mm, show_mem: remove SHOW_MEM_FILTER_PAGE_COUNT
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page(page);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 __SetPageTail(p);
373 set_page_count(p, 0);
374 p->first_page = page;
375 }
376 }
377
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383 int bad = 0;
384
385 if (unlikely(compound_order(page) != order)) {
386 bad_page(page);
387 bad++;
388 }
389
390 __ClearPageHead(page);
391
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
394
395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 bad_page(page);
397 bad++;
398 }
399 __ClearPageTail(p);
400 }
401
402 return bad;
403 }
404
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 int i;
408
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416 }
417
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448
449 static inline void set_page_order(struct page *page, int order)
450 {
451 set_page_private(page, order);
452 __SetPageBuddy(page);
453 }
454
455 static inline void rmv_page_order(struct page *page)
456 {
457 __ClearPageBuddy(page);
458 set_page_private(page, 0);
459 }
460
461 /*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 return page_idx ^ (1 << order);
482 }
483
484 /*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
487 * (a) the buddy is not in a hole &&
488 * (b) the buddy is in the buddy system &&
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
491 *
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
496 *
497 * For recording page's order, we use page_private(page).
498 */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
501 {
502 if (!pfn_valid_within(page_to_pfn(buddy)))
503 return 0;
504
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
513 if (PageBuddy(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON(page_count(buddy) != 0);
515 return 1;
516 }
517 return 0;
518 }
519
520 /*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
536 * So when we are allocating or freeing one, we can derive the state of the
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
539 * If a block is freed, and its buddy is also free, then this
540 * triggers coalescing into a block of larger size.
541 *
542 * -- nyc
543 */
544
545 static inline void __free_one_page(struct page *page,
546 struct zone *zone, unsigned int order,
547 int migratetype)
548 {
549 unsigned long page_idx;
550 unsigned long combined_idx;
551 unsigned long uninitialized_var(buddy_idx);
552 struct page *buddy;
553
554 VM_BUG_ON(!zone_is_initialized(zone));
555
556 if (unlikely(PageCompound(page)))
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
559
560 VM_BUG_ON(migratetype == -1);
561
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
564 VM_BUG_ON(page_idx & ((1 << order) - 1));
565 VM_BUG_ON(bad_range(zone, page));
566
567 while (order < MAX_ORDER-1) {
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
570 if (!page_is_buddy(page, buddy, order))
571 break;
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
586 combined_idx = buddy_idx & page_idx;
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 struct page *higher_page, *higher_buddy;
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 higher_buddy = higher_page + (buddy_idx - combined_idx);
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 zone->free_area[order].nr_free++;
617 }
618
619 static inline int free_pages_check(struct page *page)
620 {
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
623 (atomic_read(&page->_count) != 0) |
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
626 bad_page(page);
627 return 1;
628 }
629 page_cpupid_reset_last(page);
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
633 }
634
635 /*
636 * Frees a number of pages from the PCP lists
637 * Assumes all pages on list are in same zone, and of same order.
638 * count is the number of pages to free.
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
648 {
649 int migratetype = 0;
650 int batch_free = 0;
651 int to_free = count;
652
653 spin_lock(&zone->lock);
654 zone->pages_scanned = 0;
655
656 while (to_free) {
657 struct page *page;
658 struct list_head *list;
659
660 /*
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
666 */
667 do {
668 batch_free++;
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
673
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
678 do {
679 int mt; /* migratetype of the to-be-freed page */
680
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
684 mt = get_freepage_migratetype(page);
685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
688 if (likely(!is_migrate_isolate_page(page))) {
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
693 } while (--to_free && --batch_free && !list_empty(list));
694 }
695 spin_unlock(&zone->lock);
696 }
697
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
700 {
701 spin_lock(&zone->lock);
702 zone->pages_scanned = 0;
703
704 __free_one_page(page, zone, order, migratetype);
705 if (unlikely(!is_migrate_isolate(migratetype)))
706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
707 spin_unlock(&zone->lock);
708 }
709
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 int i;
713 int bad = 0;
714
715 trace_mm_page_free(page, order);
716 kmemcheck_free_shadow(page, order);
717
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
722 if (bad)
723 return false;
724
725 if (!PageHighMem(page)) {
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
731 arch_free_page(page, order);
732 kernel_map_pages(page, 1 << order, 0);
733
734 return true;
735 }
736
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 unsigned long flags;
740 int migratetype;
741
742 if (!free_pages_prepare(page, order))
743 return;
744
745 local_irq_save(flags);
746 __count_vm_events(PGFREE, 1 << order);
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
750 local_irq_restore(flags);
751 }
752
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 unsigned int nr_pages = 1 << order;
756 struct page *p = page;
757 unsigned int loop;
758
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 }
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767
768 page_zone(page)->managed_pages += nr_pages;
769 set_page_refcounted(page);
770 __free_pages(page, order);
771 }
772
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
788 adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area *area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027 {
1028 int current_order = page_order(page);
1029
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061 }
1062
1063 /* Remove an element from the buddy allocator from the fallback list */
1064 static inline struct page *
1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1066 {
1067 struct free_area *area;
1068 int current_order;
1069 struct page *page;
1070 int migratetype, new_type, i;
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
1075 for (i = 0;; i++) {
1076 migratetype = fallbacks[start_migratetype][i];
1077
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
1080 break;
1081
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
1097
1098 expand(zone, page, order, current_order, area,
1099 new_type);
1100
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
1103
1104 return page;
1105 }
1106 }
1107
1108 return NULL;
1109 }
1110
1111 /*
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
1115 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1117 {
1118 struct page *page;
1119
1120 retry_reserve:
1121 page = __rmqueue_smallest(zone, order, migratetype);
1122
1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1124 page = __rmqueue_fallback(zone, order, migratetype);
1125
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1138 return page;
1139 }
1140
1141 /*
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
1146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1147 unsigned long count, struct list_head *list,
1148 int migratetype, int cold)
1149 {
1150 int mt = migratetype, i;
1151
1152 spin_lock(&zone->lock);
1153 for (i = 0; i < count; ++i) {
1154 struct page *page = __rmqueue(zone, order, migratetype);
1155 if (unlikely(page == NULL))
1156 break;
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1174 mt = migratetype;
1175 }
1176 set_freepage_migratetype(page, mt);
1177 list = &page->lru;
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1181 }
1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1183 spin_unlock(&zone->lock);
1184 return i;
1185 }
1186
1187 #ifdef CONFIG_NUMA
1188 /*
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
1195 */
1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1197 {
1198 unsigned long flags;
1199 int to_drain;
1200 unsigned long batch;
1201
1202 local_irq_save(flags);
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
1206 else
1207 to_drain = pcp->count;
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
1212 local_irq_restore(flags);
1213 }
1214 #endif
1215
1216 /*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223 static void drain_pages(unsigned int cpu)
1224 {
1225 unsigned long flags;
1226 struct zone *zone;
1227
1228 for_each_populated_zone(zone) {
1229 struct per_cpu_pageset *pset;
1230 struct per_cpu_pages *pcp;
1231
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
1234
1235 pcp = &pset->pcp;
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
1240 local_irq_restore(flags);
1241 }
1242 }
1243
1244 /*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247 void drain_local_pages(void *arg)
1248 {
1249 drain_pages(smp_processor_id());
1250 }
1251
1252 /*
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
1260 */
1261 void drain_all_pages(void)
1262 {
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1294 }
1295
1296 #ifdef CONFIG_HIBERNATION
1297
1298 void mark_free_pages(struct zone *zone)
1299 {
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
1302 int order, t;
1303 struct list_head *curr;
1304
1305 if (zone_is_empty(zone))
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
1309
1310 max_zone_pfn = zone_end_pfn(zone);
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
1317 }
1318
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1321 unsigned long i;
1322
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
1325 swsusp_set_page_free(pfn_to_page(pfn + i));
1326 }
1327 }
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329 }
1330 #endif /* CONFIG_PM */
1331
1332 /*
1333 * Free a 0-order page
1334 * cold == 1 ? free a cold page : free a hot page
1335 */
1336 void free_hot_cold_page(struct page *page, int cold)
1337 {
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
1341 int migratetype;
1342
1343 if (!free_pages_prepare(page, 0))
1344 return;
1345
1346 migratetype = get_pageblock_migratetype(page);
1347 set_freepage_migratetype(page, migratetype);
1348 local_irq_save(flags);
1349 __count_vm_event(PGFREE);
1350
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
1359 if (unlikely(is_migrate_isolate(migratetype))) {
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1367 if (cold)
1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1369 else
1370 list_add(&page->lru, &pcp->lists[migratetype]);
1371 pcp->count++;
1372 if (pcp->count >= pcp->high) {
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
1376 }
1377
1378 out:
1379 local_irq_restore(flags);
1380 }
1381
1382 /*
1383 * Free a list of 0-order pages
1384 */
1385 void free_hot_cold_page_list(struct list_head *list, int cold)
1386 {
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
1390 trace_mm_page_free_batched(page, cold);
1391 free_hot_cold_page(page, cold);
1392 }
1393 }
1394
1395 /*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403 void split_page(struct page *page, unsigned int order)
1404 {
1405 int i;
1406
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
1409
1410 #ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417 #endif
1418
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
1421 }
1422 EXPORT_SYMBOL_GPL(split_page);
1423
1424 static int __isolate_free_page(struct page *page, unsigned int order)
1425 {
1426 unsigned long watermark;
1427 struct zone *zone;
1428 int mt;
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
1433 mt = get_pageblock_migratetype(page);
1434
1435 if (!is_migrate_isolate(mt)) {
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1442 }
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
1448
1449 /* Set the pageblock if the isolated page is at least a pageblock */
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
1458 }
1459
1460 return 1UL << order;
1461 }
1462
1463 /*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473 int split_free_page(struct page *page)
1474 {
1475 unsigned int order;
1476 int nr_pages;
1477
1478 order = page_order(page);
1479
1480 nr_pages = __isolate_free_page(page, order);
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
1488 }
1489
1490 /*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
1495 static inline
1496 struct page *buffered_rmqueue(struct zone *preferred_zone,
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1499 {
1500 unsigned long flags;
1501 struct page *page;
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
1504 again:
1505 if (likely(order == 0)) {
1506 struct per_cpu_pages *pcp;
1507 struct list_head *list;
1508
1509 local_irq_save(flags);
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
1512 if (list_empty(list)) {
1513 pcp->count += rmqueue_bulk(zone, 0,
1514 pcp->batch, list,
1515 migratetype, cold);
1516 if (unlikely(list_empty(list)))
1517 goto failed;
1518 }
1519
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
1525 list_del(&page->lru);
1526 pcp->count--;
1527 } else {
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
1536 * allocate greater than order-1 page units with
1537 * __GFP_NOFAIL.
1538 */
1539 WARN_ON_ONCE(order > 1);
1540 }
1541 spin_lock_irqsave(&zone->lock, flags);
1542 page = __rmqueue(zone, order, migratetype);
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1548 }
1549
1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1552 zone_statistics(preferred_zone, zone, gfp_flags);
1553 local_irq_restore(flags);
1554
1555 VM_BUG_ON(bad_range(zone, page));
1556 if (prep_new_page(page, order, gfp_flags))
1557 goto again;
1558 return page;
1559
1560 failed:
1561 local_irq_restore(flags);
1562 return NULL;
1563 }
1564
1565 #ifdef CONFIG_FAIL_PAGE_ALLOC
1566
1567 static struct {
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
1572 u32 min_order;
1573 } fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
1577 .min_order = 1,
1578 };
1579
1580 static int __init setup_fail_page_alloc(char *str)
1581 {
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583 }
1584 __setup("fail_page_alloc=", setup_fail_page_alloc);
1585
1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1587 {
1588 if (order < fail_page_alloc.min_order)
1589 return false;
1590 if (gfp_mask & __GFP_NOFAIL)
1591 return false;
1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1593 return false;
1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1595 return false;
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598 }
1599
1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602 static int __init fail_page_alloc_debugfs(void)
1603 {
1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1605 struct dentry *dir;
1606
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
1611
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623 fail:
1624 debugfs_remove_recursive(dir);
1625
1626 return -ENOMEM;
1627 }
1628
1629 late_initcall(fail_page_alloc_debugfs);
1630
1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633 #else /* CONFIG_FAIL_PAGE_ALLOC */
1634
1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1636 {
1637 return false;
1638 }
1639
1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1642 /*
1643 * Return true if free pages are above 'mark'. This takes into account the order
1644 * of the allocation.
1645 */
1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1648 {
1649 /* free_pages my go negative - that's OK */
1650 long min = mark;
1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1652 int o;
1653 long free_cma = 0;
1654
1655 free_pages -= (1 << order) - 1;
1656 if (alloc_flags & ALLOC_HIGH)
1657 min -= min / 2;
1658 if (alloc_flags & ALLOC_HARDER)
1659 min -= min / 4;
1660 #ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1664 #endif
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
1667 return false;
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
1676 return false;
1677 }
1678 return true;
1679 }
1680
1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683 {
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686 }
1687
1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690 {
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1698 }
1699
1700 #ifdef CONFIG_NUMA
1701 /*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1706 * that have to skip over a lot of full or unallowed zones.
1707 *
1708 * If the zonelist cache is present in the passed zonelist, then
1709 * returns a pointer to the allowed node mask (either the current
1710 * tasks mems_allowed, or node_states[N_MEMORY].)
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
1739 &node_states[N_MEMORY];
1740 return allowednodes;
1741 }
1742
1743 /*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 nodemask_t *allowednodes)
1767 {
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
1776 i = z - zonelist->_zonerefs;
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782
1783 /*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
1797 i = z - zonelist->_zonerefs;
1798
1799 set_bit(i, zlc->fullzones);
1800 }
1801
1802 /*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816
1817 static bool zone_local(struct zone *local_zone, struct zone *zone)
1818 {
1819 return local_zone->node == zone->node;
1820 }
1821
1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 {
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825 }
1826
1827 static void __paginginit init_zone_allows_reclaim(int nid)
1828 {
1829 int i;
1830
1831 for_each_online_node(i)
1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1834 else
1835 zone_reclaim_mode = 1;
1836 }
1837
1838 #else /* CONFIG_NUMA */
1839
1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841 {
1842 return NULL;
1843 }
1844
1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1846 nodemask_t *allowednodes)
1847 {
1848 return 1;
1849 }
1850
1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 {
1853 }
1854
1855 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 {
1857 }
1858
1859 static bool zone_local(struct zone *local_zone, struct zone *zone)
1860 {
1861 return true;
1862 }
1863
1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865 {
1866 return true;
1867 }
1868
1869 static inline void init_zone_allows_reclaim(int nid)
1870 {
1871 }
1872 #endif /* CONFIG_NUMA */
1873
1874 /*
1875 * get_page_from_freelist goes through the zonelist trying to allocate
1876 * a page.
1877 */
1878 static struct page *
1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1881 struct zone *preferred_zone, int migratetype)
1882 {
1883 struct zoneref *z;
1884 struct page *page = NULL;
1885 int classzone_idx;
1886 struct zone *zone;
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1890
1891 classzone_idx = zone_idx(preferred_zone);
1892 zonelist_scan:
1893 /*
1894 * Scan zonelist, looking for a zone with enough free.
1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1896 */
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
1899 unsigned long mark;
1900
1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
1904 if ((alloc_flags & ALLOC_CPUSET) &&
1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1906 continue;
1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1909 goto try_this_zone;
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
1922 */
1923 if (alloc_flags & ALLOC_WMARK_LOW) {
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
1926 if (!zone_local(preferred_zone, zone))
1927 continue;
1928 }
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
1958
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
1962 int ret;
1963
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
1978 goto this_zone_full;
1979
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
1992 continue;
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
1995 continue;
1996 default:
1997 /* did we reclaim enough */
1998 if (zone_watermark_ok(zone, order, mark,
1999 classzone_idx, alloc_flags))
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
2013 goto this_zone_full;
2014
2015 continue;
2016 }
2017 }
2018
2019 try_this_zone:
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
2022 if (page)
2023 break;
2024 this_zone_full:
2025 if (IS_ENABLED(CONFIG_NUMA))
2026 zlc_mark_zone_full(zonelist, z);
2027 }
2028
2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
2045 return page;
2046 }
2047
2048 /*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052 static inline bool should_suppress_show_mem(void)
2053 {
2054 bool ret = false;
2055
2056 #if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058 #endif
2059 return ret;
2060 }
2061
2062 static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067 {
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
2072 return;
2073
2074 /*
2075 * This documents exceptions given to allocations in certain
2076 * contexts that are allowed to allocate outside current's set
2077 * of allowed nodes.
2078 */
2079 if (!(gfp_mask & __GFP_NOMEMALLOC))
2080 if (test_thread_flag(TIF_MEMDIE) ||
2081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2082 filter &= ~SHOW_MEM_FILTER_NODES;
2083 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2084 filter &= ~SHOW_MEM_FILTER_NODES;
2085
2086 if (fmt) {
2087 struct va_format vaf;
2088 va_list args;
2089
2090 va_start(args, fmt);
2091
2092 vaf.fmt = fmt;
2093 vaf.va = &args;
2094
2095 pr_warn("%pV", &vaf);
2096
2097 va_end(args);
2098 }
2099
2100 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2101 current->comm, order, gfp_mask);
2102
2103 dump_stack();
2104 if (!should_suppress_show_mem())
2105 show_mem(filter);
2106 }
2107
2108 static inline int
2109 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2110 unsigned long did_some_progress,
2111 unsigned long pages_reclaimed)
2112 {
2113 /* Do not loop if specifically requested */
2114 if (gfp_mask & __GFP_NORETRY)
2115 return 0;
2116
2117 /* Always retry if specifically requested */
2118 if (gfp_mask & __GFP_NOFAIL)
2119 return 1;
2120
2121 /*
2122 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2123 * making forward progress without invoking OOM. Suspend also disables
2124 * storage devices so kswapd will not help. Bail if we are suspending.
2125 */
2126 if (!did_some_progress && pm_suspended_storage())
2127 return 0;
2128
2129 /*
2130 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2131 * means __GFP_NOFAIL, but that may not be true in other
2132 * implementations.
2133 */
2134 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2135 return 1;
2136
2137 /*
2138 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2139 * specified, then we retry until we no longer reclaim any pages
2140 * (above), or we've reclaimed an order of pages at least as
2141 * large as the allocation's order. In both cases, if the
2142 * allocation still fails, we stop retrying.
2143 */
2144 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2145 return 1;
2146
2147 return 0;
2148 }
2149
2150 static inline struct page *
2151 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
2155 {
2156 struct page *page;
2157
2158 /* Acquire the OOM killer lock for the zones in zonelist */
2159 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2160 schedule_timeout_uninterruptible(1);
2161 return NULL;
2162 }
2163
2164 /*
2165 * Go through the zonelist yet one more time, keep very high watermark
2166 * here, this is only to catch a parallel oom killing, we must fail if
2167 * we're still under heavy pressure.
2168 */
2169 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2170 order, zonelist, high_zoneidx,
2171 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2172 preferred_zone, migratetype);
2173 if (page)
2174 goto out;
2175
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /* The OOM killer will not help higher order allocs */
2178 if (order > PAGE_ALLOC_COSTLY_ORDER)
2179 goto out;
2180 /* The OOM killer does not needlessly kill tasks for lowmem */
2181 if (high_zoneidx < ZONE_NORMAL)
2182 goto out;
2183 /*
2184 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2185 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2186 * The caller should handle page allocation failure by itself if
2187 * it specifies __GFP_THISNODE.
