Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91
92 #include "percpu-internal.h"
93
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
96
97 #define PCPU_EMPTY_POP_PAGES_LOW 2
98 #define PCPU_EMPTY_POP_PAGES_HIGH 4
99
100 #ifdef CONFIG_SMP
101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
102 #ifndef __addr_to_pcpu_ptr
103 #define __addr_to_pcpu_ptr(addr) \
104 (void __percpu *)((unsigned long)(addr) - \
105 (unsigned long)pcpu_base_addr + \
106 (unsigned long)__per_cpu_start)
107 #endif
108 #ifndef __pcpu_ptr_to_addr
109 #define __pcpu_ptr_to_addr(ptr) \
110 (void __force *)((unsigned long)(ptr) + \
111 (unsigned long)pcpu_base_addr - \
112 (unsigned long)__per_cpu_start)
113 #endif
114 #else /* CONFIG_SMP */
115 /* on UP, it's always identity mapped */
116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
118 #endif /* CONFIG_SMP */
119
120 static int pcpu_unit_pages __ro_after_init;
121 static int pcpu_unit_size __ro_after_init;
122 static int pcpu_nr_units __ro_after_init;
123 static int pcpu_atom_size __ro_after_init;
124 int pcpu_nr_slots __ro_after_init;
125 static size_t pcpu_chunk_struct_size __ro_after_init;
126
127 /* cpus with the lowest and highest unit addresses */
128 static unsigned int pcpu_low_unit_cpu __ro_after_init;
129 static unsigned int pcpu_high_unit_cpu __ro_after_init;
130
131 /* the address of the first chunk which starts with the kernel static area */
132 void *pcpu_base_addr __ro_after_init;
133 EXPORT_SYMBOL_GPL(pcpu_base_addr);
134
135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
137
138 /* group information, used for vm allocation */
139 static int pcpu_nr_groups __ro_after_init;
140 static const unsigned long *pcpu_group_offsets __ro_after_init;
141 static const size_t *pcpu_group_sizes __ro_after_init;
142
143 /*
144 * The first chunk which always exists. Note that unlike other
145 * chunks, this one can be allocated and mapped in several different
146 * ways and thus often doesn't live in the vmalloc area.
147 */
148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149
150 /*
151 * Optional reserved chunk. This chunk reserves part of the first
152 * chunk and serves it for reserved allocations. When the reserved
153 * region doesn't exist, the following variable is NULL.
154 */
155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156
157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
159
160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161
162 /* chunks which need their map areas extended, protected by pcpu_lock */
163 static LIST_HEAD(pcpu_map_extend_chunks);
164
165 /*
166 * The number of empty populated pages, protected by pcpu_lock. The
167 * reserved chunk doesn't contribute to the count.
168 */
169 int pcpu_nr_empty_pop_pages;
170
171 /*
172 * Balance work is used to populate or destroy chunks asynchronously. We
173 * try to keep the number of populated free pages between
174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
175 * empty chunk.
176 */
177 static void pcpu_balance_workfn(struct work_struct *work);
178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 static bool pcpu_async_enabled __read_mostly;
180 static bool pcpu_atomic_alloc_failed;
181
182 static void pcpu_schedule_balance_work(void)
183 {
184 if (pcpu_async_enabled)
185 schedule_work(&pcpu_balance_work);
186 }
187
188 /**
189 * pcpu_addr_in_chunk - check if the address is served from this chunk
190 * @chunk: chunk of interest
191 * @addr: percpu address
192 *
193 * RETURNS:
194 * True if the address is served from this chunk.
195 */
196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197 {
198 void *start_addr, *end_addr;
199
200 if (!chunk)
201 return false;
202
203 start_addr = chunk->base_addr + chunk->start_offset;
204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
205 chunk->end_offset;
206
207 return addr >= start_addr && addr < end_addr;
208 }
209
210 static int __pcpu_size_to_slot(int size)
211 {
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215
216 static int pcpu_size_to_slot(int size)
217 {
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
221 }
222
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 return 0;
227
228 return pcpu_size_to_slot(chunk->free_bytes);
229 }
230
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 page->index = (unsigned long)pcpu;
235 }
236
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 return (struct pcpu_chunk *)page->index;
241 }
242
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247
248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
249 {
250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
251 }
252
253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
254 unsigned int cpu, int page_idx)
255 {
256 return (unsigned long)chunk->base_addr +
257 pcpu_unit_page_offset(cpu, page_idx);
258 }
259
260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
261 {
262 *rs = find_next_zero_bit(bitmap, end, *rs);
263 *re = find_next_bit(bitmap, end, *rs + 1);
264 }
265
266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
267 {
268 *rs = find_next_bit(bitmap, end, *rs);
269 *re = find_next_zero_bit(bitmap, end, *rs + 1);
270 }
271
272 /*
273 * Bitmap region iterators. Iterates over the bitmap between
274 * [@start, @end) in @chunk. @rs and @re should be integer variables
275 * and will be set to start and end index of the current free region.
276 */
277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
281
282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
284 (rs) < (re); \
285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
286
287 /*
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
290 */
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292 {
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295 }
296
297 static unsigned long pcpu_off_to_block_index(int off)
298 {
299 return off / PCPU_BITMAP_BLOCK_BITS;
300 }
301
302 static unsigned long pcpu_off_to_block_off(int off)
303 {
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305 }
306
307 static unsigned long pcpu_block_off_to_off(int index, int off)
308 {
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
310 }
311
312 /**
313 * pcpu_next_md_free_region - finds the next hint free area
314 * @chunk: chunk of interest
315 * @bit_off: chunk offset
316 * @bits: size of free area
317 *
318 * Helper function for pcpu_for_each_md_free_region. It checks
319 * block->contig_hint and performs aggregation across blocks to find the
320 * next hint. It modifies bit_off and bits in-place to be consumed in the
321 * loop.
322 */
323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
324 int *bits)
325 {
326 int i = pcpu_off_to_block_index(*bit_off);
327 int block_off = pcpu_off_to_block_off(*bit_off);
328 struct pcpu_block_md *block;
329
330 *bits = 0;
331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
332 block++, i++) {
333 /* handles contig area across blocks */
334 if (*bits) {
335 *bits += block->left_free;
336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
337 continue;
338 return;
339 }
340
341 /*
342 * This checks three things. First is there a contig_hint to
343 * check. Second, have we checked this hint before by
344 * comparing the block_off. Third, is this the same as the
345 * right contig hint. In the last case, it spills over into
346 * the next block and should be handled by the contig area
347 * across blocks code.
348 */
349 *bits = block->contig_hint;
350 if (*bits && block->contig_hint_start >= block_off &&
351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
352 *bit_off = pcpu_block_off_to_off(i,
353 block->contig_hint_start);
354 return;
355 }
356
357 *bits = block->right_free;
358 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
359 }
360 }
361
362 /**
363 * pcpu_next_fit_region - finds fit areas for a given allocation request
364 * @chunk: chunk of interest
365 * @alloc_bits: size of allocation
366 * @align: alignment of area (max PAGE_SIZE)
367 * @bit_off: chunk offset
368 * @bits: size of free area
369 *
370 * Finds the next free region that is viable for use with a given size and
371 * alignment. This only returns if there is a valid area to be used for this
372 * allocation. block->first_free is returned if the allocation request fits
373 * within the block to see if the request can be fulfilled prior to the contig
374 * hint.
375 */
376 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
377 int align, int *bit_off, int *bits)
378 {
379 int i = pcpu_off_to_block_index(*bit_off);
380 int block_off = pcpu_off_to_block_off(*bit_off);
381 struct pcpu_block_md *block;
382
383 *bits = 0;
384 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
385 block++, i++) {
386 /* handles contig area across blocks */
387 if (*bits) {
388 *bits += block->left_free;
389 if (*bits >= alloc_bits)
390 return;
391 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
392 continue;
393 }
394
395 /* check block->contig_hint */
396 *bits = ALIGN(block->contig_hint_start, align) -
397 block->contig_hint_start;
398 /*
399 * This uses the block offset to determine if this has been
400 * checked in the prior iteration.
401 */
402 if (block->contig_hint &&
403 block->contig_hint_start >= block_off &&
404 block->contig_hint >= *bits + alloc_bits) {
405 *bits += alloc_bits + block->contig_hint_start -
406 block->first_free;
407 *bit_off = pcpu_block_off_to_off(i, block->first_free);
408 return;
409 }
410
411 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
412 align);
413 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
414 *bit_off = pcpu_block_off_to_off(i, *bit_off);
415 if (*bits >= alloc_bits)
416 return;
417 }
418
419 /* no valid offsets were found - fail condition */
420 *bit_off = pcpu_chunk_map_bits(chunk);
421 }
422
423 /*
424 * Metadata free area iterators. These perform aggregation of free areas
425 * based on the metadata blocks and return the offset @bit_off and size in
426 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
427 * a fit is found for the allocation request.
428 */
429 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
430 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
431 (bit_off) < pcpu_chunk_map_bits((chunk)); \
432 (bit_off) += (bits) + 1, \
433 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
434
435 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
436 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
437 &(bits)); \
438 (bit_off) < pcpu_chunk_map_bits((chunk)); \
439 (bit_off) += (bits), \
440 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
441 &(bits)))
442
443 /**
444 * pcpu_mem_zalloc - allocate memory
445 * @size: bytes to allocate
446 *
447 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
448 * kzalloc() is used; otherwise, vzalloc() is used. The returned
449 * memory is always zeroed.
450 *
451 * CONTEXT:
452 * Does GFP_KERNEL allocation.
453 *
454 * RETURNS:
455 * Pointer to the allocated area on success, NULL on failure.
456 */
457 static void *pcpu_mem_zalloc(size_t size)
458 {
459 if (WARN_ON_ONCE(!slab_is_available()))
460 return NULL;
461
462 if (size <= PAGE_SIZE)
463 return kzalloc(size, GFP_KERNEL);
464 else
465 return vzalloc(size);
466 }
467
468 /**
469 * pcpu_mem_free - free memory
470 * @ptr: memory to free
471 *
472 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
473 */
474 static void pcpu_mem_free(void *ptr)
475 {
476 kvfree(ptr);
477 }
478
479 /**
480 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
481 * @chunk: chunk of interest
482 * @oslot: the previous slot it was on
483 *
484 * This function is called after an allocation or free changed @chunk.
