone(gfp);
979 }
980
981 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
982 struct shmem_inode_info *info, pgoff_t index)
983 {
984 struct page *oldpage, *newpage;
985 struct address_space *swap_mapping;
986 pgoff_t swap_index;
987 int error;
988
989 oldpage = *pagep;
990 swap_index = page_private(oldpage);
991 swap_mapping = page_mapping(oldpage);
992
993 /*
994 * We have arrived here because our zones are constrained, so don't
995 * limit chance of success by further cpuset and node constraints.
996 */
997 gfp &= ~GFP_CONSTRAINT_MASK;
998 newpage = shmem_alloc_page(gfp, info, index);
999 if (!newpage)
1000 return -ENOMEM;
1001
1002 page_cache_get(newpage);
1003 copy_highpage(newpage, oldpage);
1004 flush_dcache_page(newpage);
1005
1006 __set_page_locked(newpage);
1007 SetPageUptodate(newpage);
1008 SetPageSwapBacked(newpage);
1009 set_page_private(newpage, swap_index);
1010 SetPageSwapCache(newpage);
1011
1012 /*
1013 * Our caller will very soon move newpage out of swapcache, but it's
1014 * a nice clean interface for us to replace oldpage by newpage there.
1015 */
1016 spin_lock_irq(&swap_mapping->tree_lock);
1017 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1018 newpage);
1019 if (!error) {
1020 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1021 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1022 }
1023 spin_unlock_irq(&swap_mapping->tree_lock);
1024
1025 if (unlikely(error)) {
1026 /*
1027 * Is this possible? I think not, now that our callers check
1028 * both PageSwapCache and page_private after getting page lock;
1029 * but be defensive. Reverse old to newpage for clear and free.
1030 */
1031 oldpage = newpage;
1032 } else {
1033 mem_cgroup_replace_page(oldpage, newpage);
1034 lru_cache_add_anon(newpage);
1035 *pagep = newpage;
1036 }
1037
1038 ClearPageSwapCache(oldpage);
1039 set_page_private(oldpage, 0);
1040
1041 unlock_page(oldpage);
1042 page_cache_release(oldpage);
1043 page_cache_release(oldpage);
1044 return error;
1045 }
1046
1047 /*
1048 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1049 *
1050 * If we allocate a new one we do not mark it dirty. That's up to the
1051 * vm. If we swap it in we mark it dirty since we also free the swap
1052 * entry since a page cannot live in both the swap and page cache
1053 */
1054 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1055 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1056 {
1057 struct address_space *mapping = inode->i_mapping;
1058 struct shmem_inode_info *info;
1059 struct shmem_sb_info *sbinfo;
1060 struct mem_cgroup *memcg;
1061 struct page *page;
1062 swp_entry_t swap;
1063 int error;
1064 int once = 0;
1065 int alloced = 0;
1066
1067 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1068 return -EFBIG;
1069 repeat:
1070 swap.val = 0;
1071 page = find_lock_entry(mapping, index);
1072 if (radix_tree_exceptional_entry(page)) {
1073 swap = radix_to_swp_entry(page);
1074 page = NULL;
1075 }
1076
1077 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1078 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1079 error = -EINVAL;
1080 goto unlock;
1081 }
1082
1083 if (page && sgp == SGP_WRITE)
1084 mark_page_accessed(page);
1085
1086 /* fallocated page? */
1087 if (page && !PageUptodate(page)) {
1088 if (sgp != SGP_READ)
1089 goto clear;
1090 unlock_page(page);
1091 page_cache_release(page);
1092 page = NULL;
1093 }
1094 if (page || (sgp == SGP_READ && !swap.val)) {
1095 *pagep = page;
1096 return 0;
1097 }
1098
1099 /*
1100 * Fast cache lookup did not find it:
1101 * bring it back from swap or allocate.
1102 */
1103 info = SHMEM_I(inode);
1104 sbinfo = SHMEM_SB(inode->i_sb);
1105
1106 if (swap.val) {
1107 /* Look it up and read it in.. */
1108 page = lookup_swap_cache(swap);
1109 if (!page) {
1110 /* here we actually do the io */
1111 if (fault_type)
1112 *fault_type |= VM_FAULT_MAJOR;
1113 page = shmem_swapin(swap, gfp, info, index);
1114 if (!page) {
1115 error = -ENOMEM;
1116 goto failed;
1117 }
1118 }
1119
1120 /* We have to do this with page locked to prevent races */
1121 lock_page(page);
1122 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1123 !shmem_confirm_swap(mapping, index, swap)) {
1124 error = -EEXIST; /* try again */
1125 goto unlock;
1126 }
1127 if (!PageUptodate(page)) {
1128 error = -EIO;
1129 goto failed;
1130 }
1131 wait_on_page_writeback(page);
1132
1133 if (shmem_should_replace_page(page, gfp)) {
1134 error = shmem_replace_page(&page, gfp, info, index);
1135 if (error)
1136 goto failed;
1137 }
1138
1139 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1140 if (!error) {
1141 error = shmem_add_to_page_cache(page, mapping, index,
1142 swp_to_radix_entry(swap));
1143 /*
1144 * We already confirmed swap under page lock, and make
1145 * no memory allocation here, so usually no possibility
1146 * of error; but free_swap_and_cache() only trylocks a
1147 * page, so it is just possible that the entry has been
1148 * truncated or holepunched since swap was confirmed.
1149 * shmem_undo_range() will have done some of the
1150 * unaccounting, now delete_from_swap_cache() will do
1151 * the rest.
1152 * Reset swap.val? No, leave it so "failed" goes back to
1153 * "repeat": reading a hole and writing should succeed.
1154 */
1155 if (error) {
1156 mem_cgroup_cancel_charge(page, memcg);
1157 delete_from_swap_cache(page);
1158 }
1159 }
1160 if (error)
1161 goto failed;
1162
1163 mem_cgroup_commit_charge(page, memcg, true);
1164
1165 spin_lock(&info->lock);
1166 info->swapped--;
1167 shmem_recalc_inode(inode);
1168 spin_unlock(&info->lock);
1169
1170 if (sgp == SGP_WRITE)
1171 mark_page_accessed(page);
1172
1173 delete_from_swap_cache(page);
1174 set_page_dirty(page);
1175 swap_free(swap);
1176
1177 } else {
1178 if (shmem_acct_block(info->flags)) {
1179 error = -ENOSPC;
1180 goto failed;
1181 }
1182 if (sbinfo->max_blocks) {
1183 if (percpu_counter_compare(&sbinfo->used_blocks,
1184 sbinfo->max_blocks) >= 0) {
1185 error = -ENOSPC;
1186 goto unacct;
1187 }
1188 percpu_counter_inc(&sbinfo->used_blocks);
1189 }
1190
1191 page = shmem_alloc_page(gfp, info, index);
1192 if (!page) {
1193 error = -ENOMEM;
1194 goto decused;
1195 }
1196
1197 __SetPageSwapBacked(page);
1198 __set_page_locked(page);
1199 if (sgp == SGP_WRITE)
1200 __SetPageReferenced(page);
1201
1202 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1203 if (error)
1204 goto decused;
1205 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1206 if (!error) {
1207 error = shmem_add_to_page_cache(page, mapping, index,
1208 NULL);
1209 radix_tree_preload_end();
1210 }
1211 if (error) {
1212 mem_cgroup_cancel_charge(page, memcg);
1213 goto decused;
1214 }
1215 mem_cgroup_commit_charge(page, memcg, false);
1216 lru_cache_add_anon(page);
1217
1218 spin_lock(&info->lock);
1219 info->alloced++;
1220 inode->i_blocks += BLOCKS_PER_PAGE;
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 alloced = true;
1224
1225 /*
1226 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227 */
1228 if (sgp == SGP_FALLOC)
1229 sgp = SGP_WRITE;
1230 clear:
1231 /*
1232 * Let SGP_WRITE caller clear ends if write does not fill page;
1233 * but SGP_FALLOC on a page fallocated earlier must initialize
1234 * it now, lest undo on failure cancel our earlier guarantee.
1235 */
1236 if (sgp != SGP_WRITE) {
1237 clear_highpage(page);
1238 flush_dcache_page(page);
1239 SetPageUptodate(page);
1240 }
1241 if (sgp == SGP_DIRTY)
1242 set_page_dirty(page);
1243 }
1244
1245 /* Perhaps the file has been truncated since we checked */
1246 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248 if (alloced) {
1249 ClearPageDirty(page);
1250 delete_from_page_cache(page);
1251 spin_lock(&info->lock);
1252 shmem_recalc_inode(inode);
1253 spin_unlock(&info->lock);
1254 }
1255 error = -EINVAL;
1256 goto unlock;
1257 }
1258 *pagep = page;
1259 return 0;
1260
1261 /*
1262 * Error recovery.
1263 */
1264 decused:
1265 if (sbinfo->max_blocks)
1266 percpu_counter_add(&sbinfo->used_blocks, -1);
1267 unacct:
1268 shmem_unacct_blocks(info->flags, 1);
1269 failed:
1270 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1271 error = -EEXIST;
1272 unlock:
1273 if (page) {
1274 unlock_page(page);
1275 page_cache_release(page);
1276 }
1277 if (error == -ENOSPC && !once++) {
1278 info = SHMEM_I(inode);
1279 spin_lock(&info->lock);
1280 shmem_recalc_inode(inode);
1281 spin_unlock(&info->lock);
1282 goto repeat;
1283 }
1284 if (error == -EEXIST) /* from above or from radix_tree_insert */
1285 goto repeat;
1286 return error;
1287 }
1288
1289 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290 {
1291 struct inode *inode = file_inode(vma->vm_file);
1292 int error;
1293 int ret = VM_FAULT_LOCKED;
1294
1295 /*
1296 * Trinity finds that probing a hole which tmpfs is punching can
1297 * prevent the hole-punch from ever completing: which in turn
1298 * locks writers out with its hold on i_mutex. So refrain from
1299 * faulting pages into the hole while it's being punched. Although
1300 * shmem_undo_range() does remove the additions, it may be unable to
1301 * keep up, as each new page needs its own unmap_mapping_range() call,
1302 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1303 *
1304 * It does not matter if we sometimes reach this check just before the
1305 * hole-punch begins, so that one fault then races with the punch:
1306 * we just need to make racing faults a rare case.
