Merge 4.4.101 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238 #endif
239 };
240
241 /*
242 * Try to keep at least this much lowmem free. Do not allow normal
243 * allocations below this point, only high priority ones. Automatically
244 * tuned according to the amount of memory in the system.
245 */
246 int min_free_kbytes = 1024;
247 int user_min_free_kbytes = -1;
248
249 /*
250 * Extra memory for the system to try freeing. Used to temporarily
251 * free memory, to make space for new workloads. Anyone can allocate
252 * down to the min watermarks controlled by min_free_kbytes above.
253 */
254 int extra_free_kbytes = 0;
255
256 static unsigned long __meminitdata nr_kernel_pages;
257 static unsigned long __meminitdata nr_all_pages;
258 static unsigned long __meminitdata dma_reserve;
259
260 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
261 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
263 static unsigned long __initdata required_kernelcore;
264 static unsigned long __initdata required_movablecore;
265 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282
283 /*
284 * Determine how many pages need to be initialized durig early boot
285 * (non-deferred initialization).
286 * The value of first_deferred_pfn will be set later, once non-deferred pages
287 * are initialized, but for now set it ULONG_MAX.
288 */
289 static inline void reset_deferred_meminit(pg_data_t *pgdat)
290 {
291 phys_addr_t start_addr, end_addr;
292 unsigned long max_pgcnt;
293 unsigned long reserved;
294
295 /*
296 * Initialise at least 2G of a node but also take into account that
297 * two large system hashes that can take up 1GB for 0.25TB/node.
298 */
299 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
300 (pgdat->node_spanned_pages >> 8));
301
302 /*
303 * Compensate the all the memblock reservations (e.g. crash kernel)
304 * from the initial estimation to make sure we will initialize enough
305 * memory to boot.
306 */
307 start_addr = PFN_PHYS(pgdat->node_start_pfn);
308 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
309 reserved = memblock_reserved_memory_within(start_addr, end_addr);
310 max_pgcnt += PHYS_PFN(reserved);
311
312 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
313 pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 int nid = early_pfn_to_nid(pfn);
320
321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 return true;
323
324 return false;
325 }
326
327 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
328 {
329 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 return true;
331
332 return false;
333 }
334
335 /*
336 * Returns false when the remaining initialisation should be deferred until
337 * later in the boot cycle when it can be parallelised.
338 */
339 static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342 {
343 /* Always populate low zones for address-contrained allocations */
344 if (zone_end < pgdat_end_pfn(pgdat))
345 return true;
346 /* Initialise at least 2G of the highest zone */
347 (*nr_initialised)++;
348 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
349 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
350 pgdat->first_deferred_pfn = pfn;
351 return false;
352 }
353
354 return true;
355 }
356 #else
357 static inline void reset_deferred_meminit(pg_data_t *pgdat)
358 {
359 }
360
361 static inline bool early_page_uninitialised(unsigned long pfn)
362 {
363 return false;
364 }
365
366 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
367 {
368 return false;
369 }
370
371 static inline bool update_defer_init(pg_data_t *pgdat,
372 unsigned long pfn, unsigned long zone_end,
373 unsigned long *nr_initialised)
374 {
375 return true;
376 }
377 #endif
378
379
380 void set_pageblock_migratetype(struct page *page, int migratetype)
381 {
382 if (unlikely(page_group_by_mobility_disabled &&
383 migratetype < MIGRATE_PCPTYPES))
384 migratetype = MIGRATE_UNMOVABLE;
385
386 set_pageblock_flags_group(page, (unsigned long)migratetype,
387 PB_migrate, PB_migrate_end);
388 }
389
390 #ifdef CONFIG_DEBUG_VM
391 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
392 {
393 int ret = 0;
394 unsigned seq;
395 unsigned long pfn = page_to_pfn(page);
396 unsigned long sp, start_pfn;
397
398 do {
399 seq = zone_span_seqbegin(zone);
400 start_pfn = zone->zone_start_pfn;
401 sp = zone->spanned_pages;
402 if (!zone_spans_pfn(zone, pfn))
403 ret = 1;
404 } while (zone_span_seqretry(zone, seq));
405
406 if (ret)
407 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
408 pfn, zone_to_nid(zone), zone->name,
409 start_pfn, start_pfn + sp);
410
411 return ret;
412 }
413
414 static int page_is_consistent(struct zone *zone, struct page *page)
415 {
416 if (!pfn_valid_within(page_to_pfn(page)))
417 return 0;
418 if (zone != page_zone(page))
419 return 0;
420
421 return 1;
422 }
423 /*
424 * Temporary debugging check for pages not lying within a given zone.
425 */
426 static int bad_range(struct zone *zone, struct page *page)
427 {
428 if (page_outside_zone_boundaries(zone, page))
429 return 1;
430 if (!page_is_consistent(zone, page))
431 return 1;
432
433 return 0;
434 }
435 #else
436 static inline int bad_range(struct zone *zone, struct page *page)
437 {
438 return 0;
439 }
440 #endif
441
442 static void bad_page(struct page *page, const char *reason,
443 unsigned long bad_flags)
444 {
445 static unsigned long resume;
446 static unsigned long nr_shown;
447 static unsigned long nr_unshown;
448
449 /* Don't complain about poisoned pages */
450 if (PageHWPoison(page)) {
451 page_mapcount_reset(page); /* remove PageBuddy */
452 return;
453 }
454
455 /*
456 * Allow a burst of 60 reports, then keep quiet for that minute;
457 * or allow a steady drip of one report per second.
458 */
459 if (nr_shown == 60) {
460 if (time_before(jiffies, resume)) {
461 nr_unshown++;
462 goto out;
463 }
464 if (nr_unshown) {
465 printk(KERN_ALERT
466 "BUG: Bad page state: %lu messages suppressed\n",
467 nr_unshown);
468 nr_unshown = 0;
469 }
470 nr_shown = 0;
471 }
472 if (nr_shown++ == 0)
473 resume = jiffies + 60 * HZ;
474
475 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
476 current->comm, page_to_pfn(page));
477 dump_page_badflags(page, reason, bad_flags);
478
479 print_modules();
480 dump_stack();
481 out:
482 /* Leave bad fields for debug, except PageBuddy could make trouble */
483 page_mapcount_reset(page); /* remove PageBuddy */
484 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
485 }
486
487 /*
488 * Higher-order pages are called "compound pages". They are structured thusly:
489 *
490 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
491 *
492 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
493 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
494 *
495 * The first tail page's ->compound_dtor holds the offset in array of compound
496 * page destructors. See compound_page_dtors.
497 *
498 * The first tail page's ->compound_order holds the order of allocation.
499 * This usage means that zero-order pages may not be compound.
500 */
501
502 static void free_compound_page(struct page *page)
503 {
504 __free_pages_ok(page, compound_order(page));
505 }
506
507 void prep_compound_page(struct page *page, unsigned int order)
508 {
509 int i;
510 int nr_pages = 1 << order;
511
512 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
513 set_compound_order(page, order);
514 __SetPageHead(page);
515 for (i = 1; i < nr_pages; i++) {
516 struct page *p = page + i;
517 set_page_count(p, 0);
518 set_compound_head(p, page);
519 }
520 }
521
522 #ifdef CONFIG_DEBUG_PAGEALLOC
523 unsigned int _debug_guardpage_minorder;
524 bool _debug_pagealloc_enabled __read_mostly;
525 bool _debug_guardpage_enabled __read_mostly;
526
527 static int __init early_debug_pagealloc(char *buf)
528 {
529 if (!buf)
530 return -EINVAL;
531
532 if (strcmp(buf, "on") == 0)
533 _debug_pagealloc_enabled = true;
534
535 return 0;
536 }
537 early_param("debug_pagealloc", early_debug_pagealloc);
538
539 static bool need_debug_guardpage(void)
540 {
541 /* If we don't use debug_pagealloc, we don't need guard page */
542 if (!debug_pagealloc_enabled())
543 return false;
544
545 return true;
546 }
547
548 static void init_debug_guardpage(void)
549 {
550 if (!debug_pagealloc_enabled())
551 return;
552
553 _debug_guardpage_enabled = true;
554 }
555
556 struct page_ext_operations debug_guardpage_ops = {
557 .need = need_debug_guardpage,
558 .init = init_debug_guardpage,
559 };
560
561 static int __init debug_guardpage_minorder_setup(char *buf)
562 {
563 unsigned long res;
564
565 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
566 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
567 return 0;
568 }
569 _debug_guardpage_minorder = res;
570 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
571 return 0;
572 }
573 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
574
575 static inline void set_page_guard(struct zone *zone, struct page *page,
576 unsigned int order, int migratetype)
577 {
578 struct page_ext *page_ext;
579
580 if (!debug_guardpage_enabled())
581 return;
582
583 page_ext = lookup_page_ext(page);
584 if (unlikely(!page_ext))
585 return;
586
587 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
588
589 INIT_LIST_HEAD(&page->lru);
590 set_page_private(page, order);
591 /* Guard pages are not available for any usage */
592 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
593 }
594
595 static inline void clear_page_guard(struct zone *zone, struct page *page,
596 unsigned int order, int migratetype)
597 {
598 struct page_ext *page_ext;
599
600 if (!debug_guardpage_enabled())
601 return;
602
603 page_ext = lookup_page_ext(page);
604 if (unlikely(!page_ext))
605 return;
606
607 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
608
609 set_page_private(page, 0);
610 if (!is_migrate_isolate(migratetype))
611 __mod_zone_freepage_state(zone, (1 << order), migratetype);
612 }
613 #else
614 struct page_ext_operations debug_guardpage_ops = { NULL, };
615 static inline void set_page_guard(struct zone *zone, struct page *page,
616 unsigned int order, int migratetype) {}
617 static inline void clear_page_guard(struct zone *zone, struct page *page,
618 unsigned int order, int migratetype) {}
619 #endif
620
621 static inline void set_page_order(struct page *page, unsigned int order)
622 {
623 set_page_private(page, order);
624 __SetPageBuddy(page);
625 }
626
627 static inline void rmv_page_order(struct page *page)
628 {
629 __ClearPageBuddy(page);
630 set_page_private(page, 0);
631 }
632
633 /*
634 * This function checks whether a page is free && is the buddy
635 * we can do coalesce a page and its buddy if
636 * (a) the buddy is not in a hole &&
637 * (b) the buddy is in the buddy system &&
638 * (c) a page and its buddy have the same order &&
639 * (d) a page and its buddy are in the same zone.
640 *
641 * For recording whether a page is in the buddy system, we set ->_mapcount
642 * PAGE_BUDDY_MAPCOUNT_VALUE.
643 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
644 * serialized by zone->lock.
645 *
646 * For recording page's order, we use page_private(page).
647 */
648 static inline int page_is_buddy(struct page *page, struct page *buddy,
649 unsigned int order)
650 {
651 if (!pfn_valid_within(page_to_pfn(buddy)))
652 return 0;
653
654 if (page_is_guard(buddy) && page_order(buddy) == order) {
655 if (page_zone_id(page) != page_zone_id(buddy))
656 return 0;
657
658 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
659
660 return 1;
661 }
662
663 if (PageBuddy(buddy) && page_order(buddy) == order) {
664 /*
665 * zone check is done late to avoid uselessly
666 * calculating zone/node ids for pages that could
667 * never merge.
668 */
669 if (page_zone_id(page) != page_zone_id(buddy))
670 return 0;
671
672 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
673
674 return 1;
675 }
676 return 0;
677 }
678
679 /*
680 * Freeing function for a buddy system allocator.
681 *
682 * The concept of a buddy system is to maintain direct-mapped table
683 * (containing bit values) for memory blocks of various "orders".
684 * The bottom level table contains the map for the smallest allocatable
685 * units of memory (here, pages), and each level above it describes
686 * pairs of units from the levels below, hence, "buddies".
687 * At a high level, all that happens here is marking the table entry
688 * at the bottom level available, and propagating the changes upward
689 * as necessary, plus some accounting needed to play nicely with other
690 * parts of the VM system.
691 * At each level, we keep a list of pages, which are heads of continuous
692 * free pages of length of (1 << order) and marked with _mapcount
693 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
694 * field.
695 * So when we are allocating or freeing one, we can derive the state of the
696 * other. That is, if we allocate a small block, and both were
697 * free, the remainder of the region must be split into blocks.
698 * If a block is freed, and its buddy is also free, then this
699 * triggers coalescing into a block of larger size.
700 *
701 * -- nyc
702 */
703
704 static inline void __free_one_page(struct page *page,
705 unsigned long pfn,
706 struct zone *zone, unsigned int order,
707 int migratetype)
708 {
709 unsigned long page_idx;
710 unsigned long combined_idx;
711 unsigned long uninitialized_var(buddy_idx);
712 struct page *buddy;
713 unsigned int max_order;
714
715 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
716
717 VM_BUG_ON(!zone_is_initialized(zone));
718 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
719
720 VM_BUG_ON(migratetype == -1);
721 if (likely(!is_migrate_isolate(migratetype)))
722 __mod_zone_freepage_state(zone, 1 << order, migratetype);
723
724 page_idx = pfn & ((1 << MAX_ORDER) - 1);
725
726 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
727 VM_BUG_ON_PAGE(bad_range(zone, page), page);
728
729 continue_merging:
730 while (order < max_order - 1) {
731 buddy_idx = __find_buddy_index(page_idx, order);
732 buddy = page + (buddy_idx - page_idx);
733 if (!page_is_buddy(page, buddy, order))
734 goto done_merging;
735 /*
736 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
737 * merge with it and move up one order.
738 */
739 if (page_is_guard(buddy)) {
740 clear_page_guard(zone, buddy, order, migratetype);
741 } else {
742 list_del(&buddy->lru);
743 zone->free_area[order].nr_free--;
744 rmv_page_order(buddy);
745 }
746 combined_idx = buddy_idx & page_idx;
747 page = page + (combined_idx - page_idx);
748 page_idx = combined_idx;
749 order++;
750 }
751 if (max_order < MAX_ORDER) {
752 /* If we are here, it means order is >= pageblock_order.
753 * We want to prevent merge between freepages on isolate
754 * pageblock and normal pageblock. Without this, pageblock
755 * isolation could cause incorrect freepage or CMA accounting.
756 *
757 * We don't want to hit this code for the more frequent
758 * low-order merging.