485 * New slot according to the changed state is determined and @chunk is
486 * moved to the slot. Note that the reserved chunk is never put on
487 * chunk slots.
488 *
489 * CONTEXT:
490 * pcpu_lock.
491 */
492 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
493 {
494 int nslot = pcpu_chunk_slot(chunk);
495
496 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
497 if (oslot < nslot)
498 list_move(&chunk->list, &pcpu_slot[nslot]);
499 else
500 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
501 }
502 }
503
504 /**
505 * pcpu_cnt_pop_pages- counts populated backing pages in range
506 * @chunk: chunk of interest
507 * @bit_off: start offset
508 * @bits: size of area to check
509 *
510 * Calculates the number of populated pages in the region
511 * [page_start, page_end). This keeps track of how many empty populated
512 * pages are available and decide if async work should be scheduled.
513 *
514 * RETURNS:
515 * The nr of populated pages.
516 */
517 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
518 int bits)
519 {
520 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
521 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
522
523 if (page_start >= page_end)
524 return 0;
525
526 /*
527 * bitmap_weight counts the number of bits set in a bitmap up to
528 * the specified number of bits. This is counting the populated
529 * pages up to page_end and then subtracting the populated pages
530 * up to page_start to count the populated pages in
531 * [page_start, page_end).
532 */
533 return bitmap_weight(chunk->populated, page_end) -
534 bitmap_weight(chunk->populated, page_start);
535 }
536
537 /**
538 * pcpu_chunk_update - updates the chunk metadata given a free area
539 * @chunk: chunk of interest
540 * @bit_off: chunk offset
541 * @bits: size of free area
542 *
543 * This updates the chunk's contig hint and starting offset given a free area.
544 * Choose the best starting offset if the contig hint is equal.
545 */
546 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
547 {
548 if (bits > chunk->contig_bits) {
549 chunk->contig_bits_start = bit_off;
550 chunk->contig_bits = bits;
551 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
552 (!bit_off ||
553 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
554 /* use the start with the best alignment */
555 chunk->contig_bits_start = bit_off;
556 }
557 }
558
559 /**
560 * pcpu_chunk_refresh_hint - updates metadata about a chunk
561 * @chunk: chunk of interest
562 *
563 * Iterates over the metadata blocks to find the largest contig area.
564 * It also counts the populated pages and uses the delta to update the
565 * global count.
566 *
567 * Updates:
568 * chunk->contig_bits
569 * chunk->contig_bits_start
570 * nr_empty_pop_pages (chunk and global)
571 */
572 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
573 {
574 int bit_off, bits, nr_empty_pop_pages;
575
576 /* clear metadata */
577 chunk->contig_bits = 0;
578
579 bit_off = chunk->first_bit;
580 bits = nr_empty_pop_pages = 0;
581 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
582 pcpu_chunk_update(chunk, bit_off, bits);
583
584 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
585 }
586
587 /*
588 * Keep track of nr_empty_pop_pages.
589 *
590 * The chunk maintains the previous number of free pages it held,
591 * so the delta is used to update the global counter. The reserved
592 * chunk is not part of the free page count as they are populated
593 * at init and are special to serving reserved allocations.
594 */
595 if (chunk != pcpu_reserved_chunk)
596 pcpu_nr_empty_pop_pages +=
597 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
598
599 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
600 }
601
602 /**
603 * pcpu_block_update - updates a block given a free area
604 * @block: block of interest
605 * @start: start offset in block
606 * @end: end offset in block
607 *
608 * Updates a block given a known free area. The region [start, end) is
609 * expected to be the entirety of the free area within a block. Chooses
610 * the best starting offset if the contig hints are equal.
611 */
612 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
613 {
614 int contig = end - start;
615
616 block->first_free = min(block->first_free, start);
617 if (start == 0)
618 block->left_free = contig;
619
620 if (end == PCPU_BITMAP_BLOCK_BITS)
621 block->right_free = contig;
622
623 if (contig > block->contig_hint) {
624 block->contig_hint_start = start;
625 block->contig_hint = contig;
626 } else if (block->contig_hint_start && contig == block->contig_hint &&
627 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
628 /* use the start with the best alignment */
629 block->contig_hint_start = start;
630 }
631 }
632
633 /**
634 * pcpu_block_refresh_hint
635 * @chunk: chunk of interest
636 * @index: index of the metadata block
637 *
638 * Scans over the block beginning at first_free and updates the block
639 * metadata accordingly.
640 */
641 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
642 {
643 struct pcpu_block_md *block = chunk->md_blocks + index;
644 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
645 int rs, re; /* region start, region end */
646
647 /* clear hints */
648 block->contig_hint = 0;
649 block->left_free = block->right_free = 0;
650
651 /* iterate over free areas and update the contig hints */
652 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
653 PCPU_BITMAP_BLOCK_BITS) {
654 pcpu_block_update(block, rs, re);
655 }
656 }
657
658 /**
659 * pcpu_block_update_hint_alloc - update hint on allocation path
660 * @chunk: chunk of interest
661 * @bit_off: chunk offset
662 * @bits: size of request
663 *
664 * Updates metadata for the allocation path. The metadata only has to be
665 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
666 * scans are required if the block's contig hint is broken.
667 */
668 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
669 int bits)
670 {
671 struct pcpu_block_md *s_block, *e_block, *block;
672 int s_index, e_index; /* block indexes of the freed allocation */
673 int s_off, e_off; /* block offsets of the freed allocation */
674
675 /*
676 * Calculate per block offsets.
677 * The calculation uses an inclusive range, but the resulting offsets
678 * are [start, end). e_index always points to the last block in the
679 * range.
680 */
681 s_index = pcpu_off_to_block_index(bit_off);
682 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
683 s_off = pcpu_off_to_block_off(bit_off);
684 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
685
686 s_block = chunk->md_blocks + s_index;
687 e_block = chunk->md_blocks + e_index;
688
689 /*
690 * Update s_block.
691 * block->first_free must be updated if the allocation takes its place.
692 * If the allocation breaks the contig_hint, a scan is required to
693 * restore this hint.
694 */
695 if (s_off == s_block->first_free)
696 s_block->first_free = find_next_zero_bit(
697 pcpu_index_alloc_map(chunk, s_index),
698 PCPU_BITMAP_BLOCK_BITS,
699 s_off + bits);
700
701 if (s_off >= s_block->contig_hint_start &&
702 s_off < s_block->contig_hint_start + s_block->contig_hint) {
703 /* block contig hint is broken - scan to fix it */
704 pcpu_block_refresh_hint(chunk, s_index);
705 } else {
706 /* update left and right contig manually */
707 s_block->left_free = min(s_block->left_free, s_off);
708 if (s_index == e_index)
709 s_block->right_free = min_t(int, s_block->right_free,
710 PCPU_BITMAP_BLOCK_BITS - e_off);
711 else
712 s_block->right_free = 0;
713 }
714
715 /*
716 * Update e_block.
717 */
718 if (s_index != e_index) {
719 /*
720 * When the allocation is across blocks, the end is along
721 * the left part of the e_block.
722 */
723 e_block->first_free = find_next_zero_bit(
724 pcpu_index_alloc_map(chunk, e_index),
725 PCPU_BITMAP_BLOCK_BITS, e_off);
726
727 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
728 /* reset the block */
729 e_block++;
730 } else {
731 if (e_off > e_block->contig_hint_start) {
732 /* contig hint is broken - scan to fix it */
733 pcpu_block_refresh_hint(chunk, e_index);
734 } else {
735 e_block->left_free = 0;
736 e_block->right_free =
737 min_t(int, e_block->right_free,
738 PCPU_BITMAP_BLOCK_BITS - e_off);
739 }
740 }
741
742 /* update in-between md_blocks */
743 for (block = s_block + 1; block < e_block; block++) {
744 block->contig_hint = 0;
745 block->left_free = 0;
746 block->right_free = 0;
747 }
748 }
749
750 /*
751 * The only time a full chunk scan is required is if the chunk
752 * contig hint is broken. Otherwise, it means a smaller space
753 * was used and therefore the chunk contig hint is still correct.
754 */
755 if (bit_off >= chunk->contig_bits_start &&
756 bit_off < chunk->contig_bits_start + chunk->contig_bits)
757 pcpu_chunk_refresh_hint(chunk);
758 }
759
760 /**
761 * pcpu_block_update_hint_free - updates the block hints on the free path
762 * @chunk: chunk of interest
763 * @bit_off: chunk offset
764 * @bits: size of request
765 *
766 * Updates metadata for the allocation path. This avoids a blind block
767 * refresh by making use of the block contig hints. If this fails, it scans
768 * forward and backward to determine the extent of the free area. This is
769 * capped at the boundary of blocks.
770 *
771 * A chunk update is triggered if a page becomes free, a block becomes free,
772 * or the free spans across blocks. This tradeoff is to minimize iterating
773 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
774 * may be off by up to a page, but it will never be more than the available
775 * space. If the contig hint is contained in one block, it will be accurate.
776 */
777 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
778 int bits)
779 {
780 struct pcpu_block_md *s_block, *e_block, *block;
781 int s_index, e_index; /* block indexes of the freed allocation */
782 int s_off, e_off; /* block offsets of the freed allocation */
783 int start, end; /* start and end of the whole free area */
784
785 /*
786 * Calculate per block offsets.
787 * The calculation uses an inclusive range, but the resulting offsets
788 * are [start, end). e_index always points to the last block in the
789 * range.
790 */
791 s_index = pcpu_off_to_block_index(bit_off);
792 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
793 s_off = pcpu_off_to_block_off(bit_off);
794 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
795
796 s_block = chunk->md_blocks + s_index;
797 e_block = chunk->md_blocks + e_index;
798
799 /*
800 * Check if the freed area aligns with the block->contig_hint.
801 * If it does, then the scan to find the beginning/end of the
802 * larger free area can be avoided.