1307 *
1308 * The implementation below would be much simpler if we just used a
1309 * standard mutex or completion: but we cannot take i_mutex in fault,
1310 * and bloating every shmem inode for this unlikely case would be sad.
1311 */
1312 if (unlikely(inode->i_private)) {
1313 struct shmem_falloc *shmem_falloc;
1314
1315 spin_lock(&inode->i_lock);
1316 shmem_falloc = inode->i_private;
1317 if (shmem_falloc &&
1318 shmem_falloc->waitq &&
1319 vmf->pgoff >= shmem_falloc->start &&
1320 vmf->pgoff < shmem_falloc->next) {
1321 wait_queue_head_t *shmem_falloc_waitq;
1322 DEFINE_WAIT(shmem_fault_wait);
1323
1324 ret = VM_FAULT_NOPAGE;
1325 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1326 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1327 /* It's polite to up mmap_sem if we can */
1328 up_read(&vma->vm_mm->mmap_sem);
1329 ret = VM_FAULT_RETRY;
1330 }
1331
1332 shmem_falloc_waitq = shmem_falloc->waitq;
1333 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1334 TASK_UNINTERRUPTIBLE);
1335 spin_unlock(&inode->i_lock);
1336 schedule();
1337
1338 /*
1339 * shmem_falloc_waitq points into the shmem_fallocate()
1340 * stack of the hole-punching task: shmem_falloc_waitq
1341 * is usually invalid by the time we reach here, but
1342 * finish_wait() does not dereference it in that case;
1343 * though i_lock needed lest racing with wake_up_all().
1344 */
1345 spin_lock(&inode->i_lock);
1346 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1347 spin_unlock(&inode->i_lock);
1348 return ret;
1349 }
1350 spin_unlock(&inode->i_lock);
1351 }
1352
1353 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1354 if (error)
1355 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1356
1357 if (ret & VM_FAULT_MAJOR) {
1358 count_vm_event(PGMAJFAULT);
1359 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1360 }
1361 return ret;
1362 }
1363
1364 #ifdef CONFIG_NUMA
1365 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1366 {
1367 struct inode *inode = file_inode(vma->vm_file);
1368 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1369 }
1370
1371 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1372 unsigned long addr)
1373 {
1374 struct inode *inode = file_inode(vma->vm_file);
1375 pgoff_t index;
1376
1377 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1378 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1379 }
1380 #endif
1381
1382 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1383 {
1384 struct inode *inode = file_inode(file);
1385 struct shmem_inode_info *info = SHMEM_I(inode);
1386 int retval = -ENOMEM;
1387
1388 spin_lock(&info->lock);
1389 if (lock && !(info->flags & VM_LOCKED)) {
1390 if (!user_shm_lock(inode->i_size, user))
1391 goto out_nomem;
1392 info->flags |= VM_LOCKED;
1393 mapping_set_unevictable(file->f_mapping);
1394 }
1395 if (!lock && (info->flags & VM_LOCKED) && user) {
1396 user_shm_unlock(inode->i_size, user);
1397 info->flags &= ~VM_LOCKED;
1398 mapping_clear_unevictable(file->f_mapping);
1399 }
1400 retval = 0;
1401
1402 out_nomem:
1403 spin_unlock(&info->lock);
1404 return retval;
1405 }
1406
1407 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1408 {
1409 file_accessed(file);
1410 vma->vm_ops = &shmem_vm_ops;
1411 return 0;
1412 }
1413
1414 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1415 umode_t mode, dev_t dev, unsigned long flags)
1416 {
1417 struct inode *inode;
1418 struct shmem_inode_info *info;
1419 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1420
1421 if (shmem_reserve_inode(sb))
1422 return NULL;
1423
1424 inode = new_inode(sb);
1425 if (inode) {
1426 inode->i_ino = get_next_ino();
1427 inode_init_owner(inode, dir, mode);
1428 inode->i_blocks = 0;
1429 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1430 inode->i_generation = get_seconds();
1431 info = SHMEM_I(inode);
1432 memset(info, 0, (char *)inode - (char *)info);
1433 spin_lock_init(&info->lock);
1434 info->seals = F_SEAL_SEAL;
1435 info->flags = flags & VM_NORESERVE;
1436 INIT_LIST_HEAD(&info->swaplist);
1437 simple_xattrs_init(&info->xattrs);
1438 cache_no_acl(inode);
1439
1440 switch (mode & S_IFMT) {
1441 default:
1442 inode->i_op = &shmem_special_inode_operations;
1443 init_special_inode(inode, mode, dev);
1444 break;
1445 case S_IFREG:
1446 inode->i_mapping->a_ops = &shmem_aops;
1447 inode->i_op = &shmem_inode_operations;
1448 inode->i_fop = &shmem_file_operations;
1449 mpol_shared_policy_init(&info->policy,
1450 shmem_get_sbmpol(sbinfo));
1451 break;
1452 case S_IFDIR:
1453 inc_nlink(inode);
1454 /* Some things misbehave if size == 0 on a directory */
1455 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1456 inode->i_op = &shmem_dir_inode_operations;
1457 inode->i_fop = &simple_dir_operations;
1458 break;
1459 case S_IFLNK:
1460 /*
1461 * Must not load anything in the rbtree,
1462 * mpol_free_shared_policy will not be called.
1463 */
1464 mpol_shared_policy_init(&info->policy, NULL);
1465 break;
1466 }
1467 } else
1468 shmem_free_inode(sb);
1469 return inode;
1470 }
1471
1472 bool shmem_mapping(struct address_space *mapping)
1473 {
1474 if (!mapping->host)
1475 return false;
1476
1477 return mapping->host->i_sb->s_op == &shmem_ops;
1478 }
1479
1480 #ifdef CONFIG_TMPFS
1481 static const struct inode_operations shmem_symlink_inode_operations;
1482 static const struct inode_operations shmem_short_symlink_operations;
1483
1484 #ifdef CONFIG_TMPFS_XATTR
1485 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1486 #else
1487 #define shmem_initxattrs NULL
1488 #endif
1489
1490 static int
1491 shmem_write_begin(struct file *file, struct address_space *mapping,
1492 loff_t pos, unsigned len, unsigned flags,
1493 struct page **pagep, void **fsdata)
1494 {
1495 struct inode *inode = mapping->host;
1496 struct shmem_inode_info *info = SHMEM_I(inode);
1497 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1498
1499 /* i_mutex is held by caller */
1500 if (unlikely(info->seals)) {
1501 if (info->seals & F_SEAL_WRITE)
1502 return -EPERM;
1503 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1504 return -EPERM;
1505 }
1506
1507 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1508 }
1509
1510 static int
1511 shmem_write_end(struct file *file, struct address_space *mapping,
1512 loff_t pos, unsigned len, unsigned copied,
1513 struct page *page, void *fsdata)
1514 {
1515 struct inode *inode = mapping->host;
1516
1517 if (pos + copied > inode->i_size)
1518 i_size_write(inode, pos + copied);
1519
1520 if (!PageUptodate(page)) {
1521 if (copied < PAGE_CACHE_SIZE) {
1522 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1523 zero_user_segments(page, 0, from,
1524 from + copied, PAGE_CACHE_SIZE);
1525 }
1526 SetPageUptodate(page);
1527 }
1528 set_page_dirty(page);
1529 unlock_page(page);
1530 page_cache_release(page);
1531
1532 return copied;
1533 }
1534
1535 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1536 {
1537 struct file *file = iocb->ki_filp;
1538 struct inode *inode = file_inode(file);
1539 struct address_space *mapping = inode->i_mapping;
1540 pgoff_t index;
1541 unsigned long offset;
1542 enum sgp_type sgp = SGP_READ;
1543 int error = 0;
1544 ssize_t retval = 0;
1545 loff_t *ppos = &iocb->ki_pos;
1546
1547 /*
1548 * Might this read be for a stacking filesystem? Then when reading
1549 * holes of a sparse file, we actually need to allocate those pages,
1550 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1551 */
1552 if (!iter_is_iovec(to))
1553 sgp = SGP_DIRTY;
1554
1555 index = *ppos >> PAGE_CACHE_SHIFT;
1556 offset = *ppos & ~PAGE_CACHE_MASK;
1557
1558 for (;;) {
1559 struct page *page = NULL;
1560 pgoff_t end_index;
1561 unsigned long nr, ret;
1562 loff_t i_size = i_size_read(inode);
1563
1564 end_index = i_size >> PAGE_CACHE_SHIFT;
1565 if (index > end_index)
1566 break;
1567 if (index == end_index) {
1568 nr = i_size & ~PAGE_CACHE_MASK;
1569 if (nr <= offset)
1570 break;
1571 }
1572
1573 error = shmem_getpage(inode, index, &page, sgp, NULL);
1574 if (error) {
1575 if (error == -EINVAL)
1576 error = 0;
1577 break;
1578 }
1579 if (page)
1580 unlock_page(page);
1581
1582 /*
1583 * We must evaluate after, since reads (unlike writes)
1584 * are called without i_mutex protection against truncate
1585 */
1586 nr = PAGE_CACHE_SIZE;
1587 i_size = i_size_read(inode);
1588 end_index = i_size >> PAGE_CACHE_SHIFT;
1589 if (index == end_index) {
1590 nr = i_size & ~PAGE_CACHE_MASK;
1591 if (nr <= offset) {
1592 if (page)
1593 page_cache_release(page);
1594 break;
1595 }
1596 }
1597 nr -= offset;
1598
1599 if (page) {
1600 /*
1601 * If users can be writing to this page using arbitrary
1602 * virtual addresses, take care about potential aliasing
1603 * before reading the page on the kernel side.