2188 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2189 */
2190 if (gfp_mask & __GFP_THISNODE)
2191 goto out;
2192 }
2193 /* Exhausted what can be done so it's blamo time */
2194 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2195
2196 out:
2197 clear_zonelist_oom(zonelist, gfp_mask);
2198 return page;
2199 }
2200
2201 #ifdef CONFIG_COMPACTION
2202 /* Try memory compaction for high-order allocations before reclaim */
2203 static struct page *
2204 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 int migratetype, bool sync_migration,
2208 bool *contended_compaction, bool *deferred_compaction,
2209 unsigned long *did_some_progress)
2210 {
2211 if (!order)
2212 return NULL;
2213
2214 if (compaction_deferred(preferred_zone, order)) {
2215 *deferred_compaction = true;
2216 return NULL;
2217 }
2218
2219 current->flags |= PF_MEMALLOC;
2220 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2221 nodemask, sync_migration,
2222 contended_compaction);
2223 current->flags &= ~PF_MEMALLOC;
2224
2225 if (*did_some_progress != COMPACT_SKIPPED) {
2226 struct page *page;
2227
2228 /* Page migration frees to the PCP lists but we want merging */
2229 drain_pages(get_cpu());
2230 put_cpu();
2231
2232 page = get_page_from_freelist(gfp_mask, nodemask,
2233 order, zonelist, high_zoneidx,
2234 alloc_flags & ~ALLOC_NO_WATERMARKS,
2235 preferred_zone, migratetype);
2236 if (page) {
2237 preferred_zone->compact_blockskip_flush = false;
2238 preferred_zone->compact_considered = 0;
2239 preferred_zone->compact_defer_shift = 0;
2240 if (order >= preferred_zone->compact_order_failed)
2241 preferred_zone->compact_order_failed = order + 1;
2242 count_vm_event(COMPACTSUCCESS);
2243 return page;
2244 }
2245
2246 /*
2247 * It's bad if compaction run occurs and fails.
2248 * The most likely reason is that pages exist,
2249 * but not enough to satisfy watermarks.
2250 */
2251 count_vm_event(COMPACTFAIL);
2252
2253 /*
2254 * As async compaction considers a subset of pageblocks, only
2255 * defer if the failure was a sync compaction failure.
2256 */
2257 if (sync_migration)
2258 defer_compaction(preferred_zone, order);
2259
2260 cond_resched();
2261 }
2262
2263 return NULL;
2264 }
2265 #else
2266 static inline struct page *
2267 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2268 struct zonelist *zonelist, enum zone_type high_zoneidx,
2269 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2270 int migratetype, bool sync_migration,
2271 bool *contended_compaction, bool *deferred_compaction,
2272 unsigned long *did_some_progress)
2273 {
2274 return NULL;
2275 }
2276 #endif /* CONFIG_COMPACTION */
2277
2278 /* Perform direct synchronous page reclaim */
2279 static int
2280 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2281 nodemask_t *nodemask)
2282 {
2283 struct reclaim_state reclaim_state;
2284 int progress;
2285
2286 cond_resched();
2287
2288 /* We now go into synchronous reclaim */
2289 cpuset_memory_pressure_bump();
2290 current->flags |= PF_MEMALLOC;
2291 lockdep_set_current_reclaim_state(gfp_mask);
2292 reclaim_state.reclaimed_slab = 0;
2293 current->reclaim_state = &reclaim_state;
2294
2295 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2296
2297 current->reclaim_state = NULL;
2298 lockdep_clear_current_reclaim_state();
2299 current->flags &= ~PF_MEMALLOC;
2300
2301 cond_resched();
2302
2303 return progress;
2304 }
2305
2306 /* The really slow allocator path where we enter direct reclaim */
2307 static inline struct page *
2308 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2309 struct zonelist *zonelist, enum zone_type high_zoneidx,
2310 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2311 int migratetype, unsigned long *did_some_progress)
2312 {
2313 struct page *page = NULL;
2314 bool drained = false;
2315
2316 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2317 nodemask);
2318 if (unlikely(!(*did_some_progress)))
2319 return NULL;
2320
2321 /* After successful reclaim, reconsider all zones for allocation */
2322 if (IS_ENABLED(CONFIG_NUMA))
2323 zlc_clear_zones_full(zonelist);
2324
2325 retry:
2326 page = get_page_from_freelist(gfp_mask, nodemask, order,
2327 zonelist, high_zoneidx,
2328 alloc_flags & ~ALLOC_NO_WATERMARKS,
2329 preferred_zone, migratetype);
2330
2331 /*
2332 * If an allocation failed after direct reclaim, it could be because
2333 * pages are pinned on the per-cpu lists. Drain them and try again
2334 */
2335 if (!page && !drained) {
2336 drain_all_pages();
2337 drained = true;
2338 goto retry;
2339 }
2340
2341 return page;
2342 }
2343
2344 /*
2345 * This is called in the allocator slow-path if the allocation request is of
2346 * sufficient urgency to ignore watermarks and take other desperate measures
2347 */
2348 static inline struct page *
2349 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2350 struct zonelist *zonelist, enum zone_type high_zoneidx,
2351 nodemask_t *nodemask, struct zone *preferred_zone,
2352 int migratetype)
2353 {
2354 struct page *page;
2355
2356 do {
2357 page = get_page_from_freelist(gfp_mask, nodemask, order,
2358 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2359 preferred_zone, migratetype);
2360
2361 if (!page && gfp_mask & __GFP_NOFAIL)
2362 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2363 } while (!page && (gfp_mask & __GFP_NOFAIL));
2364
2365 return page;
2366 }
2367
2368 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2369 struct zonelist *zonelist,
2370 enum zone_type high_zoneidx,
2371 struct zone *preferred_zone)
2372 {
2373 struct zoneref *z;
2374 struct zone *zone;
2375
2376 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2377 if (!(gfp_mask & __GFP_NO_KSWAPD))
2378 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2379 /*
2380 * Only reset the batches of zones that were actually
2381 * considered in the fast path, we don't want to
2382 * thrash fairness information for zones that are not
2383 * actually part of this zonelist's round-robin cycle.
2384 */
2385 if (!zone_local(preferred_zone, zone))
2386 continue;
2387 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2388 high_wmark_pages(zone) -
2389 low_wmark_pages(zone) -
2390 zone_page_state(zone, NR_ALLOC_BATCH));
2391 }
2392 }
2393
2394 static inline int
2395 gfp_to_alloc_flags(gfp_t gfp_mask)
2396 {
2397 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2398 const gfp_t wait = gfp_mask & __GFP_WAIT;
2399
2400 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2401 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2402
2403 /*
2404 * The caller may dip into page reserves a bit more if the caller
2405 * cannot run direct reclaim, or if the caller has realtime scheduling
2406 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2407 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2408 */
2409 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2410
2411 if (!wait) {
2412 /*
2413 * Not worth trying to allocate harder for
2414 * __GFP_NOMEMALLOC even if it can't schedule.
2415 */
2416 if (!(gfp_mask & __GFP_NOMEMALLOC))
2417 alloc_flags |= ALLOC_HARDER;
2418 /*
2419 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2420 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2421 */
2422 alloc_flags &= ~ALLOC_CPUSET;
2423 } else if (unlikely(rt_task(current)) && !in_interrupt())
2424 alloc_flags |= ALLOC_HARDER;
2425
2426 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2427 if (gfp_mask & __GFP_MEMALLOC)
2428 alloc_flags |= ALLOC_NO_WATERMARKS;
2429 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2430 alloc_flags |= ALLOC_NO_WATERMARKS;
2431 else if (!in_interrupt() &&
2432 ((current->flags & PF_MEMALLOC) ||
2433 unlikely(test_thread_flag(TIF_MEMDIE))))
2434 alloc_flags |= ALLOC_NO_WATERMARKS;
2435 }
2436 #ifdef CONFIG_CMA
2437 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2438 alloc_flags |= ALLOC_CMA;
2439 #endif
2440 return alloc_flags;
2441 }
2442
2443 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2444 {
2445 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2446 }
2447
2448 static inline struct page *
2449 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2450 struct zonelist *zonelist, enum zone_type high_zoneidx,
2451 nodemask_t *nodemask, struct zone *preferred_zone,
2452 int migratetype)
2453 {
2454 const gfp_t wait = gfp_mask & __GFP_WAIT;
2455 struct page *page = NULL;
2456 int alloc_flags;
2457 unsigned long pages_reclaimed = 0;
2458 unsigned long did_some_progress;
2459 bool sync_migration = false;
2460 bool deferred_compaction = false;
2461 bool contended_compaction = false;
2462
2463 /*
2464 * In the slowpath, we sanity check order to avoid ever trying to
2465 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2466 * be using allocators in order of preference for an area that is
2467 * too large.
2468 */
2469 if (order >= MAX_ORDER) {
2470 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2471 return NULL;
2472 }
2473
2474 /*
2475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2476 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2478 * using a larger set of nodes after it has established that the
2479 * allowed per node queues are empty and that nodes are
2480 * over allocated.
2481 */
2482 if (IS_ENABLED(CONFIG_NUMA) &&
2483 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2484 goto nopage;
2485
2486 restart:
2487 prepare_slowpath(gfp_mask, order, zonelist,
2488 high_zoneidx, preferred_zone);
2489
2490 /*
2491 * OK, we're below the kswapd watermark and have kicked background
2492 * reclaim. Now things get more complex, so set up alloc_flags according
2493 * to how we want to proceed.
2494 */
2495 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2496
2497 /*
2498 * Find the true preferred zone if the allocation is unconstrained by
2499 * cpusets.
2500 */
2501 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2502 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2503 &preferred_zone);
2504
2505 rebalance:
2506 /* This is the last chance, in general, before the goto nopage. */
2507 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2508 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2509 preferred_zone, migratetype);
2510 if (page)
2511 goto got_pg;
2512
2513 /* Allocate without watermarks if the context allows */
2514 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2515 /*
2516 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2517 * the allocation is high priority and these type of
2518 * allocations are system rather than user orientated
2519 */
2520 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2521
2522 page = __alloc_pages_high_priority(gfp_mask, order,
2523 zonelist, high_zoneidx, nodemask,
2524 preferred_zone, migratetype);
2525 if (page) {
2526 goto got_pg;
2527 }
2528 }
2529
2530 /* Atomic allocations - we can't balance anything */
2531 if (!wait)
2532 goto nopage;
2533
2534 /* Avoid recursion of direct reclaim */
2535 if (current->flags & PF_MEMALLOC)
2536 goto nopage;
2537
2538 /* Avoid allocations with no watermarks from looping endlessly */
2539 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2540 goto nopage;
2541
2542 /*
2543 * Try direct compaction. The first pass is asynchronous. Subsequent
2544 * attempts after direct reclaim are synchronous
2545 */
2546 page = __alloc_pages_direct_compact(gfp_mask, order,
2547 zonelist, high_zoneidx,
2548 nodemask,
2549 alloc_flags, preferred_zone,
2550 migratetype, sync_migration,
2551 &contended_compaction,
2552 &deferred_compaction,
2553 &did_some_progress);
2554 if (page)
2555 goto got_pg;
2556 sync_migration = true;
2557
2558 /*
2559 * If compaction is deferred for high-order allocations, it is because
2560 * sync compaction recently failed. In this is the case and the caller
2561 * requested a movable allocation that does not heavily disrupt the
2562 * system then fail the allocation instead of entering direct reclaim.
2563 */
2564 if ((deferred_compaction || contended_compaction) &&
2565 (gfp_mask & __GFP_NO_KSWAPD))
2566 goto nopage;
2567
2568 /* Try direct reclaim and then allocating */
2569 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2570 zonelist, high_zoneidx,
2571 nodemask,
2572 alloc_flags, preferred_zone,
2573 migratetype, &did_some_progress);
2574 if (page)
2575 goto got_pg;
2576
2577 /*
2578 * If we failed to make any progress reclaiming, then we are
2579 * running out of options and have to consider going OOM
2580 */
2581 if (!did_some_progress) {
2582 if (oom_gfp_allowed(gfp_mask)) {
2583 if (oom_killer_disabled)
2584 goto nopage;
2585 /* Coredumps can quickly deplete all memory reserves */
2586 if ((current->flags & PF_DUMPCORE) &&
2587 !(gfp_mask & __GFP_NOFAIL))
2588 goto nopage;
2589 page = __alloc_pages_may_oom(gfp_mask, order,
2590 zonelist, high_zoneidx,
2591 nodemask, preferred_zone,
2592 migratetype);
2593 if (page)
2594 goto got_pg;
2595
2596 if (!(gfp_mask & __GFP_NOFAIL)) {
2597 /*
2598 * The oom killer is not called for high-order
2599 * allocations that may fail, so if no progress
2600 * is being made, there are no other options and
2601 * retrying is unlikely to help.
2602 */
2603 if (order > PAGE_ALLOC_COSTLY_ORDER)
2604 goto nopage;
2605 /*
2606 * The oom killer is not called for lowmem
2607 * allocations to prevent needlessly killing
2608 * innocent tasks.
2609 */
2610 if (high_zoneidx < ZONE_NORMAL)
2611 goto nopage;
2612 }
2613
2614 goto restart;
2615 }
2616 }
2617
2618 /* Check if we should retry the allocation */
2619 pages_reclaimed += did_some_progress;
2620 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2621 pages_reclaimed)) {
2622 /* Wait for some write requests to complete then retry */
2623 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2624 goto rebalance;
2625 } else {
2626 /*
2627 * High-order allocations do not necessarily loop after
2628 * direct reclaim and reclaim/compaction depends on compaction
2629 * being called after reclaim so call directly if necessary
2630 */
2631 page = __alloc_pages_direct_compact(gfp_mask, order,
2632 zonelist, high_zoneidx,
2633 nodemask,
2634 alloc_flags, preferred_zone,
2635 migratetype, sync_migration,
2636 &contended_compaction,
2637 &deferred_compaction,
2638 &did_some_progress);
2639 if (page)
2640 goto got_pg;
2641 }
2642
2643 nopage:
2644 warn_alloc_failed(gfp_mask, order, NULL);
2645 return page;
2646 got_pg:
2647 if (kmemcheck_enabled)
2648 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2649
2650 return page;
2651 }
2652
2653 /*
2654 * This is the 'heart' of the zoned buddy allocator.
2655 */
2656 struct page *
2657 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2658 struct zonelist *zonelist, nodemask_t *nodemask)
2659 {
2660 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2661 struct zone *preferred_zone;
2662 struct page *page = NULL;
2663 int migratetype = allocflags_to_migratetype(gfp_mask);
2664 unsigned int cpuset_mems_cookie;
2665 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2666 struct mem_cgroup *memcg = NULL;
2667
2668 gfp_mask &= gfp_allowed_mask;
2669
2670 lockdep_trace_alloc(gfp_mask);
2671
2672 might_sleep_if(gfp_mask & __GFP_WAIT);
2673
2674 if (should_fail_alloc_page(gfp_mask, order))
2675 return NULL;
2676
2677 /*
2678 * Check the zones suitable for the gfp_mask contain at least one
2679 * valid zone. It's possible to have an empty zonelist as a result
2680 * of GFP_THISNODE and a memoryless node
2681 */
2682 if (unlikely(!zonelist->_zonerefs->zone))
2683 return NULL;
2684
2685 /*
2686 * Will only have any effect when __GFP_KMEMCG is set. This is
2687 * verified in the (always inline) callee
2688 */
2689 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2690 return NULL;
2691
2692 retry_cpuset:
2693 cpuset_mems_cookie = get_mems_allowed();
2694
2695 /* The preferred zone is used for statistics later */
2696 first_zones_zonelist(zonelist, high_zoneidx,
2697 nodemask ? : &cpuset_current_mems_allowed,
2698 &preferred_zone);
2699 if (!preferred_zone)
2700 goto out;
2701
2702 #ifdef CONFIG_CMA
2703 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2704 alloc_flags |= ALLOC_CMA;
2705 #endif
2706 /* First allocation attempt */
2707 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2708 zonelist, high_zoneidx, alloc_flags,
2709 preferred_zone, migratetype);
2710 if (unlikely(!page)) {
2711 /*
2712 * Runtime PM, block IO and its error handling path
2713 * can deadlock because I/O on the device might not
2714 * complete.
2715 */
2716 gfp_mask = memalloc_noio_flags(gfp_mask);
2717 page = __alloc_pages_slowpath(gfp_mask, order,
2718 zonelist, high_zoneidx, nodemask,
2719 preferred_zone, migratetype);
2720 }
2721
2722 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2723
2724 out:
2725 /*
2726 * When updating a task's mems_allowed, it is possible to race with
2727 * parallel threads in such a way that an allocation can fail while
2728 * the mask is being updated. If a page allocation is about to fail,
2729 * check if the cpuset changed during allocation and if so, retry.
2730 */
2731 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2732 goto retry_cpuset;
2733
2734 memcg_kmem_commit_charge(page, memcg, order);
2735
2736 return page;
2737 }
2738 EXPORT_SYMBOL(__alloc_pages_nodemask);
2739
2740 /*
2741 * Common helper functions.
2742 */
2743 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2744 {
2745 struct page *page;
2746
2747 /*
2748 * __get_free_pages() returns a 32-bit address, which cannot represent
2749 * a highmem page
2750 */
2751 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2752
2753 page = alloc_pages(gfp_mask, order);
2754 if (!page)
2755 return 0;
2756 return (unsigned long) page_address(page);
2757 }
2758 EXPORT_SYMBOL(__get_free_pages);
2759
2760 unsigned long get_zeroed_page(gfp_t gfp_mask)
2761 {
2762 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2763 }
2764 EXPORT_SYMBOL(get_zeroed_page);
2765
2766 void __free_pages(struct page *page, unsigned int order)
2767 {
2768 if (put_page_testzero(page)) {
2769 if (order == 0)
2770 free_hot_cold_page(page, 0);
2771 else
2772 __free_pages_ok(page, order);
2773 }
2774 }
2775
2776 EXPORT_SYMBOL(__free_pages);
2777
2778 void free_pages(unsigned long addr, unsigned int order)
2779 {
2780 if (addr != 0) {
2781 VM_BUG_ON(!virt_addr_valid((void *)addr));
2782 __free_pages(virt_to_page((void *)addr), order);
2783 }
2784 }
2785
2786 EXPORT_SYMBOL(free_pages);
2787
2788 /*
2789 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2790 * pages allocated with __GFP_KMEMCG.
2791 *
2792 * Those pages are accounted to a particular memcg, embedded in the
2793 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2794 * for that information only to find out that it is NULL for users who have no
2795 * interest in that whatsoever, we provide these functions.
2796 *
2797 * The caller knows better which flags it relies on.
