Merge branch 'fix/misc' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
53
54 #include <asm/tlbflush.h>
55
56 #include "internal.h"
57
58 static struct kmem_cache *anon_vma_cachep;
59
60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69
70 /**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 struct anon_vma *anon_vma = vma->anon_vma;
100
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
104 struct anon_vma *allocated;
105
106 anon_vma = find_mergeable_anon_vma(vma);
107 allocated = NULL;
108 if (!anon_vma) {
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
113 }
114 spin_lock(&anon_vma->lock);
115
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 allocated = NULL;
122 }
123 spin_unlock(&mm->page_table_lock);
124
125 spin_unlock(&anon_vma->lock);
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
128 }
129 return 0;
130 }
131
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
136 }
137
138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 struct anon_vma *anon_vma = vma->anon_vma;
141
142 if (anon_vma)
143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145
146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 struct anon_vma *anon_vma = vma->anon_vma;
149
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 spin_unlock(&anon_vma->lock);
154 }
155 }
156
157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
161
162 if (!anon_vma)
163 return;
164
165 spin_lock(&anon_vma->lock);
166 list_del(&vma->anon_vma_node);
167
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
171
172 if (empty)
173 anon_vma_free(anon_vma);
174 }
175
176 static void anon_vma_ctor(void *data)
177 {
178 struct anon_vma *anon_vma = data;
179
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
182 }
183
184 void __init anon_vma_init(void)
185 {
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189
190 /*
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */
194 static struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 struct anon_vma *anon_vma;
197 unsigned long anon_mapping;
198
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
205
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
208 return anon_vma;
209 out:
210 rcu_read_unlock();
211 return NULL;
212 }
213
214 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
218 }
219
220 /*
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
224 */
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
230
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 /* page should be within @vma mapping range */
234 return -EFAULT;
235 }
236 return address;
237 }
238
239 /*
240 * At what user virtual address is page expected in vma? checking that the
241 * page matches the vma: currently only used on anon pages, by unuse_vma;
242 */
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
256 }
257
258 /*
259 * Check that @page is mapped at @address into @mm.
260 *
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
264 *
265 * On success returns with pte mapped and locked.
266 */
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274 spinlock_t *ptl;
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 return NULL;
279
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
283
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
287
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
290 if (!sync && !pte_present(*pte)) {
291 pte_unmap(pte);
292 return NULL;
293 }
294
295 ptl = pte_lockptr(mm, pmd);
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
300 }
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
303 }
304
305 /**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329 }
330
331 /*
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
334 */
335 static int page_referenced_one(struct page *page,
336 struct vm_area_struct *vma,
337 unsigned int *mapcount,
338 unsigned long *vm_flags)
339 {
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
342 pte_t *pte;
343 spinlock_t *ptl;
344 int referenced = 0;
345
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
349
350 pte = page_check_address(page, mm, address, &ptl, 0);
351 if (!pte)
352 goto out;
353
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
359 if (vma->vm_flags & VM_LOCKED) {
360 *mapcount = 1; /* break early from loop */
361 *vm_flags |= VM_LOCKED;
362 goto out_unmap;
363 }
364
365 if (ptep_clear_flush_young_notify(vma, address, pte)) {
366 /*
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
372 */
373 if (likely(!VM_SequentialReadHint(vma)))
374 referenced++;
375 }
376
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
379 if (mm != current->mm && has_swap_token(mm) &&
380 rwsem_is_locked(&mm->mmap_sem))
381 referenced++;
382
383 out_unmap:
384 (*mapcount)--;
385 pte_unmap_unlock(pte, ptl);
386 out:
387 if (referenced)
388 *vm_flags |= vma->vm_flags;
389 return referenced;
390 }
391
392 static int page_referenced_anon(struct page *page,
393 struct mem_cgroup *mem_cont,
394 unsigned long *vm_flags)
395 {
396 unsigned int mapcount;
397 struct anon_vma *anon_vma;
398 struct vm_area_struct *vma;
399 int referenced = 0;
400
401 anon_vma = page_lock_anon_vma(page);
402 if (!anon_vma)
403 return referenced;
404
405 mapcount = page_mapcount(page);
406 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
407 /*
408 * If we are reclaiming on behalf of a cgroup, skip
409 * counting on behalf of references from different
410 * cgroups
411 */
412 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
413 continue;
414 referenced += page_referenced_one(page, vma,
415 &mapcount, vm_flags);
416 if (!mapcount)
417 break;
418 }
419
420 page_unlock_anon_vma(anon_vma);
421 return referenced;
422 }
423
424 /**
425 * page_referenced_file - referenced check for object-based rmap
426 * @page: the page we're checking references on.