1604 */
1605 if (mapping_writably_mapped(mapping))
1606 flush_dcache_page(page);
1607 /*
1608 * Mark the page accessed if we read the beginning.
1609 */
1610 if (!offset)
1611 mark_page_accessed(page);
1612 } else {
1613 page = ZERO_PAGE(0);
1614 page_cache_get(page);
1615 }
1616
1617 /*
1618 * Ok, we have the page, and it's up-to-date, so
1619 * now we can copy it to user space...
1620 */
1621 ret = copy_page_to_iter(page, offset, nr, to);
1622 retval += ret;
1623 offset += ret;
1624 index += offset >> PAGE_CACHE_SHIFT;
1625 offset &= ~PAGE_CACHE_MASK;
1626
1627 page_cache_release(page);
1628 if (!iov_iter_count(to))
1629 break;
1630 if (ret < nr) {
1631 error = -EFAULT;
1632 break;
1633 }
1634 cond_resched();
1635 }
1636
1637 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1638 file_accessed(file);
1639 return retval ? retval : error;
1640 }
1641
1642 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1643 struct pipe_inode_info *pipe, size_t len,
1644 unsigned int flags)
1645 {
1646 struct address_space *mapping = in->f_mapping;
1647 struct inode *inode = mapping->host;
1648 unsigned int loff, nr_pages, req_pages;
1649 struct page *pages[PIPE_DEF_BUFFERS];
1650 struct partial_page partial[PIPE_DEF_BUFFERS];
1651 struct page *page;
1652 pgoff_t index, end_index;
1653 loff_t isize, left;
1654 int error, page_nr;
1655 struct splice_pipe_desc spd = {
1656 .pages = pages,
1657 .partial = partial,
1658 .nr_pages_max = PIPE_DEF_BUFFERS,
1659 .flags = flags,
1660 .ops = &page_cache_pipe_buf_ops,
1661 .spd_release = spd_release_page,
1662 };
1663
1664 isize = i_size_read(inode);
1665 if (unlikely(*ppos >= isize))
1666 return 0;
1667
1668 left = isize - *ppos;
1669 if (unlikely(left < len))
1670 len = left;
1671
1672 if (splice_grow_spd(pipe, &spd))
1673 return -ENOMEM;
1674
1675 index = *ppos >> PAGE_CACHE_SHIFT;
1676 loff = *ppos & ~PAGE_CACHE_MASK;
1677 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1678 nr_pages = min(req_pages, spd.nr_pages_max);
1679
1680 spd.nr_pages = find_get_pages_contig(mapping, index,
1681 nr_pages, spd.pages);
1682 index += spd.nr_pages;
1683 error = 0;
1684
1685 while (spd.nr_pages < nr_pages) {
1686 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1687 if (error)
1688 break;
1689 unlock_page(page);
1690 spd.pages[spd.nr_pages++] = page;
1691 index++;
1692 }
1693
1694 index = *ppos >> PAGE_CACHE_SHIFT;
1695 nr_pages = spd.nr_pages;
1696 spd.nr_pages = 0;
1697
1698 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1699 unsigned int this_len;
1700
1701 if (!len)
1702 break;
1703
1704 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1705 page = spd.pages[page_nr];
1706
1707 if (!PageUptodate(page) || page->mapping != mapping) {
1708 error = shmem_getpage(inode, index, &page,
1709 SGP_CACHE, NULL);
1710 if (error)
1711 break;
1712 unlock_page(page);
1713 page_cache_release(spd.pages[page_nr]);
1714 spd.pages[page_nr] = page;
1715 }
1716
1717 isize = i_size_read(inode);
1718 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1719 if (unlikely(!isize || index > end_index))
1720 break;
1721
1722 if (end_index == index) {
1723 unsigned int plen;
1724
1725 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1726 if (plen <= loff)
1727 break;
1728
1729 this_len = min(this_len, plen - loff);
1730 len = this_len;
1731 }
1732
1733 spd.partial[page_nr].offset = loff;
1734 spd.partial[page_nr].len = this_len;
1735 len -= this_len;
1736 loff = 0;
1737 spd.nr_pages++;
1738 index++;
1739 }
1740
1741 while (page_nr < nr_pages)
1742 page_cache_release(spd.pages[page_nr++]);
1743
1744 if (spd.nr_pages)
1745 error = splice_to_pipe(pipe, &spd);
1746
1747 splice_shrink_spd(&spd);
1748
1749 if (error > 0) {
1750 *ppos += error;
1751 file_accessed(in);
1752 }
1753 return error;
1754 }
1755
1756 /*
1757 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1758 */
1759 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1760 pgoff_t index, pgoff_t end, int whence)
1761 {
1762 struct page *page;
1763 struct pagevec pvec;
1764 pgoff_t indices[PAGEVEC_SIZE];
1765 bool done = false;
1766 int i;
1767
1768 pagevec_init(&pvec, 0);
1769 pvec.nr = 1; /* start small: we may be there already */
1770 while (!done) {
1771 pvec.nr = find_get_entries(mapping, index,
1772 pvec.nr, pvec.pages, indices);
1773 if (!pvec.nr) {
1774 if (whence == SEEK_DATA)
1775 index = end;
1776 break;
1777 }
1778 for (i = 0; i < pvec.nr; i++, index++) {
1779 if (index < indices[i]) {
1780 if (whence == SEEK_HOLE) {
1781 done = true;
1782 break;
1783 }
1784 index = indices[i];
1785 }
1786 page = pvec.pages[i];
1787 if (page && !radix_tree_exceptional_entry(page)) {
1788 if (!PageUptodate(page))
1789 page = NULL;
1790 }
1791 if (index >= end ||
1792 (page && whence == SEEK_DATA) ||
1793 (!page && whence == SEEK_HOLE)) {
1794 done = true;
1795 break;
1796 }
1797 }
1798 pagevec_remove_exceptionals(&pvec);
1799 pagevec_release(&pvec);
1800 pvec.nr = PAGEVEC_SIZE;
1801 cond_resched();
1802 }
1803 return index;
1804 }
1805
1806 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1807 {
1808 struct address_space *mapping = file->f_mapping;
1809 struct inode *inode = mapping->host;
1810 pgoff_t start, end;
1811 loff_t new_offset;
1812
1813 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1814 return generic_file_llseek_size(file, offset, whence,
1815 MAX_LFS_FILESIZE, i_size_read(inode));
1816 mutex_lock(&inode->i_mutex);
1817 /* We're holding i_mutex so we can access i_size directly */
1818
1819 if (offset < 0)
1820 offset = -EINVAL;
1821 else if (offset >= inode->i_size)
1822 offset = -ENXIO;
1823 else {
1824 start = offset >> PAGE_CACHE_SHIFT;
1825 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1826 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1827 new_offset <<= PAGE_CACHE_SHIFT;
1828 if (new_offset > offset) {
1829 if (new_offset < inode->i_size)
1830 offset = new_offset;
1831 else if (whence == SEEK_DATA)
1832 offset = -ENXIO;
1833 else
1834 offset = inode->i_size;
1835 }
1836 }
1837
1838 if (offset >= 0)
1839 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1840 mutex_unlock(&inode->i_mutex);
1841 return offset;
1842 }
1843
1844 /*
1845 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1846 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1847 */
1848 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1849 #define LAST_SCAN 4 /* about 150ms max */
1850
1851 static void shmem_tag_pins(struct address_space *mapping)
1852 {
1853 struct radix_tree_iter iter;
1854 void **slot;
1855 pgoff_t start;
1856 struct page *page;
1857
1858 lru_add_drain();
1859 start = 0;
1860 rcu_read_lock();
1861
1862 restart:
1863 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1864 page = radix_tree_deref_slot(slot);
1865 if (!page || radix_tree_exception(page)) {
1866 if (radix_tree_deref_retry(page))
1867 goto restart;
1868 } else if (page_count(page) - page_mapcount(page) > 1) {
1869 spin_lock_irq(&mapping->tree_lock);
1870 radix_tree_tag_set(&mapping->page_tree, iter.index,
1871 SHMEM_TAG_PINNED);
1872 spin_unlock_irq(&mapping->tree_lock);
1873 }
1874
1875 if (need_resched()) {
1876 cond_resched_rcu();
1877 start = iter.index + 1;
1878 goto restart;
1879 }
1880 }
1881 rcu_read_unlock();
1882 }
1883
1884 /*
1885 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1886 * via get_user_pages(), drivers might have some pending I/O without any active
1887 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1888 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1889 * them to be dropped.
1890 * The caller must guarantee that no new user will acquire writable references
1891 * to those pages to avoid races.
