HWPOISON: Handle hardware poisoned pages in try_to_unmap
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
53
54 #include <asm/tlbflush.h>
55
56 #include "internal.h"
57
58 static struct kmem_cache *anon_vma_cachep;
59
60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69
70 /**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 struct anon_vma *anon_vma = vma->anon_vma;
100
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
104 struct anon_vma *allocated;
105
106 anon_vma = find_mergeable_anon_vma(vma);
107 allocated = NULL;
108 if (!anon_vma) {
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
113 }
114 spin_lock(&anon_vma->lock);
115
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 allocated = NULL;
122 }
123 spin_unlock(&mm->page_table_lock);
124
125 spin_unlock(&anon_vma->lock);
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
128 }
129 return 0;
130 }
131
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
136 }
137
138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 struct anon_vma *anon_vma = vma->anon_vma;
141
142 if (anon_vma)
143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145
146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 struct anon_vma *anon_vma = vma->anon_vma;
149
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 spin_unlock(&anon_vma->lock);
154 }
155 }
156
157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
161
162 if (!anon_vma)
163 return;
164
165 spin_lock(&anon_vma->lock);
166 list_del(&vma->anon_vma_node);
167
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
171
172 if (empty)
173 anon_vma_free(anon_vma);
174 }
175
176 static void anon_vma_ctor(void *data)
177 {
178 struct anon_vma *anon_vma = data;
179
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
182 }
183
184 void __init anon_vma_init(void)
185 {
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189
190 /*
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */
194 struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 struct anon_vma *anon_vma;
197 unsigned long anon_mapping;
198
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
205
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
208 return anon_vma;
209 out:
210 rcu_read_unlock();
211 return NULL;
212 }
213
214 void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
218 }
219
220 /*
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
224 */
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
230
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 /* page should be within @vma mapping range */
234 return -EFAULT;
235 }
236 return address;
237 }
238
239 /*
240 * At what user virtual address is page expected in vma? checking that the
241 * page matches the vma: currently only used on anon pages, by unuse_vma;
242 */
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
256 }
257
258 /*
259 * Check that @page is mapped at @address into @mm.
260 *
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
264 *
265 * On success returns with pte mapped and locked.
266 */
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274 spinlock_t *ptl;
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 return NULL;
279
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
283
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
287
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
290 if (!sync && !pte_present(*pte)) {
291 pte_unmap(pte);
292 return NULL;
293 }
294
295 ptl = pte_lockptr(mm, pmd);
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
300 }
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
303 }
304
305 /**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329 }
330
331 /*
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
334 */
335 static int page_referenced_one(struct page *page,
336 struct vm_area_struct *vma,
337 unsigned int *mapcount,
338 unsigned long *vm_flags)
339 {
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
342 pte_t *pte;
343 spinlock_t *ptl;
344 int referenced = 0;
345
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
349
350 pte = page_check_address(page, mm, address, &ptl, 0);
351 if (!pte)
352 goto out;
353
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
359 if (vma->vm_flags & VM_LOCKED) {
360 *mapcount = 1; /* break early from loop */
361 *vm_flags |= VM_LOCKED;
362 goto out_unmap;
363 }
364
365 if (ptep_clear_flush_young_notify(vma, address, pte)) {
366 /*
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
372 */
373 if (likely(!VM_SequentialReadHint(vma)))
374 referenced++;
375 }
376
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
379 if (mm != current->mm && has_swap_token(mm) &&
380 rwsem_is_locked(&mm->mmap_sem))
381 referenced++;
382
383 out_unmap:
384 (*mapcount)--;
385 pte_unmap_unlock(pte, ptl);
386 out:
387 if (referenced)
388 *vm_flags |= vma->vm_flags;
389 return referenced;
390 }
391
392 static int page_referenced_anon(struct page *page,
393 struct mem_cgroup *mem_cont,
394 unsigned long *vm_flags)
395 {
396 unsigned int mapcount;
397 struct anon_vma *anon_vma;
398 struct vm_area_struct *vma;
399 int referenced = 0;
400
401 anon_vma = page_lock_anon_vma(page);
402 if (!anon_vma)
403 return referenced;
404
405 mapcount = page_mapcount(page);
406 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
407 /*
408 * If we are reclaiming on behalf of a cgroup, skip
409 * counting on behalf of references from different
410 * cgroups
411 */
412 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
413 continue;
414 referenced += page_referenced_one(page, vma,
415 &mapcount, vm_flags);
416 if (!mapcount)
417 break;
418 }
419
420 page_unlock_anon_vma(anon_vma);
421 return referenced;
422 }
423
424 /**
425 * page_referenced_file - referenced check for object-based rmap
426 * @page: the page we're checking references on.
