mm: avoid repeated anon_vma lock/unlock sequences in unlink_anon_vmas()
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61
62 #include <asm/tlbflush.h>
63
64 #include "internal.h"
65
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
84 }
85
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89
90 /*
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
94 *
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 *
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
103 *
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
106 */
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 /**
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
128 *
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
132 *
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
138 *
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
144 *
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
149 *
150 * This must be called with the mmap_sem held for reading.
151 */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 struct anon_vma *anon_vma = vma->anon_vma;
155 struct anon_vma_chain *avc;
156
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
160 struct anon_vma *allocated;
161
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
165
166 anon_vma = find_mergeable_anon_vma(vma);
167 allocated = NULL;
168 if (!anon_vma) {
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
171 goto out_enomem_free_avc;
172 allocated = anon_vma;
173 }
174
175 anon_vma_lock(anon_vma);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 allocated = NULL;
185 avc = NULL;
186 }
187 spin_unlock(&mm->page_table_lock);
188 anon_vma_unlock(anon_vma);
189
190 if (unlikely(allocated))
191 put_anon_vma(allocated);
192 if (unlikely(avc))
193 anon_vma_chain_free(avc);
194 }
195 return 0;
196
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
201 }
202
203 /*
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206 * have the same vma.
207 *
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
210 */
211 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
212 {
213 struct anon_vma *new_root = anon_vma->root;
214 if (new_root != root) {
215 if (WARN_ON_ONCE(root))
216 mutex_unlock(&root->mutex);
217 root = new_root;
218 mutex_lock(&root->mutex);
219 }
220 return root;
221 }
222
223 static inline void unlock_anon_vma_root(struct anon_vma *root)
224 {
225 if (root)
226 mutex_unlock(&root->mutex);
227 }
228
229 static void anon_vma_chain_link(struct vm_area_struct *vma,
230 struct anon_vma_chain *avc,
231 struct anon_vma *anon_vma)
232 {
233 avc->vma = vma;
234 avc->anon_vma = anon_vma;
235 list_add(&avc->same_vma, &vma->anon_vma_chain);
236
237 /*
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
240 */
241 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
242 }
243
244 /*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
247 */
248 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
249 {
250 struct anon_vma_chain *avc, *pavc;
251 struct anon_vma *root = NULL;
252
253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
254 struct anon_vma *anon_vma;
255
256 avc = anon_vma_chain_alloc();
257 if (!avc)
258 goto enomem_failure;
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
262 }
263 unlock_anon_vma_root(root);
264 return 0;
265
266 enomem_failure:
267 unlock_anon_vma_root(root);
268 unlink_anon_vmas(dst);
269 return -ENOMEM;
270 }
271
272 /*
273 * Attach vma to its own anon_vma, as well as to the anon_vmas that
274 * the corresponding VMA in the parent process is attached to.
275 * Returns 0 on success, non-zero on failure.
276 */
277 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
278 {
279 struct anon_vma_chain *avc;
280 struct anon_vma *anon_vma;
281
282 /* Don't bother if the parent process has no anon_vma here. */
283 if (!pvma->anon_vma)
284 return 0;
285
286 /*
287 * First, attach the new VMA to the parent VMA's anon_vmas,
288 * so rmap can find non-COWed pages in child processes.
289 */
290 if (anon_vma_clone(vma, pvma))
291 return -ENOMEM;
292
293 /* Then add our own anon_vma. */
294 anon_vma = anon_vma_alloc();
295 if (!anon_vma)
296 goto out_error;
297 avc = anon_vma_chain_alloc();
298 if (!avc)
299 goto out_error_free_anon_vma;
300
301 /*
302 * The root anon_vma's spinlock is the lock actually used when we
303 * lock any of the anon_vmas in this anon_vma tree.
304 */
305 anon_vma->root = pvma->anon_vma->root;
306 /*
307 * With refcounts, an anon_vma can stay around longer than the
308 * process it belongs to. The root anon_vma needs to be pinned until
309 * this anon_vma is freed, because the lock lives in the root.
310 */
311 get_anon_vma(anon_vma->root);
312 /* Mark this anon_vma as the one where our new (COWed) pages go. */
313 vma->anon_vma = anon_vma;
314 anon_vma_lock(anon_vma);
315 anon_vma_chain_link(vma, avc, anon_vma);
316 anon_vma_unlock(anon_vma);
317
318 return 0;
319
320 out_error_free_anon_vma:
321 put_anon_vma(anon_vma);
322 out_error:
323 unlink_anon_vmas(vma);
324 return -ENOMEM;
325 }
326
327 void unlink_anon_vmas(struct vm_area_struct *vma)
328 {
329 struct anon_vma_chain *avc, *next;
330 struct anon_vma *root = NULL;
331
332 /*
333 * Unlink each anon_vma chained to the VMA. This list is ordered
334 * from newest to oldest, ensuring the root anon_vma gets freed last.
335 */
336 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
337 struct anon_vma *anon_vma = avc->anon_vma;
338
339 root = lock_anon_vma_root(root, anon_vma);
340 list_del(&avc->same_anon_vma);
341
342 /*
343 * Leave empty anon_vmas on the list - we'll need
344 * to free them outside the lock.
345 */
346 if (list_empty(&anon_vma->head))
347 continue;
348
349 list_del(&avc->same_vma);
350 anon_vma_chain_free(avc);
351 }
352 unlock_anon_vma_root(root);
353
354 /*
355 * Iterate the list once more, it now only contains empty and unlinked
356 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
357 * needing to acquire the anon_vma->root->mutex.
358 */
359 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
360 struct anon_vma *anon_vma = avc->anon_vma;
361
362 put_anon_vma(anon_vma);
363
364 list_del(&avc->same_vma);
365 anon_vma_chain_free(avc);
366 }
367 }
368
369 static void anon_vma_ctor(void *data)
370 {
371 struct anon_vma *anon_vma = data;
372
373 mutex_init(&anon_vma->mutex);
374 atomic_set(&anon_vma->refcount, 0);
375 INIT_LIST_HEAD(&anon_vma->head);
376 }
377
378 void __init anon_vma_init(void)
379 {
380 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
381 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
382 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
383 }
384
385 /*
386 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
387 *
388 * Since there is no serialization what so ever against page_remove_rmap()
389 * the best this function can do is return a locked anon_vma that might
390 * have been relevant to this page.