759 */
760 if (unlikely(has_isolate_pageblock(zone))) {
761 int buddy_mt;
762
763 buddy_idx = __find_buddy_index(page_idx, order);
764 buddy = page + (buddy_idx - page_idx);
765 buddy_mt = get_pageblock_migratetype(buddy);
766
767 if (migratetype != buddy_mt
768 && (is_migrate_isolate(migratetype) ||
769 is_migrate_isolate(buddy_mt)))
770 goto done_merging;
771 }
772 max_order++;
773 goto continue_merging;
774 }
775
776 done_merging:
777 set_page_order(page, order);
778
779 /*
780 * If this is not the largest possible page, check if the buddy
781 * of the next-highest order is free. If it is, it's possible
782 * that pages are being freed that will coalesce soon. In case,
783 * that is happening, add the free page to the tail of the list
784 * so it's less likely to be used soon and more likely to be merged
785 * as a higher order page
786 */
787 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
788 struct page *higher_page, *higher_buddy;
789 combined_idx = buddy_idx & page_idx;
790 higher_page = page + (combined_idx - page_idx);
791 buddy_idx = __find_buddy_index(combined_idx, order + 1);
792 higher_buddy = higher_page + (buddy_idx - combined_idx);
793 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
794 list_add_tail(&page->lru,
795 &zone->free_area[order].free_list[migratetype]);
796 goto out;
797 }
798 }
799
800 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
801 out:
802 zone->free_area[order].nr_free++;
803 }
804
805 static inline int free_pages_check(struct page *page)
806 {
807 const char *bad_reason = NULL;
808 unsigned long bad_flags = 0;
809
810 if (unlikely(page_mapcount(page)))
811 bad_reason = "nonzero mapcount";
812 if (unlikely(page->mapping != NULL))
813 bad_reason = "non-NULL mapping";
814 if (unlikely(atomic_read(&page->_count) != 0))
815 bad_reason = "nonzero _count";
816 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
817 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
818 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
819 }
820 #ifdef CONFIG_MEMCG
821 if (unlikely(page->mem_cgroup))
822 bad_reason = "page still charged to cgroup";
823 #endif
824 if (unlikely(bad_reason)) {
825 bad_page(page, bad_reason, bad_flags);
826 return 1;
827 }
828 page_cpupid_reset_last(page);
829 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
830 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
831 return 0;
832 }
833
834 /*
835 * Frees a number of pages from the PCP lists
836 * Assumes all pages on list are in same zone, and of same order.
837 * count is the number of pages to free.
838 *
839 * If the zone was previously in an "all pages pinned" state then look to
840 * see if this freeing clears that state.
841 *
842 * And clear the zone's pages_scanned counter, to hold off the "all pages are
843 * pinned" detection logic.
844 */
845 static void free_pcppages_bulk(struct zone *zone, int count,
846 struct per_cpu_pages *pcp)
847 {
848 int migratetype = 0;
849 int batch_free = 0;
850 int to_free = count;
851 unsigned long nr_scanned;
852
853 spin_lock(&zone->lock);
854 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
855 if (nr_scanned)
856 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
857
858 while (to_free) {
859 struct page *page;
860 struct list_head *list;
861
862 /*
863 * Remove pages from lists in a round-robin fashion. A
864 * batch_free count is maintained that is incremented when an
865 * empty list is encountered. This is so more pages are freed
866 * off fuller lists instead of spinning excessively around empty
867 * lists
868 */
869 do {
870 batch_free++;
871 if (++migratetype == MIGRATE_PCPTYPES)
872 migratetype = 0;
873 list = &pcp->lists[migratetype];
874 } while (list_empty(list));
875
876 /* This is the only non-empty list. Free them all. */
877 if (batch_free == MIGRATE_PCPTYPES)
878 batch_free = to_free;
879
880 do {
881 int mt; /* migratetype of the to-be-freed page */
882
883 page = list_entry(list->prev, struct page, lru);
884 /* must delete as __free_one_page list manipulates */
885 list_del(&page->lru);
886
887 mt = get_pcppage_migratetype(page);
888 /* MIGRATE_ISOLATE page should not go to pcplists */
889 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
890 /* Pageblock could have been isolated meanwhile */
891 if (unlikely(has_isolate_pageblock(zone)))
892 mt = get_pageblock_migratetype(page);
893
894 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
895 trace_mm_page_pcpu_drain(page, 0, mt);
896 } while (--to_free && --batch_free && !list_empty(list));
897 }
898 spin_unlock(&zone->lock);
899 }
900
901 static void free_one_page(struct zone *zone,
902 struct page *page, unsigned long pfn,
903 unsigned int order,
904 int migratetype)
905 {
906 unsigned long nr_scanned;
907 spin_lock(&zone->lock);
908 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
909 if (nr_scanned)
910 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
911
912 if (unlikely(has_isolate_pageblock(zone) ||
913 is_migrate_isolate(migratetype))) {
914 migratetype = get_pfnblock_migratetype(page, pfn);
915 }
916 __free_one_page(page, pfn, zone, order, migratetype);
917 spin_unlock(&zone->lock);
918 }
919
920 static int free_tail_pages_check(struct page *head_page, struct page *page)
921 {
922 int ret = 1;
923
924 /*
925 * We rely page->lru.next never has bit 0 set, unless the page
926 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
927 */
928 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
929
930 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
931 ret = 0;
932 goto out;
933 }
934 if (unlikely(!PageTail(page))) {
935 bad_page(page, "PageTail not set", 0);
936 goto out;
937 }
938 if (unlikely(compound_head(page) != head_page)) {
939 bad_page(page, "compound_head not consistent", 0);
940 goto out;
941 }
942 ret = 0;
943 out:
944 clear_compound_head(page);
945 return ret;
946 }
947
948 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
949 unsigned long zone, int nid)
950 {
951 set_page_links(page, zone, nid, pfn);
952 init_page_count(page);
953 page_mapcount_reset(page);
954 page_cpupid_reset_last(page);
955
956 INIT_LIST_HEAD(&page->lru);
957 #ifdef WANT_PAGE_VIRTUAL
958 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
959 if (!is_highmem_idx(zone))
960 set_page_address(page, __va(pfn << PAGE_SHIFT));
961 #endif
962 }
963
964 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
965 int nid)
966 {
967 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
968 }
969
970 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
971 static void init_reserved_page(unsigned long pfn)
972 {
973 pg_data_t *pgdat;
974 int nid, zid;
975
976 if (!early_page_uninitialised(pfn))
977 return;
978
979 nid = early_pfn_to_nid(pfn);
980 pgdat = NODE_DATA(nid);
981
982 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
983 struct zone *zone = &pgdat->node_zones[zid];
984
985 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
986 break;
987 }
988 __init_single_pfn(pfn, zid, nid);
989 }
990 #else
991 static inline void init_reserved_page(unsigned long pfn)
992 {
993 }
994 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
995
996 /*
997 * Initialised pages do not have PageReserved set. This function is
998 * called for each range allocated by the bootmem allocator and
999 * marks the pages PageReserved. The remaining valid pages are later
1000 * sent to the buddy page allocator.
1001 */
1002 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1003 {
1004 unsigned long start_pfn = PFN_DOWN(start);
1005 unsigned long end_pfn = PFN_UP(end);
1006
1007 for (; start_pfn < end_pfn; start_pfn++) {
1008 if (pfn_valid(start_pfn)) {
1009 struct page *page = pfn_to_page(start_pfn);
1010
1011 init_reserved_page(start_pfn);
1012
1013 /* Avoid false-positive PageTail() */
1014 INIT_LIST_HEAD(&page->lru);
1015
1016 SetPageReserved(page);
1017 }
1018 }
1019 }
1020
1021 static bool free_pages_prepare(struct page *page, unsigned int order)
1022 {
1023 bool compound = PageCompound(page);
1024 int i, bad = 0;
1025
1026 VM_BUG_ON_PAGE(PageTail(page), page);
1027 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1028
1029 trace_mm_page_free(page, order);
1030 kmemcheck_free_shadow(page, order);
1031 kasan_free_pages(page, order);
1032
1033 if (PageAnon(page))
1034 page->mapping = NULL;
1035 bad += free_pages_check(page);
1036 for (i = 1; i < (1 << order); i++) {
1037 if (compound)
1038 bad += free_tail_pages_check(page, page + i);
1039 bad += free_pages_check(page + i);
1040 }
1041 if (bad)
1042 return false;
1043
1044 reset_page_owner(page, order);
1045
1046 if (!PageHighMem(page)) {
1047 debug_check_no_locks_freed(page_address(page),
1048 PAGE_SIZE << order);
1049 debug_check_no_obj_freed(page_address(page),
1050 PAGE_SIZE << order);
1051 }
1052 arch_free_page(page, order);
1053 kernel_map_pages(page, 1 << order, 0);
1054
1055 return true;
1056 }
1057
1058 static void __free_pages_ok(struct page *page, unsigned int order)
1059 {
1060 unsigned long flags;
1061 int migratetype;
1062 unsigned long pfn = page_to_pfn(page);
1063
1064 if (!free_pages_prepare(page, order))
1065 return;
1066
1067 migratetype = get_pfnblock_migratetype(page, pfn);
1068 local_irq_save(flags);
1069 __count_vm_events(PGFREE, 1 << order);
1070 free_one_page(page_zone(page), page, pfn, order, migratetype);
1071 local_irq_restore(flags);
1072 }
1073
1074 static void __init __free_pages_boot_core(struct page *page,
1075 unsigned long pfn, unsigned int order)
1076 {
1077 unsigned int nr_pages = 1 << order;
1078 struct page *p = page;
1079 unsigned int loop;
1080
1081 prefetchw(p);
1082 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1083 prefetchw(p + 1);
1084 __ClearPageReserved(p);
1085 set_page_count(p, 0);
1086 }
1087 __ClearPageReserved(p);
1088 set_page_count(p, 0);
1089
1090 page_zone(page)->managed_pages += nr_pages;
1091 set_page_refcounted(page);
1092 __free_pages(page, order);
1093 }
1094
1095 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1096 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1097
1098 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1099
1100 int __meminit early_pfn_to_nid(unsigned long pfn)
1101 {
1102 static DEFINE_SPINLOCK(early_pfn_lock);
1103 int nid;
1104
1105 spin_lock(&early_pfn_lock);
1106 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1107 if (nid < 0)
1108 nid = first_online_node;
1109 spin_unlock(&early_pfn_lock);
1110
1111 return nid;
1112 }
1113 #endif
1114
1115 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1116 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1117 struct mminit_pfnnid_cache *state)
1118 {
1119 int nid;
1120
1121 nid = __early_pfn_to_nid(pfn, state);
1122 if (nid >= 0 && nid != node)
1123 return false;
1124 return true;
1125 }
1126
1127 /* Only safe to use early in boot when initialisation is single-threaded */
1128 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1129 {
1130 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1131 }
1132
1133 #else
1134
1135 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1136 {
1137 return true;
1138 }
1139 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1140 struct mminit_pfnnid_cache *state)
1141 {
1142 return true;
1143 }
1144 #endif
1145
1146
1147 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1148 unsigned int order)
1149 {
1150 if (early_page_uninitialised(pfn))
1151 return;
1152 return __free_pages_boot_core(page, pfn, order);
1153 }
1154
1155 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1156 static void __init deferred_free_range(struct page *page,
1157 unsigned long pfn, int nr_pages)
1158 {
1159 int i;
1160
1161 if (!page)
1162 return;
1163
1164 /* Free a large naturally-aligned chunk if possible */
1165 if (nr_pages == MAX_ORDER_NR_PAGES &&
1166 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1167 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1168 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1169 return;
1170 }
1171
1172 for (i = 0; i < nr_pages; i++, page++, pfn++)
1173 __free_pages_boot_core(page, pfn, 0);
1174 }
1175
1176 /* Completion tracking for deferred_init_memmap() threads */
1177 static atomic_t pgdat_init_n_undone __initdata;
1178 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1179
1180 static inline void __init pgdat_init_report_one_done(void)
1181 {
1182 if (atomic_dec_and_test(&pgdat_init_n_undone))
1183 complete(&pgdat_init_all_done_comp);
1184 }
1185
1186 /* Initialise remaining memory on a node */
1187 static int __init deferred_init_memmap(void *data)
1188 {
1189 pg_data_t *pgdat = data;
1190 int nid = pgdat->node_id;
1191 struct mminit_pfnnid_cache nid_init_state = { };
1192 unsigned long start = jiffies;
1193 unsigned long nr_pages = 0;
1194 unsigned long walk_start, walk_end;
1195 int i, zid;
1196 struct zone *zone;
1197 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1198 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1199
1200 if (first_init_pfn == ULONG_MAX) {
1201 pgdat_init_report_one_done();
1202 return 0;
1203 }
1204
1205 /* Bind memory initialisation thread to a local node if possible */
1206 if (!cpumask_empty(cpumask))
1207 set_cpus_allowed_ptr(current, cpumask);
1208
1209 /* Sanity check boundaries */
1210 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1211 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1212 pgdat->first_deferred_pfn = ULONG_MAX;
1213
1214 /* Only the highest zone is deferred so find it */
1215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1216 zone = pgdat->node_zones + zid;
1217 if (first_init_pfn < zone_end_pfn(zone))
1218 break;
1219 }
1220
1221 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1222 unsigned long pfn, end_pfn;
1223 struct page *page = NULL;
1224 struct page *free_base_page = NULL;
1225 unsigned long free_base_pfn = 0;
1226 int nr_to_free = 0;
1227
1228 end_pfn = min(walk_end, zone_end_pfn(zone));
1229 pfn = first_init_pfn;
1230 if (pfn < walk_start)
1231 pfn = walk_start;
1232 if (pfn < zone->zone_start_pfn)
1233 pfn = zone->zone_start_pfn;
1234
1235 for (; pfn < end_pfn; pfn++) {
1236 if (!pfn_valid_within(pfn))
1237 goto free_range;
1238
1239 /*
1240 * Ensure pfn_valid is checked every
1241 * MAX_ORDER_NR_PAGES for memory holes
1242 */
1243 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1244 if (!pfn_valid(pfn)) {
1245 page = NULL;
1246 goto free_range;
1247 }
1248 }
1249
1250 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1251 page = NULL;
1252 goto free_range;
1253 }
1254
1255 /* Minimise pfn page lookups and scheduler checks */
1256 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1257 page++;
1258 } else {
1259 nr_pages += nr_to_free;
1260 deferred_free_range(free_base_page,
1261 free_base_pfn, nr_to_free);
1262 free_base_page = NULL;
1263 free_base_pfn = nr_to_free = 0;
1264
1265 page = pfn_to_page(pfn);
1266 cond_resched();
1267 }
1268
1269 if (page->flags) {
1270 VM_BUG_ON(page_zone(page) != zone);
1271 goto free_range;
1272 }
1273
1274 __init_single_page(page, pfn, zid, nid);
1275 if (!free_base_page) {
1276 free_base_page = page;
1277 free_base_pfn = pfn;
1278 nr_to_free = 0;
1279 }
1280 nr_to_free++;
1281
1282 /* Where possible, batch up pages for a single free */
1283 continue;
1284 free_range:
1285 /* Free the current block of pages to allocator */
1286 nr_pages += nr_to_free;
1287 deferred_free_range(free_base_page, free_base_pfn,
1288 nr_to_free);
1289 free_base_page = NULL;
1290 free_base_pfn = nr_to_free = 0;
1291 }
1292
1293 first_init_pfn = max(end_pfn, first_init_pfn);
1294 }
1295
1296 /* Sanity check that the next zone really is unpopulated */
1297 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1298
1299 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1300 jiffies_to_msecs(jiffies - start));
1301
1302 pgdat_init_report_one_done();
1303 return 0;
1304 }
1305
1306 void __init page_alloc_init_late(void)
1307 {
1308 int nid;
1309
1310 /* There will be num_node_state(N_MEMORY) threads */
1311 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1312 for_each_node_state(nid, N_MEMORY) {
1313 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1314 }
1315
1316 /* Block until all are initialised */
1317 wait_for_completion(&pgdat_init_all_done_comp);
1318
1319 /* Reinit limits that are based on free pages after the kernel is up */
1320 files_maxfiles_init();
1321 }
1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1323
1324 #ifdef CONFIG_CMA
1325 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1326 void __init init_cma_reserved_pageblock(struct page *page)
1327 {
1328 unsigned i = pageblock_nr_pages;
1329 struct page *p = page;
1330
1331 do {
1332 __ClearPageReserved(p);
1333 set_page_count(p, 0);
1334 } while (++p, --i);
1335
1336 set_pageblock_migratetype(page, MIGRATE_CMA);
1337
1338 if (pageblock_order >= MAX_ORDER) {
1339 i = pageblock_nr_pages;
1340 p = page;
1341 do {
1342 set_page_refcounted(p);
1343 __free_pages(p, MAX_ORDER - 1);
1344 p += MAX_ORDER_NR_PAGES;
1345 } while (i -= MAX_ORDER_NR_PAGES);
1346 } else {
1347 set_page_refcounted(page);
1348 __free_pages(page, pageblock_order);
1349 }
1350
1351 adjust_managed_page_count(page, pageblock_nr_pages);
1352 }
1353 #endif
1354
1355 /*
1356 * The order of subdivision here is critical for the IO subsystem.