803 *
804 * start and end refer to beginning and end of the free area
805 * within each their respective blocks. This is not necessarily
806 * the entire free area as it may span blocks past the beginning
807 * or end of the block.
808 */
809 start = s_off;
810 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
811 start = s_block->contig_hint_start;
812 } else {
813 /*
814 * Scan backwards to find the extent of the free area.
815 * find_last_bit returns the starting bit, so if the start bit
816 * is returned, that means there was no last bit and the
817 * remainder of the chunk is free.
818 */
819 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
820 start);
821 start = (start == l_bit) ? 0 : l_bit + 1;
822 }
823
824 end = e_off;
825 if (e_off == e_block->contig_hint_start)
826 end = e_block->contig_hint_start + e_block->contig_hint;
827 else
828 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
829 PCPU_BITMAP_BLOCK_BITS, end);
830
831 /* update s_block */
832 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
833 pcpu_block_update(s_block, start, e_off);
834
835 /* freeing in the same block */
836 if (s_index != e_index) {
837 /* update e_block */
838 pcpu_block_update(e_block, 0, end);
839
840 /* reset md_blocks in the middle */
841 for (block = s_block + 1; block < e_block; block++) {
842 block->first_free = 0;
843 block->contig_hint_start = 0;
844 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
845 block->left_free = PCPU_BITMAP_BLOCK_BITS;
846 block->right_free = PCPU_BITMAP_BLOCK_BITS;
847 }
848 }
849
850 /*
851 * Refresh chunk metadata when the free makes a page free, a block
852 * free, or spans across blocks. The contig hint may be off by up to
853 * a page, but if the hint is contained in a block, it will be accurate
854 * with the else condition below.
855 */
856 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
857 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
858 s_index != e_index)
859 pcpu_chunk_refresh_hint(chunk);
860 else
861 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
862 s_block->contig_hint);
863 }
864
865 /**
866 * pcpu_is_populated - determines if the region is populated
867 * @chunk: chunk of interest
868 * @bit_off: chunk offset
869 * @bits: size of area
870 * @next_off: return value for the next offset to start searching
871 *
872 * For atomic allocations, check if the backing pages are populated.
873 *
874 * RETURNS:
875 * Bool if the backing pages are populated.
876 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
877 */
878 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
879 int *next_off)
880 {
881 int page_start, page_end, rs, re;
882
883 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
884 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
885
886 rs = page_start;
887 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
888 if (rs >= page_end)
889 return true;
890
891 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
892 return false;
893 }
894
895 /**
896 * pcpu_find_block_fit - finds the block index to start searching
897 * @chunk: chunk of interest
898 * @alloc_bits: size of request in allocation units
899 * @align: alignment of area (max PAGE_SIZE bytes)
900 * @pop_only: use populated regions only
901 *
902 * Given a chunk and an allocation spec, find the offset to begin searching
903 * for a free region. This iterates over the bitmap metadata blocks to
904 * find an offset that will be guaranteed to fit the requirements. It is
905 * not quite first fit as if the allocation does not fit in the contig hint
906 * of a block or chunk, it is skipped. This errs on the side of caution
907 * to prevent excess iteration. Poor alignment can cause the allocator to
908 * skip over blocks and chunks that have valid free areas.
909 *
910 * RETURNS:
911 * The offset in the bitmap to begin searching.
912 * -1 if no offset is found.
913 */
914 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
915 size_t align, bool pop_only)
916 {
917 int bit_off, bits, next_off;
918
919 /*
920 * Check to see if the allocation can fit in the chunk's contig hint.
921 * This is an optimization to prevent scanning by assuming if it
922 * cannot fit in the global hint, there is memory pressure and creating
923 * a new chunk would happen soon.
924 */
925 bit_off = ALIGN(chunk->contig_bits_start, align) -
926 chunk->contig_bits_start;
927 if (bit_off + alloc_bits > chunk->contig_bits)
928 return -1;
929
930 bit_off = chunk->first_bit;
931 bits = 0;
932 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
933 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
934 &next_off))
935 break;
936
937 bit_off = next_off;
938 bits = 0;
939 }
940
941 if (bit_off == pcpu_chunk_map_bits(chunk))
942 return -1;
943
944 return bit_off;
945 }
946
947 /**
948 * pcpu_alloc_area - allocates an area from a pcpu_chunk
949 * @chunk: chunk of interest
950 * @alloc_bits: size of request in allocation units
951 * @align: alignment of area (max PAGE_SIZE)
952 * @start: bit_off to start searching
953 *
954 * This function takes in a @start offset to begin searching to fit an
955 * allocation of @alloc_bits with alignment @align. It needs to scan
956 * the allocation map because if it fits within the block's contig hint,
957 * @start will be block->first_free. This is an attempt to fill the
958 * allocation prior to breaking the contig hint. The allocation and
959 * boundary maps are updated accordingly if it confirms a valid
960 * free area.
961 *
962 * RETURNS:
963 * Allocated addr offset in @chunk on success.
964 * -1 if no matching area is found.
965 */
966 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
967 size_t align, int start)
968 {
969 size_t align_mask = (align) ? (align - 1) : 0;
970 int bit_off, end, oslot;
971
972 lockdep_assert_held(&pcpu_lock);
973
974 oslot = pcpu_chunk_slot(chunk);
975
976 /*
977 * Search to find a fit.
978 */
979 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
980 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
981 alloc_bits, align_mask);
982 if (bit_off >= end)
983 return -1;
984
985 /* update alloc map */
986 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
987
988 /* update boundary map */
989 set_bit(bit_off, chunk->bound_map);
990 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
991 set_bit(bit_off + alloc_bits, chunk->bound_map);
992
993 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
994
995 /* update first free bit */
996 if (bit_off == chunk->first_bit)
997 chunk->first_bit = find_next_zero_bit(
998 chunk->alloc_map,
999 pcpu_chunk_map_bits(chunk),
1000 bit_off + alloc_bits);
1001
1002 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1003
1004 pcpu_chunk_relocate(chunk, oslot);
1005
1006 return bit_off * PCPU_MIN_ALLOC_SIZE;
1007 }
1008
1009 /**
1010 * pcpu_free_area - frees the corresponding offset
1011 * @chunk: chunk of interest
1012 * @off: addr offset into chunk
1013 *
1014 * This function determines the size of an allocation to free using
1015 * the boundary bitmap and clears the allocation map.
1016 */
1017 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1018 {
1019 int bit_off, bits, end, oslot;
1020
1021 lockdep_assert_held(&pcpu_lock);
1022 pcpu_stats_area_dealloc(chunk);
1023
1024 oslot = pcpu_chunk_slot(chunk);
1025
1026 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1027
1028 /* find end index */
1029 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1030 bit_off + 1);
1031 bits = end - bit_off;
1032 bitmap_clear(chunk->alloc_map, bit_off, bits);
1033
1034 /* update metadata */
1035 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1036
1037 /* update first free bit */
1038 chunk->first_bit = min(chunk->first_bit, bit_off);
1039
1040 pcpu_block_update_hint_free(chunk, bit_off, bits);
1041
1042 pcpu_chunk_relocate(chunk, oslot);
1043 }
1044
1045 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1046 {
1047 struct pcpu_block_md *md_block;
1048
1049 for (md_block = chunk->md_blocks;
1050 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1051 md_block++) {
1052 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1053 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1054 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1055 }
1056 }
1057
1058 /**
1059 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1060 * @tmp_addr: the start of the region served
1061 * @map_size: size of the region served
1062 *
1063 * This is responsible for creating the chunks that serve the first chunk. The
1064 * base_addr is page aligned down of @tmp_addr while the region end is page
1065 * aligned up. Offsets are kept track of to determine the region served. All
1066 * this is done to appease the bitmap allocator in avoiding partial blocks.
1067 *
1068 * RETURNS:
1069 * Chunk serving the region at @tmp_addr of @map_size.
1070 */
1071 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1072 int map_size)
1073 {
1074 struct pcpu_chunk *chunk;
1075 unsigned long aligned_addr, lcm_align;
1076 int start_offset, offset_bits, region_size, region_bits;
1077
1078 /* region calculations */
1079 aligned_addr = tmp_addr & PAGE_MASK;
1080
1081 start_offset = tmp_addr - aligned_addr;
1082
1083 /*
1084 * Align the end of the region with the LCM of PAGE_SIZE and
1085 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1086 * the other.