391 *
392 * The page might have been remapped to a different anon_vma or the anon_vma
393 * returned may already be freed (and even reused).
394 *
395 * In case it was remapped to a different anon_vma, the new anon_vma will be a
396 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
397 * ensure that any anon_vma obtained from the page will still be valid for as
398 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
399 *
400 * All users of this function must be very careful when walking the anon_vma
401 * chain and verify that the page in question is indeed mapped in it
402 * [ something equivalent to page_mapped_in_vma() ].
403 *
404 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
405 * that the anon_vma pointer from page->mapping is valid if there is a
406 * mapcount, we can dereference the anon_vma after observing those.
407 */
408 struct anon_vma *page_get_anon_vma(struct page *page)
409 {
410 struct anon_vma *anon_vma = NULL;
411 unsigned long anon_mapping;
412
413 rcu_read_lock();
414 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
415 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
416 goto out;
417 if (!page_mapped(page))
418 goto out;
419
420 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
421 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
422 anon_vma = NULL;
423 goto out;
424 }
425
426 /*
427 * If this page is still mapped, then its anon_vma cannot have been
428 * freed. But if it has been unmapped, we have no security against the
429 * anon_vma structure being freed and reused (for another anon_vma:
430 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
431 * above cannot corrupt).
432 */
433 if (!page_mapped(page)) {
434 put_anon_vma(anon_vma);
435 anon_vma = NULL;
436 }
437 out:
438 rcu_read_unlock();
439
440 return anon_vma;
441 }
442
443 /*
444 * Similar to page_get_anon_vma() except it locks the anon_vma.
445 *
446 * Its a little more complex as it tries to keep the fast path to a single
447 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
448 * reference like with page_get_anon_vma() and then block on the mutex.
449 */
450 struct anon_vma *page_lock_anon_vma(struct page *page)
451 {
452 struct anon_vma *anon_vma = NULL;
453 struct anon_vma *root_anon_vma;
454 unsigned long anon_mapping;
455
456 rcu_read_lock();
457 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
458 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
459 goto out;
460 if (!page_mapped(page))
461 goto out;
462
463 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
464 root_anon_vma = ACCESS_ONCE(anon_vma->root);
465 if (mutex_trylock(&root_anon_vma->mutex)) {
466 /*
467 * If the page is still mapped, then this anon_vma is still
468 * its anon_vma, and holding the mutex ensures that it will
469 * not go away, see anon_vma_free().
470 */
471 if (!page_mapped(page)) {
472 mutex_unlock(&root_anon_vma->mutex);
473 anon_vma = NULL;
474 }
475 goto out;
476 }
477
478 /* trylock failed, we got to sleep */
479 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
480 anon_vma = NULL;
481 goto out;
482 }
483
484 if (!page_mapped(page)) {
485 put_anon_vma(anon_vma);
486 anon_vma = NULL;
487 goto out;
488 }
489
490 /* we pinned the anon_vma, its safe to sleep */
491 rcu_read_unlock();
492 anon_vma_lock(anon_vma);
493
494 if (atomic_dec_and_test(&anon_vma->refcount)) {
495 /*
496 * Oops, we held the last refcount, release the lock
497 * and bail -- can't simply use put_anon_vma() because
498 * we'll deadlock on the anon_vma_lock() recursion.
499 */
500 anon_vma_unlock(anon_vma);
501 __put_anon_vma(anon_vma);
502 anon_vma = NULL;
503 }
504
505 return anon_vma;
506
507 out:
508 rcu_read_unlock();
509 return anon_vma;
510 }
511
512 void page_unlock_anon_vma(struct anon_vma *anon_vma)
513 {
514 anon_vma_unlock(anon_vma);
515 }
516
517 /*
518 * At what user virtual address is page expected in @vma?
519 * Returns virtual address or -EFAULT if page's index/offset is not
520 * within the range mapped the @vma.
521 */
522 inline unsigned long
523 vma_address(struct page *page, struct vm_area_struct *vma)
524 {
525 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
526 unsigned long address;
527
528 if (unlikely(is_vm_hugetlb_page(vma)))
529 pgoff = page->index << huge_page_order(page_hstate(page));
530 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
531 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
532 /* page should be within @vma mapping range */
533 return -EFAULT;
534 }
535 return address;
536 }
537
538 /*
539 * At what user virtual address is page expected in vma?
540 * Caller should check the page is actually part of the vma.
541 */
542 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
543 {
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 return vma_address(page, vma);
560 }
561
562 /*
563 * Check that @page is mapped at @address into @mm.
564 *
565 * If @sync is false, page_check_address may perform a racy check to avoid
566 * the page table lock when the pte is not present (helpful when reclaiming
567 * highly shared pages).
568 *
569 * On success returns with pte mapped and locked.
570 */
571 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
572 unsigned long address, spinlock_t **ptlp, int sync)
573 {
574 pgd_t *pgd;
575 pud_t *pud;
576 pmd_t *pmd;
577 pte_t *pte;
578 spinlock_t *ptl;
579
580 if (unlikely(PageHuge(page))) {
581 pte = huge_pte_offset(mm, address);
582 ptl = &mm->page_table_lock;
583 goto check;
584 }
585
586 pgd = pgd_offset(mm, address);
587 if (!pgd_present(*pgd))
588 return NULL;
589
590 pud = pud_offset(pgd, address);
591 if (!pud_present(*pud))
592 return NULL;
593
594 pmd = pmd_offset(pud, address);
595 if (!pmd_present(*pmd))
596 return NULL;
597 if (pmd_trans_huge(*pmd))
598 return NULL;
599
600 pte = pte_offset_map(pmd, address);
601 /* Make a quick check before getting the lock */
602 if (!sync && !pte_present(*pte)) {
603 pte_unmap(pte);
604 return NULL;
605 }
606
607 ptl = pte_lockptr(mm, pmd);
608 check:
609 spin_lock(ptl);
610 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
611 *ptlp = ptl;
612 return pte;
613 }
614 pte_unmap_unlock(pte, ptl);
615 return NULL;
616 }
617
618 /**
619 * page_mapped_in_vma - check whether a page is really mapped in a VMA
620 * @page: the page to test
621 * @vma: the VMA to test
622 *
623 * Returns 1 if the page is mapped into the page tables of the VMA, 0
624 * if the page is not mapped into the page tables of this VMA. Only
625 * valid for normal file or anonymous VMAs.