1357 * Please do not alter this order without good reasons and regression
1358 * testing. Specifically, as large blocks of memory are subdivided,
1359 * the order in which smaller blocks are delivered depends on the order
1360 * they're subdivided in this function. This is the primary factor
1361 * influencing the order in which pages are delivered to the IO
1362 * subsystem according to empirical testing, and this is also justified
1363 * by considering the behavior of a buddy system containing a single
1364 * large block of memory acted on by a series of small allocations.
1365 * This behavior is a critical factor in sglist merging's success.
1366 *
1367 * -- nyc
1368 */
1369 static inline void expand(struct zone *zone, struct page *page,
1370 int low, int high, struct free_area *area,
1371 int migratetype)
1372 {
1373 unsigned long size = 1 << high;
1374
1375 while (high > low) {
1376 area--;
1377 high--;
1378 size >>= 1;
1379 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1380
1381 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1382 debug_guardpage_enabled() &&
1383 high < debug_guardpage_minorder()) {
1384 /*
1385 * Mark as guard pages (or page), that will allow to
1386 * merge back to allocator when buddy will be freed.
1387 * Corresponding page table entries will not be touched,
1388 * pages will stay not present in virtual address space
1389 */
1390 set_page_guard(zone, &page[size], high, migratetype);
1391 continue;
1392 }
1393 list_add(&page[size].lru, &area->free_list[migratetype]);
1394 area->nr_free++;
1395 set_page_order(&page[size], high);
1396 }
1397 }
1398
1399 /*
1400 * This page is about to be returned from the page allocator
1401 */
1402 static inline int check_new_page(struct page *page)
1403 {
1404 const char *bad_reason = NULL;
1405 unsigned long bad_flags = 0;
1406
1407 if (unlikely(page_mapcount(page)))
1408 bad_reason = "nonzero mapcount";
1409 if (unlikely(page->mapping != NULL))
1410 bad_reason = "non-NULL mapping";
1411 if (unlikely(atomic_read(&page->_count) != 0))
1412 bad_reason = "nonzero _count";
1413 if (unlikely(page->flags & __PG_HWPOISON)) {
1414 bad_reason = "HWPoisoned (hardware-corrupted)";
1415 bad_flags = __PG_HWPOISON;
1416 }
1417 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1418 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1419 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1420 }
1421 #ifdef CONFIG_MEMCG
1422 if (unlikely(page->mem_cgroup))
1423 bad_reason = "page still charged to cgroup";
1424 #endif
1425 if (unlikely(bad_reason)) {
1426 bad_page(page, bad_reason, bad_flags);
1427 return 1;
1428 }
1429 return 0;
1430 }
1431
1432 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1433 int alloc_flags)
1434 {
1435 int i;
1436
1437 for (i = 0; i < (1 << order); i++) {
1438 struct page *p = page + i;
1439 if (unlikely(check_new_page(p)))
1440 return 1;
1441 }
1442
1443 set_page_private(page, 0);
1444 set_page_refcounted(page);
1445
1446 arch_alloc_page(page, order);
1447 kernel_map_pages(page, 1 << order, 1);
1448 kasan_alloc_pages(page, order);
1449
1450 if (gfp_flags & __GFP_ZERO)
1451 for (i = 0; i < (1 << order); i++)
1452 clear_highpage(page + i);
1453
1454 if (order && (gfp_flags & __GFP_COMP))
1455 prep_compound_page(page, order);
1456
1457 set_page_owner(page, order, gfp_flags);
1458
1459 /*
1460 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1461 * allocate the page. The expectation is that the caller is taking
1462 * steps that will free more memory. The caller should avoid the page
1463 * being used for !PFMEMALLOC purposes.
1464 */
1465 if (alloc_flags & ALLOC_NO_WATERMARKS)
1466 set_page_pfmemalloc(page);
1467 else
1468 clear_page_pfmemalloc(page);
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * Go through the free lists for the given migratetype and remove
1475 * the smallest available page from the freelists
1476 */
1477 static inline
1478 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1479 int migratetype)
1480 {
1481 unsigned int current_order;
1482 struct free_area *area;
1483 struct page *page;
1484
1485 /* Find a page of the appropriate size in the preferred list */
1486 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1487 area = &(zone->free_area[current_order]);
1488 if (list_empty(&area->free_list[migratetype]))
1489 continue;
1490
1491 page = list_entry(area->free_list[migratetype].next,
1492 struct page, lru);
1493 list_del(&page->lru);
1494 rmv_page_order(page);
1495 area->nr_free--;
1496 expand(zone, page, order, current_order, area, migratetype);
1497 set_pcppage_migratetype(page, migratetype);
1498 return page;
1499 }
1500
1501 return NULL;
1502 }
1503
1504
1505 /*
1506 * This array describes the order lists are fallen back to when
1507 * the free lists for the desirable migrate type are depleted
1508 */
1509 static int fallbacks[MIGRATE_TYPES][4] = {
1510 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1511 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1512 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1513 #ifdef CONFIG_CMA
1514 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1515 #endif
1516 #ifdef CONFIG_MEMORY_ISOLATION
1517 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1518 #endif
1519 };
1520
1521 #ifdef CONFIG_CMA
1522 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1523 unsigned int order)
1524 {
1525 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1526 }
1527 #else
1528 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1529 unsigned int order) { return NULL; }
1530 #endif
1531
1532 /*
1533 * Move the free pages in a range to the free lists of the requested type.
1534 * Note that start_page and end_pages are not aligned on a pageblock
1535 * boundary. If alignment is required, use move_freepages_block()
1536 */
1537 int move_freepages(struct zone *zone,
1538 struct page *start_page, struct page *end_page,
1539 int migratetype)
1540 {
1541 struct page *page;
1542 unsigned int order;
1543 int pages_moved = 0;
1544
1545 #ifndef CONFIG_HOLES_IN_ZONE
1546 /*
1547 * page_zone is not safe to call in this context when
1548 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1549 * anyway as we check zone boundaries in move_freepages_block().
1550 * Remove at a later date when no bug reports exist related to
1551 * grouping pages by mobility
1552 */
1553 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1554 #endif
1555
1556 for (page = start_page; page <= end_page;) {
1557 if (!pfn_valid_within(page_to_pfn(page))) {
1558 page++;
1559 continue;
1560 }
1561
1562 /* Make sure we are not inadvertently changing nodes */
1563 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1564
1565 if (!PageBuddy(page)) {
1566 page++;
1567 continue;
1568 }
1569
1570 order = page_order(page);
1571 list_move(&page->lru,
1572 &zone->free_area[order].free_list[migratetype]);
1573 page += 1 << order;
1574 pages_moved += 1 << order;
1575 }
1576
1577 return pages_moved;
1578 }
1579
1580 int move_freepages_block(struct zone *zone, struct page *page,
1581 int migratetype)
1582 {
1583 unsigned long start_pfn, end_pfn;
1584 struct page *start_page, *end_page;
1585
1586 start_pfn = page_to_pfn(page);
1587 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1588 start_page = pfn_to_page(start_pfn);
1589 end_page = start_page + pageblock_nr_pages - 1;
1590 end_pfn = start_pfn + pageblock_nr_pages - 1;
1591
1592 /* Do not cross zone boundaries */
1593 if (!zone_spans_pfn(zone, start_pfn))
1594 start_page = page;
1595 if (!zone_spans_pfn(zone, end_pfn))
1596 return 0;
1597
1598 return move_freepages(zone, start_page, end_page, migratetype);
1599 }
1600
1601 static void change_pageblock_range(struct page *pageblock_page,
1602 int start_order, int migratetype)
1603 {
1604 int nr_pageblocks = 1 << (start_order - pageblock_order);
1605
1606 while (nr_pageblocks--) {
1607 set_pageblock_migratetype(pageblock_page, migratetype);
1608 pageblock_page += pageblock_nr_pages;
1609 }
1610 }
1611
1612 /*
1613 * When we are falling back to another migratetype during allocation, try to
1614 * steal extra free pages from the same pageblocks to satisfy further
1615 * allocations, instead of polluting multiple pageblocks.
1616 *
1617 * If we are stealing a relatively large buddy page, it is likely there will
1618 * be more free pages in the pageblock, so try to steal them all. For
1619 * reclaimable and unmovable allocations, we steal regardless of page size,
1620 * as fragmentation caused by those allocations polluting movable pageblocks
1621 * is worse than movable allocations stealing from unmovable and reclaimable
1622 * pageblocks.
1623 */
1624 static bool can_steal_fallback(unsigned int order, int start_mt)
1625 {
1626 /*
1627 * Leaving this order check is intended, although there is
1628 * relaxed order check in next check. The reason is that
1629 * we can actually steal whole pageblock if this condition met,
1630 * but, below check doesn't guarantee it and that is just heuristic
1631 * so could be changed anytime.
1632 */
1633 if (order >= pageblock_order)
1634 return true;
1635
1636 if (order >= pageblock_order / 2 ||
1637 start_mt == MIGRATE_RECLAIMABLE ||
1638 start_mt == MIGRATE_UNMOVABLE ||
1639 page_group_by_mobility_disabled)
1640 return true;
1641
1642 return false;
1643 }
1644
1645 /*
1646 * This function implements actual steal behaviour. If order is large enough,
1647 * we can steal whole pageblock. If not, we first move freepages in this
1648 * pageblock and check whether half of pages are moved or not. If half of
1649 * pages are moved, we can change migratetype of pageblock and permanently
1650 * use it's pages as requested migratetype in the future.
1651 */
1652 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1653 int start_type)
1654 {
1655 unsigned int current_order = page_order(page);
1656 int pages;
1657
1658 /* Take ownership for orders >= pageblock_order */
1659 if (current_order >= pageblock_order) {
1660 change_pageblock_range(page, current_order, start_type);
1661 return;
1662 }
1663
1664 pages = move_freepages_block(zone, page, start_type);
1665
1666 /* Claim the whole block if over half of it is free */
1667 if (pages >= (1 << (pageblock_order-1)) ||
1668 page_group_by_mobility_disabled)
1669 set_pageblock_migratetype(page, start_type);
1670 }
1671
1672 /*
1673 * Check whether there is a suitable fallback freepage with requested order.
1674 * If only_stealable is true, this function returns fallback_mt only if
1675 * we can steal other freepages all together. This would help to reduce
1676 * fragmentation due to mixed migratetype pages in one pageblock.
1677 */
1678 int find_suitable_fallback(struct free_area *area, unsigned int order,
1679 int migratetype, bool only_stealable, bool *can_steal)
1680 {
1681 int i;
1682 int fallback_mt;
1683
1684 if (area->nr_free == 0)
1685 return -1;
1686
1687 *can_steal = false;
1688 for (i = 0;; i++) {
1689 fallback_mt = fallbacks[migratetype][i];
1690 if (fallback_mt == MIGRATE_TYPES)
1691 break;
1692
1693 if (list_empty(&area->free_list[fallback_mt]))
1694 continue;
1695
1696 if (can_steal_fallback(order, migratetype))
1697 *can_steal = true;
1698
1699 if (!only_stealable)
1700 return fallback_mt;
1701
1702 if (*can_steal)
1703 return fallback_mt;
1704 }
1705
1706 return -1;
1707 }
1708
1709 /*
1710 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1711 * there are no empty page blocks that contain a page with a suitable order
1712 */
1713 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1714 unsigned int alloc_order)
1715 {
1716 int mt;
1717 unsigned long max_managed, flags;
1718
1719 /*
1720 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1721 * Check is race-prone but harmless.
