mm, page_alloc: count movable pages when stealing from pageblock
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 32,
215 #endif
216 32,
217 };
218
219 EXPORT_SYMBOL(totalram_pages);
220
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 "DMA32",
227 #endif
228 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 "HighMem",
231 #endif
232 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 "Device",
235 #endif
236 };
237
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243 #ifdef CONFIG_CMA
244 "CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248 #endif
249 };
250
251 compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259 #endif
260 };
261
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289
290 int page_group_by_mobility_disabled __read_mostly;
291
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 return true;
305
306 return false;
307 }
308
309 /*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316 {
317 unsigned long max_initialise;
318
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
321 return true;
322 /*
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
325 */
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
328
329 (*nr_initialised)++;
330 if ((*nr_initialised > max_initialise) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 return false;
346 }
347
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
351 {
352 return true;
353 }
354 #endif
355
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
362 #else
363 return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 #else
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377
378 /**
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
384 *
385 * Return: pageblock_bits flags
386 */
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 unsigned long pfn,
389 unsigned long end_bitidx,
390 unsigned long mask)
391 {
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
394 unsigned long word;
395
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
400
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404 }
405
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
408 unsigned long mask)
409 {
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411 }
412
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 {
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416 }
417
418 /**
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
425 */
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430 {
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
434
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
441
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
447
448 word = READ_ONCE(bitmap[word_bitidx]);
449 for (;;) {
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
452 break;
453 word = old_word;
454 }
455 }
456
457 void set_pageblock_migratetype(struct page *page, int migratetype)
458 {
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
461 migratetype = MIGRATE_UNMOVABLE;
462
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
465 }
466
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 {
470 int ret = 0;
471 unsigned seq;
472 unsigned long pfn = page_to_pfn(page);
473 unsigned long sp, start_pfn;
474
475 do {
476 seq = zone_span_seqbegin(zone);
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
479 if (!zone_spans_pfn(zone, pfn))
480 ret = 1;
481 } while (zone_span_seqretry(zone, seq));
482
483 if (ret)
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
487
488 return ret;
489 }
490
491 static int page_is_consistent(struct zone *zone, struct page *page)
492 {
493 if (!pfn_valid_within(page_to_pfn(page)))
494 return 0;
495 if (zone != page_zone(page))
496 return 0;
497
498 return 1;
499 }
500 /*
501 * Temporary debugging check for pages not lying within a given zone.
502 */
503 static int bad_range(struct zone *zone, struct page *page)
504 {
505 if (page_outside_zone_boundaries(zone, page))
506 return 1;
507 if (!page_is_consistent(zone, page))
508 return 1;
509
510 return 0;
511 }
512 #else
513 static inline int bad_range(struct zone *zone, struct page *page)
514 {
515 return 0;
516 }
517 #endif
518
519 static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
521 {
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 goto out;
534 }
535 if (nr_unshown) {
536 pr_alert(
537 "BUG: Bad page state: %lu messages suppressed\n",
538 nr_unshown);
539 nr_unshown = 0;
540 }
541 nr_shown = 0;
542 }
543 if (nr_shown++ == 0)
544 resume = jiffies + 60 * HZ;
545
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current->comm, page_to_pfn(page));
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
550 if (bad_flags)
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
553 dump_page_owner(page);
554
555 print_modules();
556 dump_stack();
557 out:
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * Higher-order pages are called "compound pages". They are structured thusly:
565 *
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 *
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 *
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
573 *
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
576 */
577
578 void free_compound_page(struct page *page)
579 {
580 __free_pages_ok(page, compound_order(page));
581 }
582
583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 int i;
586 int nr_pages = 1 << order;
587
588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 set_compound_order(page, order);
590 __SetPageHead(page);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
593 set_page_count(p, 0);
594 p->mapping = TAIL_MAPPING;
595 set_compound_head(p, page);
596 }
597 atomic_set(compound_mapcount_ptr(page), -1);
598 }
599
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
606
607 static int __init early_debug_pagealloc(char *buf)
608 {
609 if (!buf)
610 return -EINVAL;
611 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 }
613 early_param("debug_pagealloc", early_debug_pagealloc);
614
615 static bool need_debug_guardpage(void)
616 {
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
619 return false;
620
621 if (!debug_guardpage_minorder())
622 return false;
623
624 return true;
625 }
626
627 static void init_debug_guardpage(void)
628 {
629 if (!debug_pagealloc_enabled())
630 return;
631
632 if (!debug_guardpage_minorder())
633 return;
634
635 _debug_guardpage_enabled = true;
636 }
637
638 struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
641 };
642
643 static int __init debug_guardpage_minorder_setup(char *buf)
644 {
645 unsigned long res;
646
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
649 return 0;
650 }
651 _debug_guardpage_minorder = res;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 return 0;
654 }
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 unsigned int order, int migratetype)
659 {
660 struct page_ext *page_ext;
661
662 if (!debug_guardpage_enabled())
663 return false;
664
665 if (order >= debug_guardpage_minorder())
666 return false;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return false;
671
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678
679 return true;
680 }
681
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return;
689
690 page_ext = lookup_page_ext(page);
691 if (unlikely(!page_ext))
692 return;
693
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
699 }
700 #else
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
706 #endif
707
708 static inline void set_page_order(struct page *page, unsigned int order)
709 {
710 set_page_private(page, order);
711 __SetPageBuddy(page);
712 }
713
714 static inline void rmv_page_order(struct page *page)
715 {
716 __ClearPageBuddy(page);
717 set_page_private(page, 0);
718 }
719
720 /*
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
727 *
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
732 *
733 * For recording page's order, we use page_private(page).
734 */
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
736 unsigned int order)
737 {
738 if (page_is_guard(buddy) && page_order(buddy) == order) {
739 if (page_zone_id(page) != page_zone_id(buddy))
740 return 0;
741
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743
744 return 1;
745 }
746
747 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 /*
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
751 * never merge.
752 */
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
758 return 1;
759 }
760 return 0;
761 }
762
763 /*
764 * Freeing function for a buddy system allocator.
765 *
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778 * field.
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
784 *
785 * -- nyc
786 */
787
788 static inline void __free_one_page(struct page *page,
789 unsigned long pfn,
790 struct zone *zone, unsigned int order,
791 int migratetype)
792 {
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
795 struct page *buddy;
796 unsigned int max_order;
797
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799
800 VM_BUG_ON(!zone_is_initialized(zone));
801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802
803 VM_BUG_ON(migratetype == -1);
804 if (likely(!is_migrate_isolate(migratetype)))
805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806
807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
814
815 if (!pfn_valid_within(buddy_pfn))
816 goto done_merging;
817 if (!page_is_buddy(page, buddy, order))
818 goto done_merging;
819 /*
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
822 */
823 if (page_is_guard(buddy)) {
824 clear_page_guard(zone, buddy, order, migratetype);
825 } else {
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
829 }
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
832 pfn = combined_pfn;
833 order++;
834 }
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
840 *
841 * We don't want to hit this code for the more frequent
842 * low-order merging.
843 */
844 if (unlikely(has_isolate_pageblock(zone))) {
845 int buddy_mt;
846
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
849 buddy_mt = get_pageblock_migratetype(buddy);
850
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
854 goto done_merging;
855 }
856 max_order++;
857 goto continue_merging;
858 }
859
860 done_merging:
861 set_page_order(page, order);
862
863 /*
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
870 */
871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 struct page *higher_page, *higher_buddy;
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
881 goto out;
882 }
883 }
884
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 out:
887 zone->free_area[order].nr_free++;
888 }
889
890 /*
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
894 */
895 static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
897 {
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
899 return false;
900
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
903 #ifdef CONFIG_MEMCG
904 (unsigned long)page->mem_cgroup |
905 #endif
906 (page->flags & check_flags)))
907 return false;
908
909 return true;
910 }
911
912 static void free_pages_check_bad(struct page *page)
913 {
914 const char *bad_reason;
915 unsigned long bad_flags;
916
917 bad_reason = NULL;
918 bad_flags = 0;
919
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
924 if (unlikely(page_ref_count(page) != 0))
925 bad_reason = "nonzero _refcount";
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 }
930 #ifdef CONFIG_MEMCG
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
933 #endif
934 bad_page(page, bad_reason, bad_flags);
935 }
936
937 static inline int free_pages_check(struct page *page)
938 {
939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 return 0;
941
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
944 return 1;
945 }
946
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 {
949 int ret = 1;
950
951 /*
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 */
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 ret = 0;
959 goto out;
960 }
961 switch (page - head_page) {
962 case 1:
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
966 goto out;
967 }
968 break;
969 case 2:
970 /*
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
973 */
974 break;
975 default:
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
978 goto out;
979 }
980 break;
981 }
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
984 goto out;
985 }
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
988 goto out;
989 }
990 ret = 0;
991 out:
992 page->mapping = NULL;
993 clear_compound_head(page);
994 return ret;
995 }
996
997 static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
999 {
1000 int bad = 0;
1001
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1003
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1006
1007 /*
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1010 */
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1013 int i;
1014
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016
1017 if (compound)
1018 ClearPageDoubleMap(page);
1019 for (i = 1; i < (1 << order); i++) {
1020 if (compound)
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1023 bad++;
1024 continue;
1025 }
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 }
1028 }
1029 if (PageMappingFlags(page))
1030 page->mapping = NULL;
1031 if (memcg_kmem_enabled() && PageKmemcg(page))
1032 memcg_kmem_uncharge(page, order);
1033 if (check_free)
1034 bad += free_pages_check(page);
1035 if (bad)
1036 return false;
1037
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
1041
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
1044 PAGE_SIZE << order);
1045 debug_check_no_obj_freed(page_address(page),
1046 PAGE_SIZE << order);
1047 }
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
1051 kasan_free_pages(page, order);
1052
1053 return true;
1054 }
1055
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1058 {
1059 return free_pages_prepare(page, 0, true);
1060 }
1061
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 return false;
1065 }
1066 #else
1067 static bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, false);
1070 }
1071
1072 static bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return free_pages_check(page);
1075 }
1076 #endif /* CONFIG_DEBUG_VM */
1077
1078 /*
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1082 *
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1085 *
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1088 */
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1091 {
1092 int migratetype = 0;
1093 int batch_free = 0;
1094 bool isolated_pageblocks;
1095
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 spin_lock(&zone->lock);
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1154 }
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1157 }
1158
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161 {
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1166
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177 {
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 /*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
1227 SetPageReserved(page);
1228 }
1229 }
1230 }
1231
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 unsigned long flags;
1235 int migratetype;
1236 unsigned long pfn = page_to_pfn(page);
1237
1238 if (!free_pages_prepare(page, order, true))
1239 return;
1240
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(void)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled();
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750
1751 post_alloc_hook(page, order, gfp_flags);
1752
1753 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 for (i = 0; i < (1 << order); i++)
1755 clear_highpage(page + i);
1756
1757 if (order && (gfp_flags & __GFP_COMP))
1758 prep_compound_page(page, order);
1759
1760 /*
1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1765 */
1766 if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 set_page_pfmemalloc(page);
1768 else
1769 clear_page_pfmemalloc(page);
1770 }
1771
1772 /*
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1775 */
1776 static inline
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 int migratetype)
1779 {
1780 unsigned int current_order;
1781 struct free_area *area;
1782 struct page *page;
1783
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 area = &(zone->free_area[current_order]);
1787 page = list_first_entry_or_null(&area->free_list[migratetype],
1788 struct page, lru);
1789 if (!page)
1790 continue;
1791 list_del(&page->lru);
1792 rmv_page_order(page);
1793 area->nr_free--;
1794 expand(zone, page, order, current_order, area, migratetype);
1795 set_pcppage_migratetype(page, migratetype);
1796 return page;
1797 }
1798
1799 return NULL;
1800 }
1801
1802
1803 /*
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1806 */
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811 #ifdef CONFIG_CMA
1812 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1816 #endif
1817 };
1818
1819 #ifdef CONFIG_CMA
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order)
1822 {
1823 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824 }
1825 #else
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order) { return NULL; }
1828 #endif
1829
1830 /*
1831 * Move the free pages in a range to the free lists of the requested type.
1832 * Note that start_page and end_pages are not aligned on a pageblock
1833 * boundary. If alignment is required, use move_freepages_block()
1834 */
1835 static int move_freepages(struct zone *zone,
1836 struct page *start_page, struct page *end_page,
1837 int migratetype, int *num_movable)
1838 {
1839 struct page *page;
1840 unsigned int order;
1841 int pages_moved = 0;
1842
1843 #ifndef CONFIG_HOLES_IN_ZONE
1844 /*
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
1849 * grouping pages by mobility
1850 */
1851 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 #endif
1853
1854 if (num_movable)
1855 *num_movable = 0;
1856
1857 for (page = start_page; page <= end_page;) {
1858 if (!pfn_valid_within(page_to_pfn(page))) {
1859 page++;
1860 continue;
1861 }
1862
1863 /* Make sure we are not inadvertently changing nodes */
1864 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1865
1866 if (!PageBuddy(page)) {
1867 /*
1868 * We assume that pages that could be isolated for
1869 * migration are movable. But we don't actually try
1870 * isolating, as that would be expensive.
1871 */
1872 if (num_movable &&
1873 (PageLRU(page) || __PageMovable(page)))
1874 (*num_movable)++;
1875
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype, int *num_movable)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype,
1909 num_movable);
1910 }
1911
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 int start_order, int migratetype)
1914 {
1915 int nr_pageblocks = 1 << (start_order - pageblock_order);
1916
1917 while (nr_pageblocks--) {
1918 set_pageblock_migratetype(pageblock_page, migratetype);
1919 pageblock_page += pageblock_nr_pages;
1920 }
1921 }
1922
1923 /*
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1927 *
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1933 * pageblocks.
1934 */
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1936 {
1937 /*
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1943 */
1944 if (order >= pageblock_order)
1945 return true;
1946
1947 if (order >= pageblock_order / 2 ||
1948 start_mt == MIGRATE_RECLAIMABLE ||
1949 start_mt == MIGRATE_UNMOVABLE ||
1950 page_group_by_mobility_disabled)
1951 return true;
1952
1953 return false;
1954 }
1955
1956 /*
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
1959 * pageblock to our migratetype and determine how many already-allocated pages
1960 * are there in the pageblock with a compatible migratetype. If at least half
1961 * of pages are free or compatible, we can change migratetype of the pageblock
1962 * itself, so pages freed in the future will be put on the correct free list.
1963 */
1964 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965 int start_type, bool whole_block)
1966 {
1967 unsigned int current_order = page_order(page);
1968 struct free_area *area;
1969 int free_pages, movable_pages, alike_pages;
1970 int old_block_type;
1971
1972 old_block_type = get_pageblock_migratetype(page);
1973
1974 /*
1975 * This can happen due to races and we want to prevent broken
1976 * highatomic accounting.
1977 */
1978 if (is_migrate_highatomic(old_block_type))
1979 goto single_page;
1980
1981 /* Take ownership for orders >= pageblock_order */
1982 if (current_order >= pageblock_order) {
1983 change_pageblock_range(page, current_order, start_type);
1984 goto single_page;
1985 }
1986
1987 /* We are not allowed to try stealing from the whole block */
1988 if (!whole_block)
1989 goto single_page;
1990
1991 free_pages = move_freepages_block(zone, page, start_type,
1992 &movable_pages);
1993 /*
1994 * Determine how many pages are compatible with our allocation.
1995 * For movable allocation, it's the number of movable pages which
1996 * we just obtained. For other types it's a bit more tricky.
1997 */
1998 if (start_type == MIGRATE_MOVABLE) {
1999 alike_pages = movable_pages;
2000 } else {
2001 /*
2002 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 * to MOVABLE pageblock, consider all non-movable pages as
2004 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 * vice versa, be conservative since we can't distinguish the
2006 * exact migratetype of non-movable pages.
2007 */
2008 if (old_block_type == MIGRATE_MOVABLE)
2009 alike_pages = pageblock_nr_pages
2010 - (free_pages + movable_pages);
2011 else
2012 alike_pages = 0;
2013 }
2014
2015 /* moving whole block can fail due to zone boundary conditions */
2016 if (!free_pages)
2017 goto single_page;
2018
2019 /*
2020 * If a sufficient number of pages in the block are either free or of
2021 * comparable migratability as our allocation, claim the whole block.
2022 */
2023 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 page_group_by_mobility_disabled)
2025 set_pageblock_migratetype(page, start_type);
2026
2027 return;
2028
2029 single_page:
2030 area = &zone->free_area[current_order];
2031 list_move(&page->lru, &area->free_list[start_type]);
2032 }
2033
2034 /*
2035 * Check whether there is a suitable fallback freepage with requested order.
2036 * If only_stealable is true, this function returns fallback_mt only if
2037 * we can steal other freepages all together. This would help to reduce
2038 * fragmentation due to mixed migratetype pages in one pageblock.
2039 */
2040 int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 int migratetype, bool only_stealable, bool *can_steal)
2042 {
2043 int i;
2044 int fallback_mt;
2045
2046 if (area->nr_free == 0)
2047 return -1;
2048
2049 *can_steal = false;
2050 for (i = 0;; i++) {
2051 fallback_mt = fallbacks[migratetype][i];
2052 if (fallback_mt == MIGRATE_TYPES)
2053 break;
2054
2055 if (list_empty(&area->free_list[fallback_mt]))
2056 continue;
2057
2058 if (can_steal_fallback(order, migratetype))
2059 *can_steal = true;
2060
2061 if (!only_stealable)
2062 return fallback_mt;
2063
2064 if (*can_steal)
2065 return fallback_mt;
2066 }
2067
2068 return -1;
2069 }
2070
2071 /*
2072 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073 * there are no empty page blocks that contain a page with a suitable order
2074 */
2075 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 unsigned int alloc_order)
2077 {
2078 int mt;
2079 unsigned long max_managed, flags;
2080
2081 /*
2082 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 * Check is race-prone but harmless.
2084 */
2085 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 if (zone->nr_reserved_highatomic >= max_managed)
2087 return;
2088
2089 spin_lock_irqsave(&zone->lock, flags);
2090
2091 /* Recheck the nr_reserved_highatomic limit under the lock */
2092 if (zone->nr_reserved_highatomic >= max_managed)
2093 goto out_unlock;
2094
2095 /* Yoink! */
2096 mt = get_pageblock_migratetype(page);
2097 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 && !is_migrate_cma(mt)) {
2099 zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2102 }
2103
2104 out_unlock:
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107
2108 /*
2109 * Used when an allocation is about to fail under memory pressure. This
2110 * potentially hurts the reliability of high-order allocations when under
2111 * intense memory pressure but failed atomic allocations should be easier
2112 * to recover from than an OOM.
2113 *
2114 * If @force is true, try to unreserve a pageblock even though highatomic
2115 * pageblock is exhausted.
2116 */
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2118 bool force)
2119 {
2120 struct zonelist *zonelist = ac->zonelist;
2121 unsigned long flags;
2122 struct zoneref *z;
2123 struct zone *zone;
2124 struct page *page;
2125 int order;
2126 bool ret;
2127
2128 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2129 ac->nodemask) {
2130 /*
2131 * Preserve at least one pageblock unless memory pressure
2132 * is really high.
2133 */
2134 if (!force && zone->nr_reserved_highatomic <=
2135 pageblock_nr_pages)
2136 continue;
2137
2138 spin_lock_irqsave(&zone->lock, flags);
2139 for (order = 0; order < MAX_ORDER; order++) {
2140 struct free_area *area = &(zone->free_area[order]);
2141
2142 page = list_first_entry_or_null(
2143 &area->free_list[MIGRATE_HIGHATOMIC],
2144 struct page, lru);
2145 if (!page)
2146 continue;
2147
2148 /*
2149 * In page freeing path, migratetype change is racy so
2150 * we can counter several free pages in a pageblock
2151 * in this loop althoug we changed the pageblock type
2152 * from highatomic to ac->migratetype. So we should
2153 * adjust the count once.
2154 */
2155 if (is_migrate_highatomic_page(page)) {
2156 /*
2157 * It should never happen but changes to
2158 * locking could inadvertently allow a per-cpu
2159 * drain to add pages to MIGRATE_HIGHATOMIC
2160 * while unreserving so be safe and watch for
2161 * underflows.
2162 */
2163 zone->nr_reserved_highatomic -= min(
2164 pageblock_nr_pages,
2165 zone->nr_reserved_highatomic);
2166 }
2167
2168 /*
2169 * Convert to ac->migratetype and avoid the normal
2170 * pageblock stealing heuristics. Minimally, the caller
2171 * is doing the work and needs the pages. More
2172 * importantly, if the block was always converted to
2173 * MIGRATE_UNMOVABLE or another type then the number
2174 * of pageblocks that cannot be completely freed
2175 * may increase.
2176 */
2177 set_pageblock_migratetype(page, ac->migratetype);
2178 ret = move_freepages_block(zone, page, ac->migratetype,
2179 NULL);
2180 if (ret) {
2181 spin_unlock_irqrestore(&zone->lock, flags);
2182 return ret;
2183 }
2184 }
2185 spin_unlock_irqrestore(&zone->lock, flags);
2186 }
2187
2188 return false;
2189 }
2190
2191 /*
2192 * Try finding a free buddy page on the fallback list and put it on the free
2193 * list of requested migratetype, possibly along with other pages from the same
2194 * block, depending on fragmentation avoidance heuristics. Returns true if
2195 * fallback was found so that __rmqueue_smallest() can grab it.
2196 */
2197 static inline bool
2198 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2199 {
2200 struct free_area *area;
2201 unsigned int current_order;
2202 struct page *page;
2203 int fallback_mt;
2204 bool can_steal;
2205
2206 /* Find the largest possible block of pages in the other list */
2207 for (current_order = MAX_ORDER-1;
2208 current_order >= order && current_order <= MAX_ORDER-1;
2209 --current_order) {
2210 area = &(zone->free_area[current_order]);
2211 fallback_mt = find_suitable_fallback(area, current_order,
2212 start_migratetype, false, &can_steal);
2213 if (fallback_mt == -1)
2214 continue;
2215
2216 page = list_first_entry(&area->free_list[fallback_mt],
2217 struct page, lru);
2218
2219 steal_suitable_fallback(zone, page, start_migratetype,
2220 can_steal);
2221
2222 trace_mm_page_alloc_extfrag(page, order, current_order,
2223 start_migratetype, fallback_mt);
2224
2225 return true;
2226 }
2227
2228 return false;
2229 }
2230
2231 /*
2232 * Do the hard work of removing an element from the buddy allocator.
2233 * Call me with the zone->lock already held.
2234 */
2235 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2236 int migratetype)
2237 {
2238 struct page *page;
2239
2240 retry:
2241 page = __rmqueue_smallest(zone, order, migratetype);
2242 if (unlikely(!page)) {
2243 if (migratetype == MIGRATE_MOVABLE)
2244 page = __rmqueue_cma_fallback(zone, order);
2245
2246 if (!page && __rmqueue_fallback(zone, order, migratetype))
2247 goto retry;
2248 }
2249
2250 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2251 return page;
2252 }
2253
2254 /*
2255 * Obtain a specified number of elements from the buddy allocator, all under
2256 * a single hold of the lock, for efficiency. Add them to the supplied list.
2257 * Returns the number of new pages which were placed at *list.