1892 */
1893 static int shmem_wait_for_pins(struct address_space *mapping)
1894 {
1895 struct radix_tree_iter iter;
1896 void **slot;
1897 pgoff_t start;
1898 struct page *page;
1899 int error, scan;
1900
1901 shmem_tag_pins(mapping);
1902
1903 error = 0;
1904 for (scan = 0; scan <= LAST_SCAN; scan++) {
1905 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1906 break;
1907
1908 if (!scan)
1909 lru_add_drain_all();
1910 else if (schedule_timeout_killable((HZ << scan) / 200))
1911 scan = LAST_SCAN;
1912
1913 start = 0;
1914 rcu_read_lock();
1915 restart:
1916 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1917 start, SHMEM_TAG_PINNED) {
1918
1919 page = radix_tree_deref_slot(slot);
1920 if (radix_tree_exception(page)) {
1921 if (radix_tree_deref_retry(page))
1922 goto restart;
1923
1924 page = NULL;
1925 }
1926
1927 if (page &&
1928 page_count(page) - page_mapcount(page) != 1) {
1929 if (scan < LAST_SCAN)
1930 goto continue_resched;
1931
1932 /*
1933 * On the last scan, we clean up all those tags
1934 * we inserted; but make a note that we still
1935 * found pages pinned.
1936 */
1937 error = -EBUSY;
1938 }
1939
1940 spin_lock_irq(&mapping->tree_lock);
1941 radix_tree_tag_clear(&mapping->page_tree,
1942 iter.index, SHMEM_TAG_PINNED);
1943 spin_unlock_irq(&mapping->tree_lock);
1944 continue_resched:
1945 if (need_resched()) {
1946 cond_resched_rcu();
1947 start = iter.index + 1;
1948 goto restart;
1949 }
1950 }
1951 rcu_read_unlock();
1952 }
1953
1954 return error;
1955 }
1956
1957 #define F_ALL_SEALS (F_SEAL_SEAL | \
1958 F_SEAL_SHRINK | \
1959 F_SEAL_GROW | \
1960 F_SEAL_WRITE)
1961
1962 int shmem_add_seals(struct file *file, unsigned int seals)
1963 {
1964 struct inode *inode = file_inode(file);
1965 struct shmem_inode_info *info = SHMEM_I(inode);
1966 int error;
1967
1968 /*
1969 * SEALING
1970 * Sealing allows multiple parties to share a shmem-file but restrict
1971 * access to a specific subset of file operations. Seals can only be
1972 * added, but never removed. This way, mutually untrusted parties can
1973 * share common memory regions with a well-defined policy. A malicious
1974 * peer can thus never perform unwanted operations on a shared object.
1975 *
1976 * Seals are only supported on special shmem-files and always affect
1977 * the whole underlying inode. Once a seal is set, it may prevent some
1978 * kinds of access to the file. Currently, the following seals are
1979 * defined:
1980 * SEAL_SEAL: Prevent further seals from being set on this file
1981 * SEAL_SHRINK: Prevent the file from shrinking
1982 * SEAL_GROW: Prevent the file from growing
1983 * SEAL_WRITE: Prevent write access to the file
1984 *
1985 * As we don't require any trust relationship between two parties, we
1986 * must prevent seals from being removed. Therefore, sealing a file
1987 * only adds a given set of seals to the file, it never touches
1988 * existing seals. Furthermore, the "setting seals"-operation can be
1989 * sealed itself, which basically prevents any further seal from being
1990 * added.
1991 *
1992 * Semantics of sealing are only defined on volatile files. Only
1993 * anonymous shmem files support sealing. More importantly, seals are
1994 * never written to disk. Therefore, there's no plan to support it on
1995 * other file types.
1996 */
1997
1998 if (file->f_op != &shmem_file_operations)
1999 return -EINVAL;
2000 if (!(file->f_mode & FMODE_WRITE))
2001 return -EPERM;
2002 if (seals & ~(unsigned int)F_ALL_SEALS)
2003 return -EINVAL;
2004
2005 mutex_lock(&inode->i_mutex);
2006
2007 if (info->seals & F_SEAL_SEAL) {
2008 error = -EPERM;
2009 goto unlock;
2010 }
2011
2012 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2013 error = mapping_deny_writable(file->f_mapping);
2014 if (error)
2015 goto unlock;
2016
2017 error = shmem_wait_for_pins(file->f_mapping);
2018 if (error) {
2019 mapping_allow_writable(file->f_mapping);
2020 goto unlock;
2021 }
2022 }
2023
2024 info->seals |= seals;
2025 error = 0;
2026
2027 unlock:
2028 mutex_unlock(&inode->i_mutex);
2029 return error;
2030 }
2031 EXPORT_SYMBOL_GPL(shmem_add_seals);
2032
2033 int shmem_get_seals(struct file *file)
2034 {
2035 if (file->f_op != &shmem_file_operations)
2036 return -EINVAL;
2037
2038 return SHMEM_I(file_inode(file))->seals;
2039 }
2040 EXPORT_SYMBOL_GPL(shmem_get_seals);
2041
2042 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2043 {
2044 long error;
2045
2046 switch (cmd) {
2047 case F_ADD_SEALS:
2048 /* disallow upper 32bit */
2049 if (arg > UINT_MAX)
2050 return -EINVAL;
2051
2052 error = shmem_add_seals(file, arg);
2053 break;
2054 case F_GET_SEALS:
2055 error = shmem_get_seals(file);
2056 break;
2057 default:
2058 error = -EINVAL;
2059 break;
2060 }
2061
2062 return error;
2063 }
2064
2065 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2066 loff_t len)
2067 {
2068 struct inode *inode = file_inode(file);
2069 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2070 struct shmem_inode_info *info = SHMEM_I(inode);
2071 struct shmem_falloc shmem_falloc;
2072 pgoff_t start, index, end;
2073 int error;
2074
2075 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2076 return -EOPNOTSUPP;
2077
2078 mutex_lock(&inode->i_mutex);
2079
2080 if (mode & FALLOC_FL_PUNCH_HOLE) {
2081 struct address_space *mapping = file->f_mapping;
2082 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2083 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2084 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2085
2086 /* protected by i_mutex */
2087 if (info->seals & F_SEAL_WRITE) {
2088 error = -EPERM;
2089 goto out;
2090 }
2091
2092 shmem_falloc.waitq = &shmem_falloc_waitq;
2093 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2094 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2095 spin_lock(&inode->i_lock);
2096 inode->i_private = &shmem_falloc;
2097 spin_unlock(&inode->i_lock);
2098
2099 if ((u64)unmap_end > (u64)unmap_start)
2100 unmap_mapping_range(mapping, unmap_start,
2101 1 + unmap_end - unmap_start, 0);
2102 shmem_truncate_range(inode, offset, offset + len - 1);
2103 /* No need to unmap again: hole-punching leaves COWed pages */
2104
2105 spin_lock(&inode->i_lock);
2106 inode->i_private = NULL;
2107 wake_up_all(&shmem_falloc_waitq);
2108 spin_unlock(&inode->i_lock);
2109 error = 0;
2110 goto out;
2111 }
2112
2113 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2114 error = inode_newsize_ok(inode, offset + len);
2115 if (error)
2116 goto out;
2117
2118 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2119 error = -EPERM;
2120 goto out;
2121 }
2122
2123 start = offset >> PAGE_CACHE_SHIFT;
2124 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2125 /* Try to avoid a swapstorm if len is impossible to satisfy */
2126 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2127 error = -ENOSPC;
2128 goto out;
2129 }
2130
2131 shmem_falloc.waitq = NULL;
2132 shmem_falloc.start = start;
2133 shmem_falloc.next = start;
2134 shmem_falloc.nr_falloced = 0;
2135 shmem_falloc.nr_unswapped = 0;
2136 spin_lock(&inode->i_lock);
2137 inode->i_private = &shmem_falloc;
2138 spin_unlock(&inode->i_lock);
2139
2140 for (index = start; index < end; index++) {
2141 struct page *page;
2142
2143 /*
2144 * Good, the fallocate(2) manpage permits EINTR: we may have
2145 * been interrupted because we are using up too much memory.
2146 */
2147 if (signal_pending(current))
2148 error = -EINTR;
2149 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2150 error = -ENOMEM;
2151 else
2152 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2153 NULL);
2154 if (error) {
2155 /* Remove the !PageUptodate pages we added */
2156 if (index > start) {
2157 shmem_undo_range(inode,
2158 (loff_t)start << PAGE_CACHE_SHIFT,
2159 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
2160 }
2161 goto undone;
2162 }
2163
2164 /*
2165 * Inform shmem_writepage() how far we have reached.
2166 * No need for lock or barrier: we have the page lock.
2167 */
2168 shmem_falloc.next++;
2169 if (!PageUptodate(page))
2170 shmem_falloc.nr_falloced++;
2171
2172 /*
2173 * If !PageUptodate, leave it that way so that freeable pages
2174 * can be recognized if we need to rollback on error later.
2175 * But set_page_dirty so that memory pressure will swap rather
2176 * than free the pages we are allocating (and SGP_CACHE pages
2177 * might still be clean: we now need to mark those dirty too).