1722 */
1723 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1724 if (zone->nr_reserved_highatomic >= max_managed)
1725 return;
1726
1727 spin_lock_irqsave(&zone->lock, flags);
1728
1729 /* Recheck the nr_reserved_highatomic limit under the lock */
1730 if (zone->nr_reserved_highatomic >= max_managed)
1731 goto out_unlock;
1732
1733 /* Yoink! */
1734 mt = get_pageblock_migratetype(page);
1735 if (mt != MIGRATE_HIGHATOMIC &&
1736 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1737 zone->nr_reserved_highatomic += pageblock_nr_pages;
1738 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1739 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1740 }
1741
1742 out_unlock:
1743 spin_unlock_irqrestore(&zone->lock, flags);
1744 }
1745
1746 /*
1747 * Used when an allocation is about to fail under memory pressure. This
1748 * potentially hurts the reliability of high-order allocations when under
1749 * intense memory pressure but failed atomic allocations should be easier
1750 * to recover from than an OOM.
1751 */
1752 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1753 {
1754 struct zonelist *zonelist = ac->zonelist;
1755 unsigned long flags;
1756 struct zoneref *z;
1757 struct zone *zone;
1758 struct page *page;
1759 int order;
1760
1761 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1762 ac->nodemask) {
1763 /* Preserve at least one pageblock */
1764 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1765 continue;
1766
1767 spin_lock_irqsave(&zone->lock, flags);
1768 for (order = 0; order < MAX_ORDER; order++) {
1769 struct free_area *area = &(zone->free_area[order]);
1770
1771 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1772 continue;
1773
1774 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1775 struct page, lru);
1776
1777 /*
1778 * In page freeing path, migratetype change is racy so
1779 * we can counter several free pages in a pageblock
1780 * in this loop althoug we changed the pageblock type
1781 * from highatomic to ac->migratetype. So we should
1782 * adjust the count once.
1783 */
1784 if (get_pageblock_migratetype(page) ==
1785 MIGRATE_HIGHATOMIC) {
1786 /*
1787 * It should never happen but changes to
1788 * locking could inadvertently allow a per-cpu
1789 * drain to add pages to MIGRATE_HIGHATOMIC
1790 * while unreserving so be safe and watch for
1791 * underflows.
1792 */
1793 zone->nr_reserved_highatomic -= min(
1794 pageblock_nr_pages,
1795 zone->nr_reserved_highatomic);
1796 }
1797
1798 /*
1799 * Convert to ac->migratetype and avoid the normal
1800 * pageblock stealing heuristics. Minimally, the caller
1801 * is doing the work and needs the pages. More
1802 * importantly, if the block was always converted to
1803 * MIGRATE_UNMOVABLE or another type then the number
1804 * of pageblocks that cannot be completely freed
1805 * may increase.
1806 */
1807 set_pageblock_migratetype(page, ac->migratetype);
1808 move_freepages_block(zone, page, ac->migratetype);
1809 spin_unlock_irqrestore(&zone->lock, flags);
1810 return;
1811 }
1812 spin_unlock_irqrestore(&zone->lock, flags);
1813 }
1814 }
1815
1816 /* Remove an element from the buddy allocator from the fallback list */
1817 static inline struct page *
1818 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1819 {
1820 struct free_area *area;
1821 unsigned int current_order;
1822 struct page *page;
1823 int fallback_mt;
1824 bool can_steal;
1825
1826 /* Find the largest possible block of pages in the other list */
1827 for (current_order = MAX_ORDER-1;
1828 current_order >= order && current_order <= MAX_ORDER-1;
1829 --current_order) {
1830 area = &(zone->free_area[current_order]);
1831 fallback_mt = find_suitable_fallback(area, current_order,
1832 start_migratetype, false, &can_steal);
1833 if (fallback_mt == -1)
1834 continue;
1835
1836 page = list_entry(area->free_list[fallback_mt].next,
1837 struct page, lru);
1838 if (can_steal)
1839 steal_suitable_fallback(zone, page, start_migratetype);
1840
1841 /* Remove the page from the freelists */
1842 area->nr_free--;
1843 list_del(&page->lru);
1844 rmv_page_order(page);
1845
1846 expand(zone, page, order, current_order, area,
1847 start_migratetype);
1848 /*
1849 * The pcppage_migratetype may differ from pageblock's
1850 * migratetype depending on the decisions in
1851 * find_suitable_fallback(). This is OK as long as it does not
1852 * differ for MIGRATE_CMA pageblocks. Those can be used as
1853 * fallback only via special __rmqueue_cma_fallback() function
1854 */
1855 set_pcppage_migratetype(page, start_migratetype);
1856
1857 trace_mm_page_alloc_extfrag(page, order, current_order,
1858 start_migratetype, fallback_mt);
1859
1860 return page;
1861 }
1862
1863 return NULL;
1864 }
1865
1866 /*
1867 * Do the hard work of removing an element from the buddy allocator.
1868 * Call me with the zone->lock already held.
1869 */
1870 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1871 int migratetype, gfp_t gfp_flags)
1872 {
1873 struct page *page;
1874
1875 page = __rmqueue_smallest(zone, order, migratetype);
1876 if (unlikely(!page)) {
1877 if (migratetype == MIGRATE_MOVABLE)
1878 page = __rmqueue_cma_fallback(zone, order);
1879
1880 if (!page)
1881 page = __rmqueue_fallback(zone, order, migratetype);
1882 }
1883
1884 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1885 return page;
1886 }
1887
1888 /*
1889 * Obtain a specified number of elements from the buddy allocator, all under
1890 * a single hold of the lock, for efficiency. Add them to the supplied list.
1891 * Returns the number of new pages which were placed at *list.
1892 */
1893 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1894 unsigned long count, struct list_head *list,
1895 int migratetype, bool cold)
1896 {
1897 int i;
1898
1899 spin_lock(&zone->lock);
1900 for (i = 0; i < count; ++i) {
1901 struct page *page = __rmqueue(zone, order, migratetype, 0);
1902 if (unlikely(page == NULL))
1903 break;
1904
1905 /*
1906 * Split buddy pages returned by expand() are received here
1907 * in physical page order. The page is added to the callers and
1908 * list and the list head then moves forward. From the callers
1909 * perspective, the linked list is ordered by page number in
1910 * some conditions. This is useful for IO devices that can
1911 * merge IO requests if the physical pages are ordered
1912 * properly.
1913 */
1914 if (likely(!cold))
1915 list_add(&page->lru, list);
1916 else
1917 list_add_tail(&page->lru, list);
1918 list = &page->lru;
1919 if (is_migrate_cma(get_pcppage_migratetype(page)))
1920 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1921 -(1 << order));
1922 }
1923 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1924 spin_unlock(&zone->lock);
1925 return i;
1926 }
1927
1928 #ifdef CONFIG_NUMA
1929 /*
1930 * Called from the vmstat counter updater to drain pagesets of this
1931 * currently executing processor on remote nodes after they have
1932 * expired.
1933 *
1934 * Note that this function must be called with the thread pinned to
1935 * a single processor.
1936 */
1937 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1938 {
1939 unsigned long flags;
1940 int to_drain, batch;
1941
1942 local_irq_save(flags);
1943 batch = READ_ONCE(pcp->batch);
1944 to_drain = min(pcp->count, batch);
1945 if (to_drain > 0) {
1946 free_pcppages_bulk(zone, to_drain, pcp);
1947 pcp->count -= to_drain;
1948 }
1949 local_irq_restore(flags);
1950 }
1951 #endif
1952
1953 /*
1954 * Drain pcplists of the indicated processor and zone.
1955 *
1956 * The processor must either be the current processor and the
1957 * thread pinned to the current processor or a processor that
1958 * is not online.
1959 */
1960 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1961 {
1962 unsigned long flags;
1963 struct per_cpu_pageset *pset;
1964 struct per_cpu_pages *pcp;
1965
1966 local_irq_save(flags);
1967 pset = per_cpu_ptr(zone->pageset, cpu);
1968
1969 pcp = &pset->pcp;
1970 if (pcp->count) {
1971 free_pcppages_bulk(zone, pcp->count, pcp);
1972 pcp->count = 0;
1973 }
1974 local_irq_restore(flags);
1975 }
1976
1977 /*
1978 * Drain pcplists of all zones on the indicated processor.
1979 *
1980 * The processor must either be the current processor and the
1981 * thread pinned to the current processor or a processor that
1982 * is not online.
1983 */
1984 static void drain_pages(unsigned int cpu)
1985 {
1986 struct zone *zone;
1987
1988 for_each_populated_zone(zone) {
1989 drain_pages_zone(cpu, zone);
1990 }
1991 }
1992
1993 /*
1994 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1995 *
1996 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1997 * the single zone's pages.
1998 */
1999 void drain_local_pages(struct zone *zone)
2000 {
2001 int cpu = smp_processor_id();
2002
2003 if (zone)
2004 drain_pages_zone(cpu, zone);
2005 else
2006 drain_pages(cpu);
2007 }
2008
2009 /*
2010 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2011 *
2012 * When zone parameter is non-NULL, spill just the single zone's pages.
2013 *
2014 * Note that this code is protected against sending an IPI to an offline
2015 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2016 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2017 * nothing keeps CPUs from showing up after we populated the cpumask and
2018 * before the call to on_each_cpu_mask().
2019 */
2020 void drain_all_pages(struct zone *zone)
2021 {
2022 int cpu;
2023
2024 /*
2025 * Allocate in the BSS so we wont require allocation in
2026 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2027 */
2028 static cpumask_t cpus_with_pcps;
2029
2030 /*
2031 * We don't care about racing with CPU hotplug event
2032 * as offline notification will cause the notified
2033 * cpu to drain that CPU pcps and on_each_cpu_mask
2034 * disables preemption as part of its processing
2035 */
2036 for_each_online_cpu(cpu) {
2037 struct per_cpu_pageset *pcp;
2038 struct zone *z;
2039 bool has_pcps = false;
2040
2041 if (zone) {
2042 pcp = per_cpu_ptr(zone->pageset, cpu);
2043 if (pcp->pcp.count)
2044 has_pcps = true;
2045 } else {
2046 for_each_populated_zone(z) {
2047 pcp = per_cpu_ptr(z->pageset, cpu);
2048 if (pcp->pcp.count) {
2049 has_pcps = true;
2050 break;
2051 }
2052 }
2053 }
2054
2055 if (has_pcps)
2056 cpumask_set_cpu(cpu, &cpus_with_pcps);
2057 else
2058 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2059 }
2060 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2061 zone, 1);
2062 }
2063
2064 #ifdef CONFIG_HIBERNATION
2065
2066 void mark_free_pages(struct zone *zone)
2067 {
2068 unsigned long pfn, max_zone_pfn;
2069 unsigned long flags;
2070 unsigned int order, t;
2071 struct list_head *curr;
2072
2073 if (zone_is_empty(zone))
2074 return;
2075
2076 spin_lock_irqsave(&zone->lock, flags);
2077
2078 max_zone_pfn = zone_end_pfn(zone);
2079 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2080 if (pfn_valid(pfn)) {
2081 struct page *page = pfn_to_page(pfn);
2082
2083 if (!swsusp_page_is_forbidden(page))
2084 swsusp_unset_page_free(page);
2085 }
2086
2087 for_each_migratetype_order(order, t) {
2088 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2089 unsigned long i;
2090
2091 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2092 for (i = 0; i < (1UL << order); i++)
2093 swsusp_set_page_free(pfn_to_page(pfn + i));
2094 }
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 }
2098 #endif /* CONFIG_PM */
2099
2100 /*
2101 * Free a 0-order page
2102 * cold == true ? free a cold page : free a hot page
2103 */
2104 void free_hot_cold_page(struct page *page, bool cold)
2105 {
2106 struct zone *zone = page_zone(page);
2107 struct per_cpu_pages *pcp;
2108 unsigned long flags;
2109 unsigned long pfn = page_to_pfn(page);
2110 int migratetype;
2111
2112 if (!free_pages_prepare(page, 0))
2113 return;
2114
2115 migratetype = get_pfnblock_migratetype(page, pfn);
2116 set_pcppage_migratetype(page, migratetype);
2117 local_irq_save(flags);
2118 __count_vm_event(PGFREE);
2119
2120 /*
2121 * We only track unmovable, reclaimable and movable on pcp lists.
2122 * Free ISOLATE pages back to the allocator because they are being
2123 * offlined but treat RESERVE as movable pages so we can get those
2124 * areas back if necessary. Otherwise, we may have to free
2125 * excessively into the page allocator
2126 */
2127 if (migratetype >= MIGRATE_PCPTYPES) {
2128 if (unlikely(is_migrate_isolate(migratetype))) {
2129 free_one_page(zone, page, pfn, 0, migratetype);
2130 goto out;
2131 }
2132 migratetype = MIGRATE_MOVABLE;
2133 }
2134
2135 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2136 if (!cold)
2137 list_add(&page->lru, &pcp->lists[migratetype]);
2138 else
2139 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2140 pcp->count++;
2141 if (pcp->count >= pcp->high) {
2142 unsigned long batch = READ_ONCE(pcp->batch);
2143 free_pcppages_bulk(zone, batch, pcp);
2144 pcp->count -= batch;
2145 }
2146
2147 out:
2148 local_irq_restore(flags);
2149 }
2150
2151 /*
2152 * Free a list of 0-order pages
2153 */
2154 void free_hot_cold_page_list(struct list_head *list, bool cold)
2155 {
2156 struct page *page, *next;
2157
2158 list_for_each_entry_safe(page, next, list, lru) {
2159 trace_mm_page_free_batched(page, cold);
2160 free_hot_cold_page(page, cold);
2161 }
2162 }
2163
2164 /*
2165 * split_page takes a non-compound higher-order page, and splits it into
2166 * n (1<<order) sub-pages: page[0..n]
2167 * Each sub-page must be freed individually.
2168 *
2169 * Note: this is probably too low level an operation for use in drivers.
2170 * Please consult with lkml before using this in your driver.