2258 */
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 unsigned long count, struct list_head *list,
2261 int migratetype, bool cold)
2262 {
2263 int i, alloced = 0;
2264
2265 spin_lock(&zone->lock);
2266 for (i = 0; i < count; ++i) {
2267 struct page *page = __rmqueue(zone, order, migratetype);
2268 if (unlikely(page == NULL))
2269 break;
2270
2271 if (unlikely(check_pcp_refill(page)))
2272 continue;
2273
2274 /*
2275 * Split buddy pages returned by expand() are received here
2276 * in physical page order. The page is added to the callers and
2277 * list and the list head then moves forward. From the callers
2278 * perspective, the linked list is ordered by page number in
2279 * some conditions. This is useful for IO devices that can
2280 * merge IO requests if the physical pages are ordered
2281 * properly.
2282 */
2283 if (likely(!cold))
2284 list_add(&page->lru, list);
2285 else
2286 list_add_tail(&page->lru, list);
2287 list = &page->lru;
2288 alloced++;
2289 if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2291 -(1 << order));
2292 }
2293
2294 /*
2295 * i pages were removed from the buddy list even if some leak due
2296 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 * on i. Do not confuse with 'alloced' which is the number of
2298 * pages added to the pcp list.
2299 */
2300 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301 spin_unlock(&zone->lock);
2302 return alloced;
2303 }
2304
2305 #ifdef CONFIG_NUMA
2306 /*
2307 * Called from the vmstat counter updater to drain pagesets of this
2308 * currently executing processor on remote nodes after they have
2309 * expired.
2310 *
2311 * Note that this function must be called with the thread pinned to
2312 * a single processor.
2313 */
2314 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2315 {
2316 unsigned long flags;
2317 int to_drain, batch;
2318
2319 local_irq_save(flags);
2320 batch = READ_ONCE(pcp->batch);
2321 to_drain = min(pcp->count, batch);
2322 if (to_drain > 0) {
2323 free_pcppages_bulk(zone, to_drain, pcp);
2324 pcp->count -= to_drain;
2325 }
2326 local_irq_restore(flags);
2327 }
2328 #endif
2329
2330 /*
2331 * Drain pcplists of the indicated processor and zone.
2332 *
2333 * The processor must either be the current processor and the
2334 * thread pinned to the current processor or a processor that
2335 * is not online.
2336 */
2337 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2338 {
2339 unsigned long flags;
2340 struct per_cpu_pageset *pset;
2341 struct per_cpu_pages *pcp;
2342
2343 local_irq_save(flags);
2344 pset = per_cpu_ptr(zone->pageset, cpu);
2345
2346 pcp = &pset->pcp;
2347 if (pcp->count) {
2348 free_pcppages_bulk(zone, pcp->count, pcp);
2349 pcp->count = 0;
2350 }
2351 local_irq_restore(flags);
2352 }
2353
2354 /*
2355 * Drain pcplists of all zones on the indicated processor.
2356 *
2357 * The processor must either be the current processor and the
2358 * thread pinned to the current processor or a processor that
2359 * is not online.
2360 */
2361 static void drain_pages(unsigned int cpu)
2362 {
2363 struct zone *zone;
2364
2365 for_each_populated_zone(zone) {
2366 drain_pages_zone(cpu, zone);
2367 }
2368 }
2369
2370 /*
2371 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2372 *
2373 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374 * the single zone's pages.
2375 */
2376 void drain_local_pages(struct zone *zone)
2377 {
2378 int cpu = smp_processor_id();
2379
2380 if (zone)
2381 drain_pages_zone(cpu, zone);
2382 else
2383 drain_pages(cpu);
2384 }
2385
2386 static void drain_local_pages_wq(struct work_struct *work)
2387 {
2388 /*
2389 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 * we can race with cpu offline when the WQ can move this from
2391 * a cpu pinned worker to an unbound one. We can operate on a different
2392 * cpu which is allright but we also have to make sure to not move to
2393 * a different one.
2394 */
2395 preempt_disable();
2396 drain_local_pages(NULL);
2397 preempt_enable();
2398 }
2399
2400 /*
2401 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2402 *
2403 * When zone parameter is non-NULL, spill just the single zone's pages.
2404 *
2405 * Note that this can be extremely slow as the draining happens in a workqueue.
2406 */
2407 void drain_all_pages(struct zone *zone)
2408 {
2409 int cpu;
2410
2411 /*
2412 * Allocate in the BSS so we wont require allocation in
2413 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2414 */
2415 static cpumask_t cpus_with_pcps;
2416
2417 /*
2418 * Make sure nobody triggers this path before mm_percpu_wq is fully
2419 * initialized.
2420 */
2421 if (WARN_ON_ONCE(!mm_percpu_wq))
2422 return;
2423
2424 /* Workqueues cannot recurse */
2425 if (current->flags & PF_WQ_WORKER)
2426 return;
2427
2428 /*
2429 * Do not drain if one is already in progress unless it's specific to
2430 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 * the drain to be complete when the call returns.
2432 */
2433 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2434 if (!zone)
2435 return;
2436 mutex_lock(&pcpu_drain_mutex);
2437 }
2438
2439 /*
2440 * We don't care about racing with CPU hotplug event
2441 * as offline notification will cause the notified
2442 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 * disables preemption as part of its processing
2444 */
2445 for_each_online_cpu(cpu) {
2446 struct per_cpu_pageset *pcp;
2447 struct zone *z;
2448 bool has_pcps = false;
2449
2450 if (zone) {
2451 pcp = per_cpu_ptr(zone->pageset, cpu);
2452 if (pcp->pcp.count)
2453 has_pcps = true;
2454 } else {
2455 for_each_populated_zone(z) {
2456 pcp = per_cpu_ptr(z->pageset, cpu);
2457 if (pcp->pcp.count) {
2458 has_pcps = true;
2459 break;
2460 }
2461 }
2462 }
2463
2464 if (has_pcps)
2465 cpumask_set_cpu(cpu, &cpus_with_pcps);
2466 else
2467 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2468 }
2469
2470 for_each_cpu(cpu, &cpus_with_pcps) {
2471 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 INIT_WORK(work, drain_local_pages_wq);
2473 queue_work_on(cpu, mm_percpu_wq, work);
2474 }
2475 for_each_cpu(cpu, &cpus_with_pcps)
2476 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2477
2478 mutex_unlock(&pcpu_drain_mutex);
2479 }
2480
2481 #ifdef CONFIG_HIBERNATION
2482
2483 void mark_free_pages(struct zone *zone)
2484 {
2485 unsigned long pfn, max_zone_pfn;
2486 unsigned long flags;
2487 unsigned int order, t;
2488 struct page *page;
2489
2490 if (zone_is_empty(zone))
2491 return;
2492
2493 spin_lock_irqsave(&zone->lock, flags);
2494
2495 max_zone_pfn = zone_end_pfn(zone);
2496 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 if (pfn_valid(pfn)) {
2498 page = pfn_to_page(pfn);
2499
2500 if (page_zone(page) != zone)
2501 continue;
2502
2503 if (!swsusp_page_is_forbidden(page))
2504 swsusp_unset_page_free(page);
2505 }
2506
2507 for_each_migratetype_order(order, t) {
2508 list_for_each_entry(page,
2509 &zone->free_area[order].free_list[t], lru) {
2510 unsigned long i;
2511
2512 pfn = page_to_pfn(page);
2513 for (i = 0; i < (1UL << order); i++)
2514 swsusp_set_page_free(pfn_to_page(pfn + i));
2515 }
2516 }
2517 spin_unlock_irqrestore(&zone->lock, flags);
2518 }
2519 #endif /* CONFIG_PM */
2520
2521 /*
2522 * Free a 0-order page
2523 * cold == true ? free a cold page : free a hot page
2524 */
2525 void free_hot_cold_page(struct page *page, bool cold)
2526 {
2527 struct zone *zone = page_zone(page);
2528 struct per_cpu_pages *pcp;
2529 unsigned long flags;
2530 unsigned long pfn = page_to_pfn(page);
2531 int migratetype;
2532
2533 if (!free_pcp_prepare(page))
2534 return;
2535
2536 migratetype = get_pfnblock_migratetype(page, pfn);
2537 set_pcppage_migratetype(page, migratetype);
2538 local_irq_save(flags);
2539 __count_vm_event(PGFREE);
2540
2541 /*
2542 * We only track unmovable, reclaimable and movable on pcp lists.
2543 * Free ISOLATE pages back to the allocator because they are being
2544 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 * areas back if necessary. Otherwise, we may have to free
2546 * excessively into the page allocator
2547 */
2548 if (migratetype >= MIGRATE_PCPTYPES) {
2549 if (unlikely(is_migrate_isolate(migratetype))) {
2550 free_one_page(zone, page, pfn, 0, migratetype);
2551 goto out;
2552 }
2553 migratetype = MIGRATE_MOVABLE;
2554 }
2555
2556 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2557 if (!cold)
2558 list_add(&page->lru, &pcp->lists[migratetype]);
2559 else
2560 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2561 pcp->count++;
2562 if (pcp->count >= pcp->high) {
2563 unsigned long batch = READ_ONCE(pcp->batch);
2564 free_pcppages_bulk(zone, batch, pcp);
2565 pcp->count -= batch;
2566 }
2567
2568 out:
2569 local_irq_restore(flags);
2570 }
2571
2572 /*
2573 * Free a list of 0-order pages
2574 */
2575 void free_hot_cold_page_list(struct list_head *list, bool cold)
2576 {
2577 struct page *page, *next;
2578
2579 list_for_each_entry_safe(page, next, list, lru) {
2580 trace_mm_page_free_batched(page, cold);
2581 free_hot_cold_page(page, cold);
2582 }
2583 }
2584
2585 /*
2586 * split_page takes a non-compound higher-order page, and splits it into
2587 * n (1<<order) sub-pages: page[0..n]
2588 * Each sub-page must be freed individually.
2589 *
2590 * Note: this is probably too low level an operation for use in drivers.
2591 * Please consult with lkml before using this in your driver.
2592 */
2593 void split_page(struct page *page, unsigned int order)
2594 {
2595 int i;
2596
2597 VM_BUG_ON_PAGE(PageCompound(page), page);
2598 VM_BUG_ON_PAGE(!page_count(page), page);
2599
2600 #ifdef CONFIG_KMEMCHECK
2601 /*
2602 * Split shadow pages too, because free(page[0]) would
2603 * otherwise free the whole shadow.
2604 */
2605 if (kmemcheck_page_is_tracked(page))
2606 split_page(virt_to_page(page[0].shadow), order);
2607 #endif
2608
2609 for (i = 1; i < (1 << order); i++)
2610 set_page_refcounted(page + i);
2611 split_page_owner(page, order);
2612 }
2613 EXPORT_SYMBOL_GPL(split_page);
2614
2615 int __isolate_free_page(struct page *page, unsigned int order)
2616 {
2617 unsigned long watermark;
2618 struct zone *zone;
2619 int mt;
2620
2621 BUG_ON(!PageBuddy(page));
2622
2623 zone = page_zone(page);
2624 mt = get_pageblock_migratetype(page);
2625
2626 if (!is_migrate_isolate(mt)) {
2627 /*
2628 * Obey watermarks as if the page was being allocated. We can
2629 * emulate a high-order watermark check with a raised order-0
2630 * watermark, because we already know our high-order page
2631 * exists.
2632 */
2633 watermark = min_wmark_pages(zone) + (1UL << order);
2634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 return 0;
2636
2637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2638 }
2639
2640 /* Remove page from free list */
2641 list_del(&page->lru);
2642 zone->free_area[order].nr_free--;
2643 rmv_page_order(page);
2644
2645 /*
2646 * Set the pageblock if the isolated page is at least half of a
2647 * pageblock
2648 */
2649 if (order >= pageblock_order - 1) {
2650 struct page *endpage = page + (1 << order) - 1;
2651 for (; page < endpage; page += pageblock_nr_pages) {
2652 int mt = get_pageblock_migratetype(page);
2653 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654 && !is_migrate_highatomic(mt))
2655 set_pageblock_migratetype(page,
2656 MIGRATE_MOVABLE);
2657 }
2658 }
2659
2660
2661 return 1UL << order;
2662 }
2663
2664 /*
2665 * Update NUMA hit/miss statistics
2666 *
2667 * Must be called with interrupts disabled.
2668 */
2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2670 {
2671 #ifdef CONFIG_NUMA
2672 enum zone_stat_item local_stat = NUMA_LOCAL;
2673
2674 if (z->node != numa_node_id())
2675 local_stat = NUMA_OTHER;
2676
2677 if (z->node == preferred_zone->node)
2678 __inc_zone_state(z, NUMA_HIT);
2679 else {
2680 __inc_zone_state(z, NUMA_MISS);
2681 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2682 }
2683 __inc_zone_state(z, local_stat);
2684 #endif
2685 }
2686
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 bool cold, struct per_cpu_pages *pcp,
2690 struct list_head *list)
2691 {
2692 struct page *page;
2693
2694 do {
2695 if (list_empty(list)) {
2696 pcp->count += rmqueue_bulk(zone, 0,
2697 pcp->batch, list,
2698 migratetype, cold);
2699 if (unlikely(list_empty(list)))
2700 return NULL;
2701 }
2702
2703 if (cold)
2704 page = list_last_entry(list, struct page, lru);
2705 else
2706 page = list_first_entry(list, struct page, lru);
2707
2708 list_del(&page->lru);
2709 pcp->count--;
2710 } while (check_new_pcp(page));
2711
2712 return page;
2713 }
2714
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 struct zone *zone, unsigned int order,
2718 gfp_t gfp_flags, int migratetype)
2719 {
2720 struct per_cpu_pages *pcp;
2721 struct list_head *list;
2722 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2723 struct page *page;
2724 unsigned long flags;
2725
2726 local_irq_save(flags);
2727 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 list = &pcp->lists[migratetype];
2729 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2730 if (page) {
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2733 }
2734 local_irq_restore(flags);
2735 return page;
2736 }
2737
2738 /*
2739 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2740 */
2741 static inline
2742 struct page *rmqueue(struct zone *preferred_zone,
2743 struct zone *zone, unsigned int order,
2744 gfp_t gfp_flags, unsigned int alloc_flags,
2745 int migratetype)
2746 {
2747 unsigned long flags;
2748 struct page *page;
2749
2750 if (likely(order == 0)) {
2751 page = rmqueue_pcplist(preferred_zone, zone, order,
2752 gfp_flags, migratetype);
2753 goto out;
2754 }
2755
2756 /*
2757 * We most definitely don't want callers attempting to
2758 * allocate greater than order-1 page units with __GFP_NOFAIL.
2759 */
2760 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 spin_lock_irqsave(&zone->lock, flags);
2762
2763 do {
2764 page = NULL;
2765 if (alloc_flags & ALLOC_HARDER) {
2766 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2767 if (page)
2768 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2769 }
2770 if (!page)
2771 page = __rmqueue(zone, order, migratetype);
2772 } while (page && check_new_pages(page, order));
2773 spin_unlock(&zone->lock);
2774 if (!page)
2775 goto failed;
2776 __mod_zone_freepage_state(zone, -(1 << order),
2777 get_pcppage_migratetype(page));
2778
2779 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 zone_statistics(preferred_zone, zone);
2781 local_irq_restore(flags);
2782
2783 out:
2784 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2785 return page;
2786
2787 failed:
2788 local_irq_restore(flags);
2789 return NULL;
2790 }
2791
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2793
2794 static struct {
2795 struct fault_attr attr;
2796
2797 bool ignore_gfp_highmem;
2798 bool ignore_gfp_reclaim;
2799 u32 min_order;
2800 } fail_page_alloc = {
2801 .attr = FAULT_ATTR_INITIALIZER,
2802 .ignore_gfp_reclaim = true,
2803 .ignore_gfp_highmem = true,
2804 .min_order = 1,
2805 };
2806
2807 static int __init setup_fail_page_alloc(char *str)
2808 {
2809 return setup_fault_attr(&fail_page_alloc.attr, str);
2810 }
2811 __setup("fail_page_alloc=", setup_fail_page_alloc);
2812
2813 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2814 {
2815 if (order < fail_page_alloc.min_order)
2816 return false;
2817 if (gfp_mask & __GFP_NOFAIL)
2818 return false;
2819 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2820 return false;
2821 if (fail_page_alloc.ignore_gfp_reclaim &&
2822 (gfp_mask & __GFP_DIRECT_RECLAIM))
2823 return false;
2824
2825 return should_fail(&fail_page_alloc.attr, 1 << order);
2826 }
2827
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2829
2830 static int __init fail_page_alloc_debugfs(void)
2831 {
2832 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2833 struct dentry *dir;
2834
2835 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 &fail_page_alloc.attr);
2837 if (IS_ERR(dir))
2838 return PTR_ERR(dir);
2839
2840 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841 &fail_page_alloc.ignore_gfp_reclaim))
2842 goto fail;
2843 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 &fail_page_alloc.ignore_gfp_highmem))
2845 goto fail;
2846 if (!debugfs_create_u32("min-order", mode, dir,
2847 &fail_page_alloc.min_order))
2848 goto fail;
2849
2850 return 0;
2851 fail:
2852 debugfs_remove_recursive(dir);
2853
2854 return -ENOMEM;
2855 }
2856
2857 late_initcall(fail_page_alloc_debugfs);
2858
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2860
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2862
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2864 {
2865 return false;
2866 }
2867
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2869
2870 /*
2871 * Return true if free base pages are above 'mark'. For high-order checks it
2872 * will return true of the order-0 watermark is reached and there is at least
2873 * one free page of a suitable size. Checking now avoids taking the zone lock
2874 * to check in the allocation paths if no pages are free.
2875 */
2876 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 int classzone_idx, unsigned int alloc_flags,
2878 long free_pages)
2879 {
2880 long min = mark;
2881 int o;
2882 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2883
2884 /* free_pages may go negative - that's OK */
2885 free_pages -= (1 << order) - 1;
2886
2887 if (alloc_flags & ALLOC_HIGH)
2888 min -= min / 2;
2889
2890 /*
2891 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 * the high-atomic reserves. This will over-estimate the size of the
2893 * atomic reserve but it avoids a search.
2894 */
2895 if (likely(!alloc_harder))
2896 free_pages -= z->nr_reserved_highatomic;
2897 else
2898 min -= min / 4;
2899
2900 #ifdef CONFIG_CMA
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags & ALLOC_CMA))
2903 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2904 #endif
2905
2906 /*
2907 * Check watermarks for an order-0 allocation request. If these
2908 * are not met, then a high-order request also cannot go ahead
2909 * even if a suitable page happened to be free.
2910 */
2911 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2912 return false;
2913
2914 /* If this is an order-0 request then the watermark is fine */
2915 if (!order)
2916 return true;
2917
2918 /* For a high-order request, check at least one suitable page is free */
2919 for (o = order; o < MAX_ORDER; o++) {
2920 struct free_area *area = &z->free_area[o];
2921 int mt;
2922
2923 if (!area->nr_free)
2924 continue;
2925
2926 if (alloc_harder)
2927 return true;
2928
2929 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 if (!list_empty(&area->free_list[mt]))
2931 return true;
2932 }
2933
2934 #ifdef CONFIG_CMA
2935 if ((alloc_flags & ALLOC_CMA) &&
2936 !list_empty(&area->free_list[MIGRATE_CMA])) {
2937 return true;
2938 }
2939 #endif
2940 }
2941 return false;
2942 }
2943
2944 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945 int classzone_idx, unsigned int alloc_flags)
2946 {
2947 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 zone_page_state(z, NR_FREE_PAGES));
2949 }
2950
2951 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2953 {
2954 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2955 long cma_pages = 0;
2956
2957 #ifdef CONFIG_CMA
2958 /* If allocation can't use CMA areas don't use free CMA pages */
2959 if (!(alloc_flags & ALLOC_CMA))
2960 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2961 #endif
2962
2963 /*
2964 * Fast check for order-0 only. If this fails then the reserves
2965 * need to be calculated. There is a corner case where the check
2966 * passes but only the high-order atomic reserve are free. If
2967 * the caller is !atomic then it'll uselessly search the free
2968 * list. That corner case is then slower but it is harmless.
2969 */
2970 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2971 return true;
2972
2973 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2974 free_pages);
2975 }
2976
2977 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978 unsigned long mark, int classzone_idx)
2979 {
2980 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2981
2982 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2984
2985 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2986 free_pages);
2987 }
2988
2989 #ifdef CONFIG_NUMA
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991 {
2992 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2993 RECLAIM_DISTANCE;
2994 }
2995 #else /* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2997 {
2998 return true;
2999 }
3000 #endif /* CONFIG_NUMA */
3001
3002 /*
3003 * get_page_from_freelist goes through the zonelist trying to allocate
3004 * a page.
3005 */
3006 static struct page *
3007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 const struct alloc_context *ac)
3009 {
3010 struct zoneref *z = ac->preferred_zoneref;
3011 struct zone *zone;
3012 struct pglist_data *last_pgdat_dirty_limit = NULL;
3013
3014 /*
3015 * Scan zonelist, looking for a zone with enough free.
3016 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3017 */
3018 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3019 ac->nodemask) {
3020 struct page *page;
3021 unsigned long mark;
3022
3023 if (cpusets_enabled() &&
3024 (alloc_flags & ALLOC_CPUSET) &&
3025 !__cpuset_zone_allowed(zone, gfp_mask))
3026 continue;
3027 /*
3028 * When allocating a page cache page for writing, we
3029 * want to get it from a node that is within its dirty
3030 * limit, such that no single node holds more than its
3031 * proportional share of globally allowed dirty pages.
3032 * The dirty limits take into account the node's
3033 * lowmem reserves and high watermark so that kswapd
3034 * should be able to balance it without having to
3035 * write pages from its LRU list.
3036 *
3037 * XXX: For now, allow allocations to potentially
3038 * exceed the per-node dirty limit in the slowpath
3039 * (spread_dirty_pages unset) before going into reclaim,
3040 * which is important when on a NUMA setup the allowed
3041 * nodes are together not big enough to reach the
3042 * global limit. The proper fix for these situations
3043 * will require awareness of nodes in the
3044 * dirty-throttling and the flusher threads.
3045 */
3046 if (ac->spread_dirty_pages) {
3047 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3048 continue;
3049
3050 if (!node_dirty_ok(zone->zone_pgdat)) {
3051 last_pgdat_dirty_limit = zone->zone_pgdat;
3052 continue;
3053 }
3054 }
3055
3056 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057 if (!zone_watermark_fast(zone, order, mark,
3058 ac_classzone_idx(ac), alloc_flags)) {
3059 int ret;
3060
3061 /* Checked here to keep the fast path fast */
3062 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 if (alloc_flags & ALLOC_NO_WATERMARKS)
3064 goto try_this_zone;
3065
3066 if (node_reclaim_mode == 0 ||
3067 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3068 continue;
3069
3070 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3071 switch (ret) {
3072 case NODE_RECLAIM_NOSCAN:
3073 /* did not scan */
3074 continue;
3075 case NODE_RECLAIM_FULL:
3076 /* scanned but unreclaimable */
3077 continue;
3078 default:
3079 /* did we reclaim enough */
3080 if (zone_watermark_ok(zone, order, mark,
3081 ac_classzone_idx(ac), alloc_flags))
3082 goto try_this_zone;
3083
3084 continue;
3085 }
3086 }
3087
3088 try_this_zone:
3089 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090 gfp_mask, alloc_flags, ac->migratetype);
3091 if (page) {
3092 prep_new_page(page, order, gfp_mask, alloc_flags);
3093
3094 /*
3095 * If this is a high-order atomic allocation then check
3096 * if the pageblock should be reserved for the future
3097 */
3098 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 reserve_highatomic_pageblock(page, zone, order);
3100
3101 return page;
3102 }
3103 }
3104
3105 return NULL;
3106 }
3107
3108 /*
3109 * Large machines with many possible nodes should not always dump per-node
3110 * meminfo in irq context.