626 */
627 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
628 {
629 unsigned long address;
630 pte_t *pte;
631 spinlock_t *ptl;
632
633 address = vma_address(page, vma);
634 if (address == -EFAULT) /* out of vma range */
635 return 0;
636 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
637 if (!pte) /* the page is not in this mm */
638 return 0;
639 pte_unmap_unlock(pte, ptl);
640
641 return 1;
642 }
643
644 /*
645 * Subfunctions of page_referenced: page_referenced_one called
646 * repeatedly from either page_referenced_anon or page_referenced_file.
647 */
648 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
649 unsigned long address, unsigned int *mapcount,
650 unsigned long *vm_flags)
651 {
652 struct mm_struct *mm = vma->vm_mm;
653 int referenced = 0;
654
655 if (unlikely(PageTransHuge(page))) {
656 pmd_t *pmd;
657
658 spin_lock(&mm->page_table_lock);
659 /*
660 * rmap might return false positives; we must filter
661 * these out using page_check_address_pmd().
662 */
663 pmd = page_check_address_pmd(page, mm, address,
664 PAGE_CHECK_ADDRESS_PMD_FLAG);
665 if (!pmd) {
666 spin_unlock(&mm->page_table_lock);
667 goto out;
668 }
669
670 if (vma->vm_flags & VM_LOCKED) {
671 spin_unlock(&mm->page_table_lock);
672 *mapcount = 0; /* break early from loop */
673 *vm_flags |= VM_LOCKED;
674 goto out;
675 }
676
677 /* go ahead even if the pmd is pmd_trans_splitting() */
678 if (pmdp_clear_flush_young_notify(vma, address, pmd))
679 referenced++;
680 spin_unlock(&mm->page_table_lock);
681 } else {
682 pte_t *pte;
683 spinlock_t *ptl;
684
685 /*
686 * rmap might return false positives; we must filter
687 * these out using page_check_address().
688 */
689 pte = page_check_address(page, mm, address, &ptl, 0);
690 if (!pte)
691 goto out;
692
693 if (vma->vm_flags & VM_LOCKED) {
694 pte_unmap_unlock(pte, ptl);
695 *mapcount = 0; /* break early from loop */
696 *vm_flags |= VM_LOCKED;
697 goto out;
698 }
699
700 if (ptep_clear_flush_young_notify(vma, address, pte)) {
701 /*
702 * Don't treat a reference through a sequentially read
703 * mapping as such. If the page has been used in
704 * another mapping, we will catch it; if this other
705 * mapping is already gone, the unmap path will have
706 * set PG_referenced or activated the page.
707 */
708 if (likely(!VM_SequentialReadHint(vma)))
709 referenced++;
710 }
711 pte_unmap_unlock(pte, ptl);
712 }
713
714 /* Pretend the page is referenced if the task has the
715 swap token and is in the middle of a page fault. */
716 if (mm != current->mm && has_swap_token(mm) &&
717 rwsem_is_locked(&mm->mmap_sem))
718 referenced++;
719
720 (*mapcount)--;
721
722 if (referenced)
723 *vm_flags |= vma->vm_flags;
724 out:
725 return referenced;
726 }
727
728 static int page_referenced_anon(struct page *page,
729 struct mem_cgroup *mem_cont,
730 unsigned long *vm_flags)
731 {
732 unsigned int mapcount;
733 struct anon_vma *anon_vma;
734 struct anon_vma_chain *avc;
735 int referenced = 0;
736
737 anon_vma = page_lock_anon_vma(page);
738 if (!anon_vma)
739 return referenced;
740
741 mapcount = page_mapcount(page);
742 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
743 struct vm_area_struct *vma = avc->vma;
744 unsigned long address = vma_address(page, vma);
745 if (address == -EFAULT)
746 continue;
747 /*
748 * If we are reclaiming on behalf of a cgroup, skip
749 * counting on behalf of references from different
750 * cgroups
751 */
752 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
753 continue;
754 referenced += page_referenced_one(page, vma, address,
755 &mapcount, vm_flags);
756 if (!mapcount)
757 break;
758 }
759
760 page_unlock_anon_vma(anon_vma);
761 return referenced;
762 }
763
764 /**
765 * page_referenced_file - referenced check for object-based rmap
766 * @page: the page we're checking references on.
767 * @mem_cont: target memory controller
768 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
769 *
770 * For an object-based mapped page, find all the places it is mapped and
771 * check/clear the referenced flag. This is done by following the page->mapping
772 * pointer, then walking the chain of vmas it holds. It returns the number
773 * of references it found.
774 *
775 * This function is only called from page_referenced for object-based pages.
776 */
777 static int page_referenced_file(struct page *page,
778 struct mem_cgroup *mem_cont,
779 unsigned long *vm_flags)
780 {
781 unsigned int mapcount;
782 struct address_space *mapping = page->mapping;
783 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
784 struct vm_area_struct *vma;
785 struct prio_tree_iter iter;
786 int referenced = 0;
787
788 /*
789 * The caller's checks on page->mapping and !PageAnon have made
790 * sure that this is a file page: the check for page->mapping
791 * excludes the case just before it gets set on an anon page.
792 */
793 BUG_ON(PageAnon(page));
794
795 /*
796 * The page lock not only makes sure that page->mapping cannot
797 * suddenly be NULLified by truncation, it makes sure that the
798 * structure at mapping cannot be freed and reused yet,
799 * so we can safely take mapping->i_mmap_mutex.
800 */
801 BUG_ON(!PageLocked(page));
802
803 mutex_lock(&mapping->i_mmap_mutex);
804
805 /*
806 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
807 * is more likely to be accurate if we note it after spinning.
808 */
809 mapcount = page_mapcount(page);
810
811 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
812 unsigned long address = vma_address(page, vma);
813 if (address == -EFAULT)
814 continue;
815 /*
816 * If we are reclaiming on behalf of a cgroup, skip
817 * counting on behalf of references from different
818 * cgroups
819 */
820 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
821 continue;
822 referenced += page_referenced_one(page, vma, address,
823 &mapcount, vm_flags);
824 if (!mapcount)
825 break;
826 }
827
828 mutex_unlock(&mapping->i_mmap_mutex);
829 return referenced;
830 }
831
832 /**
833 * page_referenced - test if the page was referenced
834 * @page: the page to test
835 * @is_locked: caller holds lock on the page
836 * @mem_cont: target memory controller
837 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
838 *
839 * Quick test_and_clear_referenced for all mappings to a page,
840 * returns the number of ptes which referenced the page.
