xtensa/mm: remove WANT_PAGE_VIRTUAL
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->lock (memory_failure, collect_procs_anon)
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61
62 #include <asm/tlbflush.h>
63
64 #include "internal.h"
65
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
84 }
85
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 kmem_cache_free(anon_vma_cachep, anon_vma);
90 }
91
92 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93 {
94 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95 }
96
97 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
98 {
99 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100 }
101
102 /**
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
105 *
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
109 *
110 * The common case will be that we already have one, but if
111 * not we either need to find an adjacent mapping that we
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
115 *
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
121 *
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
126 *
127 * This must be called with the mmap_sem held for reading.
128 */
129 int anon_vma_prepare(struct vm_area_struct *vma)
130 {
131 struct anon_vma *anon_vma = vma->anon_vma;
132 struct anon_vma_chain *avc;
133
134 might_sleep();
135 if (unlikely(!anon_vma)) {
136 struct mm_struct *mm = vma->vm_mm;
137 struct anon_vma *allocated;
138
139 avc = anon_vma_chain_alloc();
140 if (!avc)
141 goto out_enomem;
142
143 anon_vma = find_mergeable_anon_vma(vma);
144 allocated = NULL;
145 if (!anon_vma) {
146 anon_vma = anon_vma_alloc();
147 if (unlikely(!anon_vma))
148 goto out_enomem_free_avc;
149 allocated = anon_vma;
150 }
151
152 anon_vma_lock(anon_vma);
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm->page_table_lock);
155 if (likely(!vma->anon_vma)) {
156 vma->anon_vma = anon_vma;
157 avc->anon_vma = anon_vma;
158 avc->vma = vma;
159 list_add(&avc->same_vma, &vma->anon_vma_chain);
160 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161 allocated = NULL;
162 avc = NULL;
163 }
164 spin_unlock(&mm->page_table_lock);
165 anon_vma_unlock(anon_vma);
166
167 if (unlikely(allocated))
168 put_anon_vma(allocated);
169 if (unlikely(avc))
170 anon_vma_chain_free(avc);
171 }
172 return 0;
173
174 out_enomem_free_avc:
175 anon_vma_chain_free(avc);
176 out_enomem:
177 return -ENOMEM;
178 }
179
180 static void anon_vma_chain_link(struct vm_area_struct *vma,
181 struct anon_vma_chain *avc,
182 struct anon_vma *anon_vma)
183 {
184 avc->vma = vma;
185 avc->anon_vma = anon_vma;
186 list_add(&avc->same_vma, &vma->anon_vma_chain);
187
188 anon_vma_lock(anon_vma);
189 /*
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
192 */
193 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194 anon_vma_unlock(anon_vma);
195 }
196
197 /*
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
200 */
201 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
202 {
203 struct anon_vma_chain *avc, *pavc;
204
205 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206 avc = anon_vma_chain_alloc();
207 if (!avc)
208 goto enomem_failure;
209 anon_vma_chain_link(dst, avc, pavc->anon_vma);
210 }
211 return 0;
212
213 enomem_failure:
214 unlink_anon_vmas(dst);
215 return -ENOMEM;
216 }
217
218 /*
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
222 */
223 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
224 {
225 struct anon_vma_chain *avc;
226 struct anon_vma *anon_vma;
227
228 /* Don't bother if the parent process has no anon_vma here. */
229 if (!pvma->anon_vma)
230 return 0;
231
232 /*
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
235 */
236 if (anon_vma_clone(vma, pvma))
237 return -ENOMEM;
238
239 /* Then add our own anon_vma. */
240 anon_vma = anon_vma_alloc();
241 if (!anon_vma)
242 goto out_error;
243 avc = anon_vma_chain_alloc();
244 if (!avc)
245 goto out_error_free_anon_vma;
246
247 /*
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
250 */
251 anon_vma->root = pvma->anon_vma->root;
252 /*
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
256 */
257 get_anon_vma(anon_vma->root);
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma->anon_vma = anon_vma;
260 anon_vma_chain_link(vma, avc, anon_vma);
261
262 return 0;
263
264 out_error_free_anon_vma:
265 put_anon_vma(anon_vma);
266 out_error:
267 unlink_anon_vmas(vma);
268 return -ENOMEM;
269 }
270
271 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
272 {
273 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274 int empty;
275
276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277 if (!anon_vma)
278 return;
279
280 anon_vma_lock(anon_vma);
281 list_del(&anon_vma_chain->same_anon_vma);
282
283 /* We must garbage collect the anon_vma if it's empty */
284 empty = list_empty(&anon_vma->head);
285 anon_vma_unlock(anon_vma);
286
287 if (empty)
288 put_anon_vma(anon_vma);
289 }
290
291 void unlink_anon_vmas(struct vm_area_struct *vma)
292 {
293 struct anon_vma_chain *avc, *next;
294
295 /*
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
298 */
299 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 anon_vma_unlink(avc);
301 list_del(&avc->same_vma);
302 anon_vma_chain_free(avc);
303 }
304 }
305
306 static void anon_vma_ctor(void *data)
307 {
308 struct anon_vma *anon_vma = data;
309
310 spin_lock_init(&anon_vma->lock);
311 atomic_set(&anon_vma->refcount, 0);
312 INIT_LIST_HEAD(&anon_vma->head);
313 }
314
315 void __init anon_vma_init(void)
316 {
317 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
320 }
321
322 /*
323 * Getting a lock on a stable anon_vma from a page off the LRU is
324 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325 */
326 struct anon_vma *__page_lock_anon_vma(struct page *page)
327 {
328 struct anon_vma *anon_vma, *root_anon_vma;
329 unsigned long anon_mapping;
330
331 rcu_read_lock();
332 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
333 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
334 goto out;
335 if (!page_mapped(page))
336 goto out;
337
338 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
339 root_anon_vma = ACCESS_ONCE(anon_vma->root);
340 spin_lock(&root_anon_vma->lock);
341
342 /*
343 * If this page is still mapped, then its anon_vma cannot have been
344 * freed. But if it has been unmapped, we have no security against
345 * the anon_vma structure being freed and reused (for another anon_vma:
346 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349 */
350 if (page_mapped(page))
351 return anon_vma;
352
353 spin_unlock(&root_anon_vma->lock);
354 out:
355 rcu_read_unlock();
356 return NULL;
357 }
358
359 void page_unlock_anon_vma(struct anon_vma *anon_vma)
360 __releases(&anon_vma->root->lock)
361 __releases(RCU)
362 {
363 anon_vma_unlock(anon_vma);
364 rcu_read_unlock();
365 }
366
367 /*
368 * At what user virtual address is page expected in @vma?