427 * @mem_cont: target memory controller
428 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
429 *
430 * For an object-based mapped page, find all the places it is mapped and
431 * check/clear the referenced flag. This is done by following the page->mapping
432 * pointer, then walking the chain of vmas it holds. It returns the number
433 * of references it found.
434 *
435 * This function is only called from page_referenced for object-based pages.
436 */
437 static int page_referenced_file(struct page *page,
438 struct mem_cgroup *mem_cont,
439 unsigned long *vm_flags)
440 {
441 unsigned int mapcount;
442 struct address_space *mapping = page->mapping;
443 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
444 struct vm_area_struct *vma;
445 struct prio_tree_iter iter;
446 int referenced = 0;
447
448 /*
449 * The caller's checks on page->mapping and !PageAnon have made
450 * sure that this is a file page: the check for page->mapping
451 * excludes the case just before it gets set on an anon page.
452 */
453 BUG_ON(PageAnon(page));
454
455 /*
456 * The page lock not only makes sure that page->mapping cannot
457 * suddenly be NULLified by truncation, it makes sure that the
458 * structure at mapping cannot be freed and reused yet,
459 * so we can safely take mapping->i_mmap_lock.
460 */
461 BUG_ON(!PageLocked(page));
462
463 spin_lock(&mapping->i_mmap_lock);
464
465 /*
466 * i_mmap_lock does not stabilize mapcount at all, but mapcount
467 * is more likely to be accurate if we note it after spinning.
468 */
469 mapcount = page_mapcount(page);
470
471 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
472 /*
473 * If we are reclaiming on behalf of a cgroup, skip
474 * counting on behalf of references from different
475 * cgroups
476 */
477 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
478 continue;
479 referenced += page_referenced_one(page, vma,
480 &mapcount, vm_flags);
481 if (!mapcount)
482 break;
483 }
484
485 spin_unlock(&mapping->i_mmap_lock);
486 return referenced;
487 }
488
489 /**
490 * page_referenced - test if the page was referenced
491 * @page: the page to test
492 * @is_locked: caller holds lock on the page
493 * @mem_cont: target memory controller
494 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
495 *
496 * Quick test_and_clear_referenced for all mappings to a page,
497 * returns the number of ptes which referenced the page.
498 */
499 int page_referenced(struct page *page,
500 int is_locked,
501 struct mem_cgroup *mem_cont,
502 unsigned long *vm_flags)
503 {
504 int referenced = 0;
505
506 if (TestClearPageReferenced(page))
507 referenced++;
508
509 *vm_flags = 0;
510 if (page_mapped(page) && page->mapping) {
511 if (PageAnon(page))
512 referenced += page_referenced_anon(page, mem_cont,
513 vm_flags);
514 else if (is_locked)
515 referenced += page_referenced_file(page, mem_cont,
516 vm_flags);
517 else if (!trylock_page(page))
518 referenced++;
519 else {
520 if (page->mapping)
521 referenced += page_referenced_file(page,
522 mem_cont, vm_flags);
523 unlock_page(page);
524 }
525 }
526
527 if (page_test_and_clear_young(page))
528 referenced++;
529
530 return referenced;
531 }
532
533 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
534 {
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long address;
537 pte_t *pte;
538 spinlock_t *ptl;
539 int ret = 0;
540
541 address = vma_address(page, vma);
542 if (address == -EFAULT)
543 goto out;
544
545 pte = page_check_address(page, mm, address, &ptl, 1);
546 if (!pte)
547 goto out;
548
549 if (pte_dirty(*pte) || pte_write(*pte)) {
550 pte_t entry;
551
552 flush_cache_page(vma, address, pte_pfn(*pte));
553 entry = ptep_clear_flush_notify(vma, address, pte);
554 entry = pte_wrprotect(entry);
555 entry = pte_mkclean(entry);
556 set_pte_at(mm, address, pte, entry);
557 ret = 1;
558 }
559
560 pte_unmap_unlock(pte, ptl);
561 out:
562 return ret;
563 }
564
565 static int page_mkclean_file(struct address_space *mapping, struct page *page)
566 {
567 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
568 struct vm_area_struct *vma;
569 struct prio_tree_iter iter;
570 int ret = 0;
571
572 BUG_ON(PageAnon(page));
573
574 spin_lock(&mapping->i_mmap_lock);