841 */
842 int page_referenced(struct page *page,
843 int is_locked,
844 struct mem_cgroup *mem_cont,
845 unsigned long *vm_flags)
846 {
847 int referenced = 0;
848 int we_locked = 0;
849
850 *vm_flags = 0;
851 if (page_mapped(page) && page_rmapping(page)) {
852 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
853 we_locked = trylock_page(page);
854 if (!we_locked) {
855 referenced++;
856 goto out;
857 }
858 }
859 if (unlikely(PageKsm(page)))
860 referenced += page_referenced_ksm(page, mem_cont,
861 vm_flags);
862 else if (PageAnon(page))
863 referenced += page_referenced_anon(page, mem_cont,
864 vm_flags);
865 else if (page->mapping)
866 referenced += page_referenced_file(page, mem_cont,
867 vm_flags);
868 if (we_locked)
869 unlock_page(page);
870 }
871 out:
872 if (page_test_and_clear_young(page_to_pfn(page)))
873 referenced++;
874
875 return referenced;
876 }
877
878 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
879 unsigned long address)
880 {
881 struct mm_struct *mm = vma->vm_mm;
882 pte_t *pte;
883 spinlock_t *ptl;
884 int ret = 0;
885
886 pte = page_check_address(page, mm, address, &ptl, 1);
887 if (!pte)
888 goto out;
889
890 if (pte_dirty(*pte) || pte_write(*pte)) {
891 pte_t entry;
892
893 flush_cache_page(vma, address, pte_pfn(*pte));
894 entry = ptep_clear_flush_notify(vma, address, pte);
895 entry = pte_wrprotect(entry);
896 entry = pte_mkclean(entry);
897 set_pte_at(mm, address, pte, entry);
898 ret = 1;
899 }
900
901 pte_unmap_unlock(pte, ptl);
902 out:
903 return ret;
904 }
905
906 static int page_mkclean_file(struct address_space *mapping, struct page *page)
907 {
908 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
909 struct vm_area_struct *vma;
910 struct prio_tree_iter iter;
911 int ret = 0;
912
913 BUG_ON(PageAnon(page));
914
915 mutex_lock(&mapping->i_mmap_mutex);
916 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
917 if (vma->vm_flags & VM_SHARED) {
918 unsigned long address = vma_address(page, vma);
919 if (address == -EFAULT)
920 continue;
921 ret += page_mkclean_one(page, vma, address);
922 }
923 }
924 mutex_unlock(&mapping->i_mmap_mutex);
925 return ret;
926 }
927
928 int page_mkclean(struct page *page)
929 {
930 int ret = 0;
931
932 BUG_ON(!PageLocked(page));
933
934 if (page_mapped(page)) {
935 struct address_space *mapping = page_mapping(page);
936 if (mapping) {
937 ret = page_mkclean_file(mapping, page);
938 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
939 ret = 1;
940 }
941 }
942
943 return ret;
944 }
945 EXPORT_SYMBOL_GPL(page_mkclean);
946
947 /**
948 * page_move_anon_rmap - move a page to our anon_vma
949 * @page: the page to move to our anon_vma
950 * @vma: the vma the page belongs to
951 * @address: the user virtual address mapped
952 *
953 * When a page belongs exclusively to one process after a COW event,
954 * that page can be moved into the anon_vma that belongs to just that
955 * process, so the rmap code will not search the parent or sibling
956 * processes.
957 */
958 void page_move_anon_rmap(struct page *page,
959 struct vm_area_struct *vma, unsigned long address)
960 {
961 struct anon_vma *anon_vma = vma->anon_vma;
962
963 VM_BUG_ON(!PageLocked(page));
964 VM_BUG_ON(!anon_vma);
965 VM_BUG_ON(page->index != linear_page_index(vma, address));
966
967 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
968 page->mapping = (struct address_space *) anon_vma;
969 }
970
971 /**
972 * __page_set_anon_rmap - set up new anonymous rmap
973 * @page: Page to add to rmap
974 * @vma: VM area to add page to.
975 * @address: User virtual address of the mapping
976 * @exclusive: the page is exclusively owned by the current process
977 */
978 static void __page_set_anon_rmap(struct page *page,
979 struct vm_area_struct *vma, unsigned long address, int exclusive)
980 {
981 struct anon_vma *anon_vma = vma->anon_vma;
982
983 BUG_ON(!anon_vma);
984
985 if (PageAnon(page))
986 return;
987
988 /*
989 * If the page isn't exclusively mapped into this vma,
990 * we must use the _oldest_ possible anon_vma for the
991 * page mapping!
992 */
993 if (!exclusive)
994 anon_vma = anon_vma->root;
995
996 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
997 page->mapping = (struct address_space *) anon_vma;
998 page->index = linear_page_index(vma, address);
999 }
1000
1001 /**
1002 * __page_check_anon_rmap - sanity check anonymous rmap addition
1003 * @page: the page to add the mapping to
1004 * @vma: the vm area in which the mapping is added
1005 * @address: the user virtual address mapped
1006 */
1007 static void __page_check_anon_rmap(struct page *page,
1008 struct vm_area_struct *vma, unsigned long address)
1009 {
1010 #ifdef CONFIG_DEBUG_VM
1011 /*
1012 * The page's anon-rmap details (mapping and index) are guaranteed to
1013 * be set up correctly at this point.
1014 *
1015 * We have exclusion against page_add_anon_rmap because the caller
1016 * always holds the page locked, except if called from page_dup_rmap,
1017 * in which case the page is already known to be setup.
1018 *
1019 * We have exclusion against page_add_new_anon_rmap because those pages
1020 * are initially only visible via the pagetables, and the pte is locked
1021 * over the call to page_add_new_anon_rmap.