369 * Returns virtual address or -EFAULT if page's index/offset is not
370 * within the range mapped the @vma.
371 */
372 inline unsigned long
373 vma_address(struct page *page, struct vm_area_struct *vma)
374 {
375 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
376 unsigned long address;
377
378 if (unlikely(is_vm_hugetlb_page(vma)))
379 pgoff = page->index << huge_page_order(page_hstate(page));
380 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
381 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
382 /* page should be within @vma mapping range */
383 return -EFAULT;
384 }
385 return address;
386 }
387
388 /*
389 * At what user virtual address is page expected in vma?
390 * Caller should check the page is actually part of the vma.
391 */
392 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
393 {
394 if (PageAnon(page)) {
395 struct anon_vma *page__anon_vma = page_anon_vma(page);
396 /*
397 * Note: swapoff's unuse_vma() is more efficient with this
398 * check, and needs it to match anon_vma when KSM is active.
399 */
400 if (!vma->anon_vma || !page__anon_vma ||
401 vma->anon_vma->root != page__anon_vma->root)
402 return -EFAULT;
403 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
404 if (!vma->vm_file ||
405 vma->vm_file->f_mapping != page->mapping)
406 return -EFAULT;
407 } else
408 return -EFAULT;
409 return vma_address(page, vma);
410 }
411
412 /*
413 * Check that @page is mapped at @address into @mm.
414 *
415 * If @sync is false, page_check_address may perform a racy check to avoid
416 * the page table lock when the pte is not present (helpful when reclaiming
417 * highly shared pages).
418 *
419 * On success returns with pte mapped and locked.
420 */
421 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
422 unsigned long address, spinlock_t **ptlp, int sync)
423 {
424 pgd_t *pgd;
425 pud_t *pud;
426 pmd_t *pmd;
427 pte_t *pte;
428 spinlock_t *ptl;
429
430 if (unlikely(PageHuge(page))) {
431 pte = huge_pte_offset(mm, address);
432 ptl = &mm->page_table_lock;
433 goto check;
434 }
435
436 pgd = pgd_offset(mm, address);
437 if (!pgd_present(*pgd))
438 return NULL;
439
440 pud = pud_offset(pgd, address);
441 if (!pud_present(*pud))
442 return NULL;
443
444 pmd = pmd_offset(pud, address);
445 if (!pmd_present(*pmd))
446 return NULL;
447 if (pmd_trans_huge(*pmd))
448 return NULL;
449
450 pte = pte_offset_map(pmd, address);
451 /* Make a quick check before getting the lock */
452 if (!sync && !pte_present(*pte)) {
453 pte_unmap(pte);
454 return NULL;
455 }
456
457 ptl = pte_lockptr(mm, pmd);
458 check:
459 spin_lock(ptl);
460 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
461 *ptlp = ptl;
462 return pte;
463 }
464 pte_unmap_unlock(pte, ptl);
465 return NULL;
466 }
467
468 /**
469 * page_mapped_in_vma - check whether a page is really mapped in a VMA
470 * @page: the page to test
471 * @vma: the VMA to test
472 *
473 * Returns 1 if the page is mapped into the page tables of the VMA, 0
474 * if the page is not mapped into the page tables of this VMA. Only
475 * valid for normal file or anonymous VMAs.
476 */
477 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
478 {
479 unsigned long address;
480 pte_t *pte;
481 spinlock_t *ptl;
482
483 address = vma_address(page, vma);
484 if (address == -EFAULT) /* out of vma range */
485 return 0;
486 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
487 if (!pte) /* the page is not in this mm */
488 return 0;
489 pte_unmap_unlock(pte, ptl);
490
491 return 1;
492 }
493
494 /*
495 * Subfunctions of page_referenced: page_referenced_one called
496 * repeatedly from either page_referenced_anon or page_referenced_file.
497 */
498 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
499 unsigned long address, unsigned int *mapcount,
500 unsigned long *vm_flags)
501 {
502 struct mm_struct *mm = vma->vm_mm;
503 int referenced = 0;
504
505 if (unlikely(PageTransHuge(page))) {
506 pmd_t *pmd;
507
508 spin_lock(&mm->page_table_lock);
509 /*
510 * rmap might return false positives; we must filter
511 * these out using page_check_address_pmd().
512 */
513 pmd = page_check_address_pmd(page, mm, address,
514 PAGE_CHECK_ADDRESS_PMD_FLAG);
515 if (!pmd) {
516 spin_unlock(&mm->page_table_lock);
517 goto out;
518 }
519
520 if (vma->vm_flags & VM_LOCKED) {
521 spin_unlock(&mm->page_table_lock);
522 *mapcount = 0; /* break early from loop */
523 *vm_flags |= VM_LOCKED;
524 goto out;
525 }
526
527 /* go ahead even if the pmd is pmd_trans_splitting() */
528 if (pmdp_clear_flush_young_notify(vma, address, pmd))
529 referenced++;
530 spin_unlock(&mm->page_table_lock);
531 } else {
532 pte_t *pte;
533 spinlock_t *ptl;
534
535 /*
536 * rmap might return false positives; we must filter
537 * these out using page_check_address().