427 * @mem_cont: target memory controller
428 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
429 *
430 * For an object-based mapped page, find all the places it is mapped and
431 * check/clear the referenced flag. This is done by following the page->mapping
432 * pointer, then walking the chain of vmas it holds. It returns the number
433 * of references it found.
434 *
435 * This function is only called from page_referenced for object-based pages.
436 */
437 static int page_referenced_file(struct page *page,
438 struct mem_cgroup *mem_cont,
439 unsigned long *vm_flags)
440 {
441 unsigned int mapcount;
442 struct address_space *mapping = page->mapping;
443 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
444 struct vm_area_struct *vma;
445 struct prio_tree_iter iter;
446 int referenced = 0;
447
448 /*
449 * The caller's checks on page->mapping and !PageAnon have made
450 * sure that this is a file page: the check for page->mapping
451 * excludes the case just before it gets set on an anon page.
452 */
453 BUG_ON(PageAnon(page));
454
455 /*
456 * The page lock not only makes sure that page->mapping cannot
457 * suddenly be NULLified by truncation, it makes sure that the
458 * structure at mapping cannot be freed and reused yet,
459 * so we can safely take mapping->i_mmap_lock.
460 */
461 BUG_ON(!PageLocked(page));
462
463 spin_lock(&mapping->i_mmap_lock);
464
465 /*
466 * i_mmap_lock does not stabilize mapcount at all, but mapcount
467 * is more likely to be accurate if we note it after spinning.
468 */
469 mapcount = page_mapcount(page);
470
471 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
472 /*
473 * If we are reclaiming on behalf of a cgroup, skip
474 * counting on behalf of references from different
475 * cgroups
476 */
477 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
478 continue;
479 referenced += page_referenced_one(page, vma,
480 &mapcount, vm_flags);
481 if (!mapcount)
482 break;
483 }
484
485 spin_unlock(&mapping->i_mmap_lock);
486 return referenced;
487 }
488
489 /**
490 * page_referenced - test if the page was referenced
491 * @page: the page to test
492 * @is_locked: caller holds lock on the page
493 * @mem_cont: target memory controller
494 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
495 *
496 * Quick test_and_clear_referenced for all mappings to a page,
497 * returns the number of ptes which referenced the page.