1022 */
1023 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1024 BUG_ON(page->index != linear_page_index(vma, address));
1025 #endif
1026 }
1027
1028 /**
1029 * page_add_anon_rmap - add pte mapping to an anonymous page
1030 * @page: the page to add the mapping to
1031 * @vma: the vm area in which the mapping is added
1032 * @address: the user virtual address mapped
1033 *
1034 * The caller needs to hold the pte lock, and the page must be locked in
1035 * the anon_vma case: to serialize mapping,index checking after setting,
1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1037 * (but PageKsm is never downgraded to PageAnon).
1038 */
1039 void page_add_anon_rmap(struct page *page,
1040 struct vm_area_struct *vma, unsigned long address)
1041 {
1042 do_page_add_anon_rmap(page, vma, address, 0);
1043 }
1044
1045 /*
1046 * Special version of the above for do_swap_page, which often runs
1047 * into pages that are exclusively owned by the current process.
1048 * Everybody else should continue to use page_add_anon_rmap above.
1049 */
1050 void do_page_add_anon_rmap(struct page *page,
1051 struct vm_area_struct *vma, unsigned long address, int exclusive)
1052 {
1053 int first = atomic_inc_and_test(&page->_mapcount);
1054 if (first) {
1055 if (!PageTransHuge(page))
1056 __inc_zone_page_state(page, NR_ANON_PAGES);
1057 else
1058 __inc_zone_page_state(page,
1059 NR_ANON_TRANSPARENT_HUGEPAGES);
1060 }
1061 if (unlikely(PageKsm(page)))
1062 return;
1063
1064 VM_BUG_ON(!PageLocked(page));
1065 /* address might be in next vma when migration races vma_adjust */
1066 if (first)
1067 __page_set_anon_rmap(page, vma, address, exclusive);
1068 else
1069 __page_check_anon_rmap(page, vma, address);
1070 }
1071
1072 /**
1073 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 *
1078 * Same as page_add_anon_rmap but must only be called on *new* pages.
1079 * This means the inc-and-test can be bypassed.
1080 * Page does not have to be locked.
1081 */
1082 void page_add_new_anon_rmap(struct page *page,
1083 struct vm_area_struct *vma, unsigned long address)
1084 {
1085 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1086 SetPageSwapBacked(page);
1087 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1088 if (!PageTransHuge(page))
1089 __inc_zone_page_state(page, NR_ANON_PAGES);
1090 else
1091 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1092 __page_set_anon_rmap(page, vma, address, 1);
1093 if (page_evictable(page, vma))
1094 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1095 else
1096 add_page_to_unevictable_list(page);
1097 }
1098
1099 /**
1100 * page_add_file_rmap - add pte mapping to a file page
1101 * @page: the page to add the mapping to
1102 *
1103 * The caller needs to hold the pte lock.
1104 */
1105 void page_add_file_rmap(struct page *page)
1106 {
1107 if (atomic_inc_and_test(&page->_mapcount)) {
1108 __inc_zone_page_state(page, NR_FILE_MAPPED);
1109 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1110 }
1111 }
1112
1113 /**
1114 * page_remove_rmap - take down pte mapping from a page
1115 * @page: page to remove mapping from
1116 *
1117 * The caller needs to hold the pte lock.
1118 */
1119 void page_remove_rmap(struct page *page)
1120 {
1121 /* page still mapped by someone else? */
1122 if (!atomic_add_negative(-1, &page->_mapcount))
1123 return;
1124
1125 /*
1126 * Now that the last pte has gone, s390 must transfer dirty
1127 * flag from storage key to struct page. We can usually skip
1128 * this if the page is anon, so about to be freed; but perhaps
1129 * not if it's in swapcache - there might be another pte slot
1130 * containing the swap entry, but page not yet written to swap.
1131 */
1132 if ((!PageAnon(page) || PageSwapCache(page)) &&
1133 page_test_and_clear_dirty(page_to_pfn(page), 1))
1134 set_page_dirty(page);
1135 /*
1136 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1137 * and not charged by memcg for now.
1138 */
1139 if (unlikely(PageHuge(page)))
1140 return;
1141 if (PageAnon(page)) {
1142 mem_cgroup_uncharge_page(page);
1143 if (!PageTransHuge(page))
1144 __dec_zone_page_state(page, NR_ANON_PAGES);
1145 else
1146 __dec_zone_page_state(page,
1147 NR_ANON_TRANSPARENT_HUGEPAGES);
1148 } else {
1149 __dec_zone_page_state(page, NR_FILE_MAPPED);
1150 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1151 }
1152 /*
1153 * It would be tidy to reset the PageAnon mapping here,
1154 * but that might overwrite a racing page_add_anon_rmap
1155 * which increments mapcount after us but sets mapping
1156 * before us: so leave the reset to free_hot_cold_page,
1157 * and remember that it's only reliable while mapped.
1158 * Leaving it set also helps swapoff to reinstate ptes
1159 * faster for those pages still in swapcache.
1160 */
1161 }
1162
1163 /*
1164 * Subfunctions of try_to_unmap: try_to_unmap_one called
1165 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1166 */
1167 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1168 unsigned long address, enum ttu_flags flags)
1169 {
1170 struct mm_struct *mm = vma->vm_mm;
1171 pte_t *pte;
1172 pte_t pteval;
1173 spinlock_t *ptl;
1174 int ret = SWAP_AGAIN;
1175
1176 pte = page_check_address(page, mm, address, &ptl, 0);
1177 if (!pte)
1178 goto out;
1179
1180 /*
1181 * If the page is mlock()d, we cannot swap it out.
1182 * If it's recently referenced (perhaps page_referenced
1183 * skipped over this mm) then we should reactivate it.
1184 */
1185 if (!(flags & TTU_IGNORE_MLOCK)) {
1186 if (vma->vm_flags & VM_LOCKED)
1187 goto out_mlock;
1188
1189 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1190 goto out_unmap;
1191 }
1192 if (!(flags & TTU_IGNORE_ACCESS)) {
1193 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1194 ret = SWAP_FAIL;
1195 goto out_unmap;
1196 }
1197 }
1198
1199 /* Nuke the page table entry. */
1200 flush_cache_page(vma, address, page_to_pfn(page));
1201 pteval = ptep_clear_flush_notify(vma, address, pte);
1202
1203 /* Move the dirty bit to the physical page now the pte is gone. */
1204 if (pte_dirty(pteval))
1205 set_page_dirty(page);
1206
1207 /* Update high watermark before we lower rss */
1208 update_hiwater_rss(mm);
1209
1210 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1211 if (PageAnon(page))
1212 dec_mm_counter(mm, MM_ANONPAGES);
1213 else
1214 dec_mm_counter(mm, MM_FILEPAGES);
1215 set_pte_at(mm, address, pte,
1216 swp_entry_to_pte(make_hwpoison_entry(page)));
1217 } else if (PageAnon(page)) {
1218 swp_entry_t entry = { .val = page_private(page) };
1219
1220 if (PageSwapCache(page)) {
1221 /*
1222 * Store the swap location in the pte.