538 */
539 pte = page_check_address(page, mm, address, &ptl, 0);
540 if (!pte)
541 goto out;
542
543 if (vma->vm_flags & VM_LOCKED) {
544 pte_unmap_unlock(pte, ptl);
545 *mapcount = 0; /* break early from loop */
546 *vm_flags |= VM_LOCKED;
547 goto out;
548 }
549
550 if (ptep_clear_flush_young_notify(vma, address, pte)) {
551 /*
552 * Don't treat a reference through a sequentially read
553 * mapping as such. If the page has been used in
554 * another mapping, we will catch it; if this other
555 * mapping is already gone, the unmap path will have
556 * set PG_referenced or activated the page.
557 */
558 if (likely(!VM_SequentialReadHint(vma)))
559 referenced++;
560 }
561 pte_unmap_unlock(pte, ptl);
562 }
563
564 /* Pretend the page is referenced if the task has the
565 swap token and is in the middle of a page fault. */
566 if (mm != current->mm && has_swap_token(mm) &&
567 rwsem_is_locked(&mm->mmap_sem))
568 referenced++;
569
570 (*mapcount)--;
571
572 if (referenced)
573 *vm_flags |= vma->vm_flags;
574 out:
575 return referenced;
576 }
577
578 static int page_referenced_anon(struct page *page,
579 struct mem_cgroup *mem_cont,
580 unsigned long *vm_flags)
581 {
582 unsigned int mapcount;
583 struct anon_vma *anon_vma;
584 struct anon_vma_chain *avc;
585 int referenced = 0;
586
587 anon_vma = page_lock_anon_vma(page);
588 if (!anon_vma)
589 return referenced;
590
591 mapcount = page_mapcount(page);
592 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
593 struct vm_area_struct *vma = avc->vma;
594 unsigned long address = vma_address(page, vma);
595 if (address == -EFAULT)
596 continue;
597 /*
598 * If we are reclaiming on behalf of a cgroup, skip
599 * counting on behalf of references from different
600 * cgroups
601 */
602 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
603 continue;
604 referenced += page_referenced_one(page, vma, address,
605 &mapcount, vm_flags);
606 if (!mapcount)
607 break;
608 }
609
610 page_unlock_anon_vma(anon_vma);
611 return referenced;
612 }
613
614 /**
615 * page_referenced_file - referenced check for object-based rmap
616 * @page: the page we're checking references on.
617 * @mem_cont: target memory controller
618 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619 *
620 * For an object-based mapped page, find all the places it is mapped and
621 * check/clear the referenced flag. This is done by following the page->mapping
622 * pointer, then walking the chain of vmas it holds. It returns the number
623 * of references it found.
624 *
625 * This function is only called from page_referenced for object-based pages.
626 */
627 static int page_referenced_file(struct page *page,
628 struct mem_cgroup *mem_cont,
629 unsigned long *vm_flags)
630 {
631 unsigned int mapcount;
632 struct address_space *mapping = page->mapping;
633 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
634 struct vm_area_struct *vma;
635 struct prio_tree_iter iter;
636 int referenced = 0;
637
638 /*
639 * The caller's checks on page->mapping and !PageAnon have made
640 * sure that this is a file page: the check for page->mapping
641 * excludes the case just before it gets set on an anon page.
642 */
643 BUG_ON(PageAnon(page));
644
645 /*
646 * The page lock not only makes sure that page->mapping cannot
647 * suddenly be NULLified by truncation, it makes sure that the
648 * structure at mapping cannot be freed and reused yet,
649 * so we can safely take mapping->i_mmap_lock.
650 */
651 BUG_ON(!PageLocked(page));
652
653 spin_lock(&mapping->i_mmap_lock);
654
655 /*
656 * i_mmap_lock does not stabilize mapcount at all, but mapcount
657 * is more likely to be accurate if we note it after spinning.
658 */
659 mapcount = page_mapcount(page);
660
661 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
662 unsigned long address = vma_address(page, vma);
663 if (address == -EFAULT)
664 continue;
665 /*
666 * If we are reclaiming on behalf of a cgroup, skip
667 * counting on behalf of references from different
668 * cgroups
669 */
670 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
671 continue;
672 referenced += page_referenced_one(page, vma, address,
673 &mapcount, vm_flags);
674 if (!mapcount)
675 break;
676 }
677
678 spin_unlock(&mapping->i_mmap_lock);
679 return referenced;
680 }
681
682 /**
683 * page_referenced - test if the page was referenced
684 * @page: the page to test
685 * @is_locked: caller holds lock on the page
686 * @mem_cont: target memory controller
687 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
688 *
689 * Quick test_and_clear_referenced for all mappings to a page,
690 * returns the number of ptes which referenced the page.