498 */
499 int page_referenced(struct page *page,
500 int is_locked,
501 struct mem_cgroup *mem_cont,
502 unsigned long *vm_flags)
503 {
504 int referenced = 0;
505
506 if (TestClearPageReferenced(page))
507 referenced++;
508
509 *vm_flags = 0;
510 if (page_mapped(page) && page->mapping) {
511 if (PageAnon(page))
512 referenced += page_referenced_anon(page, mem_cont,
513 vm_flags);
514 else if (is_locked)
515 referenced += page_referenced_file(page, mem_cont,
516 vm_flags);
517 else if (!trylock_page(page))
518 referenced++;
519 else {
520 if (page->mapping)
521 referenced += page_referenced_file(page,
522 mem_cont, vm_flags);
523 unlock_page(page);
524 }
525 }
526
527 if (page_test_and_clear_young(page))
528 referenced++;
529
530 return referenced;
531 }
532
533 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
534 {
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long address;
537 pte_t *pte;
538 spinlock_t *ptl;
539 int ret = 0;
540
541 address = vma_address(page, vma);
542 if (address == -EFAULT)
543 goto out;
544
545 pte = page_check_address(page, mm, address, &ptl, 1);
546 if (!pte)
547 goto out;
548
549 if (pte_dirty(*pte) || pte_write(*pte)) {
550 pte_t entry;
551
552 flush_cache_page(vma, address, pte_pfn(*pte));
553 entry = ptep_clear_flush_notify(vma, address, pte);
554 entry = pte_wrprotect(entry);
555 entry = pte_mkclean(entry);
556 set_pte_at(mm, address, pte, entry);
557 ret = 1;
558 }
559
560 pte_unmap_unlock(pte, ptl);
561 out:
562 return ret;
563 }
564
565 static int page_mkclean_file(struct address_space *mapping, struct page *page)
566 {
567 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
568 struct vm_area_struct *vma;
569 struct prio_tree_iter iter;
570 int ret = 0;
571
572 BUG_ON(PageAnon(page));
573
574 spin_lock(&mapping->i_mmap_lock);
575 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
576 if (vma->vm_flags & VM_SHARED)
577 ret += page_mkclean_one(page, vma);
578 }
579 spin_unlock(&mapping->i_mmap_lock);
580 return ret;
581 }
582
583 int page_mkclean(struct page *page)
584 {
585 int ret = 0;
586
587 BUG_ON(!PageLocked(page));
588
589 if (page_mapped(page)) {
590 struct address_space *mapping = page_mapping(page);
591 if (mapping) {
592 ret = page_mkclean_file(mapping, page);
593 if (page_test_dirty(page)) {
594 page_clear_dirty(page);
595 ret = 1;
596 }
597 }
598 }
599
600 return ret;
601 }
602 EXPORT_SYMBOL_GPL(page_mkclean);
603
604 /**
605 * __page_set_anon_rmap - setup new anonymous rmap
606 * @page: the page to add the mapping to
607 * @vma: the vm area in which the mapping is added
608 * @address: the user virtual address mapped
609 */
610 static void __page_set_anon_rmap(struct page *page,
611 struct vm_area_struct *vma, unsigned long address)
612 {
613 struct anon_vma *anon_vma = vma->anon_vma;
614
615 BUG_ON(!anon_vma);
616 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
617 page->mapping = (struct address_space *) anon_vma;
618
619 page->index = linear_page_index(vma, address);
620
621 /*
622 * nr_mapped state can be updated without turning off
623 * interrupts because it is not modified via interrupt.
624 */
625 __inc_zone_page_state(page, NR_ANON_PAGES);
626 }
627
628 /**
629 * __page_check_anon_rmap - sanity check anonymous rmap addition
630 * @page: the page to add the mapping to
631 * @vma: the vm area in which the mapping is added
632 * @address: the user virtual address mapped
633 */
634 static void __page_check_anon_rmap(struct page *page,
635 struct vm_area_struct *vma, unsigned long address)
636 {
637 #ifdef CONFIG_DEBUG_VM
638 /*
639 * The page's anon-rmap details (mapping and index) are guaranteed to
640 * be set up correctly at this point.
641 *
642 * We have exclusion against page_add_anon_rmap because the caller
643 * always holds the page locked, except if called from page_dup_rmap,
644 * in which case the page is already known to be setup.
645 *
646 * We have exclusion against page_add_new_anon_rmap because those pages
647 * are initially only visible via the pagetables, and the pte is locked
648 * over the call to page_add_new_anon_rmap.
649 */
650 struct anon_vma *anon_vma = vma->anon_vma;
651 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
652 BUG_ON(page->mapping != (struct address_space *)anon_vma);
653 BUG_ON(page->index != linear_page_index(vma, address));
654 #endif
655 }
656
657 /**
658 * page_add_anon_rmap - add pte mapping to an anonymous page
659 * @page: the page to add the mapping to
660 * @vma: the vm area in which the mapping is added
661 * @address: the user virtual address mapped
662 *
663 * The caller needs to hold the pte lock and the page must be locked.