2171 */
2172 void split_page(struct page *page, unsigned int order)
2173 {
2174 int i;
2175 gfp_t gfp_mask;
2176
2177 VM_BUG_ON_PAGE(PageCompound(page), page);
2178 VM_BUG_ON_PAGE(!page_count(page), page);
2179
2180 #ifdef CONFIG_KMEMCHECK
2181 /*
2182 * Split shadow pages too, because free(page[0]) would
2183 * otherwise free the whole shadow.
2184 */
2185 if (kmemcheck_page_is_tracked(page))
2186 split_page(virt_to_page(page[0].shadow), order);
2187 #endif
2188
2189 gfp_mask = get_page_owner_gfp(page);
2190 set_page_owner(page, 0, gfp_mask);
2191 for (i = 1; i < (1 << order); i++) {
2192 set_page_refcounted(page + i);
2193 set_page_owner(page + i, 0, gfp_mask);
2194 }
2195 }
2196 EXPORT_SYMBOL_GPL(split_page);
2197
2198 int __isolate_free_page(struct page *page, unsigned int order)
2199 {
2200 unsigned long watermark;
2201 struct zone *zone;
2202 int mt;
2203
2204 BUG_ON(!PageBuddy(page));
2205
2206 zone = page_zone(page);
2207 mt = get_pageblock_migratetype(page);
2208
2209 if (!is_migrate_isolate(mt)) {
2210 /* Obey watermarks as if the page was being allocated */
2211 watermark = low_wmark_pages(zone) + (1 << order);
2212 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2213 return 0;
2214
2215 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2216 }
2217
2218 /* Remove page from free list */
2219 list_del(&page->lru);
2220 zone->free_area[order].nr_free--;
2221 rmv_page_order(page);
2222
2223 set_page_owner(page, order, __GFP_MOVABLE);
2224
2225 /* Set the pageblock if the isolated page is at least a pageblock */
2226 if (order >= pageblock_order - 1) {
2227 struct page *endpage = page + (1 << order) - 1;
2228 for (; page < endpage; page += pageblock_nr_pages) {
2229 int mt = get_pageblock_migratetype(page);
2230 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2231 set_pageblock_migratetype(page,
2232 MIGRATE_MOVABLE);
2233 }
2234 }
2235
2236
2237 return 1UL << order;
2238 }
2239
2240 /*
2241 * Similar to split_page except the page is already free. As this is only
2242 * being used for migration, the migratetype of the block also changes.
2243 * As this is called with interrupts disabled, the caller is responsible
2244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2245 * are enabled.
2246 *
2247 * Note: this is probably too low level an operation for use in drivers.
2248 * Please consult with lkml before using this in your driver.
2249 */
2250 int split_free_page(struct page *page)
2251 {
2252 unsigned int order;
2253 int nr_pages;
2254
2255 order = page_order(page);
2256
2257 nr_pages = __isolate_free_page(page, order);
2258 if (!nr_pages)
2259 return 0;
2260
2261 /* Split into individual pages */
2262 set_page_refcounted(page);
2263 split_page(page, order);
2264 return nr_pages;
2265 }
2266
2267 /*
2268 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2269 */
2270 static inline
2271 struct page *buffered_rmqueue(struct zone *preferred_zone,
2272 struct zone *zone, unsigned int order,
2273 gfp_t gfp_flags, int alloc_flags, int migratetype)
2274 {
2275 unsigned long flags;
2276 struct page *page;
2277 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2278
2279 if (likely(order == 0)) {
2280 struct per_cpu_pages *pcp;
2281 struct list_head *list;
2282
2283 local_irq_save(flags);
2284 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2285 list = &pcp->lists[migratetype];
2286 if (list_empty(list)) {
2287 pcp->count += rmqueue_bulk(zone, 0,
2288 pcp->batch, list,
2289 migratetype, cold);
2290 if (unlikely(list_empty(list)))
2291 goto failed;
2292 }
2293
2294 if (cold)
2295 page = list_entry(list->prev, struct page, lru);
2296 else
2297 page = list_entry(list->next, struct page, lru);
2298
2299 list_del(&page->lru);
2300 pcp->count--;
2301 } else {
2302 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2303 /*
2304 * __GFP_NOFAIL is not to be used in new code.
2305 *
2306 * All __GFP_NOFAIL callers should be fixed so that they
2307 * properly detect and handle allocation failures.
2308 *
2309 * We most definitely don't want callers attempting to
2310 * allocate greater than order-1 page units with
2311 * __GFP_NOFAIL.
2312 */
2313 WARN_ON_ONCE(order > 1);
2314 }
2315 spin_lock_irqsave(&zone->lock, flags);
2316
2317 page = NULL;
2318 if (alloc_flags & ALLOC_HARDER) {
2319 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2320 if (page)
2321 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2322 }
2323 if (!page)
2324 page = __rmqueue(zone, order, migratetype, gfp_flags);
2325 spin_unlock(&zone->lock);
2326 if (!page)
2327 goto failed;
2328 __mod_zone_freepage_state(zone, -(1 << order),
2329 get_pcppage_migratetype(page));
2330 }
2331
2332 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2333 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2334 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2335 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2336
2337 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2338 zone_statistics(preferred_zone, zone, gfp_flags);
2339 local_irq_restore(flags);
2340
2341 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2342 return page;
2343
2344 failed:
2345 local_irq_restore(flags);
2346 return NULL;
2347 }
2348
2349 #ifdef CONFIG_FAIL_PAGE_ALLOC
2350
2351 static struct {
2352 struct fault_attr attr;
2353
2354 bool ignore_gfp_highmem;
2355 bool ignore_gfp_reclaim;
2356 u32 min_order;
2357 } fail_page_alloc = {
2358 .attr = FAULT_ATTR_INITIALIZER,
2359 .ignore_gfp_reclaim = true,
2360 .ignore_gfp_highmem = true,
2361 .min_order = 1,
2362 };
2363
2364 static int __init setup_fail_page_alloc(char *str)
2365 {
2366 return setup_fault_attr(&fail_page_alloc.attr, str);
2367 }
2368 __setup("fail_page_alloc=", setup_fail_page_alloc);
2369
2370 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2371 {
2372 if (order < fail_page_alloc.min_order)
2373 return false;
2374 if (gfp_mask & __GFP_NOFAIL)
2375 return false;
2376 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2377 return false;
2378 if (fail_page_alloc.ignore_gfp_reclaim &&
2379 (gfp_mask & __GFP_DIRECT_RECLAIM))
2380 return false;
2381
2382 return should_fail(&fail_page_alloc.attr, 1 << order);
2383 }
2384
2385 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2386
2387 static int __init fail_page_alloc_debugfs(void)
2388 {
2389 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2390 struct dentry *dir;
2391
2392 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2393 &fail_page_alloc.attr);
2394 if (IS_ERR(dir))
2395 return PTR_ERR(dir);
2396
2397 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2398 &fail_page_alloc.ignore_gfp_reclaim))
2399 goto fail;
2400 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2401 &fail_page_alloc.ignore_gfp_highmem))
2402 goto fail;
2403 if (!debugfs_create_u32("min-order", mode, dir,
2404 &fail_page_alloc.min_order))
2405 goto fail;
2406
2407 return 0;
2408 fail:
2409 debugfs_remove_recursive(dir);
2410
2411 return -ENOMEM;
2412 }
2413
2414 late_initcall(fail_page_alloc_debugfs);
2415
2416 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2417
2418 #else /* CONFIG_FAIL_PAGE_ALLOC */
2419
2420 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2421 {
2422 return false;
2423 }
2424
2425 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2426
2427 /*
2428 * Return true if free base pages are above 'mark'. For high-order checks it
2429 * will return true of the order-0 watermark is reached and there is at least
2430 * one free page of a suitable size. Checking now avoids taking the zone lock
2431 * to check in the allocation paths if no pages are free.
2432 */
2433 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2434 unsigned long mark, int classzone_idx, int alloc_flags,
2435 long free_pages)
2436 {
2437 long min = mark;
2438 int o;
2439 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2440
2441 /* free_pages may go negative - that's OK */
2442 free_pages -= (1 << order) - 1;
2443
2444 if (alloc_flags & ALLOC_HIGH)
2445 min -= min / 2;
2446
2447 /*
2448 * If the caller does not have rights to ALLOC_HARDER then subtract
2449 * the high-atomic reserves. This will over-estimate the size of the
2450 * atomic reserve but it avoids a search.
2451 */
2452 if (likely(!alloc_harder))
2453 free_pages -= z->nr_reserved_highatomic;
2454 else
2455 min -= min / 4;
2456
2457 #ifdef CONFIG_CMA
2458 /* If allocation can't use CMA areas don't use free CMA pages */
2459 if (!(alloc_flags & ALLOC_CMA))
2460 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2461 #endif
2462
2463 /*
2464 * Check watermarks for an order-0 allocation request. If these
2465 * are not met, then a high-order request also cannot go ahead
2466 * even if a suitable page happened to be free.
2467 */
2468 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2469 return false;
2470
2471 /* If this is an order-0 request then the watermark is fine */
2472 if (!order)
2473 return true;
2474
2475 /* For a high-order request, check at least one suitable page is free */
2476 for (o = order; o < MAX_ORDER; o++) {
2477 struct free_area *area = &z->free_area[o];
2478 int mt;
2479
2480 if (!area->nr_free)
2481 continue;
2482
2483 if (alloc_harder)
2484 return true;
2485
2486 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2487 if (!list_empty(&area->free_list[mt]))
2488 return true;
2489 }
2490
2491 #ifdef CONFIG_CMA
2492 if ((alloc_flags & ALLOC_CMA) &&
2493 !list_empty(&area->free_list[MIGRATE_CMA])) {
2494 return true;
2495 }
2496 #endif
2497 }
2498 return false;
2499 }
2500
2501 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2502 int classzone_idx, int alloc_flags)
2503 {
2504 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2505 zone_page_state(z, NR_FREE_PAGES));
2506 }
2507
2508 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2509 unsigned long mark, int classzone_idx)
2510 {
2511 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2512
2513 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2514 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2515
2516 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2517 free_pages);
2518 }
2519
2520 #ifdef CONFIG_NUMA
2521 static bool zone_local(struct zone *local_zone, struct zone *zone)
2522 {
2523 return local_zone->node == zone->node;
2524 }
2525
2526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2527 {
2528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2529 RECLAIM_DISTANCE;
2530 }
2531 #else /* CONFIG_NUMA */
2532 static bool zone_local(struct zone *local_zone, struct zone *zone)
2533 {
2534 return true;
2535 }
2536
2537 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2538 {
2539 return true;
2540 }
2541 #endif /* CONFIG_NUMA */
2542
2543 static void reset_alloc_batches(struct zone *preferred_zone)
2544 {
2545 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2546
2547 do {
2548 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2549 high_wmark_pages(zone) - low_wmark_pages(zone) -
2550 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2551 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2552 } while (zone++ != preferred_zone);
2553 }
2554
2555 /*
2556 * get_page_from_freelist goes through the zonelist trying to allocate
2557 * a page.
2558 */
2559 static struct page *
2560 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2561 const struct alloc_context *ac)
2562 {
2563 struct zonelist *zonelist = ac->zonelist;
2564 struct zoneref *z;
2565 struct page *page = NULL;
2566 struct zone *zone;
2567 int nr_fair_skipped = 0;
2568 bool zonelist_rescan;
2569
2570 zonelist_scan:
2571 zonelist_rescan = false;
2572
2573 /*
2574 * Scan zonelist, looking for a zone with enough free.
2575 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2576 */
2577 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2578 ac->nodemask) {
2579 unsigned long mark;
2580
2581 if (cpusets_enabled() &&
2582 (alloc_flags & ALLOC_CPUSET) &&
2583 !cpuset_zone_allowed(zone, gfp_mask))
2584 continue;
2585 /*
2586 * Distribute pages in proportion to the individual
2587 * zone size to ensure fair page aging. The zone a
2588 * page was allocated in should have no effect on the
2589 * time the page has in memory before being reclaimed.
2590 */
2591 if (alloc_flags & ALLOC_FAIR) {
2592 if (!zone_local(ac->preferred_zone, zone))
2593 break;
2594 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2595 nr_fair_skipped++;
2596 continue;
2597 }
2598 }
2599 /*
2600 * When allocating a page cache page for writing, we
2601 * want to get it from a zone that is within its dirty
2602 * limit, such that no single zone holds more than its
2603 * proportional share of globally allowed dirty pages.
2604 * The dirty limits take into account the zone's
2605 * lowmem reserves and high watermark so that kswapd
2606 * should be able to balance it without having to
2607 * write pages from its LRU list.
2608 *
2609 * This may look like it could increase pressure on
2610 * lower zones by failing allocations in higher zones
2611 * before they are full. But the pages that do spill
2612 * over are limited as the lower zones are protected
2613 * by this very same mechanism. It should not become
2614 * a practical burden to them.
2615 *
2616 * XXX: For now, allow allocations to potentially
2617 * exceed the per-zone dirty limit in the slowpath
2618 * (spread_dirty_pages unset) before going into reclaim,
2619 * which is important when on a NUMA setup the allowed
2620 * zones are together not big enough to reach the
2621 * global limit. The proper fix for these situations
2622 * will require awareness of zones in the
2623 * dirty-throttling and the flusher threads.
2624 */
2625 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2626 continue;
2627
2628 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2629 if (!zone_watermark_ok(zone, order, mark,
2630 ac->classzone_idx, alloc_flags)) {
2631 int ret;
2632
2633 /* Checked here to keep the fast path fast */
2634 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2635 if (alloc_flags & ALLOC_NO_WATERMARKS)
2636 goto try_this_zone;
2637
2638 if (zone_reclaim_mode == 0 ||
2639 !zone_allows_reclaim(ac->preferred_zone, zone))
2640 continue;
2641
2642 ret = zone_reclaim(zone, gfp_mask, order);
2643 switch (ret) {
2644 case ZONE_RECLAIM_NOSCAN:
2645 /* did not scan */
2646 continue;
2647 case ZONE_RECLAIM_FULL:
2648 /* scanned but unreclaimable */
2649 continue;
2650 default:
2651 /* did we reclaim enough */
2652 if (zone_watermark_ok(zone, order, mark,
2653 ac->classzone_idx, alloc_flags))
2654 goto try_this_zone;
2655
2656 continue;
2657 }
2658 }
2659
2660 try_this_zone:
2661 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2662 gfp_mask, alloc_flags, ac->migratetype);
2663 if (page) {
2664 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2665 goto try_this_zone;
2666
2667 /*
2668 * If this is a high-order atomic allocation then check
2669 * if the pageblock should be reserved for the future
2670 */
2671 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2672 reserve_highatomic_pageblock(page, zone, order);
2673
2674 return page;
2675 }
2676 }
2677
2678 /*
2679 * The first pass makes sure allocations are spread fairly within the
2680 * local node. However, the local node might have free pages left
2681 * after the fairness batches are exhausted, and remote zones haven't
2682 * even been considered yet. Try once more without fairness, and
2683 * include remote zones now, before entering the slowpath and waking
2684 * kswapd: prefer spilling to a remote zone over swapping locally.