691 */
692 int page_referenced(struct page *page,
693 int is_locked,
694 struct mem_cgroup *mem_cont,
695 unsigned long *vm_flags)
696 {
697 int referenced = 0;
698 int we_locked = 0;
699
700 *vm_flags = 0;
701 if (page_mapped(page) && page_rmapping(page)) {
702 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
703 we_locked = trylock_page(page);
704 if (!we_locked) {
705 referenced++;
706 goto out;
707 }
708 }
709 if (unlikely(PageKsm(page)))
710 referenced += page_referenced_ksm(page, mem_cont,
711 vm_flags);
712 else if (PageAnon(page))
713 referenced += page_referenced_anon(page, mem_cont,
714 vm_flags);
715 else if (page->mapping)
716 referenced += page_referenced_file(page, mem_cont,
717 vm_flags);
718 if (we_locked)
719 unlock_page(page);
720 }
721 out:
722 if (page_test_and_clear_young(page_to_pfn(page)))
723 referenced++;
724
725 return referenced;
726 }
727
728 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
729 unsigned long address)
730 {
731 struct mm_struct *mm = vma->vm_mm;
732 pte_t *pte;
733 spinlock_t *ptl;
734 int ret = 0;
735
736 pte = page_check_address(page, mm, address, &ptl, 1);
737 if (!pte)
738 goto out;
739
740 if (pte_dirty(*pte) || pte_write(*pte)) {
741 pte_t entry;
742
743 flush_cache_page(vma, address, pte_pfn(*pte));
744 entry = ptep_clear_flush_notify(vma, address, pte);
745 entry = pte_wrprotect(entry);
746 entry = pte_mkclean(entry);
747 set_pte_at(mm, address, pte, entry);
748 ret = 1;
749 }
750
751 pte_unmap_unlock(pte, ptl);
752 out:
753 return ret;
754 }
755
756 static int page_mkclean_file(struct address_space *mapping, struct page *page)
757 {
758 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759 struct vm_area_struct *vma;
760 struct prio_tree_iter iter;
761 int ret = 0;
762
763 BUG_ON(PageAnon(page));
764
765 spin_lock(&mapping->i_mmap_lock);
766 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 if (vma->vm_flags & VM_SHARED) {
768 unsigned long address = vma_address(page, vma);
769 if (address == -EFAULT)
770 continue;
771 ret += page_mkclean_one(page, vma, address);
772 }
773 }
774 spin_unlock(&mapping->i_mmap_lock);
775 return ret;
776 }
777
778 int page_mkclean(struct page *page)
779 {
780 int ret = 0;
781
782 BUG_ON(!PageLocked(page));
783
784 if (page_mapped(page)) {
785 struct address_space *mapping = page_mapping(page);
786 if (mapping) {
787 ret = page_mkclean_file(mapping, page);
788 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
789 ret = 1;
790 }
791 }
792
793 return ret;
794 }
795 EXPORT_SYMBOL_GPL(page_mkclean);
796
797 /**
798 * page_move_anon_rmap - move a page to our anon_vma
799 * @page: the page to move to our anon_vma
800 * @vma: the vma the page belongs to
801 * @address: the user virtual address mapped
802 *
803 * When a page belongs exclusively to one process after a COW event,
804 * that page can be moved into the anon_vma that belongs to just that
805 * process, so the rmap code will not search the parent or sibling
806 * processes.
807 */
808 void page_move_anon_rmap(struct page *page,
809 struct vm_area_struct *vma, unsigned long address)
810 {
811 struct anon_vma *anon_vma = vma->anon_vma;
812
813 VM_BUG_ON(!PageLocked(page));
814 VM_BUG_ON(!anon_vma);
815 VM_BUG_ON(page->index != linear_page_index(vma, address));
816
817 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
818 page->mapping = (struct address_space *) anon_vma;
819 }
820
821 /**
822 * __page_set_anon_rmap - set up new anonymous rmap
823 * @page: Page to add to rmap
824 * @vma: VM area to add page to.
825 * @address: User virtual address of the mapping
826 * @exclusive: the page is exclusively owned by the current process
827 */
828 static void __page_set_anon_rmap(struct page *page,
829 struct vm_area_struct *vma, unsigned long address, int exclusive)
830 {
831 struct anon_vma *anon_vma = vma->anon_vma;
832
833 BUG_ON(!anon_vma);
834
835 if (PageAnon(page))
836 return;
837
838 /*
839 * If the page isn't exclusively mapped into this vma,
840 * we must use the _oldest_ possible anon_vma for the
841 * page mapping!
842 */
843 if (!exclusive)
844 anon_vma = anon_vma->root;
845
846 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
847 page->mapping = (struct address_space *) anon_vma;
848 page->index = linear_page_index(vma, address);
849 }
850
851 /**
852 * __page_check_anon_rmap - sanity check anonymous rmap addition
853 * @page: the page to add the mapping to
854 * @vma: the vm area in which the mapping is added
855 * @address: the user virtual address mapped
856 */
857 static void __page_check_anon_rmap(struct page *page,
858 struct vm_area_struct *vma, unsigned long address)
859 {
860 #ifdef CONFIG_DEBUG_VM
861 /*
862 * The page's anon-rmap details (mapping and index) are guaranteed to
863 * be set up correctly at this point.
864 *
865 * We have exclusion against page_add_anon_rmap because the caller
866 * always holds the page locked, except if called from page_dup_rmap,
867 * in which case the page is already known to be setup.
868 *
869 * We have exclusion against page_add_new_anon_rmap because those pages
870 * are initially only visible via the pagetables, and the pte is locked
871 * over the call to page_add_new_anon_rmap.
872 */
873 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
874 BUG_ON(page->index != linear_page_index(vma, address));
875 #endif
876 }
877
878 /**
879 * page_add_anon_rmap - add pte mapping to an anonymous page
880 * @page: the page to add the mapping to
881 * @vma: the vm area in which the mapping is added
882 * @address: the user virtual address mapped
883 *
884 * The caller needs to hold the pte lock, and the page must be locked in
885 * the anon_vma case: to serialize mapping,index checking after setting,
886 * and to ensure that PageAnon is not being upgraded racily to PageKsm
887 * (but PageKsm is never downgraded to PageAnon).
888 */
889 void page_add_anon_rmap(struct page *page,
890 struct vm_area_struct *vma, unsigned long address)
891 {
892 do_page_add_anon_rmap(page, vma, address, 0);
893 }
894
895 /*
896 * Special version of the above for do_swap_page, which often runs
897 * into pages that are exclusively owned by the current process.
898 * Everybody else should continue to use page_add_anon_rmap above.
899 */
900 void do_page_add_anon_rmap(struct page *page,
901 struct vm_area_struct *vma, unsigned long address, int exclusive)
902 {
903 int first = atomic_inc_and_test(&page->_mapcount);
904 if (first) {
905 if (!PageTransHuge(page))
906 __inc_zone_page_state(page, NR_ANON_PAGES);
907 else
908 __inc_zone_page_state(page,
909 NR_ANON_TRANSPARENT_HUGEPAGES);
910 }
911 if (unlikely(PageKsm(page)))
912 return;
913
914 VM_BUG_ON(!PageLocked(page));
915 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
916 if (first)
917 __page_set_anon_rmap(page, vma, address, exclusive);
918 else
919 __page_check_anon_rmap(page, vma, address);
920 }
921
922 /**
923 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
924 * @page: the page to add the mapping to
925 * @vma: the vm area in which the mapping is added
926 * @address: the user virtual address mapped
927 *
928 * Same as page_add_anon_rmap but must only be called on *new* pages.