575 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
576 if (vma->vm_flags & VM_SHARED)
577 ret += page_mkclean_one(page, vma);
578 }
579 spin_unlock(&mapping->i_mmap_lock);
580 return ret;
581 }
582
583 int page_mkclean(struct page *page)
584 {
585 int ret = 0;
586
587 BUG_ON(!PageLocked(page));
588
589 if (page_mapped(page)) {
590 struct address_space *mapping = page_mapping(page);
591 if (mapping) {
592 ret = page_mkclean_file(mapping, page);
593 if (page_test_dirty(page)) {
594 page_clear_dirty(page);
595 ret = 1;
596 }
597 }
598 }
599
600 return ret;
601 }
602 EXPORT_SYMBOL_GPL(page_mkclean);
603
604 /**
605 * __page_set_anon_rmap - setup new anonymous rmap
606 * @page: the page to add the mapping to
607 * @vma: the vm area in which the mapping is added
608 * @address: the user virtual address mapped
609 */
610 static void __page_set_anon_rmap(struct page *page,
611 struct vm_area_struct *vma, unsigned long address)
612 {
613 struct anon_vma *anon_vma = vma->anon_vma;
614
615 BUG_ON(!anon_vma);
616 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
617 page->mapping = (struct address_space *) anon_vma;
618
619 page->index = linear_page_index(vma, address);
620
621 /*
622 * nr_mapped state can be updated without turning off
623 * interrupts because it is not modified via interrupt.
624 */
625 __inc_zone_page_state(page, NR_ANON_PAGES);
626 }
627
628 /**
629 * __page_check_anon_rmap - sanity check anonymous rmap addition
630 * @page: the page to add the mapping to
631 * @vma: the vm area in which the mapping is added
632 * @address: the user virtual address mapped
633 */
634 static void __page_check_anon_rmap(struct page *page,
635 struct vm_area_struct *vma, unsigned long address)
636 {
637 #ifdef CONFIG_DEBUG_VM
638 /*
639 * The page's anon-rmap details (mapping and index) are guaranteed to
640 * be set up correctly at this point.
641 *
642 * We have exclusion against page_add_anon_rmap because the caller
643 * always holds the page locked, except if called from page_dup_rmap,
644 * in which case the page is already known to be setup.
645 *
646 * We have exclusion against page_add_new_anon_rmap because those pages
647 * are initially only visible via the pagetables, and the pte is locked
648 * over the call to page_add_new_anon_rmap.
649 */
650 struct anon_vma *anon_vma = vma->anon_vma;
651 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
652 BUG_ON(page->mapping != (struct address_space *)anon_vma);
653 BUG_ON(page->index != linear_page_index(vma, address));
654 #endif
655 }
656
657 /**
658 * page_add_anon_rmap - add pte mapping to an anonymous page
659 * @page: the page to add the mapping to
660 * @vma: the vm area in which the mapping is added
661 * @address: the user virtual address mapped
662 *
663 * The caller needs to hold the pte lock and the page must be locked.
664 */
665 void page_add_anon_rmap(struct page *page,
666 struct vm_area_struct *vma, unsigned long address)
667 {
668 VM_BUG_ON(!PageLocked(page));
669 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
670 if (atomic_inc_and_test(&page->_mapcount))
671 __page_set_anon_rmap(page, vma, address);
672 else
673 __page_check_anon_rmap(page, vma, address);
674 }
675
676 /**
677 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
678 * @page: the page to add the mapping to
679 * @vma: the vm area in which the mapping is added
680 * @address: the user virtual address mapped
681 *
682 * Same as page_add_anon_rmap but must only be called on *new* pages.
683 * This means the inc-and-test can be bypassed.
684 * Page does not have to be locked.
685 */
686 void page_add_new_anon_rmap(struct page *page,
687 struct vm_area_struct *vma, unsigned long address)
688 {
689 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
690 SetPageSwapBacked(page);
691 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
692 __page_set_anon_rmap(page, vma, address);
693 if (page_evictable(page, vma))
694 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
695 else
696 add_page_to_unevictable_list(page);
697 }
698
699 /**
700 * page_add_file_rmap - add pte mapping to a file page
701 * @page: the page to add the mapping to
702 *
703 * The caller needs to hold the pte lock.