3111 */
3112 static inline bool should_suppress_show_mem(void)
3113 {
3114 bool ret = false;
3115
3116 #if NODES_SHIFT > 8
3117 ret = in_interrupt();
3118 #endif
3119 return ret;
3120 }
3121
3122 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3123 {
3124 unsigned int filter = SHOW_MEM_FILTER_NODES;
3125 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3126
3127 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3128 return;
3129
3130 /*
3131 * This documents exceptions given to allocations in certain
3132 * contexts that are allowed to allocate outside current's set
3133 * of allowed nodes.
3134 */
3135 if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 if (test_thread_flag(TIF_MEMDIE) ||
3137 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 filter &= ~SHOW_MEM_FILTER_NODES;
3139 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 filter &= ~SHOW_MEM_FILTER_NODES;
3141
3142 show_mem(filter, nodemask);
3143 }
3144
3145 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3146 {
3147 struct va_format vaf;
3148 va_list args;
3149 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 DEFAULT_RATELIMIT_BURST);
3151
3152 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3153 return;
3154
3155 pr_warn("%s: ", current->comm);
3156
3157 va_start(args, fmt);
3158 vaf.fmt = fmt;
3159 vaf.va = &args;
3160 pr_cont("%pV", &vaf);
3161 va_end(args);
3162
3163 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3164 if (nodemask)
3165 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3166 else
3167 pr_cont("(null)\n");
3168
3169 cpuset_print_current_mems_allowed();
3170
3171 dump_stack();
3172 warn_alloc_show_mem(gfp_mask, nodemask);
3173 }
3174
3175 static inline struct page *
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 unsigned int alloc_flags,
3178 const struct alloc_context *ac)
3179 {
3180 struct page *page;
3181
3182 page = get_page_from_freelist(gfp_mask, order,
3183 alloc_flags|ALLOC_CPUSET, ac);
3184 /*
3185 * fallback to ignore cpuset restriction if our nodes
3186 * are depleted
3187 */
3188 if (!page)
3189 page = get_page_from_freelist(gfp_mask, order,
3190 alloc_flags, ac);
3191
3192 return page;
3193 }
3194
3195 static inline struct page *
3196 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197 const struct alloc_context *ac, unsigned long *did_some_progress)
3198 {
3199 struct oom_control oc = {
3200 .zonelist = ac->zonelist,
3201 .nodemask = ac->nodemask,
3202 .memcg = NULL,
3203 .gfp_mask = gfp_mask,
3204 .order = order,
3205 };
3206 struct page *page;
3207
3208 *did_some_progress = 0;
3209
3210 /*
3211 * Acquire the oom lock. If that fails, somebody else is
3212 * making progress for us.
3213 */
3214 if (!mutex_trylock(&oom_lock)) {
3215 *did_some_progress = 1;
3216 schedule_timeout_uninterruptible(1);
3217 return NULL;
3218 }
3219
3220 /*
3221 * Go through the zonelist yet one more time, keep very high watermark
3222 * here, this is only to catch a parallel oom killing, we must fail if
3223 * we're still under heavy pressure.
3224 */
3225 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3227 if (page)
3228 goto out;
3229
3230 /* Coredumps can quickly deplete all memory reserves */
3231 if (current->flags & PF_DUMPCORE)
3232 goto out;
3233 /* The OOM killer will not help higher order allocs */
3234 if (order > PAGE_ALLOC_COSTLY_ORDER)
3235 goto out;
3236 /* The OOM killer does not needlessly kill tasks for lowmem */
3237 if (ac->high_zoneidx < ZONE_NORMAL)
3238 goto out;
3239 if (pm_suspended_storage())
3240 goto out;
3241 /*
3242 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 * other request to make a forward progress.
3244 * We are in an unfortunate situation where out_of_memory cannot
3245 * do much for this context but let's try it to at least get
3246 * access to memory reserved if the current task is killed (see
3247 * out_of_memory). Once filesystems are ready to handle allocation
3248 * failures more gracefully we should just bail out here.
3249 */
3250
3251 /* The OOM killer may not free memory on a specific node */
3252 if (gfp_mask & __GFP_THISNODE)
3253 goto out;
3254
3255 /* Exhausted what can be done so it's blamo time */
3256 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257 *did_some_progress = 1;
3258
3259 /*
3260 * Help non-failing allocations by giving them access to memory
3261 * reserves
3262 */
3263 if (gfp_mask & __GFP_NOFAIL)
3264 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 ALLOC_NO_WATERMARKS, ac);
3266 }
3267 out:
3268 mutex_unlock(&oom_lock);
3269 return page;
3270 }
3271
3272 /*
3273 * Maximum number of compaction retries wit a progress before OOM
3274 * killer is consider as the only way to move forward.
3275 */
3276 #define MAX_COMPACT_RETRIES 16
3277
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page *
3281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282 unsigned int alloc_flags, const struct alloc_context *ac,
3283 enum compact_priority prio, enum compact_result *compact_result)
3284 {
3285 struct page *page;
3286
3287 if (!order)
3288 return NULL;
3289
3290 current->flags |= PF_MEMALLOC;
3291 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3292 prio);
3293 current->flags &= ~PF_MEMALLOC;
3294
3295 if (*compact_result <= COMPACT_INACTIVE)
3296 return NULL;
3297
3298 /*
3299 * At least in one zone compaction wasn't deferred or skipped, so let's
3300 * count a compaction stall
3301 */
3302 count_vm_event(COMPACTSTALL);
3303
3304 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3305
3306 if (page) {
3307 struct zone *zone = page_zone(page);
3308
3309 zone->compact_blockskip_flush = false;
3310 compaction_defer_reset(zone, order, true);
3311 count_vm_event(COMPACTSUCCESS);
3312 return page;
3313 }
3314
3315 /*
3316 * It's bad if compaction run occurs and fails. The most likely reason
3317 * is that pages exist, but not enough to satisfy watermarks.
3318 */
3319 count_vm_event(COMPACTFAIL);
3320
3321 cond_resched();
3322
3323 return NULL;
3324 }
3325
3326 static inline bool
3327 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3328 enum compact_result compact_result,
3329 enum compact_priority *compact_priority,
3330 int *compaction_retries)
3331 {
3332 int max_retries = MAX_COMPACT_RETRIES;
3333 int min_priority;
3334 bool ret = false;
3335 int retries = *compaction_retries;
3336 enum compact_priority priority = *compact_priority;
3337
3338 if (!order)
3339 return false;
3340
3341 if (compaction_made_progress(compact_result))
3342 (*compaction_retries)++;
3343
3344 /*
3345 * compaction considers all the zone as desperately out of memory
3346 * so it doesn't really make much sense to retry except when the
3347 * failure could be caused by insufficient priority
3348 */
3349 if (compaction_failed(compact_result))
3350 goto check_priority;
3351
3352 /*
3353 * make sure the compaction wasn't deferred or didn't bail out early
3354 * due to locks contention before we declare that we should give up.
3355 * But do not retry if the given zonelist is not suitable for
3356 * compaction.
3357 */
3358 if (compaction_withdrawn(compact_result)) {
3359 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3360 goto out;
3361 }
3362
3363 /*
3364 * !costly requests are much more important than __GFP_REPEAT
3365 * costly ones because they are de facto nofail and invoke OOM
3366 * killer to move on while costly can fail and users are ready
3367 * to cope with that. 1/4 retries is rather arbitrary but we
3368 * would need much more detailed feedback from compaction to
3369 * make a better decision.
3370 */
3371 if (order > PAGE_ALLOC_COSTLY_ORDER)
3372 max_retries /= 4;
3373 if (*compaction_retries <= max_retries) {
3374 ret = true;
3375 goto out;
3376 }
3377
3378 /*
3379 * Make sure there are attempts at the highest priority if we exhausted
3380 * all retries or failed at the lower priorities.
3381 */
3382 check_priority:
3383 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3384 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3385
3386 if (*compact_priority > min_priority) {
3387 (*compact_priority)--;
3388 *compaction_retries = 0;
3389 ret = true;
3390 }
3391 out:
3392 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3393 return ret;
3394 }
3395 #else
3396 static inline struct page *
3397 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3398 unsigned int alloc_flags, const struct alloc_context *ac,
3399 enum compact_priority prio, enum compact_result *compact_result)
3400 {
3401 *compact_result = COMPACT_SKIPPED;
3402 return NULL;
3403 }
3404
3405 static inline bool
3406 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3407 enum compact_result compact_result,
3408 enum compact_priority *compact_priority,
3409 int *compaction_retries)
3410 {
3411 struct zone *zone;
3412 struct zoneref *z;
3413
3414 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3415 return false;
3416
3417 /*
3418 * There are setups with compaction disabled which would prefer to loop
3419 * inside the allocator rather than hit the oom killer prematurely.
3420 * Let's give them a good hope and keep retrying while the order-0
3421 * watermarks are OK.
3422 */
3423 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3424 ac->nodemask) {
3425 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3426 ac_classzone_idx(ac), alloc_flags))
3427 return true;
3428 }
3429 return false;
3430 }
3431 #endif /* CONFIG_COMPACTION */
3432
3433 /* Perform direct synchronous page reclaim */
3434 static int
3435 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3436 const struct alloc_context *ac)
3437 {
3438 struct reclaim_state reclaim_state;
3439 int progress;
3440
3441 cond_resched();
3442
3443 /* We now go into synchronous reclaim */
3444 cpuset_memory_pressure_bump();
3445 current->flags |= PF_MEMALLOC;
3446 lockdep_set_current_reclaim_state(gfp_mask);
3447 reclaim_state.reclaimed_slab = 0;
3448 current->reclaim_state = &reclaim_state;
3449
3450 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3451 ac->nodemask);
3452
3453 current->reclaim_state = NULL;
3454 lockdep_clear_current_reclaim_state();
3455 current->flags &= ~PF_MEMALLOC;
3456
3457 cond_resched();
3458
3459 return progress;
3460 }
3461
3462 /* The really slow allocator path where we enter direct reclaim */
3463 static inline struct page *
3464 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3465 unsigned int alloc_flags, const struct alloc_context *ac,
3466 unsigned long *did_some_progress)
3467 {
3468 struct page *page = NULL;
3469 bool drained = false;
3470
3471 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3472 if (unlikely(!(*did_some_progress)))
3473 return NULL;
3474
3475 retry:
3476 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3477
3478 /*
3479 * If an allocation failed after direct reclaim, it could be because
3480 * pages are pinned on the per-cpu lists or in high alloc reserves.
3481 * Shrink them them and try again
3482 */
3483 if (!page && !drained) {
3484 unreserve_highatomic_pageblock(ac, false);
3485 drain_all_pages(NULL);
3486 drained = true;
3487 goto retry;
3488 }
3489
3490 return page;
3491 }
3492
3493 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3494 {
3495 struct zoneref *z;
3496 struct zone *zone;
3497 pg_data_t *last_pgdat = NULL;
3498
3499 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3500 ac->high_zoneidx, ac->nodemask) {
3501 if (last_pgdat != zone->zone_pgdat)
3502 wakeup_kswapd(zone, order, ac->high_zoneidx);
3503 last_pgdat = zone->zone_pgdat;
3504 }
3505 }
3506
3507 static inline unsigned int
3508 gfp_to_alloc_flags(gfp_t gfp_mask)
3509 {
3510 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3511
3512 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3513 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3514
3515 /*
3516 * The caller may dip into page reserves a bit more if the caller
3517 * cannot run direct reclaim, or if the caller has realtime scheduling
3518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3519 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3520 */
3521 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3522
3523 if (gfp_mask & __GFP_ATOMIC) {
3524 /*
3525 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3526 * if it can't schedule.
3527 */
3528 if (!(gfp_mask & __GFP_NOMEMALLOC))
3529 alloc_flags |= ALLOC_HARDER;
3530 /*
3531 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3532 * comment for __cpuset_node_allowed().
3533 */
3534 alloc_flags &= ~ALLOC_CPUSET;
3535 } else if (unlikely(rt_task(current)) && !in_interrupt())
3536 alloc_flags |= ALLOC_HARDER;
3537
3538 #ifdef CONFIG_CMA
3539 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3540 alloc_flags |= ALLOC_CMA;
3541 #endif
3542 return alloc_flags;
3543 }
3544
3545 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3546 {
3547 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3548 return false;
3549
3550 if (gfp_mask & __GFP_MEMALLOC)
3551 return true;
3552 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3553 return true;
3554 if (!in_interrupt() &&
3555 ((current->flags & PF_MEMALLOC) ||
3556 unlikely(test_thread_flag(TIF_MEMDIE))))
3557 return true;
3558
3559 return false;
3560 }
3561
3562 /*
3563 * Checks whether it makes sense to retry the reclaim to make a forward progress
3564 * for the given allocation request.
3565 *
3566 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3567 * without success, or when we couldn't even meet the watermark if we
3568 * reclaimed all remaining pages on the LRU lists.
3569 *
3570 * Returns true if a retry is viable or false to enter the oom path.
3571 */
3572 static inline bool
3573 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3574 struct alloc_context *ac, int alloc_flags,
3575 bool did_some_progress, int *no_progress_loops)
3576 {
3577 struct zone *zone;
3578 struct zoneref *z;
3579
3580 /*
3581 * Costly allocations might have made a progress but this doesn't mean
3582 * their order will become available due to high fragmentation so
3583 * always increment the no progress counter for them
3584 */
3585 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3586 *no_progress_loops = 0;
3587 else
3588 (*no_progress_loops)++;
3589
3590 /*
3591 * Make sure we converge to OOM if we cannot make any progress
3592 * several times in the row.
3593 */
3594 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3595 /* Before OOM, exhaust highatomic_reserve */
3596 return unreserve_highatomic_pageblock(ac, true);
3597 }
3598
3599 /*
3600 * Keep reclaiming pages while there is a chance this will lead
3601 * somewhere. If none of the target zones can satisfy our allocation
3602 * request even if all reclaimable pages are considered then we are
3603 * screwed and have to go OOM.
3604 */
3605 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3606 ac->nodemask) {
3607 unsigned long available;
3608 unsigned long reclaimable;
3609 unsigned long min_wmark = min_wmark_pages(zone);
3610 bool wmark;
3611
3612 available = reclaimable = zone_reclaimable_pages(zone);
3613 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3614
3615 /*
3616 * Would the allocation succeed if we reclaimed all
3617 * reclaimable pages?
3618 */
3619 wmark = __zone_watermark_ok(zone, order, min_wmark,
3620 ac_classzone_idx(ac), alloc_flags, available);
3621 trace_reclaim_retry_zone(z, order, reclaimable,
3622 available, min_wmark, *no_progress_loops, wmark);
3623 if (wmark) {
3624 /*
3625 * If we didn't make any progress and have a lot of
3626 * dirty + writeback pages then we should wait for
3627 * an IO to complete to slow down the reclaim and
3628 * prevent from pre mature OOM
3629 */
3630 if (!did_some_progress) {
3631 unsigned long write_pending;
3632
3633 write_pending = zone_page_state_snapshot(zone,
3634 NR_ZONE_WRITE_PENDING);
3635
3636 if (2 * write_pending > reclaimable) {
3637 congestion_wait(BLK_RW_ASYNC, HZ/10);
3638 return true;
3639 }
3640 }
3641
3642 /*
3643 * Memory allocation/reclaim might be called from a WQ
3644 * context and the current implementation of the WQ
3645 * concurrency control doesn't recognize that
3646 * a particular WQ is congested if the worker thread is
3647 * looping without ever sleeping. Therefore we have to
3648 * do a short sleep here rather than calling
3649 * cond_resched().
3650 */
3651 if (current->flags & PF_WQ_WORKER)
3652 schedule_timeout_uninterruptible(1);
3653 else
3654 cond_resched();
3655
3656 return true;
3657 }
3658 }
3659
3660 return false;
3661 }
3662
3663 static inline struct page *
3664 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3665 struct alloc_context *ac)
3666 {
3667 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3668 struct page *page = NULL;
3669 unsigned int alloc_flags;
3670 unsigned long did_some_progress;
3671 enum compact_priority compact_priority;
3672 enum compact_result compact_result;
3673 int compaction_retries;
3674 int no_progress_loops;
3675 unsigned long alloc_start = jiffies;
3676 unsigned int stall_timeout = 10 * HZ;
3677 unsigned int cpuset_mems_cookie;
3678
3679 /*
3680 * In the slowpath, we sanity check order to avoid ever trying to
3681 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3682 * be using allocators in order of preference for an area that is
3683 * too large.
3684 */
3685 if (order >= MAX_ORDER) {
3686 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3687 return NULL;
3688 }
3689
3690 /*
3691 * We also sanity check to catch abuse of atomic reserves being used by
3692 * callers that are not in atomic context.
3693 */
3694 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3695 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3696 gfp_mask &= ~__GFP_ATOMIC;
3697
3698 retry_cpuset:
3699 compaction_retries = 0;
3700 no_progress_loops = 0;
3701 compact_priority = DEF_COMPACT_PRIORITY;
3702 cpuset_mems_cookie = read_mems_allowed_begin();
3703
3704 /*
3705 * The fast path uses conservative alloc_flags to succeed only until
3706 * kswapd needs to be woken up, and to avoid the cost of setting up
3707 * alloc_flags precisely. So we do that now.
3708 */
3709 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3710
3711 /*
3712 * We need to recalculate the starting point for the zonelist iterator
3713 * because we might have used different nodemask in the fast path, or
3714 * there was a cpuset modification and we are retrying - otherwise we
3715 * could end up iterating over non-eligible zones endlessly.
3716 */
3717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3718 ac->high_zoneidx, ac->nodemask);
3719 if (!ac->preferred_zoneref->zone)
3720 goto nopage;
3721
3722 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3723 wake_all_kswapds(order, ac);
3724
3725 /*
3726 * The adjusted alloc_flags might result in immediate success, so try
3727 * that first
3728 */
3729 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3730 if (page)
3731 goto got_pg;
3732
3733 /*
3734 * For costly allocations, try direct compaction first, as it's likely
3735 * that we have enough base pages and don't need to reclaim. Don't try
3736 * that for allocations that are allowed to ignore watermarks, as the
3737 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3738 */
3739 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3740 !gfp_pfmemalloc_allowed(gfp_mask)) {
3741 page = __alloc_pages_direct_compact(gfp_mask, order,
3742 alloc_flags, ac,
3743 INIT_COMPACT_PRIORITY,
3744 &compact_result);
3745 if (page)
3746 goto got_pg;
3747
3748 /*
3749 * Checks for costly allocations with __GFP_NORETRY, which
3750 * includes THP page fault allocations
3751 */
3752 if (gfp_mask & __GFP_NORETRY) {
3753 /*
3754 * If compaction is deferred for high-order allocations,
3755 * it is because sync compaction recently failed. If
3756 * this is the case and the caller requested a THP
3757 * allocation, we do not want to heavily disrupt the
3758 * system, so we fail the allocation instead of entering
3759 * direct reclaim.
3760 */
3761 if (compact_result == COMPACT_DEFERRED)
3762 goto nopage;
3763
3764 /*
3765 * Looks like reclaim/compaction is worth trying, but
3766 * sync compaction could be very expensive, so keep
3767 * using async compaction.
3768 */
3769 compact_priority = INIT_COMPACT_PRIORITY;
3770 }
3771 }
3772
3773 retry:
3774 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3775 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3776 wake_all_kswapds(order, ac);
3777
3778 if (gfp_pfmemalloc_allowed(gfp_mask))
3779 alloc_flags = ALLOC_NO_WATERMARKS;
3780
3781 /*
3782 * Reset the zonelist iterators if memory policies can be ignored.
3783 * These allocations are high priority and system rather than user
3784 * orientated.
3785 */
3786 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3787 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3788 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3789 ac->high_zoneidx, ac->nodemask);
3790 }
3791
3792 /* Attempt with potentially adjusted zonelist and alloc_flags */
3793 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3794 if (page)
3795 goto got_pg;
3796
3797 /* Caller is not willing to reclaim, we can't balance anything */
3798 if (!can_direct_reclaim)
3799 goto nopage;
3800
3801 /* Make sure we know about allocations which stall for too long */
3802 if (time_after(jiffies, alloc_start + stall_timeout)) {
3803 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3804 "page allocation stalls for %ums, order:%u",
3805 jiffies_to_msecs(jiffies-alloc_start), order);
3806 stall_timeout += 10 * HZ;
3807 }
3808
3809 /* Avoid recursion of direct reclaim */
3810 if (current->flags & PF_MEMALLOC)
3811 goto nopage;
3812
3813 /* Try direct reclaim and then allocating */
3814 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3815 &did_some_progress);
3816 if (page)
3817 goto got_pg;
3818
3819 /* Try direct compaction and then allocating */
3820 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3821 compact_priority, &compact_result);
3822 if (page)
3823 goto got_pg;
3824
3825 /* Do not loop if specifically requested */
3826 if (gfp_mask & __GFP_NORETRY)
3827 goto nopage;
3828
3829 /*
3830 * Do not retry costly high order allocations unless they are
3831 * __GFP_REPEAT
3832 */
3833 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3834 goto nopage;
3835
3836 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3837 did_some_progress > 0, &no_progress_loops))
3838 goto retry;
3839
3840 /*
3841 * It doesn't make any sense to retry for the compaction if the order-0
3842 * reclaim is not able to make any progress because the current
3843 * implementation of the compaction depends on the sufficient amount
3844 * of free memory (see __compaction_suitable)
3845 */
3846 if (did_some_progress > 0 &&
3847 should_compact_retry(ac, order, alloc_flags,
3848 compact_result, &compact_priority,
3849 &compaction_retries))
3850 goto retry;
3851
3852 /*
3853 * It's possible we raced with cpuset update so the OOM would be
3854 * premature (see below the nopage: label for full explanation).
3855 */
3856 if (read_mems_allowed_retry(cpuset_mems_cookie))
3857 goto retry_cpuset;
3858
3859 /* Reclaim has failed us, start killing things */
3860 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3861 if (page)
3862 goto got_pg;
3863
3864 /* Avoid allocations with no watermarks from looping endlessly */
3865 if (test_thread_flag(TIF_MEMDIE))
3866 goto nopage;
3867
3868 /* Retry as long as the OOM killer is making progress */
3869 if (did_some_progress) {
3870 no_progress_loops = 0;
3871 goto retry;
3872 }
3873
3874 nopage:
3875 /*
3876 * When updating a task's mems_allowed or mempolicy nodemask, it is
3877 * possible to race with parallel threads in such a way that our
3878 * allocation can fail while the mask is being updated. If we are about
3879 * to fail, check if the cpuset changed during allocation and if so,
3880 * retry.
3881 */
3882 if (read_mems_allowed_retry(cpuset_mems_cookie))
3883 goto retry_cpuset;
3884
3885 /*
3886 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3887 * we always retry
3888 */
3889 if (gfp_mask & __GFP_NOFAIL) {
3890 /*
3891 * All existing users of the __GFP_NOFAIL are blockable, so warn
3892 * of any new users that actually require GFP_NOWAIT
3893 */
3894 if (WARN_ON_ONCE(!can_direct_reclaim))
3895 goto fail;
3896
3897 /*
3898 * PF_MEMALLOC request from this context is rather bizarre
3899 * because we cannot reclaim anything and only can loop waiting
3900 * for somebody to do a work for us
3901 */
3902 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3903
3904 /*
3905 * non failing costly orders are a hard requirement which we
3906 * are not prepared for much so let's warn about these users
3907 * so that we can identify them and convert them to something
3908 * else.