929 * This means the inc-and-test can be bypassed.
930 * Page does not have to be locked.
931 */
932 void page_add_new_anon_rmap(struct page *page,
933 struct vm_area_struct *vma, unsigned long address)
934 {
935 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
936 SetPageSwapBacked(page);
937 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
938 if (!PageTransHuge(page))
939 __inc_zone_page_state(page, NR_ANON_PAGES);
940 else
941 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
942 __page_set_anon_rmap(page, vma, address, 1);
943 if (page_evictable(page, vma))
944 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
945 else
946 add_page_to_unevictable_list(page);
947 }
948
949 /**
950 * page_add_file_rmap - add pte mapping to a file page
951 * @page: the page to add the mapping to
952 *
953 * The caller needs to hold the pte lock.
954 */
955 void page_add_file_rmap(struct page *page)
956 {
957 if (atomic_inc_and_test(&page->_mapcount)) {
958 __inc_zone_page_state(page, NR_FILE_MAPPED);
959 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
960 }
961 }
962
963 /**
964 * page_remove_rmap - take down pte mapping from a page
965 * @page: page to remove mapping from
966 *
967 * The caller needs to hold the pte lock.
968 */
969 void page_remove_rmap(struct page *page)
970 {
971 /* page still mapped by someone else? */
972 if (!atomic_add_negative(-1, &page->_mapcount))
973 return;
974
975 /*
976 * Now that the last pte has gone, s390 must transfer dirty
977 * flag from storage key to struct page. We can usually skip
978 * this if the page is anon, so about to be freed; but perhaps
979 * not if it's in swapcache - there might be another pte slot
980 * containing the swap entry, but page not yet written to swap.
981 */
982 if ((!PageAnon(page) || PageSwapCache(page)) &&
983 page_test_and_clear_dirty(page_to_pfn(page), 1))
984 set_page_dirty(page);
985 /*
986 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
987 * and not charged by memcg for now.
988 */
989 if (unlikely(PageHuge(page)))
990 return;
991 if (PageAnon(page)) {
992 mem_cgroup_uncharge_page(page);
993 if (!PageTransHuge(page))
994 __dec_zone_page_state(page, NR_ANON_PAGES);
995 else
996 __dec_zone_page_state(page,
997 NR_ANON_TRANSPARENT_HUGEPAGES);
998 } else {
999 __dec_zone_page_state(page, NR_FILE_MAPPED);
1000 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1001 }
1002 /*
1003 * It would be tidy to reset the PageAnon mapping here,
1004 * but that might overwrite a racing page_add_anon_rmap
1005 * which increments mapcount after us but sets mapping
1006 * before us: so leave the reset to free_hot_cold_page,
1007 * and remember that it's only reliable while mapped.
1008 * Leaving it set also helps swapoff to reinstate ptes
1009 * faster for those pages still in swapcache.
1010 */
1011 }
1012
1013 /*
1014 * Subfunctions of try_to_unmap: try_to_unmap_one called
1015 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1016 */
1017 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1018 unsigned long address, enum ttu_flags flags)
1019 {
1020 struct mm_struct *mm = vma->vm_mm;
1021 pte_t *pte;
1022 pte_t pteval;
1023 spinlock_t *ptl;
1024 int ret = SWAP_AGAIN;
1025
1026 pte = page_check_address(page, mm, address, &ptl, 0);
1027 if (!pte)
1028 goto out;
1029
1030 /*
1031 * If the page is mlock()d, we cannot swap it out.
1032 * If it's recently referenced (perhaps page_referenced
1033 * skipped over this mm) then we should reactivate it.
1034 */
1035 if (!(flags & TTU_IGNORE_MLOCK)) {
1036 if (vma->vm_flags & VM_LOCKED)
1037 goto out_mlock;
1038
1039 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1040 goto out_unmap;
1041 }
1042 if (!(flags & TTU_IGNORE_ACCESS)) {
1043 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1044 ret = SWAP_FAIL;
1045 goto out_unmap;
1046 }
1047 }
1048
1049 /* Nuke the page table entry. */
1050 flush_cache_page(vma, address, page_to_pfn(page));
1051 pteval = ptep_clear_flush_notify(vma, address, pte);
1052
1053 /* Move the dirty bit to the physical page now the pte is gone. */
1054 if (pte_dirty(pteval))
1055 set_page_dirty(page);
1056
1057 /* Update high watermark before we lower rss */
1058 update_hiwater_rss(mm);
1059
1060 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1061 if (PageAnon(page))
1062 dec_mm_counter(mm, MM_ANONPAGES);
1063 else
1064 dec_mm_counter(mm, MM_FILEPAGES);
1065 set_pte_at(mm, address, pte,
1066 swp_entry_to_pte(make_hwpoison_entry(page)));
1067 } else if (PageAnon(page)) {
1068 swp_entry_t entry = { .val = page_private(page) };
1069
1070 if (PageSwapCache(page)) {
1071 /*
1072 * Store the swap location in the pte.
1073 * See handle_pte_fault() ...
1074 */
1075 if (swap_duplicate(entry) < 0) {
1076 set_pte_at(mm, address, pte, pteval);
1077 ret = SWAP_FAIL;
1078 goto out_unmap;
1079 }
1080 if (list_empty(&mm->mmlist)) {
1081 spin_lock(&mmlist_lock);
1082 if (list_empty(&mm->mmlist))
1083 list_add(&mm->mmlist, &init_mm.mmlist);
1084 spin_unlock(&mmlist_lock);
1085 }
1086 dec_mm_counter(mm, MM_ANONPAGES);
1087 inc_mm_counter(mm, MM_SWAPENTS);
1088 } else if (PAGE_MIGRATION) {
1089 /*
1090 * Store the pfn of the page in a special migration
1091 * pte. do_swap_page() will wait until the migration
1092 * pte is removed and then restart fault handling.