704 */
705 void page_add_file_rmap(struct page *page)
706 {
707 if (atomic_inc_and_test(&page->_mapcount)) {
708 __inc_zone_page_state(page, NR_FILE_MAPPED);
709 mem_cgroup_update_mapped_file_stat(page, 1);
710 }
711 }
712
713 /**
714 * page_remove_rmap - take down pte mapping from a page
715 * @page: page to remove mapping from
716 *
717 * The caller needs to hold the pte lock.
718 */
719 void page_remove_rmap(struct page *page)
720 {
721 /* page still mapped by someone else? */
722 if (!atomic_add_negative(-1, &page->_mapcount))
723 return;
724
725 /*
726 * Now that the last pte has gone, s390 must transfer dirty
727 * flag from storage key to struct page. We can usually skip
728 * this if the page is anon, so about to be freed; but perhaps
729 * not if it's in swapcache - there might be another pte slot
730 * containing the swap entry, but page not yet written to swap.
731 */
732 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
733 page_clear_dirty(page);
734 set_page_dirty(page);
735 }
736 if (PageAnon(page)) {
737 mem_cgroup_uncharge_page(page);
738 __dec_zone_page_state(page, NR_ANON_PAGES);
739 } else {
740 __dec_zone_page_state(page, NR_FILE_MAPPED);
741 }
742 mem_cgroup_update_mapped_file_stat(page, -1);
743 /*
744 * It would be tidy to reset the PageAnon mapping here,
745 * but that might overwrite a racing page_add_anon_rmap
746 * which increments mapcount after us but sets mapping
747 * before us: so leave the reset to free_hot_cold_page,
748 * and remember that it's only reliable while mapped.
749 * Leaving it set also helps swapoff to reinstate ptes
750 * faster for those pages still in swapcache.
751 */
752 }
753
754 /*
755 * Subfunctions of try_to_unmap: try_to_unmap_one called
756 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
757 */
758 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
759 int migration)
760 {
761 struct mm_struct *mm = vma->vm_mm;
762 unsigned long address;
763 pte_t *pte;
764 pte_t pteval;
765 spinlock_t *ptl;
766 int ret = SWAP_AGAIN;
767
768 address = vma_address(page, vma);
769 if (address == -EFAULT)
770 goto out;
771
772 pte = page_check_address(page, mm, address, &ptl, 0);
773 if (!pte)
774 goto out;
775
776 /*
777 * If the page is mlock()d, we cannot swap it out.
778 * If it's recently referenced (perhaps page_referenced
779 * skipped over this mm) then we should reactivate it.
780 */
781 if (!migration) {
782 if (vma->vm_flags & VM_LOCKED) {
783 ret = SWAP_MLOCK;
784 goto out_unmap;
785 }
786 if (ptep_clear_flush_young_notify(vma, address, pte)) {
787 ret = SWAP_FAIL;
788 goto out_unmap;
789 }
790 }
791
792 /* Nuke the page table entry. */
793 flush_cache_page(vma, address, page_to_pfn(page));
794 pteval = ptep_clear_flush_notify(vma, address, pte);
795
796 /* Move the dirty bit to the physical page now the pte is gone. */
797 if (pte_dirty(pteval))
798 set_page_dirty(page);
799
800 /* Update high watermark before we lower rss */
801 update_hiwater_rss(mm);
802
803 if (PageAnon(page)) {
804 swp_entry_t entry = { .val = page_private(page) };
805
806 if (PageSwapCache(page)) {
807 /*
808 * Store the swap location in the pte.
809 * See handle_pte_fault() ...
810 */
811 swap_duplicate(entry);
812 if (list_empty(&mm->mmlist)) {
813 spin_lock(&mmlist_lock);
814 if (list_empty(&mm->mmlist))
815 list_add(&mm->mmlist, &init_mm.mmlist);
816 spin_unlock(&mmlist_lock);
817 }
818 dec_mm_counter(mm, anon_rss);
819 } else if (PAGE_MIGRATION) {
820 /*
821 * Store the pfn of the page in a special migration
822 * pte. do_swap_page() will wait until the migration
823 * pte is removed and then restart fault handling.