2685 */
2686 if (alloc_flags & ALLOC_FAIR) {
2687 alloc_flags &= ~ALLOC_FAIR;
2688 if (nr_fair_skipped) {
2689 zonelist_rescan = true;
2690 reset_alloc_batches(ac->preferred_zone);
2691 }
2692 if (nr_online_nodes > 1)
2693 zonelist_rescan = true;
2694 }
2695
2696 if (zonelist_rescan)
2697 goto zonelist_scan;
2698
2699 return NULL;
2700 }
2701
2702 /*
2703 * Large machines with many possible nodes should not always dump per-node
2704 * meminfo in irq context.
2705 */
2706 static inline bool should_suppress_show_mem(void)
2707 {
2708 bool ret = false;
2709
2710 #if NODES_SHIFT > 8
2711 ret = in_interrupt();
2712 #endif
2713 return ret;
2714 }
2715
2716 static DEFINE_RATELIMIT_STATE(nopage_rs,
2717 DEFAULT_RATELIMIT_INTERVAL,
2718 DEFAULT_RATELIMIT_BURST);
2719
2720 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2721 {
2722 unsigned int filter = SHOW_MEM_FILTER_NODES;
2723
2724 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2725 debug_guardpage_minorder() > 0)
2726 return;
2727
2728 /*
2729 * This documents exceptions given to allocations in certain
2730 * contexts that are allowed to allocate outside current's set
2731 * of allowed nodes.
2732 */
2733 if (!(gfp_mask & __GFP_NOMEMALLOC))
2734 if (test_thread_flag(TIF_MEMDIE) ||
2735 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2736 filter &= ~SHOW_MEM_FILTER_NODES;
2737 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2738 filter &= ~SHOW_MEM_FILTER_NODES;
2739
2740 if (fmt) {
2741 struct va_format vaf;
2742 va_list args;
2743
2744 va_start(args, fmt);
2745
2746 vaf.fmt = fmt;
2747 vaf.va = &args;
2748
2749 pr_warn("%pV", &vaf);
2750
2751 va_end(args);
2752 }
2753
2754 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2755 current->comm, order, gfp_mask);
2756
2757 dump_stack();
2758 if (!should_suppress_show_mem())
2759 show_mem(filter);
2760 }
2761
2762 static inline struct page *
2763 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2764 const struct alloc_context *ac, unsigned long *did_some_progress)
2765 {
2766 struct oom_control oc = {
2767 .zonelist = ac->zonelist,
2768 .nodemask = ac->nodemask,
2769 .gfp_mask = gfp_mask,
2770 .order = order,
2771 };
2772 struct page *page;
2773
2774 *did_some_progress = 0;
2775
2776 /*
2777 * Acquire the oom lock. If that fails, somebody else is
2778 * making progress for us.
2779 */
2780 if (!mutex_trylock(&oom_lock)) {
2781 *did_some_progress = 1;
2782 schedule_timeout_uninterruptible(1);
2783 return NULL;
2784 }
2785
2786 /*
2787 * Go through the zonelist yet one more time, keep very high watermark
2788 * here, this is only to catch a parallel oom killing, we must fail if
2789 * we're still under heavy pressure.
2790 */
2791 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2792 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2793 if (page)
2794 goto out;
2795
2796 if (!(gfp_mask & __GFP_NOFAIL)) {
2797 /* Coredumps can quickly deplete all memory reserves */
2798 if (current->flags & PF_DUMPCORE)
2799 goto out;
2800 /* The OOM killer will not help higher order allocs */
2801 if (order > PAGE_ALLOC_COSTLY_ORDER)
2802 goto out;
2803 /* The OOM killer does not needlessly kill tasks for lowmem */
2804 if (ac->high_zoneidx < ZONE_NORMAL)
2805 goto out;
2806 /* The OOM killer does not compensate for IO-less reclaim */
2807 if (!(gfp_mask & __GFP_FS)) {
2808 /*
2809 * XXX: Page reclaim didn't yield anything,
2810 * and the OOM killer can't be invoked, but
2811 * keep looping as per tradition.
2812 */
2813 *did_some_progress = 1;
2814 goto out;
2815 }
2816 if (pm_suspended_storage())
2817 goto out;
2818 /* The OOM killer may not free memory on a specific node */
2819 if (gfp_mask & __GFP_THISNODE)
2820 goto out;
2821 }
2822 /* Exhausted what can be done so it's blamo time */
2823 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2824 *did_some_progress = 1;
2825 out:
2826 mutex_unlock(&oom_lock);
2827 return page;
2828 }
2829
2830 #ifdef CONFIG_COMPACTION
2831 /* Try memory compaction for high-order allocations before reclaim */
2832 static struct page *
2833 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2834 int alloc_flags, const struct alloc_context *ac,
2835 enum migrate_mode mode, int *contended_compaction,
2836 bool *deferred_compaction)
2837 {
2838 unsigned long compact_result;
2839 struct page *page;
2840
2841 if (!order)
2842 return NULL;
2843
2844 current->flags |= PF_MEMALLOC;
2845 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2846 mode, contended_compaction);
2847 current->flags &= ~PF_MEMALLOC;
2848
2849 switch (compact_result) {
2850 case COMPACT_DEFERRED:
2851 *deferred_compaction = true;
2852 /* fall-through */
2853 case COMPACT_SKIPPED:
2854 return NULL;
2855 default:
2856 break;
2857 }
2858
2859 /*
2860 * At least in one zone compaction wasn't deferred or skipped, so let's
2861 * count a compaction stall
2862 */
2863 count_vm_event(COMPACTSTALL);
2864
2865 page = get_page_from_freelist(gfp_mask, order,
2866 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2867
2868 if (page) {
2869 struct zone *zone = page_zone(page);
2870
2871 zone->compact_blockskip_flush = false;
2872 compaction_defer_reset(zone, order, true);
2873 count_vm_event(COMPACTSUCCESS);
2874 return page;
2875 }
2876
2877 /*
2878 * It's bad if compaction run occurs and fails. The most likely reason
2879 * is that pages exist, but not enough to satisfy watermarks.
2880 */
2881 count_vm_event(COMPACTFAIL);
2882
2883 cond_resched();
2884
2885 return NULL;
2886 }
2887 #else
2888 static inline struct page *
2889 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2890 int alloc_flags, const struct alloc_context *ac,
2891 enum migrate_mode mode, int *contended_compaction,
2892 bool *deferred_compaction)
2893 {
2894 return NULL;
2895 }
2896 #endif /* CONFIG_COMPACTION */
2897
2898 /* Perform direct synchronous page reclaim */
2899 static int
2900 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2901 const struct alloc_context *ac)
2902 {
2903 struct reclaim_state reclaim_state;
2904 int progress;
2905
2906 cond_resched();
2907
2908 /* We now go into synchronous reclaim */
2909 cpuset_memory_pressure_bump();
2910 current->flags |= PF_MEMALLOC;
2911 lockdep_set_current_reclaim_state(gfp_mask);
2912 reclaim_state.reclaimed_slab = 0;
2913 current->reclaim_state = &reclaim_state;
2914
2915 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2916 ac->nodemask);
2917
2918 current->reclaim_state = NULL;
2919 lockdep_clear_current_reclaim_state();
2920 current->flags &= ~PF_MEMALLOC;
2921
2922 cond_resched();
2923
2924 return progress;
2925 }
2926
2927 /* The really slow allocator path where we enter direct reclaim */
2928 static inline struct page *
2929 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2930 int alloc_flags, const struct alloc_context *ac,
2931 unsigned long *did_some_progress)
2932 {
2933 struct page *page = NULL;
2934 bool drained = false;
2935
2936 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2937 if (unlikely(!(*did_some_progress)))
2938 return NULL;
2939
2940 retry:
2941 page = get_page_from_freelist(gfp_mask, order,
2942 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2943
2944 /*
2945 * If an allocation failed after direct reclaim, it could be because
2946 * pages are pinned on the per-cpu lists or in high alloc reserves.
2947 * Shrink them them and try again
2948 */
2949 if (!page && !drained) {
2950 unreserve_highatomic_pageblock(ac);
2951 drain_all_pages(NULL);
2952 drained = true;
2953 goto retry;
2954 }
2955
2956 return page;
2957 }
2958
2959 /*
2960 * This is called in the allocator slow-path if the allocation request is of
2961 * sufficient urgency to ignore watermarks and take other desperate measures
2962 */
2963 static inline struct page *
2964 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2965 const struct alloc_context *ac)
2966 {
2967 struct page *page;
2968
2969 do {
2970 page = get_page_from_freelist(gfp_mask, order,
2971 ALLOC_NO_WATERMARKS, ac);
2972
2973 if (!page && gfp_mask & __GFP_NOFAIL)
2974 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2975 HZ/50);
2976 } while (!page && (gfp_mask & __GFP_NOFAIL));
2977
2978 return page;
2979 }
2980
2981 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2982 {
2983 struct zoneref *z;
2984 struct zone *zone;
2985
2986 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2987 ac->high_zoneidx, ac->nodemask)
2988 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2989 }
2990
2991 static inline int
2992 gfp_to_alloc_flags(gfp_t gfp_mask)
2993 {
2994 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2995
2996 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2997 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2998
2999 /*
3000 * The caller may dip into page reserves a bit more if the caller
3001 * cannot run direct reclaim, or if the caller has realtime scheduling
3002 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3003 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3004 */
3005 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3006
3007 if (gfp_mask & __GFP_ATOMIC) {
3008 /*
3009 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3010 * if it can't schedule.
3011 */
3012 if (!(gfp_mask & __GFP_NOMEMALLOC))
3013 alloc_flags |= ALLOC_HARDER;
3014 /*
3015 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3016 * comment for __cpuset_node_allowed().
3017 */
3018 alloc_flags &= ~ALLOC_CPUSET;
3019 } else if (unlikely(rt_task(current)) && !in_interrupt())
3020 alloc_flags |= ALLOC_HARDER;
3021
3022 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3023 if (gfp_mask & __GFP_MEMALLOC)
3024 alloc_flags |= ALLOC_NO_WATERMARKS;
3025 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3026 alloc_flags |= ALLOC_NO_WATERMARKS;
3027 else if (!in_interrupt() &&
3028 ((current->flags & PF_MEMALLOC) ||
3029 unlikely(test_thread_flag(TIF_MEMDIE))))
3030 alloc_flags |= ALLOC_NO_WATERMARKS;
3031 }
3032 #ifdef CONFIG_CMA
3033 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3034 alloc_flags |= ALLOC_CMA;
3035 #endif
3036 return alloc_flags;
3037 }
3038
3039 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3040 {
3041 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3042 }
3043
3044 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3045 {
3046 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3047 }
3048
3049 static inline struct page *
3050 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3051 struct alloc_context *ac)
3052 {
3053 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3054 struct page *page = NULL;
3055 int alloc_flags;
3056 unsigned long pages_reclaimed = 0;
3057 unsigned long did_some_progress;
3058 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3059 bool deferred_compaction = false;
3060 int contended_compaction = COMPACT_CONTENDED_NONE;
3061
3062 /*
3063 * In the slowpath, we sanity check order to avoid ever trying to
3064 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3065 * be using allocators in order of preference for an area that is
3066 * too large.
3067 */
3068 if (order >= MAX_ORDER) {
3069 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3070 return NULL;
3071 }
3072
3073 /*
3074 * We also sanity check to catch abuse of atomic reserves being used by
3075 * callers that are not in atomic context.
3076 */
3077 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3078 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3079 gfp_mask &= ~__GFP_ATOMIC;
3080
3081 /*
3082 * If this allocation cannot block and it is for a specific node, then
3083 * fail early. There's no need to wakeup kswapd or retry for a
3084 * speculative node-specific allocation.
3085 */
3086 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3087 goto nopage;
3088
3089 retry:
3090 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3091 wake_all_kswapds(order, ac);
3092
3093 /*
3094 * OK, we're below the kswapd watermark and have kicked background
3095 * reclaim. Now things get more complex, so set up alloc_flags according
3096 * to how we want to proceed.
3097 */
3098 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3099
3100 /*
3101 * Find the true preferred zone if the allocation is unconstrained by
3102 * cpusets.
3103 */
3104 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3105 struct zoneref *preferred_zoneref;
3106 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3107 ac->high_zoneidx, NULL, &ac->preferred_zone);
3108 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3109 }
3110
3111 /* This is the last chance, in general, before the goto nopage. */
3112 page = get_page_from_freelist(gfp_mask, order,
3113 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3114 if (page)
3115 goto got_pg;
3116
3117 /* Allocate without watermarks if the context allows */
3118 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3119 /*
3120 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3121 * the allocation is high priority and these type of
3122 * allocations are system rather than user orientated
3123 */
3124 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3125
3126 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3127
3128 if (page) {
3129 goto got_pg;
3130 }
3131 }
3132
3133 /* Caller is not willing to reclaim, we can't balance anything */
3134 if (!can_direct_reclaim) {
3135 /*
3136 * All existing users of the deprecated __GFP_NOFAIL are
3137 * blockable, so warn of any new users that actually allow this
3138 * type of allocation to fail.
3139 */
3140 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3141 goto nopage;
3142 }
3143
3144 /* Avoid recursion of direct reclaim */
3145 if (current->flags & PF_MEMALLOC)
3146 goto nopage;
3147
3148 /* Avoid allocations with no watermarks from looping endlessly */
3149 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3150 goto nopage;
3151
3152 /*
3153 * Try direct compaction. The first pass is asynchronous. Subsequent
3154 * attempts after direct reclaim are synchronous
3155 */
3156 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3157 migration_mode,
3158 &contended_compaction,
3159 &deferred_compaction);
3160 if (page)
3161 goto got_pg;
3162
3163 /* Checks for THP-specific high-order allocations */
3164 if (is_thp_gfp_mask(gfp_mask)) {
3165 /*
3166 * If compaction is deferred for high-order allocations, it is
3167 * because sync compaction recently failed. If this is the case
3168 * and the caller requested a THP allocation, we do not want
3169 * to heavily disrupt the system, so we fail the allocation
3170 * instead of entering direct reclaim.