1093 */
1094 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1095 entry = make_migration_entry(page, pte_write(pteval));
1096 }
1097 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1098 BUG_ON(pte_file(*pte));
1099 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1100 /* Establish migration entry for a file page */
1101 swp_entry_t entry;
1102 entry = make_migration_entry(page, pte_write(pteval));
1103 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1104 } else
1105 dec_mm_counter(mm, MM_FILEPAGES);
1106
1107 page_remove_rmap(page);
1108 page_cache_release(page);
1109
1110 out_unmap:
1111 pte_unmap_unlock(pte, ptl);
1112 out:
1113 return ret;
1114
1115 out_mlock:
1116 pte_unmap_unlock(pte, ptl);
1117
1118
1119 /*
1120 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1121 * unstable result and race. Plus, We can't wait here because
1122 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1123 * if trylock failed, the page remain in evictable lru and later
1124 * vmscan could retry to move the page to unevictable lru if the
1125 * page is actually mlocked.
1126 */
1127 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1128 if (vma->vm_flags & VM_LOCKED) {
1129 mlock_vma_page(page);
1130 ret = SWAP_MLOCK;
1131 }
1132 up_read(&vma->vm_mm->mmap_sem);
1133 }
1134 return ret;
1135 }
1136
1137 /*
1138 * objrmap doesn't work for nonlinear VMAs because the assumption that
1139 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1140 * Consequently, given a particular page and its ->index, we cannot locate the
1141 * ptes which are mapping that page without an exhaustive linear search.
1142 *
1143 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1144 * maps the file to which the target page belongs. The ->vm_private_data field
1145 * holds the current cursor into that scan. Successive searches will circulate
1146 * around the vma's virtual address space.
1147 *
1148 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1149 * more scanning pressure is placed against them as well. Eventually pages
1150 * will become fully unmapped and are eligible for eviction.
1151 *
1152 * For very sparsely populated VMAs this is a little inefficient - chances are
1153 * there there won't be many ptes located within the scan cluster. In this case
1154 * maybe we could scan further - to the end of the pte page, perhaps.
1155 *
1156 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1157 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1158 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1159 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1160 */
1161 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1162 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1163
1164 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1165 struct vm_area_struct *vma, struct page *check_page)
1166 {
1167 struct mm_struct *mm = vma->vm_mm;
1168 pgd_t *pgd;
1169 pud_t *pud;
1170 pmd_t *pmd;
1171 pte_t *pte;
1172 pte_t pteval;
1173 spinlock_t *ptl;
1174 struct page *page;
1175 unsigned long address;
1176 unsigned long end;
1177 int ret = SWAP_AGAIN;
1178 int locked_vma = 0;
1179
1180 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1181 end = address + CLUSTER_SIZE;
1182 if (address < vma->vm_start)
1183 address = vma->vm_start;
1184 if (end > vma->vm_end)
1185 end = vma->vm_end;
1186
1187 pgd = pgd_offset(mm, address);
1188 if (!pgd_present(*pgd))
1189 return ret;
1190
1191 pud = pud_offset(pgd, address);
1192 if (!pud_present(*pud))
1193 return ret;
1194
1195 pmd = pmd_offset(pud, address);
1196 if (!pmd_present(*pmd))
1197 return ret;
1198
1199 /*
1200 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1201 * keep the sem while scanning the cluster for mlocking pages.
1202 */
1203 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1204 locked_vma = (vma->vm_flags & VM_LOCKED);
1205 if (!locked_vma)
1206 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1207 }
1208
1209 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1210
1211 /* Update high watermark before we lower rss */
1212 update_hiwater_rss(mm);
1213
1214 for (; address < end; pte++, address += PAGE_SIZE) {
1215 if (!pte_present(*pte))
1216 continue;
1217 page = vm_normal_page(vma, address, *pte);
1218 BUG_ON(!page || PageAnon(page));
1219
1220 if (locked_vma) {
1221 mlock_vma_page(page); /* no-op if already mlocked */
1222 if (page == check_page)
1223 ret = SWAP_MLOCK;
1224 continue; /* don't unmap */
1225 }
1226
1227 if (ptep_clear_flush_young_notify(vma, address, pte))
1228 continue;
1229
1230 /* Nuke the page table entry. */
1231 flush_cache_page(vma, address, pte_pfn(*pte));
1232 pteval = ptep_clear_flush_notify(vma, address, pte);
1233
1234 /* If nonlinear, store the file page offset in the pte. */
1235 if (page->index != linear_page_index(vma, address))
1236 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1237
1238 /* Move the dirty bit to the physical page now the pte is gone. */
1239 if (pte_dirty(pteval))
1240 set_page_dirty(page);
1241
1242 page_remove_rmap(page);
1243 page_cache_release(page);
1244 dec_mm_counter(mm, MM_FILEPAGES);
1245 (*mapcount)--;
1246 }
1247 pte_unmap_unlock(pte - 1, ptl);
1248 if (locked_vma)
1249 up_read(&vma->vm_mm->mmap_sem);
1250 return ret;
1251 }
1252
1253 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1254 {
1255 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1256
1257 if (!maybe_stack)
1258 return false;
1259
1260 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1261 VM_STACK_INCOMPLETE_SETUP)
1262 return true;
1263
1264 return false;
1265 }
1266
1267 /**
1268 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1269 * rmap method
1270 * @page: the page to unmap/unlock
1271 * @flags: action and flags
1272 *
1273 * Find all the mappings of a page using the mapping pointer and the vma chains
1274 * contained in the anon_vma struct it points to.
1275 *
1276 * This function is only called from try_to_unmap/try_to_munlock for
1277 * anonymous pages.
