mm: introduce memalloc_noreclaim_{save,restore}
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 32,
215 #endif
216 32,
217 };
218
219 EXPORT_SYMBOL(totalram_pages);
220
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 "DMA32",
227 #endif
228 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 "HighMem",
231 #endif
232 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 "Device",
235 #endif
236 };
237
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243 #ifdef CONFIG_CMA
244 "CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248 #endif
249 };
250
251 compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259 #endif
260 };
261
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289
290 int page_group_by_mobility_disabled __read_mostly;
291
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 return true;
305
306 return false;
307 }
308
309 /*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316 {
317 unsigned long max_initialise;
318
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
321 return true;
322 /*
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
325 */
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
328
329 (*nr_initialised)++;
330 if ((*nr_initialised > max_initialise) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 return false;
346 }
347
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
351 {
352 return true;
353 }
354 #endif
355
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
362 #else
363 return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 #else
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377
378 /**
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
384 *
385 * Return: pageblock_bits flags
386 */
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 unsigned long pfn,
389 unsigned long end_bitidx,
390 unsigned long mask)
391 {
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
394 unsigned long word;
395
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
400
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404 }
405
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
408 unsigned long mask)
409 {
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411 }
412
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 {
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416 }
417
418 /**
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
425 */
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430 {
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
434
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
441
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
447
448 word = READ_ONCE(bitmap[word_bitidx]);
449 for (;;) {
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
452 break;
453 word = old_word;
454 }
455 }
456
457 void set_pageblock_migratetype(struct page *page, int migratetype)
458 {
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
461 migratetype = MIGRATE_UNMOVABLE;
462
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
465 }
466
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 {
470 int ret = 0;
471 unsigned seq;
472 unsigned long pfn = page_to_pfn(page);
473 unsigned long sp, start_pfn;
474
475 do {
476 seq = zone_span_seqbegin(zone);
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
479 if (!zone_spans_pfn(zone, pfn))
480 ret = 1;
481 } while (zone_span_seqretry(zone, seq));
482
483 if (ret)
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
487
488 return ret;
489 }
490
491 static int page_is_consistent(struct zone *zone, struct page *page)
492 {
493 if (!pfn_valid_within(page_to_pfn(page)))
494 return 0;
495 if (zone != page_zone(page))
496 return 0;
497
498 return 1;
499 }
500 /*
501 * Temporary debugging check for pages not lying within a given zone.
502 */
503 static int bad_range(struct zone *zone, struct page *page)
504 {
505 if (page_outside_zone_boundaries(zone, page))
506 return 1;
507 if (!page_is_consistent(zone, page))
508 return 1;
509
510 return 0;
511 }
512 #else
513 static inline int bad_range(struct zone *zone, struct page *page)
514 {
515 return 0;
516 }
517 #endif
518
519 static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
521 {
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 goto out;
534 }
535 if (nr_unshown) {
536 pr_alert(
537 "BUG: Bad page state: %lu messages suppressed\n",
538 nr_unshown);
539 nr_unshown = 0;
540 }
541 nr_shown = 0;
542 }
543 if (nr_shown++ == 0)
544 resume = jiffies + 60 * HZ;
545
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current->comm, page_to_pfn(page));
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
550 if (bad_flags)
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
553 dump_page_owner(page);
554
555 print_modules();
556 dump_stack();
557 out:
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * Higher-order pages are called "compound pages". They are structured thusly:
565 *
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 *
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 *
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
573 *
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
576 */
577
578 void free_compound_page(struct page *page)
579 {
580 __free_pages_ok(page, compound_order(page));
581 }
582
583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 int i;
586 int nr_pages = 1 << order;
587
588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 set_compound_order(page, order);
590 __SetPageHead(page);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
593 set_page_count(p, 0);
594 p->mapping = TAIL_MAPPING;
595 set_compound_head(p, page);
596 }
597 atomic_set(compound_mapcount_ptr(page), -1);
598 }
599
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
606
607 static int __init early_debug_pagealloc(char *buf)
608 {
609 if (!buf)
610 return -EINVAL;
611 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 }
613 early_param("debug_pagealloc", early_debug_pagealloc);
614
615 static bool need_debug_guardpage(void)
616 {
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
619 return false;
620
621 if (!debug_guardpage_minorder())
622 return false;
623
624 return true;
625 }
626
627 static void init_debug_guardpage(void)
628 {
629 if (!debug_pagealloc_enabled())
630 return;
631
632 if (!debug_guardpage_minorder())
633 return;
634
635 _debug_guardpage_enabled = true;
636 }
637
638 struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
641 };
642
643 static int __init debug_guardpage_minorder_setup(char *buf)
644 {
645 unsigned long res;
646
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
649 return 0;
650 }
651 _debug_guardpage_minorder = res;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 return 0;
654 }
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 unsigned int order, int migratetype)
659 {
660 struct page_ext *page_ext;
661
662 if (!debug_guardpage_enabled())
663 return false;
664
665 if (order >= debug_guardpage_minorder())
666 return false;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return false;
671
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678
679 return true;
680 }
681
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return;
689
690 page_ext = lookup_page_ext(page);
691 if (unlikely(!page_ext))
692 return;
693
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
699 }
700 #else
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
706 #endif
707
708 static inline void set_page_order(struct page *page, unsigned int order)
709 {
710 set_page_private(page, order);
711 __SetPageBuddy(page);
712 }
713
714 static inline void rmv_page_order(struct page *page)
715 {
716 __ClearPageBuddy(page);
717 set_page_private(page, 0);
718 }
719
720 /*
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
727 *
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
732 *
733 * For recording page's order, we use page_private(page).
734 */
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
736 unsigned int order)
737 {
738 if (page_is_guard(buddy) && page_order(buddy) == order) {
739 if (page_zone_id(page) != page_zone_id(buddy))
740 return 0;
741
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743
744 return 1;
745 }
746
747 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 /*
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
751 * never merge.
752 */
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
758 return 1;
759 }
760 return 0;
761 }
762
763 /*
764 * Freeing function for a buddy system allocator.
765 *
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778 * field.
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
784 *
785 * -- nyc
786 */
787
788 static inline void __free_one_page(struct page *page,
789 unsigned long pfn,
790 struct zone *zone, unsigned int order,
791 int migratetype)
792 {
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
795 struct page *buddy;
796 unsigned int max_order;
797
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799
800 VM_BUG_ON(!zone_is_initialized(zone));
801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802
803 VM_BUG_ON(migratetype == -1);
804 if (likely(!is_migrate_isolate(migratetype)))
805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806
807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
814
815 if (!pfn_valid_within(buddy_pfn))
816 goto done_merging;
817 if (!page_is_buddy(page, buddy, order))
818 goto done_merging;
819 /*
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
822 */
823 if (page_is_guard(buddy)) {
824 clear_page_guard(zone, buddy, order, migratetype);
825 } else {
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
829 }
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
832 pfn = combined_pfn;
833 order++;
834 }
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
840 *
841 * We don't want to hit this code for the more frequent
842 * low-order merging.
843 */
844 if (unlikely(has_isolate_pageblock(zone))) {
845 int buddy_mt;
846
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
849 buddy_mt = get_pageblock_migratetype(buddy);
850
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
854 goto done_merging;
855 }
856 max_order++;
857 goto continue_merging;
858 }
859
860 done_merging:
861 set_page_order(page, order);
862
863 /*
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
870 */
871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 struct page *higher_page, *higher_buddy;
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
881 goto out;
882 }
883 }
884
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 out:
887 zone->free_area[order].nr_free++;
888 }
889
890 /*
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
894 */
895 static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
897 {
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
899 return false;
900
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
903 #ifdef CONFIG_MEMCG
904 (unsigned long)page->mem_cgroup |
905 #endif
906 (page->flags & check_flags)))
907 return false;
908
909 return true;
910 }
911
912 static void free_pages_check_bad(struct page *page)
913 {
914 const char *bad_reason;
915 unsigned long bad_flags;
916
917 bad_reason = NULL;
918 bad_flags = 0;
919
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
924 if (unlikely(page_ref_count(page) != 0))
925 bad_reason = "nonzero _refcount";
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 }
930 #ifdef CONFIG_MEMCG
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
933 #endif
934 bad_page(page, bad_reason, bad_flags);
935 }
936
937 static inline int free_pages_check(struct page *page)
938 {
939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 return 0;
941
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
944 return 1;
945 }
946
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 {
949 int ret = 1;
950
951 /*
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 */
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 ret = 0;
959 goto out;
960 }
961 switch (page - head_page) {
962 case 1:
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
966 goto out;
967 }
968 break;
969 case 2:
970 /*
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
973 */
974 break;
975 default:
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
978 goto out;
979 }
980 break;
981 }
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
984 goto out;
985 }
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
988 goto out;
989 }
990 ret = 0;
991 out:
992 page->mapping = NULL;
993 clear_compound_head(page);
994 return ret;
995 }
996
997 static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
999 {
1000 int bad = 0;
1001
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1003
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1006
1007 /*
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1010 */
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1013 int i;
1014
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016
1017 if (compound)
1018 ClearPageDoubleMap(page);
1019 for (i = 1; i < (1 << order); i++) {
1020 if (compound)
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1023 bad++;
1024 continue;
1025 }
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 }
1028 }
1029 if (PageMappingFlags(page))
1030 page->mapping = NULL;
1031 if (memcg_kmem_enabled() && PageKmemcg(page))
1032 memcg_kmem_uncharge(page, order);
1033 if (check_free)
1034 bad += free_pages_check(page);
1035 if (bad)
1036 return false;
1037
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
1041
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
1044 PAGE_SIZE << order);
1045 debug_check_no_obj_freed(page_address(page),
1046 PAGE_SIZE << order);
1047 }
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
1051 kasan_free_pages(page, order);
1052
1053 return true;
1054 }
1055
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1058 {
1059 return free_pages_prepare(page, 0, true);
1060 }
1061
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 return false;
1065 }
1066 #else
1067 static bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, false);
1070 }
1071
1072 static bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return free_pages_check(page);
1075 }
1076 #endif /* CONFIG_DEBUG_VM */
1077
1078 /*
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1082 *
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1085 *
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1088 */
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1091 {
1092 int migratetype = 0;
1093 int batch_free = 0;
1094 bool isolated_pageblocks;
1095
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 spin_lock(&zone->lock);
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1154 }
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1157 }
1158
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161 {
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1166
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177 {
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 /*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
1227 SetPageReserved(page);
1228 }
1229 }
1230 }
1231
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 unsigned long flags;
1235 int migratetype;
1236 unsigned long pfn = page_to_pfn(page);
1237
1238 if (!free_pages_prepare(page, order, true))
1239 return;
1240
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(void)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled();
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750
1751 post_alloc_hook(page, order, gfp_flags);
1752
1753 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 for (i = 0; i < (1 << order); i++)
1755 clear_highpage(page + i);
1756
1757 if (order && (gfp_flags & __GFP_COMP))
1758 prep_compound_page(page, order);
1759
1760 /*
1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1765 */
1766 if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 set_page_pfmemalloc(page);
1768 else
1769 clear_page_pfmemalloc(page);
1770 }
1771
1772 /*
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1775 */
1776 static inline
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 int migratetype)
1779 {
1780 unsigned int current_order;
1781 struct free_area *area;
1782 struct page *page;
1783
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 area = &(zone->free_area[current_order]);
1787 page = list_first_entry_or_null(&area->free_list[migratetype],
1788 struct page, lru);
1789 if (!page)
1790 continue;
1791 list_del(&page->lru);
1792 rmv_page_order(page);
1793 area->nr_free--;
1794 expand(zone, page, order, current_order, area, migratetype);
1795 set_pcppage_migratetype(page, migratetype);
1796 return page;
1797 }
1798
1799 return NULL;
1800 }
1801
1802
1803 /*
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1806 */
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811 #ifdef CONFIG_CMA
1812 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1816 #endif
1817 };
1818
1819 #ifdef CONFIG_CMA
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order)
1822 {
1823 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824 }
1825 #else
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order) { return NULL; }
1828 #endif
1829
1830 /*
1831 * Move the free pages in a range to the free lists of the requested type.
1832 * Note that start_page and end_pages are not aligned on a pageblock
1833 * boundary. If alignment is required, use move_freepages_block()
1834 */
1835 static int move_freepages(struct zone *zone,
1836 struct page *start_page, struct page *end_page,
1837 int migratetype, int *num_movable)
1838 {
1839 struct page *page;
1840 unsigned int order;
1841 int pages_moved = 0;
1842
1843 #ifndef CONFIG_HOLES_IN_ZONE
1844 /*
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
1849 * grouping pages by mobility
1850 */
1851 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 #endif
1853
1854 if (num_movable)
1855 *num_movable = 0;
1856
1857 for (page = start_page; page <= end_page;) {
1858 if (!pfn_valid_within(page_to_pfn(page))) {
1859 page++;
1860 continue;
1861 }
1862
1863 /* Make sure we are not inadvertently changing nodes */
1864 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1865
1866 if (!PageBuddy(page)) {
1867 /*
1868 * We assume that pages that could be isolated for
1869 * migration are movable. But we don't actually try
1870 * isolating, as that would be expensive.
1871 */
1872 if (num_movable &&
1873 (PageLRU(page) || __PageMovable(page)))
1874 (*num_movable)++;
1875
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype, int *num_movable)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype,
1909 num_movable);
1910 }
1911
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 int start_order, int migratetype)
1914 {
1915 int nr_pageblocks = 1 << (start_order - pageblock_order);
1916
1917 while (nr_pageblocks--) {
1918 set_pageblock_migratetype(pageblock_page, migratetype);
1919 pageblock_page += pageblock_nr_pages;
1920 }
1921 }
1922
1923 /*
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1927 *
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1933 * pageblocks.
1934 */
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1936 {
1937 /*
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1943 */
1944 if (order >= pageblock_order)
1945 return true;
1946
1947 if (order >= pageblock_order / 2 ||
1948 start_mt == MIGRATE_RECLAIMABLE ||
1949 start_mt == MIGRATE_UNMOVABLE ||
1950 page_group_by_mobility_disabled)
1951 return true;
1952
1953 return false;
1954 }
1955
1956 /*
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
1959 * pageblock to our migratetype and determine how many already-allocated pages
1960 * are there in the pageblock with a compatible migratetype. If at least half
1961 * of pages are free or compatible, we can change migratetype of the pageblock
1962 * itself, so pages freed in the future will be put on the correct free list.
1963 */
1964 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965 int start_type, bool whole_block)
1966 {
1967 unsigned int current_order = page_order(page);
1968 struct free_area *area;
1969 int free_pages, movable_pages, alike_pages;
1970 int old_block_type;
1971
1972 old_block_type = get_pageblock_migratetype(page);
1973
1974 /*
1975 * This can happen due to races and we want to prevent broken
1976 * highatomic accounting.
1977 */
1978 if (is_migrate_highatomic(old_block_type))
1979 goto single_page;
1980
1981 /* Take ownership for orders >= pageblock_order */
1982 if (current_order >= pageblock_order) {
1983 change_pageblock_range(page, current_order, start_type);
1984 goto single_page;
1985 }
1986
1987 /* We are not allowed to try stealing from the whole block */
1988 if (!whole_block)
1989 goto single_page;
1990
1991 free_pages = move_freepages_block(zone, page, start_type,
1992 &movable_pages);
1993 /*
1994 * Determine how many pages are compatible with our allocation.
1995 * For movable allocation, it's the number of movable pages which
1996 * we just obtained. For other types it's a bit more tricky.
1997 */
1998 if (start_type == MIGRATE_MOVABLE) {
1999 alike_pages = movable_pages;
2000 } else {
2001 /*
2002 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 * to MOVABLE pageblock, consider all non-movable pages as
2004 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 * vice versa, be conservative since we can't distinguish the
2006 * exact migratetype of non-movable pages.
2007 */
2008 if (old_block_type == MIGRATE_MOVABLE)
2009 alike_pages = pageblock_nr_pages
2010 - (free_pages + movable_pages);
2011 else
2012 alike_pages = 0;
2013 }
2014
2015 /* moving whole block can fail due to zone boundary conditions */
2016 if (!free_pages)
2017 goto single_page;
2018
2019 /*
2020 * If a sufficient number of pages in the block are either free or of
2021 * comparable migratability as our allocation, claim the whole block.
2022 */
2023 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 page_group_by_mobility_disabled)
2025 set_pageblock_migratetype(page, start_type);
2026
2027 return;
2028
2029 single_page:
2030 area = &zone->free_area[current_order];
2031 list_move(&page->lru, &area->free_list[start_type]);
2032 }
2033
2034 /*
2035 * Check whether there is a suitable fallback freepage with requested order.
2036 * If only_stealable is true, this function returns fallback_mt only if
2037 * we can steal other freepages all together. This would help to reduce
2038 * fragmentation due to mixed migratetype pages in one pageblock.
2039 */
2040 int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 int migratetype, bool only_stealable, bool *can_steal)
2042 {
2043 int i;
2044 int fallback_mt;
2045
2046 if (area->nr_free == 0)
2047 return -1;
2048
2049 *can_steal = false;
2050 for (i = 0;; i++) {
2051 fallback_mt = fallbacks[migratetype][i];
2052 if (fallback_mt == MIGRATE_TYPES)
2053 break;
2054
2055 if (list_empty(&area->free_list[fallback_mt]))
2056 continue;
2057
2058 if (can_steal_fallback(order, migratetype))
2059 *can_steal = true;
2060
2061 if (!only_stealable)
2062 return fallback_mt;
2063
2064 if (*can_steal)
2065 return fallback_mt;
2066 }
2067
2068 return -1;
2069 }
2070
2071 /*
2072 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073 * there are no empty page blocks that contain a page with a suitable order
2074 */
2075 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 unsigned int alloc_order)
2077 {
2078 int mt;
2079 unsigned long max_managed, flags;
2080
2081 /*
2082 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 * Check is race-prone but harmless.
2084 */
2085 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 if (zone->nr_reserved_highatomic >= max_managed)
2087 return;
2088
2089 spin_lock_irqsave(&zone->lock, flags);
2090
2091 /* Recheck the nr_reserved_highatomic limit under the lock */
2092 if (zone->nr_reserved_highatomic >= max_managed)
2093 goto out_unlock;
2094
2095 /* Yoink! */
2096 mt = get_pageblock_migratetype(page);
2097 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 && !is_migrate_cma(mt)) {
2099 zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2102 }
2103
2104 out_unlock:
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107
2108 /*
2109 * Used when an allocation is about to fail under memory pressure. This
2110 * potentially hurts the reliability of high-order allocations when under
2111 * intense memory pressure but failed atomic allocations should be easier
2112 * to recover from than an OOM.
2113 *
2114 * If @force is true, try to unreserve a pageblock even though highatomic
2115 * pageblock is exhausted.
2116 */
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2118 bool force)
2119 {
2120 struct zonelist *zonelist = ac->zonelist;
2121 unsigned long flags;
2122 struct zoneref *z;
2123 struct zone *zone;
2124 struct page *page;
2125 int order;
2126 bool ret;
2127
2128 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2129 ac->nodemask) {
2130 /*
2131 * Preserve at least one pageblock unless memory pressure
2132 * is really high.
2133 */
2134 if (!force && zone->nr_reserved_highatomic <=
2135 pageblock_nr_pages)
2136 continue;
2137
2138 spin_lock_irqsave(&zone->lock, flags);
2139 for (order = 0; order < MAX_ORDER; order++) {
2140 struct free_area *area = &(zone->free_area[order]);
2141
2142 page = list_first_entry_or_null(
2143 &area->free_list[MIGRATE_HIGHATOMIC],
2144 struct page, lru);
2145 if (!page)
2146 continue;
2147
2148 /*
2149 * In page freeing path, migratetype change is racy so
2150 * we can counter several free pages in a pageblock
2151 * in this loop althoug we changed the pageblock type
2152 * from highatomic to ac->migratetype. So we should
2153 * adjust the count once.
2154 */
2155 if (is_migrate_highatomic_page(page)) {
2156 /*
2157 * It should never happen but changes to
2158 * locking could inadvertently allow a per-cpu
2159 * drain to add pages to MIGRATE_HIGHATOMIC
2160 * while unreserving so be safe and watch for
2161 * underflows.
2162 */
2163 zone->nr_reserved_highatomic -= min(
2164 pageblock_nr_pages,
2165 zone->nr_reserved_highatomic);
2166 }
2167
2168 /*
2169 * Convert to ac->migratetype and avoid the normal
2170 * pageblock stealing heuristics. Minimally, the caller
2171 * is doing the work and needs the pages. More
2172 * importantly, if the block was always converted to
2173 * MIGRATE_UNMOVABLE or another type then the number
2174 * of pageblocks that cannot be completely freed
2175 * may increase.
2176 */
2177 set_pageblock_migratetype(page, ac->migratetype);
2178 ret = move_freepages_block(zone, page, ac->migratetype,
2179 NULL);
2180 if (ret) {
2181 spin_unlock_irqrestore(&zone->lock, flags);
2182 return ret;
2183 }
2184 }
2185 spin_unlock_irqrestore(&zone->lock, flags);
2186 }
2187
2188 return false;
2189 }
2190
2191 /*
2192 * Try finding a free buddy page on the fallback list and put it on the free
2193 * list of requested migratetype, possibly along with other pages from the same
2194 * block, depending on fragmentation avoidance heuristics. Returns true if
2195 * fallback was found so that __rmqueue_smallest() can grab it.
2196 */
2197 static inline bool
2198 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2199 {
2200 struct free_area *area;
2201 unsigned int current_order;
2202 struct page *page;
2203 int fallback_mt;
2204 bool can_steal;
2205
2206 /* Find the largest possible block of pages in the other list */
2207 for (current_order = MAX_ORDER-1;
2208 current_order >= order && current_order <= MAX_ORDER-1;
2209 --current_order) {
2210 area = &(zone->free_area[current_order]);
2211 fallback_mt = find_suitable_fallback(area, current_order,
2212 start_migratetype, false, &can_steal);
2213 if (fallback_mt == -1)
2214 continue;
2215
2216 page = list_first_entry(&area->free_list[fallback_mt],
2217 struct page, lru);
2218
2219 steal_suitable_fallback(zone, page, start_migratetype,
2220 can_steal);
2221
2222 trace_mm_page_alloc_extfrag(page, order, current_order,
2223 start_migratetype, fallback_mt);
2224
2225 return true;
2226 }
2227
2228 return false;
2229 }
2230
2231 /*
2232 * Do the hard work of removing an element from the buddy allocator.
2233 * Call me with the zone->lock already held.
2234 */
2235 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2236 int migratetype)
2237 {
2238 struct page *page;
2239
2240 retry:
2241 page = __rmqueue_smallest(zone, order, migratetype);
2242 if (unlikely(!page)) {
2243 if (migratetype == MIGRATE_MOVABLE)
2244 page = __rmqueue_cma_fallback(zone, order);
2245
2246 if (!page && __rmqueue_fallback(zone, order, migratetype))
2247 goto retry;
2248 }
2249
2250 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2251 return page;
2252 }
2253
2254 /*
2255 * Obtain a specified number of elements from the buddy allocator, all under
2256 * a single hold of the lock, for efficiency. Add them to the supplied list.
2257 * Returns the number of new pages which were placed at *list.