3909 */
3910 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3911
3912 /*
3913 * Help non-failing allocations by giving them access to memory
3914 * reserves but do not use ALLOC_NO_WATERMARKS because this
3915 * could deplete whole memory reserves which would just make
3916 * the situation worse
3917 */
3918 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3919 if (page)
3920 goto got_pg;
3921
3922 cond_resched();
3923 goto retry;
3924 }
3925 fail:
3926 warn_alloc(gfp_mask, ac->nodemask,
3927 "page allocation failure: order:%u", order);
3928 got_pg:
3929 return page;
3930 }
3931
3932 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3933 struct zonelist *zonelist, nodemask_t *nodemask,
3934 struct alloc_context *ac, gfp_t *alloc_mask,
3935 unsigned int *alloc_flags)
3936 {
3937 ac->high_zoneidx = gfp_zone(gfp_mask);
3938 ac->zonelist = zonelist;
3939 ac->nodemask = nodemask;
3940 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3941
3942 if (cpusets_enabled()) {
3943 *alloc_mask |= __GFP_HARDWALL;
3944 if (!ac->nodemask)
3945 ac->nodemask = &cpuset_current_mems_allowed;
3946 else
3947 *alloc_flags |= ALLOC_CPUSET;
3948 }
3949
3950 lockdep_trace_alloc(gfp_mask);
3951
3952 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3953
3954 if (should_fail_alloc_page(gfp_mask, order))
3955 return false;
3956
3957 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3958 *alloc_flags |= ALLOC_CMA;
3959
3960 return true;
3961 }
3962
3963 /* Determine whether to spread dirty pages and what the first usable zone */
3964 static inline void finalise_ac(gfp_t gfp_mask,
3965 unsigned int order, struct alloc_context *ac)
3966 {
3967 /* Dirty zone balancing only done in the fast path */
3968 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3969
3970 /*
3971 * The preferred zone is used for statistics but crucially it is
3972 * also used as the starting point for the zonelist iterator. It
3973 * may get reset for allocations that ignore memory policies.
3974 */
3975 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3976 ac->high_zoneidx, ac->nodemask);
3977 }
3978
3979 /*
3980 * This is the 'heart' of the zoned buddy allocator.
3981 */
3982 struct page *
3983 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3984 struct zonelist *zonelist, nodemask_t *nodemask)
3985 {
3986 struct page *page;
3987 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3988 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3989 struct alloc_context ac = { };
3990
3991 gfp_mask &= gfp_allowed_mask;
3992 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3993 return NULL;
3994
3995 finalise_ac(gfp_mask, order, &ac);
3996
3997 /* First allocation attempt */
3998 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3999 if (likely(page))
4000 goto out;
4001
4002 /*
4003 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4004 * resp. GFP_NOIO which has to be inherited for all allocation requests
4005 * from a particular context which has been marked by
4006 * memalloc_no{fs,io}_{save,restore}.
4007 */
4008 alloc_mask = current_gfp_context(gfp_mask);
4009 ac.spread_dirty_pages = false;
4010
4011 /*
4012 * Restore the original nodemask if it was potentially replaced with
4013 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4014 */
4015 if (unlikely(ac.nodemask != nodemask))
4016 ac.nodemask = nodemask;
4017
4018 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4019
4020 out:
4021 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4022 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4023 __free_pages(page, order);
4024 page = NULL;
4025 }
4026
4027 if (kmemcheck_enabled && page)
4028 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4029
4030 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4031
4032 return page;
4033 }
4034 EXPORT_SYMBOL(__alloc_pages_nodemask);
4035
4036 /*
4037 * Common helper functions.
4038 */
4039 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4040 {
4041 struct page *page;
4042
4043 /*
4044 * __get_free_pages() returns a 32-bit address, which cannot represent
4045 * a highmem page
4046 */
4047 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4048
4049 page = alloc_pages(gfp_mask, order);
4050 if (!page)
4051 return 0;
4052 return (unsigned long) page_address(page);
4053 }
4054 EXPORT_SYMBOL(__get_free_pages);
4055
4056 unsigned long get_zeroed_page(gfp_t gfp_mask)
4057 {
4058 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4059 }
4060 EXPORT_SYMBOL(get_zeroed_page);
4061
4062 void __free_pages(struct page *page, unsigned int order)
4063 {
4064 if (put_page_testzero(page)) {
4065 if (order == 0)
4066 free_hot_cold_page(page, false);
4067 else
4068 __free_pages_ok(page, order);
4069 }
4070 }
4071
4072 EXPORT_SYMBOL(__free_pages);
4073
4074 void free_pages(unsigned long addr, unsigned int order)
4075 {
4076 if (addr != 0) {
4077 VM_BUG_ON(!virt_addr_valid((void *)addr));
4078 __free_pages(virt_to_page((void *)addr), order);
4079 }
4080 }
4081
4082 EXPORT_SYMBOL(free_pages);
4083
4084 /*
4085 * Page Fragment:
4086 * An arbitrary-length arbitrary-offset area of memory which resides
4087 * within a 0 or higher order page. Multiple fragments within that page
4088 * are individually refcounted, in the page's reference counter.
4089 *
4090 * The page_frag functions below provide a simple allocation framework for
4091 * page fragments. This is used by the network stack and network device
4092 * drivers to provide a backing region of memory for use as either an
4093 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4094 */
4095 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4096 gfp_t gfp_mask)
4097 {
4098 struct page *page = NULL;
4099 gfp_t gfp = gfp_mask;
4100
4101 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4102 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4103 __GFP_NOMEMALLOC;
4104 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4105 PAGE_FRAG_CACHE_MAX_ORDER);
4106 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4107 #endif
4108 if (unlikely(!page))
4109 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4110
4111 nc->va = page ? page_address(page) : NULL;
4112
4113 return page;
4114 }
4115
4116 void __page_frag_cache_drain(struct page *page, unsigned int count)
4117 {
4118 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4119
4120 if (page_ref_sub_and_test(page, count)) {
4121 unsigned int order = compound_order(page);
4122
4123 if (order == 0)
4124 free_hot_cold_page(page, false);
4125 else
4126 __free_pages_ok(page, order);
4127 }
4128 }
4129 EXPORT_SYMBOL(__page_frag_cache_drain);
4130
4131 void *page_frag_alloc(struct page_frag_cache *nc,
4132 unsigned int fragsz, gfp_t gfp_mask)
4133 {
4134 unsigned int size = PAGE_SIZE;
4135 struct page *page;
4136 int offset;
4137
4138 if (unlikely(!nc->va)) {
4139 refill:
4140 page = __page_frag_cache_refill(nc, gfp_mask);
4141 if (!page)
4142 return NULL;
4143
4144 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4145 /* if size can vary use size else just use PAGE_SIZE */
4146 size = nc->size;
4147 #endif
4148 /* Even if we own the page, we do not use atomic_set().
4149 * This would break get_page_unless_zero() users.
4150 */
4151 page_ref_add(page, size - 1);
4152
4153 /* reset page count bias and offset to start of new frag */
4154 nc->pfmemalloc = page_is_pfmemalloc(page);
4155 nc->pagecnt_bias = size;
4156 nc->offset = size;
4157 }
4158
4159 offset = nc->offset - fragsz;
4160 if (unlikely(offset < 0)) {
4161 page = virt_to_page(nc->va);
4162
4163 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4164 goto refill;
4165
4166 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4167 /* if size can vary use size else just use PAGE_SIZE */
4168 size = nc->size;
4169 #endif
4170 /* OK, page count is 0, we can safely set it */
4171 set_page_count(page, size);
4172
4173 /* reset page count bias and offset to start of new frag */
4174 nc->pagecnt_bias = size;
4175 offset = size - fragsz;
4176 }
4177
4178 nc->pagecnt_bias--;
4179 nc->offset = offset;
4180
4181 return nc->va + offset;
4182 }
4183 EXPORT_SYMBOL(page_frag_alloc);
4184
4185 /*
4186 * Frees a page fragment allocated out of either a compound or order 0 page.
4187 */
4188 void page_frag_free(void *addr)
4189 {
4190 struct page *page = virt_to_head_page(addr);
4191
4192 if (unlikely(put_page_testzero(page)))
4193 __free_pages_ok(page, compound_order(page));
4194 }
4195 EXPORT_SYMBOL(page_frag_free);
4196
4197 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4198 size_t size)
4199 {
4200 if (addr) {
4201 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4202 unsigned long used = addr + PAGE_ALIGN(size);
4203
4204 split_page(virt_to_page((void *)addr), order);
4205 while (used < alloc_end) {
4206 free_page(used);
4207 used += PAGE_SIZE;
4208 }
4209 }
4210 return (void *)addr;
4211 }
4212
4213 /**
4214 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4215 * @size: the number of bytes to allocate
4216 * @gfp_mask: GFP flags for the allocation
4217 *
4218 * This function is similar to alloc_pages(), except that it allocates the
4219 * minimum number of pages to satisfy the request. alloc_pages() can only
4220 * allocate memory in power-of-two pages.
4221 *
4222 * This function is also limited by MAX_ORDER.
4223 *
4224 * Memory allocated by this function must be released by free_pages_exact().
4225 */
4226 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4227 {
4228 unsigned int order = get_order(size);
4229 unsigned long addr;
4230
4231 addr = __get_free_pages(gfp_mask, order);
4232 return make_alloc_exact(addr, order, size);
4233 }
4234 EXPORT_SYMBOL(alloc_pages_exact);
4235
4236 /**
4237 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4238 * pages on a node.
4239 * @nid: the preferred node ID where memory should be allocated
4240 * @size: the number of bytes to allocate
4241 * @gfp_mask: GFP flags for the allocation
4242 *
4243 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4244 * back.
4245 */
4246 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4247 {
4248 unsigned int order = get_order(size);
4249 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4250 if (!p)
4251 return NULL;
4252 return make_alloc_exact((unsigned long)page_address(p), order, size);
4253 }
4254
4255 /**
4256 * free_pages_exact - release memory allocated via alloc_pages_exact()
4257 * @virt: the value returned by alloc_pages_exact.
4258 * @size: size of allocation, same value as passed to alloc_pages_exact().
4259 *
4260 * Release the memory allocated by a previous call to alloc_pages_exact.
4261 */
4262 void free_pages_exact(void *virt, size_t size)
4263 {
4264 unsigned long addr = (unsigned long)virt;
4265 unsigned long end = addr + PAGE_ALIGN(size);
4266
4267 while (addr < end) {
4268 free_page(addr);
4269 addr += PAGE_SIZE;
4270 }
4271 }
4272 EXPORT_SYMBOL(free_pages_exact);
4273
4274 /**
4275 * nr_free_zone_pages - count number of pages beyond high watermark
4276 * @offset: The zone index of the highest zone
4277 *
4278 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4279 * high watermark within all zones at or below a given zone index. For each
4280 * zone, the number of pages is calculated as:
4281 *
4282 * nr_free_zone_pages = managed_pages - high_pages
4283 */
4284 static unsigned long nr_free_zone_pages(int offset)
4285 {
4286 struct zoneref *z;
4287 struct zone *zone;
4288
4289 /* Just pick one node, since fallback list is circular */
4290 unsigned long sum = 0;
4291
4292 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4293
4294 for_each_zone_zonelist(zone, z, zonelist, offset) {
4295 unsigned long size = zone->managed_pages;
4296 unsigned long high = high_wmark_pages(zone);
4297 if (size > high)
4298 sum += size - high;
4299 }
4300
4301 return sum;
4302 }
4303
4304 /**
4305 * nr_free_buffer_pages - count number of pages beyond high watermark
4306 *
4307 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4308 * watermark within ZONE_DMA and ZONE_NORMAL.
4309 */
4310 unsigned long nr_free_buffer_pages(void)
4311 {
4312 return nr_free_zone_pages(gfp_zone(GFP_USER));
4313 }
4314 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4315
4316 /**
4317 * nr_free_pagecache_pages - count number of pages beyond high watermark
4318 *
4319 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4320 * high watermark within all zones.
4321 */
4322 unsigned long nr_free_pagecache_pages(void)
4323 {
4324 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4325 }
4326
4327 static inline void show_node(struct zone *zone)
4328 {
4329 if (IS_ENABLED(CONFIG_NUMA))
4330 printk("Node %d ", zone_to_nid(zone));
4331 }
4332
4333 long si_mem_available(void)
4334 {
4335 long available;
4336 unsigned long pagecache;
4337 unsigned long wmark_low = 0;
4338 unsigned long pages[NR_LRU_LISTS];
4339 struct zone *zone;
4340 int lru;
4341
4342 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4343 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4344
4345 for_each_zone(zone)
4346 wmark_low += zone->watermark[WMARK_LOW];
4347
4348 /*
4349 * Estimate the amount of memory available for userspace allocations,
4350 * without causing swapping.
4351 */
4352 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4353
4354 /*
4355 * Not all the page cache can be freed, otherwise the system will
4356 * start swapping. Assume at least half of the page cache, or the
4357 * low watermark worth of cache, needs to stay.
4358 */
4359 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4360 pagecache -= min(pagecache / 2, wmark_low);
4361 available += pagecache;
4362
4363 /*
4364 * Part of the reclaimable slab consists of items that are in use,
4365 * and cannot be freed. Cap this estimate at the low watermark.
4366 */
4367 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4368 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4369
4370 if (available < 0)
4371 available = 0;
4372 return available;
4373 }
4374 EXPORT_SYMBOL_GPL(si_mem_available);
4375
4376 void si_meminfo(struct sysinfo *val)
4377 {
4378 val->totalram = totalram_pages;
4379 val->sharedram = global_node_page_state(NR_SHMEM);
4380 val->freeram = global_page_state(NR_FREE_PAGES);
4381 val->bufferram = nr_blockdev_pages();
4382 val->totalhigh = totalhigh_pages;
4383 val->freehigh = nr_free_highpages();
4384 val->mem_unit = PAGE_SIZE;
4385 }
4386
4387 EXPORT_SYMBOL(si_meminfo);
4388
4389 #ifdef CONFIG_NUMA
4390 void si_meminfo_node(struct sysinfo *val, int nid)
4391 {
4392 int zone_type; /* needs to be signed */
4393 unsigned long managed_pages = 0;
4394 unsigned long managed_highpages = 0;
4395 unsigned long free_highpages = 0;
4396 pg_data_t *pgdat = NODE_DATA(nid);
4397
4398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4399 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4400 val->totalram = managed_pages;
4401 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4402 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4403 #ifdef CONFIG_HIGHMEM
4404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4405 struct zone *zone = &pgdat->node_zones[zone_type];
4406
4407 if (is_highmem(zone)) {
4408 managed_highpages += zone->managed_pages;
4409 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4410 }
4411 }
4412 val->totalhigh = managed_highpages;
4413 val->freehigh = free_highpages;
4414 #else
4415 val->totalhigh = managed_highpages;
4416 val->freehigh = free_highpages;
4417 #endif
4418 val->mem_unit = PAGE_SIZE;
4419 }
4420 #endif
4421
4422 /*
4423 * Determine whether the node should be displayed or not, depending on whether
4424 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4425 */
4426 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4427 {
4428 if (!(flags & SHOW_MEM_FILTER_NODES))
4429 return false;
4430
4431 /*
4432 * no node mask - aka implicit memory numa policy. Do not bother with
4433 * the synchronization - read_mems_allowed_begin - because we do not
4434 * have to be precise here.
4435 */
4436 if (!nodemask)
4437 nodemask = &cpuset_current_mems_allowed;
4438
4439 return !node_isset(nid, *nodemask);
4440 }
4441
4442 #define K(x) ((x) << (PAGE_SHIFT-10))
4443
4444 static void show_migration_types(unsigned char type)
4445 {
4446 static const char types[MIGRATE_TYPES] = {
4447 [MIGRATE_UNMOVABLE] = 'U',
4448 [MIGRATE_MOVABLE] = 'M',
4449 [MIGRATE_RECLAIMABLE] = 'E',
4450 [MIGRATE_HIGHATOMIC] = 'H',
4451 #ifdef CONFIG_CMA
4452 [MIGRATE_CMA] = 'C',
4453 #endif
4454 #ifdef CONFIG_MEMORY_ISOLATION
4455 [MIGRATE_ISOLATE] = 'I',
4456 #endif
4457 };
4458 char tmp[MIGRATE_TYPES + 1];
4459 char *p = tmp;
4460 int i;
4461
4462 for (i = 0; i < MIGRATE_TYPES; i++) {
4463 if (type & (1 << i))
4464 *p++ = types[i];
4465 }
4466
4467 *p = '\0';
4468 printk(KERN_CONT "(%s) ", tmp);
4469 }
4470
4471 /*
4472 * Show free area list (used inside shift_scroll-lock stuff)
4473 * We also calculate the percentage fragmentation. We do this by counting the
4474 * memory on each free list with the exception of the first item on the list.
4475 *
4476 * Bits in @filter:
4477 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4478 * cpuset.
4479 */
4480 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4481 {
4482 unsigned long free_pcp = 0;
4483 int cpu;
4484 struct zone *zone;
4485 pg_data_t *pgdat;
4486
4487 for_each_populated_zone(zone) {
4488 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4489 continue;
4490
4491 for_each_online_cpu(cpu)
4492 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4493 }
4494
4495 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4496 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4497 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4498 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4499 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4500 " free:%lu free_pcp:%lu free_cma:%lu\n",
4501 global_node_page_state(NR_ACTIVE_ANON),
4502 global_node_page_state(NR_INACTIVE_ANON),
4503 global_node_page_state(NR_ISOLATED_ANON),
4504 global_node_page_state(NR_ACTIVE_FILE),
4505 global_node_page_state(NR_INACTIVE_FILE),
4506 global_node_page_state(NR_ISOLATED_FILE),
4507 global_node_page_state(NR_UNEVICTABLE),
4508 global_node_page_state(NR_FILE_DIRTY),
4509 global_node_page_state(NR_WRITEBACK),
4510 global_node_page_state(NR_UNSTABLE_NFS),
4511 global_page_state(NR_SLAB_RECLAIMABLE),
4512 global_page_state(NR_SLAB_UNRECLAIMABLE),
4513 global_node_page_state(NR_FILE_MAPPED),
4514 global_node_page_state(NR_SHMEM),
4515 global_page_state(NR_PAGETABLE),
4516 global_page_state(NR_BOUNCE),
4517 global_page_state(NR_FREE_PAGES),
4518 free_pcp,
4519 global_page_state(NR_FREE_CMA_PAGES));
4520
4521 for_each_online_pgdat(pgdat) {
4522 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4523 continue;
4524
4525 printk("Node %d"
4526 " active_anon:%lukB"
4527 " inactive_anon:%lukB"
4528 " active_file:%lukB"
4529 " inactive_file:%lukB"
4530 " unevictable:%lukB"
4531 " isolated(anon):%lukB"
4532 " isolated(file):%lukB"
4533 " mapped:%lukB"
4534 " dirty:%lukB"
4535 " writeback:%lukB"
4536 " shmem:%lukB"
4537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4538 " shmem_thp: %lukB"
4539 " shmem_pmdmapped: %lukB"
4540 " anon_thp: %lukB"
4541 #endif
4542 " writeback_tmp:%lukB"
4543 " unstable:%lukB"
4544 " all_unreclaimable? %s"
4545 "\n",
4546 pgdat->node_id,
4547 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4548 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4549 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4550 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4551 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4552 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4553 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4554 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4555 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4556 K(node_page_state(pgdat, NR_WRITEBACK)),
4557 K(node_page_state(pgdat, NR_SHMEM)),
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4560 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4561 * HPAGE_PMD_NR),
4562 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4563 #endif
4564 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4565 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4566 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4567 "yes" : "no");
4568 }
4569
4570 for_each_populated_zone(zone) {
4571 int i;
4572
4573 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4574 continue;
4575
4576 free_pcp = 0;
4577 for_each_online_cpu(cpu)
4578 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4579
4580 show_node(zone);
4581 printk(KERN_CONT
4582 "%s"
4583 " free:%lukB"
4584 " min:%lukB"
4585 " low:%lukB"
4586 " high:%lukB"
4587 " active_anon:%lukB"
4588 " inactive_anon:%lukB"
4589 " active_file:%lukB"
4590 " inactive_file:%lukB"
4591 " unevictable:%lukB"
4592 " writepending:%lukB"
4593 " present:%lukB"
4594 " managed:%lukB"
4595 " mlocked:%lukB"
4596 " slab_reclaimable:%lukB"
4597 " slab_unreclaimable:%lukB"
4598 " kernel_stack:%lukB"
4599 " pagetables:%lukB"
4600 " bounce:%lukB"
4601 " free_pcp:%lukB"
4602 " local_pcp:%ukB"
4603 " free_cma:%lukB"
4604 "\n",
4605 zone->name,
4606 K(zone_page_state(zone, NR_FREE_PAGES)),
4607 K(min_wmark_pages(zone)),
4608 K(low_wmark_pages(zone)),
4609 K(high_wmark_pages(zone)),
4610 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4611 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4612 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4613 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4614 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4615 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4616 K(zone->present_pages),
4617 K(zone->managed_pages),
4618 K(zone_page_state(zone, NR_MLOCK)),
4619 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4620 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4621 zone_page_state(zone, NR_KERNEL_STACK_KB),
4622 K(zone_page_state(zone, NR_PAGETABLE)),
4623 K(zone_page_state(zone, NR_BOUNCE)),
4624 K(free_pcp),
4625 K(this_cpu_read(zone->pageset->pcp.count)),
4626 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4627 printk("lowmem_reserve[]:");
4628 for (i = 0; i < MAX_NR_ZONES; i++)
4629 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4630 printk(KERN_CONT "\n");
4631 }
4632
4633 for_each_populated_zone(zone) {
4634 unsigned int order;
4635 unsigned long nr[MAX_ORDER], flags, total = 0;
4636 unsigned char types[MAX_ORDER];
4637
4638 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4639 continue;
4640 show_node(zone);
4641 printk(KERN_CONT "%s: ", zone->name);
4642
4643 spin_lock_irqsave(&zone->lock, flags);
4644 for (order = 0; order < MAX_ORDER; order++) {
4645 struct free_area *area = &zone->free_area[order];
4646 int type;
4647
4648 nr[order] = area->nr_free;
4649 total += nr[order] << order;
4650
4651 types[order] = 0;
4652 for (type = 0; type < MIGRATE_TYPES; type++) {
4653 if (!list_empty(&area->free_list[type]))
4654 types[order] |= 1 << type;
4655 }
4656 }
4657 spin_unlock_irqrestore(&zone->lock, flags);
4658 for (order = 0; order < MAX_ORDER; order++) {
4659 printk(KERN_CONT "%lu*%lukB ",
4660 nr[order], K(1UL) << order);
4661 if (nr[order])
4662 show_migration_types(types[order]);
4663 }
4664 printk(KERN_CONT "= %lukB\n", K(total));
4665 }
4666
4667 hugetlb_show_meminfo();
4668
4669 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4670
4671 show_swap_cache_info();
4672 }
4673
4674 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4675 {
4676 zoneref->zone = zone;
4677 zoneref->zone_idx = zone_idx(zone);
4678 }
4679
4680 /*
4681 * Builds allocation fallback zone lists.
4682 *
4683 * Add all populated zones of a node to the zonelist.