1278 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1279 * where the page was found will be held for write. So, we won't recheck
1280 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1281 * 'LOCKED.
1282 */
1283 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1284 {
1285 struct anon_vma *anon_vma;
1286 struct anon_vma_chain *avc;
1287 int ret = SWAP_AGAIN;
1288
1289 anon_vma = page_lock_anon_vma(page);
1290 if (!anon_vma)
1291 return ret;
1292
1293 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1294 struct vm_area_struct *vma = avc->vma;
1295 unsigned long address;
1296
1297 /*
1298 * During exec, a temporary VMA is setup and later moved.
1299 * The VMA is moved under the anon_vma lock but not the
1300 * page tables leading to a race where migration cannot
1301 * find the migration ptes. Rather than increasing the
1302 * locking requirements of exec(), migration skips
1303 * temporary VMAs until after exec() completes.
1304 */
1305 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1306 is_vma_temporary_stack(vma))
1307 continue;
1308
1309 address = vma_address(page, vma);
1310 if (address == -EFAULT)
1311 continue;
1312 ret = try_to_unmap_one(page, vma, address, flags);
1313 if (ret != SWAP_AGAIN || !page_mapped(page))
1314 break;
1315 }
1316
1317 page_unlock_anon_vma(anon_vma);
1318 return ret;
1319 }
1320
1321 /**
1322 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1323 * @page: the page to unmap/unlock
1324 * @flags: action and flags
1325 *
1326 * Find all the mappings of a page using the mapping pointer and the vma chains
1327 * contained in the address_space struct it points to.
1328 *
1329 * This function is only called from try_to_unmap/try_to_munlock for
1330 * object-based pages.
1331 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1332 * where the page was found will be held for write. So, we won't recheck
1333 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1334 * 'LOCKED.
1335 */
1336 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1337 {
1338 struct address_space *mapping = page->mapping;
1339 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1340 struct vm_area_struct *vma;
1341 struct prio_tree_iter iter;
1342 int ret = SWAP_AGAIN;
1343 unsigned long cursor;
1344 unsigned long max_nl_cursor = 0;
1345 unsigned long max_nl_size = 0;
1346 unsigned int mapcount;
1347
1348 spin_lock(&mapping->i_mmap_lock);
1349 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1350 unsigned long address = vma_address(page, vma);
1351 if (address == -EFAULT)
1352 continue;
1353 ret = try_to_unmap_one(page, vma, address, flags);
1354 if (ret != SWAP_AGAIN || !page_mapped(page))
1355 goto out;
1356 }
1357
1358 if (list_empty(&mapping->i_mmap_nonlinear))
1359 goto out;
1360
1361 /*
1362 * We don't bother to try to find the munlocked page in nonlinears.
1363 * It's costly. Instead, later, page reclaim logic may call
1364 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1365 */
1366 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1367 goto out;
1368
1369 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1370 shared.vm_set.list) {
1371 cursor = (unsigned long) vma->vm_private_data;
1372 if (cursor > max_nl_cursor)
1373 max_nl_cursor = cursor;
1374 cursor = vma->vm_end - vma->vm_start;
1375 if (cursor > max_nl_size)
1376 max_nl_size = cursor;
1377 }
1378
1379 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1380 ret = SWAP_FAIL;
1381 goto out;
1382 }
1383
1384 /*
1385 * We don't try to search for this page in the nonlinear vmas,
1386 * and page_referenced wouldn't have found it anyway. Instead
1387 * just walk the nonlinear vmas trying to age and unmap some.
1388 * The mapcount of the page we came in with is irrelevant,
1389 * but even so use it as a guide to how hard we should try?
1390 */
1391 mapcount = page_mapcount(page);
1392 if (!mapcount)
1393 goto out;
1394 cond_resched_lock(&mapping->i_mmap_lock);
1395
1396 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1397 if (max_nl_cursor == 0)
1398 max_nl_cursor = CLUSTER_SIZE;
1399
1400 do {
1401 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1402 shared.vm_set.list) {
1403 cursor = (unsigned long) vma->vm_private_data;
1404 while ( cursor < max_nl_cursor &&
1405 cursor < vma->vm_end - vma->vm_start) {
1406 if (try_to_unmap_cluster(cursor, &mapcount,
1407 vma, page) == SWAP_MLOCK)
1408 ret = SWAP_MLOCK;
1409 cursor += CLUSTER_SIZE;
1410 vma->vm_private_data = (void *) cursor;
1411 if ((int)mapcount <= 0)
1412 goto out;
1413 }
1414 vma->vm_private_data = (void *) max_nl_cursor;
1415 }
1416 cond_resched_lock(&mapping->i_mmap_lock);
1417 max_nl_cursor += CLUSTER_SIZE;
1418 } while (max_nl_cursor <= max_nl_size);
1419
1420 /*
1421 * Don't loop forever (perhaps all the remaining pages are
1422 * in locked vmas). Reset cursor on all unreserved nonlinear
1423 * vmas, now forgetting on which ones it had fallen behind.
1424 */
1425 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1426 vma->vm_private_data = NULL;
1427 out:
1428 spin_unlock(&mapping->i_mmap_lock);
1429 return ret;
1430 }
1431
1432 /**
1433 * try_to_unmap - try to remove all page table mappings to a page
1434 * @page: the page to get unmapped
1435 * @flags: action and flags
1436 *
1437 * Tries to remove all the page table entries which are mapping this
1438 * page, used in the pageout path. Caller must hold the page lock.
1439 * Return values are:
1440 *
1441 * SWAP_SUCCESS - we succeeded in removing all mappings
1442 * SWAP_AGAIN - we missed a mapping, try again later
1443 * SWAP_FAIL - the page is unswappable
1444 * SWAP_MLOCK - page is mlocked.