2258 */
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 unsigned long count, struct list_head *list,
2261 int migratetype, bool cold)
2262 {
2263 int i, alloced = 0;
2264
2265 spin_lock(&zone->lock);
2266 for (i = 0; i < count; ++i) {
2267 struct page *page = __rmqueue(zone, order, migratetype);
2268 if (unlikely(page == NULL))
2269 break;
2270
2271 if (unlikely(check_pcp_refill(page)))
2272 continue;
2273
2274 /*
2275 * Split buddy pages returned by expand() are received here
2276 * in physical page order. The page is added to the callers and
2277 * list and the list head then moves forward. From the callers
2278 * perspective, the linked list is ordered by page number in
2279 * some conditions. This is useful for IO devices that can
2280 * merge IO requests if the physical pages are ordered
2281 * properly.
2282 */
2283 if (likely(!cold))
2284 list_add(&page->lru, list);
2285 else
2286 list_add_tail(&page->lru, list);
2287 list = &page->lru;
2288 alloced++;
2289 if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2291 -(1 << order));
2292 }
2293
2294 /*
2295 * i pages were removed from the buddy list even if some leak due
2296 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 * on i. Do not confuse with 'alloced' which is the number of
2298 * pages added to the pcp list.
2299 */
2300 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301 spin_unlock(&zone->lock);
2302 return alloced;
2303 }
2304
2305 #ifdef CONFIG_NUMA
2306 /*
2307 * Called from the vmstat counter updater to drain pagesets of this
2308 * currently executing processor on remote nodes after they have
2309 * expired.
2310 *
2311 * Note that this function must be called with the thread pinned to
2312 * a single processor.
2313 */
2314 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2315 {
2316 unsigned long flags;
2317 int to_drain, batch;
2318
2319 local_irq_save(flags);
2320 batch = READ_ONCE(pcp->batch);
2321 to_drain = min(pcp->count, batch);
2322 if (to_drain > 0) {
2323 free_pcppages_bulk(zone, to_drain, pcp);
2324 pcp->count -= to_drain;
2325 }
2326 local_irq_restore(flags);
2327 }
2328 #endif
2329
2330 /*
2331 * Drain pcplists of the indicated processor and zone.
2332 *
2333 * The processor must either be the current processor and the
2334 * thread pinned to the current processor or a processor that
2335 * is not online.
2336 */
2337 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2338 {
2339 unsigned long flags;
2340 struct per_cpu_pageset *pset;
2341 struct per_cpu_pages *pcp;
2342
2343 local_irq_save(flags);
2344 pset = per_cpu_ptr(zone->pageset, cpu);
2345
2346 pcp = &pset->pcp;
2347 if (pcp->count) {
2348 free_pcppages_bulk(zone, pcp->count, pcp);
2349 pcp->count = 0;
2350 }
2351 local_irq_restore(flags);
2352 }
2353
2354 /*
2355 * Drain pcplists of all zones on the indicated processor.
2356 *
2357 * The processor must either be the current processor and the
2358 * thread pinned to the current processor or a processor that
2359 * is not online.
2360 */
2361 static void drain_pages(unsigned int cpu)
2362 {
2363 struct zone *zone;
2364
2365 for_each_populated_zone(zone) {
2366 drain_pages_zone(cpu, zone);
2367 }
2368 }
2369
2370 /*
2371 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2372 *
2373 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374 * the single zone's pages.
2375 */
2376 void drain_local_pages(struct zone *zone)
2377 {
2378 int cpu = smp_processor_id();
2379
2380 if (zone)
2381 drain_pages_zone(cpu, zone);
2382 else
2383 drain_pages(cpu);
2384 }
2385
2386 static void drain_local_pages_wq(struct work_struct *work)
2387 {
2388 /*
2389 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 * we can race with cpu offline when the WQ can move this from
2391 * a cpu pinned worker to an unbound one. We can operate on a different
2392 * cpu which is allright but we also have to make sure to not move to
2393 * a different one.
2394 */
2395 preempt_disable();
2396 drain_local_pages(NULL);
2397 preempt_enable();
2398 }
2399
2400 /*
2401 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2402 *
2403 * When zone parameter is non-NULL, spill just the single zone's pages.
2404 *
2405 * Note that this can be extremely slow as the draining happens in a workqueue.
2406 */
2407 void drain_all_pages(struct zone *zone)
2408 {
2409 int cpu;
2410
2411 /*
2412 * Allocate in the BSS so we wont require allocation in
2413 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2414 */
2415 static cpumask_t cpus_with_pcps;
2416
2417 /*
2418 * Make sure nobody triggers this path before mm_percpu_wq is fully
2419 * initialized.
2420 */
2421 if (WARN_ON_ONCE(!mm_percpu_wq))
2422 return;
2423
2424 /* Workqueues cannot recurse */
2425 if (current->flags & PF_WQ_WORKER)
2426 return;
2427
2428 /*
2429 * Do not drain if one is already in progress unless it's specific to
2430 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 * the drain to be complete when the call returns.
2432 */
2433 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2434 if (!zone)
2435 return;
2436 mutex_lock(&pcpu_drain_mutex);
2437 }
2438
2439 /*
2440 * We don't care about racing with CPU hotplug event
2441 * as offline notification will cause the notified
2442 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 * disables preemption as part of its processing
2444 */
2445 for_each_online_cpu(cpu) {
2446 struct per_cpu_pageset *pcp;
2447 struct zone *z;
2448 bool has_pcps = false;
2449
2450 if (zone) {
2451 pcp = per_cpu_ptr(zone->pageset, cpu);
2452 if (pcp->pcp.count)
2453 has_pcps = true;
2454 } else {
2455 for_each_populated_zone(z) {
2456 pcp = per_cpu_ptr(z->pageset, cpu);
2457 if (pcp->pcp.count) {
2458 has_pcps = true;
2459 break;
2460 }
2461 }
2462 }
2463
2464 if (has_pcps)
2465 cpumask_set_cpu(cpu, &cpus_with_pcps);
2466 else
2467 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2468 }
2469
2470 for_each_cpu(cpu, &cpus_with_pcps) {
2471 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 INIT_WORK(work, drain_local_pages_wq);
2473 queue_work_on(cpu, mm_percpu_wq, work);
2474 }
2475 for_each_cpu(cpu, &cpus_with_pcps)
2476 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2477
2478 mutex_unlock(&pcpu_drain_mutex);
2479 }
2480
2481 #ifdef CONFIG_HIBERNATION
2482
2483 void mark_free_pages(struct zone *zone)
2484 {
2485 unsigned long pfn, max_zone_pfn;
2486 unsigned long flags;
2487 unsigned int order, t;
2488 struct page *page;
2489
2490 if (zone_is_empty(zone))
2491 return;
2492
2493 spin_lock_irqsave(&zone->lock, flags);
2494
2495 max_zone_pfn = zone_end_pfn(zone);
2496 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 if (pfn_valid(pfn)) {
2498 page = pfn_to_page(pfn);
2499
2500 if (page_zone(page) != zone)
2501 continue;
2502
2503 if (!swsusp_page_is_forbidden(page))
2504 swsusp_unset_page_free(page);
2505 }
2506
2507 for_each_migratetype_order(order, t) {
2508 list_for_each_entry(page,
2509 &zone->free_area[order].free_list[t], lru) {
2510 unsigned long i;
2511
2512 pfn = page_to_pfn(page);
2513 for (i = 0; i < (1UL << order); i++)
2514 swsusp_set_page_free(pfn_to_page(pfn + i));
2515 }
2516 }
2517 spin_unlock_irqrestore(&zone->lock, flags);
2518 }
2519 #endif /* CONFIG_PM */
2520
2521 /*
2522 * Free a 0-order page
2523 * cold == true ? free a cold page : free a hot page
2524 */
2525 void free_hot_cold_page(struct page *page, bool cold)
2526 {
2527 struct zone *zone = page_zone(page);
2528 struct per_cpu_pages *pcp;
2529 unsigned long flags;
2530 unsigned long pfn = page_to_pfn(page);
2531 int migratetype;
2532
2533 if (!free_pcp_prepare(page))
2534 return;
2535
2536 migratetype = get_pfnblock_migratetype(page, pfn);
2537 set_pcppage_migratetype(page, migratetype);
2538 local_irq_save(flags);
2539 __count_vm_event(PGFREE);
2540
2541 /*
2542 * We only track unmovable, reclaimable and movable on pcp lists.
2543 * Free ISOLATE pages back to the allocator because they are being
2544 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 * areas back if necessary. Otherwise, we may have to free
2546 * excessively into the page allocator
2547 */
2548 if (migratetype >= MIGRATE_PCPTYPES) {
2549 if (unlikely(is_migrate_isolate(migratetype))) {
2550 free_one_page(zone, page, pfn, 0, migratetype);
2551 goto out;
2552 }
2553 migratetype = MIGRATE_MOVABLE;
2554 }
2555
2556 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2557 if (!cold)
2558 list_add(&page->lru, &pcp->lists[migratetype]);
2559 else
2560 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2561 pcp->count++;
2562 if (pcp->count >= pcp->high) {
2563 unsigned long batch = READ_ONCE(pcp->batch);
2564 free_pcppages_bulk(zone, batch, pcp);
2565 pcp->count -= batch;
2566 }
2567
2568 out:
2569 local_irq_restore(flags);
2570 }
2571
2572 /*
2573 * Free a list of 0-order pages
2574 */
2575 void free_hot_cold_page_list(struct list_head *list, bool cold)
2576 {
2577 struct page *page, *next;
2578
2579 list_for_each_entry_safe(page, next, list, lru) {
2580 trace_mm_page_free_batched(page, cold);
2581 free_hot_cold_page(page, cold);
2582 }
2583 }
2584
2585 /*
2586 * split_page takes a non-compound higher-order page, and splits it into
2587 * n (1<<order) sub-pages: page[0..n]
2588 * Each sub-page must be freed individually.
2589 *
2590 * Note: this is probably too low level an operation for use in drivers.
2591 * Please consult with lkml before using this in your driver.
2592 */
2593 void split_page(struct page *page, unsigned int order)
2594 {
2595 int i;
2596
2597 VM_BUG_ON_PAGE(PageCompound(page), page);
2598 VM_BUG_ON_PAGE(!page_count(page), page);
2599
2600 #ifdef CONFIG_KMEMCHECK
2601 /*
2602 * Split shadow pages too, because free(page[0]) would
2603 * otherwise free the whole shadow.
2604 */
2605 if (kmemcheck_page_is_tracked(page))
2606 split_page(virt_to_page(page[0].shadow), order);
2607 #endif
2608
2609 for (i = 1; i < (1 << order); i++)
2610 set_page_refcounted(page + i);
2611 split_page_owner(page, order);
2612 }
2613 EXPORT_SYMBOL_GPL(split_page);
2614
2615 int __isolate_free_page(struct page *page, unsigned int order)
2616 {
2617 unsigned long watermark;
2618 struct zone *zone;
2619 int mt;
2620
2621 BUG_ON(!PageBuddy(page));
2622
2623 zone = page_zone(page);
2624 mt = get_pageblock_migratetype(page);
2625
2626 if (!is_migrate_isolate(mt)) {
2627 /*
2628 * Obey watermarks as if the page was being allocated. We can
2629 * emulate a high-order watermark check with a raised order-0
2630 * watermark, because we already know our high-order page
2631 * exists.
2632 */
2633 watermark = min_wmark_pages(zone) + (1UL << order);
2634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 return 0;
2636
2637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2638 }
2639
2640 /* Remove page from free list */
2641 list_del(&page->lru);
2642 zone->free_area[order].nr_free--;
2643 rmv_page_order(page);
2644
2645 /*
2646 * Set the pageblock if the isolated page is at least half of a
2647 * pageblock
2648 */
2649 if (order >= pageblock_order - 1) {
2650 struct page *endpage = page + (1 << order) - 1;
2651 for (; page < endpage; page += pageblock_nr_pages) {
2652 int mt = get_pageblock_migratetype(page);
2653 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654 && !is_migrate_highatomic(mt))
2655 set_pageblock_migratetype(page,
2656 MIGRATE_MOVABLE);
2657 }
2658 }
2659
2660
2661 return 1UL << order;
2662 }
2663
2664 /*
2665 * Update NUMA hit/miss statistics
2666 *
2667 * Must be called with interrupts disabled.
2668 */
2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2670 {
2671 #ifdef CONFIG_NUMA
2672 enum zone_stat_item local_stat = NUMA_LOCAL;
2673
2674 if (z->node != numa_node_id())
2675 local_stat = NUMA_OTHER;
2676
2677 if (z->node == preferred_zone->node)
2678 __inc_zone_state(z, NUMA_HIT);
2679 else {
2680 __inc_zone_state(z, NUMA_MISS);
2681 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2682 }
2683 __inc_zone_state(z, local_stat);
2684 #endif
2685 }
2686
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 bool cold, struct per_cpu_pages *pcp,
2690 struct list_head *list)
2691 {
2692 struct page *page;
2693
2694 do {
2695 if (list_empty(list)) {
2696 pcp->count += rmqueue_bulk(zone, 0,
2697 pcp->batch, list,
2698 migratetype, cold);
2699 if (unlikely(list_empty(list)))
2700 return NULL;
2701 }
2702
2703 if (cold)
2704 page = list_last_entry(list, struct page, lru);
2705 else
2706 page = list_first_entry(list, struct page, lru);
2707
2708 list_del(&page->lru);
2709 pcp->count--;
2710 } while (check_new_pcp(page));
2711
2712 return page;
2713 }
2714
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 struct zone *zone, unsigned int order,
2718 gfp_t gfp_flags, int migratetype)
2719 {
2720 struct per_cpu_pages *pcp;
2721 struct list_head *list;
2722 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2723 struct page *page;
2724 unsigned long flags;
2725
2726 local_irq_save(flags);
2727 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 list = &pcp->lists[migratetype];
2729 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2730 if (page) {
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2733 }
2734 local_irq_restore(flags);
2735 return page;
2736 }
2737
2738 /*
2739 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2740 */
2741 static inline
2742 struct page *rmqueue(struct zone *preferred_zone,
2743 struct zone *zone, unsigned int order,
2744 gfp_t gfp_flags, unsigned int alloc_flags,
2745 int migratetype)
2746 {
2747 unsigned long flags;
2748 struct page *page;
2749
2750 if (likely(order == 0)) {
2751 page = rmqueue_pcplist(preferred_zone, zone, order,
2752 gfp_flags, migratetype);
2753 goto out;
2754 }
2755
2756 /*
2757 * We most definitely don't want callers attempting to
2758 * allocate greater than order-1 page units with __GFP_NOFAIL.
2759 */
2760 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 spin_lock_irqsave(&zone->lock, flags);
2762
2763 do {
2764 page = NULL;
2765 if (alloc_flags & ALLOC_HARDER) {
2766 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2767 if (page)
2768 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2769 }
2770 if (!page)
2771 page = __rmqueue(zone, order, migratetype);
2772 } while (page && check_new_pages(page, order));
2773 spin_unlock(&zone->lock);
2774 if (!page)
2775 goto failed;
2776 __mod_zone_freepage_state(zone, -(1 << order),
2777 get_pcppage_migratetype(page));
2778
2779 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 zone_statistics(preferred_zone, zone);
2781 local_irq_restore(flags);
2782
2783 out:
2784 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2785 return page;
2786
2787 failed:
2788 local_irq_restore(flags);
2789 return NULL;
2790 }
2791
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2793
2794 static struct {
2795 struct fault_attr attr;
2796
2797 bool ignore_gfp_highmem;
2798 bool ignore_gfp_reclaim;
2799 u32 min_order;
2800 } fail_page_alloc = {
2801 .attr = FAULT_ATTR_INITIALIZER,
2802 .ignore_gfp_reclaim = true,
2803 .ignore_gfp_highmem = true,
2804 .min_order = 1,
2805 };
2806
2807 static int __init setup_fail_page_alloc(char *str)
2808 {
2809 return setup_fault_attr(&fail_page_alloc.attr, str);
2810 }
2811 __setup("fail_page_alloc=", setup_fail_page_alloc);
2812
2813 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2814 {
2815 if (order < fail_page_alloc.min_order)
2816 return false;
2817 if (gfp_mask & __GFP_NOFAIL)
2818 return false;
2819 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2820 return false;
2821 if (fail_page_alloc.ignore_gfp_reclaim &&
2822 (gfp_mask & __GFP_DIRECT_RECLAIM))
2823 return false;
2824
2825 return should_fail(&fail_page_alloc.attr, 1 << order);
2826 }
2827
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2829
2830 static int __init fail_page_alloc_debugfs(void)
2831 {
2832 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2833 struct dentry *dir;
2834
2835 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 &fail_page_alloc.attr);
2837 if (IS_ERR(dir))
2838 return PTR_ERR(dir);
2839
2840 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841 &fail_page_alloc.ignore_gfp_reclaim))
2842 goto fail;
2843 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 &fail_page_alloc.ignore_gfp_highmem))
2845 goto fail;
2846 if (!debugfs_create_u32("min-order", mode, dir,
2847 &fail_page_alloc.min_order))
2848 goto fail;
2849
2850 return 0;
2851 fail:
2852 debugfs_remove_recursive(dir);
2853
2854 return -ENOMEM;
2855 }
2856
2857 late_initcall(fail_page_alloc_debugfs);
2858
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2860
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2862
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2864 {
2865 return false;
2866 }
2867
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2869
2870 /*
2871 * Return true if free base pages are above 'mark'. For high-order checks it
2872 * will return true of the order-0 watermark is reached and there is at least
2873 * one free page of a suitable size. Checking now avoids taking the zone lock
2874 * to check in the allocation paths if no pages are free.
2875 */
2876 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 int classzone_idx, unsigned int alloc_flags,
2878 long free_pages)
2879 {
2880 long min = mark;
2881 int o;
2882 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2883
2884 /* free_pages may go negative - that's OK */
2885 free_pages -= (1 << order) - 1;
2886
2887 if (alloc_flags & ALLOC_HIGH)
2888 min -= min / 2;
2889
2890 /*
2891 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 * the high-atomic reserves. This will over-estimate the size of the
2893 * atomic reserve but it avoids a search.
2894 */
2895 if (likely(!alloc_harder))
2896 free_pages -= z->nr_reserved_highatomic;
2897 else
2898 min -= min / 4;
2899
2900 #ifdef CONFIG_CMA
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags & ALLOC_CMA))
2903 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2904 #endif
2905
2906 /*
2907 * Check watermarks for an order-0 allocation request. If these
2908 * are not met, then a high-order request also cannot go ahead
2909 * even if a suitable page happened to be free.
2910 */
2911 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2912 return false;
2913
2914 /* If this is an order-0 request then the watermark is fine */
2915 if (!order)
2916 return true;
2917
2918 /* For a high-order request, check at least one suitable page is free */
2919 for (o = order; o < MAX_ORDER; o++) {
2920 struct free_area *area = &z->free_area[o];
2921 int mt;
2922
2923 if (!area->nr_free)
2924 continue;
2925
2926 if (alloc_harder)
2927 return true;
2928
2929 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 if (!list_empty(&area->free_list[mt]))
2931 return true;
2932 }
2933
2934 #ifdef CONFIG_CMA
2935 if ((alloc_flags & ALLOC_CMA) &&
2936 !list_empty(&area->free_list[MIGRATE_CMA])) {
2937 return true;
2938 }
2939 #endif
2940 }
2941 return false;
2942 }
2943
2944 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945 int classzone_idx, unsigned int alloc_flags)
2946 {
2947 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 zone_page_state(z, NR_FREE_PAGES));
2949 }
2950
2951 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2953 {
2954 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2955 long cma_pages = 0;
2956
2957 #ifdef CONFIG_CMA
2958 /* If allocation can't use CMA areas don't use free CMA pages */
2959 if (!(alloc_flags & ALLOC_CMA))
2960 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2961 #endif
2962
2963 /*
2964 * Fast check for order-0 only. If this fails then the reserves
2965 * need to be calculated. There is a corner case where the check
2966 * passes but only the high-order atomic reserve are free. If
2967 * the caller is !atomic then it'll uselessly search the free
2968 * list. That corner case is then slower but it is harmless.
2969 */
2970 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2971 return true;
2972
2973 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2974 free_pages);
2975 }
2976
2977 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978 unsigned long mark, int classzone_idx)
2979 {
2980 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2981
2982 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2984
2985 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2986 free_pages);
2987 }
2988
2989 #ifdef CONFIG_NUMA
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991 {
2992 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2993 RECLAIM_DISTANCE;
2994 }
2995 #else /* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2997 {
2998 return true;
2999 }
3000 #endif /* CONFIG_NUMA */
3001
3002 /*
3003 * get_page_from_freelist goes through the zonelist trying to allocate
3004 * a page.
3005 */
3006 static struct page *
3007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 const struct alloc_context *ac)
3009 {
3010 struct zoneref *z = ac->preferred_zoneref;
3011 struct zone *zone;
3012 struct pglist_data *last_pgdat_dirty_limit = NULL;
3013
3014 /*
3015 * Scan zonelist, looking for a zone with enough free.
3016 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3017 */
3018 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3019 ac->nodemask) {
3020 struct page *page;
3021 unsigned long mark;
3022
3023 if (cpusets_enabled() &&
3024 (alloc_flags & ALLOC_CPUSET) &&
3025 !__cpuset_zone_allowed(zone, gfp_mask))
3026 continue;
3027 /*
3028 * When allocating a page cache page for writing, we
3029 * want to get it from a node that is within its dirty
3030 * limit, such that no single node holds more than its
3031 * proportional share of globally allowed dirty pages.
3032 * The dirty limits take into account the node's
3033 * lowmem reserves and high watermark so that kswapd
3034 * should be able to balance it without having to
3035 * write pages from its LRU list.
3036 *
3037 * XXX: For now, allow allocations to potentially
3038 * exceed the per-node dirty limit in the slowpath
3039 * (spread_dirty_pages unset) before going into reclaim,
3040 * which is important when on a NUMA setup the allowed
3041 * nodes are together not big enough to reach the
3042 * global limit. The proper fix for these situations
3043 * will require awareness of nodes in the
3044 * dirty-throttling and the flusher threads.
3045 */
3046 if (ac->spread_dirty_pages) {
3047 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3048 continue;
3049
3050 if (!node_dirty_ok(zone->zone_pgdat)) {
3051 last_pgdat_dirty_limit = zone->zone_pgdat;
3052 continue;
3053 }
3054 }
3055
3056 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057 if (!zone_watermark_fast(zone, order, mark,
3058 ac_classzone_idx(ac), alloc_flags)) {
3059 int ret;
3060
3061 /* Checked here to keep the fast path fast */
3062 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 if (alloc_flags & ALLOC_NO_WATERMARKS)
3064 goto try_this_zone;
3065
3066 if (node_reclaim_mode == 0 ||
3067 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3068 continue;
3069
3070 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3071 switch (ret) {
3072 case NODE_RECLAIM_NOSCAN:
3073 /* did not scan */
3074 continue;
3075 case NODE_RECLAIM_FULL:
3076 /* scanned but unreclaimable */
3077 continue;
3078 default:
3079 /* did we reclaim enough */
3080 if (zone_watermark_ok(zone, order, mark,
3081 ac_classzone_idx(ac), alloc_flags))
3082 goto try_this_zone;
3083
3084 continue;
3085 }
3086 }
3087
3088 try_this_zone:
3089 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090 gfp_mask, alloc_flags, ac->migratetype);
3091 if (page) {
3092 prep_new_page(page, order, gfp_mask, alloc_flags);
3093
3094 /*
3095 * If this is a high-order atomic allocation then check
3096 * if the pageblock should be reserved for the future
3097 */
3098 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 reserve_highatomic_pageblock(page, zone, order);
3100
3101 return page;
3102 }
3103 }
3104
3105 return NULL;
3106 }
3107
3108 /*
3109 * Large machines with many possible nodes should not always dump per-node
3110 * meminfo in irq context.