4684 */
4685 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4686 int nr_zones)
4687 {
4688 struct zone *zone;
4689 enum zone_type zone_type = MAX_NR_ZONES;
4690
4691 do {
4692 zone_type--;
4693 zone = pgdat->node_zones + zone_type;
4694 if (managed_zone(zone)) {
4695 zoneref_set_zone(zone,
4696 &zonelist->_zonerefs[nr_zones++]);
4697 check_highest_zone(zone_type);
4698 }
4699 } while (zone_type);
4700
4701 return nr_zones;
4702 }
4703
4704
4705 /*
4706 * zonelist_order:
4707 * 0 = automatic detection of better ordering.
4708 * 1 = order by ([node] distance, -zonetype)
4709 * 2 = order by (-zonetype, [node] distance)
4710 *
4711 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4712 * the same zonelist. So only NUMA can configure this param.
4713 */
4714 #define ZONELIST_ORDER_DEFAULT 0
4715 #define ZONELIST_ORDER_NODE 1
4716 #define ZONELIST_ORDER_ZONE 2
4717
4718 /* zonelist order in the kernel.
4719 * set_zonelist_order() will set this to NODE or ZONE.
4720 */
4721 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4722 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4723
4724
4725 #ifdef CONFIG_NUMA
4726 /* The value user specified ....changed by config */
4727 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4728 /* string for sysctl */
4729 #define NUMA_ZONELIST_ORDER_LEN 16
4730 char numa_zonelist_order[16] = "default";
4731
4732 /*
4733 * interface for configure zonelist ordering.
4734 * command line option "numa_zonelist_order"
4735 * = "[dD]efault - default, automatic configuration.
4736 * = "[nN]ode - order by node locality, then by zone within node
4737 * = "[zZ]one - order by zone, then by locality within zone
4738 */
4739
4740 static int __parse_numa_zonelist_order(char *s)
4741 {
4742 if (*s == 'd' || *s == 'D') {
4743 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4744 } else if (*s == 'n' || *s == 'N') {
4745 user_zonelist_order = ZONELIST_ORDER_NODE;
4746 } else if (*s == 'z' || *s == 'Z') {
4747 user_zonelist_order = ZONELIST_ORDER_ZONE;
4748 } else {
4749 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4750 return -EINVAL;
4751 }
4752 return 0;
4753 }
4754
4755 static __init int setup_numa_zonelist_order(char *s)
4756 {
4757 int ret;
4758
4759 if (!s)
4760 return 0;
4761
4762 ret = __parse_numa_zonelist_order(s);
4763 if (ret == 0)
4764 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4765
4766 return ret;
4767 }
4768 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4769
4770 /*
4771 * sysctl handler for numa_zonelist_order
4772 */
4773 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4774 void __user *buffer, size_t *length,
4775 loff_t *ppos)
4776 {
4777 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4778 int ret;
4779 static DEFINE_MUTEX(zl_order_mutex);
4780
4781 mutex_lock(&zl_order_mutex);
4782 if (write) {
4783 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4784 ret = -EINVAL;
4785 goto out;
4786 }
4787 strcpy(saved_string, (char *)table->data);
4788 }
4789 ret = proc_dostring(table, write, buffer, length, ppos);
4790 if (ret)
4791 goto out;
4792 if (write) {
4793 int oldval = user_zonelist_order;
4794
4795 ret = __parse_numa_zonelist_order((char *)table->data);
4796 if (ret) {
4797 /*
4798 * bogus value. restore saved string
4799 */
4800 strncpy((char *)table->data, saved_string,
4801 NUMA_ZONELIST_ORDER_LEN);
4802 user_zonelist_order = oldval;
4803 } else if (oldval != user_zonelist_order) {
4804 mutex_lock(&zonelists_mutex);
4805 build_all_zonelists(NULL, NULL);
4806 mutex_unlock(&zonelists_mutex);
4807 }
4808 }
4809 out:
4810 mutex_unlock(&zl_order_mutex);
4811 return ret;
4812 }
4813
4814
4815 #define MAX_NODE_LOAD (nr_online_nodes)
4816 static int node_load[MAX_NUMNODES];
4817
4818 /**
4819 * find_next_best_node - find the next node that should appear in a given node's fallback list
4820 * @node: node whose fallback list we're appending
4821 * @used_node_mask: nodemask_t of already used nodes
4822 *
4823 * We use a number of factors to determine which is the next node that should
4824 * appear on a given node's fallback list. The node should not have appeared
4825 * already in @node's fallback list, and it should be the next closest node
4826 * according to the distance array (which contains arbitrary distance values
4827 * from each node to each node in the system), and should also prefer nodes
4828 * with no CPUs, since presumably they'll have very little allocation pressure
4829 * on them otherwise.
4830 * It returns -1 if no node is found.
4831 */
4832 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4833 {
4834 int n, val;
4835 int min_val = INT_MAX;
4836 int best_node = NUMA_NO_NODE;
4837 const struct cpumask *tmp = cpumask_of_node(0);
4838
4839 /* Use the local node if we haven't already */
4840 if (!node_isset(node, *used_node_mask)) {
4841 node_set(node, *used_node_mask);
4842 return node;
4843 }
4844
4845 for_each_node_state(n, N_MEMORY) {
4846
4847 /* Don't want a node to appear more than once */
4848 if (node_isset(n, *used_node_mask))
4849 continue;
4850
4851 /* Use the distance array to find the distance */
4852 val = node_distance(node, n);
4853
4854 /* Penalize nodes under us ("prefer the next node") */
4855 val += (n < node);
4856
4857 /* Give preference to headless and unused nodes */
4858 tmp = cpumask_of_node(n);
4859 if (!cpumask_empty(tmp))
4860 val += PENALTY_FOR_NODE_WITH_CPUS;
4861
4862 /* Slight preference for less loaded node */
4863 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4864 val += node_load[n];
4865
4866 if (val < min_val) {
4867 min_val = val;
4868 best_node = n;
4869 }
4870 }
4871
4872 if (best_node >= 0)
4873 node_set(best_node, *used_node_mask);
4874
4875 return best_node;
4876 }
4877
4878
4879 /*
4880 * Build zonelists ordered by node and zones within node.
4881 * This results in maximum locality--normal zone overflows into local
4882 * DMA zone, if any--but risks exhausting DMA zone.
4883 */
4884 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4885 {
4886 int j;
4887 struct zonelist *zonelist;
4888
4889 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4890 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4891 ;
4892 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4893 zonelist->_zonerefs[j].zone = NULL;
4894 zonelist->_zonerefs[j].zone_idx = 0;
4895 }
4896
4897 /*
4898 * Build gfp_thisnode zonelists
4899 */
4900 static void build_thisnode_zonelists(pg_data_t *pgdat)
4901 {
4902 int j;
4903 struct zonelist *zonelist;
4904
4905 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4906 j = build_zonelists_node(pgdat, zonelist, 0);
4907 zonelist->_zonerefs[j].zone = NULL;
4908 zonelist->_zonerefs[j].zone_idx = 0;
4909 }
4910
4911 /*
4912 * Build zonelists ordered by zone and nodes within zones.
4913 * This results in conserving DMA zone[s] until all Normal memory is
4914 * exhausted, but results in overflowing to remote node while memory
4915 * may still exist in local DMA zone.
4916 */
4917 static int node_order[MAX_NUMNODES];
4918
4919 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4920 {
4921 int pos, j, node;
4922 int zone_type; /* needs to be signed */
4923 struct zone *z;
4924 struct zonelist *zonelist;
4925
4926 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4927 pos = 0;
4928 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4929 for (j = 0; j < nr_nodes; j++) {
4930 node = node_order[j];
4931 z = &NODE_DATA(node)->node_zones[zone_type];
4932 if (managed_zone(z)) {
4933 zoneref_set_zone(z,
4934 &zonelist->_zonerefs[pos++]);
4935 check_highest_zone(zone_type);
4936 }
4937 }
4938 }
4939 zonelist->_zonerefs[pos].zone = NULL;
4940 zonelist->_zonerefs[pos].zone_idx = 0;
4941 }
4942
4943 #if defined(CONFIG_64BIT)
4944 /*
4945 * Devices that require DMA32/DMA are relatively rare and do not justify a
4946 * penalty to every machine in case the specialised case applies. Default
4947 * to Node-ordering on 64-bit NUMA machines
4948 */
4949 static int default_zonelist_order(void)
4950 {
4951 return ZONELIST_ORDER_NODE;
4952 }
4953 #else
4954 /*
4955 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4956 * by the kernel. If processes running on node 0 deplete the low memory zone
4957 * then reclaim will occur more frequency increasing stalls and potentially
4958 * be easier to OOM if a large percentage of the zone is under writeback or
4959 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4960 * Hence, default to zone ordering on 32-bit.
4961 */
4962 static int default_zonelist_order(void)
4963 {
4964 return ZONELIST_ORDER_ZONE;
4965 }
4966 #endif /* CONFIG_64BIT */
4967
4968 static void set_zonelist_order(void)
4969 {
4970 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4971 current_zonelist_order = default_zonelist_order();
4972 else
4973 current_zonelist_order = user_zonelist_order;
4974 }
4975
4976 static void build_zonelists(pg_data_t *pgdat)
4977 {
4978 int i, node, load;
4979 nodemask_t used_mask;
4980 int local_node, prev_node;
4981 struct zonelist *zonelist;
4982 unsigned int order = current_zonelist_order;
4983
4984 /* initialize zonelists */
4985 for (i = 0; i < MAX_ZONELISTS; i++) {
4986 zonelist = pgdat->node_zonelists + i;
4987 zonelist->_zonerefs[0].zone = NULL;
4988 zonelist->_zonerefs[0].zone_idx = 0;
4989 }
4990
4991 /* NUMA-aware ordering of nodes */
4992 local_node = pgdat->node_id;
4993 load = nr_online_nodes;
4994 prev_node = local_node;
4995 nodes_clear(used_mask);
4996
4997 memset(node_order, 0, sizeof(node_order));
4998 i = 0;
4999
5000 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5001 /*
5002 * We don't want to pressure a particular node.
5003 * So adding penalty to the first node in same
5004 * distance group to make it round-robin.
5005 */
5006 if (node_distance(local_node, node) !=
5007 node_distance(local_node, prev_node))
5008 node_load[node] = load;
5009
5010 prev_node = node;
5011 load--;
5012 if (order == ZONELIST_ORDER_NODE)
5013 build_zonelists_in_node_order(pgdat, node);
5014 else
5015 node_order[i++] = node; /* remember order */
5016 }
5017
5018 if (order == ZONELIST_ORDER_ZONE) {
5019 /* calculate node order -- i.e., DMA last! */
5020 build_zonelists_in_zone_order(pgdat, i);
5021 }
5022
5023 build_thisnode_zonelists(pgdat);
5024 }
5025
5026 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5027 /*
5028 * Return node id of node used for "local" allocations.
5029 * I.e., first node id of first zone in arg node's generic zonelist.
5030 * Used for initializing percpu 'numa_mem', which is used primarily
5031 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5032 */
5033 int local_memory_node(int node)
5034 {
5035 struct zoneref *z;
5036
5037 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5038 gfp_zone(GFP_KERNEL),
5039 NULL);
5040 return z->zone->node;
5041 }
5042 #endif
5043
5044 static void setup_min_unmapped_ratio(void);
5045 static void setup_min_slab_ratio(void);
5046 #else /* CONFIG_NUMA */
5047
5048 static void set_zonelist_order(void)
5049 {
5050 current_zonelist_order = ZONELIST_ORDER_ZONE;
5051 }
5052
5053 static void build_zonelists(pg_data_t *pgdat)
5054 {
5055 int node, local_node;
5056 enum zone_type j;
5057 struct zonelist *zonelist;
5058
5059 local_node = pgdat->node_id;
5060
5061 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5062 j = build_zonelists_node(pgdat, zonelist, 0);
5063
5064 /*
5065 * Now we build the zonelist so that it contains the zones
5066 * of all the other nodes.
5067 * We don't want to pressure a particular node, so when
5068 * building the zones for node N, we make sure that the
5069 * zones coming right after the local ones are those from
5070 * node N+1 (modulo N)
5071 */
5072 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5073 if (!node_online(node))
5074 continue;
5075 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5076 }
5077 for (node = 0; node < local_node; node++) {
5078 if (!node_online(node))
5079 continue;
5080 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5081 }
5082
5083 zonelist->_zonerefs[j].zone = NULL;
5084 zonelist->_zonerefs[j].zone_idx = 0;
5085 }
5086
5087 #endif /* CONFIG_NUMA */
5088
5089 /*
5090 * Boot pageset table. One per cpu which is going to be used for all
5091 * zones and all nodes. The parameters will be set in such a way
5092 * that an item put on a list will immediately be handed over to
5093 * the buddy list. This is safe since pageset manipulation is done
5094 * with interrupts disabled.
5095 *
5096 * The boot_pagesets must be kept even after bootup is complete for
5097 * unused processors and/or zones. They do play a role for bootstrapping
5098 * hotplugged processors.
5099 *
5100 * zoneinfo_show() and maybe other functions do
5101 * not check if the processor is online before following the pageset pointer.
5102 * Other parts of the kernel may not check if the zone is available.
5103 */
5104 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5105 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5106 static void setup_zone_pageset(struct zone *zone);
5107
5108 /*
5109 * Global mutex to protect against size modification of zonelists
5110 * as well as to serialize pageset setup for the new populated zone.
5111 */
5112 DEFINE_MUTEX(zonelists_mutex);
5113
5114 /* return values int ....just for stop_machine() */
5115 static int __build_all_zonelists(void *data)
5116 {
5117 int nid;
5118 int cpu;
5119 pg_data_t *self = data;
5120
5121 #ifdef CONFIG_NUMA
5122 memset(node_load, 0, sizeof(node_load));
5123 #endif
5124
5125 if (self && !node_online(self->node_id)) {
5126 build_zonelists(self);
5127 }
5128
5129 for_each_online_node(nid) {
5130 pg_data_t *pgdat = NODE_DATA(nid);
5131
5132 build_zonelists(pgdat);
5133 }
5134
5135 /*
5136 * Initialize the boot_pagesets that are going to be used
5137 * for bootstrapping processors. The real pagesets for
5138 * each zone will be allocated later when the per cpu
5139 * allocator is available.
5140 *
5141 * boot_pagesets are used also for bootstrapping offline
5142 * cpus if the system is already booted because the pagesets
5143 * are needed to initialize allocators on a specific cpu too.
5144 * F.e. the percpu allocator needs the page allocator which
5145 * needs the percpu allocator in order to allocate its pagesets
5146 * (a chicken-egg dilemma).
5147 */
5148 for_each_possible_cpu(cpu) {
5149 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5150
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5152 /*
5153 * We now know the "local memory node" for each node--
5154 * i.e., the node of the first zone in the generic zonelist.
5155 * Set up numa_mem percpu variable for on-line cpus. During
5156 * boot, only the boot cpu should be on-line; we'll init the
5157 * secondary cpus' numa_mem as they come on-line. During
5158 * node/memory hotplug, we'll fixup all on-line cpus.
5159 */
5160 if (cpu_online(cpu))
5161 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5162 #endif
5163 }
5164
5165 return 0;
5166 }
5167
5168 static noinline void __init
5169 build_all_zonelists_init(void)
5170 {
5171 __build_all_zonelists(NULL);
5172 mminit_verify_zonelist();
5173 cpuset_init_current_mems_allowed();
5174 }
5175
5176 /*
5177 * Called with zonelists_mutex held always
5178 * unless system_state == SYSTEM_BOOTING.
5179 *
5180 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5181 * [we're only called with non-NULL zone through __meminit paths] and
5182 * (2) call of __init annotated helper build_all_zonelists_init
5183 * [protected by SYSTEM_BOOTING].
5184 */
5185 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5186 {
5187 set_zonelist_order();
5188
5189 if (system_state == SYSTEM_BOOTING) {
5190 build_all_zonelists_init();
5191 } else {
5192 #ifdef CONFIG_MEMORY_HOTPLUG
5193 if (zone)
5194 setup_zone_pageset(zone);
5195 #endif
5196 /* we have to stop all cpus to guarantee there is no user
5197 of zonelist */
5198 stop_machine(__build_all_zonelists, pgdat, NULL);
5199 /* cpuset refresh routine should be here */
5200 }
5201 vm_total_pages = nr_free_pagecache_pages();
5202 /*
5203 * Disable grouping by mobility if the number of pages in the
5204 * system is too low to allow the mechanism to work. It would be
5205 * more accurate, but expensive to check per-zone. This check is
5206 * made on memory-hotadd so a system can start with mobility
5207 * disabled and enable it later
5208 */
5209 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5210 page_group_by_mobility_disabled = 1;
5211 else
5212 page_group_by_mobility_disabled = 0;
5213
5214 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5215 nr_online_nodes,
5216 zonelist_order_name[current_zonelist_order],
5217 page_group_by_mobility_disabled ? "off" : "on",
5218 vm_total_pages);
5219 #ifdef CONFIG_NUMA
5220 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5221 #endif
5222 }
5223
5224 /*
5225 * Initially all pages are reserved - free ones are freed
5226 * up by free_all_bootmem() once the early boot process is
5227 * done. Non-atomic initialization, single-pass.
5228 */
5229 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5230 unsigned long start_pfn, enum memmap_context context)
5231 {
5232 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5233 unsigned long end_pfn = start_pfn + size;
5234 pg_data_t *pgdat = NODE_DATA(nid);
5235 unsigned long pfn;
5236 unsigned long nr_initialised = 0;
5237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5238 struct memblock_region *r = NULL, *tmp;
5239 #endif
5240
5241 if (highest_memmap_pfn < end_pfn - 1)
5242 highest_memmap_pfn = end_pfn - 1;
5243
5244 /*
5245 * Honor reservation requested by the driver for this ZONE_DEVICE
5246 * memory
5247 */
5248 if (altmap && start_pfn == altmap->base_pfn)
5249 start_pfn += altmap->reserve;
5250
5251 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5252 /*
5253 * There can be holes in boot-time mem_map[]s handed to this
5254 * function. They do not exist on hotplugged memory.
5255 */
5256 if (context != MEMMAP_EARLY)
5257 goto not_early;
5258
5259 if (!early_pfn_valid(pfn)) {
5260 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5261 /*
5262 * Skip to the pfn preceding the next valid one (or
5263 * end_pfn), such that we hit a valid pfn (or end_pfn)
5264 * on our next iteration of the loop.
5265 */
5266 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5267 #endif
5268 continue;
5269 }
5270 if (!early_pfn_in_nid(pfn, nid))
5271 continue;
5272 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5273 break;
5274
5275 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5276 /*
5277 * Check given memblock attribute by firmware which can affect
5278 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5279 * mirrored, it's an overlapped memmap init. skip it.
5280 */
5281 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5282 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5283 for_each_memblock(memory, tmp)
5284 if (pfn < memblock_region_memory_end_pfn(tmp))
5285 break;
5286 r = tmp;
5287 }
5288 if (pfn >= memblock_region_memory_base_pfn(r) &&
5289 memblock_is_mirror(r)) {
5290 /* already initialized as NORMAL */
5291 pfn = memblock_region_memory_end_pfn(r);
5292 continue;
5293 }
5294 }
5295 #endif
5296
5297 not_early:
5298 /*
5299 * Mark the block movable so that blocks are reserved for
5300 * movable at startup. This will force kernel allocations
5301 * to reserve their blocks rather than leaking throughout
5302 * the address space during boot when many long-lived
5303 * kernel allocations are made.
5304 *
5305 * bitmap is created for zone's valid pfn range. but memmap
5306 * can be created for invalid pages (for alignment)
5307 * check here not to call set_pageblock_migratetype() against
5308 * pfn out of zone.
5309 */
5310 if (!(pfn & (pageblock_nr_pages - 1))) {
5311 struct page *page = pfn_to_page(pfn);
5312
5313 __init_single_page(page, pfn, zone, nid);
5314 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5315 } else {
5316 __init_single_pfn(pfn, zone, nid);
5317 }
5318 }
5319 }
5320
5321 static void __meminit zone_init_free_lists(struct zone *zone)
5322 {
5323 unsigned int order, t;
5324 for_each_migratetype_order(order, t) {
5325 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5326 zone->free_area[order].nr_free = 0;
5327 }
5328 }
5329
5330 #ifndef __HAVE_ARCH_MEMMAP_INIT
5331 #define memmap_init(size, nid, zone, start_pfn) \
5332 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5333 #endif
5334
5335 static int zone_batchsize(struct zone *zone)
5336 {
5337 #ifdef CONFIG_MMU
5338 int batch;
5339
5340 /*
5341 * The per-cpu-pages pools are set to around 1000th of the
5342 * size of the zone. But no more than 1/2 of a meg.
5343 *
5344 * OK, so we don't know how big the cache is. So guess.
5345 */
5346 batch = zone->managed_pages / 1024;
5347 if (batch * PAGE_SIZE > 512 * 1024)
5348 batch = (512 * 1024) / PAGE_SIZE;
5349 batch /= 4; /* We effectively *= 4 below */
5350 if (batch < 1)
5351 batch = 1;
5352
5353 /*
5354 * Clamp the batch to a 2^n - 1 value. Having a power
5355 * of 2 value was found to be more likely to have
5356 * suboptimal cache aliasing properties in some cases.
5357 *
5358 * For example if 2 tasks are alternately allocating
5359 * batches of pages, one task can end up with a lot
5360 * of pages of one half of the possible page colors
5361 * and the other with pages of the other colors.
5362 */
5363 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5364
5365 return batch;
5366
5367 #else
5368 /* The deferral and batching of frees should be suppressed under NOMMU
5369 * conditions.
5370 *
5371 * The problem is that NOMMU needs to be able to allocate large chunks
5372 * of contiguous memory as there's no hardware page translation to
5373 * assemble apparent contiguous memory from discontiguous pages.
5374 *
5375 * Queueing large contiguous runs of pages for batching, however,
5376 * causes the pages to actually be freed in smaller chunks. As there
5377 * can be a significant delay between the individual batches being
5378 * recycled, this leads to the once large chunks of space being
5379 * fragmented and becoming unavailable for high-order allocations.
5380 */
5381 return 0;
5382 #endif
5383 }
5384
5385 /*
5386 * pcp->high and pcp->batch values are related and dependent on one another:
5387 * ->batch must never be higher then ->high.
5388 * The following function updates them in a safe manner without read side
5389 * locking.
5390 *
5391 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5392 * those fields changing asynchronously (acording the the above rule).
5393 *
5394 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5395 * outside of boot time (or some other assurance that no concurrent updaters
5396 * exist).
5397 */
5398 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5399 unsigned long batch)
5400 {
5401 /* start with a fail safe value for batch */
5402 pcp->batch = 1;
5403 smp_wmb();
5404
5405 /* Update high, then batch, in order */
5406 pcp->high = high;
5407 smp_wmb();
5408
5409 pcp->batch = batch;
5410 }
5411
5412 /* a companion to pageset_set_high() */
5413 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5414 {
5415 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5416 }
5417
5418 static void pageset_init(struct per_cpu_pageset *p)
5419 {
5420 struct per_cpu_pages *pcp;
5421 int migratetype;
5422
5423 memset(p, 0, sizeof(*p));
5424
5425 pcp = &p->pcp;
5426 pcp->count = 0;
5427 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5428 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5429 }
5430
5431 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5432 {
5433 pageset_init(p);
5434 pageset_set_batch(p, batch);
5435 }
5436
5437 /*
5438 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5439 * to the value high for the pageset p.