2798 */
2799 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2800 {
2801 memcg_kmem_uncharge_pages(page, order);
2802 __free_pages(page, order);
2803 }
2804
2805 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2806 {
2807 if (addr != 0) {
2808 VM_BUG_ON(!virt_addr_valid((void *)addr));
2809 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2810 }
2811 }
2812
2813 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2814 {
2815 if (addr) {
2816 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2817 unsigned long used = addr + PAGE_ALIGN(size);
2818
2819 split_page(virt_to_page((void *)addr), order);
2820 while (used < alloc_end) {
2821 free_page(used);
2822 used += PAGE_SIZE;
2823 }
2824 }
2825 return (void *)addr;
2826 }
2827
2828 /**
2829 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2830 * @size: the number of bytes to allocate
2831 * @gfp_mask: GFP flags for the allocation
2832 *
2833 * This function is similar to alloc_pages(), except that it allocates the
2834 * minimum number of pages to satisfy the request. alloc_pages() can only
2835 * allocate memory in power-of-two pages.
2836 *
2837 * This function is also limited by MAX_ORDER.
2838 *
2839 * Memory allocated by this function must be released by free_pages_exact().
2840 */
2841 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2842 {
2843 unsigned int order = get_order(size);
2844 unsigned long addr;
2845
2846 addr = __get_free_pages(gfp_mask, order);
2847 return make_alloc_exact(addr, order, size);
2848 }
2849 EXPORT_SYMBOL(alloc_pages_exact);
2850
2851 /**
2852 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2853 * pages on a node.
2854 * @nid: the preferred node ID where memory should be allocated
2855 * @size: the number of bytes to allocate
2856 * @gfp_mask: GFP flags for the allocation
2857 *
2858 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2859 * back.
2860 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2861 * but is not exact.
2862 */
2863 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2864 {
2865 unsigned order = get_order(size);
2866 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2867 if (!p)
2868 return NULL;
2869 return make_alloc_exact((unsigned long)page_address(p), order, size);
2870 }
2871 EXPORT_SYMBOL(alloc_pages_exact_nid);
2872
2873 /**
2874 * free_pages_exact - release memory allocated via alloc_pages_exact()
2875 * @virt: the value returned by alloc_pages_exact.
2876 * @size: size of allocation, same value as passed to alloc_pages_exact().
2877 *
2878 * Release the memory allocated by a previous call to alloc_pages_exact.
2879 */
2880 void free_pages_exact(void *virt, size_t size)
2881 {
2882 unsigned long addr = (unsigned long)virt;
2883 unsigned long end = addr + PAGE_ALIGN(size);
2884
2885 while (addr < end) {
2886 free_page(addr);
2887 addr += PAGE_SIZE;
2888 }
2889 }
2890 EXPORT_SYMBOL(free_pages_exact);
2891
2892 /**
2893 * nr_free_zone_pages - count number of pages beyond high watermark
2894 * @offset: The zone index of the highest zone
2895 *
2896 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2897 * high watermark within all zones at or below a given zone index. For each
2898 * zone, the number of pages is calculated as:
2899 * managed_pages - high_pages
2900 */
2901 static unsigned long nr_free_zone_pages(int offset)
2902 {
2903 struct zoneref *z;
2904 struct zone *zone;
2905
2906 /* Just pick one node, since fallback list is circular */
2907 unsigned long sum = 0;
2908
2909 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2910
2911 for_each_zone_zonelist(zone, z, zonelist, offset) {
2912 unsigned long size = zone->managed_pages;
2913 unsigned long high = high_wmark_pages(zone);
2914 if (size > high)
2915 sum += size - high;
2916 }
2917
2918 return sum;
2919 }
2920
2921 /**
2922 * nr_free_buffer_pages - count number of pages beyond high watermark
2923 *
2924 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2925 * watermark within ZONE_DMA and ZONE_NORMAL.
2926 */
2927 unsigned long nr_free_buffer_pages(void)
2928 {
2929 return nr_free_zone_pages(gfp_zone(GFP_USER));
2930 }
2931 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2932
2933 /**
2934 * nr_free_pagecache_pages - count number of pages beyond high watermark
2935 *
2936 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2937 * high watermark within all zones.
2938 */
2939 unsigned long nr_free_pagecache_pages(void)
2940 {
2941 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2942 }
2943
2944 static inline void show_node(struct zone *zone)
2945 {
2946 if (IS_ENABLED(CONFIG_NUMA))
2947 printk("Node %d ", zone_to_nid(zone));
2948 }
2949
2950 void si_meminfo(struct sysinfo *val)
2951 {
2952 val->totalram = totalram_pages;
2953 val->sharedram = 0;
2954 val->freeram = global_page_state(NR_FREE_PAGES);
2955 val->bufferram = nr_blockdev_pages();
2956 val->totalhigh = totalhigh_pages;
2957 val->freehigh = nr_free_highpages();
2958 val->mem_unit = PAGE_SIZE;
2959 }
2960
2961 EXPORT_SYMBOL(si_meminfo);
2962
2963 #ifdef CONFIG_NUMA
2964 void si_meminfo_node(struct sysinfo *val, int nid)
2965 {
2966 int zone_type; /* needs to be signed */
2967 unsigned long managed_pages = 0;
2968 pg_data_t *pgdat = NODE_DATA(nid);
2969
2970 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2971 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2972 val->totalram = managed_pages;
2973 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2974 #ifdef CONFIG_HIGHMEM
2975 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2976 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2977 NR_FREE_PAGES);
2978 #else
2979 val->totalhigh = 0;
2980 val->freehigh = 0;
2981 #endif
2982 val->mem_unit = PAGE_SIZE;
2983 }
2984 #endif
2985
2986 /*
2987 * Determine whether the node should be displayed or not, depending on whether
2988 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2989 */
2990 bool skip_free_areas_node(unsigned int flags, int nid)
2991 {
2992 bool ret = false;
2993 unsigned int cpuset_mems_cookie;
2994
2995 if (!(flags & SHOW_MEM_FILTER_NODES))
2996 goto out;
2997
2998 do {
2999 cpuset_mems_cookie = get_mems_allowed();
3000 ret = !node_isset(nid, cpuset_current_mems_allowed);
3001 } while (!put_mems_allowed(cpuset_mems_cookie));
3002 out:
3003 return ret;
3004 }
3005
3006 #define K(x) ((x) << (PAGE_SHIFT-10))
3007
3008 static void show_migration_types(unsigned char type)
3009 {
3010 static const char types[MIGRATE_TYPES] = {
3011 [MIGRATE_UNMOVABLE] = 'U',
3012 [MIGRATE_RECLAIMABLE] = 'E',
3013 [MIGRATE_MOVABLE] = 'M',
3014 [MIGRATE_RESERVE] = 'R',
3015 #ifdef CONFIG_CMA
3016 [MIGRATE_CMA] = 'C',
3017 #endif
3018 #ifdef CONFIG_MEMORY_ISOLATION
3019 [MIGRATE_ISOLATE] = 'I',
3020 #endif
3021 };
3022 char tmp[MIGRATE_TYPES + 1];
3023 char *p = tmp;
3024 int i;
3025
3026 for (i = 0; i < MIGRATE_TYPES; i++) {
3027 if (type & (1 << i))
3028 *p++ = types[i];
3029 }
3030
3031 *p = '\0';
3032 printk("(%s) ", tmp);
3033 }
3034
3035 /*
3036 * Show free area list (used inside shift_scroll-lock stuff)
3037 * We also calculate the percentage fragmentation. We do this by counting the
3038 * memory on each free list with the exception of the first item on the list.
3039 * Suppresses nodes that are not allowed by current's cpuset if
3040 * SHOW_MEM_FILTER_NODES is passed.
3041 */
3042 void show_free_areas(unsigned int filter)
3043 {
3044 int cpu;
3045 struct zone *zone;
3046
3047 for_each_populated_zone(zone) {
3048 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3049 continue;
3050 show_node(zone);
3051 printk("%s per-cpu:\n", zone->name);
3052
3053 for_each_online_cpu(cpu) {
3054 struct per_cpu_pageset *pageset;
3055
3056 pageset = per_cpu_ptr(zone->pageset, cpu);
3057
3058 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3059 cpu, pageset->pcp.high,
3060 pageset->pcp.batch, pageset->pcp.count);
3061 }
3062 }
3063
3064 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3065 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3066 " unevictable:%lu"
3067 " dirty:%lu writeback:%lu unstable:%lu\n"
3068 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3069 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3070 " free_cma:%lu\n",
3071 global_page_state(NR_ACTIVE_ANON),
3072 global_page_state(NR_INACTIVE_ANON),
3073 global_page_state(NR_ISOLATED_ANON),
3074 global_page_state(NR_ACTIVE_FILE),
3075 global_page_state(NR_INACTIVE_FILE),
3076 global_page_state(NR_ISOLATED_FILE),
3077 global_page_state(NR_UNEVICTABLE),
3078 global_page_state(NR_FILE_DIRTY),
3079 global_page_state(NR_WRITEBACK),
3080 global_page_state(NR_UNSTABLE_NFS),
3081 global_page_state(NR_FREE_PAGES),
3082 global_page_state(NR_SLAB_RECLAIMABLE),
3083 global_page_state(NR_SLAB_UNRECLAIMABLE),
3084 global_page_state(NR_FILE_MAPPED),
3085 global_page_state(NR_SHMEM),
3086 global_page_state(NR_PAGETABLE),
3087 global_page_state(NR_BOUNCE),
3088 global_page_state(NR_FREE_CMA_PAGES));
3089
3090 for_each_populated_zone(zone) {
3091 int i;
3092
3093 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3094 continue;
3095 show_node(zone);
3096 printk("%s"
3097 " free:%lukB"
3098 " min:%lukB"
3099 " low:%lukB"
3100 " high:%lukB"
3101 " active_anon:%lukB"
3102 " inactive_anon:%lukB"
3103 " active_file:%lukB"
3104 " inactive_file:%lukB"
3105 " unevictable:%lukB"
3106 " isolated(anon):%lukB"
3107 " isolated(file):%lukB"
3108 " present:%lukB"
3109 " managed:%lukB"
3110 " mlocked:%lukB"
3111 " dirty:%lukB"
3112 " writeback:%lukB"
3113 " mapped:%lukB"
3114 " shmem:%lukB"
3115 " slab_reclaimable:%lukB"
3116 " slab_unreclaimable:%lukB"
3117 " kernel_stack:%lukB"
3118 " pagetables:%lukB"
3119 " unstable:%lukB"
3120 " bounce:%lukB"
3121 " free_cma:%lukB"
3122 " writeback_tmp:%lukB"
3123 " pages_scanned:%lu"
3124 " all_unreclaimable? %s"
3125 "\n",
3126 zone->name,
3127 K(zone_page_state(zone, NR_FREE_PAGES)),
3128 K(min_wmark_pages(zone)),
3129 K(low_wmark_pages(zone)),
3130 K(high_wmark_pages(zone)),
3131 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3132 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3133 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3134 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3135 K(zone_page_state(zone, NR_UNEVICTABLE)),
3136 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3137 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3138 K(zone->present_pages),
3139 K(zone->managed_pages),
3140 K(zone_page_state(zone, NR_MLOCK)),
3141 K(zone_page_state(zone, NR_FILE_DIRTY)),
3142 K(zone_page_state(zone, NR_WRITEBACK)),
3143 K(zone_page_state(zone, NR_FILE_MAPPED)),
3144 K(zone_page_state(zone, NR_SHMEM)),
3145 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3146 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3147 zone_page_state(zone, NR_KERNEL_STACK) *
3148 THREAD_SIZE / 1024,
3149 K(zone_page_state(zone, NR_PAGETABLE)),
3150 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3151 K(zone_page_state(zone, NR_BOUNCE)),
3152 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3153 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3154 zone->pages_scanned,
3155 (!zone_reclaimable(zone) ? "yes" : "no")
3156 );
3157 printk("lowmem_reserve[]:");
3158 for (i = 0; i < MAX_NR_ZONES; i++)
3159 printk(" %lu", zone->lowmem_reserve[i]);
3160 printk("\n");
3161 }
3162
3163 for_each_populated_zone(zone) {
3164 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3165 unsigned char types[MAX_ORDER];
3166
3167 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3168 continue;
3169 show_node(zone);
3170 printk("%s: ", zone->name);
3171
3172 spin_lock_irqsave(&zone->lock, flags);
3173 for (order = 0; order < MAX_ORDER; order++) {
3174 struct free_area *area = &zone->free_area[order];
3175 int type;
3176
3177 nr[order] = area->nr_free;
3178 total += nr[order] << order;
3179
3180 types[order] = 0;
3181 for (type = 0; type < MIGRATE_TYPES; type++) {
3182 if (!list_empty(&area->free_list[type]))
3183 types[order] |= 1 << type;
3184 }
3185 }
3186 spin_unlock_irqrestore(&zone->lock, flags);
3187 for (order = 0; order < MAX_ORDER; order++) {
3188 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3189 if (nr[order])
3190 show_migration_types(types[order]);
3191 }
3192 printk("= %lukB\n", K(total));
3193 }
3194
3195 hugetlb_show_meminfo();
3196
3197 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3198
3199 show_swap_cache_info();
3200 }
3201
3202 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3203 {
3204 zoneref->zone = zone;
3205 zoneref->zone_idx = zone_idx(zone);
3206 }
3207
3208 /*
3209 * Builds allocation fallback zone lists.
3210 *
3211 * Add all populated zones of a node to the zonelist.
3212 */
3213 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3214 int nr_zones)
3215 {
3216 struct zone *zone;
3217 enum zone_type zone_type = MAX_NR_ZONES;
3218
3219 do {
3220 zone_type--;
3221 zone = pgdat->node_zones + zone_type;
3222 if (populated_zone(zone)) {
3223 zoneref_set_zone(zone,
3224 &zonelist->_zonerefs[nr_zones++]);
3225 check_highest_zone(zone_type);
3226 }
3227 } while (zone_type);
3228
3229 return nr_zones;
3230 }
3231
3232
3233 /*
3234 * zonelist_order:
3235 * 0 = automatic detection of better ordering.
3236 * 1 = order by ([node] distance, -zonetype)
3237 * 2 = order by (-zonetype, [node] distance)
3238 *
3239 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3240 * the same zonelist. So only NUMA can configure this param.
3241 */
3242 #define ZONELIST_ORDER_DEFAULT 0
3243 #define ZONELIST_ORDER_NODE 1
3244 #define ZONELIST_ORDER_ZONE 2
3245
3246 /* zonelist order in the kernel.
3247 * set_zonelist_order() will set this to NODE or ZONE.
3248 */
3249 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3250 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3251
3252
3253 #ifdef CONFIG_NUMA
3254 /* The value user specified ....changed by config */
3255 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3256 /* string for sysctl */
3257 #define NUMA_ZONELIST_ORDER_LEN 16
3258 char numa_zonelist_order[16] = "default";
3259
3260 /*
3261 * interface for configure zonelist ordering.
3262 * command line option "numa_zonelist_order"
3263 * = "[dD]efault - default, automatic configuration.
3264 * = "[nN]ode - order by node locality, then by zone within node
3265 * = "[zZ]one - order by zone, then by locality within zone
3266 */
3267
3268 static int __parse_numa_zonelist_order(char *s)
3269 {
3270 if (*s == 'd' || *s == 'D') {
3271 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3272 } else if (*s == 'n' || *s == 'N') {
3273 user_zonelist_order = ZONELIST_ORDER_NODE;
3274 } else if (*s == 'z' || *s == 'Z') {
3275 user_zonelist_order = ZONELIST_ORDER_ZONE;
3276 } else {
3277 printk(KERN_WARNING
3278 "Ignoring invalid numa_zonelist_order value: "
3279 "%s\n", s);
3280 return -EINVAL;
3281 }
3282 return 0;
3283 }
3284
3285 static __init int setup_numa_zonelist_order(char *s)
3286 {
3287 int ret;
3288
3289 if (!s)
3290 return 0;
3291
3292 ret = __parse_numa_zonelist_order(s);
3293 if (ret == 0)
3294 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3295
3296 return ret;
3297 }
3298 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3299
3300 /*
3301 * sysctl handler for numa_zonelist_order
3302 */
3303 int numa_zonelist_order_handler(ctl_table *table, int write,
3304 void __user *buffer, size_t *length,
3305 loff_t *ppos)
3306 {
3307 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3308 int ret;
3309 static DEFINE_MUTEX(zl_order_mutex);
3310
3311 mutex_lock(&zl_order_mutex);
3312 if (write) {
3313 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3314 ret = -EINVAL;
3315 goto out;
3316 }
3317 strcpy(saved_string, (char *)table->data);
3318 }
3319 ret = proc_dostring(table, write, buffer, length, ppos);
3320 if (ret)
3321 goto out;
3322 if (write) {
3323 int oldval = user_zonelist_order;
3324
3325 ret = __parse_numa_zonelist_order((char *)table->data);
3326 if (ret) {
3327 /*
3328 * bogus value. restore saved string
3329 */
3330 strncpy((char *)table->data, saved_string,
3331 NUMA_ZONELIST_ORDER_LEN);
3332 user_zonelist_order = oldval;
3333 } else if (oldval != user_zonelist_order) {
3334 mutex_lock(&zonelists_mutex);
3335 build_all_zonelists(NULL, NULL);
3336 mutex_unlock(&zonelists_mutex);
3337 }
3338 }
3339 out:
3340 mutex_unlock(&zl_order_mutex);
3341 return ret;
3342 }
3343
3344
3345 #define MAX_NODE_LOAD (nr_online_nodes)
3346 static int node_load[MAX_NUMNODES];
3347
3348 /**
3349 * find_next_best_node - find the next node that should appear in a given node's fallback list
3350 * @node: node whose fallback list we're appending
3351 * @used_node_mask: nodemask_t of already used nodes
3352 *
3353 * We use a number of factors to determine which is the next node that should
3354 * appear on a given node's fallback list. The node should not have appeared
3355 * already in @node's fallback list, and it should be the next closest node
3356 * according to the distance array (which contains arbitrary distance values
3357 * from each node to each node in the system), and should also prefer nodes
3358 * with no CPUs, since presumably they'll have very little allocation pressure
3359 * on them otherwise.
3360 * It returns -1 if no node is found.
3361 */
3362 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3363 {
3364 int n, val;
3365 int min_val = INT_MAX;
3366 int best_node = NUMA_NO_NODE;
3367 const struct cpumask *tmp = cpumask_of_node(0);
3368
3369 /* Use the local node if we haven't already */
3370 if (!node_isset(node, *used_node_mask)) {
3371 node_set(node, *used_node_mask);
3372 return node;
3373 }
3374
3375 for_each_node_state(n, N_MEMORY) {
3376
3377 /* Don't want a node to appear more than once */
3378 if (node_isset(n, *used_node_mask))
3379 continue;
3380
3381 /* Use the distance array to find the distance */
3382 val = node_distance(node, n);
3383
3384 /* Penalize nodes under us ("prefer the next node") */
3385 val += (n < node);
3386
3387 /* Give preference to headless and unused nodes */
3388 tmp = cpumask_of_node(n);
3389 if (!cpumask_empty(tmp))
3390 val += PENALTY_FOR_NODE_WITH_CPUS;
3391
3392 /* Slight preference for less loaded node */
3393 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3394 val += node_load[n];
3395
3396 if (val < min_val) {
3397 min_val = val;
3398 best_node = n;
3399 }
3400 }
3401
3402 if (best_node >= 0)
3403 node_set(best_node, *used_node_mask);
3404
3405 return best_node;
3406 }
3407
3408
3409 /*
3410 * Build zonelists ordered by node and zones within node.