3111 */
3112 static inline bool should_suppress_show_mem(void)
3113 {
3114 bool ret = false;
3115
3116 #if NODES_SHIFT > 8
3117 ret = in_interrupt();
3118 #endif
3119 return ret;
3120 }
3121
3122 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3123 {
3124 unsigned int filter = SHOW_MEM_FILTER_NODES;
3125 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3126
3127 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3128 return;
3129
3130 /*
3131 * This documents exceptions given to allocations in certain
3132 * contexts that are allowed to allocate outside current's set
3133 * of allowed nodes.
3134 */
3135 if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 if (test_thread_flag(TIF_MEMDIE) ||
3137 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 filter &= ~SHOW_MEM_FILTER_NODES;
3139 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 filter &= ~SHOW_MEM_FILTER_NODES;
3141
3142 show_mem(filter, nodemask);
3143 }
3144
3145 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3146 {
3147 struct va_format vaf;
3148 va_list args;
3149 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 DEFAULT_RATELIMIT_BURST);
3151
3152 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3153 return;
3154
3155 pr_warn("%s: ", current->comm);
3156
3157 va_start(args, fmt);
3158 vaf.fmt = fmt;
3159 vaf.va = &args;
3160 pr_cont("%pV", &vaf);
3161 va_end(args);
3162
3163 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3164 if (nodemask)
3165 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3166 else
3167 pr_cont("(null)\n");
3168
3169 cpuset_print_current_mems_allowed();
3170
3171 dump_stack();
3172 warn_alloc_show_mem(gfp_mask, nodemask);
3173 }
3174
3175 static inline struct page *
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 unsigned int alloc_flags,
3178 const struct alloc_context *ac)
3179 {
3180 struct page *page;
3181
3182 page = get_page_from_freelist(gfp_mask, order,
3183 alloc_flags|ALLOC_CPUSET, ac);
3184 /*
3185 * fallback to ignore cpuset restriction if our nodes
3186 * are depleted
3187 */
3188 if (!page)
3189 page = get_page_from_freelist(gfp_mask, order,
3190 alloc_flags, ac);
3191
3192 return page;
3193 }
3194
3195 static inline struct page *
3196 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197 const struct alloc_context *ac, unsigned long *did_some_progress)
3198 {
3199 struct oom_control oc = {
3200 .zonelist = ac->zonelist,
3201 .nodemask = ac->nodemask,
3202 .memcg = NULL,
3203 .gfp_mask = gfp_mask,
3204 .order = order,
3205 };
3206 struct page *page;
3207
3208 *did_some_progress = 0;
3209
3210 /*
3211 * Acquire the oom lock. If that fails, somebody else is
3212 * making progress for us.
3213 */
3214 if (!mutex_trylock(&oom_lock)) {
3215 *did_some_progress = 1;
3216 schedule_timeout_uninterruptible(1);
3217 return NULL;
3218 }
3219
3220 /*
3221 * Go through the zonelist yet one more time, keep very high watermark
3222 * here, this is only to catch a parallel oom killing, we must fail if
3223 * we're still under heavy pressure.
3224 */
3225 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3227 if (page)
3228 goto out;
3229
3230 /* Coredumps can quickly deplete all memory reserves */
3231 if (current->flags & PF_DUMPCORE)
3232 goto out;
3233 /* The OOM killer will not help higher order allocs */
3234 if (order > PAGE_ALLOC_COSTLY_ORDER)
3235 goto out;
3236 /* The OOM killer does not needlessly kill tasks for lowmem */
3237 if (ac->high_zoneidx < ZONE_NORMAL)
3238 goto out;
3239 if (pm_suspended_storage())
3240 goto out;
3241 /*
3242 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 * other request to make a forward progress.
3244 * We are in an unfortunate situation where out_of_memory cannot
3245 * do much for this context but let's try it to at least get
3246 * access to memory reserved if the current task is killed (see
3247 * out_of_memory). Once filesystems are ready to handle allocation
3248 * failures more gracefully we should just bail out here.
3249 */
3250
3251 /* The OOM killer may not free memory on a specific node */
3252 if (gfp_mask & __GFP_THISNODE)
3253 goto out;
3254
3255 /* Exhausted what can be done so it's blamo time */
3256 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257 *did_some_progress = 1;
3258
3259 /*
3260 * Help non-failing allocations by giving them access to memory
3261 * reserves
3262 */
3263 if (gfp_mask & __GFP_NOFAIL)
3264 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 ALLOC_NO_WATERMARKS, ac);
3266 }
3267 out:
3268 mutex_unlock(&oom_lock);
3269 return page;
3270 }
3271
3272 /*
3273 * Maximum number of compaction retries wit a progress before OOM
3274 * killer is consider as the only way to move forward.
3275 */
3276 #define MAX_COMPACT_RETRIES 16
3277
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page *
3281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282 unsigned int alloc_flags, const struct alloc_context *ac,
3283 enum compact_priority prio, enum compact_result *compact_result)
3284 {
3285 struct page *page;
3286 unsigned int noreclaim_flag;
3287
3288 if (!order)
3289 return NULL;
3290
3291 noreclaim_flag = memalloc_noreclaim_save();
3292 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3293 prio);
3294 memalloc_noreclaim_restore(noreclaim_flag);
3295
3296 if (*compact_result <= COMPACT_INACTIVE)
3297 return NULL;
3298
3299 /*
3300 * At least in one zone compaction wasn't deferred or skipped, so let's
3301 * count a compaction stall
3302 */
3303 count_vm_event(COMPACTSTALL);
3304
3305 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3306
3307 if (page) {
3308 struct zone *zone = page_zone(page);
3309
3310 zone->compact_blockskip_flush = false;
3311 compaction_defer_reset(zone, order, true);
3312 count_vm_event(COMPACTSUCCESS);
3313 return page;
3314 }
3315
3316 /*
3317 * It's bad if compaction run occurs and fails. The most likely reason
3318 * is that pages exist, but not enough to satisfy watermarks.
3319 */
3320 count_vm_event(COMPACTFAIL);
3321
3322 cond_resched();
3323
3324 return NULL;
3325 }
3326
3327 static inline bool
3328 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3329 enum compact_result compact_result,
3330 enum compact_priority *compact_priority,
3331 int *compaction_retries)
3332 {
3333 int max_retries = MAX_COMPACT_RETRIES;
3334 int min_priority;
3335 bool ret = false;
3336 int retries = *compaction_retries;
3337 enum compact_priority priority = *compact_priority;
3338
3339 if (!order)
3340 return false;
3341
3342 if (compaction_made_progress(compact_result))
3343 (*compaction_retries)++;
3344
3345 /*
3346 * compaction considers all the zone as desperately out of memory
3347 * so it doesn't really make much sense to retry except when the
3348 * failure could be caused by insufficient priority
3349 */
3350 if (compaction_failed(compact_result))
3351 goto check_priority;
3352
3353 /*
3354 * make sure the compaction wasn't deferred or didn't bail out early
3355 * due to locks contention before we declare that we should give up.
3356 * But do not retry if the given zonelist is not suitable for
3357 * compaction.
3358 */
3359 if (compaction_withdrawn(compact_result)) {
3360 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3361 goto out;
3362 }
3363
3364 /*
3365 * !costly requests are much more important than __GFP_REPEAT
3366 * costly ones because they are de facto nofail and invoke OOM
3367 * killer to move on while costly can fail and users are ready
3368 * to cope with that. 1/4 retries is rather arbitrary but we
3369 * would need much more detailed feedback from compaction to
3370 * make a better decision.
3371 */
3372 if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 max_retries /= 4;
3374 if (*compaction_retries <= max_retries) {
3375 ret = true;
3376 goto out;
3377 }
3378
3379 /*
3380 * Make sure there are attempts at the highest priority if we exhausted
3381 * all retries or failed at the lower priorities.
3382 */
3383 check_priority:
3384 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3385 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3386
3387 if (*compact_priority > min_priority) {
3388 (*compact_priority)--;
3389 *compaction_retries = 0;
3390 ret = true;
3391 }
3392 out:
3393 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3394 return ret;
3395 }
3396 #else
3397 static inline struct page *
3398 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3399 unsigned int alloc_flags, const struct alloc_context *ac,
3400 enum compact_priority prio, enum compact_result *compact_result)
3401 {
3402 *compact_result = COMPACT_SKIPPED;
3403 return NULL;
3404 }
3405
3406 static inline bool
3407 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3408 enum compact_result compact_result,
3409 enum compact_priority *compact_priority,
3410 int *compaction_retries)
3411 {
3412 struct zone *zone;
3413 struct zoneref *z;
3414
3415 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3416 return false;
3417
3418 /*
3419 * There are setups with compaction disabled which would prefer to loop
3420 * inside the allocator rather than hit the oom killer prematurely.
3421 * Let's give them a good hope and keep retrying while the order-0
3422 * watermarks are OK.
3423 */
3424 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3425 ac->nodemask) {
3426 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3427 ac_classzone_idx(ac), alloc_flags))
3428 return true;
3429 }
3430 return false;
3431 }
3432 #endif /* CONFIG_COMPACTION */
3433
3434 /* Perform direct synchronous page reclaim */
3435 static int
3436 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3437 const struct alloc_context *ac)
3438 {
3439 struct reclaim_state reclaim_state;
3440 int progress;
3441 unsigned int noreclaim_flag;
3442
3443 cond_resched();
3444
3445 /* We now go into synchronous reclaim */
3446 cpuset_memory_pressure_bump();
3447 noreclaim_flag = memalloc_noreclaim_save();
3448 lockdep_set_current_reclaim_state(gfp_mask);
3449 reclaim_state.reclaimed_slab = 0;
3450 current->reclaim_state = &reclaim_state;
3451
3452 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3453 ac->nodemask);
3454
3455 current->reclaim_state = NULL;
3456 lockdep_clear_current_reclaim_state();
3457 memalloc_noreclaim_restore(noreclaim_flag);
3458
3459 cond_resched();
3460
3461 return progress;
3462 }
3463
3464 /* The really slow allocator path where we enter direct reclaim */
3465 static inline struct page *
3466 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3467 unsigned int alloc_flags, const struct alloc_context *ac,
3468 unsigned long *did_some_progress)
3469 {
3470 struct page *page = NULL;
3471 bool drained = false;
3472
3473 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3474 if (unlikely(!(*did_some_progress)))
3475 return NULL;
3476
3477 retry:
3478 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3479
3480 /*
3481 * If an allocation failed after direct reclaim, it could be because
3482 * pages are pinned on the per-cpu lists or in high alloc reserves.
3483 * Shrink them them and try again
3484 */
3485 if (!page && !drained) {
3486 unreserve_highatomic_pageblock(ac, false);
3487 drain_all_pages(NULL);
3488 drained = true;
3489 goto retry;
3490 }
3491
3492 return page;
3493 }
3494
3495 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3496 {
3497 struct zoneref *z;
3498 struct zone *zone;
3499 pg_data_t *last_pgdat = NULL;
3500
3501 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3502 ac->high_zoneidx, ac->nodemask) {
3503 if (last_pgdat != zone->zone_pgdat)
3504 wakeup_kswapd(zone, order, ac->high_zoneidx);
3505 last_pgdat = zone->zone_pgdat;
3506 }
3507 }
3508
3509 static inline unsigned int
3510 gfp_to_alloc_flags(gfp_t gfp_mask)
3511 {
3512 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3513
3514 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3515 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3516
3517 /*
3518 * The caller may dip into page reserves a bit more if the caller
3519 * cannot run direct reclaim, or if the caller has realtime scheduling
3520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3521 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3522 */
3523 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3524
3525 if (gfp_mask & __GFP_ATOMIC) {
3526 /*
3527 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3528 * if it can't schedule.
3529 */
3530 if (!(gfp_mask & __GFP_NOMEMALLOC))
3531 alloc_flags |= ALLOC_HARDER;
3532 /*
3533 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3534 * comment for __cpuset_node_allowed().
3535 */
3536 alloc_flags &= ~ALLOC_CPUSET;
3537 } else if (unlikely(rt_task(current)) && !in_interrupt())
3538 alloc_flags |= ALLOC_HARDER;
3539
3540 #ifdef CONFIG_CMA
3541 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3542 alloc_flags |= ALLOC_CMA;
3543 #endif
3544 return alloc_flags;
3545 }
3546
3547 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3548 {
3549 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3550 return false;
3551
3552 if (gfp_mask & __GFP_MEMALLOC)
3553 return true;
3554 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3555 return true;
3556 if (!in_interrupt() &&
3557 ((current->flags & PF_MEMALLOC) ||
3558 unlikely(test_thread_flag(TIF_MEMDIE))))
3559 return true;
3560
3561 return false;
3562 }
3563
3564 /*
3565 * Checks whether it makes sense to retry the reclaim to make a forward progress
3566 * for the given allocation request.
3567 *
3568 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3569 * without success, or when we couldn't even meet the watermark if we
3570 * reclaimed all remaining pages on the LRU lists.
3571 *
3572 * Returns true if a retry is viable or false to enter the oom path.
3573 */
3574 static inline bool
3575 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3576 struct alloc_context *ac, int alloc_flags,
3577 bool did_some_progress, int *no_progress_loops)
3578 {
3579 struct zone *zone;
3580 struct zoneref *z;
3581
3582 /*
3583 * Costly allocations might have made a progress but this doesn't mean
3584 * their order will become available due to high fragmentation so
3585 * always increment the no progress counter for them
3586 */
3587 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3588 *no_progress_loops = 0;
3589 else
3590 (*no_progress_loops)++;
3591
3592 /*
3593 * Make sure we converge to OOM if we cannot make any progress
3594 * several times in the row.
3595 */
3596 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3597 /* Before OOM, exhaust highatomic_reserve */
3598 return unreserve_highatomic_pageblock(ac, true);
3599 }
3600
3601 /*
3602 * Keep reclaiming pages while there is a chance this will lead
3603 * somewhere. If none of the target zones can satisfy our allocation
3604 * request even if all reclaimable pages are considered then we are
3605 * screwed and have to go OOM.
3606 */
3607 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3608 ac->nodemask) {
3609 unsigned long available;
3610 unsigned long reclaimable;
3611 unsigned long min_wmark = min_wmark_pages(zone);
3612 bool wmark;
3613
3614 available = reclaimable = zone_reclaimable_pages(zone);
3615 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3616
3617 /*
3618 * Would the allocation succeed if we reclaimed all
3619 * reclaimable pages?
3620 */
3621 wmark = __zone_watermark_ok(zone, order, min_wmark,
3622 ac_classzone_idx(ac), alloc_flags, available);
3623 trace_reclaim_retry_zone(z, order, reclaimable,
3624 available, min_wmark, *no_progress_loops, wmark);
3625 if (wmark) {
3626 /*
3627 * If we didn't make any progress and have a lot of
3628 * dirty + writeback pages then we should wait for
3629 * an IO to complete to slow down the reclaim and
3630 * prevent from pre mature OOM
3631 */
3632 if (!did_some_progress) {
3633 unsigned long write_pending;
3634
3635 write_pending = zone_page_state_snapshot(zone,
3636 NR_ZONE_WRITE_PENDING);
3637
3638 if (2 * write_pending > reclaimable) {
3639 congestion_wait(BLK_RW_ASYNC, HZ/10);
3640 return true;
3641 }
3642 }
3643
3644 /*
3645 * Memory allocation/reclaim might be called from a WQ
3646 * context and the current implementation of the WQ
3647 * concurrency control doesn't recognize that
3648 * a particular WQ is congested if the worker thread is
3649 * looping without ever sleeping. Therefore we have to
3650 * do a short sleep here rather than calling
3651 * cond_resched().
3652 */
3653 if (current->flags & PF_WQ_WORKER)
3654 schedule_timeout_uninterruptible(1);
3655 else
3656 cond_resched();
3657
3658 return true;
3659 }
3660 }
3661
3662 return false;
3663 }
3664
3665 static inline struct page *
3666 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3667 struct alloc_context *ac)
3668 {
3669 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3670 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3671 struct page *page = NULL;
3672 unsigned int alloc_flags;
3673 unsigned long did_some_progress;
3674 enum compact_priority compact_priority;
3675 enum compact_result compact_result;
3676 int compaction_retries;
3677 int no_progress_loops;
3678 unsigned long alloc_start = jiffies;
3679 unsigned int stall_timeout = 10 * HZ;
3680 unsigned int cpuset_mems_cookie;
3681
3682 /*
3683 * In the slowpath, we sanity check order to avoid ever trying to
3684 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3685 * be using allocators in order of preference for an area that is
3686 * too large.
3687 */
3688 if (order >= MAX_ORDER) {
3689 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3690 return NULL;
3691 }
3692
3693 /*
3694 * We also sanity check to catch abuse of atomic reserves being used by
3695 * callers that are not in atomic context.
3696 */
3697 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3698 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3699 gfp_mask &= ~__GFP_ATOMIC;
3700
3701 retry_cpuset:
3702 compaction_retries = 0;
3703 no_progress_loops = 0;
3704 compact_priority = DEF_COMPACT_PRIORITY;
3705 cpuset_mems_cookie = read_mems_allowed_begin();
3706
3707 /*
3708 * The fast path uses conservative alloc_flags to succeed only until
3709 * kswapd needs to be woken up, and to avoid the cost of setting up
3710 * alloc_flags precisely. So we do that now.
3711 */
3712 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3713
3714 /*
3715 * We need to recalculate the starting point for the zonelist iterator
3716 * because we might have used different nodemask in the fast path, or
3717 * there was a cpuset modification and we are retrying - otherwise we
3718 * could end up iterating over non-eligible zones endlessly.
3719 */
3720 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3721 ac->high_zoneidx, ac->nodemask);
3722 if (!ac->preferred_zoneref->zone)
3723 goto nopage;
3724
3725 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3726 wake_all_kswapds(order, ac);
3727
3728 /*
3729 * The adjusted alloc_flags might result in immediate success, so try
3730 * that first
3731 */
3732 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3733 if (page)
3734 goto got_pg;
3735
3736 /*
3737 * For costly allocations, try direct compaction first, as it's likely
3738 * that we have enough base pages and don't need to reclaim. For non-
3739 * movable high-order allocations, do that as well, as compaction will
3740 * try prevent permanent fragmentation by migrating from blocks of the
3741 * same migratetype.
3742 * Don't try this for allocations that are allowed to ignore
3743 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3744 */
3745 if (can_direct_reclaim &&
3746 (costly_order ||
3747 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3748 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3749 page = __alloc_pages_direct_compact(gfp_mask, order,
3750 alloc_flags, ac,
3751 INIT_COMPACT_PRIORITY,
3752 &compact_result);
3753 if (page)
3754 goto got_pg;
3755
3756 /*
3757 * Checks for costly allocations with __GFP_NORETRY, which
3758 * includes THP page fault allocations
3759 */
3760 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3761 /*
3762 * If compaction is deferred for high-order allocations,
3763 * it is because sync compaction recently failed. If
3764 * this is the case and the caller requested a THP
3765 * allocation, we do not want to heavily disrupt the
3766 * system, so we fail the allocation instead of entering
3767 * direct reclaim.
3768 */
3769 if (compact_result == COMPACT_DEFERRED)
3770 goto nopage;
3771
3772 /*
3773 * Looks like reclaim/compaction is worth trying, but
3774 * sync compaction could be very expensive, so keep
3775 * using async compaction.
3776 */
3777 compact_priority = INIT_COMPACT_PRIORITY;
3778 }
3779 }
3780
3781 retry:
3782 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3783 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3784 wake_all_kswapds(order, ac);
3785
3786 if (gfp_pfmemalloc_allowed(gfp_mask))
3787 alloc_flags = ALLOC_NO_WATERMARKS;
3788
3789 /*
3790 * Reset the zonelist iterators if memory policies can be ignored.
3791 * These allocations are high priority and system rather than user
3792 * orientated.
3793 */
3794 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3795 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3796 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3797 ac->high_zoneidx, ac->nodemask);
3798 }
3799
3800 /* Attempt with potentially adjusted zonelist and alloc_flags */
3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802 if (page)
3803 goto got_pg;
3804
3805 /* Caller is not willing to reclaim, we can't balance anything */
3806 if (!can_direct_reclaim)
3807 goto nopage;
3808
3809 /* Make sure we know about allocations which stall for too long */
3810 if (time_after(jiffies, alloc_start + stall_timeout)) {
3811 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3812 "page allocation stalls for %ums, order:%u",
3813 jiffies_to_msecs(jiffies-alloc_start), order);
3814 stall_timeout += 10 * HZ;
3815 }
3816
3817 /* Avoid recursion of direct reclaim */
3818 if (current->flags & PF_MEMALLOC)
3819 goto nopage;
3820
3821 /* Try direct reclaim and then allocating */
3822 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3823 &did_some_progress);
3824 if (page)
3825 goto got_pg;
3826
3827 /* Try direct compaction and then allocating */
3828 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3829 compact_priority, &compact_result);
3830 if (page)
3831 goto got_pg;
3832
3833 /* Do not loop if specifically requested */
3834 if (gfp_mask & __GFP_NORETRY)
3835 goto nopage;
3836
3837 /*
3838 * Do not retry costly high order allocations unless they are
3839 * __GFP_REPEAT
3840 */
3841 if (costly_order && !(gfp_mask & __GFP_REPEAT))
3842 goto nopage;
3843
3844 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3845 did_some_progress > 0, &no_progress_loops))
3846 goto retry;
3847
3848 /*
3849 * It doesn't make any sense to retry for the compaction if the order-0
3850 * reclaim is not able to make any progress because the current
3851 * implementation of the compaction depends on the sufficient amount
3852 * of free memory (see __compaction_suitable)
3853 */
3854 if (did_some_progress > 0 &&
3855 should_compact_retry(ac, order, alloc_flags,
3856 compact_result, &compact_priority,
3857 &compaction_retries))
3858 goto retry;
3859
3860 /*
3861 * It's possible we raced with cpuset update so the OOM would be
3862 * premature (see below the nopage: label for full explanation).
3863 */
3864 if (read_mems_allowed_retry(cpuset_mems_cookie))
3865 goto retry_cpuset;
3866
3867 /* Reclaim has failed us, start killing things */
3868 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3869 if (page)
3870 goto got_pg;
3871
3872 /* Avoid allocations with no watermarks from looping endlessly */
3873 if (test_thread_flag(TIF_MEMDIE))
3874 goto nopage;
3875
3876 /* Retry as long as the OOM killer is making progress */
3877 if (did_some_progress) {
3878 no_progress_loops = 0;
3879 goto retry;
3880 }
3881
3882 nopage:
3883 /*
3884 * When updating a task's mems_allowed or mempolicy nodemask, it is
3885 * possible to race with parallel threads in such a way that our
3886 * allocation can fail while the mask is being updated. If we are about
3887 * to fail, check if the cpuset changed during allocation and if so,
3888 * retry.
3889 */
3890 if (read_mems_allowed_retry(cpuset_mems_cookie))
3891 goto retry_cpuset;
3892
3893 /*
3894 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3895 * we always retry
3896 */
3897 if (gfp_mask & __GFP_NOFAIL) {
3898 /*
3899 * All existing users of the __GFP_NOFAIL are blockable, so warn
3900 * of any new users that actually require GFP_NOWAIT
3901 */
3902 if (WARN_ON_ONCE(!can_direct_reclaim))
3903 goto fail;
3904
3905 /*
3906 * PF_MEMALLOC request from this context is rather bizarre
3907 * because we cannot reclaim anything and only can loop waiting
3908 * for somebody to do a work for us
3909 */
3910 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3911
3912 /*
3913 * non failing costly orders are a hard requirement which we
3914 * are not prepared for much so let's warn about these users
3915 * so that we can identify them and convert them to something
3916 * else.