1223 * See handle_pte_fault() ...
1224 */
1225 if (swap_duplicate(entry) < 0) {
1226 set_pte_at(mm, address, pte, pteval);
1227 ret = SWAP_FAIL;
1228 goto out_unmap;
1229 }
1230 if (list_empty(&mm->mmlist)) {
1231 spin_lock(&mmlist_lock);
1232 if (list_empty(&mm->mmlist))
1233 list_add(&mm->mmlist, &init_mm.mmlist);
1234 spin_unlock(&mmlist_lock);
1235 }
1236 dec_mm_counter(mm, MM_ANONPAGES);
1237 inc_mm_counter(mm, MM_SWAPENTS);
1238 } else if (PAGE_MIGRATION) {
1239 /*
1240 * Store the pfn of the page in a special migration
1241 * pte. do_swap_page() will wait until the migration
1242 * pte is removed and then restart fault handling.
1243 */
1244 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1245 entry = make_migration_entry(page, pte_write(pteval));
1246 }
1247 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1248 BUG_ON(pte_file(*pte));
1249 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1250 /* Establish migration entry for a file page */
1251 swp_entry_t entry;
1252 entry = make_migration_entry(page, pte_write(pteval));
1253 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1254 } else
1255 dec_mm_counter(mm, MM_FILEPAGES);
1256
1257 page_remove_rmap(page);
1258 page_cache_release(page);
1259
1260 out_unmap:
1261 pte_unmap_unlock(pte, ptl);
1262 out:
1263 return ret;
1264
1265 out_mlock:
1266 pte_unmap_unlock(pte, ptl);
1267
1268
1269 /*
1270 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1271 * unstable result and race. Plus, We can't wait here because
1272 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1273 * if trylock failed, the page remain in evictable lru and later
1274 * vmscan could retry to move the page to unevictable lru if the
1275 * page is actually mlocked.
1276 */
1277 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1278 if (vma->vm_flags & VM_LOCKED) {
1279 mlock_vma_page(page);
1280 ret = SWAP_MLOCK;
1281 }
1282 up_read(&vma->vm_mm->mmap_sem);
1283 }
1284 return ret;
1285 }
1286
1287 /*
1288 * objrmap doesn't work for nonlinear VMAs because the assumption that
1289 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1290 * Consequently, given a particular page and its ->index, we cannot locate the
1291 * ptes which are mapping that page without an exhaustive linear search.
1292 *
1293 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1294 * maps the file to which the target page belongs. The ->vm_private_data field
1295 * holds the current cursor into that scan. Successive searches will circulate
1296 * around the vma's virtual address space.
1297 *
1298 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1299 * more scanning pressure is placed against them as well. Eventually pages
1300 * will become fully unmapped and are eligible for eviction.
1301 *
1302 * For very sparsely populated VMAs this is a little inefficient - chances are
1303 * there there won't be many ptes located within the scan cluster. In this case
1304 * maybe we could scan further - to the end of the pte page, perhaps.
1305 *
1306 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1307 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1308 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1309 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1310 */
1311 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1312 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1313
1314 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1315 struct vm_area_struct *vma, struct page *check_page)
1316 {
1317 struct mm_struct *mm = vma->vm_mm;
1318 pgd_t *pgd;
1319 pud_t *pud;
1320 pmd_t *pmd;
1321 pte_t *pte;
1322 pte_t pteval;
1323 spinlock_t *ptl;
1324 struct page *page;
1325 unsigned long address;
1326 unsigned long end;
1327 int ret = SWAP_AGAIN;
1328 int locked_vma = 0;
1329
1330 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1331 end = address + CLUSTER_SIZE;
1332 if (address < vma->vm_start)
1333 address = vma->vm_start;
1334 if (end > vma->vm_end)
1335 end = vma->vm_end;
1336
1337 pgd = pgd_offset(mm, address);
1338 if (!pgd_present(*pgd))
1339 return ret;
1340
1341 pud = pud_offset(pgd, address);
1342 if (!pud_present(*pud))
1343 return ret;
1344
1345 pmd = pmd_offset(pud, address);
1346 if (!pmd_present(*pmd))
1347 return ret;
1348
1349 /*
1350 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1351 * keep the sem while scanning the cluster for mlocking pages.
1352 */
1353 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1354 locked_vma = (vma->vm_flags & VM_LOCKED);
1355 if (!locked_vma)
1356 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1357 }
1358
1359 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1360
1361 /* Update high watermark before we lower rss */
1362 update_hiwater_rss(mm);
1363
1364 for (; address < end; pte++, address += PAGE_SIZE) {
1365 if (!pte_present(*pte))
1366 continue;
1367 page = vm_normal_page(vma, address, *pte);
1368 BUG_ON(!page || PageAnon(page));
1369
1370 if (locked_vma) {
1371 mlock_vma_page(page); /* no-op if already mlocked */
1372 if (page == check_page)
1373 ret = SWAP_MLOCK;
1374 continue; /* don't unmap */
1375 }
1376
1377 if (ptep_clear_flush_young_notify(vma, address, pte))
1378 continue;
1379
1380 /* Nuke the page table entry. */
1381 flush_cache_page(vma, address, pte_pfn(*pte));
1382 pteval = ptep_clear_flush_notify(vma, address, pte);
1383
1384 /* If nonlinear, store the file page offset in the pte. */
1385 if (page->index != linear_page_index(vma, address))
1386 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1387
1388 /* Move the dirty bit to the physical page now the pte is gone. */
1389 if (pte_dirty(pteval))
1390 set_page_dirty(page);
1391
1392 page_remove_rmap(page);
1393 page_cache_release(page);
1394 dec_mm_counter(mm, MM_FILEPAGES);
1395 (*mapcount)--;
1396 }
1397 pte_unmap_unlock(pte - 1, ptl);
1398 if (locked_vma)
1399 up_read(&vma->vm_mm->mmap_sem);
1400 return ret;
1401 }
1402
1403 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1404 {
1405 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1406
1407 if (!maybe_stack)
1408 return false;
1409
1410 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1411 VM_STACK_INCOMPLETE_SETUP)
1412 return true;
1413
1414 return false;
1415 }
1416
1417 /**
1418 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1419 * rmap method
1420 * @page: the page to unmap/unlock
1421 * @flags: action and flags
1422 *
1423 * Find all the mappings of a page using the mapping pointer and the vma chains
1424 * contained in the anon_vma struct it points to.