1087 */
1088 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1089 region_size = ALIGN(start_offset + map_size, lcm_align);
1090
1091 /* allocate chunk */
1092 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1093 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1094 0);
1095
1096 INIT_LIST_HEAD(&chunk->list);
1097
1098 chunk->base_addr = (void *)aligned_addr;
1099 chunk->start_offset = start_offset;
1100 chunk->end_offset = region_size - chunk->start_offset - map_size;
1101
1102 chunk->nr_pages = region_size >> PAGE_SHIFT;
1103 region_bits = pcpu_chunk_map_bits(chunk);
1104
1105 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1106 sizeof(chunk->alloc_map[0]), 0);
1107 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1108 sizeof(chunk->bound_map[0]), 0);
1109 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1110 sizeof(chunk->md_blocks[0]), 0);
1111 pcpu_init_md_blocks(chunk);
1112
1113 /* manage populated page bitmap */
1114 chunk->immutable = true;
1115 bitmap_fill(chunk->populated, chunk->nr_pages);
1116 chunk->nr_populated = chunk->nr_pages;
1117 chunk->nr_empty_pop_pages =
1118 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1119 map_size / PCPU_MIN_ALLOC_SIZE);
1120
1121 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1122 chunk->free_bytes = map_size;
1123
1124 if (chunk->start_offset) {
1125 /* hide the beginning of the bitmap */
1126 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1127 bitmap_set(chunk->alloc_map, 0, offset_bits);
1128 set_bit(0, chunk->bound_map);
1129 set_bit(offset_bits, chunk->bound_map);
1130
1131 chunk->first_bit = offset_bits;
1132
1133 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1134 }
1135
1136 if (chunk->end_offset) {
1137 /* hide the end of the bitmap */
1138 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1139 bitmap_set(chunk->alloc_map,
1140 pcpu_chunk_map_bits(chunk) - offset_bits,
1141 offset_bits);
1142 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1143 chunk->bound_map);
1144 set_bit(region_bits, chunk->bound_map);
1145
1146 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1147 - offset_bits, offset_bits);
1148 }
1149
1150 return chunk;
1151 }
1152
1153 static struct pcpu_chunk *pcpu_alloc_chunk(void)
1154 {
1155 struct pcpu_chunk *chunk;
1156 int region_bits;
1157
1158 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1159 if (!chunk)
1160 return NULL;
1161
1162 INIT_LIST_HEAD(&chunk->list);
1163 chunk->nr_pages = pcpu_unit_pages;
1164 region_bits = pcpu_chunk_map_bits(chunk);
1165
1166 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1167 sizeof(chunk->alloc_map[0]));
1168 if (!chunk->alloc_map)
1169 goto alloc_map_fail;
1170
1171 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1172 sizeof(chunk->bound_map[0]));
1173 if (!chunk->bound_map)
1174 goto bound_map_fail;
1175
1176 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1177 sizeof(chunk->md_blocks[0]));
1178 if (!chunk->md_blocks)
1179 goto md_blocks_fail;
1180
1181 pcpu_init_md_blocks(chunk);
1182
1183 /* init metadata */
1184 chunk->contig_bits = region_bits;
1185 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1186
1187 return chunk;
1188
1189 md_blocks_fail:
1190 pcpu_mem_free(chunk->bound_map);
1191 bound_map_fail:
1192 pcpu_mem_free(chunk->alloc_map);
1193 alloc_map_fail:
1194 pcpu_mem_free(chunk);
1195
1196 return NULL;
1197 }
1198
1199 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1200 {
1201 if (!chunk)
1202 return;
1203 pcpu_mem_free(chunk->bound_map);
1204 pcpu_mem_free(chunk->alloc_map);
1205 pcpu_mem_free(chunk);
1206 }
1207
1208 /**
1209 * pcpu_chunk_populated - post-population bookkeeping
1210 * @chunk: pcpu_chunk which got populated
1211 * @page_start: the start page
1212 * @page_end: the end page
1213 * @for_alloc: if this is to populate for allocation
1214 *
1215 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1216 * the bookkeeping information accordingly. Must be called after each
1217 * successful population.
1218 *
1219 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1220 * is to serve an allocation in that area.
1221 */
1222 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1223 int page_end, bool for_alloc)
1224 {
1225 int nr = page_end - page_start;
1226
1227 lockdep_assert_held(&pcpu_lock);
1228
1229 bitmap_set(chunk->populated, page_start, nr);
1230 chunk->nr_populated += nr;
1231
1232 if (!for_alloc) {
1233 chunk->nr_empty_pop_pages += nr;
1234 pcpu_nr_empty_pop_pages += nr;
1235 }
1236 }
1237
1238 /**
1239 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1240 * @chunk: pcpu_chunk which got depopulated
1241 * @page_start: the start page
1242 * @page_end: the end page
1243 *
1244 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1245 * Update the bookkeeping information accordingly. Must be called after
1246 * each successful depopulation.
1247 */
1248 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1249 int page_start, int page_end)
1250 {
1251 int nr = page_end - page_start;
1252
1253 lockdep_assert_held(&pcpu_lock);
1254
1255 bitmap_clear(chunk->populated, page_start, nr);
1256 chunk->nr_populated -= nr;
1257 chunk->nr_empty_pop_pages -= nr;
1258 pcpu_nr_empty_pop_pages -= nr;
1259 }
1260
1261 /*
1262 * Chunk management implementation.
1263 *
1264 * To allow different implementations, chunk alloc/free and
1265 * [de]population are implemented in a separate file which is pulled
1266 * into this file and compiled together. The following functions
1267 * should be implemented.
1268 *
1269 * pcpu_populate_chunk - populate the specified range of a chunk
1270 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1271 * pcpu_create_chunk - create a new chunk
1272 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1273 * pcpu_addr_to_page - translate address to physical address
1274 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1275 */
1276 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1277 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1278 static struct pcpu_chunk *pcpu_create_chunk(void);
1279 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1280 static struct page *pcpu_addr_to_page(void *addr);
1281 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1282
1283 #ifdef CONFIG_NEED_PER_CPU_KM
1284 #include "percpu-km.c"
1285 #else
1286 #include "percpu-vm.c"
1287 #endif
1288
1289 /**
1290 * pcpu_chunk_addr_search - determine chunk containing specified address
1291 * @addr: address for which the chunk needs to be determined.
1292 *
1293 * This is an internal function that handles all but static allocations.
1294 * Static percpu address values should never be passed into the allocator.
1295 *
1296 * RETURNS:
1297 * The address of the found chunk.
1298 */
1299 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1300 {
1301 /* is it in the dynamic region (first chunk)? */
1302 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1303 return pcpu_first_chunk;
1304
1305 /* is it in the reserved region? */
1306 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1307 return pcpu_reserved_chunk;
1308
1309 /*
1310 * The address is relative to unit0 which might be unused and
1311 * thus unmapped. Offset the address to the unit space of the
1312 * current processor before looking it up in the vmalloc
1313 * space. Note that any possible cpu id can be used here, so
1314 * there's no need to worry about preemption or cpu hotplug.
1315 */
1316 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1317 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1318 }
1319
1320 /**
1321 * pcpu_alloc - the percpu allocator
1322 * @size: size of area to allocate in bytes
1323 * @align: alignment of area (max PAGE_SIZE)
1324 * @reserved: allocate from the reserved chunk if available
1325 * @gfp: allocation flags
1326 *
1327 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1328 * contain %GFP_KERNEL, the allocation is atomic.
1329 *
1330 * RETURNS:
1331 * Percpu pointer to the allocated area on success, NULL on failure.
1332 */
1333 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1334 gfp_t gfp)
1335 {
1336 static int warn_limit = 10;
1337 struct pcpu_chunk *chunk;
1338 const char *err;
1339 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1340 int slot, off, cpu, ret;
1341 unsigned long flags;
1342 void __percpu *ptr;
1343 size_t bits, bit_align;
1344
1345 /*
1346 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1347 * therefore alignment must be a minimum of that many bytes.
1348 * An allocation may have internal fragmentation from rounding up
1349 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1350 */
1351 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1352 align = PCPU_MIN_ALLOC_SIZE;
1353
1354 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1355 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1356 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1357
1358 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1359 !is_power_of_2(align))) {
1360 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1361 size, align);
1362 return NULL;
1363 }
1364
1365 if (!is_atomic)
1366 mutex_lock(&pcpu_alloc_mutex);
1367
1368 spin_lock_irqsave(&pcpu_lock, flags);
1369
1370 /* serve reserved allocations from the reserved chunk if available */
1371 if (reserved && pcpu_reserved_chunk) {
1372 chunk = pcpu_reserved_chunk;
1373
1374 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1375 if (off < 0) {
1376 err = "alloc from reserved chunk failed";
1377 goto fail_unlock;
1378 }
1379
1380 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1381 if (off >= 0)
1382 goto area_found;
1383
1384 err = "alloc from reserved chunk failed";
1385 goto fail_unlock;
1386 }
1387
1388 restart:
1389 /* search through normal chunks */
1390 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1391 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1392 off = pcpu_find_block_fit(chunk, bits, bit_align,
1393 is_atomic);
1394 if (off < 0)
1395 continue;
1396
1397 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1398 if (off >= 0)
1399 goto area_found;
1400
1401 }
1402 }
1403
1404 spin_unlock_irqrestore(&pcpu_lock, flags);
1405
1406 /*
1407 * No space left. Create a new chunk. We don't want multiple
1408 * tasks to create chunks simultaneously. Serialize and create iff
1409 * there's still no empty chunk after grabbing the mutex.
1410 */
1411 if (is_atomic) {
1412 err = "atomic alloc failed, no space left";
1413 goto fail;
1414 }
1415
1416 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1417 chunk = pcpu_create_chunk();
1418 if (!chunk) {
1419 err = "failed to allocate new chunk";
1420 goto fail;
1421 }
1422
1423 spin_lock_irqsave(&pcpu_lock, flags);
1424 pcpu_chunk_relocate(chunk, -1);
1425 } else {
1426 spin_lock_irqsave(&pcpu_lock, flags);
1427 }
1428
1429 goto restart;
1430
1431 area_found:
1432 pcpu_stats_area_alloc(chunk, size);
1433 spin_unlock_irqrestore(&pcpu_lock, flags);
1434
1435 /* populate if not all pages are already there */
1436 if (!is_atomic) {
1437 int page_start, page_end, rs, re;
1438
1439 page_start = PFN_DOWN(off);
1440 page_end = PFN_UP(off + size);
1441
1442 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1443 page_start, page_end) {
1444 WARN_ON(chunk->immutable);
1445
1446 ret = pcpu_populate_chunk(chunk, rs, re);
1447
1448 spin_lock_irqsave(&pcpu_lock, flags);
1449 if (ret) {
1450 pcpu_free_area(chunk, off);
1451 err = "failed to populate";
1452 goto fail_unlock;
1453 }
1454 pcpu_chunk_populated(chunk, rs, re, true);
1455 spin_unlock_irqrestore(&pcpu_lock, flags);
1456 }
1457
1458 mutex_unlock(&pcpu_alloc_mutex);
1459 }
1460
1461 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1462 pcpu_schedule_balance_work();
1463
1464 /* clear the areas and return address relative to base address */
1465 for_each_possible_cpu(cpu)
1466 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1467
1468 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1469 kmemleak_alloc_percpu(ptr, size, gfp);
1470
1471 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1472 chunk->base_addr, off, ptr);
1473
1474 return ptr;
1475
1476 fail_unlock:
1477 spin_unlock_irqrestore(&pcpu_lock, flags);
1478 fail:
1479 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1480
1481 if (!is_atomic && warn_limit) {
1482 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1483 size, align, is_atomic, err);
1484 dump_stack();
1485 if (!--warn_limit)
1486 pr_info("limit reached, disable warning\n");
1487 }
1488 if (is_atomic) {
1489 /* see the flag handling in pcpu_blance_workfn() */
1490 pcpu_atomic_alloc_failed = true;
1491 pcpu_schedule_balance_work();
1492 } else {
1493 mutex_unlock(&pcpu_alloc_mutex);
1494 }
1495 return NULL;
1496 }
1497
1498 /**
1499 * __alloc_percpu_gfp - allocate dynamic percpu area
1500 * @size: size of area to allocate in bytes
1501 * @align: alignment of area (max PAGE_SIZE)
1502 * @gfp: allocation flags
1503 *
1504 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1505 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1506 * be called from any context but is a lot more likely to fail.