3917 */
3918 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3919
3920 /*
3921 * Help non-failing allocations by giving them access to memory
3922 * reserves but do not use ALLOC_NO_WATERMARKS because this
3923 * could deplete whole memory reserves which would just make
3924 * the situation worse
3925 */
3926 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3927 if (page)
3928 goto got_pg;
3929
3930 cond_resched();
3931 goto retry;
3932 }
3933 fail:
3934 warn_alloc(gfp_mask, ac->nodemask,
3935 "page allocation failure: order:%u", order);
3936 got_pg:
3937 return page;
3938 }
3939
3940 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3941 struct zonelist *zonelist, nodemask_t *nodemask,
3942 struct alloc_context *ac, gfp_t *alloc_mask,
3943 unsigned int *alloc_flags)
3944 {
3945 ac->high_zoneidx = gfp_zone(gfp_mask);
3946 ac->zonelist = zonelist;
3947 ac->nodemask = nodemask;
3948 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3949
3950 if (cpusets_enabled()) {
3951 *alloc_mask |= __GFP_HARDWALL;
3952 if (!ac->nodemask)
3953 ac->nodemask = &cpuset_current_mems_allowed;
3954 else
3955 *alloc_flags |= ALLOC_CPUSET;
3956 }
3957
3958 lockdep_trace_alloc(gfp_mask);
3959
3960 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3961
3962 if (should_fail_alloc_page(gfp_mask, order))
3963 return false;
3964
3965 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3966 *alloc_flags |= ALLOC_CMA;
3967
3968 return true;
3969 }
3970
3971 /* Determine whether to spread dirty pages and what the first usable zone */
3972 static inline void finalise_ac(gfp_t gfp_mask,
3973 unsigned int order, struct alloc_context *ac)
3974 {
3975 /* Dirty zone balancing only done in the fast path */
3976 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3977
3978 /*
3979 * The preferred zone is used for statistics but crucially it is
3980 * also used as the starting point for the zonelist iterator. It
3981 * may get reset for allocations that ignore memory policies.
3982 */
3983 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3984 ac->high_zoneidx, ac->nodemask);
3985 }
3986
3987 /*
3988 * This is the 'heart' of the zoned buddy allocator.
3989 */
3990 struct page *
3991 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3992 struct zonelist *zonelist, nodemask_t *nodemask)
3993 {
3994 struct page *page;
3995 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3996 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3997 struct alloc_context ac = { };
3998
3999 gfp_mask &= gfp_allowed_mask;
4000 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4001 return NULL;
4002
4003 finalise_ac(gfp_mask, order, &ac);
4004
4005 /* First allocation attempt */
4006 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4007 if (likely(page))
4008 goto out;
4009
4010 /*
4011 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4012 * resp. GFP_NOIO which has to be inherited for all allocation requests
4013 * from a particular context which has been marked by
4014 * memalloc_no{fs,io}_{save,restore}.
4015 */
4016 alloc_mask = current_gfp_context(gfp_mask);
4017 ac.spread_dirty_pages = false;
4018
4019 /*
4020 * Restore the original nodemask if it was potentially replaced with
4021 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4022 */
4023 if (unlikely(ac.nodemask != nodemask))
4024 ac.nodemask = nodemask;
4025
4026 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4027
4028 out:
4029 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4030 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4031 __free_pages(page, order);
4032 page = NULL;
4033 }
4034
4035 if (kmemcheck_enabled && page)
4036 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4037
4038 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4039
4040 return page;
4041 }
4042 EXPORT_SYMBOL(__alloc_pages_nodemask);
4043
4044 /*
4045 * Common helper functions.
4046 */
4047 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4048 {
4049 struct page *page;
4050
4051 /*
4052 * __get_free_pages() returns a 32-bit address, which cannot represent
4053 * a highmem page
4054 */
4055 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4056
4057 page = alloc_pages(gfp_mask, order);
4058 if (!page)
4059 return 0;
4060 return (unsigned long) page_address(page);
4061 }
4062 EXPORT_SYMBOL(__get_free_pages);
4063
4064 unsigned long get_zeroed_page(gfp_t gfp_mask)
4065 {
4066 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4067 }
4068 EXPORT_SYMBOL(get_zeroed_page);
4069
4070 void __free_pages(struct page *page, unsigned int order)
4071 {
4072 if (put_page_testzero(page)) {
4073 if (order == 0)
4074 free_hot_cold_page(page, false);
4075 else
4076 __free_pages_ok(page, order);
4077 }
4078 }
4079
4080 EXPORT_SYMBOL(__free_pages);
4081
4082 void free_pages(unsigned long addr, unsigned int order)
4083 {
4084 if (addr != 0) {
4085 VM_BUG_ON(!virt_addr_valid((void *)addr));
4086 __free_pages(virt_to_page((void *)addr), order);
4087 }
4088 }
4089
4090 EXPORT_SYMBOL(free_pages);
4091
4092 /*
4093 * Page Fragment:
4094 * An arbitrary-length arbitrary-offset area of memory which resides
4095 * within a 0 or higher order page. Multiple fragments within that page
4096 * are individually refcounted, in the page's reference counter.
4097 *
4098 * The page_frag functions below provide a simple allocation framework for
4099 * page fragments. This is used by the network stack and network device
4100 * drivers to provide a backing region of memory for use as either an
4101 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4102 */
4103 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4104 gfp_t gfp_mask)
4105 {
4106 struct page *page = NULL;
4107 gfp_t gfp = gfp_mask;
4108
4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4110 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4111 __GFP_NOMEMALLOC;
4112 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4113 PAGE_FRAG_CACHE_MAX_ORDER);
4114 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4115 #endif
4116 if (unlikely(!page))
4117 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4118
4119 nc->va = page ? page_address(page) : NULL;
4120
4121 return page;
4122 }
4123
4124 void __page_frag_cache_drain(struct page *page, unsigned int count)
4125 {
4126 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4127
4128 if (page_ref_sub_and_test(page, count)) {
4129 unsigned int order = compound_order(page);
4130
4131 if (order == 0)
4132 free_hot_cold_page(page, false);
4133 else
4134 __free_pages_ok(page, order);
4135 }
4136 }
4137 EXPORT_SYMBOL(__page_frag_cache_drain);
4138
4139 void *page_frag_alloc(struct page_frag_cache *nc,
4140 unsigned int fragsz, gfp_t gfp_mask)
4141 {
4142 unsigned int size = PAGE_SIZE;
4143 struct page *page;
4144 int offset;
4145
4146 if (unlikely(!nc->va)) {
4147 refill:
4148 page = __page_frag_cache_refill(nc, gfp_mask);
4149 if (!page)
4150 return NULL;
4151
4152 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4153 /* if size can vary use size else just use PAGE_SIZE */
4154 size = nc->size;
4155 #endif
4156 /* Even if we own the page, we do not use atomic_set().
4157 * This would break get_page_unless_zero() users.
4158 */
4159 page_ref_add(page, size - 1);
4160
4161 /* reset page count bias and offset to start of new frag */
4162 nc->pfmemalloc = page_is_pfmemalloc(page);
4163 nc->pagecnt_bias = size;
4164 nc->offset = size;
4165 }
4166
4167 offset = nc->offset - fragsz;
4168 if (unlikely(offset < 0)) {
4169 page = virt_to_page(nc->va);
4170
4171 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4172 goto refill;
4173
4174 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4175 /* if size can vary use size else just use PAGE_SIZE */
4176 size = nc->size;
4177 #endif
4178 /* OK, page count is 0, we can safely set it */
4179 set_page_count(page, size);
4180
4181 /* reset page count bias and offset to start of new frag */
4182 nc->pagecnt_bias = size;
4183 offset = size - fragsz;
4184 }
4185
4186 nc->pagecnt_bias--;
4187 nc->offset = offset;
4188
4189 return nc->va + offset;
4190 }
4191 EXPORT_SYMBOL(page_frag_alloc);
4192
4193 /*
4194 * Frees a page fragment allocated out of either a compound or order 0 page.
4195 */
4196 void page_frag_free(void *addr)
4197 {
4198 struct page *page = virt_to_head_page(addr);
4199
4200 if (unlikely(put_page_testzero(page)))
4201 __free_pages_ok(page, compound_order(page));
4202 }
4203 EXPORT_SYMBOL(page_frag_free);
4204
4205 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4206 size_t size)
4207 {
4208 if (addr) {
4209 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4210 unsigned long used = addr + PAGE_ALIGN(size);
4211
4212 split_page(virt_to_page((void *)addr), order);
4213 while (used < alloc_end) {
4214 free_page(used);
4215 used += PAGE_SIZE;
4216 }
4217 }
4218 return (void *)addr;
4219 }
4220
4221 /**
4222 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4223 * @size: the number of bytes to allocate
4224 * @gfp_mask: GFP flags for the allocation
4225 *
4226 * This function is similar to alloc_pages(), except that it allocates the
4227 * minimum number of pages to satisfy the request. alloc_pages() can only
4228 * allocate memory in power-of-two pages.
4229 *
4230 * This function is also limited by MAX_ORDER.
4231 *
4232 * Memory allocated by this function must be released by free_pages_exact().
4233 */
4234 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4235 {
4236 unsigned int order = get_order(size);
4237 unsigned long addr;
4238
4239 addr = __get_free_pages(gfp_mask, order);
4240 return make_alloc_exact(addr, order, size);
4241 }
4242 EXPORT_SYMBOL(alloc_pages_exact);
4243
4244 /**
4245 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4246 * pages on a node.
4247 * @nid: the preferred node ID where memory should be allocated
4248 * @size: the number of bytes to allocate
4249 * @gfp_mask: GFP flags for the allocation
4250 *
4251 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4252 * back.
4253 */
4254 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4255 {
4256 unsigned int order = get_order(size);
4257 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4258 if (!p)
4259 return NULL;
4260 return make_alloc_exact((unsigned long)page_address(p), order, size);
4261 }
4262
4263 /**
4264 * free_pages_exact - release memory allocated via alloc_pages_exact()
4265 * @virt: the value returned by alloc_pages_exact.
4266 * @size: size of allocation, same value as passed to alloc_pages_exact().
4267 *
4268 * Release the memory allocated by a previous call to alloc_pages_exact.
4269 */
4270 void free_pages_exact(void *virt, size_t size)
4271 {
4272 unsigned long addr = (unsigned long)virt;
4273 unsigned long end = addr + PAGE_ALIGN(size);
4274
4275 while (addr < end) {
4276 free_page(addr);
4277 addr += PAGE_SIZE;
4278 }
4279 }
4280 EXPORT_SYMBOL(free_pages_exact);
4281
4282 /**
4283 * nr_free_zone_pages - count number of pages beyond high watermark
4284 * @offset: The zone index of the highest zone
4285 *
4286 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4287 * high watermark within all zones at or below a given zone index. For each
4288 * zone, the number of pages is calculated as:
4289 *
4290 * nr_free_zone_pages = managed_pages - high_pages
4291 */
4292 static unsigned long nr_free_zone_pages(int offset)
4293 {
4294 struct zoneref *z;
4295 struct zone *zone;
4296
4297 /* Just pick one node, since fallback list is circular */
4298 unsigned long sum = 0;
4299
4300 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4301
4302 for_each_zone_zonelist(zone, z, zonelist, offset) {
4303 unsigned long size = zone->managed_pages;
4304 unsigned long high = high_wmark_pages(zone);
4305 if (size > high)
4306 sum += size - high;
4307 }
4308
4309 return sum;
4310 }
4311
4312 /**
4313 * nr_free_buffer_pages - count number of pages beyond high watermark
4314 *
4315 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4316 * watermark within ZONE_DMA and ZONE_NORMAL.
4317 */
4318 unsigned long nr_free_buffer_pages(void)
4319 {
4320 return nr_free_zone_pages(gfp_zone(GFP_USER));
4321 }
4322 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4323
4324 /**
4325 * nr_free_pagecache_pages - count number of pages beyond high watermark
4326 *
4327 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4328 * high watermark within all zones.
4329 */
4330 unsigned long nr_free_pagecache_pages(void)
4331 {
4332 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4333 }
4334
4335 static inline void show_node(struct zone *zone)
4336 {
4337 if (IS_ENABLED(CONFIG_NUMA))
4338 printk("Node %d ", zone_to_nid(zone));
4339 }
4340
4341 long si_mem_available(void)
4342 {
4343 long available;
4344 unsigned long pagecache;
4345 unsigned long wmark_low = 0;
4346 unsigned long pages[NR_LRU_LISTS];
4347 struct zone *zone;
4348 int lru;
4349
4350 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4351 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4352
4353 for_each_zone(zone)
4354 wmark_low += zone->watermark[WMARK_LOW];
4355
4356 /*
4357 * Estimate the amount of memory available for userspace allocations,
4358 * without causing swapping.
4359 */
4360 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4361
4362 /*
4363 * Not all the page cache can be freed, otherwise the system will
4364 * start swapping. Assume at least half of the page cache, or the
4365 * low watermark worth of cache, needs to stay.
4366 */
4367 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4368 pagecache -= min(pagecache / 2, wmark_low);
4369 available += pagecache;
4370
4371 /*
4372 * Part of the reclaimable slab consists of items that are in use,
4373 * and cannot be freed. Cap this estimate at the low watermark.
4374 */
4375 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4376 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4377
4378 if (available < 0)
4379 available = 0;
4380 return available;
4381 }
4382 EXPORT_SYMBOL_GPL(si_mem_available);
4383
4384 void si_meminfo(struct sysinfo *val)
4385 {
4386 val->totalram = totalram_pages;
4387 val->sharedram = global_node_page_state(NR_SHMEM);
4388 val->freeram = global_page_state(NR_FREE_PAGES);
4389 val->bufferram = nr_blockdev_pages();
4390 val->totalhigh = totalhigh_pages;
4391 val->freehigh = nr_free_highpages();
4392 val->mem_unit = PAGE_SIZE;
4393 }
4394
4395 EXPORT_SYMBOL(si_meminfo);
4396
4397 #ifdef CONFIG_NUMA
4398 void si_meminfo_node(struct sysinfo *val, int nid)
4399 {
4400 int zone_type; /* needs to be signed */
4401 unsigned long managed_pages = 0;
4402 unsigned long managed_highpages = 0;
4403 unsigned long free_highpages = 0;
4404 pg_data_t *pgdat = NODE_DATA(nid);
4405
4406 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4407 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4408 val->totalram = managed_pages;
4409 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4410 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4411 #ifdef CONFIG_HIGHMEM
4412 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4413 struct zone *zone = &pgdat->node_zones[zone_type];
4414
4415 if (is_highmem(zone)) {
4416 managed_highpages += zone->managed_pages;
4417 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4418 }
4419 }
4420 val->totalhigh = managed_highpages;
4421 val->freehigh = free_highpages;
4422 #else
4423 val->totalhigh = managed_highpages;
4424 val->freehigh = free_highpages;
4425 #endif
4426 val->mem_unit = PAGE_SIZE;
4427 }
4428 #endif
4429
4430 /*
4431 * Determine whether the node should be displayed or not, depending on whether
4432 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4433 */
4434 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4435 {
4436 if (!(flags & SHOW_MEM_FILTER_NODES))
4437 return false;
4438
4439 /*
4440 * no node mask - aka implicit memory numa policy. Do not bother with
4441 * the synchronization - read_mems_allowed_begin - because we do not
4442 * have to be precise here.
4443 */
4444 if (!nodemask)
4445 nodemask = &cpuset_current_mems_allowed;
4446
4447 return !node_isset(nid, *nodemask);
4448 }
4449
4450 #define K(x) ((x) << (PAGE_SHIFT-10))
4451
4452 static void show_migration_types(unsigned char type)
4453 {
4454 static const char types[MIGRATE_TYPES] = {
4455 [MIGRATE_UNMOVABLE] = 'U',
4456 [MIGRATE_MOVABLE] = 'M',
4457 [MIGRATE_RECLAIMABLE] = 'E',
4458 [MIGRATE_HIGHATOMIC] = 'H',
4459 #ifdef CONFIG_CMA
4460 [MIGRATE_CMA] = 'C',
4461 #endif
4462 #ifdef CONFIG_MEMORY_ISOLATION
4463 [MIGRATE_ISOLATE] = 'I',
4464 #endif
4465 };
4466 char tmp[MIGRATE_TYPES + 1];
4467 char *p = tmp;
4468 int i;
4469
4470 for (i = 0; i < MIGRATE_TYPES; i++) {
4471 if (type & (1 << i))
4472 *p++ = types[i];
4473 }
4474
4475 *p = '\0';
4476 printk(KERN_CONT "(%s) ", tmp);
4477 }
4478
4479 /*
4480 * Show free area list (used inside shift_scroll-lock stuff)
4481 * We also calculate the percentage fragmentation. We do this by counting the
4482 * memory on each free list with the exception of the first item on the list.
4483 *
4484 * Bits in @filter:
4485 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4486 * cpuset.
4487 */
4488 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4489 {
4490 unsigned long free_pcp = 0;
4491 int cpu;
4492 struct zone *zone;
4493 pg_data_t *pgdat;
4494
4495 for_each_populated_zone(zone) {
4496 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4497 continue;
4498
4499 for_each_online_cpu(cpu)
4500 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4501 }
4502
4503 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4504 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4505 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4506 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4507 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4508 " free:%lu free_pcp:%lu free_cma:%lu\n",
4509 global_node_page_state(NR_ACTIVE_ANON),
4510 global_node_page_state(NR_INACTIVE_ANON),
4511 global_node_page_state(NR_ISOLATED_ANON),
4512 global_node_page_state(NR_ACTIVE_FILE),
4513 global_node_page_state(NR_INACTIVE_FILE),
4514 global_node_page_state(NR_ISOLATED_FILE),
4515 global_node_page_state(NR_UNEVICTABLE),
4516 global_node_page_state(NR_FILE_DIRTY),
4517 global_node_page_state(NR_WRITEBACK),
4518 global_node_page_state(NR_UNSTABLE_NFS),
4519 global_page_state(NR_SLAB_RECLAIMABLE),
4520 global_page_state(NR_SLAB_UNRECLAIMABLE),
4521 global_node_page_state(NR_FILE_MAPPED),
4522 global_node_page_state(NR_SHMEM),
4523 global_page_state(NR_PAGETABLE),
4524 global_page_state(NR_BOUNCE),
4525 global_page_state(NR_FREE_PAGES),
4526 free_pcp,
4527 global_page_state(NR_FREE_CMA_PAGES));
4528
4529 for_each_online_pgdat(pgdat) {
4530 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4531 continue;
4532
4533 printk("Node %d"
4534 " active_anon:%lukB"
4535 " inactive_anon:%lukB"
4536 " active_file:%lukB"
4537 " inactive_file:%lukB"
4538 " unevictable:%lukB"
4539 " isolated(anon):%lukB"
4540 " isolated(file):%lukB"
4541 " mapped:%lukB"
4542 " dirty:%lukB"
4543 " writeback:%lukB"
4544 " shmem:%lukB"
4545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4546 " shmem_thp: %lukB"
4547 " shmem_pmdmapped: %lukB"
4548 " anon_thp: %lukB"
4549 #endif
4550 " writeback_tmp:%lukB"
4551 " unstable:%lukB"
4552 " all_unreclaimable? %s"
4553 "\n",
4554 pgdat->node_id,
4555 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4556 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4557 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4558 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4559 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4560 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4561 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4562 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4563 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4564 K(node_page_state(pgdat, NR_WRITEBACK)),
4565 K(node_page_state(pgdat, NR_SHMEM)),
4566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4567 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4568 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4569 * HPAGE_PMD_NR),
4570 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4571 #endif
4572 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4573 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4574 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4575 "yes" : "no");
4576 }
4577
4578 for_each_populated_zone(zone) {
4579 int i;
4580
4581 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4582 continue;
4583
4584 free_pcp = 0;
4585 for_each_online_cpu(cpu)
4586 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4587
4588 show_node(zone);
4589 printk(KERN_CONT
4590 "%s"
4591 " free:%lukB"
4592 " min:%lukB"
4593 " low:%lukB"
4594 " high:%lukB"
4595 " active_anon:%lukB"
4596 " inactive_anon:%lukB"
4597 " active_file:%lukB"
4598 " inactive_file:%lukB"
4599 " unevictable:%lukB"
4600 " writepending:%lukB"
4601 " present:%lukB"
4602 " managed:%lukB"
4603 " mlocked:%lukB"
4604 " slab_reclaimable:%lukB"
4605 " slab_unreclaimable:%lukB"
4606 " kernel_stack:%lukB"
4607 " pagetables:%lukB"
4608 " bounce:%lukB"
4609 " free_pcp:%lukB"
4610 " local_pcp:%ukB"
4611 " free_cma:%lukB"
4612 "\n",
4613 zone->name,
4614 K(zone_page_state(zone, NR_FREE_PAGES)),
4615 K(min_wmark_pages(zone)),
4616 K(low_wmark_pages(zone)),
4617 K(high_wmark_pages(zone)),
4618 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4619 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4620 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4621 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4622 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4623 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4624 K(zone->present_pages),
4625 K(zone->managed_pages),
4626 K(zone_page_state(zone, NR_MLOCK)),
4627 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4628 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4629 zone_page_state(zone, NR_KERNEL_STACK_KB),
4630 K(zone_page_state(zone, NR_PAGETABLE)),
4631 K(zone_page_state(zone, NR_BOUNCE)),
4632 K(free_pcp),
4633 K(this_cpu_read(zone->pageset->pcp.count)),
4634 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4635 printk("lowmem_reserve[]:");
4636 for (i = 0; i < MAX_NR_ZONES; i++)
4637 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4638 printk(KERN_CONT "\n");
4639 }
4640
4641 for_each_populated_zone(zone) {
4642 unsigned int order;
4643 unsigned long nr[MAX_ORDER], flags, total = 0;
4644 unsigned char types[MAX_ORDER];
4645
4646 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4647 continue;
4648 show_node(zone);
4649 printk(KERN_CONT "%s: ", zone->name);
4650
4651 spin_lock_irqsave(&zone->lock, flags);
4652 for (order = 0; order < MAX_ORDER; order++) {
4653 struct free_area *area = &zone->free_area[order];
4654 int type;
4655
4656 nr[order] = area->nr_free;
4657 total += nr[order] << order;
4658
4659 types[order] = 0;
4660 for (type = 0; type < MIGRATE_TYPES; type++) {
4661 if (!list_empty(&area->free_list[type]))
4662 types[order] |= 1 << type;
4663 }
4664 }
4665 spin_unlock_irqrestore(&zone->lock, flags);
4666 for (order = 0; order < MAX_ORDER; order++) {
4667 printk(KERN_CONT "%lu*%lukB ",
4668 nr[order], K(1UL) << order);
4669 if (nr[order])
4670 show_migration_types(types[order]);
4671 }
4672 printk(KERN_CONT "= %lukB\n", K(total));
4673 }
4674
4675 hugetlb_show_meminfo();
4676
4677 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4678
4679 show_swap_cache_info();
4680 }
4681
4682 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4683 {
4684 zoneref->zone = zone;
4685 zoneref->zone_idx = zone_idx(zone);
4686 }
4687
4688 /*
4689 * Builds allocation fallback zone lists.