5440 */
5441 static void pageset_set_high(struct per_cpu_pageset *p,
5442 unsigned long high)
5443 {
5444 unsigned long batch = max(1UL, high / 4);
5445 if ((high / 4) > (PAGE_SHIFT * 8))
5446 batch = PAGE_SHIFT * 8;
5447
5448 pageset_update(&p->pcp, high, batch);
5449 }
5450
5451 static void pageset_set_high_and_batch(struct zone *zone,
5452 struct per_cpu_pageset *pcp)
5453 {
5454 if (percpu_pagelist_fraction)
5455 pageset_set_high(pcp,
5456 (zone->managed_pages /
5457 percpu_pagelist_fraction));
5458 else
5459 pageset_set_batch(pcp, zone_batchsize(zone));
5460 }
5461
5462 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5463 {
5464 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5465
5466 pageset_init(pcp);
5467 pageset_set_high_and_batch(zone, pcp);
5468 }
5469
5470 static void __meminit setup_zone_pageset(struct zone *zone)
5471 {
5472 int cpu;
5473 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5474 for_each_possible_cpu(cpu)
5475 zone_pageset_init(zone, cpu);
5476 }
5477
5478 /*
5479 * Allocate per cpu pagesets and initialize them.
5480 * Before this call only boot pagesets were available.
5481 */
5482 void __init setup_per_cpu_pageset(void)
5483 {
5484 struct pglist_data *pgdat;
5485 struct zone *zone;
5486
5487 for_each_populated_zone(zone)
5488 setup_zone_pageset(zone);
5489
5490 for_each_online_pgdat(pgdat)
5491 pgdat->per_cpu_nodestats =
5492 alloc_percpu(struct per_cpu_nodestat);
5493 }
5494
5495 static __meminit void zone_pcp_init(struct zone *zone)
5496 {
5497 /*
5498 * per cpu subsystem is not up at this point. The following code
5499 * relies on the ability of the linker to provide the
5500 * offset of a (static) per cpu variable into the per cpu area.
5501 */
5502 zone->pageset = &boot_pageset;
5503
5504 if (populated_zone(zone))
5505 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5506 zone->name, zone->present_pages,
5507 zone_batchsize(zone));
5508 }
5509
5510 int __meminit init_currently_empty_zone(struct zone *zone,
5511 unsigned long zone_start_pfn,
5512 unsigned long size)
5513 {
5514 struct pglist_data *pgdat = zone->zone_pgdat;
5515
5516 pgdat->nr_zones = zone_idx(zone) + 1;
5517
5518 zone->zone_start_pfn = zone_start_pfn;
5519
5520 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5521 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5522 pgdat->node_id,
5523 (unsigned long)zone_idx(zone),
5524 zone_start_pfn, (zone_start_pfn + size));
5525
5526 zone_init_free_lists(zone);
5527 zone->initialized = 1;
5528
5529 return 0;
5530 }
5531
5532 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5534
5535 /*
5536 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5537 */
5538 int __meminit __early_pfn_to_nid(unsigned long pfn,
5539 struct mminit_pfnnid_cache *state)
5540 {
5541 unsigned long start_pfn, end_pfn;
5542 int nid;
5543
5544 if (state->last_start <= pfn && pfn < state->last_end)
5545 return state->last_nid;
5546
5547 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5548 if (nid != -1) {
5549 state->last_start = start_pfn;
5550 state->last_end = end_pfn;
5551 state->last_nid = nid;
5552 }
5553
5554 return nid;
5555 }
5556 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5557
5558 /**
5559 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5560 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5561 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5562 *
5563 * If an architecture guarantees that all ranges registered contain no holes
5564 * and may be freed, this this function may be used instead of calling
5565 * memblock_free_early_nid() manually.
5566 */
5567 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5568 {
5569 unsigned long start_pfn, end_pfn;
5570 int i, this_nid;
5571
5572 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5573 start_pfn = min(start_pfn, max_low_pfn);
5574 end_pfn = min(end_pfn, max_low_pfn);
5575
5576 if (start_pfn < end_pfn)
5577 memblock_free_early_nid(PFN_PHYS(start_pfn),
5578 (end_pfn - start_pfn) << PAGE_SHIFT,
5579 this_nid);
5580 }
5581 }
5582
5583 /**
5584 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5585 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5586 *
5587 * If an architecture guarantees that all ranges registered contain no holes and may
5588 * be freed, this function may be used instead of calling memory_present() manually.
5589 */
5590 void __init sparse_memory_present_with_active_regions(int nid)
5591 {
5592 unsigned long start_pfn, end_pfn;
5593 int i, this_nid;
5594
5595 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5596 memory_present(this_nid, start_pfn, end_pfn);
5597 }
5598
5599 /**
5600 * get_pfn_range_for_nid - Return the start and end page frames for a node
5601 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5602 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5603 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5604 *
5605 * It returns the start and end page frame of a node based on information
5606 * provided by memblock_set_node(). If called for a node
5607 * with no available memory, a warning is printed and the start and end
5608 * PFNs will be 0.
5609 */
5610 void __meminit get_pfn_range_for_nid(unsigned int nid,
5611 unsigned long *start_pfn, unsigned long *end_pfn)
5612 {
5613 unsigned long this_start_pfn, this_end_pfn;
5614 int i;
5615
5616 *start_pfn = -1UL;
5617 *end_pfn = 0;
5618
5619 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5620 *start_pfn = min(*start_pfn, this_start_pfn);
5621 *end_pfn = max(*end_pfn, this_end_pfn);
5622 }
5623
5624 if (*start_pfn == -1UL)
5625 *start_pfn = 0;
5626 }
5627
5628 /*
5629 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5630 * assumption is made that zones within a node are ordered in monotonic
5631 * increasing memory addresses so that the "highest" populated zone is used
5632 */
5633 static void __init find_usable_zone_for_movable(void)
5634 {
5635 int zone_index;
5636 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5637 if (zone_index == ZONE_MOVABLE)
5638 continue;
5639
5640 if (arch_zone_highest_possible_pfn[zone_index] >
5641 arch_zone_lowest_possible_pfn[zone_index])
5642 break;
5643 }
5644
5645 VM_BUG_ON(zone_index == -1);
5646 movable_zone = zone_index;
5647 }
5648
5649 /*
5650 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5651 * because it is sized independent of architecture. Unlike the other zones,
5652 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5653 * in each node depending on the size of each node and how evenly kernelcore
5654 * is distributed. This helper function adjusts the zone ranges
5655 * provided by the architecture for a given node by using the end of the
5656 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5657 * zones within a node are in order of monotonic increases memory addresses
5658 */
5659 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5660 unsigned long zone_type,
5661 unsigned long node_start_pfn,
5662 unsigned long node_end_pfn,
5663 unsigned long *zone_start_pfn,
5664 unsigned long *zone_end_pfn)
5665 {
5666 /* Only adjust if ZONE_MOVABLE is on this node */
5667 if (zone_movable_pfn[nid]) {
5668 /* Size ZONE_MOVABLE */
5669 if (zone_type == ZONE_MOVABLE) {
5670 *zone_start_pfn = zone_movable_pfn[nid];
5671 *zone_end_pfn = min(node_end_pfn,
5672 arch_zone_highest_possible_pfn[movable_zone]);
5673
5674 /* Adjust for ZONE_MOVABLE starting within this range */
5675 } else if (!mirrored_kernelcore &&
5676 *zone_start_pfn < zone_movable_pfn[nid] &&
5677 *zone_end_pfn > zone_movable_pfn[nid]) {
5678 *zone_end_pfn = zone_movable_pfn[nid];
5679
5680 /* Check if this whole range is within ZONE_MOVABLE */
5681 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5682 *zone_start_pfn = *zone_end_pfn;
5683 }
5684 }
5685
5686 /*
5687 * Return the number of pages a zone spans in a node, including holes
5688 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5689 */
5690 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5691 unsigned long zone_type,
5692 unsigned long node_start_pfn,
5693 unsigned long node_end_pfn,
5694 unsigned long *zone_start_pfn,
5695 unsigned long *zone_end_pfn,
5696 unsigned long *ignored)
5697 {
5698 /* When hotadd a new node from cpu_up(), the node should be empty */
5699 if (!node_start_pfn && !node_end_pfn)
5700 return 0;
5701
5702 /* Get the start and end of the zone */
5703 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5704 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5705 adjust_zone_range_for_zone_movable(nid, zone_type,
5706 node_start_pfn, node_end_pfn,
5707 zone_start_pfn, zone_end_pfn);
5708
5709 /* Check that this node has pages within the zone's required range */
5710 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5711 return 0;
5712
5713 /* Move the zone boundaries inside the node if necessary */
5714 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5715 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5716
5717 /* Return the spanned pages */
5718 return *zone_end_pfn - *zone_start_pfn;
5719 }
5720
5721 /*
5722 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5723 * then all holes in the requested range will be accounted for.
5724 */
5725 unsigned long __meminit __absent_pages_in_range(int nid,
5726 unsigned long range_start_pfn,
5727 unsigned long range_end_pfn)
5728 {
5729 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5730 unsigned long start_pfn, end_pfn;
5731 int i;
5732
5733 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5734 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5735 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5736 nr_absent -= end_pfn - start_pfn;
5737 }
5738 return nr_absent;
5739 }
5740
5741 /**
5742 * absent_pages_in_range - Return number of page frames in holes within a range
5743 * @start_pfn: The start PFN to start searching for holes
5744 * @end_pfn: The end PFN to stop searching for holes
5745 *
5746 * It returns the number of pages frames in memory holes within a range.
5747 */
5748 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5749 unsigned long end_pfn)
5750 {
5751 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5752 }
5753
5754 /* Return the number of page frames in holes in a zone on a node */
5755 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5756 unsigned long zone_type,
5757 unsigned long node_start_pfn,
5758 unsigned long node_end_pfn,
5759 unsigned long *ignored)
5760 {
5761 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5762 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5763 unsigned long zone_start_pfn, zone_end_pfn;
5764 unsigned long nr_absent;
5765
5766 /* When hotadd a new node from cpu_up(), the node should be empty */
5767 if (!node_start_pfn && !node_end_pfn)
5768 return 0;
5769
5770 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5771 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5772
5773 adjust_zone_range_for_zone_movable(nid, zone_type,
5774 node_start_pfn, node_end_pfn,
5775 &zone_start_pfn, &zone_end_pfn);
5776 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5777
5778 /*
5779 * ZONE_MOVABLE handling.
5780 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5781 * and vice versa.
5782 */
5783 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5784 unsigned long start_pfn, end_pfn;
5785 struct memblock_region *r;
5786
5787 for_each_memblock(memory, r) {
5788 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5789 zone_start_pfn, zone_end_pfn);
5790 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5791 zone_start_pfn, zone_end_pfn);
5792
5793 if (zone_type == ZONE_MOVABLE &&
5794 memblock_is_mirror(r))
5795 nr_absent += end_pfn - start_pfn;
5796
5797 if (zone_type == ZONE_NORMAL &&
5798 !memblock_is_mirror(r))
5799 nr_absent += end_pfn - start_pfn;
5800 }
5801 }
5802
5803 return nr_absent;
5804 }
5805
5806 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5807 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5808 unsigned long zone_type,
5809 unsigned long node_start_pfn,
5810 unsigned long node_end_pfn,
5811 unsigned long *zone_start_pfn,
5812 unsigned long *zone_end_pfn,
5813 unsigned long *zones_size)
5814 {
5815 unsigned int zone;
5816
5817 *zone_start_pfn = node_start_pfn;
5818 for (zone = 0; zone < zone_type; zone++)
5819 *zone_start_pfn += zones_size[zone];
5820
5821 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5822
5823 return zones_size[zone_type];
5824 }
5825
5826 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5827 unsigned long zone_type,
5828 unsigned long node_start_pfn,
5829 unsigned long node_end_pfn,
5830 unsigned long *zholes_size)
5831 {
5832 if (!zholes_size)
5833 return 0;
5834
5835 return zholes_size[zone_type];
5836 }
5837
5838 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5839
5840 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5841 unsigned long node_start_pfn,
5842 unsigned long node_end_pfn,
5843 unsigned long *zones_size,
5844 unsigned long *zholes_size)
5845 {
5846 unsigned long realtotalpages = 0, totalpages = 0;
5847 enum zone_type i;
5848
5849 for (i = 0; i < MAX_NR_ZONES; i++) {
5850 struct zone *zone = pgdat->node_zones + i;
5851 unsigned long zone_start_pfn, zone_end_pfn;
5852 unsigned long size, real_size;
5853
5854 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5855 node_start_pfn,
5856 node_end_pfn,
5857 &zone_start_pfn,
5858 &zone_end_pfn,
5859 zones_size);
5860 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5861 node_start_pfn, node_end_pfn,
5862 zholes_size);
5863 if (size)
5864 zone->zone_start_pfn = zone_start_pfn;
5865 else
5866 zone->zone_start_pfn = 0;
5867 zone->spanned_pages = size;
5868 zone->present_pages = real_size;
5869
5870 totalpages += size;
5871 realtotalpages += real_size;
5872 }
5873
5874 pgdat->node_spanned_pages = totalpages;
5875 pgdat->node_present_pages = realtotalpages;
5876 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5877 realtotalpages);
5878 }
5879
5880 #ifndef CONFIG_SPARSEMEM
5881 /*
5882 * Calculate the size of the zone->blockflags rounded to an unsigned long
5883 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5884 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5885 * round what is now in bits to nearest long in bits, then return it in
5886 * bytes.
5887 */
5888 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5889 {
5890 unsigned long usemapsize;
5891
5892 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5893 usemapsize = roundup(zonesize, pageblock_nr_pages);
5894 usemapsize = usemapsize >> pageblock_order;
5895 usemapsize *= NR_PAGEBLOCK_BITS;
5896 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5897
5898 return usemapsize / 8;
5899 }
5900
5901 static void __init setup_usemap(struct pglist_data *pgdat,
5902 struct zone *zone,
5903 unsigned long zone_start_pfn,
5904 unsigned long zonesize)
5905 {
5906 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5907 zone->pageblock_flags = NULL;
5908 if (usemapsize)
5909 zone->pageblock_flags =
5910 memblock_virt_alloc_node_nopanic(usemapsize,
5911 pgdat->node_id);
5912 }
5913 #else
5914 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5915 unsigned long zone_start_pfn, unsigned long zonesize) {}
5916 #endif /* CONFIG_SPARSEMEM */
5917
5918 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5919
5920 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5921 void __paginginit set_pageblock_order(void)
5922 {
5923 unsigned int order;
5924
5925 /* Check that pageblock_nr_pages has not already been setup */
5926 if (pageblock_order)
5927 return;
5928
5929 if (HPAGE_SHIFT > PAGE_SHIFT)
5930 order = HUGETLB_PAGE_ORDER;
5931 else
5932 order = MAX_ORDER - 1;
5933
5934 /*
5935 * Assume the largest contiguous order of interest is a huge page.
5936 * This value may be variable depending on boot parameters on IA64 and
5937 * powerpc.
5938 */
5939 pageblock_order = order;
5940 }
5941 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5942
5943 /*
5944 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5945 * is unused as pageblock_order is set at compile-time. See
5946 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5947 * the kernel config
5948 */
5949 void __paginginit set_pageblock_order(void)
5950 {
5951 }
5952
5953 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5954
5955 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5956 unsigned long present_pages)
5957 {
5958 unsigned long pages = spanned_pages;
5959
5960 /*
5961 * Provide a more accurate estimation if there are holes within
5962 * the zone and SPARSEMEM is in use. If there are holes within the
5963 * zone, each populated memory region may cost us one or two extra
5964 * memmap pages due to alignment because memmap pages for each
5965 * populated regions may not be naturally aligned on page boundary.
5966 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5967 */
5968 if (spanned_pages > present_pages + (present_pages >> 4) &&
5969 IS_ENABLED(CONFIG_SPARSEMEM))
5970 pages = present_pages;
5971
5972 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5973 }
5974
5975 /*
5976 * Set up the zone data structures:
5977 * - mark all pages reserved
5978 * - mark all memory queues empty
5979 * - clear the memory bitmaps
5980 *
5981 * NOTE: pgdat should get zeroed by caller.
5982 */
5983 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5984 {
5985 enum zone_type j;
5986 int nid = pgdat->node_id;
5987 int ret;
5988
5989 pgdat_resize_init(pgdat);
5990 #ifdef CONFIG_NUMA_BALANCING
5991 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5992 pgdat->numabalancing_migrate_nr_pages = 0;
5993 pgdat->numabalancing_migrate_next_window = jiffies;
5994 #endif
5995 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5996 spin_lock_init(&pgdat->split_queue_lock);
5997 INIT_LIST_HEAD(&pgdat->split_queue);
5998 pgdat->split_queue_len = 0;
5999 #endif
6000 init_waitqueue_head(&pgdat->kswapd_wait);
6001 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6002 #ifdef CONFIG_COMPACTION
6003 init_waitqueue_head(&pgdat->kcompactd_wait);
6004 #endif
6005 pgdat_page_ext_init(pgdat);
6006 spin_lock_init(&pgdat->lru_lock);
6007 lruvec_init(node_lruvec(pgdat));
6008
6009 for (j = 0; j < MAX_NR_ZONES; j++) {
6010 struct zone *zone = pgdat->node_zones + j;
6011 unsigned long size, realsize, freesize, memmap_pages;
6012 unsigned long zone_start_pfn = zone->zone_start_pfn;
6013
6014 size = zone->spanned_pages;
6015 realsize = freesize = zone->present_pages;
6016
6017 /*
6018 * Adjust freesize so that it accounts for how much memory
6019 * is used by this zone for memmap. This affects the watermark
6020 * and per-cpu initialisations
6021 */
6022 memmap_pages = calc_memmap_size(size, realsize);
6023 if (!is_highmem_idx(j)) {
6024 if (freesize >= memmap_pages) {
6025 freesize -= memmap_pages;
6026 if (memmap_pages)
6027 printk(KERN_DEBUG
6028 " %s zone: %lu pages used for memmap\n",
6029 zone_names[j], memmap_pages);
6030 } else
6031 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6032 zone_names[j], memmap_pages, freesize);
6033 }
6034
6035 /* Account for reserved pages */
6036 if (j == 0 && freesize > dma_reserve) {
6037 freesize -= dma_reserve;
6038 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6039 zone_names[0], dma_reserve);
6040 }
6041
6042 if (!is_highmem_idx(j))
6043 nr_kernel_pages += freesize;
6044 /* Charge for highmem memmap if there are enough kernel pages */
6045 else if (nr_kernel_pages > memmap_pages * 2)
6046 nr_kernel_pages -= memmap_pages;
6047 nr_all_pages += freesize;
6048
6049 /*
6050 * Set an approximate value for lowmem here, it will be adjusted
6051 * when the bootmem allocator frees pages into the buddy system.
6052 * And all highmem pages will be managed by the buddy system.
6053 */
6054 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6055 #ifdef CONFIG_NUMA
6056 zone->node = nid;
6057 #endif
6058 zone->name = zone_names[j];
6059 zone->zone_pgdat = pgdat;
6060 spin_lock_init(&zone->lock);
6061 zone_seqlock_init(zone);
6062 zone_pcp_init(zone);
6063
6064 if (!size)
6065 continue;
6066
6067 set_pageblock_order();
6068 setup_usemap(pgdat, zone, zone_start_pfn, size);
6069 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6070 BUG_ON(ret);
6071 memmap_init(size, nid, j, zone_start_pfn);
6072 }
6073 }
6074
6075 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6076 {
6077 unsigned long __maybe_unused start = 0;
6078 unsigned long __maybe_unused offset = 0;
6079
6080 /* Skip empty nodes */
6081 if (!pgdat->node_spanned_pages)
6082 return;
6083
6084 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6085 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6086 offset = pgdat->node_start_pfn - start;
6087 /* ia64 gets its own node_mem_map, before this, without bootmem */
6088 if (!pgdat->node_mem_map) {
6089 unsigned long size, end;
6090 struct page *map;
6091
6092 /*
6093 * The zone's endpoints aren't required to be MAX_ORDER
6094 * aligned but the node_mem_map endpoints must be in order
6095 * for the buddy allocator to function correctly.
6096 */
6097 end = pgdat_end_pfn(pgdat);
6098 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6099 size = (end - start) * sizeof(struct page);
6100 map = alloc_remap(pgdat->node_id, size);
6101 if (!map)
6102 map = memblock_virt_alloc_node_nopanic(size,
6103 pgdat->node_id);
6104 pgdat->node_mem_map = map + offset;
6105 }
6106 #ifndef CONFIG_NEED_MULTIPLE_NODES
6107 /*
6108 * With no DISCONTIG, the global mem_map is just set as node 0's
6109 */
6110 if (pgdat == NODE_DATA(0)) {
6111 mem_map = NODE_DATA(0)->node_mem_map;
6112 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6113 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6114 mem_map -= offset;
6115 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6116 }
6117 #endif
6118 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6119 }
6120
6121 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6122 unsigned long node_start_pfn, unsigned long *zholes_size)
6123 {
6124 pg_data_t *pgdat = NODE_DATA(nid);
6125 unsigned long start_pfn = 0;
6126 unsigned long end_pfn = 0;
6127
6128 /* pg_data_t should be reset to zero when it's allocated */
6129 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6130
6131 reset_deferred_meminit(pgdat);
6132 pgdat->node_id = nid;
6133 pgdat->node_start_pfn = node_start_pfn;
6134 pgdat->per_cpu_nodestats = NULL;
6135 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6136 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6137 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6138 (u64)start_pfn << PAGE_SHIFT,
6139 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6140 #else
6141 start_pfn = node_start_pfn;
6142 #endif
6143 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6144 zones_size, zholes_size);
6145
6146 alloc_node_mem_map(pgdat);
6147 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6148 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6149 nid, (unsigned long)pgdat,
6150 (unsigned long)pgdat->node_mem_map);
6151 #endif
6152
6153 free_area_init_core(pgdat);
6154 }
6155
6156 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6157
6158 #if MAX_NUMNODES > 1
6159 /*
6160 * Figure out the number of possible node ids.
6161 */
6162 void __init setup_nr_node_ids(void)
6163 {
6164 unsigned int highest;
6165
6166 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6167 nr_node_ids = highest + 1;
6168 }
6169 #endif
6170
6171 /**
6172 * node_map_pfn_alignment - determine the maximum internode alignment
6173 *
6174 * This function should be called after node map is populated and sorted.
6175 * It calculates the maximum power of two alignment which can distinguish
6176 * all the nodes.
6177 *
6178 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6179 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6180 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6181 * shifted, 1GiB is enough and this function will indicate so.
6182 *
6183 * This is used to test whether pfn -> nid mapping of the chosen memory
6184 * model has fine enough granularity to avoid incorrect mapping for the
6185 * populated node map.
6186 *
6187 * Returns the determined alignment in pfn's. 0 if there is no alignment
6188 * requirement (single node).
6189 */
6190 unsigned long __init node_map_pfn_alignment(void)
6191 {
6192 unsigned long accl_mask = 0, last_end = 0;
6193 unsigned long start, end, mask;
6194 int last_nid = -1;
6195 int i, nid;
6196
6197 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6198 if (!start || last_nid < 0 || last_nid == nid) {
6199 last_nid = nid;
6200 last_end = end;
6201 continue;
6202 }
6203
6204 /*
6205 * Start with a mask granular enough to pin-point to the
6206 * start pfn and tick off bits one-by-one until it becomes
6207 * too coarse to separate the current node from the last.