1425 *
1426 * This function is only called from try_to_unmap/try_to_munlock for
1427 * anonymous pages.
1428 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1429 * where the page was found will be held for write. So, we won't recheck
1430 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1431 * 'LOCKED.
1432 */
1433 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1434 {
1435 struct anon_vma *anon_vma;
1436 struct anon_vma_chain *avc;
1437 int ret = SWAP_AGAIN;
1438
1439 anon_vma = page_lock_anon_vma(page);
1440 if (!anon_vma)
1441 return ret;
1442
1443 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1444 struct vm_area_struct *vma = avc->vma;
1445 unsigned long address;
1446
1447 /*
1448 * During exec, a temporary VMA is setup and later moved.
1449 * The VMA is moved under the anon_vma lock but not the
1450 * page tables leading to a race where migration cannot
1451 * find the migration ptes. Rather than increasing the
1452 * locking requirements of exec(), migration skips
1453 * temporary VMAs until after exec() completes.
1454 */
1455 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1456 is_vma_temporary_stack(vma))
1457 continue;
1458
1459 address = vma_address(page, vma);
1460 if (address == -EFAULT)
1461 continue;
1462 ret = try_to_unmap_one(page, vma, address, flags);
1463 if (ret != SWAP_AGAIN || !page_mapped(page))
1464 break;
1465 }
1466
1467 page_unlock_anon_vma(anon_vma);
1468 return ret;
1469 }
1470
1471 /**
1472 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1473 * @page: the page to unmap/unlock
1474 * @flags: action and flags
1475 *
1476 * Find all the mappings of a page using the mapping pointer and the vma chains
1477 * contained in the address_space struct it points to.
1478 *
1479 * This function is only called from try_to_unmap/try_to_munlock for
1480 * object-based pages.
1481 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1482 * where the page was found will be held for write. So, we won't recheck
1483 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1484 * 'LOCKED.
1485 */
1486 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1487 {
1488 struct address_space *mapping = page->mapping;
1489 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1490 struct vm_area_struct *vma;
1491 struct prio_tree_iter iter;
1492 int ret = SWAP_AGAIN;
1493 unsigned long cursor;
1494 unsigned long max_nl_cursor = 0;
1495 unsigned long max_nl_size = 0;
1496 unsigned int mapcount;
1497
1498 mutex_lock(&mapping->i_mmap_mutex);
1499 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1500 unsigned long address = vma_address(page, vma);
1501 if (address == -EFAULT)
1502 continue;
1503 ret = try_to_unmap_one(page, vma, address, flags);
1504 if (ret != SWAP_AGAIN || !page_mapped(page))
1505 goto out;
1506 }
1507
1508 if (list_empty(&mapping->i_mmap_nonlinear))
1509 goto out;
1510
1511 /*
1512 * We don't bother to try to find the munlocked page in nonlinears.
1513 * It's costly. Instead, later, page reclaim logic may call
1514 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1515 */
1516 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1517 goto out;
1518
1519 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1520 shared.vm_set.list) {
1521 cursor = (unsigned long) vma->vm_private_data;
1522 if (cursor > max_nl_cursor)
1523 max_nl_cursor = cursor;
1524 cursor = vma->vm_end - vma->vm_start;
1525 if (cursor > max_nl_size)
1526 max_nl_size = cursor;
1527 }
1528
1529 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1530 ret = SWAP_FAIL;
1531 goto out;
1532 }
1533
1534 /*
1535 * We don't try to search for this page in the nonlinear vmas,
1536 * and page_referenced wouldn't have found it anyway. Instead
1537 * just walk the nonlinear vmas trying to age and unmap some.
1538 * The mapcount of the page we came in with is irrelevant,
1539 * but even so use it as a guide to how hard we should try?
1540 */
1541 mapcount = page_mapcount(page);
1542 if (!mapcount)
1543 goto out;
1544 cond_resched();
1545
1546 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1547 if (max_nl_cursor == 0)
1548 max_nl_cursor = CLUSTER_SIZE;
1549
1550 do {
1551 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1552 shared.vm_set.list) {
1553 cursor = (unsigned long) vma->vm_private_data;
1554 while ( cursor < max_nl_cursor &&
1555 cursor < vma->vm_end - vma->vm_start) {
1556 if (try_to_unmap_cluster(cursor, &mapcount,
1557 vma, page) == SWAP_MLOCK)
1558 ret = SWAP_MLOCK;
1559 cursor += CLUSTER_SIZE;
1560 vma->vm_private_data = (void *) cursor;
1561 if ((int)mapcount <= 0)
1562 goto out;
1563 }
1564 vma->vm_private_data = (void *) max_nl_cursor;
1565 }
1566 cond_resched();
1567 max_nl_cursor += CLUSTER_SIZE;
1568 } while (max_nl_cursor <= max_nl_size);
1569
1570 /*
1571 * Don't loop forever (perhaps all the remaining pages are
1572 * in locked vmas). Reset cursor on all unreserved nonlinear
1573 * vmas, now forgetting on which ones it had fallen behind.
1574 */
1575 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1576 vma->vm_private_data = NULL;
1577 out:
1578 mutex_unlock(&mapping->i_mmap_mutex);
1579 return ret;
1580 }
1581
1582 /**
1583 * try_to_unmap - try to remove all page table mappings to a page
1584 * @page: the page to get unmapped
1585 * @flags: action and flags
1586 *
1587 * Tries to remove all the page table entries which are mapping this
1588 * page, used in the pageout path. Caller must hold the page lock.
1589 * Return values are:
1590 *
1591 * SWAP_SUCCESS - we succeeded in removing all mappings
1592 * SWAP_AGAIN - we missed a mapping, try again later
1593 * SWAP_FAIL - the page is unswappable
1594 * SWAP_MLOCK - page is mlocked.