4690 *
4691 * Add all populated zones of a node to the zonelist.
4692 */
4693 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4694 int nr_zones)
4695 {
4696 struct zone *zone;
4697 enum zone_type zone_type = MAX_NR_ZONES;
4698
4699 do {
4700 zone_type--;
4701 zone = pgdat->node_zones + zone_type;
4702 if (managed_zone(zone)) {
4703 zoneref_set_zone(zone,
4704 &zonelist->_zonerefs[nr_zones++]);
4705 check_highest_zone(zone_type);
4706 }
4707 } while (zone_type);
4708
4709 return nr_zones;
4710 }
4711
4712
4713 /*
4714 * zonelist_order:
4715 * 0 = automatic detection of better ordering.
4716 * 1 = order by ([node] distance, -zonetype)
4717 * 2 = order by (-zonetype, [node] distance)
4718 *
4719 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4720 * the same zonelist. So only NUMA can configure this param.
4721 */
4722 #define ZONELIST_ORDER_DEFAULT 0
4723 #define ZONELIST_ORDER_NODE 1
4724 #define ZONELIST_ORDER_ZONE 2
4725
4726 /* zonelist order in the kernel.
4727 * set_zonelist_order() will set this to NODE or ZONE.
4728 */
4729 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4730 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4731
4732
4733 #ifdef CONFIG_NUMA
4734 /* The value user specified ....changed by config */
4735 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4736 /* string for sysctl */
4737 #define NUMA_ZONELIST_ORDER_LEN 16
4738 char numa_zonelist_order[16] = "default";
4739
4740 /*
4741 * interface for configure zonelist ordering.
4742 * command line option "numa_zonelist_order"
4743 * = "[dD]efault - default, automatic configuration.
4744 * = "[nN]ode - order by node locality, then by zone within node
4745 * = "[zZ]one - order by zone, then by locality within zone
4746 */
4747
4748 static int __parse_numa_zonelist_order(char *s)
4749 {
4750 if (*s == 'd' || *s == 'D') {
4751 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4752 } else if (*s == 'n' || *s == 'N') {
4753 user_zonelist_order = ZONELIST_ORDER_NODE;
4754 } else if (*s == 'z' || *s == 'Z') {
4755 user_zonelist_order = ZONELIST_ORDER_ZONE;
4756 } else {
4757 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4758 return -EINVAL;
4759 }
4760 return 0;
4761 }
4762
4763 static __init int setup_numa_zonelist_order(char *s)
4764 {
4765 int ret;
4766
4767 if (!s)
4768 return 0;
4769
4770 ret = __parse_numa_zonelist_order(s);
4771 if (ret == 0)
4772 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4773
4774 return ret;
4775 }
4776 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4777
4778 /*
4779 * sysctl handler for numa_zonelist_order
4780 */
4781 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4782 void __user *buffer, size_t *length,
4783 loff_t *ppos)
4784 {
4785 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4786 int ret;
4787 static DEFINE_MUTEX(zl_order_mutex);
4788
4789 mutex_lock(&zl_order_mutex);
4790 if (write) {
4791 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4792 ret = -EINVAL;
4793 goto out;
4794 }
4795 strcpy(saved_string, (char *)table->data);
4796 }
4797 ret = proc_dostring(table, write, buffer, length, ppos);
4798 if (ret)
4799 goto out;
4800 if (write) {
4801 int oldval = user_zonelist_order;
4802
4803 ret = __parse_numa_zonelist_order((char *)table->data);
4804 if (ret) {
4805 /*
4806 * bogus value. restore saved string
4807 */
4808 strncpy((char *)table->data, saved_string,
4809 NUMA_ZONELIST_ORDER_LEN);
4810 user_zonelist_order = oldval;
4811 } else if (oldval != user_zonelist_order) {
4812 mutex_lock(&zonelists_mutex);
4813 build_all_zonelists(NULL, NULL);
4814 mutex_unlock(&zonelists_mutex);
4815 }
4816 }
4817 out:
4818 mutex_unlock(&zl_order_mutex);
4819 return ret;
4820 }
4821
4822
4823 #define MAX_NODE_LOAD (nr_online_nodes)
4824 static int node_load[MAX_NUMNODES];
4825
4826 /**
4827 * find_next_best_node - find the next node that should appear in a given node's fallback list
4828 * @node: node whose fallback list we're appending
4829 * @used_node_mask: nodemask_t of already used nodes
4830 *
4831 * We use a number of factors to determine which is the next node that should
4832 * appear on a given node's fallback list. The node should not have appeared
4833 * already in @node's fallback list, and it should be the next closest node
4834 * according to the distance array (which contains arbitrary distance values
4835 * from each node to each node in the system), and should also prefer nodes
4836 * with no CPUs, since presumably they'll have very little allocation pressure
4837 * on them otherwise.
4838 * It returns -1 if no node is found.
4839 */
4840 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4841 {
4842 int n, val;
4843 int min_val = INT_MAX;
4844 int best_node = NUMA_NO_NODE;
4845 const struct cpumask *tmp = cpumask_of_node(0);
4846
4847 /* Use the local node if we haven't already */
4848 if (!node_isset(node, *used_node_mask)) {
4849 node_set(node, *used_node_mask);
4850 return node;
4851 }
4852
4853 for_each_node_state(n, N_MEMORY) {
4854
4855 /* Don't want a node to appear more than once */
4856 if (node_isset(n, *used_node_mask))
4857 continue;
4858
4859 /* Use the distance array to find the distance */
4860 val = node_distance(node, n);
4861
4862 /* Penalize nodes under us ("prefer the next node") */
4863 val += (n < node);
4864
4865 /* Give preference to headless and unused nodes */
4866 tmp = cpumask_of_node(n);
4867 if (!cpumask_empty(tmp))
4868 val += PENALTY_FOR_NODE_WITH_CPUS;
4869
4870 /* Slight preference for less loaded node */
4871 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4872 val += node_load[n];
4873
4874 if (val < min_val) {
4875 min_val = val;
4876 best_node = n;
4877 }
4878 }
4879
4880 if (best_node >= 0)
4881 node_set(best_node, *used_node_mask);
4882
4883 return best_node;
4884 }
4885
4886
4887 /*
4888 * Build zonelists ordered by node and zones within node.
4889 * This results in maximum locality--normal zone overflows into local
4890 * DMA zone, if any--but risks exhausting DMA zone.
4891 */
4892 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4893 {
4894 int j;
4895 struct zonelist *zonelist;
4896
4897 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4898 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4899 ;
4900 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4901 zonelist->_zonerefs[j].zone = NULL;
4902 zonelist->_zonerefs[j].zone_idx = 0;
4903 }
4904
4905 /*
4906 * Build gfp_thisnode zonelists
4907 */
4908 static void build_thisnode_zonelists(pg_data_t *pgdat)
4909 {
4910 int j;
4911 struct zonelist *zonelist;
4912
4913 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4914 j = build_zonelists_node(pgdat, zonelist, 0);
4915 zonelist->_zonerefs[j].zone = NULL;
4916 zonelist->_zonerefs[j].zone_idx = 0;
4917 }
4918
4919 /*
4920 * Build zonelists ordered by zone and nodes within zones.
4921 * This results in conserving DMA zone[s] until all Normal memory is
4922 * exhausted, but results in overflowing to remote node while memory
4923 * may still exist in local DMA zone.
4924 */
4925 static int node_order[MAX_NUMNODES];
4926
4927 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4928 {
4929 int pos, j, node;
4930 int zone_type; /* needs to be signed */
4931 struct zone *z;
4932 struct zonelist *zonelist;
4933
4934 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4935 pos = 0;
4936 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4937 for (j = 0; j < nr_nodes; j++) {
4938 node = node_order[j];
4939 z = &NODE_DATA(node)->node_zones[zone_type];
4940 if (managed_zone(z)) {
4941 zoneref_set_zone(z,
4942 &zonelist->_zonerefs[pos++]);
4943 check_highest_zone(zone_type);
4944 }
4945 }
4946 }
4947 zonelist->_zonerefs[pos].zone = NULL;
4948 zonelist->_zonerefs[pos].zone_idx = 0;
4949 }
4950
4951 #if defined(CONFIG_64BIT)
4952 /*
4953 * Devices that require DMA32/DMA are relatively rare and do not justify a
4954 * penalty to every machine in case the specialised case applies. Default
4955 * to Node-ordering on 64-bit NUMA machines
4956 */
4957 static int default_zonelist_order(void)
4958 {
4959 return ZONELIST_ORDER_NODE;
4960 }
4961 #else
4962 /*
4963 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4964 * by the kernel. If processes running on node 0 deplete the low memory zone
4965 * then reclaim will occur more frequency increasing stalls and potentially
4966 * be easier to OOM if a large percentage of the zone is under writeback or
4967 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4968 * Hence, default to zone ordering on 32-bit.
4969 */
4970 static int default_zonelist_order(void)
4971 {
4972 return ZONELIST_ORDER_ZONE;
4973 }
4974 #endif /* CONFIG_64BIT */
4975
4976 static void set_zonelist_order(void)
4977 {
4978 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4979 current_zonelist_order = default_zonelist_order();
4980 else
4981 current_zonelist_order = user_zonelist_order;
4982 }
4983
4984 static void build_zonelists(pg_data_t *pgdat)
4985 {
4986 int i, node, load;
4987 nodemask_t used_mask;
4988 int local_node, prev_node;
4989 struct zonelist *zonelist;
4990 unsigned int order = current_zonelist_order;
4991
4992 /* initialize zonelists */
4993 for (i = 0; i < MAX_ZONELISTS; i++) {
4994 zonelist = pgdat->node_zonelists + i;
4995 zonelist->_zonerefs[0].zone = NULL;
4996 zonelist->_zonerefs[0].zone_idx = 0;
4997 }
4998
4999 /* NUMA-aware ordering of nodes */
5000 local_node = pgdat->node_id;
5001 load = nr_online_nodes;
5002 prev_node = local_node;
5003 nodes_clear(used_mask);
5004
5005 memset(node_order, 0, sizeof(node_order));
5006 i = 0;
5007
5008 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5009 /*
5010 * We don't want to pressure a particular node.
5011 * So adding penalty to the first node in same
5012 * distance group to make it round-robin.
5013 */
5014 if (node_distance(local_node, node) !=
5015 node_distance(local_node, prev_node))
5016 node_load[node] = load;
5017
5018 prev_node = node;
5019 load--;
5020 if (order == ZONELIST_ORDER_NODE)
5021 build_zonelists_in_node_order(pgdat, node);
5022 else
5023 node_order[i++] = node; /* remember order */
5024 }
5025
5026 if (order == ZONELIST_ORDER_ZONE) {
5027 /* calculate node order -- i.e., DMA last! */
5028 build_zonelists_in_zone_order(pgdat, i);
5029 }
5030
5031 build_thisnode_zonelists(pgdat);
5032 }
5033
5034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5035 /*
5036 * Return node id of node used for "local" allocations.
5037 * I.e., first node id of first zone in arg node's generic zonelist.
5038 * Used for initializing percpu 'numa_mem', which is used primarily
5039 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5040 */
5041 int local_memory_node(int node)
5042 {
5043 struct zoneref *z;
5044
5045 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5046 gfp_zone(GFP_KERNEL),
5047 NULL);
5048 return z->zone->node;
5049 }
5050 #endif
5051
5052 static void setup_min_unmapped_ratio(void);
5053 static void setup_min_slab_ratio(void);
5054 #else /* CONFIG_NUMA */
5055
5056 static void set_zonelist_order(void)
5057 {
5058 current_zonelist_order = ZONELIST_ORDER_ZONE;
5059 }
5060
5061 static void build_zonelists(pg_data_t *pgdat)
5062 {
5063 int node, local_node;
5064 enum zone_type j;
5065 struct zonelist *zonelist;
5066
5067 local_node = pgdat->node_id;
5068
5069 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5070 j = build_zonelists_node(pgdat, zonelist, 0);
5071
5072 /*
5073 * Now we build the zonelist so that it contains the zones
5074 * of all the other nodes.
5075 * We don't want to pressure a particular node, so when
5076 * building the zones for node N, we make sure that the
5077 * zones coming right after the local ones are those from
5078 * node N+1 (modulo N)
5079 */
5080 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5081 if (!node_online(node))
5082 continue;
5083 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5084 }
5085 for (node = 0; node < local_node; node++) {
5086 if (!node_online(node))
5087 continue;
5088 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5089 }
5090
5091 zonelist->_zonerefs[j].zone = NULL;
5092 zonelist->_zonerefs[j].zone_idx = 0;
5093 }
5094
5095 #endif /* CONFIG_NUMA */
5096
5097 /*
5098 * Boot pageset table. One per cpu which is going to be used for all
5099 * zones and all nodes. The parameters will be set in such a way
5100 * that an item put on a list will immediately be handed over to
5101 * the buddy list. This is safe since pageset manipulation is done
5102 * with interrupts disabled.
5103 *
5104 * The boot_pagesets must be kept even after bootup is complete for
5105 * unused processors and/or zones. They do play a role for bootstrapping
5106 * hotplugged processors.
5107 *
5108 * zoneinfo_show() and maybe other functions do
5109 * not check if the processor is online before following the pageset pointer.
5110 * Other parts of the kernel may not check if the zone is available.
5111 */
5112 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5113 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5114 static void setup_zone_pageset(struct zone *zone);
5115
5116 /*
5117 * Global mutex to protect against size modification of zonelists
5118 * as well as to serialize pageset setup for the new populated zone.
5119 */
5120 DEFINE_MUTEX(zonelists_mutex);
5121
5122 /* return values int ....just for stop_machine() */
5123 static int __build_all_zonelists(void *data)
5124 {
5125 int nid;
5126 int cpu;
5127 pg_data_t *self = data;
5128
5129 #ifdef CONFIG_NUMA
5130 memset(node_load, 0, sizeof(node_load));
5131 #endif
5132
5133 if (self && !node_online(self->node_id)) {
5134 build_zonelists(self);
5135 }
5136
5137 for_each_online_node(nid) {
5138 pg_data_t *pgdat = NODE_DATA(nid);
5139
5140 build_zonelists(pgdat);
5141 }
5142
5143 /*
5144 * Initialize the boot_pagesets that are going to be used
5145 * for bootstrapping processors. The real pagesets for
5146 * each zone will be allocated later when the per cpu
5147 * allocator is available.
5148 *
5149 * boot_pagesets are used also for bootstrapping offline
5150 * cpus if the system is already booted because the pagesets
5151 * are needed to initialize allocators on a specific cpu too.
5152 * F.e. the percpu allocator needs the page allocator which
5153 * needs the percpu allocator in order to allocate its pagesets
5154 * (a chicken-egg dilemma).
5155 */
5156 for_each_possible_cpu(cpu) {
5157 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5158
5159 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160 /*
5161 * We now know the "local memory node" for each node--
5162 * i.e., the node of the first zone in the generic zonelist.
5163 * Set up numa_mem percpu variable for on-line cpus. During
5164 * boot, only the boot cpu should be on-line; we'll init the
5165 * secondary cpus' numa_mem as they come on-line. During
5166 * node/memory hotplug, we'll fixup all on-line cpus.
5167 */
5168 if (cpu_online(cpu))
5169 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5170 #endif
5171 }
5172
5173 return 0;
5174 }
5175
5176 static noinline void __init
5177 build_all_zonelists_init(void)
5178 {
5179 __build_all_zonelists(NULL);
5180 mminit_verify_zonelist();
5181 cpuset_init_current_mems_allowed();
5182 }
5183
5184 /*
5185 * Called with zonelists_mutex held always
5186 * unless system_state == SYSTEM_BOOTING.
5187 *
5188 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5189 * [we're only called with non-NULL zone through __meminit paths] and
5190 * (2) call of __init annotated helper build_all_zonelists_init
5191 * [protected by SYSTEM_BOOTING].
5192 */
5193 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5194 {
5195 set_zonelist_order();
5196
5197 if (system_state == SYSTEM_BOOTING) {
5198 build_all_zonelists_init();
5199 } else {
5200 #ifdef CONFIG_MEMORY_HOTPLUG
5201 if (zone)
5202 setup_zone_pageset(zone);
5203 #endif
5204 /* we have to stop all cpus to guarantee there is no user
5205 of zonelist */
5206 stop_machine(__build_all_zonelists, pgdat, NULL);
5207 /* cpuset refresh routine should be here */
5208 }
5209 vm_total_pages = nr_free_pagecache_pages();
5210 /*
5211 * Disable grouping by mobility if the number of pages in the
5212 * system is too low to allow the mechanism to work. It would be
5213 * more accurate, but expensive to check per-zone. This check is
5214 * made on memory-hotadd so a system can start with mobility
5215 * disabled and enable it later
5216 */
5217 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5218 page_group_by_mobility_disabled = 1;
5219 else
5220 page_group_by_mobility_disabled = 0;
5221
5222 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5223 nr_online_nodes,
5224 zonelist_order_name[current_zonelist_order],
5225 page_group_by_mobility_disabled ? "off" : "on",
5226 vm_total_pages);
5227 #ifdef CONFIG_NUMA
5228 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5229 #endif
5230 }
5231
5232 /*
5233 * Initially all pages are reserved - free ones are freed
5234 * up by free_all_bootmem() once the early boot process is
5235 * done. Non-atomic initialization, single-pass.
5236 */
5237 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5238 unsigned long start_pfn, enum memmap_context context)
5239 {
5240 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5241 unsigned long end_pfn = start_pfn + size;
5242 pg_data_t *pgdat = NODE_DATA(nid);
5243 unsigned long pfn;
5244 unsigned long nr_initialised = 0;
5245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 struct memblock_region *r = NULL, *tmp;
5247 #endif
5248
5249 if (highest_memmap_pfn < end_pfn - 1)
5250 highest_memmap_pfn = end_pfn - 1;
5251
5252 /*
5253 * Honor reservation requested by the driver for this ZONE_DEVICE
5254 * memory
5255 */
5256 if (altmap && start_pfn == altmap->base_pfn)
5257 start_pfn += altmap->reserve;
5258
5259 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5260 /*
5261 * There can be holes in boot-time mem_map[]s handed to this
5262 * function. They do not exist on hotplugged memory.
5263 */
5264 if (context != MEMMAP_EARLY)
5265 goto not_early;
5266
5267 if (!early_pfn_valid(pfn)) {
5268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5269 /*
5270 * Skip to the pfn preceding the next valid one (or
5271 * end_pfn), such that we hit a valid pfn (or end_pfn)
5272 * on our next iteration of the loop.
5273 */
5274 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5275 #endif
5276 continue;
5277 }
5278 if (!early_pfn_in_nid(pfn, nid))
5279 continue;
5280 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5281 break;
5282
5283 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5284 /*
5285 * Check given memblock attribute by firmware which can affect
5286 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5287 * mirrored, it's an overlapped memmap init. skip it.
5288 */
5289 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5290 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5291 for_each_memblock(memory, tmp)
5292 if (pfn < memblock_region_memory_end_pfn(tmp))
5293 break;
5294 r = tmp;
5295 }
5296 if (pfn >= memblock_region_memory_base_pfn(r) &&
5297 memblock_is_mirror(r)) {
5298 /* already initialized as NORMAL */
5299 pfn = memblock_region_memory_end_pfn(r);
5300 continue;
5301 }
5302 }
5303 #endif
5304
5305 not_early:
5306 /*
5307 * Mark the block movable so that blocks are reserved for
5308 * movable at startup. This will force kernel allocations
5309 * to reserve their blocks rather than leaking throughout
5310 * the address space during boot when many long-lived
5311 * kernel allocations are made.
5312 *
5313 * bitmap is created for zone's valid pfn range. but memmap
5314 * can be created for invalid pages (for alignment)
5315 * check here not to call set_pageblock_migratetype() against
5316 * pfn out of zone.
5317 */
5318 if (!(pfn & (pageblock_nr_pages - 1))) {
5319 struct page *page = pfn_to_page(pfn);
5320
5321 __init_single_page(page, pfn, zone, nid);
5322 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5323 } else {
5324 __init_single_pfn(pfn, zone, nid);
5325 }
5326 }
5327 }
5328
5329 static void __meminit zone_init_free_lists(struct zone *zone)
5330 {
5331 unsigned int order, t;
5332 for_each_migratetype_order(order, t) {
5333 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5334 zone->free_area[order].nr_free = 0;
5335 }
5336 }
5337
5338 #ifndef __HAVE_ARCH_MEMMAP_INIT
5339 #define memmap_init(size, nid, zone, start_pfn) \
5340 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5341 #endif
5342
5343 static int zone_batchsize(struct zone *zone)
5344 {
5345 #ifdef CONFIG_MMU
5346 int batch;
5347
5348 /*
5349 * The per-cpu-pages pools are set to around 1000th of the
5350 * size of the zone. But no more than 1/2 of a meg.
5351 *
5352 * OK, so we don't know how big the cache is. So guess.
5353 */
5354 batch = zone->managed_pages / 1024;
5355 if (batch * PAGE_SIZE > 512 * 1024)
5356 batch = (512 * 1024) / PAGE_SIZE;
5357 batch /= 4; /* We effectively *= 4 below */
5358 if (batch < 1)
5359 batch = 1;
5360
5361 /*
5362 * Clamp the batch to a 2^n - 1 value. Having a power
5363 * of 2 value was found to be more likely to have
5364 * suboptimal cache aliasing properties in some cases.
5365 *
5366 * For example if 2 tasks are alternately allocating
5367 * batches of pages, one task can end up with a lot
5368 * of pages of one half of the possible page colors
5369 * and the other with pages of the other colors.
5370 */
5371 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5372
5373 return batch;
5374
5375 #else
5376 /* The deferral and batching of frees should be suppressed under NOMMU
5377 * conditions.
5378 *
5379 * The problem is that NOMMU needs to be able to allocate large chunks
5380 * of contiguous memory as there's no hardware page translation to
5381 * assemble apparent contiguous memory from discontiguous pages.
5382 *
5383 * Queueing large contiguous runs of pages for batching, however,
5384 * causes the pages to actually be freed in smaller chunks. As there
5385 * can be a significant delay between the individual batches being
5386 * recycled, this leads to the once large chunks of space being
5387 * fragmented and becoming unavailable for high-order allocations.
5388 */
5389 return 0;
5390 #endif
5391 }
5392
5393 /*
5394 * pcp->high and pcp->batch values are related and dependent on one another:
5395 * ->batch must never be higher then ->high.
5396 * The following function updates them in a safe manner without read side
5397 * locking.
5398 *
5399 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5400 * those fields changing asynchronously (acording the the above rule).
5401 *
5402 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5403 * outside of boot time (or some other assurance that no concurrent updaters
5404 * exist).
5405 */
5406 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5407 unsigned long batch)
5408 {
5409 /* start with a fail safe value for batch */
5410 pcp->batch = 1;
5411 smp_wmb();
5412
5413 /* Update high, then batch, in order */
5414 pcp->high = high;
5415 smp_wmb();
5416
5417 pcp->batch = batch;
5418 }
5419
5420 /* a companion to pageset_set_high() */
5421 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5422 {
5423 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5424 }
5425
5426 static void pageset_init(struct per_cpu_pageset *p)
5427 {
5428 struct per_cpu_pages *pcp;
5429 int migratetype;
5430
5431 memset(p, 0, sizeof(*p));
5432
5433 pcp = &p->pcp;
5434 pcp->count = 0;
5435 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5436 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5437 }
5438
5439 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5440 {
5441 pageset_init(p);
5442 pageset_set_batch(p, batch);
5443 }
5444
5445 /*
5446 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5447 * to the value high for the pageset p.