3411 * This results in maximum locality--normal zone overflows into local
3412 * DMA zone, if any--but risks exhausting DMA zone.
3413 */
3414 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3415 {
3416 int j;
3417 struct zonelist *zonelist;
3418
3419 zonelist = &pgdat->node_zonelists[0];
3420 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3421 ;
3422 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3423 zonelist->_zonerefs[j].zone = NULL;
3424 zonelist->_zonerefs[j].zone_idx = 0;
3425 }
3426
3427 /*
3428 * Build gfp_thisnode zonelists
3429 */
3430 static void build_thisnode_zonelists(pg_data_t *pgdat)
3431 {
3432 int j;
3433 struct zonelist *zonelist;
3434
3435 zonelist = &pgdat->node_zonelists[1];
3436 j = build_zonelists_node(pgdat, zonelist, 0);
3437 zonelist->_zonerefs[j].zone = NULL;
3438 zonelist->_zonerefs[j].zone_idx = 0;
3439 }
3440
3441 /*
3442 * Build zonelists ordered by zone and nodes within zones.
3443 * This results in conserving DMA zone[s] until all Normal memory is
3444 * exhausted, but results in overflowing to remote node while memory
3445 * may still exist in local DMA zone.
3446 */
3447 static int node_order[MAX_NUMNODES];
3448
3449 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3450 {
3451 int pos, j, node;
3452 int zone_type; /* needs to be signed */
3453 struct zone *z;
3454 struct zonelist *zonelist;
3455
3456 zonelist = &pgdat->node_zonelists[0];
3457 pos = 0;
3458 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3459 for (j = 0; j < nr_nodes; j++) {
3460 node = node_order[j];
3461 z = &NODE_DATA(node)->node_zones[zone_type];
3462 if (populated_zone(z)) {
3463 zoneref_set_zone(z,
3464 &zonelist->_zonerefs[pos++]);
3465 check_highest_zone(zone_type);
3466 }
3467 }
3468 }
3469 zonelist->_zonerefs[pos].zone = NULL;
3470 zonelist->_zonerefs[pos].zone_idx = 0;
3471 }
3472
3473 static int default_zonelist_order(void)
3474 {
3475 int nid, zone_type;
3476 unsigned long low_kmem_size, total_size;
3477 struct zone *z;
3478 int average_size;
3479 /*
3480 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3481 * If they are really small and used heavily, the system can fall
3482 * into OOM very easily.
3483 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3484 */
3485 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3486 low_kmem_size = 0;
3487 total_size = 0;
3488 for_each_online_node(nid) {
3489 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3490 z = &NODE_DATA(nid)->node_zones[zone_type];
3491 if (populated_zone(z)) {
3492 if (zone_type < ZONE_NORMAL)
3493 low_kmem_size += z->managed_pages;
3494 total_size += z->managed_pages;
3495 } else if (zone_type == ZONE_NORMAL) {
3496 /*
3497 * If any node has only lowmem, then node order
3498 * is preferred to allow kernel allocations
3499 * locally; otherwise, they can easily infringe
3500 * on other nodes when there is an abundance of
3501 * lowmem available to allocate from.
3502 */
3503 return ZONELIST_ORDER_NODE;
3504 }
3505 }
3506 }
3507 if (!low_kmem_size || /* there are no DMA area. */
3508 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3509 return ZONELIST_ORDER_NODE;
3510 /*
3511 * look into each node's config.
3512 * If there is a node whose DMA/DMA32 memory is very big area on
3513 * local memory, NODE_ORDER may be suitable.
3514 */
3515 average_size = total_size /
3516 (nodes_weight(node_states[N_MEMORY]) + 1);
3517 for_each_online_node(nid) {
3518 low_kmem_size = 0;
3519 total_size = 0;
3520 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3521 z = &NODE_DATA(nid)->node_zones[zone_type];
3522 if (populated_zone(z)) {
3523 if (zone_type < ZONE_NORMAL)
3524 low_kmem_size += z->present_pages;
3525 total_size += z->present_pages;
3526 }
3527 }
3528 if (low_kmem_size &&
3529 total_size > average_size && /* ignore small node */
3530 low_kmem_size > total_size * 70/100)
3531 return ZONELIST_ORDER_NODE;
3532 }
3533 return ZONELIST_ORDER_ZONE;
3534 }
3535
3536 static void set_zonelist_order(void)
3537 {
3538 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3539 current_zonelist_order = default_zonelist_order();
3540 else
3541 current_zonelist_order = user_zonelist_order;
3542 }
3543
3544 static void build_zonelists(pg_data_t *pgdat)
3545 {
3546 int j, node, load;
3547 enum zone_type i;
3548 nodemask_t used_mask;
3549 int local_node, prev_node;
3550 struct zonelist *zonelist;
3551 int order = current_zonelist_order;
3552
3553 /* initialize zonelists */
3554 for (i = 0; i < MAX_ZONELISTS; i++) {
3555 zonelist = pgdat->node_zonelists + i;
3556 zonelist->_zonerefs[0].zone = NULL;
3557 zonelist->_zonerefs[0].zone_idx = 0;
3558 }
3559
3560 /* NUMA-aware ordering of nodes */
3561 local_node = pgdat->node_id;
3562 load = nr_online_nodes;
3563 prev_node = local_node;
3564 nodes_clear(used_mask);
3565
3566 memset(node_order, 0, sizeof(node_order));
3567 j = 0;
3568
3569 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3570 /*
3571 * We don't want to pressure a particular node.
3572 * So adding penalty to the first node in same
3573 * distance group to make it round-robin.
3574 */
3575 if (node_distance(local_node, node) !=
3576 node_distance(local_node, prev_node))
3577 node_load[node] = load;
3578
3579 prev_node = node;
3580 load--;
3581 if (order == ZONELIST_ORDER_NODE)
3582 build_zonelists_in_node_order(pgdat, node);
3583 else
3584 node_order[j++] = node; /* remember order */
3585 }
3586
3587 if (order == ZONELIST_ORDER_ZONE) {
3588 /* calculate node order -- i.e., DMA last! */
3589 build_zonelists_in_zone_order(pgdat, j);
3590 }
3591
3592 build_thisnode_zonelists(pgdat);
3593 }
3594
3595 /* Construct the zonelist performance cache - see further mmzone.h */
3596 static void build_zonelist_cache(pg_data_t *pgdat)
3597 {
3598 struct zonelist *zonelist;
3599 struct zonelist_cache *zlc;
3600 struct zoneref *z;
3601
3602 zonelist = &pgdat->node_zonelists[0];
3603 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3604 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3605 for (z = zonelist->_zonerefs; z->zone; z++)
3606 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3607 }
3608
3609 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3610 /*
3611 * Return node id of node used for "local" allocations.
3612 * I.e., first node id of first zone in arg node's generic zonelist.
3613 * Used for initializing percpu 'numa_mem', which is used primarily
3614 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3615 */
3616 int local_memory_node(int node)
3617 {
3618 struct zone *zone;
3619
3620 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3621 gfp_zone(GFP_KERNEL),
3622 NULL,
3623 &zone);
3624 return zone->node;
3625 }
3626 #endif
3627
3628 #else /* CONFIG_NUMA */
3629
3630 static void set_zonelist_order(void)
3631 {
3632 current_zonelist_order = ZONELIST_ORDER_ZONE;
3633 }
3634
3635 static void build_zonelists(pg_data_t *pgdat)
3636 {
3637 int node, local_node;
3638 enum zone_type j;
3639 struct zonelist *zonelist;
3640
3641 local_node = pgdat->node_id;
3642
3643 zonelist = &pgdat->node_zonelists[0];
3644 j = build_zonelists_node(pgdat, zonelist, 0);
3645
3646 /*
3647 * Now we build the zonelist so that it contains the zones
3648 * of all the other nodes.
3649 * We don't want to pressure a particular node, so when
3650 * building the zones for node N, we make sure that the
3651 * zones coming right after the local ones are those from
3652 * node N+1 (modulo N)
3653 */
3654 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3655 if (!node_online(node))
3656 continue;
3657 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3658 }
3659 for (node = 0; node < local_node; node++) {
3660 if (!node_online(node))
3661 continue;
3662 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3663 }
3664
3665 zonelist->_zonerefs[j].zone = NULL;
3666 zonelist->_zonerefs[j].zone_idx = 0;
3667 }
3668
3669 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3670 static void build_zonelist_cache(pg_data_t *pgdat)
3671 {
3672 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3673 }
3674
3675 #endif /* CONFIG_NUMA */
3676
3677 /*
3678 * Boot pageset table. One per cpu which is going to be used for all
3679 * zones and all nodes. The parameters will be set in such a way
3680 * that an item put on a list will immediately be handed over to
3681 * the buddy list. This is safe since pageset manipulation is done
3682 * with interrupts disabled.
3683 *
3684 * The boot_pagesets must be kept even after bootup is complete for
3685 * unused processors and/or zones. They do play a role for bootstrapping
3686 * hotplugged processors.
3687 *
3688 * zoneinfo_show() and maybe other functions do
3689 * not check if the processor is online before following the pageset pointer.
3690 * Other parts of the kernel may not check if the zone is available.
3691 */
3692 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3693 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3694 static void setup_zone_pageset(struct zone *zone);
3695
3696 /*
3697 * Global mutex to protect against size modification of zonelists
3698 * as well as to serialize pageset setup for the new populated zone.
3699 */
3700 DEFINE_MUTEX(zonelists_mutex);
3701
3702 /* return values int ....just for stop_machine() */
3703 static int __build_all_zonelists(void *data)
3704 {
3705 int nid;
3706 int cpu;
3707 pg_data_t *self = data;
3708
3709 #ifdef CONFIG_NUMA
3710 memset(node_load, 0, sizeof(node_load));
3711 #endif
3712
3713 if (self && !node_online(self->node_id)) {
3714 build_zonelists(self);
3715 build_zonelist_cache(self);
3716 }
3717
3718 for_each_online_node(nid) {
3719 pg_data_t *pgdat = NODE_DATA(nid);
3720
3721 build_zonelists(pgdat);
3722 build_zonelist_cache(pgdat);
3723 }
3724
3725 /*
3726 * Initialize the boot_pagesets that are going to be used
3727 * for bootstrapping processors. The real pagesets for
3728 * each zone will be allocated later when the per cpu
3729 * allocator is available.
3730 *
3731 * boot_pagesets are used also for bootstrapping offline
3732 * cpus if the system is already booted because the pagesets
3733 * are needed to initialize allocators on a specific cpu too.
3734 * F.e. the percpu allocator needs the page allocator which
3735 * needs the percpu allocator in order to allocate its pagesets
3736 * (a chicken-egg dilemma).
3737 */
3738 for_each_possible_cpu(cpu) {
3739 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3740
3741 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3742 /*
3743 * We now know the "local memory node" for each node--
3744 * i.e., the node of the first zone in the generic zonelist.
3745 * Set up numa_mem percpu variable for on-line cpus. During
3746 * boot, only the boot cpu should be on-line; we'll init the
3747 * secondary cpus' numa_mem as they come on-line. During
3748 * node/memory hotplug, we'll fixup all on-line cpus.
3749 */
3750 if (cpu_online(cpu))
3751 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3752 #endif
3753 }
3754
3755 return 0;
3756 }
3757
3758 /*
3759 * Called with zonelists_mutex held always
3760 * unless system_state == SYSTEM_BOOTING.
3761 */
3762 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3763 {
3764 set_zonelist_order();
3765
3766 if (system_state == SYSTEM_BOOTING) {
3767 __build_all_zonelists(NULL);
3768 mminit_verify_zonelist();
3769 cpuset_init_current_mems_allowed();
3770 } else {
3771 #ifdef CONFIG_MEMORY_HOTPLUG
3772 if (zone)
3773 setup_zone_pageset(zone);
3774 #endif
3775 /* we have to stop all cpus to guarantee there is no user
3776 of zonelist */
3777 stop_machine(__build_all_zonelists, pgdat, NULL);
3778 /* cpuset refresh routine should be here */
3779 }
3780 vm_total_pages = nr_free_pagecache_pages();
3781 /*
3782 * Disable grouping by mobility if the number of pages in the
3783 * system is too low to allow the mechanism to work. It would be
3784 * more accurate, but expensive to check per-zone. This check is
3785 * made on memory-hotadd so a system can start with mobility
3786 * disabled and enable it later
3787 */
3788 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3789 page_group_by_mobility_disabled = 1;
3790 else
3791 page_group_by_mobility_disabled = 0;
3792
3793 printk("Built %i zonelists in %s order, mobility grouping %s. "
3794 "Total pages: %ld\n",
3795 nr_online_nodes,
3796 zonelist_order_name[current_zonelist_order],
3797 page_group_by_mobility_disabled ? "off" : "on",
3798 vm_total_pages);
3799 #ifdef CONFIG_NUMA
3800 printk("Policy zone: %s\n", zone_names[policy_zone]);
3801 #endif
3802 }
3803
3804 /*
3805 * Helper functions to size the waitqueue hash table.
3806 * Essentially these want to choose hash table sizes sufficiently
3807 * large so that collisions trying to wait on pages are rare.
3808 * But in fact, the number of active page waitqueues on typical
3809 * systems is ridiculously low, less than 200. So this is even
3810 * conservative, even though it seems large.
3811 *
3812 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3813 * waitqueues, i.e. the size of the waitq table given the number of pages.
3814 */
3815 #define PAGES_PER_WAITQUEUE 256
3816
3817 #ifndef CONFIG_MEMORY_HOTPLUG
3818 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3819 {
3820 unsigned long size = 1;
3821
3822 pages /= PAGES_PER_WAITQUEUE;
3823
3824 while (size < pages)
3825 size <<= 1;
3826
3827 /*
3828 * Once we have dozens or even hundreds of threads sleeping
3829 * on IO we've got bigger problems than wait queue collision.
3830 * Limit the size of the wait table to a reasonable size.
3831 */
3832 size = min(size, 4096UL);
3833
3834 return max(size, 4UL);
3835 }
3836 #else
3837 /*
3838 * A zone's size might be changed by hot-add, so it is not possible to determine
3839 * a suitable size for its wait_table. So we use the maximum size now.
3840 *
3841 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3842 *
3843 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3844 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3845 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3846 *
3847 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3848 * or more by the traditional way. (See above). It equals:
3849 *
3850 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3851 * ia64(16K page size) : = ( 8G + 4M)byte.
3852 * powerpc (64K page size) : = (32G +16M)byte.
3853 */
3854 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3855 {
3856 return 4096UL;
3857 }
3858 #endif
3859
3860 /*
3861 * This is an integer logarithm so that shifts can be used later
3862 * to extract the more random high bits from the multiplicative
3863 * hash function before the remainder is taken.
3864 */
3865 static inline unsigned long wait_table_bits(unsigned long size)
3866 {
3867 return ffz(~size);
3868 }
3869
3870 /*
3871 * Check if a pageblock contains reserved pages
3872 */
3873 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3874 {
3875 unsigned long pfn;
3876
3877 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3878 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3879 return 1;
3880 }
3881 return 0;
3882 }
3883
3884 /*
3885 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3886 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3887 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3888 * higher will lead to a bigger reserve which will get freed as contiguous
3889 * blocks as reclaim kicks in
3890 */
3891 static void setup_zone_migrate_reserve(struct zone *zone)
3892 {
3893 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3894 struct page *page;
3895 unsigned long block_migratetype;
3896 int reserve;
3897 int old_reserve;
3898
3899 /*
3900 * Get the start pfn, end pfn and the number of blocks to reserve
3901 * We have to be careful to be aligned to pageblock_nr_pages to
3902 * make sure that we always check pfn_valid for the first page in
3903 * the block.
3904 */
3905 start_pfn = zone->zone_start_pfn;
3906 end_pfn = zone_end_pfn(zone);
3907 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3908 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3909 pageblock_order;
3910
3911 /*
3912 * Reserve blocks are generally in place to help high-order atomic
3913 * allocations that are short-lived. A min_free_kbytes value that
3914 * would result in more than 2 reserve blocks for atomic allocations
3915 * is assumed to be in place to help anti-fragmentation for the
3916 * future allocation of hugepages at runtime.
3917 */
3918 reserve = min(2, reserve);
3919 old_reserve = zone->nr_migrate_reserve_block;
3920
3921 /* When memory hot-add, we almost always need to do nothing */
3922 if (reserve == old_reserve)
3923 return;
3924 zone->nr_migrate_reserve_block = reserve;
3925
3926 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3927 if (!pfn_valid(pfn))
3928 continue;
3929 page = pfn_to_page(pfn);
3930
3931 /* Watch out for overlapping nodes */
3932 if (page_to_nid(page) != zone_to_nid(zone))
3933 continue;
3934
3935 block_migratetype = get_pageblock_migratetype(page);
3936
3937 /* Only test what is necessary when the reserves are not met */
3938 if (reserve > 0) {
3939 /*
3940 * Blocks with reserved pages will never free, skip
3941 * them.
3942 */
3943 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3944 if (pageblock_is_reserved(pfn, block_end_pfn))
3945 continue;
3946
3947 /* If this block is reserved, account for it */
3948 if (block_migratetype == MIGRATE_RESERVE) {
3949 reserve--;
3950 continue;
3951 }
3952
3953 /* Suitable for reserving if this block is movable */
3954 if (block_migratetype == MIGRATE_MOVABLE) {
3955 set_pageblock_migratetype(page,
3956 MIGRATE_RESERVE);
3957 move_freepages_block(zone, page,
3958 MIGRATE_RESERVE);
3959 reserve--;
3960 continue;
3961 }
3962 } else if (!old_reserve) {
3963 /*
3964 * At boot time we don't need to scan the whole zone
3965 * for turning off MIGRATE_RESERVE.
3966 */
3967 break;
3968 }
3969
3970 /*
3971 * If the reserve is met and this is a previous reserved block,
3972 * take it back
3973 */
3974 if (block_migratetype == MIGRATE_RESERVE) {
3975 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3976 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3977 }
3978 }
3979 }
3980
3981 /*
3982 * Initially all pages are reserved - free ones are freed
3983 * up by free_all_bootmem() once the early boot process is
3984 * done. Non-atomic initialization, single-pass.
3985 */
3986 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3987 unsigned long start_pfn, enum memmap_context context)
3988 {
3989 struct page *page;
3990 unsigned long end_pfn = start_pfn + size;
3991 unsigned long pfn;
3992 struct zone *z;
3993
3994 if (highest_memmap_pfn < end_pfn - 1)
3995 highest_memmap_pfn = end_pfn - 1;
3996
3997 z = &NODE_DATA(nid)->node_zones[zone];
3998 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3999 /*
4000 * There can be holes in boot-time mem_map[]s
4001 * handed to this function. They do not
4002 * exist on hotplugged memory.