2178 */
2179 set_page_dirty(page);
2180 unlock_page(page);
2181 page_cache_release(page);
2182 cond_resched();
2183 }
2184
2185 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2186 i_size_write(inode, offset + len);
2187 inode->i_ctime = CURRENT_TIME;
2188 undone:
2189 spin_lock(&inode->i_lock);
2190 inode->i_private = NULL;
2191 spin_unlock(&inode->i_lock);
2192 out:
2193 mutex_unlock(&inode->i_mutex);
2194 return error;
2195 }
2196
2197 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2198 {
2199 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2200
2201 buf->f_type = TMPFS_MAGIC;
2202 buf->f_bsize = PAGE_CACHE_SIZE;
2203 buf->f_namelen = NAME_MAX;
2204 if (sbinfo->max_blocks) {
2205 buf->f_blocks = sbinfo->max_blocks;
2206 buf->f_bavail =
2207 buf->f_bfree = sbinfo->max_blocks -
2208 percpu_counter_sum(&sbinfo->used_blocks);
2209 }
2210 if (sbinfo->max_inodes) {
2211 buf->f_files = sbinfo->max_inodes;
2212 buf->f_ffree = sbinfo->free_inodes;
2213 }
2214 /* else leave those fields 0 like simple_statfs */
2215 return 0;
2216 }
2217
2218 /*
2219 * File creation. Allocate an inode, and we're done..
2220 */
2221 static int
2222 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2223 {
2224 struct inode *inode;
2225 int error = -ENOSPC;
2226
2227 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2228 if (inode) {
2229 error = simple_acl_create(dir, inode);
2230 if (error)
2231 goto out_iput;
2232 error = security_inode_init_security(inode, dir,
2233 &dentry->d_name,
2234 shmem_initxattrs, NULL);
2235 if (error && error != -EOPNOTSUPP)
2236 goto out_iput;
2237
2238 error = 0;
2239 dir->i_size += BOGO_DIRENT_SIZE;
2240 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2241 d_instantiate(dentry, inode);
2242 dget(dentry); /* Extra count - pin the dentry in core */
2243 }
2244 return error;
2245 out_iput:
2246 iput(inode);
2247 return error;
2248 }
2249
2250 static int
2251 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2252 {
2253 struct inode *inode;
2254 int error = -ENOSPC;
2255
2256 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2257 if (inode) {
2258 error = security_inode_init_security(inode, dir,
2259 NULL,
2260 shmem_initxattrs, NULL);
2261 if (error && error != -EOPNOTSUPP)
2262 goto out_iput;
2263 error = simple_acl_create(dir, inode);
2264 if (error)
2265 goto out_iput;
2266 d_tmpfile(dentry, inode);
2267 }
2268 return error;
2269 out_iput:
2270 iput(inode);
2271 return error;
2272 }
2273
2274 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2275 {
2276 int error;
2277
2278 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2279 return error;
2280 inc_nlink(dir);
2281 return 0;
2282 }
2283
2284 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2285 bool excl)
2286 {
2287 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2288 }
2289
2290 /*
2291 * Link a file..
2292 */
2293 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2294 {
2295 struct inode *inode = d_inode(old_dentry);
2296 int ret;
2297
2298 /*
2299 * No ordinary (disk based) filesystem counts links as inodes;
2300 * but each new link needs a new dentry, pinning lowmem, and
2301 * tmpfs dentries cannot be pruned until they are unlinked.
2302 */
2303 ret = shmem_reserve_inode(inode->i_sb);
2304 if (ret)
2305 goto out;
2306
2307 dir->i_size += BOGO_DIRENT_SIZE;
2308 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2309 inc_nlink(inode);
2310 ihold(inode); /* New dentry reference */
2311 dget(dentry); /* Extra pinning count for the created dentry */
2312 d_instantiate(dentry, inode);
2313 out:
2314 return ret;
2315 }
2316
2317 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2318 {
2319 struct inode *inode = d_inode(dentry);
2320
2321 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2322 shmem_free_inode(inode->i_sb);
2323
2324 dir->i_size -= BOGO_DIRENT_SIZE;
2325 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2326 drop_nlink(inode);
2327 dput(dentry); /* Undo the count from "create" - this does all the work */
2328 return 0;
2329 }
2330
2331 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2332 {
2333 if (!simple_empty(dentry))
2334 return -ENOTEMPTY;
2335
2336 drop_nlink(d_inode(dentry));
2337 drop_nlink(dir);
2338 return shmem_unlink(dir, dentry);
2339 }
2340
2341 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2342 {
2343 bool old_is_dir = d_is_dir(old_dentry);
2344 bool new_is_dir = d_is_dir(new_dentry);
2345
2346 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2347 if (old_is_dir) {
2348 drop_nlink(old_dir);
2349 inc_nlink(new_dir);
2350 } else {
2351 drop_nlink(new_dir);
2352 inc_nlink(old_dir);
2353 }
2354 }
2355 old_dir->i_ctime = old_dir->i_mtime =
2356 new_dir->i_ctime = new_dir->i_mtime =
2357 d_inode(old_dentry)->i_ctime =
2358 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2359
2360 return 0;
2361 }
2362
2363 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2364 {
2365 struct dentry *whiteout;
2366 int error;
2367
2368 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2369 if (!whiteout)
2370 return -ENOMEM;
2371
2372 error = shmem_mknod(old_dir, whiteout,
2373 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2374 dput(whiteout);
2375 if (error)
2376 return error;
2377
2378 /*
2379 * Cheat and hash the whiteout while the old dentry is still in
2380 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2381 *
2382 * d_lookup() will consistently find one of them at this point,
2383 * not sure which one, but that isn't even important.
2384 */
2385 d_rehash(whiteout);
2386 return 0;
2387 }
2388
2389 /*
2390 * The VFS layer already does all the dentry stuff for rename,
2391 * we just have to decrement the usage count for the target if
2392 * it exists so that the VFS layer correctly free's it when it
2393 * gets overwritten.
2394 */
2395 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2396 {
2397 struct inode *inode = d_inode(old_dentry);
2398 int they_are_dirs = S_ISDIR(inode->i_mode);
2399
2400 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2401 return -EINVAL;
2402
2403 if (flags & RENAME_EXCHANGE)
2404 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2405
2406 if (!simple_empty(new_dentry))
2407 return -ENOTEMPTY;
2408
2409 if (flags & RENAME_WHITEOUT) {
2410 int error;
2411
2412 error = shmem_whiteout(old_dir, old_dentry);
2413 if (error)
2414 return error;
2415 }
2416
2417 if (d_really_is_positive(new_dentry)) {
2418 (void) shmem_unlink(new_dir, new_dentry);
2419 if (they_are_dirs) {
2420 drop_nlink(d_inode(new_dentry));
2421 drop_nlink(old_dir);
2422 }
2423 } else if (they_are_dirs) {
2424 drop_nlink(old_dir);
2425 inc_nlink(new_dir);
2426 }
2427
2428 old_dir->i_size -= BOGO_DIRENT_SIZE;
2429 new_dir->i_size += BOGO_DIRENT_SIZE;
2430 old_dir->i_ctime = old_dir->i_mtime =
2431 new_dir->i_ctime = new_dir->i_mtime =
2432 inode->i_ctime = CURRENT_TIME;
2433 return 0;
2434 }
2435
2436 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2437 {
2438 int error;
2439 int len;
2440 struct inode *inode;
2441 struct page *page;
2442 char *kaddr;
2443 struct shmem_inode_info *info;
2444
2445 len = strlen(symname) + 1;
2446 if (len > PAGE_CACHE_SIZE)
2447 return -ENAMETOOLONG;
2448
2449 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2450 if (!inode)
2451 return -ENOSPC;
2452
2453 error = security_inode_init_security(inode, dir, &dentry->d_name,
2454 shmem_initxattrs, NULL);
2455 if (error) {
2456 if (error != -EOPNOTSUPP) {
2457 iput(inode);
2458 return error;
2459 }
2460 error = 0;
2461 }
2462
2463 info = SHMEM_I(inode);
2464 inode->i_size = len-1;
2465 if (len <= SHORT_SYMLINK_LEN) {
2466 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2467 if (!inode->i_link) {
2468 iput(inode);
2469 return -ENOMEM;
2470 }
2471 inode->i_op = &shmem_short_symlink_operations;
2472 } else {
2473 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2474 if (error) {
2475 iput(inode);
2476 return error;
2477 }
2478 inode->i_mapping->a_ops = &shmem_aops;
2479 inode->i_op = &shmem_symlink_inode_operations;
2480 kaddr = kmap_atomic(page);
2481 memcpy(kaddr, symname, len);
2482 kunmap_atomic(kaddr);
2483 SetPageUptodate(page);
2484 set_page_dirty(page);
2485 unlock_page(page);
2486 page_cache_release(page);
2487 }
2488 dir->i_size += BOGO_DIRENT_SIZE;
2489 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2490 d_instantiate(dentry, inode);
2491 dget(dentry);
2492 return 0;
2493 }
2494
2495 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2496 {
2497 struct page *page = NULL;
2498 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2499 if (error)
2500 return ERR_PTR(error);
2501 unlock_page(page);
2502 *cookie = page;
2503 return kmap(page);
2504 }
2505
2506 static void shmem_put_link(struct inode *unused, void *cookie)
2507 {
2508 struct page *page = cookie;
2509 kunmap(page);
2510 mark_page_accessed(page);
2511 page_cache_release(page);
2512 }
2513
2514 #ifdef CONFIG_TMPFS_XATTR
2515 /*
2516 * Superblocks without xattr inode operations may get some security.* xattr
2517 * support from the LSM "for free". As soon as we have any other xattrs
2518 * like ACLs, we also need to implement the security.* handlers at
2519 * filesystem level, though.
2520 */
2521
2522 /*
2523 * Callback for security_inode_init_security() for acquiring xattrs.