5448 */
5449 static void pageset_set_high(struct per_cpu_pageset *p,
5450 unsigned long high)
5451 {
5452 unsigned long batch = max(1UL, high / 4);
5453 if ((high / 4) > (PAGE_SHIFT * 8))
5454 batch = PAGE_SHIFT * 8;
5455
5456 pageset_update(&p->pcp, high, batch);
5457 }
5458
5459 static void pageset_set_high_and_batch(struct zone *zone,
5460 struct per_cpu_pageset *pcp)
5461 {
5462 if (percpu_pagelist_fraction)
5463 pageset_set_high(pcp,
5464 (zone->managed_pages /
5465 percpu_pagelist_fraction));
5466 else
5467 pageset_set_batch(pcp, zone_batchsize(zone));
5468 }
5469
5470 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5471 {
5472 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5473
5474 pageset_init(pcp);
5475 pageset_set_high_and_batch(zone, pcp);
5476 }
5477
5478 static void __meminit setup_zone_pageset(struct zone *zone)
5479 {
5480 int cpu;
5481 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5482 for_each_possible_cpu(cpu)
5483 zone_pageset_init(zone, cpu);
5484 }
5485
5486 /*
5487 * Allocate per cpu pagesets and initialize them.
5488 * Before this call only boot pagesets were available.
5489 */
5490 void __init setup_per_cpu_pageset(void)
5491 {
5492 struct pglist_data *pgdat;
5493 struct zone *zone;
5494
5495 for_each_populated_zone(zone)
5496 setup_zone_pageset(zone);
5497
5498 for_each_online_pgdat(pgdat)
5499 pgdat->per_cpu_nodestats =
5500 alloc_percpu(struct per_cpu_nodestat);
5501 }
5502
5503 static __meminit void zone_pcp_init(struct zone *zone)
5504 {
5505 /*
5506 * per cpu subsystem is not up at this point. The following code
5507 * relies on the ability of the linker to provide the
5508 * offset of a (static) per cpu variable into the per cpu area.
5509 */
5510 zone->pageset = &boot_pageset;
5511
5512 if (populated_zone(zone))
5513 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5514 zone->name, zone->present_pages,
5515 zone_batchsize(zone));
5516 }
5517
5518 int __meminit init_currently_empty_zone(struct zone *zone,
5519 unsigned long zone_start_pfn,
5520 unsigned long size)
5521 {
5522 struct pglist_data *pgdat = zone->zone_pgdat;
5523
5524 pgdat->nr_zones = zone_idx(zone) + 1;
5525
5526 zone->zone_start_pfn = zone_start_pfn;
5527
5528 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5529 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5530 pgdat->node_id,
5531 (unsigned long)zone_idx(zone),
5532 zone_start_pfn, (zone_start_pfn + size));
5533
5534 zone_init_free_lists(zone);
5535 zone->initialized = 1;
5536
5537 return 0;
5538 }
5539
5540 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5541 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5542
5543 /*
5544 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5545 */
5546 int __meminit __early_pfn_to_nid(unsigned long pfn,
5547 struct mminit_pfnnid_cache *state)
5548 {
5549 unsigned long start_pfn, end_pfn;
5550 int nid;
5551
5552 if (state->last_start <= pfn && pfn < state->last_end)
5553 return state->last_nid;
5554
5555 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5556 if (nid != -1) {
5557 state->last_start = start_pfn;
5558 state->last_end = end_pfn;
5559 state->last_nid = nid;
5560 }
5561
5562 return nid;
5563 }
5564 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5565
5566 /**
5567 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5568 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5569 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5570 *
5571 * If an architecture guarantees that all ranges registered contain no holes
5572 * and may be freed, this this function may be used instead of calling
5573 * memblock_free_early_nid() manually.
5574 */
5575 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5576 {
5577 unsigned long start_pfn, end_pfn;
5578 int i, this_nid;
5579
5580 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5581 start_pfn = min(start_pfn, max_low_pfn);
5582 end_pfn = min(end_pfn, max_low_pfn);
5583
5584 if (start_pfn < end_pfn)
5585 memblock_free_early_nid(PFN_PHYS(start_pfn),
5586 (end_pfn - start_pfn) << PAGE_SHIFT,
5587 this_nid);
5588 }
5589 }
5590
5591 /**
5592 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5593 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5594 *
5595 * If an architecture guarantees that all ranges registered contain no holes and may
5596 * be freed, this function may be used instead of calling memory_present() manually.
5597 */
5598 void __init sparse_memory_present_with_active_regions(int nid)
5599 {
5600 unsigned long start_pfn, end_pfn;
5601 int i, this_nid;
5602
5603 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5604 memory_present(this_nid, start_pfn, end_pfn);
5605 }
5606
5607 /**
5608 * get_pfn_range_for_nid - Return the start and end page frames for a node
5609 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5610 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5611 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5612 *
5613 * It returns the start and end page frame of a node based on information
5614 * provided by memblock_set_node(). If called for a node
5615 * with no available memory, a warning is printed and the start and end
5616 * PFNs will be 0.
5617 */
5618 void __meminit get_pfn_range_for_nid(unsigned int nid,
5619 unsigned long *start_pfn, unsigned long *end_pfn)
5620 {
5621 unsigned long this_start_pfn, this_end_pfn;
5622 int i;
5623
5624 *start_pfn = -1UL;
5625 *end_pfn = 0;
5626
5627 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5628 *start_pfn = min(*start_pfn, this_start_pfn);
5629 *end_pfn = max(*end_pfn, this_end_pfn);
5630 }
5631
5632 if (*start_pfn == -1UL)
5633 *start_pfn = 0;
5634 }
5635
5636 /*
5637 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5638 * assumption is made that zones within a node are ordered in monotonic
5639 * increasing memory addresses so that the "highest" populated zone is used
5640 */
5641 static void __init find_usable_zone_for_movable(void)
5642 {
5643 int zone_index;
5644 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5645 if (zone_index == ZONE_MOVABLE)
5646 continue;
5647
5648 if (arch_zone_highest_possible_pfn[zone_index] >
5649 arch_zone_lowest_possible_pfn[zone_index])
5650 break;
5651 }
5652
5653 VM_BUG_ON(zone_index == -1);
5654 movable_zone = zone_index;
5655 }
5656
5657 /*
5658 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5659 * because it is sized independent of architecture. Unlike the other zones,
5660 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5661 * in each node depending on the size of each node and how evenly kernelcore
5662 * is distributed. This helper function adjusts the zone ranges
5663 * provided by the architecture for a given node by using the end of the
5664 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5665 * zones within a node are in order of monotonic increases memory addresses
5666 */
5667 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5668 unsigned long zone_type,
5669 unsigned long node_start_pfn,
5670 unsigned long node_end_pfn,
5671 unsigned long *zone_start_pfn,
5672 unsigned long *zone_end_pfn)
5673 {
5674 /* Only adjust if ZONE_MOVABLE is on this node */
5675 if (zone_movable_pfn[nid]) {
5676 /* Size ZONE_MOVABLE */
5677 if (zone_type == ZONE_MOVABLE) {
5678 *zone_start_pfn = zone_movable_pfn[nid];
5679 *zone_end_pfn = min(node_end_pfn,
5680 arch_zone_highest_possible_pfn[movable_zone]);
5681
5682 /* Adjust for ZONE_MOVABLE starting within this range */
5683 } else if (!mirrored_kernelcore &&
5684 *zone_start_pfn < zone_movable_pfn[nid] &&
5685 *zone_end_pfn > zone_movable_pfn[nid]) {
5686 *zone_end_pfn = zone_movable_pfn[nid];
5687
5688 /* Check if this whole range is within ZONE_MOVABLE */
5689 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5690 *zone_start_pfn = *zone_end_pfn;
5691 }
5692 }
5693
5694 /*
5695 * Return the number of pages a zone spans in a node, including holes
5696 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5697 */
5698 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5699 unsigned long zone_type,
5700 unsigned long node_start_pfn,
5701 unsigned long node_end_pfn,
5702 unsigned long *zone_start_pfn,
5703 unsigned long *zone_end_pfn,
5704 unsigned long *ignored)
5705 {
5706 /* When hotadd a new node from cpu_up(), the node should be empty */
5707 if (!node_start_pfn && !node_end_pfn)
5708 return 0;
5709
5710 /* Get the start and end of the zone */
5711 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5712 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5713 adjust_zone_range_for_zone_movable(nid, zone_type,
5714 node_start_pfn, node_end_pfn,
5715 zone_start_pfn, zone_end_pfn);
5716
5717 /* Check that this node has pages within the zone's required range */
5718 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5719 return 0;
5720
5721 /* Move the zone boundaries inside the node if necessary */
5722 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5723 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5724
5725 /* Return the spanned pages */
5726 return *zone_end_pfn - *zone_start_pfn;
5727 }
5728
5729 /*
5730 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5731 * then all holes in the requested range will be accounted for.
5732 */
5733 unsigned long __meminit __absent_pages_in_range(int nid,
5734 unsigned long range_start_pfn,
5735 unsigned long range_end_pfn)
5736 {
5737 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5738 unsigned long start_pfn, end_pfn;
5739 int i;
5740
5741 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5742 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5743 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5744 nr_absent -= end_pfn - start_pfn;
5745 }
5746 return nr_absent;
5747 }
5748
5749 /**
5750 * absent_pages_in_range - Return number of page frames in holes within a range
5751 * @start_pfn: The start PFN to start searching for holes
5752 * @end_pfn: The end PFN to stop searching for holes
5753 *
5754 * It returns the number of pages frames in memory holes within a range.
5755 */
5756 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5757 unsigned long end_pfn)
5758 {
5759 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5760 }
5761
5762 /* Return the number of page frames in holes in a zone on a node */
5763 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5764 unsigned long zone_type,
5765 unsigned long node_start_pfn,
5766 unsigned long node_end_pfn,
5767 unsigned long *ignored)
5768 {
5769 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5770 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5771 unsigned long zone_start_pfn, zone_end_pfn;
5772 unsigned long nr_absent;
5773
5774 /* When hotadd a new node from cpu_up(), the node should be empty */
5775 if (!node_start_pfn && !node_end_pfn)
5776 return 0;
5777
5778 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5779 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5780
5781 adjust_zone_range_for_zone_movable(nid, zone_type,
5782 node_start_pfn, node_end_pfn,
5783 &zone_start_pfn, &zone_end_pfn);
5784 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5785
5786 /*
5787 * ZONE_MOVABLE handling.
5788 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5789 * and vice versa.
5790 */
5791 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5792 unsigned long start_pfn, end_pfn;
5793 struct memblock_region *r;
5794
5795 for_each_memblock(memory, r) {
5796 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5797 zone_start_pfn, zone_end_pfn);
5798 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5799 zone_start_pfn, zone_end_pfn);
5800
5801 if (zone_type == ZONE_MOVABLE &&
5802 memblock_is_mirror(r))
5803 nr_absent += end_pfn - start_pfn;
5804
5805 if (zone_type == ZONE_NORMAL &&
5806 !memblock_is_mirror(r))
5807 nr_absent += end_pfn - start_pfn;
5808 }
5809 }
5810
5811 return nr_absent;
5812 }
5813
5814 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5815 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5816 unsigned long zone_type,
5817 unsigned long node_start_pfn,
5818 unsigned long node_end_pfn,
5819 unsigned long *zone_start_pfn,
5820 unsigned long *zone_end_pfn,
5821 unsigned long *zones_size)
5822 {
5823 unsigned int zone;
5824
5825 *zone_start_pfn = node_start_pfn;
5826 for (zone = 0; zone < zone_type; zone++)
5827 *zone_start_pfn += zones_size[zone];
5828
5829 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5830
5831 return zones_size[zone_type];
5832 }
5833
5834 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5835 unsigned long zone_type,
5836 unsigned long node_start_pfn,
5837 unsigned long node_end_pfn,
5838 unsigned long *zholes_size)
5839 {
5840 if (!zholes_size)
5841 return 0;
5842
5843 return zholes_size[zone_type];
5844 }
5845
5846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5847
5848 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5849 unsigned long node_start_pfn,
5850 unsigned long node_end_pfn,
5851 unsigned long *zones_size,
5852 unsigned long *zholes_size)
5853 {
5854 unsigned long realtotalpages = 0, totalpages = 0;
5855 enum zone_type i;
5856
5857 for (i = 0; i < MAX_NR_ZONES; i++) {
5858 struct zone *zone = pgdat->node_zones + i;
5859 unsigned long zone_start_pfn, zone_end_pfn;
5860 unsigned long size, real_size;
5861
5862 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5863 node_start_pfn,
5864 node_end_pfn,
5865 &zone_start_pfn,
5866 &zone_end_pfn,
5867 zones_size);
5868 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5869 node_start_pfn, node_end_pfn,
5870 zholes_size);
5871 if (size)
5872 zone->zone_start_pfn = zone_start_pfn;
5873 else
5874 zone->zone_start_pfn = 0;
5875 zone->spanned_pages = size;
5876 zone->present_pages = real_size;
5877
5878 totalpages += size;
5879 realtotalpages += real_size;
5880 }
5881
5882 pgdat->node_spanned_pages = totalpages;
5883 pgdat->node_present_pages = realtotalpages;
5884 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5885 realtotalpages);
5886 }
5887
5888 #ifndef CONFIG_SPARSEMEM
5889 /*
5890 * Calculate the size of the zone->blockflags rounded to an unsigned long
5891 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5892 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5893 * round what is now in bits to nearest long in bits, then return it in
5894 * bytes.
5895 */
5896 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5897 {
5898 unsigned long usemapsize;
5899
5900 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5901 usemapsize = roundup(zonesize, pageblock_nr_pages);
5902 usemapsize = usemapsize >> pageblock_order;
5903 usemapsize *= NR_PAGEBLOCK_BITS;
5904 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5905
5906 return usemapsize / 8;
5907 }
5908
5909 static void __init setup_usemap(struct pglist_data *pgdat,
5910 struct zone *zone,
5911 unsigned long zone_start_pfn,
5912 unsigned long zonesize)
5913 {
5914 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5915 zone->pageblock_flags = NULL;
5916 if (usemapsize)
5917 zone->pageblock_flags =
5918 memblock_virt_alloc_node_nopanic(usemapsize,
5919 pgdat->node_id);
5920 }
5921 #else
5922 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5923 unsigned long zone_start_pfn, unsigned long zonesize) {}
5924 #endif /* CONFIG_SPARSEMEM */
5925
5926 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5927
5928 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5929 void __paginginit set_pageblock_order(void)
5930 {
5931 unsigned int order;
5932
5933 /* Check that pageblock_nr_pages has not already been setup */
5934 if (pageblock_order)
5935 return;
5936
5937 if (HPAGE_SHIFT > PAGE_SHIFT)
5938 order = HUGETLB_PAGE_ORDER;
5939 else
5940 order = MAX_ORDER - 1;
5941
5942 /*
5943 * Assume the largest contiguous order of interest is a huge page.
5944 * This value may be variable depending on boot parameters on IA64 and
5945 * powerpc.
5946 */
5947 pageblock_order = order;
5948 }
5949 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5950
5951 /*
5952 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5953 * is unused as pageblock_order is set at compile-time. See
5954 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5955 * the kernel config
5956 */
5957 void __paginginit set_pageblock_order(void)
5958 {
5959 }
5960
5961 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5962
5963 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5964 unsigned long present_pages)
5965 {
5966 unsigned long pages = spanned_pages;
5967
5968 /*
5969 * Provide a more accurate estimation if there are holes within
5970 * the zone and SPARSEMEM is in use. If there are holes within the
5971 * zone, each populated memory region may cost us one or two extra
5972 * memmap pages due to alignment because memmap pages for each
5973 * populated regions may not be naturally aligned on page boundary.
5974 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5975 */
5976 if (spanned_pages > present_pages + (present_pages >> 4) &&
5977 IS_ENABLED(CONFIG_SPARSEMEM))
5978 pages = present_pages;
5979
5980 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5981 }
5982
5983 /*
5984 * Set up the zone data structures:
5985 * - mark all pages reserved
5986 * - mark all memory queues empty
5987 * - clear the memory bitmaps
5988 *
5989 * NOTE: pgdat should get zeroed by caller.
5990 */
5991 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5992 {
5993 enum zone_type j;
5994 int nid = pgdat->node_id;
5995 int ret;
5996
5997 pgdat_resize_init(pgdat);
5998 #ifdef CONFIG_NUMA_BALANCING
5999 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6000 pgdat->numabalancing_migrate_nr_pages = 0;
6001 pgdat->numabalancing_migrate_next_window = jiffies;
6002 #endif
6003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6004 spin_lock_init(&pgdat->split_queue_lock);
6005 INIT_LIST_HEAD(&pgdat->split_queue);
6006 pgdat->split_queue_len = 0;
6007 #endif
6008 init_waitqueue_head(&pgdat->kswapd_wait);
6009 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6010 #ifdef CONFIG_COMPACTION
6011 init_waitqueue_head(&pgdat->kcompactd_wait);
6012 #endif
6013 pgdat_page_ext_init(pgdat);
6014 spin_lock_init(&pgdat->lru_lock);
6015 lruvec_init(node_lruvec(pgdat));
6016
6017 for (j = 0; j < MAX_NR_ZONES; j++) {
6018 struct zone *zone = pgdat->node_zones + j;
6019 unsigned long size, realsize, freesize, memmap_pages;
6020 unsigned long zone_start_pfn = zone->zone_start_pfn;
6021
6022 size = zone->spanned_pages;
6023 realsize = freesize = zone->present_pages;
6024
6025 /*
6026 * Adjust freesize so that it accounts for how much memory
6027 * is used by this zone for memmap. This affects the watermark
6028 * and per-cpu initialisations
6029 */
6030 memmap_pages = calc_memmap_size(size, realsize);
6031 if (!is_highmem_idx(j)) {
6032 if (freesize >= memmap_pages) {
6033 freesize -= memmap_pages;
6034 if (memmap_pages)
6035 printk(KERN_DEBUG
6036 " %s zone: %lu pages used for memmap\n",
6037 zone_names[j], memmap_pages);
6038 } else
6039 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6040 zone_names[j], memmap_pages, freesize);
6041 }
6042
6043 /* Account for reserved pages */
6044 if (j == 0 && freesize > dma_reserve) {
6045 freesize -= dma_reserve;
6046 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6047 zone_names[0], dma_reserve);
6048 }
6049
6050 if (!is_highmem_idx(j))
6051 nr_kernel_pages += freesize;
6052 /* Charge for highmem memmap if there are enough kernel pages */
6053 else if (nr_kernel_pages > memmap_pages * 2)
6054 nr_kernel_pages -= memmap_pages;
6055 nr_all_pages += freesize;
6056
6057 /*
6058 * Set an approximate value for lowmem here, it will be adjusted
6059 * when the bootmem allocator frees pages into the buddy system.
6060 * And all highmem pages will be managed by the buddy system.
6061 */
6062 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6063 #ifdef CONFIG_NUMA
6064 zone->node = nid;
6065 #endif
6066 zone->name = zone_names[j];
6067 zone->zone_pgdat = pgdat;
6068 spin_lock_init(&zone->lock);
6069 zone_seqlock_init(zone);
6070 zone_pcp_init(zone);
6071
6072 if (!size)
6073 continue;
6074
6075 set_pageblock_order();
6076 setup_usemap(pgdat, zone, zone_start_pfn, size);
6077 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6078 BUG_ON(ret);
6079 memmap_init(size, nid, j, zone_start_pfn);
6080 }
6081 }
6082
6083 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6084 {
6085 unsigned long __maybe_unused start = 0;
6086 unsigned long __maybe_unused offset = 0;
6087
6088 /* Skip empty nodes */
6089 if (!pgdat->node_spanned_pages)
6090 return;
6091
6092 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6093 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6094 offset = pgdat->node_start_pfn - start;
6095 /* ia64 gets its own node_mem_map, before this, without bootmem */
6096 if (!pgdat->node_mem_map) {
6097 unsigned long size, end;
6098 struct page *map;
6099
6100 /*
6101 * The zone's endpoints aren't required to be MAX_ORDER
6102 * aligned but the node_mem_map endpoints must be in order
6103 * for the buddy allocator to function correctly.
6104 */
6105 end = pgdat_end_pfn(pgdat);
6106 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6107 size = (end - start) * sizeof(struct page);
6108 map = alloc_remap(pgdat->node_id, size);
6109 if (!map)
6110 map = memblock_virt_alloc_node_nopanic(size,
6111 pgdat->node_id);
6112 pgdat->node_mem_map = map + offset;
6113 }
6114 #ifndef CONFIG_NEED_MULTIPLE_NODES
6115 /*
6116 * With no DISCONTIG, the global mem_map is just set as node 0's
6117 */
6118 if (pgdat == NODE_DATA(0)) {
6119 mem_map = NODE_DATA(0)->node_mem_map;
6120 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6121 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6122 mem_map -= offset;
6123 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6124 }
6125 #endif
6126 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6127 }
6128
6129 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6130 unsigned long node_start_pfn, unsigned long *zholes_size)
6131 {
6132 pg_data_t *pgdat = NODE_DATA(nid);
6133 unsigned long start_pfn = 0;
6134 unsigned long end_pfn = 0;
6135
6136 /* pg_data_t should be reset to zero when it's allocated */
6137 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6138
6139 reset_deferred_meminit(pgdat);
6140 pgdat->node_id = nid;
6141 pgdat->node_start_pfn = node_start_pfn;
6142 pgdat->per_cpu_nodestats = NULL;
6143 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6144 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6145 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6146 (u64)start_pfn << PAGE_SHIFT,
6147 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6148 #else
6149 start_pfn = node_start_pfn;
6150 #endif
6151 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6152 zones_size, zholes_size);
6153
6154 alloc_node_mem_map(pgdat);
6155 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6156 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6157 nid, (unsigned long)pgdat,
6158 (unsigned long)pgdat->node_mem_map);
6159 #endif
6160
6161 free_area_init_core(pgdat);
6162 }
6163
6164 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6165
6166 #if MAX_NUMNODES > 1
6167 /*
6168 * Figure out the number of possible node ids.
6169 */
6170 void __init setup_nr_node_ids(void)
6171 {
6172 unsigned int highest;
6173
6174 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6175 nr_node_ids = highest + 1;
6176 }
6177 #endif
6178
6179 /**
6180 * node_map_pfn_alignment - determine the maximum internode alignment
6181 *
6182 * This function should be called after node map is populated and sorted.
6183 * It calculates the maximum power of two alignment which can distinguish
6184 * all the nodes.
6185 *
6186 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6187 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6188 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6189 * shifted, 1GiB is enough and this function will indicate so.
6190 *
6191 * This is used to test whether pfn -> nid mapping of the chosen memory
6192 * model has fine enough granularity to avoid incorrect mapping for the
6193 * populated node map.
6194 *
6195 * Returns the determined alignment in pfn's. 0 if there is no alignment
6196 * requirement (single node).
6197 */
6198 unsigned long __init node_map_pfn_alignment(void)
6199 {
6200 unsigned long accl_mask = 0, last_end = 0;
6201 unsigned long start, end, mask;
6202 int last_nid = -1;
6203 int i, nid;
6204
6205 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6206 if (!start || last_nid < 0 || last_nid == nid) {
6207 last_nid = nid;
6208 last_end = end;
6209 continue;
6210 }
6211
6212 /*
6213 * Start with a mask granular enough to pin-point to the
6214 * start pfn and tick off bits one-by-one until it becomes
6215 * too coarse to separate the current node from the last.