4003 */
4004 if (context == MEMMAP_EARLY) {
4005 if (!early_pfn_valid(pfn))
4006 continue;
4007 if (!early_pfn_in_nid(pfn, nid))
4008 continue;
4009 }
4010 page = pfn_to_page(pfn);
4011 set_page_links(page, zone, nid, pfn);
4012 mminit_verify_page_links(page, zone, nid, pfn);
4013 init_page_count(page);
4014 page_mapcount_reset(page);
4015 page_cpupid_reset_last(page);
4016 SetPageReserved(page);
4017 /*
4018 * Mark the block movable so that blocks are reserved for
4019 * movable at startup. This will force kernel allocations
4020 * to reserve their blocks rather than leaking throughout
4021 * the address space during boot when many long-lived
4022 * kernel allocations are made. Later some blocks near
4023 * the start are marked MIGRATE_RESERVE by
4024 * setup_zone_migrate_reserve()
4025 *
4026 * bitmap is created for zone's valid pfn range. but memmap
4027 * can be created for invalid pages (for alignment)
4028 * check here not to call set_pageblock_migratetype() against
4029 * pfn out of zone.
4030 */
4031 if ((z->zone_start_pfn <= pfn)
4032 && (pfn < zone_end_pfn(z))
4033 && !(pfn & (pageblock_nr_pages - 1)))
4034 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4035
4036 INIT_LIST_HEAD(&page->lru);
4037 #ifdef WANT_PAGE_VIRTUAL
4038 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4039 if (!is_highmem_idx(zone))
4040 set_page_address(page, __va(pfn << PAGE_SHIFT));
4041 #endif
4042 }
4043 }
4044
4045 static void __meminit zone_init_free_lists(struct zone *zone)
4046 {
4047 int order, t;
4048 for_each_migratetype_order(order, t) {
4049 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4050 zone->free_area[order].nr_free = 0;
4051 }
4052 }
4053
4054 #ifndef __HAVE_ARCH_MEMMAP_INIT
4055 #define memmap_init(size, nid, zone, start_pfn) \
4056 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4057 #endif
4058
4059 static int __meminit zone_batchsize(struct zone *zone)
4060 {
4061 #ifdef CONFIG_MMU
4062 int batch;
4063
4064 /*
4065 * The per-cpu-pages pools are set to around 1000th of the
4066 * size of the zone. But no more than 1/2 of a meg.
4067 *
4068 * OK, so we don't know how big the cache is. So guess.
4069 */
4070 batch = zone->managed_pages / 1024;
4071 if (batch * PAGE_SIZE > 512 * 1024)
4072 batch = (512 * 1024) / PAGE_SIZE;
4073 batch /= 4; /* We effectively *= 4 below */
4074 if (batch < 1)
4075 batch = 1;
4076
4077 /*
4078 * Clamp the batch to a 2^n - 1 value. Having a power
4079 * of 2 value was found to be more likely to have
4080 * suboptimal cache aliasing properties in some cases.
4081 *
4082 * For example if 2 tasks are alternately allocating
4083 * batches of pages, one task can end up with a lot
4084 * of pages of one half of the possible page colors
4085 * and the other with pages of the other colors.
4086 */
4087 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4088
4089 return batch;
4090
4091 #else
4092 /* The deferral and batching of frees should be suppressed under NOMMU
4093 * conditions.
4094 *
4095 * The problem is that NOMMU needs to be able to allocate large chunks
4096 * of contiguous memory as there's no hardware page translation to
4097 * assemble apparent contiguous memory from discontiguous pages.
4098 *
4099 * Queueing large contiguous runs of pages for batching, however,
4100 * causes the pages to actually be freed in smaller chunks. As there
4101 * can be a significant delay between the individual batches being
4102 * recycled, this leads to the once large chunks of space being
4103 * fragmented and becoming unavailable for high-order allocations.
4104 */
4105 return 0;
4106 #endif
4107 }
4108
4109 /*
4110 * pcp->high and pcp->batch values are related and dependent on one another:
4111 * ->batch must never be higher then ->high.
4112 * The following function updates them in a safe manner without read side
4113 * locking.
4114 *
4115 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4116 * those fields changing asynchronously (acording the the above rule).
4117 *
4118 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4119 * outside of boot time (or some other assurance that no concurrent updaters
4120 * exist).
4121 */
4122 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4123 unsigned long batch)
4124 {
4125 /* start with a fail safe value for batch */
4126 pcp->batch = 1;
4127 smp_wmb();
4128
4129 /* Update high, then batch, in order */
4130 pcp->high = high;
4131 smp_wmb();
4132
4133 pcp->batch = batch;
4134 }
4135
4136 /* a companion to pageset_set_high() */
4137 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4138 {
4139 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4140 }
4141
4142 static void pageset_init(struct per_cpu_pageset *p)
4143 {
4144 struct per_cpu_pages *pcp;
4145 int migratetype;
4146
4147 memset(p, 0, sizeof(*p));
4148
4149 pcp = &p->pcp;
4150 pcp->count = 0;
4151 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4152 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4153 }
4154
4155 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4156 {
4157 pageset_init(p);
4158 pageset_set_batch(p, batch);
4159 }
4160
4161 /*
4162 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4163 * to the value high for the pageset p.
4164 */
4165 static void pageset_set_high(struct per_cpu_pageset *p,
4166 unsigned long high)
4167 {
4168 unsigned long batch = max(1UL, high / 4);
4169 if ((high / 4) > (PAGE_SHIFT * 8))
4170 batch = PAGE_SHIFT * 8;
4171
4172 pageset_update(&p->pcp, high, batch);
4173 }
4174
4175 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4176 struct per_cpu_pageset *pcp)
4177 {
4178 if (percpu_pagelist_fraction)
4179 pageset_set_high(pcp,
4180 (zone->managed_pages /
4181 percpu_pagelist_fraction));
4182 else
4183 pageset_set_batch(pcp, zone_batchsize(zone));
4184 }
4185
4186 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4187 {
4188 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4189
4190 pageset_init(pcp);
4191 pageset_set_high_and_batch(zone, pcp);
4192 }
4193
4194 static void __meminit setup_zone_pageset(struct zone *zone)
4195 {
4196 int cpu;
4197 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4198 for_each_possible_cpu(cpu)
4199 zone_pageset_init(zone, cpu);
4200 }
4201
4202 /*
4203 * Allocate per cpu pagesets and initialize them.
4204 * Before this call only boot pagesets were available.
4205 */
4206 void __init setup_per_cpu_pageset(void)
4207 {
4208 struct zone *zone;
4209
4210 for_each_populated_zone(zone)
4211 setup_zone_pageset(zone);
4212 }
4213
4214 static noinline __init_refok
4215 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4216 {
4217 int i;
4218 struct pglist_data *pgdat = zone->zone_pgdat;
4219 size_t alloc_size;
4220
4221 /*
4222 * The per-page waitqueue mechanism uses hashed waitqueues
4223 * per zone.
4224 */
4225 zone->wait_table_hash_nr_entries =
4226 wait_table_hash_nr_entries(zone_size_pages);
4227 zone->wait_table_bits =
4228 wait_table_bits(zone->wait_table_hash_nr_entries);
4229 alloc_size = zone->wait_table_hash_nr_entries
4230 * sizeof(wait_queue_head_t);
4231
4232 if (!slab_is_available()) {
4233 zone->wait_table = (wait_queue_head_t *)
4234 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4235 } else {
4236 /*
4237 * This case means that a zone whose size was 0 gets new memory
4238 * via memory hot-add.
4239 * But it may be the case that a new node was hot-added. In
4240 * this case vmalloc() will not be able to use this new node's
4241 * memory - this wait_table must be initialized to use this new
4242 * node itself as well.
4243 * To use this new node's memory, further consideration will be
4244 * necessary.
4245 */
4246 zone->wait_table = vmalloc(alloc_size);
4247 }
4248 if (!zone->wait_table)
4249 return -ENOMEM;
4250
4251 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4252 init_waitqueue_head(zone->wait_table + i);
4253
4254 return 0;
4255 }
4256
4257 static __meminit void zone_pcp_init(struct zone *zone)
4258 {
4259 /*
4260 * per cpu subsystem is not up at this point. The following code
4261 * relies on the ability of the linker to provide the
4262 * offset of a (static) per cpu variable into the per cpu area.
4263 */
4264 zone->pageset = &boot_pageset;
4265
4266 if (populated_zone(zone))
4267 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4268 zone->name, zone->present_pages,
4269 zone_batchsize(zone));
4270 }
4271
4272 int __meminit init_currently_empty_zone(struct zone *zone,
4273 unsigned long zone_start_pfn,
4274 unsigned long size,
4275 enum memmap_context context)
4276 {
4277 struct pglist_data *pgdat = zone->zone_pgdat;
4278 int ret;
4279 ret = zone_wait_table_init(zone, size);
4280 if (ret)
4281 return ret;
4282 pgdat->nr_zones = zone_idx(zone) + 1;
4283
4284 zone->zone_start_pfn = zone_start_pfn;
4285
4286 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4287 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4288 pgdat->node_id,
4289 (unsigned long)zone_idx(zone),
4290 zone_start_pfn, (zone_start_pfn + size));
4291
4292 zone_init_free_lists(zone);
4293
4294 return 0;
4295 }
4296
4297 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4298 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4299 /*
4300 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4301 * Architectures may implement their own version but if add_active_range()
4302 * was used and there are no special requirements, this is a convenient
4303 * alternative
4304 */
4305 int __meminit __early_pfn_to_nid(unsigned long pfn)
4306 {
4307 unsigned long start_pfn, end_pfn;
4308 int nid;
4309 /*
4310 * NOTE: The following SMP-unsafe globals are only used early in boot
4311 * when the kernel is running single-threaded.
4312 */
4313 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4314 static int __meminitdata last_nid;
4315
4316 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4317 return last_nid;
4318
4319 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4320 if (nid != -1) {
4321 last_start_pfn = start_pfn;
4322 last_end_pfn = end_pfn;
4323 last_nid = nid;
4324 }
4325
4326 return nid;
4327 }
4328 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4329
4330 int __meminit early_pfn_to_nid(unsigned long pfn)
4331 {
4332 int nid;
4333
4334 nid = __early_pfn_to_nid(pfn);
4335 if (nid >= 0)
4336 return nid;
4337 /* just returns 0 */
4338 return 0;
4339 }
4340
4341 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4342 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4343 {
4344 int nid;
4345
4346 nid = __early_pfn_to_nid(pfn);
4347 if (nid >= 0 && nid != node)
4348 return false;
4349 return true;
4350 }
4351 #endif
4352
4353 /**
4354 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4355 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4356 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4357 *
4358 * If an architecture guarantees that all ranges registered with
4359 * add_active_ranges() contain no holes and may be freed, this
4360 * this function may be used instead of calling free_bootmem() manually.
4361 */
4362 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4363 {
4364 unsigned long start_pfn, end_pfn;
4365 int i, this_nid;
4366
4367 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4368 start_pfn = min(start_pfn, max_low_pfn);
4369 end_pfn = min(end_pfn, max_low_pfn);
4370
4371 if (start_pfn < end_pfn)
4372 free_bootmem_node(NODE_DATA(this_nid),
4373 PFN_PHYS(start_pfn),
4374 (end_pfn - start_pfn) << PAGE_SHIFT);
4375 }
4376 }
4377
4378 /**
4379 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4380 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4381 *
4382 * If an architecture guarantees that all ranges registered with
4383 * add_active_ranges() contain no holes and may be freed, this
4384 * function may be used instead of calling memory_present() manually.
4385 */
4386 void __init sparse_memory_present_with_active_regions(int nid)
4387 {
4388 unsigned long start_pfn, end_pfn;
4389 int i, this_nid;
4390
4391 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4392 memory_present(this_nid, start_pfn, end_pfn);
4393 }
4394
4395 /**
4396 * get_pfn_range_for_nid - Return the start and end page frames for a node
4397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4400 *
4401 * It returns the start and end page frame of a node based on information
4402 * provided by an arch calling add_active_range(). If called for a node
4403 * with no available memory, a warning is printed and the start and end
4404 * PFNs will be 0.
4405 */
4406 void __meminit get_pfn_range_for_nid(unsigned int nid,
4407 unsigned long *start_pfn, unsigned long *end_pfn)
4408 {
4409 unsigned long this_start_pfn, this_end_pfn;
4410 int i;
4411
4412 *start_pfn = -1UL;
4413 *end_pfn = 0;
4414
4415 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4416 *start_pfn = min(*start_pfn, this_start_pfn);
4417 *end_pfn = max(*end_pfn, this_end_pfn);
4418 }
4419
4420 if (*start_pfn == -1UL)
4421 *start_pfn = 0;
4422 }
4423
4424 /*
4425 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4426 * assumption is made that zones within a node are ordered in monotonic
4427 * increasing memory addresses so that the "highest" populated zone is used
4428 */
4429 static void __init find_usable_zone_for_movable(void)
4430 {
4431 int zone_index;
4432 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4433 if (zone_index == ZONE_MOVABLE)
4434 continue;
4435
4436 if (arch_zone_highest_possible_pfn[zone_index] >
4437 arch_zone_lowest_possible_pfn[zone_index])
4438 break;
4439 }
4440
4441 VM_BUG_ON(zone_index == -1);
4442 movable_zone = zone_index;
4443 }
4444
4445 /*
4446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4447 * because it is sized independent of architecture. Unlike the other zones,
4448 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4449 * in each node depending on the size of each node and how evenly kernelcore
4450 * is distributed. This helper function adjusts the zone ranges
4451 * provided by the architecture for a given node by using the end of the
4452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4453 * zones within a node are in order of monotonic increases memory addresses
4454 */
4455 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4456 unsigned long zone_type,
4457 unsigned long node_start_pfn,
4458 unsigned long node_end_pfn,
4459 unsigned long *zone_start_pfn,
4460 unsigned long *zone_end_pfn)
4461 {
4462 /* Only adjust if ZONE_MOVABLE is on this node */
4463 if (zone_movable_pfn[nid]) {
4464 /* Size ZONE_MOVABLE */
4465 if (zone_type == ZONE_MOVABLE) {
4466 *zone_start_pfn = zone_movable_pfn[nid];
4467 *zone_end_pfn = min(node_end_pfn,
4468 arch_zone_highest_possible_pfn[movable_zone]);
4469
4470 /* Adjust for ZONE_MOVABLE starting within this range */
4471 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4472 *zone_end_pfn > zone_movable_pfn[nid]) {
4473 *zone_end_pfn = zone_movable_pfn[nid];
4474
4475 /* Check if this whole range is within ZONE_MOVABLE */
4476 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4477 *zone_start_pfn = *zone_end_pfn;
4478 }
4479 }
4480
4481 /*
4482 * Return the number of pages a zone spans in a node, including holes
4483 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4484 */
4485 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4486 unsigned long zone_type,
4487 unsigned long node_start_pfn,
4488 unsigned long node_end_pfn,
4489 unsigned long *ignored)
4490 {
4491 unsigned long zone_start_pfn, zone_end_pfn;
4492
4493 /* Get the start and end of the zone */
4494 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4495 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4496 adjust_zone_range_for_zone_movable(nid, zone_type,
4497 node_start_pfn, node_end_pfn,
4498 &zone_start_pfn, &zone_end_pfn);
4499
4500 /* Check that this node has pages within the zone's required range */
4501 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4502 return 0;
4503
4504 /* Move the zone boundaries inside the node if necessary */
4505 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4506 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4507
4508 /* Return the spanned pages */
4509 return zone_end_pfn - zone_start_pfn;
4510 }
4511
4512 /*
4513 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4514 * then all holes in the requested range will be accounted for.
4515 */
4516 unsigned long __meminit __absent_pages_in_range(int nid,
4517 unsigned long range_start_pfn,
4518 unsigned long range_end_pfn)
4519 {
4520 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4521 unsigned long start_pfn, end_pfn;
4522 int i;
4523
4524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4525 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4526 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4527 nr_absent -= end_pfn - start_pfn;
4528 }
4529 return nr_absent;
4530 }
4531
4532 /**
4533 * absent_pages_in_range - Return number of page frames in holes within a range
4534 * @start_pfn: The start PFN to start searching for holes
4535 * @end_pfn: The end PFN to stop searching for holes
4536 *
4537 * It returns the number of pages frames in memory holes within a range.
4538 */
4539 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4540 unsigned long end_pfn)
4541 {
4542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4543 }
4544
4545 /* Return the number of page frames in holes in a zone on a node */
4546 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4547 unsigned long zone_type,
4548 unsigned long node_start_pfn,
4549 unsigned long node_end_pfn,
4550 unsigned long *ignored)
4551 {
4552 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4553 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4554 unsigned long zone_start_pfn, zone_end_pfn;
4555
4556 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4557 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4558
4559 adjust_zone_range_for_zone_movable(nid, zone_type,
4560 node_start_pfn, node_end_pfn,
4561 &zone_start_pfn, &zone_end_pfn);
4562 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4563 }
4564
4565 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4566 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4567 unsigned long zone_type,
4568 unsigned long node_start_pfn,
4569 unsigned long node_end_pfn,
4570 unsigned long *zones_size)
4571 {
4572 return zones_size[zone_type];
4573 }
4574
4575 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4576 unsigned long zone_type,
4577 unsigned long node_start_pfn,
4578 unsigned long node_end_pfn,
4579 unsigned long *zholes_size)
4580 {
4581 if (!zholes_size)
4582 return 0;
4583
4584 return zholes_size[zone_type];
4585 }
4586
4587 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4588
4589 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4590 unsigned long node_start_pfn,
4591 unsigned long node_end_pfn,
4592 unsigned long *zones_size,
4593 unsigned long *zholes_size)
4594 {
4595 unsigned long realtotalpages, totalpages = 0;
4596 enum zone_type i;
4597
4598 for (i = 0; i < MAX_NR_ZONES; i++)
4599 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4600 node_start_pfn,
4601 node_end_pfn,
4602 zones_size);
4603 pgdat->node_spanned_pages = totalpages;
4604
4605 realtotalpages = totalpages;
4606 for (i = 0; i < MAX_NR_ZONES; i++)
4607 realtotalpages -=
4608 zone_absent_pages_in_node(pgdat->node_id, i,
4609 node_start_pfn, node_end_pfn,
4610 zholes_size);
4611 pgdat->node_present_pages = realtotalpages;
4612 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4613 realtotalpages);
4614 }
4615
4616 #ifndef CONFIG_SPARSEMEM
4617 /*
4618 * Calculate the size of the zone->blockflags rounded to an unsigned long
4619 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4620 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4621 * round what is now in bits to nearest long in bits, then return it in
4622 * bytes.
4623 */
4624 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4625 {
4626 unsigned long usemapsize;
4627
4628 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4629 usemapsize = roundup(zonesize, pageblock_nr_pages);
4630 usemapsize = usemapsize >> pageblock_order;
4631 usemapsize *= NR_PAGEBLOCK_BITS;
4632 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4633
4634 return usemapsize / 8;
4635 }
4636
4637 static void __init setup_usemap(struct pglist_data *pgdat,
4638 struct zone *zone,
4639 unsigned long zone_start_pfn,
4640 unsigned long zonesize)
4641 {
4642 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4643 zone->pageblock_flags = NULL;
4644 if (usemapsize)
4645 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4646 usemapsize);
4647 }
4648 #else
4649 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4650 unsigned long zone_start_pfn, unsigned long zonesize) {}
4651 #endif /* CONFIG_SPARSEMEM */
4652
4653 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4654
4655 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4656 void __paginginit set_pageblock_order(void)
4657 {
4658 unsigned int order;
4659
4660 /* Check that pageblock_nr_pages has not already been setup */
4661 if (pageblock_order)
4662 return;
4663
4664 if (HPAGE_SHIFT > PAGE_SHIFT)
4665 order = HUGETLB_PAGE_ORDER;
4666 else
4667 order = MAX_ORDER - 1;
4668
4669 /*
4670 * Assume the largest contiguous order of interest is a huge page.