3171 */
3172 if (deferred_compaction)
3173 goto nopage;
3174
3175 /*
3176 * In all zones where compaction was attempted (and not
3177 * deferred or skipped), lock contention has been detected.
3178 * For THP allocation we do not want to disrupt the others
3179 * so we fallback to base pages instead.
3180 */
3181 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3182 goto nopage;
3183
3184 /*
3185 * If compaction was aborted due to need_resched(), we do not
3186 * want to further increase allocation latency, unless it is
3187 * khugepaged trying to collapse.
3188 */
3189 if (contended_compaction == COMPACT_CONTENDED_SCHED
3190 && !(current->flags & PF_KTHREAD))
3191 goto nopage;
3192 }
3193
3194 /*
3195 * It can become very expensive to allocate transparent hugepages at
3196 * fault, so use asynchronous memory compaction for THP unless it is
3197 * khugepaged trying to collapse.
3198 */
3199 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3200 migration_mode = MIGRATE_SYNC_LIGHT;
3201
3202 /* Try direct reclaim and then allocating */
3203 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3204 &did_some_progress);
3205 if (page)
3206 goto got_pg;
3207
3208 /* Do not loop if specifically requested */
3209 if (gfp_mask & __GFP_NORETRY)
3210 goto noretry;
3211
3212 /* Keep reclaiming pages as long as there is reasonable progress */
3213 pages_reclaimed += did_some_progress;
3214 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3215 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3216 /* Wait for some write requests to complete then retry */
3217 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3218 goto retry;
3219 }
3220
3221 /* Reclaim has failed us, start killing things */
3222 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3223 if (page)
3224 goto got_pg;
3225
3226 /* Retry as long as the OOM killer is making progress */
3227 if (did_some_progress)
3228 goto retry;
3229
3230 noretry:
3231 /*
3232 * High-order allocations do not necessarily loop after
3233 * direct reclaim and reclaim/compaction depends on compaction
3234 * being called after reclaim so call directly if necessary
3235 */
3236 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3237 ac, migration_mode,
3238 &contended_compaction,
3239 &deferred_compaction);
3240 if (page)
3241 goto got_pg;
3242 nopage:
3243 warn_alloc_failed(gfp_mask, order, NULL);
3244 got_pg:
3245 return page;
3246 }
3247
3248 /*
3249 * This is the 'heart' of the zoned buddy allocator.
3250 */
3251 struct page *
3252 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3253 struct zonelist *zonelist, nodemask_t *nodemask)
3254 {
3255 struct zoneref *preferred_zoneref;
3256 struct page *page = NULL;
3257 unsigned int cpuset_mems_cookie;
3258 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3259 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3260 struct alloc_context ac = {
3261 .high_zoneidx = gfp_zone(gfp_mask),
3262 .nodemask = nodemask,
3263 .migratetype = gfpflags_to_migratetype(gfp_mask),
3264 };
3265
3266 gfp_mask &= gfp_allowed_mask;
3267
3268 lockdep_trace_alloc(gfp_mask);
3269
3270 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3271
3272 if (should_fail_alloc_page(gfp_mask, order))
3273 return NULL;
3274
3275 /*
3276 * Check the zones suitable for the gfp_mask contain at least one
3277 * valid zone. It's possible to have an empty zonelist as a result
3278 * of __GFP_THISNODE and a memoryless node
3279 */
3280 if (unlikely(!zonelist->_zonerefs->zone))
3281 return NULL;
3282
3283 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3284 alloc_flags |= ALLOC_CMA;
3285
3286 retry_cpuset:
3287 cpuset_mems_cookie = read_mems_allowed_begin();
3288
3289 /* We set it here, as __alloc_pages_slowpath might have changed it */
3290 ac.zonelist = zonelist;
3291
3292 /* Dirty zone balancing only done in the fast path */
3293 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3294
3295 /* The preferred zone is used for statistics later */
3296 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3297 ac.nodemask ? : &cpuset_current_mems_allowed,
3298 &ac.preferred_zone);
3299 if (!ac.preferred_zone)
3300 goto out;
3301 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3302
3303 /* First allocation attempt */
3304 alloc_mask = gfp_mask|__GFP_HARDWALL;
3305 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3306 if (unlikely(!page)) {
3307 /*
3308 * Runtime PM, block IO and its error handling path
3309 * can deadlock because I/O on the device might not
3310 * complete.
3311 */
3312 alloc_mask = memalloc_noio_flags(gfp_mask);
3313 ac.spread_dirty_pages = false;
3314
3315 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3316 }
3317
3318 if (kmemcheck_enabled && page)
3319 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3320
3321 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3322
3323 out:
3324 /*
3325 * When updating a task's mems_allowed, it is possible to race with
3326 * parallel threads in such a way that an allocation can fail while
3327 * the mask is being updated. If a page allocation is about to fail,
3328 * check if the cpuset changed during allocation and if so, retry.
3329 */
3330 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3331 goto retry_cpuset;
3332
3333 return page;
3334 }
3335 EXPORT_SYMBOL(__alloc_pages_nodemask);
3336
3337 /*
3338 * Common helper functions.
3339 */
3340 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3341 {
3342 struct page *page;
3343
3344 /*
3345 * __get_free_pages() returns a 32-bit address, which cannot represent
3346 * a highmem page
3347 */
3348 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3349
3350 page = alloc_pages(gfp_mask, order);
3351 if (!page)
3352 return 0;
3353 return (unsigned long) page_address(page);
3354 }
3355 EXPORT_SYMBOL(__get_free_pages);
3356
3357 unsigned long get_zeroed_page(gfp_t gfp_mask)
3358 {
3359 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3360 }
3361 EXPORT_SYMBOL(get_zeroed_page);
3362
3363 void __free_pages(struct page *page, unsigned int order)
3364 {
3365 if (put_page_testzero(page)) {
3366 if (order == 0)
3367 free_hot_cold_page(page, false);
3368 else
3369 __free_pages_ok(page, order);
3370 }
3371 }
3372
3373 EXPORT_SYMBOL(__free_pages);
3374
3375 void free_pages(unsigned long addr, unsigned int order)
3376 {
3377 if (addr != 0) {
3378 VM_BUG_ON(!virt_addr_valid((void *)addr));
3379 __free_pages(virt_to_page((void *)addr), order);
3380 }
3381 }
3382
3383 EXPORT_SYMBOL(free_pages);
3384
3385 /*
3386 * Page Fragment:
3387 * An arbitrary-length arbitrary-offset area of memory which resides
3388 * within a 0 or higher order page. Multiple fragments within that page
3389 * are individually refcounted, in the page's reference counter.
3390 *
3391 * The page_frag functions below provide a simple allocation framework for
3392 * page fragments. This is used by the network stack and network device
3393 * drivers to provide a backing region of memory for use as either an
3394 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3395 */
3396 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3397 gfp_t gfp_mask)
3398 {
3399 struct page *page = NULL;
3400 gfp_t gfp = gfp_mask;
3401
3402 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3403 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3404 __GFP_NOMEMALLOC;
3405 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3406 PAGE_FRAG_CACHE_MAX_ORDER);
3407 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3408 #endif
3409 if (unlikely(!page))
3410 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3411
3412 nc->va = page ? page_address(page) : NULL;
3413
3414 return page;
3415 }
3416
3417 void *__alloc_page_frag(struct page_frag_cache *nc,
3418 unsigned int fragsz, gfp_t gfp_mask)
3419 {
3420 unsigned int size = PAGE_SIZE;
3421 struct page *page;
3422 int offset;
3423
3424 if (unlikely(!nc->va)) {
3425 refill:
3426 page = __page_frag_refill(nc, gfp_mask);
3427 if (!page)
3428 return NULL;
3429
3430 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3431 /* if size can vary use size else just use PAGE_SIZE */
3432 size = nc->size;
3433 #endif
3434 /* Even if we own the page, we do not use atomic_set().
3435 * This would break get_page_unless_zero() users.
3436 */
3437 atomic_add(size - 1, &page->_count);
3438
3439 /* reset page count bias and offset to start of new frag */
3440 nc->pfmemalloc = page_is_pfmemalloc(page);
3441 nc->pagecnt_bias = size;
3442 nc->offset = size;
3443 }
3444
3445 offset = nc->offset - fragsz;
3446 if (unlikely(offset < 0)) {
3447 page = virt_to_page(nc->va);
3448
3449 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3450 goto refill;
3451
3452 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3453 /* if size can vary use size else just use PAGE_SIZE */
3454 size = nc->size;
3455 #endif
3456 /* OK, page count is 0, we can safely set it */
3457 atomic_set(&page->_count, size);
3458
3459 /* reset page count bias and offset to start of new frag */
3460 nc->pagecnt_bias = size;
3461 offset = size - fragsz;
3462 }
3463
3464 nc->pagecnt_bias--;
3465 nc->offset = offset;
3466
3467 return nc->va + offset;
3468 }
3469 EXPORT_SYMBOL(__alloc_page_frag);
3470
3471 /*
3472 * Frees a page fragment allocated out of either a compound or order 0 page.
3473 */
3474 void __free_page_frag(void *addr)
3475 {
3476 struct page *page = virt_to_head_page(addr);
3477
3478 if (unlikely(put_page_testzero(page)))
3479 __free_pages_ok(page, compound_order(page));
3480 }
3481 EXPORT_SYMBOL(__free_page_frag);
3482
3483 /*
3484 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3485 * of the current memory cgroup.
3486 *
3487 * It should be used when the caller would like to use kmalloc, but since the
3488 * allocation is large, it has to fall back to the page allocator.
3489 */
3490 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3491 {
3492 struct page *page;
3493
3494 page = alloc_pages(gfp_mask, order);
3495 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3496 __free_pages(page, order);
3497 page = NULL;
3498 }
3499 return page;
3500 }
3501
3502 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3503 {
3504 struct page *page;
3505
3506 page = alloc_pages_node(nid, gfp_mask, order);
3507 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3508 __free_pages(page, order);
3509 page = NULL;
3510 }
3511 return page;
3512 }
3513
3514 /*
3515 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3516 * alloc_kmem_pages.
3517 */
3518 void __free_kmem_pages(struct page *page, unsigned int order)
3519 {
3520 memcg_kmem_uncharge(page, order);
3521 __free_pages(page, order);
3522 }
3523
3524 void free_kmem_pages(unsigned long addr, unsigned int order)
3525 {
3526 if (addr != 0) {
3527 VM_BUG_ON(!virt_addr_valid((void *)addr));
3528 __free_kmem_pages(virt_to_page((void *)addr), order);
3529 }
3530 }
3531
3532 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3533 size_t size)
3534 {
3535 if (addr) {
3536 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3537 unsigned long used = addr + PAGE_ALIGN(size);
3538
3539 split_page(virt_to_page((void *)addr), order);
3540 while (used < alloc_end) {
3541 free_page(used);
3542 used += PAGE_SIZE;
3543 }
3544 }
3545 return (void *)addr;
3546 }
3547
3548 /**
3549 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3550 * @size: the number of bytes to allocate
3551 * @gfp_mask: GFP flags for the allocation
3552 *
3553 * This function is similar to alloc_pages(), except that it allocates the
3554 * minimum number of pages to satisfy the request. alloc_pages() can only
3555 * allocate memory in power-of-two pages.
3556 *
3557 * This function is also limited by MAX_ORDER.
3558 *
3559 * Memory allocated by this function must be released by free_pages_exact().
3560 */
3561 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3562 {
3563 unsigned int order = get_order(size);
3564 unsigned long addr;
3565
3566 addr = __get_free_pages(gfp_mask, order);
3567 return make_alloc_exact(addr, order, size);
3568 }
3569 EXPORT_SYMBOL(alloc_pages_exact);
3570
3571 /**
3572 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3573 * pages on a node.
3574 * @nid: the preferred node ID where memory should be allocated
3575 * @size: the number of bytes to allocate
3576 * @gfp_mask: GFP flags for the allocation
3577 *
3578 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3579 * back.
3580 */
3581 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3582 {
3583 unsigned int order = get_order(size);
3584 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3585 if (!p)
3586 return NULL;
3587 return make_alloc_exact((unsigned long)page_address(p), order, size);
3588 }
3589
3590 /**
3591 * free_pages_exact - release memory allocated via alloc_pages_exact()
3592 * @virt: the value returned by alloc_pages_exact.
3593 * @size: size of allocation, same value as passed to alloc_pages_exact().
3594 *
3595 * Release the memory allocated by a previous call to alloc_pages_exact.
3596 */
3597 void free_pages_exact(void *virt, size_t size)
3598 {
3599 unsigned long addr = (unsigned long)virt;
3600 unsigned long end = addr + PAGE_ALIGN(size);
3601
3602 while (addr < end) {
3603 free_page(addr);
3604 addr += PAGE_SIZE;
3605 }
3606 }
3607 EXPORT_SYMBOL(free_pages_exact);
3608
3609 /**
3610 * nr_free_zone_pages - count number of pages beyond high watermark
3611 * @offset: The zone index of the highest zone
3612 *
3613 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3614 * high watermark within all zones at or below a given zone index. For each
3615 * zone, the number of pages is calculated as:
3616 * managed_pages - high_pages
3617 */
3618 static unsigned long nr_free_zone_pages(int offset)
3619 {
3620 struct zoneref *z;
3621 struct zone *zone;
3622
3623 /* Just pick one node, since fallback list is circular */
3624 unsigned long sum = 0;
3625
3626 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3627
3628 for_each_zone_zonelist(zone, z, zonelist, offset) {
3629 unsigned long size = zone->managed_pages;
3630 unsigned long high = high_wmark_pages(zone);
3631 if (size > high)
3632 sum += size - high;
3633 }
3634
3635 return sum;
3636 }
3637
3638 /**
3639 * nr_free_buffer_pages - count number of pages beyond high watermark
3640 *
3641 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3642 * watermark within ZONE_DMA and ZONE_NORMAL.