2524 */
2525 static int shmem_initxattrs(struct inode *inode,
2526 const struct xattr *xattr_array,
2527 void *fs_info)
2528 {
2529 struct shmem_inode_info *info = SHMEM_I(inode);
2530 const struct xattr *xattr;
2531 struct simple_xattr *new_xattr;
2532 size_t len;
2533
2534 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2535 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2536 if (!new_xattr)
2537 return -ENOMEM;
2538
2539 len = strlen(xattr->name) + 1;
2540 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2541 GFP_KERNEL);
2542 if (!new_xattr->name) {
2543 kfree(new_xattr);
2544 return -ENOMEM;
2545 }
2546
2547 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2548 XATTR_SECURITY_PREFIX_LEN);
2549 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2550 xattr->name, len);
2551
2552 simple_xattr_list_add(&info->xattrs, new_xattr);
2553 }
2554
2555 return 0;
2556 }
2557
2558 static const struct xattr_handler *shmem_xattr_handlers[] = {
2559 #ifdef CONFIG_TMPFS_POSIX_ACL
2560 &posix_acl_access_xattr_handler,
2561 &posix_acl_default_xattr_handler,
2562 #endif
2563 NULL
2564 };
2565
2566 static int shmem_xattr_validate(const char *name)
2567 {
2568 struct { const char *prefix; size_t len; } arr[] = {
2569 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2570 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2571 };
2572 int i;
2573
2574 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2575 size_t preflen = arr[i].len;
2576 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2577 if (!name[preflen])
2578 return -EINVAL;
2579 return 0;
2580 }
2581 }
2582 return -EOPNOTSUPP;
2583 }
2584
2585 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2586 void *buffer, size_t size)
2587 {
2588 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2589 int err;
2590
2591 /*
2592 * If this is a request for a synthetic attribute in the system.*
2593 * namespace use the generic infrastructure to resolve a handler
2594 * for it via sb->s_xattr.
2595 */
2596 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2597 return generic_getxattr(dentry, name, buffer, size);
2598
2599 err = shmem_xattr_validate(name);
2600 if (err)
2601 return err;
2602
2603 return simple_xattr_get(&info->xattrs, name, buffer, size);
2604 }
2605
2606 static int shmem_setxattr(struct dentry *dentry, const char *name,
2607 const void *value, size_t size, int flags)
2608 {
2609 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2610 int err;
2611
2612 /*
2613 * If this is a request for a synthetic attribute in the system.*
2614 * namespace use the generic infrastructure to resolve a handler
2615 * for it via sb->s_xattr.
2616 */
2617 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2618 return generic_setxattr(dentry, name, value, size, flags);
2619
2620 err = shmem_xattr_validate(name);
2621 if (err)
2622 return err;
2623
2624 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2625 }
2626
2627 static int shmem_removexattr(struct dentry *dentry, const char *name)
2628 {
2629 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2630 int err;
2631
2632 /*
2633 * If this is a request for a synthetic attribute in the system.*
2634 * namespace use the generic infrastructure to resolve a handler
2635 * for it via sb->s_xattr.
2636 */
2637 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2638 return generic_removexattr(dentry, name);
2639
2640 err = shmem_xattr_validate(name);
2641 if (err)
2642 return err;
2643
2644 return simple_xattr_remove(&info->xattrs, name);
2645 }
2646
2647 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2648 {
2649 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2650 return simple_xattr_list(&info->xattrs, buffer, size);
2651 }
2652 #endif /* CONFIG_TMPFS_XATTR */
2653
2654 static const struct inode_operations shmem_short_symlink_operations = {
2655 .readlink = generic_readlink,
2656 .follow_link = simple_follow_link,
2657 #ifdef CONFIG_TMPFS_XATTR
2658 .setxattr = shmem_setxattr,
2659 .getxattr = shmem_getxattr,
2660 .listxattr = shmem_listxattr,
2661 .removexattr = shmem_removexattr,
2662 #endif
2663 };
2664
2665 static const struct inode_operations shmem_symlink_inode_operations = {
2666 .readlink = generic_readlink,
2667 .follow_link = shmem_follow_link,
2668 .put_link = shmem_put_link,
2669 #ifdef CONFIG_TMPFS_XATTR
2670 .setxattr = shmem_setxattr,
2671 .getxattr = shmem_getxattr,
2672 .listxattr = shmem_listxattr,
2673 .removexattr = shmem_removexattr,
2674 #endif
2675 };
2676
2677 static struct dentry *shmem_get_parent(struct dentry *child)
2678 {
2679 return ERR_PTR(-ESTALE);
2680 }
2681
2682 static int shmem_match(struct inode *ino, void *vfh)
2683 {
2684 __u32 *fh = vfh;
2685 __u64 inum = fh[2];
2686 inum = (inum << 32) | fh[1];
2687 return ino->i_ino == inum && fh[0] == ino->i_generation;
2688 }
2689
2690 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2691 struct fid *fid, int fh_len, int fh_type)
2692 {
2693 struct inode *inode;
2694 struct dentry *dentry = NULL;
2695 u64 inum;
2696
2697 if (fh_len < 3)
2698 return NULL;
2699
2700 inum = fid->raw[2];
2701 inum = (inum << 32) | fid->raw[1];
2702
2703 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2704 shmem_match, fid->raw);
2705 if (inode) {
2706 dentry = d_find_alias(inode);
2707 iput(inode);
2708 }
2709
2710 return dentry;
2711 }
2712
2713 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2714 struct inode *parent)
2715 {
2716 if (*len < 3) {
2717 *len = 3;
2718 return FILEID_INVALID;
2719 }
2720
2721 if (inode_unhashed(inode)) {
2722 /* Unfortunately insert_inode_hash is not idempotent,
2723 * so as we hash inodes here rather than at creation
2724 * time, we need a lock to ensure we only try
2725 * to do it once
2726 */
2727 static DEFINE_SPINLOCK(lock);
2728 spin_lock(&lock);
2729 if (inode_unhashed(inode))
2730 __insert_inode_hash(inode,
2731 inode->i_ino + inode->i_generation);
2732 spin_unlock(&lock);
2733 }
2734
2735 fh[0] = inode->i_generation;
2736 fh[1] = inode->i_ino;
2737 fh[2] = ((__u64)inode->i_ino) >> 32;
2738
2739 *len = 3;
2740 return 1;
2741 }
2742
2743 static const struct export_operations shmem_export_ops = {
2744 .get_parent = shmem_get_parent,
2745 .encode_fh = shmem_encode_fh,
2746 .fh_to_dentry = shmem_fh_to_dentry,
2747 };
2748
2749 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2750 bool remount)
2751 {
2752 char *this_char, *value, *rest;
2753 struct mempolicy *mpol = NULL;
2754 uid_t uid;
2755 gid_t gid;
2756
2757 while (options != NULL) {
2758 this_char = options;
2759 for (;;) {
2760 /*
2761 * NUL-terminate this option: unfortunately,
2762 * mount options form a comma-separated list,
2763 * but mpol's nodelist may also contain commas.
2764 */
2765 options = strchr(options, ',');
2766 if (options == NULL)
2767 break;
2768 options++;
2769 if (!isdigit(*options)) {
2770 options[-1] = '\0';
2771 break;
2772 }
2773 }
2774 if (!*this_char)
2775 continue;
2776 if ((value = strchr(this_char,'=')) != NULL) {
2777 *value++ = 0;
2778 } else {
2779 printk(KERN_ERR
2780 "tmpfs: No value for mount option '%s'\n",
2781 this_char);
2782 goto error;
2783 }
2784
2785 if (!strcmp(this_char,"size")) {
2786 unsigned long long size;
2787 size = memparse(value,&rest);
2788 if (*rest == '%') {
2789 size <<= PAGE_SHIFT;
2790 size *= totalram_pages;
2791 do_div(size, 100);
2792 rest++;
2793 }
2794 if (*rest)
2795 goto bad_val;
2796 sbinfo->max_blocks =
2797 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2798 } else if (!strcmp(this_char,"nr_blocks")) {
2799 sbinfo->max_blocks = memparse(value, &rest);
2800 if (*rest)
2801 goto bad_val;
2802 } else if (!strcmp(this_char,"nr_inodes")) {
2803 sbinfo->max_inodes = memparse(value, &rest);
2804 if (*rest)
2805 goto bad_val;
2806 } else if (!strcmp(this_char,"mode")) {
2807 if (remount)
2808 continue;
2809 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2810 if (*rest)
2811 goto bad_val;
2812 } else if (!strcmp(this_char,"uid")) {
2813 if (remount)
2814 continue;
2815 uid = simple_strtoul(value, &rest, 0);
2816 if (*rest)
2817 goto bad_val;
2818 sbinfo->uid = make_kuid(current_user_ns(), uid);
2819 if (!uid_valid(sbinfo->uid))
2820 goto bad_val;
2821 } else if (!strcmp(this_char,"gid")) {
2822 if (remount)
2823 continue;
2824 gid = simple_strtoul(value, &rest, 0);
2825 if (*rest)
2826 goto bad_val;
2827 sbinfo->gid = make_kgid(current_user_ns(), gid);
2828 if (!gid_valid(sbinfo->gid))
2829 goto bad_val;
2830 } else if (!strcmp(this_char,"mpol")) {
2831 mpol_put(mpol);
2832 mpol = NULL;
2833 if (mpol_parse_str(value, &mpol))
2834 goto bad_val;
2835 } else {
2836 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2837 this_char);
2838 goto error;
2839 }
2840 }
2841 sbinfo->mpol = mpol;
2842 return 0;
2843
2844 bad_val:
2845 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2846 value, this_char);
2847 error:
2848 mpol_put(mpol);
2849 return 1;
2850
2851 }
2852
2853 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2854 {
2855 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2856 struct shmem_sb_info config = *sbinfo;
2857 unsigned long inodes;
2858 int error = -EINVAL;
2859
2860 config.mpol = NULL;
2861 if (shmem_parse_options(data, &config, true))
2862 return error;
2863
2864 spin_lock(&sbinfo->stat_lock);
2865 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2866 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2867 goto out;
2868 if (config.max_inodes < inodes)
2869 goto out;
2870 /*
2871 * Those tests disallow limited->unlimited while any are in use;
2872 * but we must separately disallow unlimited->limited, because
2873 * in that case we have no record of how much is already in use.