6216 */
6217 mask = ~((1 << __ffs(start)) - 1);
6218 while (mask && last_end <= (start & (mask << 1)))
6219 mask <<= 1;
6220
6221 /* accumulate all internode masks */
6222 accl_mask |= mask;
6223 }
6224
6225 /* convert mask to number of pages */
6226 return ~accl_mask + 1;
6227 }
6228
6229 /* Find the lowest pfn for a node */
6230 static unsigned long __init find_min_pfn_for_node(int nid)
6231 {
6232 unsigned long min_pfn = ULONG_MAX;
6233 unsigned long start_pfn;
6234 int i;
6235
6236 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6237 min_pfn = min(min_pfn, start_pfn);
6238
6239 if (min_pfn == ULONG_MAX) {
6240 pr_warn("Could not find start_pfn for node %d\n", nid);
6241 return 0;
6242 }
6243
6244 return min_pfn;
6245 }
6246
6247 /**
6248 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6249 *
6250 * It returns the minimum PFN based on information provided via
6251 * memblock_set_node().
6252 */
6253 unsigned long __init find_min_pfn_with_active_regions(void)
6254 {
6255 return find_min_pfn_for_node(MAX_NUMNODES);
6256 }
6257
6258 /*
6259 * early_calculate_totalpages()
6260 * Sum pages in active regions for movable zone.
6261 * Populate N_MEMORY for calculating usable_nodes.
6262 */
6263 static unsigned long __init early_calculate_totalpages(void)
6264 {
6265 unsigned long totalpages = 0;
6266 unsigned long start_pfn, end_pfn;
6267 int i, nid;
6268
6269 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6270 unsigned long pages = end_pfn - start_pfn;
6271
6272 totalpages += pages;
6273 if (pages)
6274 node_set_state(nid, N_MEMORY);
6275 }
6276 return totalpages;
6277 }
6278
6279 /*
6280 * Find the PFN the Movable zone begins in each node. Kernel memory
6281 * is spread evenly between nodes as long as the nodes have enough
6282 * memory. When they don't, some nodes will have more kernelcore than
6283 * others
6284 */
6285 static void __init find_zone_movable_pfns_for_nodes(void)
6286 {
6287 int i, nid;
6288 unsigned long usable_startpfn;
6289 unsigned long kernelcore_node, kernelcore_remaining;
6290 /* save the state before borrow the nodemask */
6291 nodemask_t saved_node_state = node_states[N_MEMORY];
6292 unsigned long totalpages = early_calculate_totalpages();
6293 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6294 struct memblock_region *r;
6295
6296 /* Need to find movable_zone earlier when movable_node is specified. */
6297 find_usable_zone_for_movable();
6298
6299 /*
6300 * If movable_node is specified, ignore kernelcore and movablecore
6301 * options.
6302 */
6303 if (movable_node_is_enabled()) {
6304 for_each_memblock(memory, r) {
6305 if (!memblock_is_hotpluggable(r))
6306 continue;
6307
6308 nid = r->nid;
6309
6310 usable_startpfn = PFN_DOWN(r->base);
6311 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6312 min(usable_startpfn, zone_movable_pfn[nid]) :
6313 usable_startpfn;
6314 }
6315
6316 goto out2;
6317 }
6318
6319 /*
6320 * If kernelcore=mirror is specified, ignore movablecore option
6321 */
6322 if (mirrored_kernelcore) {
6323 bool mem_below_4gb_not_mirrored = false;
6324
6325 for_each_memblock(memory, r) {
6326 if (memblock_is_mirror(r))
6327 continue;
6328
6329 nid = r->nid;
6330
6331 usable_startpfn = memblock_region_memory_base_pfn(r);
6332
6333 if (usable_startpfn < 0x100000) {
6334 mem_below_4gb_not_mirrored = true;
6335 continue;
6336 }
6337
6338 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6339 min(usable_startpfn, zone_movable_pfn[nid]) :
6340 usable_startpfn;
6341 }
6342
6343 if (mem_below_4gb_not_mirrored)
6344 pr_warn("This configuration results in unmirrored kernel memory.");
6345
6346 goto out2;
6347 }
6348
6349 /*
6350 * If movablecore=nn[KMG] was specified, calculate what size of
6351 * kernelcore that corresponds so that memory usable for
6352 * any allocation type is evenly spread. If both kernelcore
6353 * and movablecore are specified, then the value of kernelcore
6354 * will be used for required_kernelcore if it's greater than
6355 * what movablecore would have allowed.
6356 */
6357 if (required_movablecore) {
6358 unsigned long corepages;
6359
6360 /*
6361 * Round-up so that ZONE_MOVABLE is at least as large as what
6362 * was requested by the user
6363 */
6364 required_movablecore =
6365 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6366 required_movablecore = min(totalpages, required_movablecore);
6367 corepages = totalpages - required_movablecore;
6368
6369 required_kernelcore = max(required_kernelcore, corepages);
6370 }
6371
6372 /*
6373 * If kernelcore was not specified or kernelcore size is larger
6374 * than totalpages, there is no ZONE_MOVABLE.
6375 */
6376 if (!required_kernelcore || required_kernelcore >= totalpages)
6377 goto out;
6378
6379 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6380 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6381
6382 restart:
6383 /* Spread kernelcore memory as evenly as possible throughout nodes */
6384 kernelcore_node = required_kernelcore / usable_nodes;
6385 for_each_node_state(nid, N_MEMORY) {
6386 unsigned long start_pfn, end_pfn;
6387
6388 /*
6389 * Recalculate kernelcore_node if the division per node
6390 * now exceeds what is necessary to satisfy the requested
6391 * amount of memory for the kernel
6392 */
6393 if (required_kernelcore < kernelcore_node)
6394 kernelcore_node = required_kernelcore / usable_nodes;
6395
6396 /*
6397 * As the map is walked, we track how much memory is usable
6398 * by the kernel using kernelcore_remaining. When it is
6399 * 0, the rest of the node is usable by ZONE_MOVABLE
6400 */
6401 kernelcore_remaining = kernelcore_node;
6402
6403 /* Go through each range of PFNs within this node */
6404 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6405 unsigned long size_pages;
6406
6407 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6408 if (start_pfn >= end_pfn)
6409 continue;
6410
6411 /* Account for what is only usable for kernelcore */
6412 if (start_pfn < usable_startpfn) {
6413 unsigned long kernel_pages;
6414 kernel_pages = min(end_pfn, usable_startpfn)
6415 - start_pfn;
6416
6417 kernelcore_remaining -= min(kernel_pages,
6418 kernelcore_remaining);
6419 required_kernelcore -= min(kernel_pages,
6420 required_kernelcore);
6421
6422 /* Continue if range is now fully accounted */
6423 if (end_pfn <= usable_startpfn) {
6424
6425 /*
6426 * Push zone_movable_pfn to the end so
6427 * that if we have to rebalance
6428 * kernelcore across nodes, we will
6429 * not double account here
6430 */
6431 zone_movable_pfn[nid] = end_pfn;
6432 continue;
6433 }
6434 start_pfn = usable_startpfn;
6435 }
6436
6437 /*
6438 * The usable PFN range for ZONE_MOVABLE is from
6439 * start_pfn->end_pfn. Calculate size_pages as the
6440 * number of pages used as kernelcore
6441 */
6442 size_pages = end_pfn - start_pfn;
6443 if (size_pages > kernelcore_remaining)
6444 size_pages = kernelcore_remaining;
6445 zone_movable_pfn[nid] = start_pfn + size_pages;
6446
6447 /*
6448 * Some kernelcore has been met, update counts and
6449 * break if the kernelcore for this node has been
6450 * satisfied
6451 */
6452 required_kernelcore -= min(required_kernelcore,
6453 size_pages);
6454 kernelcore_remaining -= size_pages;
6455 if (!kernelcore_remaining)
6456 break;
6457 }
6458 }
6459
6460 /*
6461 * If there is still required_kernelcore, we do another pass with one
6462 * less node in the count. This will push zone_movable_pfn[nid] further
6463 * along on the nodes that still have memory until kernelcore is
6464 * satisfied
6465 */
6466 usable_nodes--;
6467 if (usable_nodes && required_kernelcore > usable_nodes)
6468 goto restart;
6469
6470 out2:
6471 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6472 for (nid = 0; nid < MAX_NUMNODES; nid++)
6473 zone_movable_pfn[nid] =
6474 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6475
6476 out:
6477 /* restore the node_state */
6478 node_states[N_MEMORY] = saved_node_state;
6479 }
6480
6481 /* Any regular or high memory on that node ? */
6482 static void check_for_memory(pg_data_t *pgdat, int nid)
6483 {
6484 enum zone_type zone_type;
6485
6486 if (N_MEMORY == N_NORMAL_MEMORY)
6487 return;
6488
6489 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6490 struct zone *zone = &pgdat->node_zones[zone_type];
6491 if (populated_zone(zone)) {
6492 node_set_state(nid, N_HIGH_MEMORY);
6493 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6494 zone_type <= ZONE_NORMAL)
6495 node_set_state(nid, N_NORMAL_MEMORY);
6496 break;
6497 }
6498 }
6499 }
6500
6501 /**
6502 * free_area_init_nodes - Initialise all pg_data_t and zone data
6503 * @max_zone_pfn: an array of max PFNs for each zone
6504 *
6505 * This will call free_area_init_node() for each active node in the system.
6506 * Using the page ranges provided by memblock_set_node(), the size of each
6507 * zone in each node and their holes is calculated. If the maximum PFN
6508 * between two adjacent zones match, it is assumed that the zone is empty.
6509 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6510 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6511 * starts where the previous one ended. For example, ZONE_DMA32 starts
6512 * at arch_max_dma_pfn.
6513 */
6514 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6515 {
6516 unsigned long start_pfn, end_pfn;
6517 int i, nid;
6518
6519 /* Record where the zone boundaries are */
6520 memset(arch_zone_lowest_possible_pfn, 0,
6521 sizeof(arch_zone_lowest_possible_pfn));
6522 memset(arch_zone_highest_possible_pfn, 0,
6523 sizeof(arch_zone_highest_possible_pfn));
6524
6525 start_pfn = find_min_pfn_with_active_regions();
6526
6527 for (i = 0; i < MAX_NR_ZONES; i++) {
6528 if (i == ZONE_MOVABLE)
6529 continue;
6530
6531 end_pfn = max(max_zone_pfn[i], start_pfn);
6532 arch_zone_lowest_possible_pfn[i] = start_pfn;
6533 arch_zone_highest_possible_pfn[i] = end_pfn;
6534
6535 start_pfn = end_pfn;
6536 }
6537
6538 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6539 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6540 find_zone_movable_pfns_for_nodes();
6541
6542 /* Print out the zone ranges */
6543 pr_info("Zone ranges:\n");
6544 for (i = 0; i < MAX_NR_ZONES; i++) {
6545 if (i == ZONE_MOVABLE)
6546 continue;
6547 pr_info(" %-8s ", zone_names[i]);
6548 if (arch_zone_lowest_possible_pfn[i] ==
6549 arch_zone_highest_possible_pfn[i])
6550 pr_cont("empty\n");
6551 else
6552 pr_cont("[mem %#018Lx-%#018Lx]\n",
6553 (u64)arch_zone_lowest_possible_pfn[i]
6554 << PAGE_SHIFT,
6555 ((u64)arch_zone_highest_possible_pfn[i]
6556 << PAGE_SHIFT) - 1);
6557 }
6558
6559 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6560 pr_info("Movable zone start for each node\n");
6561 for (i = 0; i < MAX_NUMNODES; i++) {
6562 if (zone_movable_pfn[i])
6563 pr_info(" Node %d: %#018Lx\n", i,
6564 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6565 }
6566
6567 /* Print out the early node map */
6568 pr_info("Early memory node ranges\n");
6569 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6570 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6571 (u64)start_pfn << PAGE_SHIFT,
6572 ((u64)end_pfn << PAGE_SHIFT) - 1);
6573
6574 /* Initialise every node */
6575 mminit_verify_pageflags_layout();
6576 setup_nr_node_ids();
6577 for_each_online_node(nid) {
6578 pg_data_t *pgdat = NODE_DATA(nid);
6579 free_area_init_node(nid, NULL,
6580 find_min_pfn_for_node(nid), NULL);
6581
6582 /* Any memory on that node */
6583 if (pgdat->node_present_pages)
6584 node_set_state(nid, N_MEMORY);
6585 check_for_memory(pgdat, nid);
6586 }
6587 }
6588
6589 static int __init cmdline_parse_core(char *p, unsigned long *core)
6590 {
6591 unsigned long long coremem;
6592 if (!p)
6593 return -EINVAL;
6594
6595 coremem = memparse(p, &p);
6596 *core = coremem >> PAGE_SHIFT;
6597
6598 /* Paranoid check that UL is enough for the coremem value */
6599 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6600
6601 return 0;
6602 }
6603
6604 /*
6605 * kernelcore=size sets the amount of memory for use for allocations that
6606 * cannot be reclaimed or migrated.
6607 */
6608 static int __init cmdline_parse_kernelcore(char *p)
6609 {
6610 /* parse kernelcore=mirror */
6611 if (parse_option_str(p, "mirror")) {
6612 mirrored_kernelcore = true;
6613 return 0;
6614 }
6615
6616 return cmdline_parse_core(p, &required_kernelcore);
6617 }
6618
6619 /*
6620 * movablecore=size sets the amount of memory for use for allocations that
6621 * can be reclaimed or migrated.
6622 */
6623 static int __init cmdline_parse_movablecore(char *p)
6624 {
6625 return cmdline_parse_core(p, &required_movablecore);
6626 }
6627
6628 early_param("kernelcore", cmdline_parse_kernelcore);
6629 early_param("movablecore", cmdline_parse_movablecore);
6630
6631 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6632
6633 void adjust_managed_page_count(struct page *page, long count)
6634 {
6635 spin_lock(&managed_page_count_lock);
6636 page_zone(page)->managed_pages += count;
6637 totalram_pages += count;
6638 #ifdef CONFIG_HIGHMEM
6639 if (PageHighMem(page))
6640 totalhigh_pages += count;
6641 #endif
6642 spin_unlock(&managed_page_count_lock);
6643 }
6644 EXPORT_SYMBOL(adjust_managed_page_count);
6645
6646 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6647 {
6648 void *pos;
6649 unsigned long pages = 0;
6650
6651 start = (void *)PAGE_ALIGN((unsigned long)start);
6652 end = (void *)((unsigned long)end & PAGE_MASK);
6653 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6654 if ((unsigned int)poison <= 0xFF)
6655 memset(pos, poison, PAGE_SIZE);
6656 free_reserved_page(virt_to_page(pos));
6657 }
6658
6659 if (pages && s)
6660 pr_info("Freeing %s memory: %ldK\n",
6661 s, pages << (PAGE_SHIFT - 10));
6662
6663 return pages;
6664 }
6665 EXPORT_SYMBOL(free_reserved_area);
6666
6667 #ifdef CONFIG_HIGHMEM
6668 void free_highmem_page(struct page *page)
6669 {
6670 __free_reserved_page(page);
6671 totalram_pages++;
6672 page_zone(page)->managed_pages++;
6673 totalhigh_pages++;
6674 }
6675 #endif
6676
6677
6678 void __init mem_init_print_info(const char *str)
6679 {
6680 unsigned long physpages, codesize, datasize, rosize, bss_size;
6681 unsigned long init_code_size, init_data_size;
6682
6683 physpages = get_num_physpages();
6684 codesize = _etext - _stext;
6685 datasize = _edata - _sdata;
6686 rosize = __end_rodata - __start_rodata;
6687 bss_size = __bss_stop - __bss_start;
6688 init_data_size = __init_end - __init_begin;
6689 init_code_size = _einittext - _sinittext;
6690
6691 /*
6692 * Detect special cases and adjust section sizes accordingly:
6693 * 1) .init.* may be embedded into .data sections
6694 * 2) .init.text.* may be out of [__init_begin, __init_end],
6695 * please refer to arch/tile/kernel/vmlinux.lds.S.
6696 * 3) .rodata.* may be embedded into .text or .data sections.
6697 */
6698 #define adj_init_size(start, end, size, pos, adj) \
6699 do { \
6700 if (start <= pos && pos < end && size > adj) \
6701 size -= adj; \
6702 } while (0)
6703
6704 adj_init_size(__init_begin, __init_end, init_data_size,
6705 _sinittext, init_code_size);
6706 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6707 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6708 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6709 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6710
6711 #undef adj_init_size
6712
6713 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6714 #ifdef CONFIG_HIGHMEM
6715 ", %luK highmem"
6716 #endif
6717 "%s%s)\n",
6718 nr_free_pages() << (PAGE_SHIFT - 10),
6719 physpages << (PAGE_SHIFT - 10),
6720 codesize >> 10, datasize >> 10, rosize >> 10,
6721 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6722 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6723 totalcma_pages << (PAGE_SHIFT - 10),
6724 #ifdef CONFIG_HIGHMEM
6725 totalhigh_pages << (PAGE_SHIFT - 10),
6726 #endif
6727 str ? ", " : "", str ? str : "");
6728 }
6729
6730 /**
6731 * set_dma_reserve - set the specified number of pages reserved in the first zone
6732 * @new_dma_reserve: The number of pages to mark reserved
6733 *
6734 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6735 * In the DMA zone, a significant percentage may be consumed by kernel image
6736 * and other unfreeable allocations which can skew the watermarks badly. This
6737 * function may optionally be used to account for unfreeable pages in the
6738 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6739 * smaller per-cpu batchsize.
6740 */
6741 void __init set_dma_reserve(unsigned long new_dma_reserve)
6742 {
6743 dma_reserve = new_dma_reserve;
6744 }
6745
6746 void __init free_area_init(unsigned long *zones_size)
6747 {
6748 free_area_init_node(0, zones_size,
6749 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6750 }
6751
6752 static int page_alloc_cpu_dead(unsigned int cpu)
6753 {
6754
6755 lru_add_drain_cpu(cpu);
6756 drain_pages(cpu);
6757
6758 /*
6759 * Spill the event counters of the dead processor
6760 * into the current processors event counters.
6761 * This artificially elevates the count of the current
6762 * processor.
6763 */
6764 vm_events_fold_cpu(cpu);
6765
6766 /*
6767 * Zero the differential counters of the dead processor
6768 * so that the vm statistics are consistent.
6769 *
6770 * This is only okay since the processor is dead and cannot
6771 * race with what we are doing.
6772 */
6773 cpu_vm_stats_fold(cpu);
6774 return 0;
6775 }
6776
6777 void __init page_alloc_init(void)
6778 {
6779 int ret;
6780
6781 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6782 "mm/page_alloc:dead", NULL,
6783 page_alloc_cpu_dead);
6784 WARN_ON(ret < 0);
6785 }
6786
6787 /*
6788 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6789 * or min_free_kbytes changes.
6790 */
6791 static void calculate_totalreserve_pages(void)
6792 {
6793 struct pglist_data *pgdat;
6794 unsigned long reserve_pages = 0;
6795 enum zone_type i, j;
6796
6797 for_each_online_pgdat(pgdat) {
6798
6799 pgdat->totalreserve_pages = 0;
6800
6801 for (i = 0; i < MAX_NR_ZONES; i++) {
6802 struct zone *zone = pgdat->node_zones + i;
6803 long max = 0;
6804
6805 /* Find valid and maximum lowmem_reserve in the zone */
6806 for (j = i; j < MAX_NR_ZONES; j++) {
6807 if (zone->lowmem_reserve[j] > max)
6808 max = zone->lowmem_reserve[j];
6809 }
6810
6811 /* we treat the high watermark as reserved pages. */
6812 max += high_wmark_pages(zone);
6813
6814 if (max > zone->managed_pages)
6815 max = zone->managed_pages;
6816
6817 pgdat->totalreserve_pages += max;
6818
6819 reserve_pages += max;
6820 }
6821 }
6822 totalreserve_pages = reserve_pages;
6823 }
6824
6825 /*
6826 * setup_per_zone_lowmem_reserve - called whenever
6827 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6828 * has a correct pages reserved value, so an adequate number of
6829 * pages are left in the zone after a successful __alloc_pages().
6830 */
6831 static void setup_per_zone_lowmem_reserve(void)
6832 {
6833 struct pglist_data *pgdat;
6834 enum zone_type j, idx;
6835
6836 for_each_online_pgdat(pgdat) {
6837 for (j = 0; j < MAX_NR_ZONES; j++) {
6838 struct zone *zone = pgdat->node_zones + j;
6839 unsigned long managed_pages = zone->managed_pages;
6840
6841 zone->lowmem_reserve[j] = 0;
6842
6843 idx = j;
6844 while (idx) {
6845 struct zone *lower_zone;
6846
6847 idx--;
6848
6849 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6850 sysctl_lowmem_reserve_ratio[idx] = 1;
6851
6852 lower_zone = pgdat->node_zones + idx;
6853 lower_zone->lowmem_reserve[j] = managed_pages /
6854 sysctl_lowmem_reserve_ratio[idx];
6855 managed_pages += lower_zone->managed_pages;
6856 }
6857 }
6858 }
6859
6860 /* update totalreserve_pages */
6861 calculate_totalreserve_pages();
6862 }
6863
6864 static void __setup_per_zone_wmarks(void)
6865 {
6866 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6867 unsigned long lowmem_pages = 0;
6868 struct zone *zone;
6869 unsigned long flags;
6870
6871 /* Calculate total number of !ZONE_HIGHMEM pages */
6872 for_each_zone(zone) {
6873 if (!is_highmem(zone))
6874 lowmem_pages += zone->managed_pages;
6875 }
6876
6877 for_each_zone(zone) {
6878 u64 tmp;
6879
6880 spin_lock_irqsave(&zone->lock, flags);
6881 tmp = (u64)pages_min * zone->managed_pages;
6882 do_div(tmp, lowmem_pages);
6883 if (is_highmem(zone)) {
6884 /*
6885 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6886 * need highmem pages, so cap pages_min to a small
6887 * value here.
6888 *
6889 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6890 * deltas control asynch page reclaim, and so should
6891 * not be capped for highmem.
6892 */
6893 unsigned long min_pages;
6894
6895 min_pages = zone->managed_pages / 1024;
6896 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6897 zone->watermark[WMARK_MIN] = min_pages;
6898 } else {
6899 /*
6900 * If it's a lowmem zone, reserve a number of pages
6901 * proportionate to the zone's size.
6902 */
6903 zone->watermark[WMARK_MIN] = tmp;
6904 }
6905
6906 /*
6907 * Set the kswapd watermarks distance according to the
6908 * scale factor in proportion to available memory, but
6909 * ensure a minimum size on small systems.
6910 */
6911 tmp = max_t(u64, tmp >> 2,
6912 mult_frac(zone->managed_pages,
6913 watermark_scale_factor, 10000));
6914
6915 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6916 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6917
6918 spin_unlock_irqrestore(&zone->lock, flags);
6919 }
6920
6921 /* update totalreserve_pages */
6922 calculate_totalreserve_pages();
6923 }
6924
6925 /**
6926 * setup_per_zone_wmarks - called when min_free_kbytes changes
6927 * or when memory is hot-{added|removed}
6928 *
6929 * Ensures that the watermark[min,low,high] values for each zone are set
6930 * correctly with respect to min_free_kbytes.