4671 * This value may be variable depending on boot parameters on IA64 and
4672 * powerpc.
4673 */
4674 pageblock_order = order;
4675 }
4676 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4677
4678 /*
4679 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4680 * is unused as pageblock_order is set at compile-time. See
4681 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4682 * the kernel config
4683 */
4684 void __paginginit set_pageblock_order(void)
4685 {
4686 }
4687
4688 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4689
4690 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4691 unsigned long present_pages)
4692 {
4693 unsigned long pages = spanned_pages;
4694
4695 /*
4696 * Provide a more accurate estimation if there are holes within
4697 * the zone and SPARSEMEM is in use. If there are holes within the
4698 * zone, each populated memory region may cost us one or two extra
4699 * memmap pages due to alignment because memmap pages for each
4700 * populated regions may not naturally algined on page boundary.
4701 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4702 */
4703 if (spanned_pages > present_pages + (present_pages >> 4) &&
4704 IS_ENABLED(CONFIG_SPARSEMEM))
4705 pages = present_pages;
4706
4707 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4708 }
4709
4710 /*
4711 * Set up the zone data structures:
4712 * - mark all pages reserved
4713 * - mark all memory queues empty
4714 * - clear the memory bitmaps
4715 *
4716 * NOTE: pgdat should get zeroed by caller.
4717 */
4718 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4719 unsigned long node_start_pfn, unsigned long node_end_pfn,
4720 unsigned long *zones_size, unsigned long *zholes_size)
4721 {
4722 enum zone_type j;
4723 int nid = pgdat->node_id;
4724 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4725 int ret;
4726
4727 pgdat_resize_init(pgdat);
4728 #ifdef CONFIG_NUMA_BALANCING
4729 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4730 pgdat->numabalancing_migrate_nr_pages = 0;
4731 pgdat->numabalancing_migrate_next_window = jiffies;
4732 #endif
4733 init_waitqueue_head(&pgdat->kswapd_wait);
4734 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4735 pgdat_page_cgroup_init(pgdat);
4736
4737 for (j = 0; j < MAX_NR_ZONES; j++) {
4738 struct zone *zone = pgdat->node_zones + j;
4739 unsigned long size, realsize, freesize, memmap_pages;
4740
4741 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4742 node_end_pfn, zones_size);
4743 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4744 node_start_pfn,
4745 node_end_pfn,
4746 zholes_size);
4747
4748 /*
4749 * Adjust freesize so that it accounts for how much memory
4750 * is used by this zone for memmap. This affects the watermark
4751 * and per-cpu initialisations
4752 */
4753 memmap_pages = calc_memmap_size(size, realsize);
4754 if (freesize >= memmap_pages) {
4755 freesize -= memmap_pages;
4756 if (memmap_pages)
4757 printk(KERN_DEBUG
4758 " %s zone: %lu pages used for memmap\n",
4759 zone_names[j], memmap_pages);
4760 } else
4761 printk(KERN_WARNING
4762 " %s zone: %lu pages exceeds freesize %lu\n",
4763 zone_names[j], memmap_pages, freesize);
4764
4765 /* Account for reserved pages */
4766 if (j == 0 && freesize > dma_reserve) {
4767 freesize -= dma_reserve;
4768 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4769 zone_names[0], dma_reserve);
4770 }
4771
4772 if (!is_highmem_idx(j))
4773 nr_kernel_pages += freesize;
4774 /* Charge for highmem memmap if there are enough kernel pages */
4775 else if (nr_kernel_pages > memmap_pages * 2)
4776 nr_kernel_pages -= memmap_pages;
4777 nr_all_pages += freesize;
4778
4779 zone->spanned_pages = size;
4780 zone->present_pages = realsize;
4781 /*
4782 * Set an approximate value for lowmem here, it will be adjusted
4783 * when the bootmem allocator frees pages into the buddy system.
4784 * And all highmem pages will be managed by the buddy system.
4785 */
4786 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4787 #ifdef CONFIG_NUMA
4788 zone->node = nid;
4789 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4790 / 100;
4791 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4792 #endif
4793 zone->name = zone_names[j];
4794 spin_lock_init(&zone->lock);
4795 spin_lock_init(&zone->lru_lock);
4796 zone_seqlock_init(zone);
4797 zone->zone_pgdat = pgdat;
4798 zone_pcp_init(zone);
4799
4800 /* For bootup, initialized properly in watermark setup */
4801 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4802
4803 lruvec_init(&zone->lruvec);
4804 if (!size)
4805 continue;
4806
4807 set_pageblock_order();
4808 setup_usemap(pgdat, zone, zone_start_pfn, size);
4809 ret = init_currently_empty_zone(zone, zone_start_pfn,
4810 size, MEMMAP_EARLY);
4811 BUG_ON(ret);
4812 memmap_init(size, nid, j, zone_start_pfn);
4813 zone_start_pfn += size;
4814 }
4815 }
4816
4817 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4818 {
4819 /* Skip empty nodes */
4820 if (!pgdat->node_spanned_pages)
4821 return;
4822
4823 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4824 /* ia64 gets its own node_mem_map, before this, without bootmem */
4825 if (!pgdat->node_mem_map) {
4826 unsigned long size, start, end;
4827 struct page *map;
4828
4829 /*
4830 * The zone's endpoints aren't required to be MAX_ORDER
4831 * aligned but the node_mem_map endpoints must be in order
4832 * for the buddy allocator to function correctly.
4833 */
4834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4835 end = pgdat_end_pfn(pgdat);
4836 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4837 size = (end - start) * sizeof(struct page);
4838 map = alloc_remap(pgdat->node_id, size);
4839 if (!map)
4840 map = alloc_bootmem_node_nopanic(pgdat, size);
4841 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4842 }
4843 #ifndef CONFIG_NEED_MULTIPLE_NODES
4844 /*
4845 * With no DISCONTIG, the global mem_map is just set as node 0's
4846 */
4847 if (pgdat == NODE_DATA(0)) {
4848 mem_map = NODE_DATA(0)->node_mem_map;
4849 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4851 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4852 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4853 }
4854 #endif
4855 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4856 }
4857
4858 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4859 unsigned long node_start_pfn, unsigned long *zholes_size)
4860 {
4861 pg_data_t *pgdat = NODE_DATA(nid);
4862 unsigned long start_pfn = 0;
4863 unsigned long end_pfn = 0;
4864
4865 /* pg_data_t should be reset to zero when it's allocated */
4866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4867
4868 pgdat->node_id = nid;
4869 pgdat->node_start_pfn = node_start_pfn;
4870 init_zone_allows_reclaim(nid);
4871 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4873 #endif
4874 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4875 zones_size, zholes_size);
4876
4877 alloc_node_mem_map(pgdat);
4878 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4879 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4880 nid, (unsigned long)pgdat,
4881 (unsigned long)pgdat->node_mem_map);
4882 #endif
4883
4884 free_area_init_core(pgdat, start_pfn, end_pfn,
4885 zones_size, zholes_size);
4886 }
4887
4888 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4889
4890 #if MAX_NUMNODES > 1
4891 /*
4892 * Figure out the number of possible node ids.
4893 */
4894 void __init setup_nr_node_ids(void)
4895 {
4896 unsigned int node;
4897 unsigned int highest = 0;
4898
4899 for_each_node_mask(node, node_possible_map)
4900 highest = node;
4901 nr_node_ids = highest + 1;
4902 }
4903 #endif
4904
4905 /**
4906 * node_map_pfn_alignment - determine the maximum internode alignment
4907 *
4908 * This function should be called after node map is populated and sorted.
4909 * It calculates the maximum power of two alignment which can distinguish
4910 * all the nodes.
4911 *
4912 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4913 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4914 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4915 * shifted, 1GiB is enough and this function will indicate so.
4916 *
4917 * This is used to test whether pfn -> nid mapping of the chosen memory
4918 * model has fine enough granularity to avoid incorrect mapping for the
4919 * populated node map.
4920 *
4921 * Returns the determined alignment in pfn's. 0 if there is no alignment
4922 * requirement (single node).
4923 */
4924 unsigned long __init node_map_pfn_alignment(void)
4925 {
4926 unsigned long accl_mask = 0, last_end = 0;
4927 unsigned long start, end, mask;
4928 int last_nid = -1;
4929 int i, nid;
4930
4931 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4932 if (!start || last_nid < 0 || last_nid == nid) {
4933 last_nid = nid;
4934 last_end = end;
4935 continue;
4936 }
4937
4938 /*
4939 * Start with a mask granular enough to pin-point to the
4940 * start pfn and tick off bits one-by-one until it becomes
4941 * too coarse to separate the current node from the last.
4942 */
4943 mask = ~((1 << __ffs(start)) - 1);
4944 while (mask && last_end <= (start & (mask << 1)))
4945 mask <<= 1;
4946
4947 /* accumulate all internode masks */
4948 accl_mask |= mask;
4949 }
4950
4951 /* convert mask to number of pages */
4952 return ~accl_mask + 1;
4953 }
4954
4955 /* Find the lowest pfn for a node */
4956 static unsigned long __init find_min_pfn_for_node(int nid)
4957 {
4958 unsigned long min_pfn = ULONG_MAX;
4959 unsigned long start_pfn;
4960 int i;
4961
4962 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4963 min_pfn = min(min_pfn, start_pfn);
4964
4965 if (min_pfn == ULONG_MAX) {
4966 printk(KERN_WARNING
4967 "Could not find start_pfn for node %d\n", nid);
4968 return 0;
4969 }
4970
4971 return min_pfn;
4972 }
4973
4974 /**
4975 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4976 *
4977 * It returns the minimum PFN based on information provided via
4978 * add_active_range().
4979 */
4980 unsigned long __init find_min_pfn_with_active_regions(void)
4981 {
4982 return find_min_pfn_for_node(MAX_NUMNODES);
4983 }
4984
4985 /*
4986 * early_calculate_totalpages()
4987 * Sum pages in active regions for movable zone.
4988 * Populate N_MEMORY for calculating usable_nodes.
4989 */
4990 static unsigned long __init early_calculate_totalpages(void)
4991 {
4992 unsigned long totalpages = 0;
4993 unsigned long start_pfn, end_pfn;
4994 int i, nid;
4995
4996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4997 unsigned long pages = end_pfn - start_pfn;
4998
4999 totalpages += pages;
5000 if (pages)
5001 node_set_state(nid, N_MEMORY);
5002 }
5003 return totalpages;
5004 }
5005
5006 /*
5007 * Find the PFN the Movable zone begins in each node. Kernel memory
5008 * is spread evenly between nodes as long as the nodes have enough
5009 * memory. When they don't, some nodes will have more kernelcore than
5010 * others
5011 */
5012 static void __init find_zone_movable_pfns_for_nodes(void)
5013 {
5014 int i, nid;
5015 unsigned long usable_startpfn;
5016 unsigned long kernelcore_node, kernelcore_remaining;
5017 /* save the state before borrow the nodemask */
5018 nodemask_t saved_node_state = node_states[N_MEMORY];
5019 unsigned long totalpages = early_calculate_totalpages();
5020 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5021
5022 /*
5023 * If movablecore was specified, calculate what size of
5024 * kernelcore that corresponds so that memory usable for
5025 * any allocation type is evenly spread. If both kernelcore
5026 * and movablecore are specified, then the value of kernelcore
5027 * will be used for required_kernelcore if it's greater than
5028 * what movablecore would have allowed.
5029 */
5030 if (required_movablecore) {
5031 unsigned long corepages;
5032
5033 /*
5034 * Round-up so that ZONE_MOVABLE is at least as large as what
5035 * was requested by the user
5036 */
5037 required_movablecore =
5038 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5039 corepages = totalpages - required_movablecore;
5040
5041 required_kernelcore = max(required_kernelcore, corepages);
5042 }
5043
5044 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5045 if (!required_kernelcore)
5046 goto out;
5047
5048 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5049 find_usable_zone_for_movable();
5050 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5051
5052 restart:
5053 /* Spread kernelcore memory as evenly as possible throughout nodes */
5054 kernelcore_node = required_kernelcore / usable_nodes;
5055 for_each_node_state(nid, N_MEMORY) {
5056 unsigned long start_pfn, end_pfn;
5057
5058 /*
5059 * Recalculate kernelcore_node if the division per node
5060 * now exceeds what is necessary to satisfy the requested
5061 * amount of memory for the kernel
5062 */
5063 if (required_kernelcore < kernelcore_node)
5064 kernelcore_node = required_kernelcore / usable_nodes;
5065
5066 /*
5067 * As the map is walked, we track how much memory is usable
5068 * by the kernel using kernelcore_remaining. When it is
5069 * 0, the rest of the node is usable by ZONE_MOVABLE
5070 */
5071 kernelcore_remaining = kernelcore_node;
5072
5073 /* Go through each range of PFNs within this node */
5074 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5075 unsigned long size_pages;
5076
5077 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5078 if (start_pfn >= end_pfn)
5079 continue;
5080
5081 /* Account for what is only usable for kernelcore */
5082 if (start_pfn < usable_startpfn) {
5083 unsigned long kernel_pages;
5084 kernel_pages = min(end_pfn, usable_startpfn)
5085 - start_pfn;
5086
5087 kernelcore_remaining -= min(kernel_pages,
5088 kernelcore_remaining);
5089 required_kernelcore -= min(kernel_pages,
5090 required_kernelcore);
5091
5092 /* Continue if range is now fully accounted */
5093 if (end_pfn <= usable_startpfn) {
5094
5095 /*
5096 * Push zone_movable_pfn to the end so
5097 * that if we have to rebalance
5098 * kernelcore across nodes, we will
5099 * not double account here
5100 */
5101 zone_movable_pfn[nid] = end_pfn;
5102 continue;
5103 }
5104 start_pfn = usable_startpfn;
5105 }
5106
5107 /*
5108 * The usable PFN range for ZONE_MOVABLE is from
5109 * start_pfn->end_pfn. Calculate size_pages as the
5110 * number of pages used as kernelcore
5111 */
5112 size_pages = end_pfn - start_pfn;
5113 if (size_pages > kernelcore_remaining)
5114 size_pages = kernelcore_remaining;
5115 zone_movable_pfn[nid] = start_pfn + size_pages;
5116
5117 /*
5118 * Some kernelcore has been met, update counts and
5119 * break if the kernelcore for this node has been
5120 * satisfied
5121 */
5122 required_kernelcore -= min(required_kernelcore,
5123 size_pages);
5124 kernelcore_remaining -= size_pages;
5125 if (!kernelcore_remaining)
5126 break;
5127 }
5128 }
5129
5130 /*
5131 * If there is still required_kernelcore, we do another pass with one
5132 * less node in the count. This will push zone_movable_pfn[nid] further
5133 * along on the nodes that still have memory until kernelcore is
5134 * satisfied
5135 */
5136 usable_nodes--;
5137 if (usable_nodes && required_kernelcore > usable_nodes)
5138 goto restart;
5139
5140 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5141 for (nid = 0; nid < MAX_NUMNODES; nid++)
5142 zone_movable_pfn[nid] =
5143 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5144
5145 out:
5146 /* restore the node_state */
5147 node_states[N_MEMORY] = saved_node_state;
5148 }
5149
5150 /* Any regular or high memory on that node ? */
5151 static void check_for_memory(pg_data_t *pgdat, int nid)
5152 {
5153 enum zone_type zone_type;
5154
5155 if (N_MEMORY == N_NORMAL_MEMORY)
5156 return;
5157
5158 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5159 struct zone *zone = &pgdat->node_zones[zone_type];
5160 if (populated_zone(zone)) {
5161 node_set_state(nid, N_HIGH_MEMORY);
5162 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5163 zone_type <= ZONE_NORMAL)
5164 node_set_state(nid, N_NORMAL_MEMORY);
5165 break;
5166 }
5167 }
5168 }
5169
5170 /**
5171 * free_area_init_nodes - Initialise all pg_data_t and zone data
5172 * @max_zone_pfn: an array of max PFNs for each zone
5173 *
5174 * This will call free_area_init_node() for each active node in the system.
5175 * Using the page ranges provided by add_active_range(), the size of each
5176 * zone in each node and their holes is calculated. If the maximum PFN
5177 * between two adjacent zones match, it is assumed that the zone is empty.
5178 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5179 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5180 * starts where the previous one ended. For example, ZONE_DMA32 starts
5181 * at arch_max_dma_pfn.
5182 */
5183 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5184 {
5185 unsigned long start_pfn, end_pfn;
5186 int i, nid;
5187
5188 /* Record where the zone boundaries are */
5189 memset(arch_zone_lowest_possible_pfn, 0,
5190 sizeof(arch_zone_lowest_possible_pfn));
5191 memset(arch_zone_highest_possible_pfn, 0,
5192 sizeof(arch_zone_highest_possible_pfn));
5193 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5194 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5195 for (i = 1; i < MAX_NR_ZONES; i++) {
5196 if (i == ZONE_MOVABLE)
5197 continue;
5198 arch_zone_lowest_possible_pfn[i] =
5199 arch_zone_highest_possible_pfn[i-1];
5200 arch_zone_highest_possible_pfn[i] =
5201 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5202 }
5203 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5204 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5205
5206 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5207 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5208 find_zone_movable_pfns_for_nodes();
5209
5210 /* Print out the zone ranges */
5211 printk("Zone ranges:\n");
5212 for (i = 0; i < MAX_NR_ZONES; i++) {
5213 if (i == ZONE_MOVABLE)
5214 continue;
5215 printk(KERN_CONT " %-8s ", zone_names[i]);
5216 if (arch_zone_lowest_possible_pfn[i] ==
5217 arch_zone_highest_possible_pfn[i])
5218 printk(KERN_CONT "empty\n");
5219 else
5220 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5221 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5222 (arch_zone_highest_possible_pfn[i]
5223 << PAGE_SHIFT) - 1);
5224 }
5225
5226 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5227 printk("Movable zone start for each node\n");
5228 for (i = 0; i < MAX_NUMNODES; i++) {
5229 if (zone_movable_pfn[i])
5230 printk(" Node %d: %#010lx\n", i,
5231 zone_movable_pfn[i] << PAGE_SHIFT);
5232 }
5233
5234 /* Print out the early node map */
5235 printk("Early memory node ranges\n");
5236 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5237 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5238 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5239
5240 /* Initialise every node */
5241 mminit_verify_pageflags_layout();
5242 setup_nr_node_ids();
5243 for_each_online_node(nid) {
5244 pg_data_t *pgdat = NODE_DATA(nid);
5245 free_area_init_node(nid, NULL,
5246 find_min_pfn_for_node(nid), NULL);
5247
5248 /* Any memory on that node */
5249 if (pgdat->node_present_pages)
5250 node_set_state(nid, N_MEMORY);
5251 check_for_memory(pgdat, nid);
5252 }
5253 }
5254
5255 static int __init cmdline_parse_core(char *p, unsigned long *core)
5256 {
5257 unsigned long long coremem;
5258 if (!p)
5259 return -EINVAL;
5260
5261 coremem = memparse(p, &p);
5262 *core = coremem >> PAGE_SHIFT;
5263
5264 /* Paranoid check that UL is enough for the coremem value */
5265 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5266
5267 return 0;
5268 }
5269
5270 /*
5271 * kernelcore=size sets the amount of memory for use for allocations that
5272 * cannot be reclaimed or migrated.