1507 *
1508 * RETURNS:
1509 * Percpu pointer to the allocated area on success, NULL on failure.
1510 */
1511 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1512 {
1513 return pcpu_alloc(size, align, false, gfp);
1514 }
1515 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1516
1517 /**
1518 * __alloc_percpu - allocate dynamic percpu area
1519 * @size: size of area to allocate in bytes
1520 * @align: alignment of area (max PAGE_SIZE)
1521 *
1522 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1523 */
1524 void __percpu *__alloc_percpu(size_t size, size_t align)
1525 {
1526 return pcpu_alloc(size, align, false, GFP_KERNEL);
1527 }
1528 EXPORT_SYMBOL_GPL(__alloc_percpu);
1529
1530 /**
1531 * __alloc_reserved_percpu - allocate reserved percpu area
1532 * @size: size of area to allocate in bytes
1533 * @align: alignment of area (max PAGE_SIZE)
1534 *
1535 * Allocate zero-filled percpu area of @size bytes aligned at @align
1536 * from reserved percpu area if arch has set it up; otherwise,
1537 * allocation is served from the same dynamic area. Might sleep.
1538 * Might trigger writeouts.
1539 *
1540 * CONTEXT:
1541 * Does GFP_KERNEL allocation.
1542 *
1543 * RETURNS:
1544 * Percpu pointer to the allocated area on success, NULL on failure.
1545 */
1546 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1547 {
1548 return pcpu_alloc(size, align, true, GFP_KERNEL);
1549 }
1550
1551 /**
1552 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1553 * @work: unused
1554 *
1555 * Reclaim all fully free chunks except for the first one.
1556 */
1557 static void pcpu_balance_workfn(struct work_struct *work)
1558 {
1559 LIST_HEAD(to_free);
1560 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1561 struct pcpu_chunk *chunk, *next;
1562 int slot, nr_to_pop, ret;
1563
1564 /*
1565 * There's no reason to keep around multiple unused chunks and VM
1566 * areas can be scarce. Destroy all free chunks except for one.
1567 */
1568 mutex_lock(&pcpu_alloc_mutex);
1569 spin_lock_irq(&pcpu_lock);
1570
1571 list_for_each_entry_safe(chunk, next, free_head, list) {
1572 WARN_ON(chunk->immutable);
1573
1574 /* spare the first one */
1575 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1576 continue;
1577
1578 list_move(&chunk->list, &to_free);
1579 }
1580
1581 spin_unlock_irq(&pcpu_lock);
1582
1583 list_for_each_entry_safe(chunk, next, &to_free, list) {
1584 int rs, re;
1585
1586 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1587 chunk->nr_pages) {
1588 pcpu_depopulate_chunk(chunk, rs, re);
1589 spin_lock_irq(&pcpu_lock);
1590 pcpu_chunk_depopulated(chunk, rs, re);
1591 spin_unlock_irq(&pcpu_lock);
1592 }
1593 pcpu_destroy_chunk(chunk);
1594 }
1595
1596 /*
1597 * Ensure there are certain number of free populated pages for
1598 * atomic allocs. Fill up from the most packed so that atomic
1599 * allocs don't increase fragmentation. If atomic allocation
1600 * failed previously, always populate the maximum amount. This
1601 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1602 * failing indefinitely; however, large atomic allocs are not
1603 * something we support properly and can be highly unreliable and
1604 * inefficient.
1605 */
1606 retry_pop:
1607 if (pcpu_atomic_alloc_failed) {
1608 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1609 /* best effort anyway, don't worry about synchronization */
1610 pcpu_atomic_alloc_failed = false;
1611 } else {
1612 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1613 pcpu_nr_empty_pop_pages,
1614 0, PCPU_EMPTY_POP_PAGES_HIGH);
1615 }
1616
1617 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1618 int nr_unpop = 0, rs, re;
1619
1620 if (!nr_to_pop)
1621 break;
1622
1623 spin_lock_irq(&pcpu_lock);
1624 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1625 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1626 if (nr_unpop)
1627 break;
1628 }
1629 spin_unlock_irq(&pcpu_lock);
1630
1631 if (!nr_unpop)
1632 continue;
1633
1634 /* @chunk can't go away while pcpu_alloc_mutex is held */
1635 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1636 chunk->nr_pages) {
1637 int nr = min(re - rs, nr_to_pop);
1638
1639 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1640 if (!ret) {
1641 nr_to_pop -= nr;
1642 spin_lock_irq(&pcpu_lock);
1643 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1644 spin_unlock_irq(&pcpu_lock);
1645 } else {
1646 nr_to_pop = 0;
1647 }
1648
1649 if (!nr_to_pop)
1650 break;
1651 }
1652 }
1653
1654 if (nr_to_pop) {
1655 /* ran out of chunks to populate, create a new one and retry */
1656 chunk = pcpu_create_chunk();
1657 if (chunk) {
1658 spin_lock_irq(&pcpu_lock);
1659 pcpu_chunk_relocate(chunk, -1);
1660 spin_unlock_irq(&pcpu_lock);
1661 goto retry_pop;
1662 }
1663 }
1664
1665 mutex_unlock(&pcpu_alloc_mutex);
1666 }
1667
1668 /**
1669 * free_percpu - free percpu area
1670 * @ptr: pointer to area to free
1671 *
1672 * Free percpu area @ptr.
1673 *
1674 * CONTEXT:
1675 * Can be called from atomic context.
1676 */
1677 void free_percpu(void __percpu *ptr)
1678 {
1679 void *addr;
1680 struct pcpu_chunk *chunk;
1681 unsigned long flags;
1682 int off;
1683
1684 if (!ptr)
1685 return;
1686
1687 kmemleak_free_percpu(ptr);
1688
1689 addr = __pcpu_ptr_to_addr(ptr);
1690
1691 spin_lock_irqsave(&pcpu_lock, flags);
1692
1693 chunk = pcpu_chunk_addr_search(addr);
1694 off = addr - chunk->base_addr;
1695
1696 pcpu_free_area(chunk, off);
1697
1698 /* if there are more than one fully free chunks, wake up grim reaper */
1699 if (chunk->free_bytes == pcpu_unit_size) {
1700 struct pcpu_chunk *pos;
1701
1702 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1703 if (pos != chunk) {
1704 pcpu_schedule_balance_work();
1705 break;
1706 }
1707 }
1708
1709 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1710
1711 spin_unlock_irqrestore(&pcpu_lock, flags);
1712 }
1713 EXPORT_SYMBOL_GPL(free_percpu);
1714
1715 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1716 {
1717 #ifdef CONFIG_SMP
1718 const size_t static_size = __per_cpu_end - __per_cpu_start;
1719 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1720 unsigned int cpu;
1721
1722 for_each_possible_cpu(cpu) {
1723 void *start = per_cpu_ptr(base, cpu);
1724 void *va = (void *)addr;
1725
1726 if (va >= start && va < start + static_size) {
1727 if (can_addr) {
1728 *can_addr = (unsigned long) (va - start);
1729 *can_addr += (unsigned long)
1730 per_cpu_ptr(base, get_boot_cpu_id());
1731 }
1732 return true;
1733 }
1734 }
1735 #endif
1736 /* on UP, can't distinguish from other static vars, always false */
1737 return false;
1738 }
1739
1740 /**
1741 * is_kernel_percpu_address - test whether address is from static percpu area
1742 * @addr: address to test
1743 *
1744 * Test whether @addr belongs to in-kernel static percpu area. Module
1745 * static percpu areas are not considered. For those, use
1746 * is_module_percpu_address().
1747 *
1748 * RETURNS:
1749 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1750 */
1751 bool is_kernel_percpu_address(unsigned long addr)
1752 {
1753 return __is_kernel_percpu_address(addr, NULL);
1754 }
1755
1756 /**
1757 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1758 * @addr: the address to be converted to physical address
1759 *
1760 * Given @addr which is dereferenceable address obtained via one of
1761 * percpu access macros, this function translates it into its physical
1762 * address. The caller is responsible for ensuring @addr stays valid
1763 * until this function finishes.
1764 *
1765 * percpu allocator has special setup for the first chunk, which currently
1766 * supports either embedding in linear address space or vmalloc mapping,
1767 * and, from the second one, the backing allocator (currently either vm or
1768 * km) provides translation.
1769 *
1770 * The addr can be translated simply without checking if it falls into the
1771 * first chunk. But the current code reflects better how percpu allocator
1772 * actually works, and the verification can discover both bugs in percpu
1773 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1774 * code.
1775 *
1776 * RETURNS:
1777 * The physical address for @addr.
1778 */
1779 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1780 {
1781 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1782 bool in_first_chunk = false;
1783 unsigned long first_low, first_high;
1784 unsigned int cpu;
1785
1786 /*
1787 * The following test on unit_low/high isn't strictly
1788 * necessary but will speed up lookups of addresses which
1789 * aren't in the first chunk.
1790 *
1791 * The address check is against full chunk sizes. pcpu_base_addr
1792 * points to the beginning of the first chunk including the
1793 * static region. Assumes good intent as the first chunk may
1794 * not be full (ie. < pcpu_unit_pages in size).