6931 */
6932 void setup_per_zone_wmarks(void)
6933 {
6934 mutex_lock(&zonelists_mutex);
6935 __setup_per_zone_wmarks();
6936 mutex_unlock(&zonelists_mutex);
6937 }
6938
6939 /*
6940 * Initialise min_free_kbytes.
6941 *
6942 * For small machines we want it small (128k min). For large machines
6943 * we want it large (64MB max). But it is not linear, because network
6944 * bandwidth does not increase linearly with machine size. We use
6945 *
6946 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6947 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6948 *
6949 * which yields
6950 *
6951 * 16MB: 512k
6952 * 32MB: 724k
6953 * 64MB: 1024k
6954 * 128MB: 1448k
6955 * 256MB: 2048k
6956 * 512MB: 2896k
6957 * 1024MB: 4096k
6958 * 2048MB: 5792k
6959 * 4096MB: 8192k
6960 * 8192MB: 11584k
6961 * 16384MB: 16384k
6962 */
6963 int __meminit init_per_zone_wmark_min(void)
6964 {
6965 unsigned long lowmem_kbytes;
6966 int new_min_free_kbytes;
6967
6968 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6969 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6970
6971 if (new_min_free_kbytes > user_min_free_kbytes) {
6972 min_free_kbytes = new_min_free_kbytes;
6973 if (min_free_kbytes < 128)
6974 min_free_kbytes = 128;
6975 if (min_free_kbytes > 65536)
6976 min_free_kbytes = 65536;
6977 } else {
6978 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6979 new_min_free_kbytes, user_min_free_kbytes);
6980 }
6981 setup_per_zone_wmarks();
6982 refresh_zone_stat_thresholds();
6983 setup_per_zone_lowmem_reserve();
6984
6985 #ifdef CONFIG_NUMA
6986 setup_min_unmapped_ratio();
6987 setup_min_slab_ratio();
6988 #endif
6989
6990 return 0;
6991 }
6992 core_initcall(init_per_zone_wmark_min)
6993
6994 /*
6995 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6996 * that we can call two helper functions whenever min_free_kbytes
6997 * changes.
6998 */
6999 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7000 void __user *buffer, size_t *length, loff_t *ppos)
7001 {
7002 int rc;
7003
7004 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7005 if (rc)
7006 return rc;
7007
7008 if (write) {
7009 user_min_free_kbytes = min_free_kbytes;
7010 setup_per_zone_wmarks();
7011 }
7012 return 0;
7013 }
7014
7015 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7016 void __user *buffer, size_t *length, loff_t *ppos)
7017 {
7018 int rc;
7019
7020 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7021 if (rc)
7022 return rc;
7023
7024 if (write)
7025 setup_per_zone_wmarks();
7026
7027 return 0;
7028 }
7029
7030 #ifdef CONFIG_NUMA
7031 static void setup_min_unmapped_ratio(void)
7032 {
7033 pg_data_t *pgdat;
7034 struct zone *zone;
7035
7036 for_each_online_pgdat(pgdat)
7037 pgdat->min_unmapped_pages = 0;
7038
7039 for_each_zone(zone)
7040 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7041 sysctl_min_unmapped_ratio) / 100;
7042 }
7043
7044
7045 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7046 void __user *buffer, size_t *length, loff_t *ppos)
7047 {
7048 int rc;
7049
7050 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7051 if (rc)
7052 return rc;
7053
7054 setup_min_unmapped_ratio();
7055
7056 return 0;
7057 }
7058
7059 static void setup_min_slab_ratio(void)
7060 {
7061 pg_data_t *pgdat;
7062 struct zone *zone;
7063
7064 for_each_online_pgdat(pgdat)
7065 pgdat->min_slab_pages = 0;
7066
7067 for_each_zone(zone)
7068 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7069 sysctl_min_slab_ratio) / 100;
7070 }
7071
7072 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7073 void __user *buffer, size_t *length, loff_t *ppos)
7074 {
7075 int rc;
7076
7077 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7078 if (rc)
7079 return rc;
7080
7081 setup_min_slab_ratio();
7082
7083 return 0;
7084 }
7085 #endif
7086
7087 /*
7088 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7089 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7090 * whenever sysctl_lowmem_reserve_ratio changes.
7091 *
7092 * The reserve ratio obviously has absolutely no relation with the
7093 * minimum watermarks. The lowmem reserve ratio can only make sense
7094 * if in function of the boot time zone sizes.
7095 */
7096 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7097 void __user *buffer, size_t *length, loff_t *ppos)
7098 {
7099 proc_dointvec_minmax(table, write, buffer, length, ppos);
7100 setup_per_zone_lowmem_reserve();
7101 return 0;
7102 }
7103
7104 /*
7105 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7106 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7107 * pagelist can have before it gets flushed back to buddy allocator.
7108 */
7109 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7110 void __user *buffer, size_t *length, loff_t *ppos)
7111 {
7112 struct zone *zone;
7113 int old_percpu_pagelist_fraction;
7114 int ret;
7115
7116 mutex_lock(&pcp_batch_high_lock);
7117 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7118
7119 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7120 if (!write || ret < 0)
7121 goto out;
7122
7123 /* Sanity checking to avoid pcp imbalance */
7124 if (percpu_pagelist_fraction &&
7125 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7126 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7127 ret = -EINVAL;
7128 goto out;
7129 }
7130
7131 /* No change? */
7132 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7133 goto out;
7134
7135 for_each_populated_zone(zone) {
7136 unsigned int cpu;
7137
7138 for_each_possible_cpu(cpu)
7139 pageset_set_high_and_batch(zone,
7140 per_cpu_ptr(zone->pageset, cpu));
7141 }
7142 out:
7143 mutex_unlock(&pcp_batch_high_lock);
7144 return ret;
7145 }
7146
7147 #ifdef CONFIG_NUMA
7148 int hashdist = HASHDIST_DEFAULT;
7149
7150 static int __init set_hashdist(char *str)
7151 {
7152 if (!str)
7153 return 0;
7154 hashdist = simple_strtoul(str, &str, 0);
7155 return 1;
7156 }
7157 __setup("hashdist=", set_hashdist);
7158 #endif
7159
7160 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7161 /*
7162 * Returns the number of pages that arch has reserved but
7163 * is not known to alloc_large_system_hash().
7164 */
7165 static unsigned long __init arch_reserved_kernel_pages(void)
7166 {
7167 return 0;
7168 }
7169 #endif
7170
7171 /*
7172 * allocate a large system hash table from bootmem
7173 * - it is assumed that the hash table must contain an exact power-of-2
7174 * quantity of entries
7175 * - limit is the number of hash buckets, not the total allocation size
7176 */
7177 void *__init alloc_large_system_hash(const char *tablename,
7178 unsigned long bucketsize,
7179 unsigned long numentries,
7180 int scale,
7181 int flags,
7182 unsigned int *_hash_shift,
7183 unsigned int *_hash_mask,
7184 unsigned long low_limit,
7185 unsigned long high_limit)
7186 {
7187 unsigned long long max = high_limit;
7188 unsigned long log2qty, size;
7189 void *table = NULL;
7190
7191 /* allow the kernel cmdline to have a say */
7192 if (!numentries) {
7193 /* round applicable memory size up to nearest megabyte */
7194 numentries = nr_kernel_pages;
7195 numentries -= arch_reserved_kernel_pages();
7196
7197 /* It isn't necessary when PAGE_SIZE >= 1MB */
7198 if (PAGE_SHIFT < 20)
7199 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7200
7201 /* limit to 1 bucket per 2^scale bytes of low memory */
7202 if (scale > PAGE_SHIFT)
7203 numentries >>= (scale - PAGE_SHIFT);
7204 else
7205 numentries <<= (PAGE_SHIFT - scale);
7206
7207 /* Make sure we've got at least a 0-order allocation.. */
7208 if (unlikely(flags & HASH_SMALL)) {
7209 /* Makes no sense without HASH_EARLY */
7210 WARN_ON(!(flags & HASH_EARLY));
7211 if (!(numentries >> *_hash_shift)) {
7212 numentries = 1UL << *_hash_shift;
7213 BUG_ON(!numentries);
7214 }
7215 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7216 numentries = PAGE_SIZE / bucketsize;
7217 }
7218 numentries = roundup_pow_of_two(numentries);
7219
7220 /* limit allocation size to 1/16 total memory by default */
7221 if (max == 0) {
7222 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7223 do_div(max, bucketsize);
7224 }
7225 max = min(max, 0x80000000ULL);
7226
7227 if (numentries < low_limit)
7228 numentries = low_limit;
7229 if (numentries > max)
7230 numentries = max;
7231
7232 log2qty = ilog2(numentries);
7233
7234 do {
7235 size = bucketsize << log2qty;
7236 if (flags & HASH_EARLY)
7237 table = memblock_virt_alloc_nopanic(size, 0);
7238 else if (hashdist)
7239 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7240 else {
7241 /*
7242 * If bucketsize is not a power-of-two, we may free
7243 * some pages at the end of hash table which
7244 * alloc_pages_exact() automatically does
7245 */
7246 if (get_order(size) < MAX_ORDER) {
7247 table = alloc_pages_exact(size, GFP_ATOMIC);
7248 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7249 }
7250 }
7251 } while (!table && size > PAGE_SIZE && --log2qty);
7252
7253 if (!table)
7254 panic("Failed to allocate %s hash table\n", tablename);
7255
7256 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7257 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7258
7259 if (_hash_shift)
7260 *_hash_shift = log2qty;
7261 if (_hash_mask)
7262 *_hash_mask = (1 << log2qty) - 1;
7263
7264 return table;
7265 }
7266
7267 /*
7268 * This function checks whether pageblock includes unmovable pages or not.
7269 * If @count is not zero, it is okay to include less @count unmovable pages
7270 *
7271 * PageLRU check without isolation or lru_lock could race so that
7272 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7273 * check without lock_page also may miss some movable non-lru pages at
7274 * race condition. So you can't expect this function should be exact.
7275 */
7276 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7277 bool skip_hwpoisoned_pages)
7278 {
7279 unsigned long pfn, iter, found;
7280 int mt;
7281
7282 /*
7283 * For avoiding noise data, lru_add_drain_all() should be called
7284 * If ZONE_MOVABLE, the zone never contains unmovable pages
7285 */
7286 if (zone_idx(zone) == ZONE_MOVABLE)
7287 return false;
7288 mt = get_pageblock_migratetype(page);
7289 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7290 return false;
7291
7292 pfn = page_to_pfn(page);
7293 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7294 unsigned long check = pfn + iter;
7295
7296 if (!pfn_valid_within(check))
7297 continue;
7298
7299 page = pfn_to_page(check);
7300
7301 /*
7302 * Hugepages are not in LRU lists, but they're movable.
7303 * We need not scan over tail pages bacause we don't
7304 * handle each tail page individually in migration.
7305 */
7306 if (PageHuge(page)) {
7307 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7308 continue;
7309 }
7310
7311 /*
7312 * We can't use page_count without pin a page
7313 * because another CPU can free compound page.
7314 * This check already skips compound tails of THP
7315 * because their page->_refcount is zero at all time.
7316 */
7317 if (!page_ref_count(page)) {
7318 if (PageBuddy(page))
7319 iter += (1 << page_order(page)) - 1;
7320 continue;
7321 }
7322
7323 /*
7324 * The HWPoisoned page may be not in buddy system, and
7325 * page_count() is not 0.
7326 */
7327 if (skip_hwpoisoned_pages && PageHWPoison(page))
7328 continue;
7329
7330 if (__PageMovable(page))
7331 continue;
7332
7333 if (!PageLRU(page))
7334 found++;
7335 /*
7336 * If there are RECLAIMABLE pages, we need to check
7337 * it. But now, memory offline itself doesn't call
7338 * shrink_node_slabs() and it still to be fixed.
7339 */
7340 /*
7341 * If the page is not RAM, page_count()should be 0.
7342 * we don't need more check. This is an _used_ not-movable page.
7343 *
7344 * The problematic thing here is PG_reserved pages. PG_reserved
7345 * is set to both of a memory hole page and a _used_ kernel
7346 * page at boot.
7347 */
7348 if (found > count)
7349 return true;
7350 }
7351 return false;
7352 }
7353
7354 bool is_pageblock_removable_nolock(struct page *page)
7355 {
7356 struct zone *zone;
7357 unsigned long pfn;
7358
7359 /*
7360 * We have to be careful here because we are iterating over memory
7361 * sections which are not zone aware so we might end up outside of
7362 * the zone but still within the section.
7363 * We have to take care about the node as well. If the node is offline
7364 * its NODE_DATA will be NULL - see page_zone.
7365 */
7366 if (!node_online(page_to_nid(page)))
7367 return false;
7368
7369 zone = page_zone(page);
7370 pfn = page_to_pfn(page);
7371 if (!zone_spans_pfn(zone, pfn))
7372 return false;
7373
7374 return !has_unmovable_pages(zone, page, 0, true);
7375 }
7376
7377 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7378
7379 static unsigned long pfn_max_align_down(unsigned long pfn)
7380 {
7381 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7382 pageblock_nr_pages) - 1);
7383 }
7384
7385 static unsigned long pfn_max_align_up(unsigned long pfn)
7386 {
7387 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7388 pageblock_nr_pages));
7389 }
7390
7391 /* [start, end) must belong to a single zone. */
7392 static int __alloc_contig_migrate_range(struct compact_control *cc,
7393 unsigned long start, unsigned long end)
7394 {
7395 /* This function is based on compact_zone() from compaction.c. */
7396 unsigned long nr_reclaimed;
7397 unsigned long pfn = start;
7398 unsigned int tries = 0;
7399 int ret = 0;
7400
7401 migrate_prep();
7402
7403 while (pfn < end || !list_empty(&cc->migratepages)) {
7404 if (fatal_signal_pending(current)) {
7405 ret = -EINTR;
7406 break;
7407 }
7408
7409 if (list_empty(&cc->migratepages)) {
7410 cc->nr_migratepages = 0;
7411 pfn = isolate_migratepages_range(cc, pfn, end);
7412 if (!pfn) {
7413 ret = -EINTR;
7414 break;
7415 }
7416 tries = 0;
7417 } else if (++tries == 5) {
7418 ret = ret < 0 ? ret : -EBUSY;
7419 break;
7420 }
7421
7422 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7423 &cc->migratepages);
7424 cc->nr_migratepages -= nr_reclaimed;
7425
7426 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7427 NULL, 0, cc->mode, MR_CMA);
7428 }
7429 if (ret < 0) {
7430 putback_movable_pages(&cc->migratepages);
7431 return ret;
7432 }
7433 return 0;
7434 }
7435
7436 /**
7437 * alloc_contig_range() -- tries to allocate given range of pages
7438 * @start: start PFN to allocate
7439 * @end: one-past-the-last PFN to allocate
7440 * @migratetype: migratetype of the underlaying pageblocks (either
7441 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7442 * in range must have the same migratetype and it must
7443 * be either of the two.
7444 * @gfp_mask: GFP mask to use during compaction
7445 *
7446 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7447 * aligned, however it's the caller's responsibility to guarantee that
7448 * we are the only thread that changes migrate type of pageblocks the
7449 * pages fall in.
7450 *
7451 * The PFN range must belong to a single zone.
7452 *
7453 * Returns zero on success or negative error code. On success all
7454 * pages which PFN is in [start, end) are allocated for the caller and
7455 * need to be freed with free_contig_range().
7456 */
7457 int alloc_contig_range(unsigned long start, unsigned long end,
7458 unsigned migratetype, gfp_t gfp_mask)
7459 {
7460 unsigned long outer_start, outer_end;
7461 unsigned int order;
7462 int ret = 0;
7463
7464 struct compact_control cc = {
7465 .nr_migratepages = 0,
7466 .order = -1,
7467 .zone = page_zone(pfn_to_page(start)),
7468 .mode = MIGRATE_SYNC,
7469 .ignore_skip_hint = true,
7470 .gfp_mask = current_gfp_context(gfp_mask),
7471 };
7472 INIT_LIST_HEAD(&cc.migratepages);
7473
7474 /*
7475 * What we do here is we mark all pageblocks in range as
7476 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7477 * have different sizes, and due to the way page allocator
7478 * work, we align the range to biggest of the two pages so
7479 * that page allocator won't try to merge buddies from
7480 * different pageblocks and change MIGRATE_ISOLATE to some
7481 * other migration type.
7482 *
7483 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7484 * migrate the pages from an unaligned range (ie. pages that
7485 * we are interested in). This will put all the pages in
7486 * range back to page allocator as MIGRATE_ISOLATE.
7487 *
7488 * When this is done, we take the pages in range from page
7489 * allocator removing them from the buddy system. This way
7490 * page allocator will never consider using them.
7491 *
7492 * This lets us mark the pageblocks back as
7493 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7494 * aligned range but not in the unaligned, original range are
7495 * put back to page allocator so that buddy can use them.
7496 */
7497
7498 ret = start_isolate_page_range(pfn_max_align_down(start),
7499 pfn_max_align_up(end), migratetype,
7500 false);
7501 if (ret)
7502 return ret;
7503
7504 /*
7505 * In case of -EBUSY, we'd like to know which page causes problem.
7506 * So, just fall through. We will check it in test_pages_isolated().
7507 */
7508 ret = __alloc_contig_migrate_range(&cc, start, end);
7509 if (ret && ret != -EBUSY)
7510 goto done;
7511
7512 /*
7513 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7514 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7515 * more, all pages in [start, end) are free in page allocator.
7516 * What we are going to do is to allocate all pages from
7517 * [start, end) (that is remove them from page allocator).
7518 *
7519 * The only problem is that pages at the beginning and at the
7520 * end of interesting range may be not aligned with pages that
7521 * page allocator holds, ie. they can be part of higher order
7522 * pages. Because of this, we reserve the bigger range and
7523 * once this is done free the pages we are not interested in.
7524 *
7525 * We don't have to hold zone->lock here because the pages are
7526 * isolated thus they won't get removed from buddy.
7527 */
7528
7529 lru_add_drain_all();
7530 drain_all_pages(cc.zone);
7531
7532 order = 0;
7533 outer_start = start;
7534 while (!PageBuddy(pfn_to_page(outer_start))) {
7535 if (++order >= MAX_ORDER) {
7536 outer_start = start;
7537 break;
7538 }
7539 outer_start &= ~0UL << order;
7540 }
7541
7542 if (outer_start != start) {
7543 order = page_order(pfn_to_page(outer_start));
7544
7545 /*
7546 * outer_start page could be small order buddy page and
7547 * it doesn't include start page. Adjust outer_start
7548 * in this case to report failed page properly
7549 * on tracepoint in test_pages_isolated()
7550 */
7551 if (outer_start + (1UL << order) <= start)
7552 outer_start = start;
7553 }
7554
7555 /* Make sure the range is really isolated. */
7556 if (test_pages_isolated(outer_start, end, false)) {
7557 pr_info("%s: [%lx, %lx) PFNs busy\n",
7558 __func__, outer_start, end);
7559 ret = -EBUSY;
7560 goto done;
7561 }
7562
7563 /* Grab isolated pages from freelists. */
7564 outer_end = isolate_freepages_range(&cc, outer_start, end);
7565 if (!outer_end) {
7566 ret = -EBUSY;
7567 goto done;
7568 }
7569
7570 /* Free head and tail (if any) */
7571 if (start != outer_start)
7572 free_contig_range(outer_start, start - outer_start);
7573 if (end != outer_end)
7574 free_contig_range(end, outer_end - end);
7575
7576 done:
7577 undo_isolate_page_range(pfn_max_align_down(start),
7578 pfn_max_align_up(end), migratetype);
7579 return ret;
7580 }
7581
7582 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7583 {
7584 unsigned int count = 0;
7585
7586 for (; nr_pages--; pfn++) {
7587 struct page *page = pfn_to_page(pfn);
7588
7589 count += page_count(page) != 1;
7590 __free_page(page);
7591 }
7592 WARN(count != 0, "%d pages are still in use!\n", count);
7593 }
7594 #endif
7595
7596 #ifdef CONFIG_MEMORY_HOTPLUG
7597 /*
7598 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7599 * page high values need to be recalulated.
7600 */
7601 void __meminit zone_pcp_update(struct zone *zone)
7602 {
7603 unsigned cpu;
7604 mutex_lock(&pcp_batch_high_lock);
7605 for_each_possible_cpu(cpu)
7606 pageset_set_high_and_batch(zone,
7607 per_cpu_ptr(zone->pageset, cpu));
7608 mutex_unlock(&pcp_batch_high_lock);
7609 }
7610 #endif
7611
7612 void zone_pcp_reset(struct zone *zone)
7613 {
7614 unsigned long flags;
7615 int cpu;
7616 struct per_cpu_pageset *pset;
7617
7618 /* avoid races with drain_pages() */
7619 local_irq_save(flags);
7620 if (zone->pageset != &boot_pageset) {
7621 for_each_online_cpu(cpu) {
7622 pset = per_cpu_ptr(zone->pageset, cpu);
7623 drain_zonestat(zone, pset);
7624 }
7625 free_percpu(zone->pageset);
7626 zone->pageset = &boot_pageset;
7627 }
7628 local_irq_restore(flags);
7629 }
7630
7631 #ifdef CONFIG_MEMORY_HOTREMOVE
7632 /*
7633 * All pages in the range must be in a single zone and isolated
7634 * before calling this.
7635 */
7636 void
7637 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7638 {
7639 struct page *page;
7640 struct zone *zone;
7641 unsigned int order, i;
7642 unsigned long pfn;
7643 unsigned long flags;
7644 /* find the first valid pfn */
7645 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7646 if (pfn_valid(pfn))
7647 break;
7648 if (pfn == end_pfn)
7649 return;
7650 zone = page_zone(pfn_to_page(pfn));
7651 spin_lock_irqsave(&zone->lock, flags);
7652 pfn = start_pfn;
7653 while (pfn < end_pfn) {
7654 if (!pfn_valid(pfn)) {
7655 pfn++;
7656 continue;
7657 }
7658 page = pfn_to_page(pfn);
7659 /*
7660 * The HWPoisoned page may be not in buddy system, and
7661 * page_count() is not 0.
7662 */
7663 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7664 pfn++;
7665 SetPageReserved(page);
7666 continue;
7667 }
7668
7669 BUG_ON(page_count(page));
7670 BUG_ON(!PageBuddy(page));
7671 order = page_order(page);
7672 #ifdef CONFIG_DEBUG_VM
7673 pr_info("remove from free list %lx %d %lx\n",
7674 pfn, 1 << order, end_pfn);
7675 #endif
7676 list_del(&page->lru);
7677 rmv_page_order(page);
7678 zone->free_area[order].nr_free--;
7679 for (i = 0; i < (1 << order); i++)
7680 SetPageReserved((page+i));
7681 pfn += (1 << order);
7682 }
7683 spin_unlock_irqrestore(&zone->lock, flags);
7684 }
7685 #endif
7686
7687 bool is_free_buddy_page(struct page *page)
7688 {
7689 struct zone *zone = page_zone(page);
7690 unsigned long pfn = page_to_pfn(page);
7691 unsigned long flags;
7692 unsigned int order;
7693
7694 spin_lock_irqsave(&zone->lock, flags);
7695 for (order = 0; order < MAX_ORDER; order++) {
7696 struct page *page_head = page - (pfn & ((1 << order) - 1));
7697
7698 if (PageBuddy(page_head) && page_order(page_head) >= order)
7699 break;
7700 }
7701 spin_unlock_irqrestore(&zone->lock, flags);
7702
7703 return order < MAX_ORDER;
7704 }