664 */
665 void page_add_anon_rmap(struct page *page,
666 struct vm_area_struct *vma, unsigned long address)
667 {
668 VM_BUG_ON(!PageLocked(page));
669 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
670 if (atomic_inc_and_test(&page->_mapcount))
671 __page_set_anon_rmap(page, vma, address);
672 else
673 __page_check_anon_rmap(page, vma, address);
674 }
675
676 /**
677 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
678 * @page: the page to add the mapping to
679 * @vma: the vm area in which the mapping is added
680 * @address: the user virtual address mapped
681 *
682 * Same as page_add_anon_rmap but must only be called on *new* pages.
683 * This means the inc-and-test can be bypassed.
684 * Page does not have to be locked.
685 */
686 void page_add_new_anon_rmap(struct page *page,
687 struct vm_area_struct *vma, unsigned long address)
688 {
689 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
690 SetPageSwapBacked(page);
691 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
692 __page_set_anon_rmap(page, vma, address);
693 if (page_evictable(page, vma))
694 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
695 else
696 add_page_to_unevictable_list(page);
697 }
698
699 /**
700 * page_add_file_rmap - add pte mapping to a file page
701 * @page: the page to add the mapping to
702 *
703 * The caller needs to hold the pte lock.
704 */
705 void page_add_file_rmap(struct page *page)
706 {
707 if (atomic_inc_and_test(&page->_mapcount)) {
708 __inc_zone_page_state(page, NR_FILE_MAPPED);
709 mem_cgroup_update_mapped_file_stat(page, 1);
710 }
711 }
712
713 #ifdef CONFIG_DEBUG_VM
714 /**
715 * page_dup_rmap - duplicate pte mapping to a page
716 * @page: the page to add the mapping to
717 * @vma: the vm area being duplicated
718 * @address: the user virtual address mapped
719 *
720 * For copy_page_range only: minimal extract from page_add_file_rmap /
721 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
722 * quicker.
723 *
724 * The caller needs to hold the pte lock.
725 */
726 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
727 {
728 if (PageAnon(page))
729 __page_check_anon_rmap(page, vma, address);
730 atomic_inc(&page->_mapcount);
731 }
732 #endif
733
734 /**
735 * page_remove_rmap - take down pte mapping from a page
736 * @page: page to remove mapping from
737 *
738 * The caller needs to hold the pte lock.
739 */
740 void page_remove_rmap(struct page *page)
741 {
742 if (atomic_add_negative(-1, &page->_mapcount)) {
743 /*
744 * Now that the last pte has gone, s390 must transfer dirty
745 * flag from storage key to struct page. We can usually skip
746 * this if the page is anon, so about to be freed; but perhaps
747 * not if it's in swapcache - there might be another pte slot
748 * containing the swap entry, but page not yet written to swap.
749 */
750 if ((!PageAnon(page) || PageSwapCache(page)) &&
751 page_test_dirty(page)) {
752 page_clear_dirty(page);
753 set_page_dirty(page);
754 }
755 if (PageAnon(page))
756 mem_cgroup_uncharge_page(page);
757 __dec_zone_page_state(page,
758 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
759 mem_cgroup_update_mapped_file_stat(page, -1);
760 /*
761 * It would be tidy to reset the PageAnon mapping here,
762 * but that might overwrite a racing page_add_anon_rmap
763 * which increments mapcount after us but sets mapping
764 * before us: so leave the reset to free_hot_cold_page,
765 * and remember that it's only reliable while mapped.
766 * Leaving it set also helps swapoff to reinstate ptes
767 * faster for those pages still in swapcache.