824 */
825 BUG_ON(!migration);
826 entry = make_migration_entry(page, pte_write(pteval));
827 }
828 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
829 BUG_ON(pte_file(*pte));
830 } else if (PAGE_MIGRATION && migration) {
831 /* Establish migration entry for a file page */
832 swp_entry_t entry;
833 entry = make_migration_entry(page, pte_write(pteval));
834 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
835 } else
836 dec_mm_counter(mm, file_rss);
837
838
839 page_remove_rmap(page);
840 page_cache_release(page);
841
842 out_unmap:
843 pte_unmap_unlock(pte, ptl);
844 out:
845 return ret;
846 }
847
848 /*
849 * objrmap doesn't work for nonlinear VMAs because the assumption that
850 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
851 * Consequently, given a particular page and its ->index, we cannot locate the
852 * ptes which are mapping that page without an exhaustive linear search.
853 *
854 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
855 * maps the file to which the target page belongs. The ->vm_private_data field
856 * holds the current cursor into that scan. Successive searches will circulate
857 * around the vma's virtual address space.
858 *
859 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
860 * more scanning pressure is placed against them as well. Eventually pages
861 * will become fully unmapped and are eligible for eviction.
862 *
863 * For very sparsely populated VMAs this is a little inefficient - chances are
864 * there there won't be many ptes located within the scan cluster. In this case
865 * maybe we could scan further - to the end of the pte page, perhaps.
866 *
867 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
868 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
869 * rather than unmapping them. If we encounter the "check_page" that vmscan is
870 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
871 */
872 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
873 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
874
875 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
876 struct vm_area_struct *vma, struct page *check_page)
877 {
878 struct mm_struct *mm = vma->vm_mm;
879 pgd_t *pgd;
880 pud_t *pud;
881 pmd_t *pmd;
882 pte_t *pte;
883 pte_t pteval;
884 spinlock_t *ptl;
885 struct page *page;
886 unsigned long address;
887 unsigned long end;
888 int ret = SWAP_AGAIN;
889 int locked_vma = 0;
890
891 address = (vma->vm_start + cursor) & CLUSTER_MASK;
892 end = address + CLUSTER_SIZE;
893 if (address < vma->vm_start)
894 address = vma->vm_start;
895 if (end > vma->vm_end)
896 end = vma->vm_end;
897
898 pgd = pgd_offset(mm, address);
899 if (!pgd_present(*pgd))
900 return ret;
901
902 pud = pud_offset(pgd, address);
903 if (!pud_present(*pud))
904 return ret;
905
906 pmd = pmd_offset(pud, address);
907 if (!pmd_present(*pmd))
908 return ret;
909
910 /*
911 * MLOCK_PAGES => feature is configured.
912 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
913 * keep the sem while scanning the cluster for mlocking pages.
914 */
915 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
916 locked_vma = (vma->vm_flags & VM_LOCKED);
917 if (!locked_vma)
918 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
919 }
920
921 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
922
923 /* Update high watermark before we lower rss */
924 update_hiwater_rss(mm);
925
926 for (; address < end; pte++, address += PAGE_SIZE) {
927 if (!pte_present(*pte))
928 continue;
929 page = vm_normal_page(vma, address, *pte);
930 BUG_ON(!page || PageAnon(page));
931
932 if (locked_vma) {
933 mlock_vma_page(page); /* no-op if already mlocked */
934 if (page == check_page)
935 ret = SWAP_MLOCK;
936 continue; /* don't unmap */
937 }
938
939 if (ptep_clear_flush_young_notify(vma, address, pte))
940 continue;
941
942 /* Nuke the page table entry. */
943 flush_cache_page(vma, address, pte_pfn(*pte));
944 pteval = ptep_clear_flush_notify(vma, address, pte);
945
946 /* If nonlinear, store the file page offset in the pte. */
947 if (page->index != linear_page_index(vma, address))
948 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
949
950 /* Move the dirty bit to the physical page now the pte is gone. */
951 if (pte_dirty(pteval))
952 set_page_dirty(page);
953
954 page_remove_rmap(page);
955 page_cache_release(page);
956 dec_mm_counter(mm, file_rss);
957 (*mapcount)--;
958 }
959 pte_unmap_unlock(pte - 1, ptl);
960 if (locked_vma)
961 up_read(&vma->vm_mm->mmap_sem);
962 return ret;
963 }
964
965 /*
966 * common handling for pages mapped in VM_LOCKED vmas
967 */
968 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
969 {
970 int mlocked = 0;
971
972 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
973 if (vma->vm_flags & VM_LOCKED) {
974 mlock_vma_page(page);
975 mlocked++; /* really mlocked the page */
976 }
977 up_read(&vma->vm_mm->mmap_sem);
978 }
979 return mlocked;
980 }
981
982 /**
983 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
984 * rmap method
985 * @page: the page to unmap/unlock
986 * @unlock: request for unlock rather than unmap [unlikely]
987 * @migration: unmapping for migration - ignored if @unlock
988 *
989 * Find all the mappings of a page using the mapping pointer and the vma chains
990 * contained in the anon_vma struct it points to.