6208 */
6209 mask = ~((1 << __ffs(start)) - 1);
6210 while (mask && last_end <= (start & (mask << 1)))
6211 mask <<= 1;
6212
6213 /* accumulate all internode masks */
6214 accl_mask |= mask;
6215 }
6216
6217 /* convert mask to number of pages */
6218 return ~accl_mask + 1;
6219 }
6220
6221 /* Find the lowest pfn for a node */
6222 static unsigned long __init find_min_pfn_for_node(int nid)
6223 {
6224 unsigned long min_pfn = ULONG_MAX;
6225 unsigned long start_pfn;
6226 int i;
6227
6228 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6229 min_pfn = min(min_pfn, start_pfn);
6230
6231 if (min_pfn == ULONG_MAX) {
6232 pr_warn("Could not find start_pfn for node %d\n", nid);
6233 return 0;
6234 }
6235
6236 return min_pfn;
6237 }
6238
6239 /**
6240 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6241 *
6242 * It returns the minimum PFN based on information provided via
6243 * memblock_set_node().
6244 */
6245 unsigned long __init find_min_pfn_with_active_regions(void)
6246 {
6247 return find_min_pfn_for_node(MAX_NUMNODES);
6248 }
6249
6250 /*
6251 * early_calculate_totalpages()
6252 * Sum pages in active regions for movable zone.
6253 * Populate N_MEMORY for calculating usable_nodes.
6254 */
6255 static unsigned long __init early_calculate_totalpages(void)
6256 {
6257 unsigned long totalpages = 0;
6258 unsigned long start_pfn, end_pfn;
6259 int i, nid;
6260
6261 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6262 unsigned long pages = end_pfn - start_pfn;
6263
6264 totalpages += pages;
6265 if (pages)
6266 node_set_state(nid, N_MEMORY);
6267 }
6268 return totalpages;
6269 }
6270
6271 /*
6272 * Find the PFN the Movable zone begins in each node. Kernel memory
6273 * is spread evenly between nodes as long as the nodes have enough
6274 * memory. When they don't, some nodes will have more kernelcore than
6275 * others
6276 */
6277 static void __init find_zone_movable_pfns_for_nodes(void)
6278 {
6279 int i, nid;
6280 unsigned long usable_startpfn;
6281 unsigned long kernelcore_node, kernelcore_remaining;
6282 /* save the state before borrow the nodemask */
6283 nodemask_t saved_node_state = node_states[N_MEMORY];
6284 unsigned long totalpages = early_calculate_totalpages();
6285 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6286 struct memblock_region *r;
6287
6288 /* Need to find movable_zone earlier when movable_node is specified. */
6289 find_usable_zone_for_movable();
6290
6291 /*
6292 * If movable_node is specified, ignore kernelcore and movablecore
6293 * options.
6294 */
6295 if (movable_node_is_enabled()) {
6296 for_each_memblock(memory, r) {
6297 if (!memblock_is_hotpluggable(r))
6298 continue;
6299
6300 nid = r->nid;
6301
6302 usable_startpfn = PFN_DOWN(r->base);
6303 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6304 min(usable_startpfn, zone_movable_pfn[nid]) :
6305 usable_startpfn;
6306 }
6307
6308 goto out2;
6309 }
6310
6311 /*
6312 * If kernelcore=mirror is specified, ignore movablecore option
6313 */
6314 if (mirrored_kernelcore) {
6315 bool mem_below_4gb_not_mirrored = false;
6316
6317 for_each_memblock(memory, r) {
6318 if (memblock_is_mirror(r))
6319 continue;
6320
6321 nid = r->nid;
6322
6323 usable_startpfn = memblock_region_memory_base_pfn(r);
6324
6325 if (usable_startpfn < 0x100000) {
6326 mem_below_4gb_not_mirrored = true;
6327 continue;
6328 }
6329
6330 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6331 min(usable_startpfn, zone_movable_pfn[nid]) :
6332 usable_startpfn;
6333 }
6334
6335 if (mem_below_4gb_not_mirrored)
6336 pr_warn("This configuration results in unmirrored kernel memory.");
6337
6338 goto out2;
6339 }
6340
6341 /*
6342 * If movablecore=nn[KMG] was specified, calculate what size of
6343 * kernelcore that corresponds so that memory usable for
6344 * any allocation type is evenly spread. If both kernelcore
6345 * and movablecore are specified, then the value of kernelcore
6346 * will be used for required_kernelcore if it's greater than
6347 * what movablecore would have allowed.
6348 */
6349 if (required_movablecore) {
6350 unsigned long corepages;
6351
6352 /*
6353 * Round-up so that ZONE_MOVABLE is at least as large as what
6354 * was requested by the user
6355 */
6356 required_movablecore =
6357 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6358 required_movablecore = min(totalpages, required_movablecore);
6359 corepages = totalpages - required_movablecore;
6360
6361 required_kernelcore = max(required_kernelcore, corepages);
6362 }
6363
6364 /*
6365 * If kernelcore was not specified or kernelcore size is larger
6366 * than totalpages, there is no ZONE_MOVABLE.
6367 */
6368 if (!required_kernelcore || required_kernelcore >= totalpages)
6369 goto out;
6370
6371 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6372 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6373
6374 restart:
6375 /* Spread kernelcore memory as evenly as possible throughout nodes */
6376 kernelcore_node = required_kernelcore / usable_nodes;
6377 for_each_node_state(nid, N_MEMORY) {
6378 unsigned long start_pfn, end_pfn;
6379
6380 /*
6381 * Recalculate kernelcore_node if the division per node
6382 * now exceeds what is necessary to satisfy the requested
6383 * amount of memory for the kernel
6384 */
6385 if (required_kernelcore < kernelcore_node)
6386 kernelcore_node = required_kernelcore / usable_nodes;
6387
6388 /*
6389 * As the map is walked, we track how much memory is usable
6390 * by the kernel using kernelcore_remaining. When it is
6391 * 0, the rest of the node is usable by ZONE_MOVABLE
6392 */
6393 kernelcore_remaining = kernelcore_node;
6394
6395 /* Go through each range of PFNs within this node */
6396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6397 unsigned long size_pages;
6398
6399 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6400 if (start_pfn >= end_pfn)
6401 continue;
6402
6403 /* Account for what is only usable for kernelcore */
6404 if (start_pfn < usable_startpfn) {
6405 unsigned long kernel_pages;
6406 kernel_pages = min(end_pfn, usable_startpfn)
6407 - start_pfn;
6408
6409 kernelcore_remaining -= min(kernel_pages,
6410 kernelcore_remaining);
6411 required_kernelcore -= min(kernel_pages,
6412 required_kernelcore);
6413
6414 /* Continue if range is now fully accounted */
6415 if (end_pfn <= usable_startpfn) {
6416
6417 /*
6418 * Push zone_movable_pfn to the end so
6419 * that if we have to rebalance
6420 * kernelcore across nodes, we will
6421 * not double account here
6422 */
6423 zone_movable_pfn[nid] = end_pfn;
6424 continue;
6425 }
6426 start_pfn = usable_startpfn;
6427 }
6428
6429 /*
6430 * The usable PFN range for ZONE_MOVABLE is from
6431 * start_pfn->end_pfn. Calculate size_pages as the
6432 * number of pages used as kernelcore
6433 */
6434 size_pages = end_pfn - start_pfn;
6435 if (size_pages > kernelcore_remaining)
6436 size_pages = kernelcore_remaining;
6437 zone_movable_pfn[nid] = start_pfn + size_pages;
6438
6439 /*
6440 * Some kernelcore has been met, update counts and
6441 * break if the kernelcore for this node has been
6442 * satisfied
6443 */
6444 required_kernelcore -= min(required_kernelcore,
6445 size_pages);
6446 kernelcore_remaining -= size_pages;
6447 if (!kernelcore_remaining)
6448 break;
6449 }
6450 }
6451
6452 /*
6453 * If there is still required_kernelcore, we do another pass with one
6454 * less node in the count. This will push zone_movable_pfn[nid] further
6455 * along on the nodes that still have memory until kernelcore is
6456 * satisfied
6457 */
6458 usable_nodes--;
6459 if (usable_nodes && required_kernelcore > usable_nodes)
6460 goto restart;
6461
6462 out2:
6463 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6464 for (nid = 0; nid < MAX_NUMNODES; nid++)
6465 zone_movable_pfn[nid] =
6466 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6467
6468 out:
6469 /* restore the node_state */
6470 node_states[N_MEMORY] = saved_node_state;
6471 }
6472
6473 /* Any regular or high memory on that node ? */
6474 static void check_for_memory(pg_data_t *pgdat, int nid)
6475 {
6476 enum zone_type zone_type;
6477
6478 if (N_MEMORY == N_NORMAL_MEMORY)
6479 return;
6480
6481 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6482 struct zone *zone = &pgdat->node_zones[zone_type];
6483 if (populated_zone(zone)) {
6484 node_set_state(nid, N_HIGH_MEMORY);
6485 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6486 zone_type <= ZONE_NORMAL)
6487 node_set_state(nid, N_NORMAL_MEMORY);
6488 break;
6489 }
6490 }
6491 }
6492
6493 /**
6494 * free_area_init_nodes - Initialise all pg_data_t and zone data
6495 * @max_zone_pfn: an array of max PFNs for each zone
6496 *
6497 * This will call free_area_init_node() for each active node in the system.
6498 * Using the page ranges provided by memblock_set_node(), the size of each
6499 * zone in each node and their holes is calculated. If the maximum PFN
6500 * between two adjacent zones match, it is assumed that the zone is empty.
6501 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6502 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6503 * starts where the previous one ended. For example, ZONE_DMA32 starts
6504 * at arch_max_dma_pfn.
6505 */
6506 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6507 {
6508 unsigned long start_pfn, end_pfn;
6509 int i, nid;
6510
6511 /* Record where the zone boundaries are */
6512 memset(arch_zone_lowest_possible_pfn, 0,
6513 sizeof(arch_zone_lowest_possible_pfn));
6514 memset(arch_zone_highest_possible_pfn, 0,
6515 sizeof(arch_zone_highest_possible_pfn));
6516
6517 start_pfn = find_min_pfn_with_active_regions();
6518
6519 for (i = 0; i < MAX_NR_ZONES; i++) {
6520 if (i == ZONE_MOVABLE)
6521 continue;
6522
6523 end_pfn = max(max_zone_pfn[i], start_pfn);
6524 arch_zone_lowest_possible_pfn[i] = start_pfn;
6525 arch_zone_highest_possible_pfn[i] = end_pfn;
6526
6527 start_pfn = end_pfn;
6528 }
6529
6530 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6531 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6532 find_zone_movable_pfns_for_nodes();
6533
6534 /* Print out the zone ranges */
6535 pr_info("Zone ranges:\n");
6536 for (i = 0; i < MAX_NR_ZONES; i++) {
6537 if (i == ZONE_MOVABLE)
6538 continue;
6539 pr_info(" %-8s ", zone_names[i]);
6540 if (arch_zone_lowest_possible_pfn[i] ==
6541 arch_zone_highest_possible_pfn[i])
6542 pr_cont("empty\n");
6543 else
6544 pr_cont("[mem %#018Lx-%#018Lx]\n",
6545 (u64)arch_zone_lowest_possible_pfn[i]
6546 << PAGE_SHIFT,
6547 ((u64)arch_zone_highest_possible_pfn[i]
6548 << PAGE_SHIFT) - 1);
6549 }
6550
6551 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6552 pr_info("Movable zone start for each node\n");
6553 for (i = 0; i < MAX_NUMNODES; i++) {
6554 if (zone_movable_pfn[i])
6555 pr_info(" Node %d: %#018Lx\n", i,
6556 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6557 }
6558
6559 /* Print out the early node map */
6560 pr_info("Early memory node ranges\n");
6561 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6562 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6563 (u64)start_pfn << PAGE_SHIFT,
6564 ((u64)end_pfn << PAGE_SHIFT) - 1);
6565
6566 /* Initialise every node */
6567 mminit_verify_pageflags_layout();
6568 setup_nr_node_ids();
6569 for_each_online_node(nid) {
6570 pg_data_t *pgdat = NODE_DATA(nid);
6571 free_area_init_node(nid, NULL,
6572 find_min_pfn_for_node(nid), NULL);
6573
6574 /* Any memory on that node */
6575 if (pgdat->node_present_pages)
6576 node_set_state(nid, N_MEMORY);
6577 check_for_memory(pgdat, nid);
6578 }
6579 }
6580
6581 static int __init cmdline_parse_core(char *p, unsigned long *core)
6582 {
6583 unsigned long long coremem;
6584 if (!p)
6585 return -EINVAL;
6586
6587 coremem = memparse(p, &p);
6588 *core = coremem >> PAGE_SHIFT;
6589
6590 /* Paranoid check that UL is enough for the coremem value */
6591 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6592
6593 return 0;
6594 }
6595
6596 /*
6597 * kernelcore=size sets the amount of memory for use for allocations that
6598 * cannot be reclaimed or migrated.
6599 */
6600 static int __init cmdline_parse_kernelcore(char *p)
6601 {
6602 /* parse kernelcore=mirror */
6603 if (parse_option_str(p, "mirror")) {
6604 mirrored_kernelcore = true;
6605 return 0;
6606 }
6607
6608 return cmdline_parse_core(p, &required_kernelcore);
6609 }
6610
6611 /*
6612 * movablecore=size sets the amount of memory for use for allocations that
6613 * can be reclaimed or migrated.
6614 */
6615 static int __init cmdline_parse_movablecore(char *p)
6616 {
6617 return cmdline_parse_core(p, &required_movablecore);
6618 }
6619
6620 early_param("kernelcore", cmdline_parse_kernelcore);
6621 early_param("movablecore", cmdline_parse_movablecore);
6622
6623 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6624
6625 void adjust_managed_page_count(struct page *page, long count)
6626 {
6627 spin_lock(&managed_page_count_lock);
6628 page_zone(page)->managed_pages += count;
6629 totalram_pages += count;
6630 #ifdef CONFIG_HIGHMEM
6631 if (PageHighMem(page))
6632 totalhigh_pages += count;
6633 #endif
6634 spin_unlock(&managed_page_count_lock);
6635 }
6636 EXPORT_SYMBOL(adjust_managed_page_count);
6637
6638 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6639 {
6640 void *pos;
6641 unsigned long pages = 0;
6642
6643 start = (void *)PAGE_ALIGN((unsigned long)start);
6644 end = (void *)((unsigned long)end & PAGE_MASK);
6645 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6646 if ((unsigned int)poison <= 0xFF)
6647 memset(pos, poison, PAGE_SIZE);
6648 free_reserved_page(virt_to_page(pos));
6649 }
6650
6651 if (pages && s)
6652 pr_info("Freeing %s memory: %ldK\n",
6653 s, pages << (PAGE_SHIFT - 10));
6654
6655 return pages;
6656 }
6657 EXPORT_SYMBOL(free_reserved_area);
6658
6659 #ifdef CONFIG_HIGHMEM
6660 void free_highmem_page(struct page *page)
6661 {
6662 __free_reserved_page(page);
6663 totalram_pages++;
6664 page_zone(page)->managed_pages++;
6665 totalhigh_pages++;
6666 }
6667 #endif
6668
6669
6670 void __init mem_init_print_info(const char *str)
6671 {
6672 unsigned long physpages, codesize, datasize, rosize, bss_size;
6673 unsigned long init_code_size, init_data_size;
6674
6675 physpages = get_num_physpages();
6676 codesize = _etext - _stext;
6677 datasize = _edata - _sdata;
6678 rosize = __end_rodata - __start_rodata;
6679 bss_size = __bss_stop - __bss_start;
6680 init_data_size = __init_end - __init_begin;
6681 init_code_size = _einittext - _sinittext;
6682
6683 /*
6684 * Detect special cases and adjust section sizes accordingly:
6685 * 1) .init.* may be embedded into .data sections
6686 * 2) .init.text.* may be out of [__init_begin, __init_end],
6687 * please refer to arch/tile/kernel/vmlinux.lds.S.
6688 * 3) .rodata.* may be embedded into .text or .data sections.
6689 */
6690 #define adj_init_size(start, end, size, pos, adj) \
6691 do { \
6692 if (start <= pos && pos < end && size > adj) \
6693 size -= adj; \
6694 } while (0)
6695
6696 adj_init_size(__init_begin, __init_end, init_data_size,
6697 _sinittext, init_code_size);
6698 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6699 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6700 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6701 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6702
6703 #undef adj_init_size
6704
6705 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6706 #ifdef CONFIG_HIGHMEM
6707 ", %luK highmem"
6708 #endif
6709 "%s%s)\n",
6710 nr_free_pages() << (PAGE_SHIFT - 10),
6711 physpages << (PAGE_SHIFT - 10),
6712 codesize >> 10, datasize >> 10, rosize >> 10,
6713 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6714 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6715 totalcma_pages << (PAGE_SHIFT - 10),
6716 #ifdef CONFIG_HIGHMEM
6717 totalhigh_pages << (PAGE_SHIFT - 10),
6718 #endif
6719 str ? ", " : "", str ? str : "");
6720 }
6721
6722 /**
6723 * set_dma_reserve - set the specified number of pages reserved in the first zone
6724 * @new_dma_reserve: The number of pages to mark reserved
6725 *
6726 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6727 * In the DMA zone, a significant percentage may be consumed by kernel image
6728 * and other unfreeable allocations which can skew the watermarks badly. This
6729 * function may optionally be used to account for unfreeable pages in the
6730 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6731 * smaller per-cpu batchsize.
6732 */
6733 void __init set_dma_reserve(unsigned long new_dma_reserve)
6734 {
6735 dma_reserve = new_dma_reserve;
6736 }
6737
6738 void __init free_area_init(unsigned long *zones_size)
6739 {
6740 free_area_init_node(0, zones_size,
6741 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6742 }
6743
6744 static int page_alloc_cpu_dead(unsigned int cpu)
6745 {
6746
6747 lru_add_drain_cpu(cpu);
6748 drain_pages(cpu);
6749
6750 /*
6751 * Spill the event counters of the dead processor
6752 * into the current processors event counters.
6753 * This artificially elevates the count of the current
6754 * processor.
6755 */
6756 vm_events_fold_cpu(cpu);
6757
6758 /*
6759 * Zero the differential counters of the dead processor
6760 * so that the vm statistics are consistent.
6761 *
6762 * This is only okay since the processor is dead and cannot
6763 * race with what we are doing.
6764 */
6765 cpu_vm_stats_fold(cpu);
6766 return 0;
6767 }
6768
6769 void __init page_alloc_init(void)
6770 {
6771 int ret;
6772
6773 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6774 "mm/page_alloc:dead", NULL,
6775 page_alloc_cpu_dead);
6776 WARN_ON(ret < 0);
6777 }
6778
6779 /*
6780 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6781 * or min_free_kbytes changes.
6782 */
6783 static void calculate_totalreserve_pages(void)
6784 {
6785 struct pglist_data *pgdat;
6786 unsigned long reserve_pages = 0;
6787 enum zone_type i, j;
6788
6789 for_each_online_pgdat(pgdat) {
6790
6791 pgdat->totalreserve_pages = 0;
6792
6793 for (i = 0; i < MAX_NR_ZONES; i++) {
6794 struct zone *zone = pgdat->node_zones + i;
6795 long max = 0;
6796
6797 /* Find valid and maximum lowmem_reserve in the zone */
6798 for (j = i; j < MAX_NR_ZONES; j++) {
6799 if (zone->lowmem_reserve[j] > max)
6800 max = zone->lowmem_reserve[j];
6801 }
6802
6803 /* we treat the high watermark as reserved pages. */
6804 max += high_wmark_pages(zone);
6805
6806 if (max > zone->managed_pages)
6807 max = zone->managed_pages;
6808
6809 pgdat->totalreserve_pages += max;
6810
6811 reserve_pages += max;
6812 }
6813 }
6814 totalreserve_pages = reserve_pages;
6815 }
6816
6817 /*
6818 * setup_per_zone_lowmem_reserve - called whenever
6819 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6820 * has a correct pages reserved value, so an adequate number of
6821 * pages are left in the zone after a successful __alloc_pages().
6822 */
6823 static void setup_per_zone_lowmem_reserve(void)
6824 {
6825 struct pglist_data *pgdat;
6826 enum zone_type j, idx;
6827
6828 for_each_online_pgdat(pgdat) {
6829 for (j = 0; j < MAX_NR_ZONES; j++) {
6830 struct zone *zone = pgdat->node_zones + j;
6831 unsigned long managed_pages = zone->managed_pages;
6832
6833 zone->lowmem_reserve[j] = 0;
6834
6835 idx = j;
6836 while (idx) {
6837 struct zone *lower_zone;
6838
6839 idx--;
6840
6841 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6842 sysctl_lowmem_reserve_ratio[idx] = 1;
6843
6844 lower_zone = pgdat->node_zones + idx;
6845 lower_zone->lowmem_reserve[j] = managed_pages /
6846 sysctl_lowmem_reserve_ratio[idx];
6847 managed_pages += lower_zone->managed_pages;
6848 }
6849 }
6850 }
6851
6852 /* update totalreserve_pages */
6853 calculate_totalreserve_pages();
6854 }
6855
6856 static void __setup_per_zone_wmarks(void)
6857 {
6858 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6859 unsigned long lowmem_pages = 0;
6860 struct zone *zone;
6861 unsigned long flags;
6862
6863 /* Calculate total number of !ZONE_HIGHMEM pages */
6864 for_each_zone(zone) {
6865 if (!is_highmem(zone))
6866 lowmem_pages += zone->managed_pages;
6867 }
6868
6869 for_each_zone(zone) {
6870 u64 tmp;
6871
6872 spin_lock_irqsave(&zone->lock, flags);
6873 tmp = (u64)pages_min * zone->managed_pages;
6874 do_div(tmp, lowmem_pages);
6875 if (is_highmem(zone)) {
6876 /*
6877 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6878 * need highmem pages, so cap pages_min to a small
6879 * value here.
6880 *
6881 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6882 * deltas control asynch page reclaim, and so should
6883 * not be capped for highmem.
6884 */
6885 unsigned long min_pages;
6886
6887 min_pages = zone->managed_pages / 1024;
6888 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6889 zone->watermark[WMARK_MIN] = min_pages;
6890 } else {
6891 /*
6892 * If it's a lowmem zone, reserve a number of pages
6893 * proportionate to the zone's size.
6894 */
6895 zone->watermark[WMARK_MIN] = tmp;
6896 }
6897
6898 /*
6899 * Set the kswapd watermarks distance according to the
6900 * scale factor in proportion to available memory, but
6901 * ensure a minimum size on small systems.
6902 */
6903 tmp = max_t(u64, tmp >> 2,
6904 mult_frac(zone->managed_pages,
6905 watermark_scale_factor, 10000));
6906
6907 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6908 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6909
6910 spin_unlock_irqrestore(&zone->lock, flags);
6911 }
6912
6913 /* update totalreserve_pages */
6914 calculate_totalreserve_pages();
6915 }
6916
6917 /**
6918 * setup_per_zone_wmarks - called when min_free_kbytes changes
6919 * or when memory is hot-{added|removed}
6920 *
6921 * Ensures that the watermark[min,low,high] values for each zone are set
6922 * correctly with respect to min_free_kbytes.