768 */
769 }
770 }
771
772 /*
773 * Subfunctions of try_to_unmap: try_to_unmap_one called
774 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
775 */
776 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
777 enum ttu_flags flags)
778 {
779 struct mm_struct *mm = vma->vm_mm;
780 unsigned long address;
781 pte_t *pte;
782 pte_t pteval;
783 spinlock_t *ptl;
784 int ret = SWAP_AGAIN;
785
786 address = vma_address(page, vma);
787 if (address == -EFAULT)
788 goto out;
789
790 pte = page_check_address(page, mm, address, &ptl, 0);
791 if (!pte)
792 goto out;
793
794 /*
795 * If the page is mlock()d, we cannot swap it out.
796 * If it's recently referenced (perhaps page_referenced
797 * skipped over this mm) then we should reactivate it.
798 */
799 if (!(flags & TTU_IGNORE_MLOCK)) {
800 if (vma->vm_flags & VM_LOCKED) {
801 ret = SWAP_MLOCK;
802 goto out_unmap;
803 }
804 }
805 if (!(flags & TTU_IGNORE_ACCESS)) {
806 if (ptep_clear_flush_young_notify(vma, address, pte)) {
807 ret = SWAP_FAIL;
808 goto out_unmap;
809 }
810 }
811
812 /* Nuke the page table entry. */
813 flush_cache_page(vma, address, page_to_pfn(page));
814 pteval = ptep_clear_flush_notify(vma, address, pte);
815
816 /* Move the dirty bit to the physical page now the pte is gone. */
817 if (pte_dirty(pteval))
818 set_page_dirty(page);
819
820 /* Update high watermark before we lower rss */
821 update_hiwater_rss(mm);
822
823 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
824 if (PageAnon(page))
825 dec_mm_counter(mm, anon_rss);
826 else
827 dec_mm_counter(mm, file_rss);
828 set_pte_at(mm, address, pte,
829 swp_entry_to_pte(make_hwpoison_entry(page)));
830 } else if (PageAnon(page)) {
831 swp_entry_t entry = { .val = page_private(page) };
832
833 if (PageSwapCache(page)) {
834 /*
835 * Store the swap location in the pte.
836 * See handle_pte_fault() ...
837 */
838 swap_duplicate(entry);
839 if (list_empty(&mm->mmlist)) {
840 spin_lock(&mmlist_lock);
841 if (list_empty(&mm->mmlist))
842 list_add(&mm->mmlist, &init_mm.mmlist);
843 spin_unlock(&mmlist_lock);
844 }
845 dec_mm_counter(mm, anon_rss);
846 } else if (PAGE_MIGRATION) {
847 /*
848 * Store the pfn of the page in a special migration
849 * pte. do_swap_page() will wait until the migration
850 * pte is removed and then restart fault handling.
851 */
852 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
853 entry = make_migration_entry(page, pte_write(pteval));
854 }
855 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
856 BUG_ON(pte_file(*pte));
857 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
858 /* Establish migration entry for a file page */
859 swp_entry_t entry;
860 entry = make_migration_entry(page, pte_write(pteval));
861 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
862 } else
863 dec_mm_counter(mm, file_rss);
864
865
866 page_remove_rmap(page);
867 page_cache_release(page);
868
869 out_unmap:
870 pte_unmap_unlock(pte, ptl);
871 out:
872 return ret;
873 }
874
875 /*
876 * objrmap doesn't work for nonlinear VMAs because the assumption that
877 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
878 * Consequently, given a particular page and its ->index, we cannot locate the
879 * ptes which are mapping that page without an exhaustive linear search.
880 *
881 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
882 * maps the file to which the target page belongs. The ->vm_private_data field
883 * holds the current cursor into that scan. Successive searches will circulate
884 * around the vma's virtual address space.
885 *
886 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
887 * more scanning pressure is placed against them as well. Eventually pages
888 * will become fully unmapped and are eligible for eviction.
889 *
890 * For very sparsely populated VMAs this is a little inefficient - chances are
891 * there there won't be many ptes located within the scan cluster. In this case
892 * maybe we could scan further - to the end of the pte page, perhaps.