991 *
992 * This function is only called from try_to_unmap/try_to_munlock for
993 * anonymous pages.
994 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
995 * where the page was found will be held for write. So, we won't recheck
996 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
997 * 'LOCKED.
998 */
999 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1000 {
1001 struct anon_vma *anon_vma;
1002 struct vm_area_struct *vma;
1003 unsigned int mlocked = 0;
1004 int ret = SWAP_AGAIN;
1005
1006 if (MLOCK_PAGES && unlikely(unlock))
1007 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1008
1009 anon_vma = page_lock_anon_vma(page);
1010 if (!anon_vma)
1011 return ret;
1012
1013 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1014 if (MLOCK_PAGES && unlikely(unlock)) {
1015 if (!((vma->vm_flags & VM_LOCKED) &&
1016 page_mapped_in_vma(page, vma)))
1017 continue; /* must visit all unlocked vmas */
1018 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1019 } else {
1020 ret = try_to_unmap_one(page, vma, migration);
1021 if (ret == SWAP_FAIL || !page_mapped(page))
1022 break;
1023 }
1024 if (ret == SWAP_MLOCK) {
1025 mlocked = try_to_mlock_page(page, vma);
1026 if (mlocked)
1027 break; /* stop if actually mlocked page */
1028 }
1029 }
1030
1031 page_unlock_anon_vma(anon_vma);
1032
1033 if (mlocked)
1034 ret = SWAP_MLOCK; /* actually mlocked the page */
1035 else if (ret == SWAP_MLOCK)
1036 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1037
1038 return ret;
1039 }
1040
1041 /**
1042 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1043 * @page: the page to unmap/unlock
1044 * @unlock: request for unlock rather than unmap [unlikely]
1045 * @migration: unmapping for migration - ignored if @unlock
1046 *
1047 * Find all the mappings of a page using the mapping pointer and the vma chains
1048 * contained in the address_space struct it points to.
1049 *
1050 * This function is only called from try_to_unmap/try_to_munlock for
1051 * object-based pages.
1052 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1053 * where the page was found will be held for write. So, we won't recheck
1054 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1055 * 'LOCKED.
1056 */
1057 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1058 {
1059 struct address_space *mapping = page->mapping;
1060 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1061 struct vm_area_struct *vma;
1062 struct prio_tree_iter iter;
1063 int ret = SWAP_AGAIN;
1064 unsigned long cursor;
1065 unsigned long max_nl_cursor = 0;
1066 unsigned long max_nl_size = 0;
1067 unsigned int mapcount;
1068 unsigned int mlocked = 0;
1069
1070 if (MLOCK_PAGES && unlikely(unlock))
1071 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1072
1073 spin_lock(&mapping->i_mmap_lock);
1074 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1075 if (MLOCK_PAGES && unlikely(unlock)) {
1076 if (!((vma->vm_flags & VM_LOCKED) &&
1077 page_mapped_in_vma(page, vma)))
1078 continue; /* must visit all vmas */
1079 ret = SWAP_MLOCK;
1080 } else {
1081 ret = try_to_unmap_one(page, vma, migration);
1082 if (ret == SWAP_FAIL || !page_mapped(page))
1083 goto out;
1084 }
1085 if (ret == SWAP_MLOCK) {
1086 mlocked = try_to_mlock_page(page, vma);
1087 if (mlocked)
1088 break; /* stop if actually mlocked page */
1089 }
1090 }
1091
1092 if (mlocked)
1093 goto out;
1094
1095 if (list_empty(&mapping->i_mmap_nonlinear))
1096 goto out;
1097
1098 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1099 shared.vm_set.list) {
1100 if (MLOCK_PAGES && unlikely(unlock)) {
1101 if (!(vma->vm_flags & VM_LOCKED))
1102 continue; /* must visit all vmas */
1103 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1104 goto out; /* no need to look further */
1105 }
1106 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1107 continue;
1108 cursor = (unsigned long) vma->vm_private_data;
1109 if (cursor > max_nl_cursor)
1110 max_nl_cursor = cursor;
1111 cursor = vma->vm_end - vma->vm_start;
1112 if (cursor > max_nl_size)
1113 max_nl_size = cursor;
1114 }
1115
1116 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1117 ret = SWAP_FAIL;
1118 goto out;
1119 }
1120
1121 /*
1122 * We don't try to search for this page in the nonlinear vmas,
1123 * and page_referenced wouldn't have found it anyway. Instead
1124 * just walk the nonlinear vmas trying to age and unmap some.