5273 */
5274 static int __init cmdline_parse_kernelcore(char *p)
5275 {
5276 return cmdline_parse_core(p, &required_kernelcore);
5277 }
5278
5279 /*
5280 * movablecore=size sets the amount of memory for use for allocations that
5281 * can be reclaimed or migrated.
5282 */
5283 static int __init cmdline_parse_movablecore(char *p)
5284 {
5285 return cmdline_parse_core(p, &required_movablecore);
5286 }
5287
5288 early_param("kernelcore", cmdline_parse_kernelcore);
5289 early_param("movablecore", cmdline_parse_movablecore);
5290
5291 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5292
5293 void adjust_managed_page_count(struct page *page, long count)
5294 {
5295 spin_lock(&managed_page_count_lock);
5296 page_zone(page)->managed_pages += count;
5297 totalram_pages += count;
5298 #ifdef CONFIG_HIGHMEM
5299 if (PageHighMem(page))
5300 totalhigh_pages += count;
5301 #endif
5302 spin_unlock(&managed_page_count_lock);
5303 }
5304 EXPORT_SYMBOL(adjust_managed_page_count);
5305
5306 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5307 {
5308 void *pos;
5309 unsigned long pages = 0;
5310
5311 start = (void *)PAGE_ALIGN((unsigned long)start);
5312 end = (void *)((unsigned long)end & PAGE_MASK);
5313 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5314 if ((unsigned int)poison <= 0xFF)
5315 memset(pos, poison, PAGE_SIZE);
5316 free_reserved_page(virt_to_page(pos));
5317 }
5318
5319 if (pages && s)
5320 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5321 s, pages << (PAGE_SHIFT - 10), start, end);
5322
5323 return pages;
5324 }
5325 EXPORT_SYMBOL(free_reserved_area);
5326
5327 #ifdef CONFIG_HIGHMEM
5328 void free_highmem_page(struct page *page)
5329 {
5330 __free_reserved_page(page);
5331 totalram_pages++;
5332 page_zone(page)->managed_pages++;
5333 totalhigh_pages++;
5334 }
5335 #endif
5336
5337
5338 void __init mem_init_print_info(const char *str)
5339 {
5340 unsigned long physpages, codesize, datasize, rosize, bss_size;
5341 unsigned long init_code_size, init_data_size;
5342
5343 physpages = get_num_physpages();
5344 codesize = _etext - _stext;
5345 datasize = _edata - _sdata;
5346 rosize = __end_rodata - __start_rodata;
5347 bss_size = __bss_stop - __bss_start;
5348 init_data_size = __init_end - __init_begin;
5349 init_code_size = _einittext - _sinittext;
5350
5351 /*
5352 * Detect special cases and adjust section sizes accordingly:
5353 * 1) .init.* may be embedded into .data sections
5354 * 2) .init.text.* may be out of [__init_begin, __init_end],
5355 * please refer to arch/tile/kernel/vmlinux.lds.S.
5356 * 3) .rodata.* may be embedded into .text or .data sections.
5357 */
5358 #define adj_init_size(start, end, size, pos, adj) \
5359 do { \
5360 if (start <= pos && pos < end && size > adj) \
5361 size -= adj; \
5362 } while (0)
5363
5364 adj_init_size(__init_begin, __init_end, init_data_size,
5365 _sinittext, init_code_size);
5366 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5367 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5368 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5369 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5370
5371 #undef adj_init_size
5372
5373 printk("Memory: %luK/%luK available "
5374 "(%luK kernel code, %luK rwdata, %luK rodata, "
5375 "%luK init, %luK bss, %luK reserved"
5376 #ifdef CONFIG_HIGHMEM
5377 ", %luK highmem"
5378 #endif
5379 "%s%s)\n",
5380 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5381 codesize >> 10, datasize >> 10, rosize >> 10,
5382 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5383 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5384 #ifdef CONFIG_HIGHMEM
5385 totalhigh_pages << (PAGE_SHIFT-10),
5386 #endif
5387 str ? ", " : "", str ? str : "");
5388 }
5389
5390 /**
5391 * set_dma_reserve - set the specified number of pages reserved in the first zone
5392 * @new_dma_reserve: The number of pages to mark reserved
5393 *
5394 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5395 * In the DMA zone, a significant percentage may be consumed by kernel image
5396 * and other unfreeable allocations which can skew the watermarks badly. This
5397 * function may optionally be used to account for unfreeable pages in the
5398 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5399 * smaller per-cpu batchsize.
5400 */
5401 void __init set_dma_reserve(unsigned long new_dma_reserve)
5402 {
5403 dma_reserve = new_dma_reserve;
5404 }
5405
5406 void __init free_area_init(unsigned long *zones_size)
5407 {
5408 free_area_init_node(0, zones_size,
5409 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5410 }
5411
5412 static int page_alloc_cpu_notify(struct notifier_block *self,
5413 unsigned long action, void *hcpu)
5414 {
5415 int cpu = (unsigned long)hcpu;
5416
5417 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5418 lru_add_drain_cpu(cpu);
5419 drain_pages(cpu);
5420
5421 /*
5422 * Spill the event counters of the dead processor
5423 * into the current processors event counters.
5424 * This artificially elevates the count of the current
5425 * processor.
5426 */
5427 vm_events_fold_cpu(cpu);
5428
5429 /*
5430 * Zero the differential counters of the dead processor
5431 * so that the vm statistics are consistent.
5432 *
5433 * This is only okay since the processor is dead and cannot
5434 * race with what we are doing.
5435 */
5436 cpu_vm_stats_fold(cpu);
5437 }
5438 return NOTIFY_OK;
5439 }
5440
5441 void __init page_alloc_init(void)
5442 {
5443 hotcpu_notifier(page_alloc_cpu_notify, 0);
5444 }
5445
5446 /*
5447 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5448 * or min_free_kbytes changes.
5449 */
5450 static void calculate_totalreserve_pages(void)
5451 {
5452 struct pglist_data *pgdat;
5453 unsigned long reserve_pages = 0;
5454 enum zone_type i, j;
5455
5456 for_each_online_pgdat(pgdat) {
5457 for (i = 0; i < MAX_NR_ZONES; i++) {
5458 struct zone *zone = pgdat->node_zones + i;
5459 unsigned long max = 0;
5460
5461 /* Find valid and maximum lowmem_reserve in the zone */
5462 for (j = i; j < MAX_NR_ZONES; j++) {
5463 if (zone->lowmem_reserve[j] > max)
5464 max = zone->lowmem_reserve[j];
5465 }
5466
5467 /* we treat the high watermark as reserved pages. */
5468 max += high_wmark_pages(zone);
5469
5470 if (max > zone->managed_pages)
5471 max = zone->managed_pages;
5472 reserve_pages += max;
5473 /*
5474 * Lowmem reserves are not available to
5475 * GFP_HIGHUSER page cache allocations and
5476 * kswapd tries to balance zones to their high
5477 * watermark. As a result, neither should be
5478 * regarded as dirtyable memory, to prevent a
5479 * situation where reclaim has to clean pages
5480 * in order to balance the zones.
5481 */
5482 zone->dirty_balance_reserve = max;
5483 }
5484 }
5485 dirty_balance_reserve = reserve_pages;
5486 totalreserve_pages = reserve_pages;
5487 }
5488
5489 /*
5490 * setup_per_zone_lowmem_reserve - called whenever
5491 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5492 * has a correct pages reserved value, so an adequate number of
5493 * pages are left in the zone after a successful __alloc_pages().
5494 */
5495 static void setup_per_zone_lowmem_reserve(void)
5496 {
5497 struct pglist_data *pgdat;
5498 enum zone_type j, idx;
5499
5500 for_each_online_pgdat(pgdat) {
5501 for (j = 0; j < MAX_NR_ZONES; j++) {
5502 struct zone *zone = pgdat->node_zones + j;
5503 unsigned long managed_pages = zone->managed_pages;
5504
5505 zone->lowmem_reserve[j] = 0;
5506
5507 idx = j;
5508 while (idx) {
5509 struct zone *lower_zone;
5510
5511 idx--;
5512
5513 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5514 sysctl_lowmem_reserve_ratio[idx] = 1;
5515
5516 lower_zone = pgdat->node_zones + idx;
5517 lower_zone->lowmem_reserve[j] = managed_pages /
5518 sysctl_lowmem_reserve_ratio[idx];
5519 managed_pages += lower_zone->managed_pages;
5520 }
5521 }
5522 }
5523
5524 /* update totalreserve_pages */
5525 calculate_totalreserve_pages();
5526 }
5527
5528 static void __setup_per_zone_wmarks(void)
5529 {
5530 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5531 unsigned long lowmem_pages = 0;
5532 struct zone *zone;
5533 unsigned long flags;
5534
5535 /* Calculate total number of !ZONE_HIGHMEM pages */
5536 for_each_zone(zone) {
5537 if (!is_highmem(zone))
5538 lowmem_pages += zone->managed_pages;
5539 }
5540
5541 for_each_zone(zone) {
5542 u64 tmp;
5543
5544 spin_lock_irqsave(&zone->lock, flags);
5545 tmp = (u64)pages_min * zone->managed_pages;
5546 do_div(tmp, lowmem_pages);
5547 if (is_highmem(zone)) {
5548 /*
5549 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5550 * need highmem pages, so cap pages_min to a small
5551 * value here.
5552 *
5553 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5554 * deltas controls asynch page reclaim, and so should
5555 * not be capped for highmem.
5556 */
5557 unsigned long min_pages;
5558
5559 min_pages = zone->managed_pages / 1024;
5560 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5561 zone->watermark[WMARK_MIN] = min_pages;
5562 } else {
5563 /*
5564 * If it's a lowmem zone, reserve a number of pages
5565 * proportionate to the zone's size.
5566 */
5567 zone->watermark[WMARK_MIN] = tmp;
5568 }
5569
5570 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5571 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5572
5573 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5574 high_wmark_pages(zone) -
5575 low_wmark_pages(zone) -
5576 zone_page_state(zone, NR_ALLOC_BATCH));
5577
5578 setup_zone_migrate_reserve(zone);
5579 spin_unlock_irqrestore(&zone->lock, flags);
5580 }
5581
5582 /* update totalreserve_pages */
5583 calculate_totalreserve_pages();
5584 }
5585
5586 /**
5587 * setup_per_zone_wmarks - called when min_free_kbytes changes
5588 * or when memory is hot-{added|removed}
5589 *
5590 * Ensures that the watermark[min,low,high] values for each zone are set
5591 * correctly with respect to min_free_kbytes.
5592 */
5593 void setup_per_zone_wmarks(void)
5594 {
5595 mutex_lock(&zonelists_mutex);
5596 __setup_per_zone_wmarks();
5597 mutex_unlock(&zonelists_mutex);
5598 }
5599
5600 /*
5601 * The inactive anon list should be small enough that the VM never has to
5602 * do too much work, but large enough that each inactive page has a chance
5603 * to be referenced again before it is swapped out.
5604 *
5605 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5606 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5607 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5608 * the anonymous pages are kept on the inactive list.
5609 *
5610 * total target max
5611 * memory ratio inactive anon
5612 * -------------------------------------
5613 * 10MB 1 5MB
5614 * 100MB 1 50MB
5615 * 1GB 3 250MB
5616 * 10GB 10 0.9GB
5617 * 100GB 31 3GB
5618 * 1TB 101 10GB
5619 * 10TB 320 32GB
5620 */
5621 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5622 {
5623 unsigned int gb, ratio;
5624
5625 /* Zone size in gigabytes */
5626 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5627 if (gb)
5628 ratio = int_sqrt(10 * gb);
5629 else
5630 ratio = 1;
5631
5632 zone->inactive_ratio = ratio;
5633 }
5634
5635 static void __meminit setup_per_zone_inactive_ratio(void)
5636 {
5637 struct zone *zone;
5638
5639 for_each_zone(zone)
5640 calculate_zone_inactive_ratio(zone);
5641 }
5642
5643 /*
5644 * Initialise min_free_kbytes.
5645 *
5646 * For small machines we want it small (128k min). For large machines
5647 * we want it large (64MB max). But it is not linear, because network
5648 * bandwidth does not increase linearly with machine size. We use
5649 *
5650 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5651 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5652 *
5653 * which yields
5654 *
5655 * 16MB: 512k
5656 * 32MB: 724k
5657 * 64MB: 1024k
5658 * 128MB: 1448k
5659 * 256MB: 2048k
5660 * 512MB: 2896k
5661 * 1024MB: 4096k
5662 * 2048MB: 5792k
5663 * 4096MB: 8192k
5664 * 8192MB: 11584k
5665 * 16384MB: 16384k
5666 */
5667 int __meminit init_per_zone_wmark_min(void)
5668 {
5669 unsigned long lowmem_kbytes;
5670 int new_min_free_kbytes;
5671
5672 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5673 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5674
5675 if (new_min_free_kbytes > user_min_free_kbytes) {
5676 min_free_kbytes = new_min_free_kbytes;
5677 if (min_free_kbytes < 128)
5678 min_free_kbytes = 128;
5679 if (min_free_kbytes > 65536)
5680 min_free_kbytes = 65536;
5681 } else {
5682 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5683 new_min_free_kbytes, user_min_free_kbytes);
5684 }
5685 setup_per_zone_wmarks();
5686 refresh_zone_stat_thresholds();
5687 setup_per_zone_lowmem_reserve();
5688 setup_per_zone_inactive_ratio();
5689 return 0;
5690 }
5691 module_init(init_per_zone_wmark_min)
5692
5693 /*
5694 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5695 * that we can call two helper functions whenever min_free_kbytes
5696 * changes.
5697 */
5698 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5699 void __user *buffer, size_t *length, loff_t *ppos)
5700 {
5701 proc_dointvec(table, write, buffer, length, ppos);
5702 if (write) {
5703 user_min_free_kbytes = min_free_kbytes;
5704 setup_per_zone_wmarks();
5705 }
5706 return 0;
5707 }
5708
5709 #ifdef CONFIG_NUMA
5710 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5711 void __user *buffer, size_t *length, loff_t *ppos)
5712 {
5713 struct zone *zone;
5714 int rc;
5715
5716 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5717 if (rc)
5718 return rc;
5719
5720 for_each_zone(zone)
5721 zone->min_unmapped_pages = (zone->managed_pages *
5722 sysctl_min_unmapped_ratio) / 100;
5723 return 0;
5724 }
5725
5726 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5727 void __user *buffer, size_t *length, loff_t *ppos)
5728 {
5729 struct zone *zone;
5730 int rc;
5731
5732 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5733 if (rc)
5734 return rc;
5735
5736 for_each_zone(zone)
5737 zone->min_slab_pages = (zone->managed_pages *
5738 sysctl_min_slab_ratio) / 100;
5739 return 0;
5740 }
5741 #endif
5742
5743 /*
5744 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5745 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5746 * whenever sysctl_lowmem_reserve_ratio changes.
5747 *
5748 * The reserve ratio obviously has absolutely no relation with the
5749 * minimum watermarks. The lowmem reserve ratio can only make sense
5750 * if in function of the boot time zone sizes.
5751 */
5752 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5753 void __user *buffer, size_t *length, loff_t *ppos)
5754 {
5755 proc_dointvec_minmax(table, write, buffer, length, ppos);
5756 setup_per_zone_lowmem_reserve();
5757 return 0;
5758 }
5759
5760 /*
5761 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5762 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5763 * pagelist can have before it gets flushed back to buddy allocator.
5764 */
5765 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5766 void __user *buffer, size_t *length, loff_t *ppos)
5767 {
5768 struct zone *zone;
5769 unsigned int cpu;
5770 int ret;
5771
5772 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5773 if (!write || (ret < 0))
5774 return ret;
5775
5776 mutex_lock(&pcp_batch_high_lock);
5777 for_each_populated_zone(zone) {
5778 unsigned long high;
5779 high = zone->managed_pages / percpu_pagelist_fraction;
5780 for_each_possible_cpu(cpu)
5781 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5782 high);
5783 }
5784 mutex_unlock(&pcp_batch_high_lock);
5785 return 0;
5786 }
5787
5788 int hashdist = HASHDIST_DEFAULT;
5789
5790 #ifdef CONFIG_NUMA
5791 static int __init set_hashdist(char *str)
5792 {
5793 if (!str)
5794 return 0;
5795 hashdist = simple_strtoul(str, &str, 0);
5796 return 1;
5797 }
5798 __setup("hashdist=", set_hashdist);
5799 #endif
5800
5801 /*
5802 * allocate a large system hash table from bootmem
5803 * - it is assumed that the hash table must contain an exact power-of-2
5804 * quantity of entries
5805 * - limit is the number of hash buckets, not the total allocation size
5806 */
5807 void *__init alloc_large_system_hash(const char *tablename,
5808 unsigned long bucketsize,
5809 unsigned long numentries,
5810 int scale,
5811 int flags,
5812 unsigned int *_hash_shift,
5813 unsigned int *_hash_mask,
5814 unsigned long low_limit,
5815 unsigned long high_limit)
5816 {
5817 unsigned long long max = high_limit;
5818 unsigned long log2qty, size;
5819 void *table = NULL;
5820
5821 /* allow the kernel cmdline to have a say */
5822 if (!numentries) {
5823 /* round applicable memory size up to nearest megabyte */
5824 numentries = nr_kernel_pages;
5825
5826 /* It isn't necessary when PAGE_SIZE >= 1MB */
5827 if (PAGE_SHIFT < 20)
5828 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5829
5830 /* limit to 1 bucket per 2^scale bytes of low memory */
5831 if (scale > PAGE_SHIFT)
5832 numentries >>= (scale - PAGE_SHIFT);
5833 else
5834 numentries <<= (PAGE_SHIFT - scale);
5835
5836 /* Make sure we've got at least a 0-order allocation.. */
5837 if (unlikely(flags & HASH_SMALL)) {
5838 /* Makes no sense without HASH_EARLY */
5839 WARN_ON(!(flags & HASH_EARLY));
5840 if (!(numentries >> *_hash_shift)) {
5841 numentries = 1UL << *_hash_shift;
5842 BUG_ON(!numentries);
5843 }
5844 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5845 numentries = PAGE_SIZE / bucketsize;
5846 }
5847 numentries = roundup_pow_of_two(numentries);
5848
5849 /* limit allocation size to 1/16 total memory by default */
5850 if (max == 0) {
5851 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5852 do_div(max, bucketsize);
5853 }
5854 max = min(max, 0x80000000ULL);
5855
5856 if (numentries < low_limit)
5857 numentries = low_limit;
5858 if (numentries > max)
5859 numentries = max;
5860
5861 log2qty = ilog2(numentries);
5862
5863 do {
5864 size = bucketsize << log2qty;
5865 if (flags & HASH_EARLY)
5866 table = alloc_bootmem_nopanic(size);
5867 else if (hashdist)
5868 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5869 else {
5870 /*
5871 * If bucketsize is not a power-of-two, we may free
5872 * some pages at the end of hash table which
5873 * alloc_pages_exact() automatically does
5874 */
5875 if (get_order(size) < MAX_ORDER) {
5876 table = alloc_pages_exact(size, GFP_ATOMIC);
5877 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5878 }
5879 }
5880 } while (!table && size > PAGE_SIZE && --log2qty);
5881
5882 if (!table)
5883 panic("Failed to allocate %s hash table\n", tablename);
5884
5885 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5886 tablename,
5887 (1UL << log2qty),
5888 ilog2(size) - PAGE_SHIFT,
5889 size);
5890
5891 if (_hash_shift)
5892 *_hash_shift = log2qty;
5893 if (_hash_mask)
5894 *_hash_mask = (1 << log2qty) - 1;
5895
5896 return table;
5897 }
5898
5899 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5900 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5901 unsigned long pfn)
5902 {
5903 #ifdef CONFIG_SPARSEMEM
5904 return __pfn_to_section(pfn)->pageblock_flags;
5905 #else
5906 return zone->pageblock_flags;
5907 #endif /* CONFIG_SPARSEMEM */
5908 }
5909
5910 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5911 {
5912 #ifdef CONFIG_SPARSEMEM
5913 pfn &= (PAGES_PER_SECTION-1);
5914 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5915 #else
5916 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5917 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5918 #endif /* CONFIG_SPARSEMEM */
5919 }
5920
5921 /**
5922 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5923 * @page: The page within the block of interest
5924 * @start_bitidx: The first bit of interest to retrieve
5925 * @end_bitidx: The last bit of interest
5926 * returns pageblock_bits flags
5927 */
5928 unsigned long get_pageblock_flags_group(struct page *page,
5929 int start_bitidx, int end_bitidx)
5930 {
5931 struct zone *zone;
5932 unsigned long *bitmap;
5933 unsigned long pfn, bitidx;
5934 unsigned long flags = 0;
5935 unsigned long value = 1;
5936
5937 zone = page_zone(page);
5938 pfn = page_to_pfn(page);
5939 bitmap = get_pageblock_bitmap(zone, pfn);
5940 bitidx = pfn_to_bitidx(zone, pfn);
5941
5942 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5943 if (test_bit(bitidx + start_bitidx, bitmap))
5944 flags |= value;
5945
5946 return flags;
5947 }
5948
5949 /**
5950 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5951 * @page: The page within the block of interest
5952 * @start_bitidx: The first bit of interest
5953 * @end_bitidx: The last bit of interest
5954 * @flags: The flags to set
5955 */
5956 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5957 int start_bitidx, int end_bitidx)
5958 {
5959 struct zone *zone;
5960 unsigned long *bitmap;
5961 unsigned long pfn, bitidx;
5962 unsigned long value = 1;
5963
5964 zone = page_zone(page);
5965 pfn = page_to_pfn(page);
5966 bitmap = get_pageblock_bitmap(zone, pfn);
5967 bitidx = pfn_to_bitidx(zone, pfn);
5968 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5969
5970 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5971 if (flags & value)
5972 __set_bit(bitidx + start_bitidx, bitmap);
5973 else
5974 __clear_bit(bitidx + start_bitidx, bitmap);
5975 }
5976
5977 /*
5978 * This function checks whether pageblock includes unmovable pages or not.