2874 */
2875 if (config.max_blocks && !sbinfo->max_blocks)
2876 goto out;
2877 if (config.max_inodes && !sbinfo->max_inodes)
2878 goto out;
2879
2880 error = 0;
2881 sbinfo->max_blocks = config.max_blocks;
2882 sbinfo->max_inodes = config.max_inodes;
2883 sbinfo->free_inodes = config.max_inodes - inodes;
2884
2885 /*
2886 * Preserve previous mempolicy unless mpol remount option was specified.
2887 */
2888 if (config.mpol) {
2889 mpol_put(sbinfo->mpol);
2890 sbinfo->mpol = config.mpol; /* transfers initial ref */
2891 }
2892 out:
2893 spin_unlock(&sbinfo->stat_lock);
2894 return error;
2895 }
2896
2897 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2898 {
2899 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2900
2901 if (sbinfo->max_blocks != shmem_default_max_blocks())
2902 seq_printf(seq, ",size=%luk",
2903 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2904 if (sbinfo->max_inodes != shmem_default_max_inodes())
2905 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2906 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2907 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2908 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2909 seq_printf(seq, ",uid=%u",
2910 from_kuid_munged(&init_user_ns, sbinfo->uid));
2911 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2912 seq_printf(seq, ",gid=%u",
2913 from_kgid_munged(&init_user_ns, sbinfo->gid));
2914 shmem_show_mpol(seq, sbinfo->mpol);
2915 return 0;
2916 }
2917
2918 #define MFD_NAME_PREFIX "memfd:"
2919 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2920 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2921
2922 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2923
2924 SYSCALL_DEFINE2(memfd_create,
2925 const char __user *, uname,
2926 unsigned int, flags)
2927 {
2928 struct shmem_inode_info *info;
2929 struct file *file;
2930 int fd, error;
2931 char *name;
2932 long len;
2933
2934 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2935 return -EINVAL;
2936
2937 /* length includes terminating zero */
2938 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2939 if (len <= 0)
2940 return -EFAULT;
2941 if (len > MFD_NAME_MAX_LEN + 1)
2942 return -EINVAL;
2943
2944 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2945 if (!name)
2946 return -ENOMEM;
2947
2948 strcpy(name, MFD_NAME_PREFIX);
2949 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2950 error = -EFAULT;
2951 goto err_name;
2952 }
2953
2954 /* terminating-zero may have changed after strnlen_user() returned */
2955 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2956 error = -EFAULT;
2957 goto err_name;
2958 }
2959
2960 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2961 if (fd < 0) {
2962 error = fd;
2963 goto err_name;
2964 }
2965
2966 file = shmem_file_setup(name, 0, VM_NORESERVE);
2967 if (IS_ERR(file)) {
2968 error = PTR_ERR(file);
2969 goto err_fd;
2970 }
2971 info = SHMEM_I(file_inode(file));
2972 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2973 file->f_flags |= O_RDWR | O_LARGEFILE;
2974 if (flags & MFD_ALLOW_SEALING)
2975 info->seals &= ~F_SEAL_SEAL;
2976
2977 fd_install(fd, file);
2978 kfree(name);
2979 return fd;
2980
2981 err_fd:
2982 put_unused_fd(fd);
2983 err_name:
2984 kfree(name);
2985 return error;
2986 }
2987
2988 #endif /* CONFIG_TMPFS */
2989
2990 static void shmem_put_super(struct super_block *sb)
2991 {
2992 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2993
2994 percpu_counter_destroy(&sbinfo->used_blocks);
2995 mpol_put(sbinfo->mpol);
2996 kfree(sbinfo);
2997 sb->s_fs_info = NULL;
2998 }
2999
3000 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3001 {
3002 struct inode *inode;
3003 struct shmem_sb_info *sbinfo;
3004 int err = -ENOMEM;
3005
3006 /* Round up to L1_CACHE_BYTES to resist false sharing */
3007 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3008 L1_CACHE_BYTES), GFP_KERNEL);
3009 if (!sbinfo)
3010 return -ENOMEM;
3011
3012 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3013 sbinfo->uid = current_fsuid();
3014 sbinfo->gid = current_fsgid();
3015 sb->s_fs_info = sbinfo;
3016
3017 #ifdef CONFIG_TMPFS
3018 /*
3019 * Per default we only allow half of the physical ram per
3020 * tmpfs instance, limiting inodes to one per page of lowmem;
3021 * but the internal instance is left unlimited.
3022 */
3023 if (!(sb->s_flags & MS_KERNMOUNT)) {
3024 sbinfo->max_blocks = shmem_default_max_blocks();
3025 sbinfo->max_inodes = shmem_default_max_inodes();
3026 if (shmem_parse_options(data, sbinfo, false)) {
3027 err = -EINVAL;
3028 goto failed;
3029 }
3030 } else {
3031 sb->s_flags |= MS_NOUSER;
3032 }
3033 sb->s_export_op = &shmem_export_ops;
3034 sb->s_flags |= MS_NOSEC;
3035 #else
3036 sb->s_flags |= MS_NOUSER;
3037 #endif
3038
3039 spin_lock_init(&sbinfo->stat_lock);
3040 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3041 goto failed;
3042 sbinfo->free_inodes = sbinfo->max_inodes;
3043
3044 sb->s_maxbytes = MAX_LFS_FILESIZE;
3045 sb->s_blocksize = PAGE_CACHE_SIZE;
3046 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3047 sb->s_magic = TMPFS_MAGIC;
3048 sb->s_op = &shmem_ops;
3049 sb->s_time_gran = 1;
3050 #ifdef CONFIG_TMPFS_XATTR
3051 sb->s_xattr = shmem_xattr_handlers;
3052 #endif
3053 #ifdef CONFIG_TMPFS_POSIX_ACL
3054 sb->s_flags |= MS_POSIXACL;
3055 #endif
3056
3057 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3058 if (!inode)
3059 goto failed;
3060 inode->i_uid = sbinfo->uid;
3061 inode->i_gid = sbinfo->gid;
3062 sb->s_root = d_make_root(inode);
3063 if (!sb->s_root)
3064 goto failed;
3065 return 0;
3066
3067 failed:
3068 shmem_put_super(sb);
3069 return err;
3070 }
3071
3072 static struct kmem_cache *shmem_inode_cachep;
3073
3074 static struct inode *shmem_alloc_inode(struct super_block *sb)
3075 {
3076 struct shmem_inode_info *info;
3077 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3078 if (!info)
3079 return NULL;
3080 return &info->vfs_inode;
3081 }
3082
3083 static void shmem_destroy_callback(struct rcu_head *head)
3084 {
3085 struct inode *inode = container_of(head, struct inode, i_rcu);
3086 kfree(inode->i_link);
3087 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3088 }
3089
3090 static void shmem_destroy_inode(struct inode *inode)
3091 {
3092 if (S_ISREG(inode->i_mode))
3093 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3094 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3095 }
3096
3097 static void shmem_init_inode(void *foo)
3098 {
3099 struct shmem_inode_info *info = foo;
3100 inode_init_once(&info->vfs_inode);
3101 }
3102
3103 static int shmem_init_inodecache(void)
3104 {
3105 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3106 sizeof(struct shmem_inode_info),
3107 0, SLAB_PANIC, shmem_init_inode);
3108 return 0;
3109 }
3110
3111 static void shmem_destroy_inodecache(void)
3112 {
3113 kmem_cache_destroy(shmem_inode_cachep);
3114 }
3115
3116 static const struct address_space_operations shmem_aops = {
3117 .writepage = shmem_writepage,
3118 .set_page_dirty = __set_page_dirty_no_writeback,
3119 #ifdef CONFIG_TMPFS
3120 .write_begin = shmem_write_begin,
3121 .write_end = shmem_write_end,
3122 #endif
3123 #ifdef CONFIG_MIGRATION
3124 .migratepage = migrate_page,
3125 #endif
3126 .error_remove_page = generic_error_remove_page,
3127 };
3128
3129 static const struct file_operations shmem_file_operations = {
3130 .mmap = shmem_mmap,
3131 #ifdef CONFIG_TMPFS
3132 .llseek = shmem_file_llseek,
3133 .read_iter = shmem_file_read_iter,
3134 .write_iter = generic_file_write_iter,
3135 .fsync = noop_fsync,
3136 .splice_read = shmem_file_splice_read,
3137 .splice_write = iter_file_splice_write,
3138 .fallocate = shmem_fallocate,
3139 #endif
3140 };
3141
3142 static const struct inode_operations shmem_inode_operations = {
3143 .getattr = shmem_getattr,
3144 .setattr = shmem_setattr,
3145 #ifdef CONFIG_TMPFS_XATTR
3146 .setxattr = shmem_setxattr,
3147 .getxattr = shmem_getxattr,
3148 .listxattr = shmem_listxattr,
3149 .removexattr = shmem_removexattr,
3150 .set_acl = simple_set_acl,
3151 #endif
3152 };
3153
3154 static const struct inode_operations shmem_dir_inode_operations = {
3155 #ifdef CONFIG_TMPFS
3156 .create = shmem_create,
3157 .lookup = simple_lookup,
3158 .link = shmem_link,
3159 .unlink = shmem_unlink,
3160 .symlink = shmem_symlink,
3161 .mkdir = shmem_mkdir,
3162 .rmdir = shmem_rmdir,
3163 .mknod = shmem_mknod,
3164 .rename2 = shmem_rename2,
3165 .tmpfile = shmem_tmpfile,
3166 #endif
3167 #ifdef CONFIG_TMPFS_XATTR
3168 .setxattr = shmem_setxattr,
3169 .getxattr = shmem_getxattr,
3170 .listxattr = shmem_listxattr,
3171 .removexattr = shmem_removexattr,
3172 #endif
3173 #ifdef CONFIG_TMPFS_POSIX_ACL