1795 */
1796 first_low = (unsigned long)pcpu_base_addr +
1797 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1798 first_high = (unsigned long)pcpu_base_addr +
1799 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1800 if ((unsigned long)addr >= first_low &&
1801 (unsigned long)addr < first_high) {
1802 for_each_possible_cpu(cpu) {
1803 void *start = per_cpu_ptr(base, cpu);
1804
1805 if (addr >= start && addr < start + pcpu_unit_size) {
1806 in_first_chunk = true;
1807 break;
1808 }
1809 }
1810 }
1811
1812 if (in_first_chunk) {
1813 if (!is_vmalloc_addr(addr))
1814 return __pa(addr);
1815 else
1816 return page_to_phys(vmalloc_to_page(addr)) +
1817 offset_in_page(addr);
1818 } else
1819 return page_to_phys(pcpu_addr_to_page(addr)) +
1820 offset_in_page(addr);
1821 }
1822
1823 /**
1824 * pcpu_alloc_alloc_info - allocate percpu allocation info
1825 * @nr_groups: the number of groups
1826 * @nr_units: the number of units
1827 *
1828 * Allocate ai which is large enough for @nr_groups groups containing
1829 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1830 * cpu_map array which is long enough for @nr_units and filled with
1831 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1832 * pointer of other groups.
1833 *
1834 * RETURNS:
1835 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1836 * failure.
1837 */
1838 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1839 int nr_units)
1840 {
1841 struct pcpu_alloc_info *ai;
1842 size_t base_size, ai_size;
1843 void *ptr;
1844 int unit;
1845
1846 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1847 __alignof__(ai->groups[0].cpu_map[0]));
1848 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1849
1850 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1851 if (!ptr)
1852 return NULL;
1853 ai = ptr;
1854 ptr += base_size;
1855
1856 ai->groups[0].cpu_map = ptr;
1857
1858 for (unit = 0; unit < nr_units; unit++)
1859 ai->groups[0].cpu_map[unit] = NR_CPUS;
1860
1861 ai->nr_groups = nr_groups;
1862 ai->__ai_size = PFN_ALIGN(ai_size);
1863
1864 return ai;
1865 }
1866
1867 /**
1868 * pcpu_free_alloc_info - free percpu allocation info
1869 * @ai: pcpu_alloc_info to free
1870 *
1871 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1872 */
1873 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1874 {
1875 memblock_free_early(__pa(ai), ai->__ai_size);
1876 }
1877
1878 /**
1879 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1880 * @lvl: loglevel
1881 * @ai: allocation info to dump
1882 *
1883 * Print out information about @ai using loglevel @lvl.
1884 */
1885 static void pcpu_dump_alloc_info(const char *lvl,
1886 const struct pcpu_alloc_info *ai)
1887 {
1888 int group_width = 1, cpu_width = 1, width;
1889 char empty_str[] = "--------";
1890 int alloc = 0, alloc_end = 0;
1891 int group, v;
1892 int upa, apl; /* units per alloc, allocs per line */
1893
1894 v = ai->nr_groups;
1895 while (v /= 10)
1896 group_width++;
1897
1898 v = num_possible_cpus();
1899 while (v /= 10)
1900 cpu_width++;
1901 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1902
1903 upa = ai->alloc_size / ai->unit_size;
1904 width = upa * (cpu_width + 1) + group_width + 3;
1905 apl = rounddown_pow_of_two(max(60 / width, 1));
1906
1907 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1908 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1909 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1910
1911 for (group = 0; group < ai->nr_groups; group++) {
1912 const struct pcpu_group_info *gi = &ai->groups[group];
1913 int unit = 0, unit_end = 0;
1914
1915 BUG_ON(gi->nr_units % upa);
1916 for (alloc_end += gi->nr_units / upa;
1917 alloc < alloc_end; alloc++) {
1918 if (!(alloc % apl)) {
1919 pr_cont("\n");
1920 printk("%spcpu-alloc: ", lvl);
1921 }
1922 pr_cont("[%0*d] ", group_width, group);
1923
1924 for (unit_end += upa; unit < unit_end; unit++)
1925 if (gi->cpu_map[unit] != NR_CPUS)
1926 pr_cont("%0*d ",
1927 cpu_width, gi->cpu_map[unit]);
1928 else
1929 pr_cont("%s ", empty_str);
1930 }
1931 }
1932 pr_cont("\n");
1933 }
1934
1935 /**
1936 * pcpu_setup_first_chunk - initialize the first percpu chunk
1937 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1938 * @base_addr: mapped address
1939 *
1940 * Initialize the first percpu chunk which contains the kernel static
1941 * perpcu area. This function is to be called from arch percpu area
1942 * setup path.
1943 *
1944 * @ai contains all information necessary to initialize the first
1945 * chunk and prime the dynamic percpu allocator.
1946 *
1947 * @ai->static_size is the size of static percpu area.
1948 *
1949 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1950 * reserve after the static area in the first chunk. This reserves
1951 * the first chunk such that it's available only through reserved
1952 * percpu allocation. This is primarily used to serve module percpu
1953 * static areas on architectures where the addressing model has
1954 * limited offset range for symbol relocations to guarantee module
1955 * percpu symbols fall inside the relocatable range.
1956 *
1957 * @ai->dyn_size determines the number of bytes available for dynamic
1958 * allocation in the first chunk. The area between @ai->static_size +
1959 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1960 *
1961 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1962 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1963 * @ai->dyn_size.
1964 *
1965 * @ai->atom_size is the allocation atom size and used as alignment
1966 * for vm areas.
1967 *
1968 * @ai->alloc_size is the allocation size and always multiple of
1969 * @ai->atom_size. This is larger than @ai->atom_size if
1970 * @ai->unit_size is larger than @ai->atom_size.
1971 *
1972 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1973 * percpu areas. Units which should be colocated are put into the
1974 * same group. Dynamic VM areas will be allocated according to these
1975 * groupings. If @ai->nr_groups is zero, a single group containing
1976 * all units is assumed.
1977 *
1978 * The caller should have mapped the first chunk at @base_addr and
1979 * copied static data to each unit.
1980 *
1981 * The first chunk will always contain a static and a dynamic region.
1982 * However, the static region is not managed by any chunk. If the first
1983 * chunk also contains a reserved region, it is served by two chunks -
1984 * one for the reserved region and one for the dynamic region. They
1985 * share the same vm, but use offset regions in the area allocation map.
1986 * The chunk serving the dynamic region is circulated in the chunk slots
1987 * and available for dynamic allocation like any other chunk.
1988 *
1989 * RETURNS:
1990 * 0 on success, -errno on failure.
1991 */
1992 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1993 void *base_addr)
1994 {
1995 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1996 size_t static_size, dyn_size;
1997 struct pcpu_chunk *chunk;
1998 unsigned long *group_offsets;
1999 size_t *group_sizes;
2000 unsigned long *unit_off;
2001 unsigned int cpu;
2002 int *unit_map;
2003 int group, unit, i;
2004 int map_size;
2005 unsigned long tmp_addr;
2006
2007 #define PCPU_SETUP_BUG_ON(cond) do { \
2008 if (unlikely(cond)) { \
2009 pr_emerg("failed to initialize, %s\n", #cond); \
2010 pr_emerg("cpu_possible_mask=%*pb\n", \
2011 cpumask_pr_args(cpu_possible_mask)); \
2012 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2013 BUG(); \
2014 } \
2015 } while (0)
2016
2017 /* sanity checks */
2018 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2019 #ifdef CONFIG_SMP
2020 PCPU_SETUP_BUG_ON(!ai->static_size);
2021 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2022 #endif
2023 PCPU_SETUP_BUG_ON(!base_addr);
2024 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2025 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2026 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2027 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2028 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2029 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2030 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2031 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2032 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2033 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2034 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2035
2036 /* process group information and build config tables accordingly */
2037 group_offsets = memblock_virt_alloc(ai->nr_groups *
2038 sizeof(group_offsets[0]), 0);
2039 group_sizes = memblock_virt_alloc(ai->nr_groups *
2040 sizeof(group_sizes[0]), 0);
2041 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2042 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2043
2044 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2045 unit_map[cpu] = UINT_MAX;
2046
2047 pcpu_low_unit_cpu = NR_CPUS;
2048 pcpu_high_unit_cpu = NR_CPUS;
2049
2050 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2051 const struct pcpu_group_info *gi = &ai->groups[group];
2052
2053 group_offsets[group] = gi->base_offset;
2054 group_sizes[group] = gi->nr_units * ai->unit_size;
2055
2056 for (i = 0; i < gi->nr_units; i++) {
2057 cpu = gi->cpu_map[i];
2058 if (cpu == NR_CPUS)
2059 continue;
2060
2061 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2062 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2063 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2064
2065 unit_map[cpu] = unit + i;
2066 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2067
2068 /* determine low/high unit_cpu */
2069 if (pcpu_low_unit_cpu == NR_CPUS ||
2070 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2071 pcpu_low_unit_cpu = cpu;
2072 if (pcpu_high_unit_cpu == NR_CPUS ||
2073 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2074 pcpu_high_unit_cpu = cpu;
2075 }
2076 }
2077 pcpu_nr_units = unit;
2078
2079 for_each_possible_cpu(cpu)
2080 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2081
2082 /* we're done parsing the input, undefine BUG macro and dump config */
2083 #undef PCPU_SETUP_BUG_ON
2084 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2085
2086 pcpu_nr_groups = ai->nr_groups;
2087 pcpu_group_offsets = group_offsets;
2088 pcpu_group_sizes = group_sizes;
2089 pcpu_unit_map = unit_map;
2090 pcpu_unit_offsets = unit_off;
2091
2092 /* determine basic parameters */
2093 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2094 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2095 pcpu_atom_size = ai->atom_size;
2096 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2097 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2098
2099 pcpu_stats_save_ai(ai);
2100
2101 /*
2102 * Allocate chunk slots. The additional last slot is for
2103 * empty chunks.
2104 */
2105 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2106 pcpu_slot = memblock_virt_alloc(
2107 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2108 for (i = 0; i < pcpu_nr_slots; i++)
2109 INIT_LIST_HEAD(&pcpu_slot[i]);
2110
2111 /*
2112 * The end of the static region needs to be aligned with the
2113 * minimum allocation size as this offsets the reserved and
2114 * dynamic region. The first chunk ends page aligned by
2115 * expanding the dynamic region, therefore the dynamic region
2116 * can be shrunk to compensate while still staying above the
2117 * configured sizes.