893 *
894 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
895 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
896 * rather than unmapping them. If we encounter the "check_page" that vmscan is
897 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
898 */
899 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
900 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
901
902 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
903 struct vm_area_struct *vma, struct page *check_page)
904 {
905 struct mm_struct *mm = vma->vm_mm;
906 pgd_t *pgd;
907 pud_t *pud;
908 pmd_t *pmd;
909 pte_t *pte;
910 pte_t pteval;
911 spinlock_t *ptl;
912 struct page *page;
913 unsigned long address;
914 unsigned long end;
915 int ret = SWAP_AGAIN;
916 int locked_vma = 0;
917
918 address = (vma->vm_start + cursor) & CLUSTER_MASK;
919 end = address + CLUSTER_SIZE;
920 if (address < vma->vm_start)
921 address = vma->vm_start;
922 if (end > vma->vm_end)
923 end = vma->vm_end;
924
925 pgd = pgd_offset(mm, address);
926 if (!pgd_present(*pgd))
927 return ret;
928
929 pud = pud_offset(pgd, address);
930 if (!pud_present(*pud))
931 return ret;
932
933 pmd = pmd_offset(pud, address);
934 if (!pmd_present(*pmd))
935 return ret;
936
937 /*
938 * MLOCK_PAGES => feature is configured.
939 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
940 * keep the sem while scanning the cluster for mlocking pages.
941 */
942 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
943 locked_vma = (vma->vm_flags & VM_LOCKED);
944 if (!locked_vma)
945 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
946 }
947
948 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
949
950 /* Update high watermark before we lower rss */
951 update_hiwater_rss(mm);
952
953 for (; address < end; pte++, address += PAGE_SIZE) {
954 if (!pte_present(*pte))
955 continue;
956 page = vm_normal_page(vma, address, *pte);
957 BUG_ON(!page || PageAnon(page));
958
959 if (locked_vma) {
960 mlock_vma_page(page); /* no-op if already mlocked */
961 if (page == check_page)
962 ret = SWAP_MLOCK;
963 continue; /* don't unmap */
964 }
965
966 if (ptep_clear_flush_young_notify(vma, address, pte))
967 continue;
968
969 /* Nuke the page table entry. */
970 flush_cache_page(vma, address, pte_pfn(*pte));
971 pteval = ptep_clear_flush_notify(vma, address, pte);
972
973 /* If nonlinear, store the file page offset in the pte. */
974 if (page->index != linear_page_index(vma, address))
975 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
976
977 /* Move the dirty bit to the physical page now the pte is gone. */
978 if (pte_dirty(pteval))
979 set_page_dirty(page);
980
981 page_remove_rmap(page);
982 page_cache_release(page);
983 dec_mm_counter(mm, file_rss);
984 (*mapcount)--;
985 }
986 pte_unmap_unlock(pte - 1, ptl);
987 if (locked_vma)
988 up_read(&vma->vm_mm->mmap_sem);
989 return ret;
990 }
991
992 /*
993 * common handling for pages mapped in VM_LOCKED vmas
994 */
995 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
996 {
997 int mlocked = 0;
998
999 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1000 if (vma->vm_flags & VM_LOCKED) {
1001 mlock_vma_page(page);
1002 mlocked++; /* really mlocked the page */
1003 }
1004 up_read(&vma->vm_mm->mmap_sem);
1005 }
1006 return mlocked;
1007 }
1008
1009 /**
1010 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1011 * rmap method
1012 * @page: the page to unmap/unlock
1013 * @unlock: request for unlock rather than unmap [unlikely]
1014 * @migration: unmapping for migration - ignored if @unlock
1015 *
1016 * Find all the mappings of a page using the mapping pointer and the vma chains
1017 * contained in the anon_vma struct it points to.
1018 *
1019 * This function is only called from try_to_unmap/try_to_munlock for
1020 * anonymous pages.
1021 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1022 * where the page was found will be held for write. So, we won't recheck
1023 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1024 * 'LOCKED.