1445 */
1446 int try_to_unmap(struct page *page, enum ttu_flags flags)
1447 {
1448 int ret;
1449
1450 BUG_ON(!PageLocked(page));
1451 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1452
1453 if (unlikely(PageKsm(page)))
1454 ret = try_to_unmap_ksm(page, flags);
1455 else if (PageAnon(page))
1456 ret = try_to_unmap_anon(page, flags);
1457 else
1458 ret = try_to_unmap_file(page, flags);
1459 if (ret != SWAP_MLOCK && !page_mapped(page))
1460 ret = SWAP_SUCCESS;
1461 return ret;
1462 }
1463
1464 /**
1465 * try_to_munlock - try to munlock a page
1466 * @page: the page to be munlocked
1467 *
1468 * Called from munlock code. Checks all of the VMAs mapping the page
1469 * to make sure nobody else has this page mlocked. The page will be
1470 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1471 *
1472 * Return values are:
1473 *
1474 * SWAP_AGAIN - no vma is holding page mlocked, or,
1475 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1476 * SWAP_FAIL - page cannot be located at present
1477 * SWAP_MLOCK - page is now mlocked.
1478 */
1479 int try_to_munlock(struct page *page)
1480 {
1481 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1482
1483 if (unlikely(PageKsm(page)))
1484 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1485 else if (PageAnon(page))
1486 return try_to_unmap_anon(page, TTU_MUNLOCK);
1487 else
1488 return try_to_unmap_file(page, TTU_MUNLOCK);
1489 }
1490
1491 void __put_anon_vma(struct anon_vma *anon_vma)
1492 {
1493 struct anon_vma *root = anon_vma->root;
1494
1495 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1496 anon_vma_free(root);
1497
1498 anon_vma_free(anon_vma);
1499 }
1500
1501 #ifdef CONFIG_MIGRATION
1502 /*
1503 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1504 * Called by migrate.c to remove migration ptes, but might be used more later.
1505 */
1506 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1507 struct vm_area_struct *, unsigned long, void *), void *arg)
1508 {
1509 struct anon_vma *anon_vma;
1510 struct anon_vma_chain *avc;
1511 int ret = SWAP_AGAIN;
1512
1513 /*
1514 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1515 * because that depends on page_mapped(); but not all its usages
1516 * are holding mmap_sem. Users without mmap_sem are required to
1517 * take a reference count to prevent the anon_vma disappearing
1518 */
1519 anon_vma = page_anon_vma(page);
1520 if (!anon_vma)
1521 return ret;
1522 anon_vma_lock(anon_vma);
1523 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1524 struct vm_area_struct *vma = avc->vma;
1525 unsigned long address = vma_address(page, vma);
1526 if (address == -EFAULT)
1527 continue;
1528 ret = rmap_one(page, vma, address, arg);
1529 if (ret != SWAP_AGAIN)
1530 break;
1531 }
1532 anon_vma_unlock(anon_vma);
1533 return ret;
1534 }
1535
1536 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1537 struct vm_area_struct *, unsigned long, void *), void *arg)
1538 {
1539 struct address_space *mapping = page->mapping;
1540 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1541 struct vm_area_struct *vma;
1542 struct prio_tree_iter iter;
1543 int ret = SWAP_AGAIN;
1544
1545 if (!mapping)
1546 return ret;
1547 spin_lock(&mapping->i_mmap_lock);
1548 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1549 unsigned long address = vma_address(page, vma);
1550 if (address == -EFAULT)
1551 continue;
1552 ret = rmap_one(page, vma, address, arg);
1553 if (ret != SWAP_AGAIN)
1554 break;
1555 }
1556 /*
1557 * No nonlinear handling: being always shared, nonlinear vmas
1558 * never contain migration ptes. Decide what to do about this
1559 * limitation to linear when we need rmap_walk() on nonlinear.
1560 */
1561 spin_unlock(&mapping->i_mmap_lock);
1562 return ret;
1563 }
1564
1565 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1566 struct vm_area_struct *, unsigned long, void *), void *arg)
1567 {
1568 VM_BUG_ON(!PageLocked(page));
1569
1570 if (unlikely(PageKsm(page)))
1571 return rmap_walk_ksm(page, rmap_one, arg);
1572 else if (PageAnon(page))
1573 return rmap_walk_anon(page, rmap_one, arg);
1574 else
1575 return rmap_walk_file(page, rmap_one, arg);
1576 }
1577 #endif /* CONFIG_MIGRATION */
1578
1579 #ifdef CONFIG_HUGETLB_PAGE
1580 /*
1581 * The following three functions are for anonymous (private mapped) hugepages.
1582 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1583 * and no lru code, because we handle hugepages differently from common pages.
1584 */
1585 static void __hugepage_set_anon_rmap(struct page *page,
1586 struct vm_area_struct *vma, unsigned long address, int exclusive)
1587 {
1588 struct anon_vma *anon_vma = vma->anon_vma;
1589
1590 BUG_ON(!anon_vma);
1591
1592 if (PageAnon(page))
1593 return;
1594 if (!exclusive)
1595 anon_vma = anon_vma->root;
1596
1597 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1598 page->mapping = (struct address_space *) anon_vma;
1599 page->index = linear_page_index(vma, address);
1600 }
1601
1602 void hugepage_add_anon_rmap(struct page *page,
1603 struct vm_area_struct *vma, unsigned long address)
1604 {
1605 struct anon_vma *anon_vma = vma->anon_vma;
1606 int first;
1607
1608 BUG_ON(!PageLocked(page));
1609 BUG_ON(!anon_vma);
1610 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1611 first = atomic_inc_and_test(&page->_mapcount);
1612 if (first)
1613 __hugepage_set_anon_rmap(page, vma, address, 0);
1614 }
1615
1616 void hugepage_add_new_anon_rmap(struct page *page,
1617 struct vm_area_struct *vma, unsigned long address)
1618 {
1619 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1620 atomic_set(&page->_mapcount, 0);
1621 __hugepage_set_anon_rmap(page, vma, address, 1);
1622 }
1623 #endif /* CONFIG_HUGETLB_PAGE */