2118 */
2119 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2120 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2121
2122 /*
2123 * Initialize first chunk.
2124 * If the reserved_size is non-zero, this initializes the reserved
2125 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2126 * and the dynamic region is initialized here. The first chunk,
2127 * pcpu_first_chunk, will always point to the chunk that serves
2128 * the dynamic region.
2129 */
2130 tmp_addr = (unsigned long)base_addr + static_size;
2131 map_size = ai->reserved_size ?: dyn_size;
2132 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2133
2134 /* init dynamic chunk if necessary */
2135 if (ai->reserved_size) {
2136 pcpu_reserved_chunk = chunk;
2137
2138 tmp_addr = (unsigned long)base_addr + static_size +
2139 ai->reserved_size;
2140 map_size = dyn_size;
2141 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2142 }
2143
2144 /* link the first chunk in */
2145 pcpu_first_chunk = chunk;
2146 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2147 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2148
2149 pcpu_stats_chunk_alloc();
2150 trace_percpu_create_chunk(base_addr);
2151
2152 /* we're done */
2153 pcpu_base_addr = base_addr;
2154 return 0;
2155 }
2156
2157 #ifdef CONFIG_SMP
2158
2159 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2160 [PCPU_FC_AUTO] = "auto",
2161 [PCPU_FC_EMBED] = "embed",
2162 [PCPU_FC_PAGE] = "page",
2163 };
2164
2165 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2166
2167 static int __init percpu_alloc_setup(char *str)
2168 {
2169 if (!str)
2170 return -EINVAL;
2171
2172 if (0)
2173 /* nada */;
2174 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2175 else if (!strcmp(str, "embed"))
2176 pcpu_chosen_fc = PCPU_FC_EMBED;
2177 #endif
2178 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2179 else if (!strcmp(str, "page"))
2180 pcpu_chosen_fc = PCPU_FC_PAGE;
2181 #endif
2182 else
2183 pr_warn("unknown allocator %s specified\n", str);
2184
2185 return 0;
2186 }
2187 early_param("percpu_alloc", percpu_alloc_setup);
2188
2189 /*
2190 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2191 * Build it if needed by the arch config or the generic setup is going
2192 * to be used.
2193 */
2194 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2195 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2196 #define BUILD_EMBED_FIRST_CHUNK
2197 #endif
2198
2199 /* build pcpu_page_first_chunk() iff needed by the arch config */
2200 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2201 #define BUILD_PAGE_FIRST_CHUNK
2202 #endif
2203
2204 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2205 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2206 /**
2207 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2208 * @reserved_size: the size of reserved percpu area in bytes
2209 * @dyn_size: minimum free size for dynamic allocation in bytes
2210 * @atom_size: allocation atom size
2211 * @cpu_distance_fn: callback to determine distance between cpus, optional
2212 *
2213 * This function determines grouping of units, their mappings to cpus
2214 * and other parameters considering needed percpu size, allocation
2215 * atom size and distances between CPUs.
2216 *
2217 * Groups are always multiples of atom size and CPUs which are of
2218 * LOCAL_DISTANCE both ways are grouped together and share space for
2219 * units in the same group. The returned configuration is guaranteed
2220 * to have CPUs on different nodes on different groups and >=75% usage
2221 * of allocated virtual address space.
2222 *
2223 * RETURNS:
2224 * On success, pointer to the new allocation_info is returned. On
2225 * failure, ERR_PTR value is returned.
2226 */
2227 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2228 size_t reserved_size, size_t dyn_size,
2229 size_t atom_size,
2230 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2231 {
2232 static int group_map[NR_CPUS] __initdata;
2233 static int group_cnt[NR_CPUS] __initdata;
2234 const size_t static_size = __per_cpu_end - __per_cpu_start;
2235 int nr_groups = 1, nr_units = 0;
2236 size_t size_sum, min_unit_size, alloc_size;
2237 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2238 int last_allocs, group, unit;
2239 unsigned int cpu, tcpu;
2240 struct pcpu_alloc_info *ai;
2241 unsigned int *cpu_map;
2242
2243 /* this function may be called multiple times */
2244 memset(group_map, 0, sizeof(group_map));
2245 memset(group_cnt, 0, sizeof(group_cnt));
2246
2247 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2248 size_sum = PFN_ALIGN(static_size + reserved_size +
2249 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2250 dyn_size = size_sum - static_size - reserved_size;
2251
2252 /*
2253 * Determine min_unit_size, alloc_size and max_upa such that
2254 * alloc_size is multiple of atom_size and is the smallest
2255 * which can accommodate 4k aligned segments which are equal to
2256 * or larger than min_unit_size.
2257 */
2258 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2259
2260 /* determine the maximum # of units that can fit in an allocation */
2261 alloc_size = roundup(min_unit_size, atom_size);
2262 upa = alloc_size / min_unit_size;
2263 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2264 upa--;
2265 max_upa = upa;
2266
2267 /* group cpus according to their proximity */
2268 for_each_possible_cpu(cpu) {
2269 group = 0;
2270 next_group:
2271 for_each_possible_cpu(tcpu) {
2272 if (cpu == tcpu)
2273 break;
2274 if (group_map[tcpu] == group && cpu_distance_fn &&
2275 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2276 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2277 group++;
2278 nr_groups = max(nr_groups, group + 1);
2279 goto next_group;
2280 }
2281 }
2282 group_map[cpu] = group;
2283 group_cnt[group]++;
2284 }
2285
2286 /*
2287 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2288 * Expand the unit_size until we use >= 75% of the units allocated.
2289 * Related to atom_size, which could be much larger than the unit_size.
2290 */
2291 last_allocs = INT_MAX;
2292 for (upa = max_upa; upa; upa--) {
2293 int allocs = 0, wasted = 0;
2294
2295 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2296 continue;
2297
2298 for (group = 0; group < nr_groups; group++) {
2299 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2300 allocs += this_allocs;
2301 wasted += this_allocs * upa - group_cnt[group];
2302 }
2303
2304 /*
2305 * Don't accept if wastage is over 1/3. The
2306 * greater-than comparison ensures upa==1 always
2307 * passes the following check.
2308 */
2309 if (wasted > num_possible_cpus() / 3)
2310 continue;
2311
2312 /* and then don't consume more memory */
2313 if (allocs > last_allocs)
2314 break;
2315 last_allocs = allocs;
2316 best_upa = upa;
2317 }
2318 upa = best_upa;
2319
2320 /* allocate and fill alloc_info */
2321 for (group = 0; group < nr_groups; group++)
2322 nr_units += roundup(group_cnt[group], upa);
2323
2324 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2325 if (!ai)
2326 return ERR_PTR(-ENOMEM);
2327 cpu_map = ai->groups[0].cpu_map;
2328
2329 for (group = 0; group < nr_groups; group++) {
2330 ai->groups[group].cpu_map = cpu_map;
2331 cpu_map += roundup(group_cnt[group], upa);
2332 }
2333
2334 ai->static_size = static_size;
2335 ai->reserved_size = reserved_size;
2336 ai->dyn_size = dyn_size;
2337 ai->unit_size = alloc_size / upa;
2338 ai->atom_size = atom_size;
2339 ai->alloc_size = alloc_size;
2340
2341 for (group = 0, unit = 0; group_cnt[group]; group++) {
2342 struct pcpu_group_info *gi = &ai->groups[group];
2343
2344 /*
2345 * Initialize base_offset as if all groups are located
2346 * back-to-back. The caller should update this to
2347 * reflect actual allocation.
2348 */
2349 gi->base_offset = unit * ai->unit_size;
2350
2351 for_each_possible_cpu(cpu)
2352 if (group_map[cpu] == group)
2353 gi->cpu_map[gi->nr_units++] = cpu;
2354 gi->nr_units = roundup(gi->nr_units, upa);
2355 unit += gi->nr_units;
2356 }
2357 BUG_ON(unit != nr_units);
2358
2359 return ai;
2360 }
2361 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2362
2363 #if defined(BUILD_EMBED_FIRST_CHUNK)
2364 /**
2365 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2366 * @reserved_size: the size of reserved percpu area in bytes
2367 * @dyn_size: minimum free size for dynamic allocation in bytes
2368 * @atom_size: allocation atom size
2369 * @cpu_distance_fn: callback to determine distance between cpus, optional
2370 * @alloc_fn: function to allocate percpu page
2371 * @free_fn: function to free percpu page
2372 *
2373 * This is a helper to ease setting up embedded first percpu chunk and
2374 * can be called where pcpu_setup_first_chunk() is expected.
2375 *
2376 * If this function is used to setup the first chunk, it is allocated
2377 * by calling @alloc_fn and used as-is without being mapped into
2378 * vmalloc area. Allocations are always whole multiples of @atom_size
2379 * aligned to @atom_size.
2380 *
2381 * This enables the first chunk to piggy back on the linear physical
2382 * mapping which often uses larger page size. Please note that this
2383 * can result in very sparse cpu->unit mapping on NUMA machines thus
2384 * requiring large vmalloc address space. Don't use this allocator if
2385 * vmalloc space is not orders of magnitude larger than distances
2386 * between node memory addresses (ie. 32bit NUMA machines).
2387 *
2388 * @dyn_size specifies the minimum dynamic area size.
2389 *
2390 * If the needed size is smaller than the minimum or specified unit
2391 * size, the leftover is returned using @free_fn.
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno on failure.