1595 */
1596 int try_to_unmap(struct page *page, enum ttu_flags flags)
1597 {
1598 int ret;
1599
1600 BUG_ON(!PageLocked(page));
1601 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1602
1603 if (unlikely(PageKsm(page)))
1604 ret = try_to_unmap_ksm(page, flags);
1605 else if (PageAnon(page))
1606 ret = try_to_unmap_anon(page, flags);
1607 else
1608 ret = try_to_unmap_file(page, flags);
1609 if (ret != SWAP_MLOCK && !page_mapped(page))
1610 ret = SWAP_SUCCESS;
1611 return ret;
1612 }
1613
1614 /**
1615 * try_to_munlock - try to munlock a page
1616 * @page: the page to be munlocked
1617 *
1618 * Called from munlock code. Checks all of the VMAs mapping the page
1619 * to make sure nobody else has this page mlocked. The page will be
1620 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1621 *
1622 * Return values are:
1623 *
1624 * SWAP_AGAIN - no vma is holding page mlocked, or,
1625 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1626 * SWAP_FAIL - page cannot be located at present
1627 * SWAP_MLOCK - page is now mlocked.
1628 */
1629 int try_to_munlock(struct page *page)
1630 {
1631 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1632
1633 if (unlikely(PageKsm(page)))
1634 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1635 else if (PageAnon(page))
1636 return try_to_unmap_anon(page, TTU_MUNLOCK);
1637 else
1638 return try_to_unmap_file(page, TTU_MUNLOCK);
1639 }
1640
1641 void __put_anon_vma(struct anon_vma *anon_vma)
1642 {
1643 struct anon_vma *root = anon_vma->root;
1644
1645 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1646 anon_vma_free(root);
1647
1648 anon_vma_free(anon_vma);
1649 }
1650
1651 #ifdef CONFIG_MIGRATION
1652 /*
1653 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1654 * Called by migrate.c to remove migration ptes, but might be used more later.
1655 */
1656 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1657 struct vm_area_struct *, unsigned long, void *), void *arg)
1658 {
1659 struct anon_vma *anon_vma;
1660 struct anon_vma_chain *avc;
1661 int ret = SWAP_AGAIN;
1662
1663 /*
1664 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1665 * because that depends on page_mapped(); but not all its usages
1666 * are holding mmap_sem. Users without mmap_sem are required to
1667 * take a reference count to prevent the anon_vma disappearing
1668 */
1669 anon_vma = page_anon_vma(page);
1670 if (!anon_vma)
1671 return ret;
1672 anon_vma_lock(anon_vma);
1673 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1674 struct vm_area_struct *vma = avc->vma;
1675 unsigned long address = vma_address(page, vma);
1676 if (address == -EFAULT)
1677 continue;
1678 ret = rmap_one(page, vma, address, arg);
1679 if (ret != SWAP_AGAIN)
1680 break;
1681 }
1682 anon_vma_unlock(anon_vma);
1683 return ret;
1684 }
1685
1686 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1687 struct vm_area_struct *, unsigned long, void *), void *arg)
1688 {
1689 struct address_space *mapping = page->mapping;
1690 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1691 struct vm_area_struct *vma;
1692 struct prio_tree_iter iter;
1693 int ret = SWAP_AGAIN;
1694
1695 if (!mapping)
1696 return ret;
1697 mutex_lock(&mapping->i_mmap_mutex);
1698 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1699 unsigned long address = vma_address(page, vma);
1700 if (address == -EFAULT)
1701 continue;
1702 ret = rmap_one(page, vma, address, arg);
1703 if (ret != SWAP_AGAIN)
1704 break;
1705 }
1706 /*
1707 * No nonlinear handling: being always shared, nonlinear vmas
1708 * never contain migration ptes. Decide what to do about this
1709 * limitation to linear when we need rmap_walk() on nonlinear.
1710 */
1711 mutex_unlock(&mapping->i_mmap_mutex);
1712 return ret;
1713 }
1714
1715 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1716 struct vm_area_struct *, unsigned long, void *), void *arg)
1717 {
1718 VM_BUG_ON(!PageLocked(page));
1719
1720 if (unlikely(PageKsm(page)))
1721 return rmap_walk_ksm(page, rmap_one, arg);
1722 else if (PageAnon(page))
1723 return rmap_walk_anon(page, rmap_one, arg);
1724 else
1725 return rmap_walk_file(page, rmap_one, arg);
1726 }
1727 #endif /* CONFIG_MIGRATION */
1728
1729 #ifdef CONFIG_HUGETLB_PAGE
1730 /*
1731 * The following three functions are for anonymous (private mapped) hugepages.
1732 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1733 * and no lru code, because we handle hugepages differently from common pages.
1734 */
1735 static void __hugepage_set_anon_rmap(struct page *page,
1736 struct vm_area_struct *vma, unsigned long address, int exclusive)
1737 {
1738 struct anon_vma *anon_vma = vma->anon_vma;
1739
1740 BUG_ON(!anon_vma);
1741
1742 if (PageAnon(page))
1743 return;
1744 if (!exclusive)
1745 anon_vma = anon_vma->root;
1746
1747 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1748 page->mapping = (struct address_space *) anon_vma;
1749 page->index = linear_page_index(vma, address);
1750 }
1751
1752 void hugepage_add_anon_rmap(struct page *page,
1753 struct vm_area_struct *vma, unsigned long address)
1754 {
1755 struct anon_vma *anon_vma = vma->anon_vma;
1756 int first;
1757
1758 BUG_ON(!PageLocked(page));
1759 BUG_ON(!anon_vma);
1760 /* address might be in next vma when migration races vma_adjust */
1761 first = atomic_inc_and_test(&page->_mapcount);
1762 if (first)
1763 __hugepage_set_anon_rmap(page, vma, address, 0);
1764 }
1765
1766 void hugepage_add_new_anon_rmap(struct page *page,
1767 struct vm_area_struct *vma, unsigned long address)
1768 {
1769 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1770 atomic_set(&page->_mapcount, 0);
1771 __hugepage_set_anon_rmap(page, vma, address, 1);
1772 }
1773 #endif /* CONFIG_HUGETLB_PAGE */