6923 */
6924 void setup_per_zone_wmarks(void)
6925 {
6926 mutex_lock(&zonelists_mutex);
6927 __setup_per_zone_wmarks();
6928 mutex_unlock(&zonelists_mutex);
6929 }
6930
6931 /*
6932 * Initialise min_free_kbytes.
6933 *
6934 * For small machines we want it small (128k min). For large machines
6935 * we want it large (64MB max). But it is not linear, because network
6936 * bandwidth does not increase linearly with machine size. We use
6937 *
6938 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6939 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6940 *
6941 * which yields
6942 *
6943 * 16MB: 512k
6944 * 32MB: 724k
6945 * 64MB: 1024k
6946 * 128MB: 1448k
6947 * 256MB: 2048k
6948 * 512MB: 2896k
6949 * 1024MB: 4096k
6950 * 2048MB: 5792k
6951 * 4096MB: 8192k
6952 * 8192MB: 11584k
6953 * 16384MB: 16384k
6954 */
6955 int __meminit init_per_zone_wmark_min(void)
6956 {
6957 unsigned long lowmem_kbytes;
6958 int new_min_free_kbytes;
6959
6960 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6961 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6962
6963 if (new_min_free_kbytes > user_min_free_kbytes) {
6964 min_free_kbytes = new_min_free_kbytes;
6965 if (min_free_kbytes < 128)
6966 min_free_kbytes = 128;
6967 if (min_free_kbytes > 65536)
6968 min_free_kbytes = 65536;
6969 } else {
6970 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6971 new_min_free_kbytes, user_min_free_kbytes);
6972 }
6973 setup_per_zone_wmarks();
6974 refresh_zone_stat_thresholds();
6975 setup_per_zone_lowmem_reserve();
6976
6977 #ifdef CONFIG_NUMA
6978 setup_min_unmapped_ratio();
6979 setup_min_slab_ratio();
6980 #endif
6981
6982 return 0;
6983 }
6984 core_initcall(init_per_zone_wmark_min)
6985
6986 /*
6987 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6988 * that we can call two helper functions whenever min_free_kbytes
6989 * changes.
6990 */
6991 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6992 void __user *buffer, size_t *length, loff_t *ppos)
6993 {
6994 int rc;
6995
6996 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6997 if (rc)
6998 return rc;
6999
7000 if (write) {
7001 user_min_free_kbytes = min_free_kbytes;
7002 setup_per_zone_wmarks();
7003 }
7004 return 0;
7005 }
7006
7007 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7008 void __user *buffer, size_t *length, loff_t *ppos)
7009 {
7010 int rc;
7011
7012 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7013 if (rc)
7014 return rc;
7015
7016 if (write)
7017 setup_per_zone_wmarks();
7018
7019 return 0;
7020 }
7021
7022 #ifdef CONFIG_NUMA
7023 static void setup_min_unmapped_ratio(void)
7024 {
7025 pg_data_t *pgdat;
7026 struct zone *zone;
7027
7028 for_each_online_pgdat(pgdat)
7029 pgdat->min_unmapped_pages = 0;
7030
7031 for_each_zone(zone)
7032 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7033 sysctl_min_unmapped_ratio) / 100;
7034 }
7035
7036
7037 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7038 void __user *buffer, size_t *length, loff_t *ppos)
7039 {
7040 int rc;
7041
7042 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7043 if (rc)
7044 return rc;
7045
7046 setup_min_unmapped_ratio();
7047
7048 return 0;
7049 }
7050
7051 static void setup_min_slab_ratio(void)
7052 {
7053 pg_data_t *pgdat;
7054 struct zone *zone;
7055
7056 for_each_online_pgdat(pgdat)
7057 pgdat->min_slab_pages = 0;
7058
7059 for_each_zone(zone)
7060 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7061 sysctl_min_slab_ratio) / 100;
7062 }
7063
7064 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7065 void __user *buffer, size_t *length, loff_t *ppos)
7066 {
7067 int rc;
7068
7069 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7070 if (rc)
7071 return rc;
7072
7073 setup_min_slab_ratio();
7074
7075 return 0;
7076 }
7077 #endif
7078
7079 /*
7080 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7081 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7082 * whenever sysctl_lowmem_reserve_ratio changes.
7083 *
7084 * The reserve ratio obviously has absolutely no relation with the
7085 * minimum watermarks. The lowmem reserve ratio can only make sense
7086 * if in function of the boot time zone sizes.
7087 */
7088 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7089 void __user *buffer, size_t *length, loff_t *ppos)
7090 {
7091 proc_dointvec_minmax(table, write, buffer, length, ppos);
7092 setup_per_zone_lowmem_reserve();
7093 return 0;
7094 }
7095
7096 /*
7097 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7098 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7099 * pagelist can have before it gets flushed back to buddy allocator.
7100 */
7101 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7102 void __user *buffer, size_t *length, loff_t *ppos)
7103 {
7104 struct zone *zone;
7105 int old_percpu_pagelist_fraction;
7106 int ret;
7107
7108 mutex_lock(&pcp_batch_high_lock);
7109 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7110
7111 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7112 if (!write || ret < 0)
7113 goto out;
7114
7115 /* Sanity checking to avoid pcp imbalance */
7116 if (percpu_pagelist_fraction &&
7117 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7118 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7119 ret = -EINVAL;
7120 goto out;
7121 }
7122
7123 /* No change? */
7124 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7125 goto out;
7126
7127 for_each_populated_zone(zone) {
7128 unsigned int cpu;
7129
7130 for_each_possible_cpu(cpu)
7131 pageset_set_high_and_batch(zone,
7132 per_cpu_ptr(zone->pageset, cpu));
7133 }
7134 out:
7135 mutex_unlock(&pcp_batch_high_lock);
7136 return ret;
7137 }
7138
7139 #ifdef CONFIG_NUMA
7140 int hashdist = HASHDIST_DEFAULT;
7141
7142 static int __init set_hashdist(char *str)
7143 {
7144 if (!str)
7145 return 0;
7146 hashdist = simple_strtoul(str, &str, 0);
7147 return 1;
7148 }
7149 __setup("hashdist=", set_hashdist);
7150 #endif
7151
7152 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7153 /*
7154 * Returns the number of pages that arch has reserved but
7155 * is not known to alloc_large_system_hash().
7156 */
7157 static unsigned long __init arch_reserved_kernel_pages(void)
7158 {
7159 return 0;
7160 }
7161 #endif
7162
7163 /*
7164 * allocate a large system hash table from bootmem
7165 * - it is assumed that the hash table must contain an exact power-of-2
7166 * quantity of entries
7167 * - limit is the number of hash buckets, not the total allocation size
7168 */
7169 void *__init alloc_large_system_hash(const char *tablename,
7170 unsigned long bucketsize,
7171 unsigned long numentries,
7172 int scale,
7173 int flags,
7174 unsigned int *_hash_shift,
7175 unsigned int *_hash_mask,
7176 unsigned long low_limit,
7177 unsigned long high_limit)
7178 {
7179 unsigned long long max = high_limit;
7180 unsigned long log2qty, size;
7181 void *table = NULL;
7182
7183 /* allow the kernel cmdline to have a say */
7184 if (!numentries) {
7185 /* round applicable memory size up to nearest megabyte */
7186 numentries = nr_kernel_pages;
7187 numentries -= arch_reserved_kernel_pages();
7188
7189 /* It isn't necessary when PAGE_SIZE >= 1MB */
7190 if (PAGE_SHIFT < 20)
7191 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7192
7193 /* limit to 1 bucket per 2^scale bytes of low memory */
7194 if (scale > PAGE_SHIFT)
7195 numentries >>= (scale - PAGE_SHIFT);
7196 else
7197 numentries <<= (PAGE_SHIFT - scale);
7198
7199 /* Make sure we've got at least a 0-order allocation.. */
7200 if (unlikely(flags & HASH_SMALL)) {
7201 /* Makes no sense without HASH_EARLY */
7202 WARN_ON(!(flags & HASH_EARLY));
7203 if (!(numentries >> *_hash_shift)) {
7204 numentries = 1UL << *_hash_shift;
7205 BUG_ON(!numentries);
7206 }
7207 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7208 numentries = PAGE_SIZE / bucketsize;
7209 }
7210 numentries = roundup_pow_of_two(numentries);
7211
7212 /* limit allocation size to 1/16 total memory by default */
7213 if (max == 0) {
7214 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7215 do_div(max, bucketsize);
7216 }
7217 max = min(max, 0x80000000ULL);
7218
7219 if (numentries < low_limit)
7220 numentries = low_limit;
7221 if (numentries > max)
7222 numentries = max;
7223
7224 log2qty = ilog2(numentries);
7225
7226 do {
7227 size = bucketsize << log2qty;
7228 if (flags & HASH_EARLY)
7229 table = memblock_virt_alloc_nopanic(size, 0);
7230 else if (hashdist)
7231 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7232 else {
7233 /*
7234 * If bucketsize is not a power-of-two, we may free
7235 * some pages at the end of hash table which
7236 * alloc_pages_exact() automatically does
7237 */
7238 if (get_order(size) < MAX_ORDER) {
7239 table = alloc_pages_exact(size, GFP_ATOMIC);
7240 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7241 }
7242 }
7243 } while (!table && size > PAGE_SIZE && --log2qty);
7244
7245 if (!table)
7246 panic("Failed to allocate %s hash table\n", tablename);
7247
7248 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7249 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7250
7251 if (_hash_shift)
7252 *_hash_shift = log2qty;
7253 if (_hash_mask)
7254 *_hash_mask = (1 << log2qty) - 1;
7255
7256 return table;
7257 }
7258
7259 /*
7260 * This function checks whether pageblock includes unmovable pages or not.
7261 * If @count is not zero, it is okay to include less @count unmovable pages
7262 *
7263 * PageLRU check without isolation or lru_lock could race so that
7264 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7265 * check without lock_page also may miss some movable non-lru pages at
7266 * race condition. So you can't expect this function should be exact.
7267 */
7268 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7269 bool skip_hwpoisoned_pages)
7270 {
7271 unsigned long pfn, iter, found;
7272 int mt;
7273
7274 /*
7275 * For avoiding noise data, lru_add_drain_all() should be called
7276 * If ZONE_MOVABLE, the zone never contains unmovable pages
7277 */
7278 if (zone_idx(zone) == ZONE_MOVABLE)
7279 return false;
7280 mt = get_pageblock_migratetype(page);
7281 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7282 return false;
7283
7284 pfn = page_to_pfn(page);
7285 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7286 unsigned long check = pfn + iter;
7287
7288 if (!pfn_valid_within(check))
7289 continue;
7290
7291 page = pfn_to_page(check);
7292
7293 /*
7294 * Hugepages are not in LRU lists, but they're movable.
7295 * We need not scan over tail pages bacause we don't
7296 * handle each tail page individually in migration.
7297 */
7298 if (PageHuge(page)) {
7299 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7300 continue;
7301 }
7302
7303 /*
7304 * We can't use page_count without pin a page
7305 * because another CPU can free compound page.
7306 * This check already skips compound tails of THP
7307 * because their page->_refcount is zero at all time.
7308 */
7309 if (!page_ref_count(page)) {
7310 if (PageBuddy(page))
7311 iter += (1 << page_order(page)) - 1;
7312 continue;
7313 }
7314
7315 /*
7316 * The HWPoisoned page may be not in buddy system, and
7317 * page_count() is not 0.
7318 */
7319 if (skip_hwpoisoned_pages && PageHWPoison(page))
7320 continue;
7321
7322 if (__PageMovable(page))
7323 continue;
7324
7325 if (!PageLRU(page))
7326 found++;
7327 /*
7328 * If there are RECLAIMABLE pages, we need to check
7329 * it. But now, memory offline itself doesn't call
7330 * shrink_node_slabs() and it still to be fixed.
7331 */
7332 /*
7333 * If the page is not RAM, page_count()should be 0.
7334 * we don't need more check. This is an _used_ not-movable page.
7335 *
7336 * The problematic thing here is PG_reserved pages. PG_reserved
7337 * is set to both of a memory hole page and a _used_ kernel
7338 * page at boot.
7339 */
7340 if (found > count)
7341 return true;
7342 }
7343 return false;
7344 }
7345
7346 bool is_pageblock_removable_nolock(struct page *page)
7347 {
7348 struct zone *zone;
7349 unsigned long pfn;
7350
7351 /*
7352 * We have to be careful here because we are iterating over memory
7353 * sections which are not zone aware so we might end up outside of
7354 * the zone but still within the section.
7355 * We have to take care about the node as well. If the node is offline
7356 * its NODE_DATA will be NULL - see page_zone.
7357 */
7358 if (!node_online(page_to_nid(page)))
7359 return false;
7360
7361 zone = page_zone(page);
7362 pfn = page_to_pfn(page);
7363 if (!zone_spans_pfn(zone, pfn))
7364 return false;
7365
7366 return !has_unmovable_pages(zone, page, 0, true);
7367 }
7368
7369 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7370
7371 static unsigned long pfn_max_align_down(unsigned long pfn)
7372 {
7373 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7374 pageblock_nr_pages) - 1);
7375 }
7376
7377 static unsigned long pfn_max_align_up(unsigned long pfn)
7378 {
7379 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7380 pageblock_nr_pages));
7381 }
7382
7383 /* [start, end) must belong to a single zone. */
7384 static int __alloc_contig_migrate_range(struct compact_control *cc,
7385 unsigned long start, unsigned long end)
7386 {
7387 /* This function is based on compact_zone() from compaction.c. */
7388 unsigned long nr_reclaimed;
7389 unsigned long pfn = start;
7390 unsigned int tries = 0;
7391 int ret = 0;
7392
7393 migrate_prep();
7394
7395 while (pfn < end || !list_empty(&cc->migratepages)) {
7396 if (fatal_signal_pending(current)) {
7397 ret = -EINTR;
7398 break;
7399 }
7400
7401 if (list_empty(&cc->migratepages)) {
7402 cc->nr_migratepages = 0;
7403 pfn = isolate_migratepages_range(cc, pfn, end);
7404 if (!pfn) {
7405 ret = -EINTR;
7406 break;
7407 }
7408 tries = 0;
7409 } else if (++tries == 5) {
7410 ret = ret < 0 ? ret : -EBUSY;
7411 break;
7412 }
7413
7414 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7415 &cc->migratepages);
7416 cc->nr_migratepages -= nr_reclaimed;
7417
7418 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7419 NULL, 0, cc->mode, MR_CMA);
7420 }
7421 if (ret < 0) {
7422 putback_movable_pages(&cc->migratepages);
7423 return ret;
7424 }
7425 return 0;
7426 }
7427
7428 /**
7429 * alloc_contig_range() -- tries to allocate given range of pages
7430 * @start: start PFN to allocate
7431 * @end: one-past-the-last PFN to allocate
7432 * @migratetype: migratetype of the underlaying pageblocks (either
7433 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7434 * in range must have the same migratetype and it must
7435 * be either of the two.
7436 * @gfp_mask: GFP mask to use during compaction
7437 *
7438 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7439 * aligned, however it's the caller's responsibility to guarantee that
7440 * we are the only thread that changes migrate type of pageblocks the
7441 * pages fall in.
7442 *
7443 * The PFN range must belong to a single zone.
7444 *
7445 * Returns zero on success or negative error code. On success all
7446 * pages which PFN is in [start, end) are allocated for the caller and
7447 * need to be freed with free_contig_range().
7448 */
7449 int alloc_contig_range(unsigned long start, unsigned long end,
7450 unsigned migratetype, gfp_t gfp_mask)
7451 {
7452 unsigned long outer_start, outer_end;
7453 unsigned int order;
7454 int ret = 0;
7455
7456 struct compact_control cc = {
7457 .nr_migratepages = 0,
7458 .order = -1,
7459 .zone = page_zone(pfn_to_page(start)),
7460 .mode = MIGRATE_SYNC,
7461 .ignore_skip_hint = true,
7462 .gfp_mask = current_gfp_context(gfp_mask),
7463 };
7464 INIT_LIST_HEAD(&cc.migratepages);
7465
7466 /*
7467 * What we do here is we mark all pageblocks in range as
7468 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7469 * have different sizes, and due to the way page allocator
7470 * work, we align the range to biggest of the two pages so
7471 * that page allocator won't try to merge buddies from
7472 * different pageblocks and change MIGRATE_ISOLATE to some
7473 * other migration type.
7474 *
7475 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7476 * migrate the pages from an unaligned range (ie. pages that
7477 * we are interested in). This will put all the pages in
7478 * range back to page allocator as MIGRATE_ISOLATE.
7479 *
7480 * When this is done, we take the pages in range from page
7481 * allocator removing them from the buddy system. This way
7482 * page allocator will never consider using them.
7483 *
7484 * This lets us mark the pageblocks back as
7485 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7486 * aligned range but not in the unaligned, original range are
7487 * put back to page allocator so that buddy can use them.
7488 */
7489
7490 ret = start_isolate_page_range(pfn_max_align_down(start),
7491 pfn_max_align_up(end), migratetype,
7492 false);
7493 if (ret)
7494 return ret;
7495
7496 /*
7497 * In case of -EBUSY, we'd like to know which page causes problem.
7498 * So, just fall through. We will check it in test_pages_isolated().
7499 */
7500 ret = __alloc_contig_migrate_range(&cc, start, end);
7501 if (ret && ret != -EBUSY)
7502 goto done;
7503
7504 /*
7505 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7506 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7507 * more, all pages in [start, end) are free in page allocator.
7508 * What we are going to do is to allocate all pages from
7509 * [start, end) (that is remove them from page allocator).
7510 *
7511 * The only problem is that pages at the beginning and at the
7512 * end of interesting range may be not aligned with pages that
7513 * page allocator holds, ie. they can be part of higher order
7514 * pages. Because of this, we reserve the bigger range and
7515 * once this is done free the pages we are not interested in.
7516 *
7517 * We don't have to hold zone->lock here because the pages are
7518 * isolated thus they won't get removed from buddy.
7519 */
7520
7521 lru_add_drain_all();
7522 drain_all_pages(cc.zone);
7523
7524 order = 0;
7525 outer_start = start;
7526 while (!PageBuddy(pfn_to_page(outer_start))) {
7527 if (++order >= MAX_ORDER) {
7528 outer_start = start;
7529 break;
7530 }
7531 outer_start &= ~0UL << order;
7532 }
7533
7534 if (outer_start != start) {
7535 order = page_order(pfn_to_page(outer_start));
7536
7537 /*
7538 * outer_start page could be small order buddy page and
7539 * it doesn't include start page. Adjust outer_start
7540 * in this case to report failed page properly
7541 * on tracepoint in test_pages_isolated()
7542 */
7543 if (outer_start + (1UL << order) <= start)
7544 outer_start = start;
7545 }
7546
7547 /* Make sure the range is really isolated. */
7548 if (test_pages_isolated(outer_start, end, false)) {
7549 pr_info("%s: [%lx, %lx) PFNs busy\n",
7550 __func__, outer_start, end);
7551 ret = -EBUSY;
7552 goto done;
7553 }
7554
7555 /* Grab isolated pages from freelists. */
7556 outer_end = isolate_freepages_range(&cc, outer_start, end);
7557 if (!outer_end) {
7558 ret = -EBUSY;
7559 goto done;
7560 }
7561
7562 /* Free head and tail (if any) */
7563 if (start != outer_start)
7564 free_contig_range(outer_start, start - outer_start);
7565 if (end != outer_end)
7566 free_contig_range(end, outer_end - end);
7567
7568 done:
7569 undo_isolate_page_range(pfn_max_align_down(start),
7570 pfn_max_align_up(end), migratetype);
7571 return ret;
7572 }
7573
7574 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7575 {
7576 unsigned int count = 0;
7577
7578 for (; nr_pages--; pfn++) {
7579 struct page *page = pfn_to_page(pfn);
7580
7581 count += page_count(page) != 1;
7582 __free_page(page);
7583 }
7584 WARN(count != 0, "%d pages are still in use!\n", count);
7585 }
7586 #endif
7587
7588 #ifdef CONFIG_MEMORY_HOTPLUG
7589 /*
7590 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7591 * page high values need to be recalulated.
7592 */
7593 void __meminit zone_pcp_update(struct zone *zone)
7594 {
7595 unsigned cpu;
7596 mutex_lock(&pcp_batch_high_lock);
7597 for_each_possible_cpu(cpu)
7598 pageset_set_high_and_batch(zone,
7599 per_cpu_ptr(zone->pageset, cpu));
7600 mutex_unlock(&pcp_batch_high_lock);
7601 }
7602 #endif
7603
7604 void zone_pcp_reset(struct zone *zone)
7605 {
7606 unsigned long flags;
7607 int cpu;
7608 struct per_cpu_pageset *pset;
7609
7610 /* avoid races with drain_pages() */
7611 local_irq_save(flags);
7612 if (zone->pageset != &boot_pageset) {
7613 for_each_online_cpu(cpu) {
7614 pset = per_cpu_ptr(zone->pageset, cpu);
7615 drain_zonestat(zone, pset);
7616 }
7617 free_percpu(zone->pageset);
7618 zone->pageset = &boot_pageset;
7619 }
7620 local_irq_restore(flags);
7621 }
7622
7623 #ifdef CONFIG_MEMORY_HOTREMOVE
7624 /*
7625 * All pages in the range must be in a single zone and isolated
7626 * before calling this.
7627 */
7628 void
7629 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7630 {
7631 struct page *page;
7632 struct zone *zone;
7633 unsigned int order, i;
7634 unsigned long pfn;
7635 unsigned long flags;
7636 /* find the first valid pfn */
7637 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7638 if (pfn_valid(pfn))
7639 break;
7640 if (pfn == end_pfn)
7641 return;
7642 zone = page_zone(pfn_to_page(pfn));
7643 spin_lock_irqsave(&zone->lock, flags);
7644 pfn = start_pfn;
7645 while (pfn < end_pfn) {
7646 if (!pfn_valid(pfn)) {
7647 pfn++;
7648 continue;
7649 }
7650 page = pfn_to_page(pfn);
7651 /*
7652 * The HWPoisoned page may be not in buddy system, and
7653 * page_count() is not 0.
7654 */
7655 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7656 pfn++;
7657 SetPageReserved(page);
7658 continue;
7659 }
7660
7661 BUG_ON(page_count(page));
7662 BUG_ON(!PageBuddy(page));
7663 order = page_order(page);
7664 #ifdef CONFIG_DEBUG_VM
7665 pr_info("remove from free list %lx %d %lx\n",
7666 pfn, 1 << order, end_pfn);
7667 #endif
7668 list_del(&page->lru);
7669 rmv_page_order(page);
7670 zone->free_area[order].nr_free--;
7671 for (i = 0; i < (1 << order); i++)
7672 SetPageReserved((page+i));
7673 pfn += (1 << order);
7674 }
7675 spin_unlock_irqrestore(&zone->lock, flags);
7676 }
7677 #endif
7678
7679 bool is_free_buddy_page(struct page *page)
7680 {
7681 struct zone *zone = page_zone(page);
7682 unsigned long pfn = page_to_pfn(page);
7683 unsigned long flags;
7684 unsigned int order;
7685
7686 spin_lock_irqsave(&zone->lock, flags);
7687 for (order = 0; order < MAX_ORDER; order++) {
7688 struct page *page_head = page - (pfn & ((1 << order) - 1));
7689
7690 if (PageBuddy(page_head) && page_order(page_head) >= order)
7691 break;
7692 }
7693 spin_unlock_irqrestore(&zone->lock, flags);
7694
7695 return order < MAX_ORDER;
7696 }