1025 */
1026 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1027 {
1028 struct anon_vma *anon_vma;
1029 struct vm_area_struct *vma;
1030 unsigned int mlocked = 0;
1031 int ret = SWAP_AGAIN;
1032 int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1033
1034 if (MLOCK_PAGES && unlikely(unlock))
1035 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1036
1037 anon_vma = page_lock_anon_vma(page);
1038 if (!anon_vma)
1039 return ret;
1040
1041 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1042 if (MLOCK_PAGES && unlikely(unlock)) {
1043 if (!((vma->vm_flags & VM_LOCKED) &&
1044 page_mapped_in_vma(page, vma)))
1045 continue; /* must visit all unlocked vmas */
1046 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1047 } else {
1048 ret = try_to_unmap_one(page, vma, flags);
1049 if (ret == SWAP_FAIL || !page_mapped(page))
1050 break;
1051 }
1052 if (ret == SWAP_MLOCK) {
1053 mlocked = try_to_mlock_page(page, vma);
1054 if (mlocked)
1055 break; /* stop if actually mlocked page */
1056 }
1057 }
1058
1059 page_unlock_anon_vma(anon_vma);
1060
1061 if (mlocked)
1062 ret = SWAP_MLOCK; /* actually mlocked the page */
1063 else if (ret == SWAP_MLOCK)
1064 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1065
1066 return ret;
1067 }
1068
1069 /**
1070 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1071 * @page: the page to unmap/unlock
1072 * @flags: action and flags
1073 *
1074 * Find all the mappings of a page using the mapping pointer and the vma chains
1075 * contained in the address_space struct it points to.
1076 *
1077 * This function is only called from try_to_unmap/try_to_munlock for
1078 * object-based pages.
1079 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1080 * where the page was found will be held for write. So, we won't recheck
1081 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1082 * 'LOCKED.
1083 */
1084 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1085 {
1086 struct address_space *mapping = page->mapping;
1087 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1088 struct vm_area_struct *vma;
1089 struct prio_tree_iter iter;
1090 int ret = SWAP_AGAIN;
1091 unsigned long cursor;
1092 unsigned long max_nl_cursor = 0;
1093 unsigned long max_nl_size = 0;
1094 unsigned int mapcount;
1095 unsigned int mlocked = 0;
1096 int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1097
1098 if (MLOCK_PAGES && unlikely(unlock))
1099 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1100
1101 spin_lock(&mapping->i_mmap_lock);
1102 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1103 if (MLOCK_PAGES && unlikely(unlock)) {
1104 if (!((vma->vm_flags & VM_LOCKED) &&
1105 page_mapped_in_vma(page, vma)))
1106 continue; /* must visit all vmas */
1107 ret = SWAP_MLOCK;
1108 } else {
1109 ret = try_to_unmap_one(page, vma, flags);
1110 if (ret == SWAP_FAIL || !page_mapped(page))
1111 goto out;
1112 }
1113 if (ret == SWAP_MLOCK) {
1114 mlocked = try_to_mlock_page(page, vma);
1115 if (mlocked)
1116 break; /* stop if actually mlocked page */
1117 }
1118 }
1119
1120 if (mlocked)
1121 goto out;
1122
1123 if (list_empty(&mapping->i_mmap_nonlinear))
1124 goto out;
1125
1126 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1127 shared.vm_set.list) {
1128 if (MLOCK_PAGES && unlikely(unlock)) {
1129 if (!(vma->vm_flags & VM_LOCKED))
1130 continue; /* must visit all vmas */
1131 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1132 goto out; /* no need to look further */
1133 }
1134 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1135 (vma->vm_flags & VM_LOCKED))
1136 continue;
1137 cursor = (unsigned long) vma->vm_private_data;
1138 if (cursor > max_nl_cursor)
1139 max_nl_cursor = cursor;
1140 cursor = vma->vm_end - vma->vm_start;
1141 if (cursor > max_nl_size)
1142 max_nl_size = cursor;
1143 }
1144
1145 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1146 ret = SWAP_FAIL;
1147 goto out;
1148 }
1149
1150 /*
1151 * We don't try to search for this page in the nonlinear vmas,
1152 * and page_referenced wouldn't have found it anyway. Instead
1153 * just walk the nonlinear vmas trying to age and unmap some.