2395 */
2396 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2397 size_t atom_size,
2398 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2399 pcpu_fc_alloc_fn_t alloc_fn,
2400 pcpu_fc_free_fn_t free_fn)
2401 {
2402 void *base = (void *)ULONG_MAX;
2403 void **areas = NULL;
2404 struct pcpu_alloc_info *ai;
2405 size_t size_sum, areas_size;
2406 unsigned long max_distance;
2407 int group, i, highest_group, rc;
2408
2409 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2410 cpu_distance_fn);
2411 if (IS_ERR(ai))
2412 return PTR_ERR(ai);
2413
2414 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2415 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2416
2417 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2418 if (!areas) {
2419 rc = -ENOMEM;
2420 goto out_free;
2421 }
2422
2423 /* allocate, copy and determine base address & max_distance */
2424 highest_group = 0;
2425 for (group = 0; group < ai->nr_groups; group++) {
2426 struct pcpu_group_info *gi = &ai->groups[group];
2427 unsigned int cpu = NR_CPUS;
2428 void *ptr;
2429
2430 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2431 cpu = gi->cpu_map[i];
2432 BUG_ON(cpu == NR_CPUS);
2433
2434 /* allocate space for the whole group */
2435 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2436 if (!ptr) {
2437 rc = -ENOMEM;
2438 goto out_free_areas;
2439 }
2440 /* kmemleak tracks the percpu allocations separately */
2441 kmemleak_free(ptr);
2442 areas[group] = ptr;
2443
2444 base = min(ptr, base);
2445 if (ptr > areas[highest_group])
2446 highest_group = group;
2447 }
2448 max_distance = areas[highest_group] - base;
2449 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2450
2451 /* warn if maximum distance is further than 75% of vmalloc space */
2452 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2453 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2454 max_distance, VMALLOC_TOTAL);
2455 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2456 /* and fail if we have fallback */
2457 rc = -EINVAL;
2458 goto out_free_areas;
2459 #endif
2460 }
2461
2462 /*
2463 * Copy data and free unused parts. This should happen after all
2464 * allocations are complete; otherwise, we may end up with
2465 * overlapping groups.
2466 */
2467 for (group = 0; group < ai->nr_groups; group++) {
2468 struct pcpu_group_info *gi = &ai->groups[group];
2469 void *ptr = areas[group];
2470
2471 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2472 if (gi->cpu_map[i] == NR_CPUS) {
2473 /* unused unit, free whole */
2474 free_fn(ptr, ai->unit_size);
2475 continue;
2476 }
2477 /* copy and return the unused part */
2478 memcpy(ptr, __per_cpu_load, ai->static_size);
2479 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2480 }
2481 }
2482
2483 /* base address is now known, determine group base offsets */
2484 for (group = 0; group < ai->nr_groups; group++) {
2485 ai->groups[group].base_offset = areas[group] - base;
2486 }
2487
2488 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2489 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2490 ai->dyn_size, ai->unit_size);
2491
2492 rc = pcpu_setup_first_chunk(ai, base);
2493 goto out_free;
2494
2495 out_free_areas:
2496 for (group = 0; group < ai->nr_groups; group++)
2497 if (areas[group])
2498 free_fn(areas[group],
2499 ai->groups[group].nr_units * ai->unit_size);
2500 out_free:
2501 pcpu_free_alloc_info(ai);
2502 if (areas)
2503 memblock_free_early(__pa(areas), areas_size);
2504 return rc;
2505 }
2506 #endif /* BUILD_EMBED_FIRST_CHUNK */
2507
2508 #ifdef BUILD_PAGE_FIRST_CHUNK
2509 /**
2510 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2511 * @reserved_size: the size of reserved percpu area in bytes
2512 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2513 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2514 * @populate_pte_fn: function to populate pte
2515 *
2516 * This is a helper to ease setting up page-remapped first percpu
2517 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2518 *
2519 * This is the basic allocator. Static percpu area is allocated
2520 * page-by-page into vmalloc area.
2521 *
2522 * RETURNS:
2523 * 0 on success, -errno on failure.
2524 */
2525 int __init pcpu_page_first_chunk(size_t reserved_size,
2526 pcpu_fc_alloc_fn_t alloc_fn,
2527 pcpu_fc_free_fn_t free_fn,
2528 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2529 {
2530 static struct vm_struct vm;
2531 struct pcpu_alloc_info *ai;
2532 char psize_str[16];
2533 int unit_pages;
2534 size_t pages_size;
2535 struct page **pages;
2536 int unit, i, j, rc;
2537 int upa;
2538 int nr_g0_units;
2539
2540 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2541
2542 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2543 if (IS_ERR(ai))
2544 return PTR_ERR(ai);
2545 BUG_ON(ai->nr_groups != 1);
2546 upa = ai->alloc_size/ai->unit_size;
2547 nr_g0_units = roundup(num_possible_cpus(), upa);
2548 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2549 pcpu_free_alloc_info(ai);
2550 return -EINVAL;
2551 }
2552
2553 unit_pages = ai->unit_size >> PAGE_SHIFT;
2554
2555 /* unaligned allocations can't be freed, round up to page size */
2556 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2557 sizeof(pages[0]));
2558 pages = memblock_virt_alloc(pages_size, 0);
2559
2560 /* allocate pages */
2561 j = 0;
2562 for (unit = 0; unit < num_possible_cpus(); unit++) {
2563 unsigned int cpu = ai->groups[0].cpu_map[unit];
2564 for (i = 0; i < unit_pages; i++) {
2565 void *ptr;
2566
2567 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2568 if (!ptr) {
2569 pr_warn("failed to allocate %s page for cpu%u\n",
2570 psize_str, cpu);
2571 goto enomem;
2572 }
2573 /* kmemleak tracks the percpu allocations separately */
2574 kmemleak_free(ptr);
2575 pages[j++] = virt_to_page(ptr);
2576 }
2577 }
2578
2579 /* allocate vm area, map the pages and copy static data */
2580 vm.flags = VM_ALLOC;
2581 vm.size = num_possible_cpus() * ai->unit_size;
2582 vm_area_register_early(&vm, PAGE_SIZE);
2583
2584 for (unit = 0; unit < num_possible_cpus(); unit++) {
2585 unsigned long unit_addr =
2586 (unsigned long)vm.addr + unit * ai->unit_size;
2587
2588 for (i = 0; i < unit_pages; i++)
2589 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2590
2591 /* pte already populated, the following shouldn't fail */
2592 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2593 unit_pages);
2594 if (rc < 0)
2595 panic("failed to map percpu area, err=%d\n", rc);
2596
2597 /*
2598 * FIXME: Archs with virtual cache should flush local
2599 * cache for the linear mapping here - something
2600 * equivalent to flush_cache_vmap() on the local cpu.
2601 * flush_cache_vmap() can't be used as most supporting
2602 * data structures are not set up yet.
2603 */
2604
2605 /* copy static data */
2606 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2607 }
2608
2609 /* we're ready, commit */
2610 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2611 unit_pages, psize_str, vm.addr, ai->static_size,
2612 ai->reserved_size, ai->dyn_size);
2613
2614 rc = pcpu_setup_first_chunk(ai, vm.addr);
2615 goto out_free_ar;
2616
2617 enomem:
2618 while (--j >= 0)
2619 free_fn(page_address(pages[j]), PAGE_SIZE);
2620 rc = -ENOMEM;
2621 out_free_ar:
2622 memblock_free_early(__pa(pages), pages_size);
2623 pcpu_free_alloc_info(ai);
2624 return rc;
2625 }
2626 #endif /* BUILD_PAGE_FIRST_CHUNK */
2627
2628 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2629 /*
2630 * Generic SMP percpu area setup.
2631 *
2632 * The embedding helper is used because its behavior closely resembles
2633 * the original non-dynamic generic percpu area setup. This is
2634 * important because many archs have addressing restrictions and might
2635 * fail if the percpu area is located far away from the previous
2636 * location. As an added bonus, in non-NUMA cases, embedding is
2637 * generally a good idea TLB-wise because percpu area can piggy back
2638 * on the physical linear memory mapping which uses large page
2639 * mappings on applicable archs.
2640 */
2641 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2642 EXPORT_SYMBOL(__per_cpu_offset);
2643
2644 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2645 size_t align)
2646 {
2647 return memblock_virt_alloc_from_nopanic(
2648 size, align, __pa(MAX_DMA_ADDRESS));
2649 }
2650
2651 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2652 {
2653 memblock_free_early(__pa(ptr), size);
2654 }
2655
2656 void __init setup_per_cpu_areas(void)
2657 {
2658 unsigned long delta;
2659 unsigned int cpu;
2660 int rc;
2661
2662 /*
2663 * Always reserve area for module percpu variables. That's
2664 * what the legacy allocator did.
2665 */
2666 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2667 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2668 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2669 if (rc < 0)
2670 panic("Failed to initialize percpu areas.");
2671
2672 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2673 for_each_possible_cpu(cpu)
2674 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2675 }
2676 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2677
2678 #else /* CONFIG_SMP */
2679
2680 /*
2681 * UP percpu area setup.
2682 *
2683 * UP always uses km-based percpu allocator with identity mapping.
2684 * Static percpu variables are indistinguishable from the usual static
2685 * variables and don't require any special preparation.
2686 */
2687 void __init setup_per_cpu_areas(void)
2688 {
2689 const size_t unit_size =
2690 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2691 PERCPU_DYNAMIC_RESERVE));
2692 struct pcpu_alloc_info *ai;
2693 void *fc;
2694
2695 ai = pcpu_alloc_alloc_info(1, 1);
2696 fc = memblock_virt_alloc_from_nopanic(unit_size,
2697 PAGE_SIZE,
2698 __pa(MAX_DMA_ADDRESS));
2699 if (!ai || !fc)
2700 panic("Failed to allocate memory for percpu areas.");
2701 /* kmemleak tracks the percpu allocations separately */
2702 kmemleak_free(fc);
2703
2704 ai->dyn_size = unit_size;
2705 ai->unit_size = unit_size;
2706 ai->atom_size = unit_size;
2707 ai->alloc_size = unit_size;
2708 ai->groups[0].nr_units = 1;
2709 ai->groups[0].cpu_map[0] = 0;
2710
2711 if (pcpu_setup_first_chunk(ai, fc) < 0)
2712 panic("Failed to initialize percpu areas.");
2713 }
2714
2715 #endif /* CONFIG_SMP */
2716
2717 /*
2718 * Percpu allocator is initialized early during boot when neither slab or
2719 * workqueue is available. Plug async management until everything is up
2720 * and running.
2721 */
2722 static int __init percpu_enable_async(void)
2723 {
2724 pcpu_async_enabled = true;
2725 return 0;
2726 }
2727 subsys_initcall(percpu_enable_async);