1125 * The mapcount of the page we came in with is irrelevant,
1126 * but even so use it as a guide to how hard we should try?
1127 */
1128 mapcount = page_mapcount(page);
1129 if (!mapcount)
1130 goto out;
1131 cond_resched_lock(&mapping->i_mmap_lock);
1132
1133 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1134 if (max_nl_cursor == 0)
1135 max_nl_cursor = CLUSTER_SIZE;
1136
1137 do {
1138 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1139 shared.vm_set.list) {
1140 if (!MLOCK_PAGES && !migration &&
1141 (vma->vm_flags & VM_LOCKED))
1142 continue;
1143 cursor = (unsigned long) vma->vm_private_data;
1144 while ( cursor < max_nl_cursor &&
1145 cursor < vma->vm_end - vma->vm_start) {
1146 ret = try_to_unmap_cluster(cursor, &mapcount,
1147 vma, page);
1148 if (ret == SWAP_MLOCK)
1149 mlocked = 2; /* to return below */
1150 cursor += CLUSTER_SIZE;
1151 vma->vm_private_data = (void *) cursor;
1152 if ((int)mapcount <= 0)
1153 goto out;
1154 }
1155 vma->vm_private_data = (void *) max_nl_cursor;
1156 }
1157 cond_resched_lock(&mapping->i_mmap_lock);
1158 max_nl_cursor += CLUSTER_SIZE;
1159 } while (max_nl_cursor <= max_nl_size);
1160
1161 /*
1162 * Don't loop forever (perhaps all the remaining pages are
1163 * in locked vmas). Reset cursor on all unreserved nonlinear
1164 * vmas, now forgetting on which ones it had fallen behind.
1165 */
1166 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1167 vma->vm_private_data = NULL;
1168 out:
1169 spin_unlock(&mapping->i_mmap_lock);
1170 if (mlocked)
1171 ret = SWAP_MLOCK; /* actually mlocked the page */
1172 else if (ret == SWAP_MLOCK)
1173 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1174 return ret;
1175 }
1176
1177 /**
1178 * try_to_unmap - try to remove all page table mappings to a page
1179 * @page: the page to get unmapped
1180 * @migration: migration flag
1181 *
1182 * Tries to remove all the page table entries which are mapping this
1183 * page, used in the pageout path. Caller must hold the page lock.
1184 * Return values are:
1185 *
1186 * SWAP_SUCCESS - we succeeded in removing all mappings
1187 * SWAP_AGAIN - we missed a mapping, try again later
1188 * SWAP_FAIL - the page is unswappable
1189 * SWAP_MLOCK - page is mlocked.
1190 */
1191 int try_to_unmap(struct page *page, int migration)
1192 {
1193 int ret;
1194
1195 BUG_ON(!PageLocked(page));
1196
1197 if (PageAnon(page))
1198 ret = try_to_unmap_anon(page, 0, migration);
1199 else
1200 ret = try_to_unmap_file(page, 0, migration);
1201 if (ret != SWAP_MLOCK && !page_mapped(page))
1202 ret = SWAP_SUCCESS;
1203 return ret;
1204 }
1205
1206 /**
1207 * try_to_munlock - try to munlock a page
1208 * @page: the page to be munlocked
1209 *
1210 * Called from munlock code. Checks all of the VMAs mapping the page
1211 * to make sure nobody else has this page mlocked. The page will be
1212 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1213 *
1214 * Return values are:
1215 *
1216 * SWAP_SUCCESS - no vma's holding page mlocked.
1217 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1218 * SWAP_MLOCK - page is now mlocked.
1219 */
1220 int try_to_munlock(struct page *page)
1221 {
1222 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1223
1224 if (PageAnon(page))
1225 return try_to_unmap_anon(page, 1, 0);
1226 else
1227 return try_to_unmap_file(page, 1, 0);
1228 }
1229