1154 * The mapcount of the page we came in with is irrelevant,
1155 * but even so use it as a guide to how hard we should try?
1156 */
1157 mapcount = page_mapcount(page);
1158 if (!mapcount)
1159 goto out;
1160 cond_resched_lock(&mapping->i_mmap_lock);
1161
1162 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1163 if (max_nl_cursor == 0)
1164 max_nl_cursor = CLUSTER_SIZE;
1165
1166 do {
1167 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1168 shared.vm_set.list) {
1169 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1170 (vma->vm_flags & VM_LOCKED))
1171 continue;
1172 cursor = (unsigned long) vma->vm_private_data;
1173 while ( cursor < max_nl_cursor &&
1174 cursor < vma->vm_end - vma->vm_start) {
1175 ret = try_to_unmap_cluster(cursor, &mapcount,
1176 vma, page);
1177 if (ret == SWAP_MLOCK)
1178 mlocked = 2; /* to return below */
1179 cursor += CLUSTER_SIZE;
1180 vma->vm_private_data = (void *) cursor;
1181 if ((int)mapcount <= 0)
1182 goto out;
1183 }
1184 vma->vm_private_data = (void *) max_nl_cursor;
1185 }
1186 cond_resched_lock(&mapping->i_mmap_lock);
1187 max_nl_cursor += CLUSTER_SIZE;
1188 } while (max_nl_cursor <= max_nl_size);
1189
1190 /*
1191 * Don't loop forever (perhaps all the remaining pages are
1192 * in locked vmas). Reset cursor on all unreserved nonlinear
1193 * vmas, now forgetting on which ones it had fallen behind.
1194 */
1195 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1196 vma->vm_private_data = NULL;
1197 out:
1198 spin_unlock(&mapping->i_mmap_lock);
1199 if (mlocked)
1200 ret = SWAP_MLOCK; /* actually mlocked the page */
1201 else if (ret == SWAP_MLOCK)
1202 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1203 return ret;
1204 }
1205
1206 /**
1207 * try_to_unmap - try to remove all page table mappings to a page
1208 * @page: the page to get unmapped
1209 * @flags: action and flags
1210 *
1211 * Tries to remove all the page table entries which are mapping this
1212 * page, used in the pageout path. Caller must hold the page lock.
1213 * Return values are:
1214 *
1215 * SWAP_SUCCESS - we succeeded in removing all mappings
1216 * SWAP_AGAIN - we missed a mapping, try again later
1217 * SWAP_FAIL - the page is unswappable
1218 * SWAP_MLOCK - page is mlocked.
1219 */
1220 int try_to_unmap(struct page *page, enum ttu_flags flags)
1221 {
1222 int ret;
1223
1224 BUG_ON(!PageLocked(page));
1225
1226 if (PageAnon(page))
1227 ret = try_to_unmap_anon(page, flags);
1228 else
1229 ret = try_to_unmap_file(page, flags);
1230 if (ret != SWAP_MLOCK && !page_mapped(page))
1231 ret = SWAP_SUCCESS;
1232 return ret;
1233 }
1234
1235 /**
1236 * try_to_munlock - try to munlock a page
1237 * @page: the page to be munlocked
1238 *
1239 * Called from munlock code. Checks all of the VMAs mapping the page
1240 * to make sure nobody else has this page mlocked. The page will be
1241 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1242 *
1243 * Return values are:
1244 *
1245 * SWAP_SUCCESS - no vma's holding page mlocked.
1246 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1247 * SWAP_MLOCK - page is now mlocked.
1248 */
1249 int try_to_munlock(struct page *page)
1250 {
1251 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1252
1253 if (PageAnon(page))
1254 return try_to_unmap_anon(page, TTU_MUNLOCK);
1255 else
1256 return try_to_unmap_file(page, TTU_MUNLOCK);
1257 }
1258