5979 * If @count is not zero, it is okay to include less @count unmovable pages
5980 *
5981 * PageLRU check without isolation or lru_lock could race so that
5982 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5983 * expect this function should be exact.
5984 */
5985 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5986 bool skip_hwpoisoned_pages)
5987 {
5988 unsigned long pfn, iter, found;
5989 int mt;
5990
5991 /*
5992 * For avoiding noise data, lru_add_drain_all() should be called
5993 * If ZONE_MOVABLE, the zone never contains unmovable pages
5994 */
5995 if (zone_idx(zone) == ZONE_MOVABLE)
5996 return false;
5997 mt = get_pageblock_migratetype(page);
5998 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5999 return false;
6000
6001 pfn = page_to_pfn(page);
6002 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6003 unsigned long check = pfn + iter;
6004
6005 if (!pfn_valid_within(check))
6006 continue;
6007
6008 page = pfn_to_page(check);
6009
6010 /*
6011 * Hugepages are not in LRU lists, but they're movable.
6012 * We need not scan over tail pages bacause we don't
6013 * handle each tail page individually in migration.
6014 */
6015 if (PageHuge(page)) {
6016 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6017 continue;
6018 }
6019
6020 /*
6021 * We can't use page_count without pin a page
6022 * because another CPU can free compound page.
6023 * This check already skips compound tails of THP
6024 * because their page->_count is zero at all time.
6025 */
6026 if (!atomic_read(&page->_count)) {
6027 if (PageBuddy(page))
6028 iter += (1 << page_order(page)) - 1;
6029 continue;
6030 }
6031
6032 /*
6033 * The HWPoisoned page may be not in buddy system, and
6034 * page_count() is not 0.
6035 */
6036 if (skip_hwpoisoned_pages && PageHWPoison(page))
6037 continue;
6038
6039 if (!PageLRU(page))
6040 found++;
6041 /*
6042 * If there are RECLAIMABLE pages, we need to check it.
6043 * But now, memory offline itself doesn't call shrink_slab()
6044 * and it still to be fixed.
6045 */
6046 /*
6047 * If the page is not RAM, page_count()should be 0.
6048 * we don't need more check. This is an _used_ not-movable page.
6049 *
6050 * The problematic thing here is PG_reserved pages. PG_reserved
6051 * is set to both of a memory hole page and a _used_ kernel
6052 * page at boot.
6053 */
6054 if (found > count)
6055 return true;
6056 }
6057 return false;
6058 }
6059
6060 bool is_pageblock_removable_nolock(struct page *page)
6061 {
6062 struct zone *zone;
6063 unsigned long pfn;
6064
6065 /*
6066 * We have to be careful here because we are iterating over memory
6067 * sections which are not zone aware so we might end up outside of
6068 * the zone but still within the section.
6069 * We have to take care about the node as well. If the node is offline
6070 * its NODE_DATA will be NULL - see page_zone.
6071 */
6072 if (!node_online(page_to_nid(page)))
6073 return false;
6074
6075 zone = page_zone(page);
6076 pfn = page_to_pfn(page);
6077 if (!zone_spans_pfn(zone, pfn))
6078 return false;
6079
6080 return !has_unmovable_pages(zone, page, 0, true);
6081 }
6082
6083 #ifdef CONFIG_CMA
6084
6085 static unsigned long pfn_max_align_down(unsigned long pfn)
6086 {
6087 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6088 pageblock_nr_pages) - 1);
6089 }
6090
6091 static unsigned long pfn_max_align_up(unsigned long pfn)
6092 {
6093 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6094 pageblock_nr_pages));
6095 }
6096
6097 /* [start, end) must belong to a single zone. */
6098 static int __alloc_contig_migrate_range(struct compact_control *cc,
6099 unsigned long start, unsigned long end)
6100 {
6101 /* This function is based on compact_zone() from compaction.c. */
6102 unsigned long nr_reclaimed;
6103 unsigned long pfn = start;
6104 unsigned int tries = 0;
6105 int ret = 0;
6106
6107 migrate_prep();
6108
6109 while (pfn < end || !list_empty(&cc->migratepages)) {
6110 if (fatal_signal_pending(current)) {
6111 ret = -EINTR;
6112 break;
6113 }
6114
6115 if (list_empty(&cc->migratepages)) {
6116 cc->nr_migratepages = 0;
6117 pfn = isolate_migratepages_range(cc->zone, cc,
6118 pfn, end, true);
6119 if (!pfn) {
6120 ret = -EINTR;
6121 break;
6122 }
6123 tries = 0;
6124 } else if (++tries == 5) {
6125 ret = ret < 0 ? ret : -EBUSY;
6126 break;
6127 }
6128
6129 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6130 &cc->migratepages);
6131 cc->nr_migratepages -= nr_reclaimed;
6132
6133 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6134 0, MIGRATE_SYNC, MR_CMA);
6135 }
6136 if (ret < 0) {
6137 putback_movable_pages(&cc->migratepages);
6138 return ret;
6139 }
6140 return 0;
6141 }
6142
6143 /**
6144 * alloc_contig_range() -- tries to allocate given range of pages
6145 * @start: start PFN to allocate
6146 * @end: one-past-the-last PFN to allocate
6147 * @migratetype: migratetype of the underlaying pageblocks (either
6148 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6149 * in range must have the same migratetype and it must
6150 * be either of the two.
6151 *
6152 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6153 * aligned, however it's the caller's responsibility to guarantee that
6154 * we are the only thread that changes migrate type of pageblocks the
6155 * pages fall in.
6156 *
6157 * The PFN range must belong to a single zone.
6158 *
6159 * Returns zero on success or negative error code. On success all
6160 * pages which PFN is in [start, end) are allocated for the caller and
6161 * need to be freed with free_contig_range().
6162 */
6163 int alloc_contig_range(unsigned long start, unsigned long end,
6164 unsigned migratetype)
6165 {
6166 unsigned long outer_start, outer_end;
6167 int ret = 0, order;
6168
6169 struct compact_control cc = {
6170 .nr_migratepages = 0,
6171 .order = -1,
6172 .zone = page_zone(pfn_to_page(start)),
6173 .sync = true,
6174 .ignore_skip_hint = true,
6175 };
6176 INIT_LIST_HEAD(&cc.migratepages);
6177
6178 /*
6179 * What we do here is we mark all pageblocks in range as
6180 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6181 * have different sizes, and due to the way page allocator
6182 * work, we align the range to biggest of the two pages so
6183 * that page allocator won't try to merge buddies from
6184 * different pageblocks and change MIGRATE_ISOLATE to some
6185 * other migration type.
6186 *
6187 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6188 * migrate the pages from an unaligned range (ie. pages that
6189 * we are interested in). This will put all the pages in
6190 * range back to page allocator as MIGRATE_ISOLATE.
6191 *
6192 * When this is done, we take the pages in range from page
6193 * allocator removing them from the buddy system. This way
6194 * page allocator will never consider using them.
6195 *
6196 * This lets us mark the pageblocks back as
6197 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6198 * aligned range but not in the unaligned, original range are
6199 * put back to page allocator so that buddy can use them.
6200 */
6201
6202 ret = start_isolate_page_range(pfn_max_align_down(start),
6203 pfn_max_align_up(end), migratetype,
6204 false);
6205 if (ret)
6206 return ret;
6207
6208 ret = __alloc_contig_migrate_range(&cc, start, end);
6209 if (ret)
6210 goto done;
6211
6212 /*
6213 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6214 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6215 * more, all pages in [start, end) are free in page allocator.
6216 * What we are going to do is to allocate all pages from
6217 * [start, end) (that is remove them from page allocator).
6218 *
6219 * The only problem is that pages at the beginning and at the
6220 * end of interesting range may be not aligned with pages that
6221 * page allocator holds, ie. they can be part of higher order
6222 * pages. Because of this, we reserve the bigger range and
6223 * once this is done free the pages we are not interested in.
6224 *
6225 * We don't have to hold zone->lock here because the pages are
6226 * isolated thus they won't get removed from buddy.
6227 */
6228
6229 lru_add_drain_all();
6230 drain_all_pages();
6231
6232 order = 0;
6233 outer_start = start;
6234 while (!PageBuddy(pfn_to_page(outer_start))) {
6235 if (++order >= MAX_ORDER) {
6236 ret = -EBUSY;
6237 goto done;
6238 }
6239 outer_start &= ~0UL << order;
6240 }
6241
6242 /* Make sure the range is really isolated. */
6243 if (test_pages_isolated(outer_start, end, false)) {
6244 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6245 outer_start, end);
6246 ret = -EBUSY;
6247 goto done;
6248 }
6249
6250
6251 /* Grab isolated pages from freelists. */
6252 outer_end = isolate_freepages_range(&cc, outer_start, end);
6253 if (!outer_end) {
6254 ret = -EBUSY;
6255 goto done;
6256 }
6257
6258 /* Free head and tail (if any) */
6259 if (start != outer_start)
6260 free_contig_range(outer_start, start - outer_start);
6261 if (end != outer_end)
6262 free_contig_range(end, outer_end - end);
6263
6264 done:
6265 undo_isolate_page_range(pfn_max_align_down(start),
6266 pfn_max_align_up(end), migratetype);
6267 return ret;
6268 }
6269
6270 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6271 {
6272 unsigned int count = 0;
6273
6274 for (; nr_pages--; pfn++) {
6275 struct page *page = pfn_to_page(pfn);
6276
6277 count += page_count(page) != 1;
6278 __free_page(page);
6279 }
6280 WARN(count != 0, "%d pages are still in use!\n", count);
6281 }
6282 #endif
6283
6284 #ifdef CONFIG_MEMORY_HOTPLUG
6285 /*
6286 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6287 * page high values need to be recalulated.
6288 */
6289 void __meminit zone_pcp_update(struct zone *zone)
6290 {
6291 unsigned cpu;
6292 mutex_lock(&pcp_batch_high_lock);
6293 for_each_possible_cpu(cpu)
6294 pageset_set_high_and_batch(zone,
6295 per_cpu_ptr(zone->pageset, cpu));
6296 mutex_unlock(&pcp_batch_high_lock);
6297 }
6298 #endif
6299
6300 void zone_pcp_reset(struct zone *zone)
6301 {
6302 unsigned long flags;
6303 int cpu;
6304 struct per_cpu_pageset *pset;
6305
6306 /* avoid races with drain_pages() */
6307 local_irq_save(flags);
6308 if (zone->pageset != &boot_pageset) {
6309 for_each_online_cpu(cpu) {
6310 pset = per_cpu_ptr(zone->pageset, cpu);
6311 drain_zonestat(zone, pset);
6312 }
6313 free_percpu(zone->pageset);
6314 zone->pageset = &boot_pageset;
6315 }
6316 local_irq_restore(flags);
6317 }
6318
6319 #ifdef CONFIG_MEMORY_HOTREMOVE
6320 /*
6321 * All pages in the range must be isolated before calling this.
6322 */
6323 void
6324 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6325 {
6326 struct page *page;
6327 struct zone *zone;
6328 int order, i;
6329 unsigned long pfn;
6330 unsigned long flags;
6331 /* find the first valid pfn */
6332 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6333 if (pfn_valid(pfn))
6334 break;
6335 if (pfn == end_pfn)
6336 return;
6337 zone = page_zone(pfn_to_page(pfn));
6338 spin_lock_irqsave(&zone->lock, flags);
6339 pfn = start_pfn;
6340 while (pfn < end_pfn) {
6341 if (!pfn_valid(pfn)) {
6342 pfn++;
6343 continue;
6344 }
6345 page = pfn_to_page(pfn);
6346 /*
6347 * The HWPoisoned page may be not in buddy system, and
6348 * page_count() is not 0.
6349 */
6350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6351 pfn++;
6352 SetPageReserved(page);
6353 continue;
6354 }
6355
6356 BUG_ON(page_count(page));
6357 BUG_ON(!PageBuddy(page));
6358 order = page_order(page);
6359 #ifdef CONFIG_DEBUG_VM
6360 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6361 pfn, 1 << order, end_pfn);
6362 #endif
6363 list_del(&page->lru);
6364 rmv_page_order(page);
6365 zone->free_area[order].nr_free--;
6366 for (i = 0; i < (1 << order); i++)
6367 SetPageReserved((page+i));
6368 pfn += (1 << order);
6369 }
6370 spin_unlock_irqrestore(&zone->lock, flags);
6371 }
6372 #endif
6373
6374 #ifdef CONFIG_MEMORY_FAILURE
6375 bool is_free_buddy_page(struct page *page)
6376 {
6377 struct zone *zone = page_zone(page);
6378 unsigned long pfn = page_to_pfn(page);
6379 unsigned long flags;
6380 int order;
6381
6382 spin_lock_irqsave(&zone->lock, flags);
6383 for (order = 0; order < MAX_ORDER; order++) {
6384 struct page *page_head = page - (pfn & ((1 << order) - 1));
6385
6386 if (PageBuddy(page_head) && page_order(page_head) >= order)
6387 break;
6388 }
6389 spin_unlock_irqrestore(&zone->lock, flags);
6390
6391 return order < MAX_ORDER;
6392 }
6393 #endif
6394
6395 static const struct trace_print_flags pageflag_names[] = {
6396 {1UL << PG_locked, "locked" },
6397 {1UL << PG_error, "error" },
6398 {1UL << PG_referenced, "referenced" },
6399 {1UL << PG_uptodate, "uptodate" },
6400 {1UL << PG_dirty, "dirty" },
6401 {1UL << PG_lru, "lru" },
6402 {1UL << PG_active, "active" },
6403 {1UL << PG_slab, "slab" },
6404 {1UL << PG_owner_priv_1, "owner_priv_1" },
6405 {1UL << PG_arch_1, "arch_1" },
6406 {1UL << PG_reserved, "reserved" },
6407 {1UL << PG_private, "private" },
6408 {1UL << PG_private_2, "private_2" },
6409 {1UL << PG_writeback, "writeback" },
6410 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6411 {1UL << PG_head, "head" },
6412 {1UL << PG_tail, "tail" },
6413 #else
6414 {1UL << PG_compound, "compound" },
6415 #endif
6416 {1UL << PG_swapcache, "swapcache" },
6417 {1UL << PG_mappedtodisk, "mappedtodisk" },
6418 {1UL << PG_reclaim, "reclaim" },
6419 {1UL << PG_swapbacked, "swapbacked" },
6420 {1UL << PG_unevictable, "unevictable" },
6421 #ifdef CONFIG_MMU
6422 {1UL << PG_mlocked, "mlocked" },
6423 #endif
6424 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6425 {1UL << PG_uncached, "uncached" },
6426 #endif
6427 #ifdef CONFIG_MEMORY_FAILURE
6428 {1UL << PG_hwpoison, "hwpoison" },
6429 #endif
6430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6431 {1UL << PG_compound_lock, "compound_lock" },
6432 #endif
6433 };
6434
6435 static void dump_page_flags(unsigned long flags)
6436 {
6437 const char *delim = "";
6438 unsigned long mask;
6439 int i;
6440
6441 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6442
6443 printk(KERN_ALERT "page flags: %#lx(", flags);
6444
6445 /* remove zone id */
6446 flags &= (1UL << NR_PAGEFLAGS) - 1;
6447
6448 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6449
6450 mask = pageflag_names[i].mask;
6451 if ((flags & mask) != mask)
6452 continue;
6453
6454 flags &= ~mask;
6455 printk("%s%s", delim, pageflag_names[i].name);
6456 delim = "|";
6457 }
6458
6459 /* check for left over flags */
6460 if (flags)
6461 printk("%s%#lx", delim, flags);
6462
6463 printk(")\n");
6464 }
6465
6466 void dump_page(struct page *page)
6467 {
6468 printk(KERN_ALERT
6469 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6470 page, atomic_read(&page->_count), page_mapcount(page),
6471 page->mapping, page->index);
6472 dump_page_flags(page->flags);
6473 mem_cgroup_print_bad_page(page);
6474 }