3174 .setattr = shmem_setattr,
3175 .set_acl = simple_set_acl,
3176 #endif
3177 };
3178
3179 static const struct inode_operations shmem_special_inode_operations = {
3180 #ifdef CONFIG_TMPFS_XATTR
3181 .setxattr = shmem_setxattr,
3182 .getxattr = shmem_getxattr,
3183 .listxattr = shmem_listxattr,
3184 .removexattr = shmem_removexattr,
3185 #endif
3186 #ifdef CONFIG_TMPFS_POSIX_ACL
3187 .setattr = shmem_setattr,
3188 .set_acl = simple_set_acl,
3189 #endif
3190 };
3191
3192 static const struct super_operations shmem_ops = {
3193 .alloc_inode = shmem_alloc_inode,
3194 .destroy_inode = shmem_destroy_inode,
3195 #ifdef CONFIG_TMPFS
3196 .statfs = shmem_statfs,
3197 .remount_fs = shmem_remount_fs,
3198 .show_options = shmem_show_options,
3199 #endif
3200 .evict_inode = shmem_evict_inode,
3201 .drop_inode = generic_delete_inode,
3202 .put_super = shmem_put_super,
3203 };
3204
3205 static const struct vm_operations_struct shmem_vm_ops = {
3206 .fault = shmem_fault,
3207 .map_pages = filemap_map_pages,
3208 #ifdef CONFIG_NUMA
3209 .set_policy = shmem_set_policy,
3210 .get_policy = shmem_get_policy,
3211 #endif
3212 };
3213
3214 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3215 int flags, const char *dev_name, void *data)
3216 {
3217 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3218 }
3219
3220 static struct file_system_type shmem_fs_type = {
3221 .owner = THIS_MODULE,
3222 .name = "tmpfs",
3223 .mount = shmem_mount,
3224 .kill_sb = kill_litter_super,
3225 .fs_flags = FS_USERNS_MOUNT,
3226 };
3227
3228 int __init shmem_init(void)
3229 {
3230 int error;
3231
3232 /* If rootfs called this, don't re-init */
3233 if (shmem_inode_cachep)
3234 return 0;
3235
3236 error = shmem_init_inodecache();
3237 if (error)
3238 goto out3;
3239
3240 error = register_filesystem(&shmem_fs_type);
3241 if (error) {
3242 printk(KERN_ERR "Could not register tmpfs\n");
3243 goto out2;
3244 }
3245
3246 shm_mnt = kern_mount(&shmem_fs_type);
3247 if (IS_ERR(shm_mnt)) {
3248 error = PTR_ERR(shm_mnt);
3249 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3250 goto out1;
3251 }
3252 return 0;
3253
3254 out1:
3255 unregister_filesystem(&shmem_fs_type);
3256 out2:
3257 shmem_destroy_inodecache();
3258 out3:
3259 shm_mnt = ERR_PTR(error);
3260 return error;
3261 }
3262
3263 #else /* !CONFIG_SHMEM */
3264
3265 /*
3266 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3267 *
3268 * This is intended for small system where the benefits of the full
3269 * shmem code (swap-backed and resource-limited) are outweighed by
3270 * their complexity. On systems without swap this code should be
3271 * effectively equivalent, but much lighter weight.
3272 */
3273
3274 static struct file_system_type shmem_fs_type = {
3275 .name = "tmpfs",
3276 .mount = ramfs_mount,
3277 .kill_sb = kill_litter_super,
3278 .fs_flags = FS_USERNS_MOUNT,
3279 };
3280
3281 int __init shmem_init(void)
3282 {
3283 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3284
3285 shm_mnt = kern_mount(&shmem_fs_type);
3286 BUG_ON(IS_ERR(shm_mnt));
3287
3288 return 0;
3289 }
3290
3291 int shmem_unuse(swp_entry_t swap, struct page *page)
3292 {
3293 return 0;
3294 }
3295
3296 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3297 {
3298 return 0;
3299 }
3300
3301 void shmem_unlock_mapping(struct address_space *mapping)
3302 {
3303 }
3304
3305 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3306 {
3307 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3308 }
3309 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3310
3311 #define shmem_vm_ops generic_file_vm_ops
3312 #define shmem_file_operations ramfs_file_operations
3313 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3314 #define shmem_acct_size(flags, size) 0
3315 #define shmem_unacct_size(flags, size) do {} while (0)
3316
3317 #endif /* CONFIG_SHMEM */
3318
3319 /* common code */
3320
3321 static struct dentry_operations anon_ops = {
3322 .d_dname = simple_dname
3323 };
3324
3325 static struct file *__shmem_file_setup(const char *name, loff_t size,
3326 unsigned long flags, unsigned int i_flags)
3327 {
3328 struct file *res;
3329 struct inode *inode;
3330 struct path path;
3331 struct super_block *sb;
3332 struct qstr this;
3333
3334 if (IS_ERR(shm_mnt))
3335 return ERR_CAST(shm_mnt);
3336
3337 if (size < 0 || size > MAX_LFS_FILESIZE)
3338 return ERR_PTR(-EINVAL);
3339
3340 if (shmem_acct_size(flags, size))
3341 return ERR_PTR(-ENOMEM);
3342
3343 res = ERR_PTR(-ENOMEM);
3344 this.name = name;
3345 this.len = strlen(name);
3346 this.hash = 0; /* will go */
3347 sb = shm_mnt->mnt_sb;
3348 path.mnt = mntget(shm_mnt);
3349 path.dentry = d_alloc_pseudo(sb, &this);
3350 if (!path.dentry)
3351 goto put_memory;
3352 d_set_d_op(path.dentry, &anon_ops);
3353
3354 res = ERR_PTR(-ENOSPC);
3355 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3356 if (!inode)
3357 goto put_memory;
3358
3359 inode->i_flags |= i_flags;
3360 d_instantiate(path.dentry, inode);
3361 inode->i_size = size;
3362 clear_nlink(inode); /* It is unlinked */
3363 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3364 if (IS_ERR(res))
3365 goto put_path;
3366
3367 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3368 &shmem_file_operations);
3369 if (IS_ERR(res))
3370 goto put_path;
3371
3372 return res;
3373
3374 put_memory:
3375 shmem_unacct_size(flags, size);
3376 put_path:
3377 path_put(&path);
3378 return res;
3379 }
3380
3381 /**
3382 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3383 * kernel internal. There will be NO LSM permission checks against the
3384 * underlying inode. So users of this interface must do LSM checks at a
3385 * higher layer. The users are the big_key and shm implementations. LSM
3386 * checks are provided at the key or shm level rather than the inode.
3387 * @name: name for dentry (to be seen in /proc/<pid>/maps
3388 * @size: size to be set for the file
3389 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3390 */
3391 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3392 {
3393 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3394 }
3395
3396 /**
3397 * shmem_file_setup - get an unlinked file living in tmpfs
3398 * @name: name for dentry (to be seen in /proc/<pid>/maps
3399 * @size: size to be set for the file
3400 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3401 */
3402 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3403 {
3404 return __shmem_file_setup(name, size, flags, 0);
3405 }
3406 EXPORT_SYMBOL_GPL(shmem_file_setup);
3407
3408 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3409 {
3410 if (vma->vm_file)
3411 fput(vma->vm_file);
3412 vma->vm_file = file;
3413 vma->vm_ops = &shmem_vm_ops;
3414 }
3415
3416 /**
3417 * shmem_zero_setup - setup a shared anonymous mapping
3418 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3419 */
3420 int shmem_zero_setup(struct vm_area_struct *vma)
3421 {
3422 struct file *file;
3423 loff_t size = vma->vm_end - vma->vm_start;
3424
3425 /*
3426 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3427 * between XFS directory reading and selinux: since this file is only
3428 * accessible to the user through its mapping, use S_PRIVATE flag to
3429 * bypass file security, in the same way as shmem_kernel_file_setup().
3430 */
3431 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3432 if (IS_ERR(file))
3433 return PTR_ERR(file);
3434
3435 shmem_set_file(vma, file);
3436 return 0;
3437 }
3438
3439 /**
3440 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3441 * @mapping: the page's address_space
3442 * @index: the page index
3443 * @gfp: the page allocator flags to use if allocating
3444 *
3445 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3446 * with any new page allocations done using the specified allocation flags.
3447 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3448 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3449 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3450 *
3451 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3452 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3453 */
3454 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3455 pgoff_t index, gfp_t gfp)
3456 {
3457 #ifdef CONFIG_SHMEM
3458 struct inode *inode = mapping->host;
3459 struct page *page;
3460 int error;
3461
3462 BUG_ON(mapping->a_ops != &shmem_aops);
3463 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3464 if (error)
3465 page = ERR_PTR(error);
3466 else
3467 unlock_page(page);
3468 return page;
3469 #else
3470 /*
3471 * The tiny !SHMEM case uses ramfs without swap
3472 */
3473 return read_cache_page_gfp(mapping, index, gfp);
3474 #endif
3475 }
3476 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);