3643 */
3644 unsigned long nr_free_buffer_pages(void)
3645 {
3646 return nr_free_zone_pages(gfp_zone(GFP_USER));
3647 }
3648 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3649
3650 /**
3651 * nr_free_pagecache_pages - count number of pages beyond high watermark
3652 *
3653 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3654 * high watermark within all zones.
3655 */
3656 unsigned long nr_free_pagecache_pages(void)
3657 {
3658 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3659 }
3660
3661 static inline void show_node(struct zone *zone)
3662 {
3663 if (IS_ENABLED(CONFIG_NUMA))
3664 printk("Node %d ", zone_to_nid(zone));
3665 }
3666
3667 void si_meminfo(struct sysinfo *val)
3668 {
3669 val->totalram = totalram_pages;
3670 val->sharedram = global_page_state(NR_SHMEM);
3671 val->freeram = global_page_state(NR_FREE_PAGES);
3672 val->bufferram = nr_blockdev_pages();
3673 val->totalhigh = totalhigh_pages;
3674 val->freehigh = nr_free_highpages();
3675 val->mem_unit = PAGE_SIZE;
3676 }
3677
3678 EXPORT_SYMBOL(si_meminfo);
3679
3680 #ifdef CONFIG_NUMA
3681 void si_meminfo_node(struct sysinfo *val, int nid)
3682 {
3683 int zone_type; /* needs to be signed */
3684 unsigned long managed_pages = 0;
3685 pg_data_t *pgdat = NODE_DATA(nid);
3686
3687 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3688 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3689 val->totalram = managed_pages;
3690 val->sharedram = node_page_state(nid, NR_SHMEM);
3691 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3692 #ifdef CONFIG_HIGHMEM
3693 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3694 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3695 NR_FREE_PAGES);
3696 #else
3697 val->totalhigh = 0;
3698 val->freehigh = 0;
3699 #endif
3700 val->mem_unit = PAGE_SIZE;
3701 }
3702 #endif
3703
3704 /*
3705 * Determine whether the node should be displayed or not, depending on whether
3706 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3707 */
3708 bool skip_free_areas_node(unsigned int flags, int nid)
3709 {
3710 bool ret = false;
3711 unsigned int cpuset_mems_cookie;
3712
3713 if (!(flags & SHOW_MEM_FILTER_NODES))
3714 goto out;
3715
3716 do {
3717 cpuset_mems_cookie = read_mems_allowed_begin();
3718 ret = !node_isset(nid, cpuset_current_mems_allowed);
3719 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3720 out:
3721 return ret;
3722 }
3723
3724 #define K(x) ((x) << (PAGE_SHIFT-10))
3725
3726 static void show_migration_types(unsigned char type)
3727 {
3728 static const char types[MIGRATE_TYPES] = {
3729 [MIGRATE_UNMOVABLE] = 'U',
3730 [MIGRATE_MOVABLE] = 'M',
3731 [MIGRATE_RECLAIMABLE] = 'E',
3732 [MIGRATE_HIGHATOMIC] = 'H',
3733 #ifdef CONFIG_CMA
3734 [MIGRATE_CMA] = 'C',
3735 #endif
3736 #ifdef CONFIG_MEMORY_ISOLATION
3737 [MIGRATE_ISOLATE] = 'I',
3738 #endif
3739 };
3740 char tmp[MIGRATE_TYPES + 1];
3741 char *p = tmp;
3742 int i;
3743
3744 for (i = 0; i < MIGRATE_TYPES; i++) {
3745 if (type & (1 << i))
3746 *p++ = types[i];
3747 }
3748
3749 *p = '\0';
3750 printk("(%s) ", tmp);
3751 }
3752
3753 /*
3754 * Show free area list (used inside shift_scroll-lock stuff)
3755 * We also calculate the percentage fragmentation. We do this by counting the
3756 * memory on each free list with the exception of the first item on the list.
3757 *
3758 * Bits in @filter:
3759 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3760 * cpuset.
3761 */
3762 void show_free_areas(unsigned int filter)
3763 {
3764 unsigned long free_pcp = 0;
3765 int cpu;
3766 struct zone *zone;
3767
3768 for_each_populated_zone(zone) {
3769 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3770 continue;
3771
3772 for_each_online_cpu(cpu)
3773 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3774 }
3775
3776 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3777 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3778 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3779 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3780 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3781 " free:%lu free_pcp:%lu free_cma:%lu\n",
3782 global_page_state(NR_ACTIVE_ANON),
3783 global_page_state(NR_INACTIVE_ANON),
3784 global_page_state(NR_ISOLATED_ANON),
3785 global_page_state(NR_ACTIVE_FILE),
3786 global_page_state(NR_INACTIVE_FILE),
3787 global_page_state(NR_ISOLATED_FILE),
3788 global_page_state(NR_UNEVICTABLE),
3789 global_page_state(NR_FILE_DIRTY),
3790 global_page_state(NR_WRITEBACK),
3791 global_page_state(NR_UNSTABLE_NFS),
3792 global_page_state(NR_SLAB_RECLAIMABLE),
3793 global_page_state(NR_SLAB_UNRECLAIMABLE),
3794 global_page_state(NR_FILE_MAPPED),
3795 global_page_state(NR_SHMEM),
3796 global_page_state(NR_PAGETABLE),
3797 global_page_state(NR_BOUNCE),
3798 global_page_state(NR_FREE_PAGES),
3799 free_pcp,
3800 global_page_state(NR_FREE_CMA_PAGES));
3801
3802 for_each_populated_zone(zone) {
3803 int i;
3804
3805 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3806 continue;
3807
3808 free_pcp = 0;
3809 for_each_online_cpu(cpu)
3810 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3811
3812 show_node(zone);
3813 printk("%s"
3814 " free:%lukB"
3815 " min:%lukB"
3816 " low:%lukB"
3817 " high:%lukB"
3818 " active_anon:%lukB"
3819 " inactive_anon:%lukB"
3820 " active_file:%lukB"
3821 " inactive_file:%lukB"
3822 " unevictable:%lukB"
3823 " isolated(anon):%lukB"
3824 " isolated(file):%lukB"
3825 " present:%lukB"
3826 " managed:%lukB"
3827 " mlocked:%lukB"
3828 " dirty:%lukB"
3829 " writeback:%lukB"
3830 " mapped:%lukB"
3831 " shmem:%lukB"
3832 " slab_reclaimable:%lukB"
3833 " slab_unreclaimable:%lukB"
3834 " kernel_stack:%lukB"
3835 " pagetables:%lukB"
3836 " unstable:%lukB"
3837 " bounce:%lukB"
3838 " free_pcp:%lukB"
3839 " local_pcp:%ukB"
3840 " free_cma:%lukB"
3841 " writeback_tmp:%lukB"
3842 " pages_scanned:%lu"
3843 " all_unreclaimable? %s"
3844 "\n",
3845 zone->name,
3846 K(zone_page_state(zone, NR_FREE_PAGES)),
3847 K(min_wmark_pages(zone)),
3848 K(low_wmark_pages(zone)),
3849 K(high_wmark_pages(zone)),
3850 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3851 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3852 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3853 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3854 K(zone_page_state(zone, NR_UNEVICTABLE)),
3855 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3856 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3857 K(zone->present_pages),
3858 K(zone->managed_pages),
3859 K(zone_page_state(zone, NR_MLOCK)),
3860 K(zone_page_state(zone, NR_FILE_DIRTY)),
3861 K(zone_page_state(zone, NR_WRITEBACK)),
3862 K(zone_page_state(zone, NR_FILE_MAPPED)),
3863 K(zone_page_state(zone, NR_SHMEM)),
3864 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3865 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3866 zone_page_state(zone, NR_KERNEL_STACK) *
3867 THREAD_SIZE / 1024,
3868 K(zone_page_state(zone, NR_PAGETABLE)),
3869 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3870 K(zone_page_state(zone, NR_BOUNCE)),
3871 K(free_pcp),
3872 K(this_cpu_read(zone->pageset->pcp.count)),
3873 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3874 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3875 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3876 (!zone_reclaimable(zone) ? "yes" : "no")
3877 );
3878 printk("lowmem_reserve[]:");
3879 for (i = 0; i < MAX_NR_ZONES; i++)
3880 printk(" %ld", zone->lowmem_reserve[i]);
3881 printk("\n");
3882 }
3883
3884 for_each_populated_zone(zone) {
3885 unsigned int order;
3886 unsigned long nr[MAX_ORDER], flags, total = 0;
3887 unsigned char types[MAX_ORDER];
3888
3889 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3890 continue;
3891 show_node(zone);
3892 printk("%s: ", zone->name);
3893
3894 spin_lock_irqsave(&zone->lock, flags);
3895 for (order = 0; order < MAX_ORDER; order++) {
3896 struct free_area *area = &zone->free_area[order];
3897 int type;
3898
3899 nr[order] = area->nr_free;
3900 total += nr[order] << order;
3901
3902 types[order] = 0;
3903 for (type = 0; type < MIGRATE_TYPES; type++) {
3904 if (!list_empty(&area->free_list[type]))
3905 types[order] |= 1 << type;
3906 }
3907 }
3908 spin_unlock_irqrestore(&zone->lock, flags);
3909 for (order = 0; order < MAX_ORDER; order++) {
3910 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3911 if (nr[order])
3912 show_migration_types(types[order]);
3913 }
3914 printk("= %lukB\n", K(total));
3915 }
3916
3917 hugetlb_show_meminfo();
3918
3919 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3920
3921 show_swap_cache_info();
3922 }
3923
3924 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3925 {
3926 zoneref->zone = zone;
3927 zoneref->zone_idx = zone_idx(zone);
3928 }
3929
3930 /*
3931 * Builds allocation fallback zone lists.
3932 *
3933 * Add all populated zones of a node to the zonelist.
3934 */
3935 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3936 int nr_zones)
3937 {
3938 struct zone *zone;
3939 enum zone_type zone_type = MAX_NR_ZONES;
3940
3941 do {
3942 zone_type--;
3943 zone = pgdat->node_zones + zone_type;
3944 if (populated_zone(zone)) {
3945 zoneref_set_zone(zone,
3946 &zonelist->_zonerefs[nr_zones++]);
3947 check_highest_zone(zone_type);
3948 }
3949 } while (zone_type);
3950
3951 return nr_zones;
3952 }
3953
3954
3955 /*
3956 * zonelist_order:
3957 * 0 = automatic detection of better ordering.
3958 * 1 = order by ([node] distance, -zonetype)
3959 * 2 = order by (-zonetype, [node] distance)
3960 *
3961 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3962 * the same zonelist. So only NUMA can configure this param.
3963 */
3964 #define ZONELIST_ORDER_DEFAULT 0
3965 #define ZONELIST_ORDER_NODE 1
3966 #define ZONELIST_ORDER_ZONE 2
3967
3968 /* zonelist order in the kernel.
3969 * set_zonelist_order() will set this to NODE or ZONE.
3970 */
3971 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3972 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3973
3974
3975 #ifdef CONFIG_NUMA
3976 /* The value user specified ....changed by config */
3977 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3978 /* string for sysctl */
3979 #define NUMA_ZONELIST_ORDER_LEN 16
3980 char numa_zonelist_order[16] = "default";
3981
3982 /*
3983 * interface for configure zonelist ordering.
3984 * command line option "numa_zonelist_order"
3985 * = "[dD]efault - default, automatic configuration.
3986 * = "[nN]ode - order by node locality, then by zone within node
3987 * = "[zZ]one - order by zone, then by locality within zone
3988 */
3989
3990 static int __parse_numa_zonelist_order(char *s)
3991 {
3992 if (*s == 'd' || *s == 'D') {
3993 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3994 } else if (*s == 'n' || *s == 'N') {
3995 user_zonelist_order = ZONELIST_ORDER_NODE;
3996 } else if (*s == 'z' || *s == 'Z') {
3997 user_zonelist_order = ZONELIST_ORDER_ZONE;
3998 } else {
3999 printk(KERN_WARNING
4000 "Ignoring invalid numa_zonelist_order value: "
4001 "%s\n", s);
4002 return -EINVAL;
4003 }
4004 return 0;
4005 }
4006
4007 static __init int setup_numa_zonelist_order(char *s)
4008 {
4009 int ret;
4010
4011 if (!s)
4012 return 0;
4013
4014 ret = __parse_numa_zonelist_order(s);
4015 if (ret == 0)
4016 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4017
4018 return ret;
4019 }
4020 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4021
4022 /*
4023 * sysctl handler for numa_zonelist_order
4024 */
4025 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4026 void __user *buffer, size_t *length,
4027 loff_t *ppos)
4028 {
4029 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4030 int ret;
4031 static DEFINE_MUTEX(zl_order_mutex);
4032
4033 mutex_lock(&zl_order_mutex);
4034 if (write) {
4035 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4036 ret = -EINVAL;
4037 goto out;
4038 }
4039 strcpy(saved_string, (char *)table->data);
4040 }
4041 ret = proc_dostring(table, write, buffer, length, ppos);
4042 if (ret)
4043 goto out;
4044 if (write) {
4045 int oldval = user_zonelist_order;
4046
4047 ret = __parse_numa_zonelist_order((char *)table->data);
4048 if (ret) {
4049 /*
4050 * bogus value. restore saved string
4051 */
4052 strncpy((char *)table->data, saved_string,
4053 NUMA_ZONELIST_ORDER_LEN);
4054 user_zonelist_order = oldval;
4055 } else if (oldval != user_zonelist_order) {
4056 mutex_lock(&zonelists_mutex);
4057 build_all_zonelists(NULL, NULL);
4058 mutex_unlock(&zonelists_mutex);
4059 }
4060 }
4061 out:
4062 mutex_unlock(&zl_order_mutex);
4063 return ret;
4064 }
4065
4066
4067 #define MAX_NODE_LOAD (nr_online_nodes)
4068 static int node_load[MAX_NUMNODES];
4069
4070 /**
4071 * find_next_best_node - find the next node that should appear in a given node's fallback list
4072 * @node: node whose fallback list we're appending
4073 * @used_node_mask: nodemask_t of already used nodes
4074 *
4075 * We use a number of factors to determine which is the next node that should
4076 * appear on a given node's fallback list. The node should not have appeared
4077 * already in @node's fallback list, and it should be the next closest node
4078 * according to the distance array (which contains arbitrary distance values
4079 * from each node to each node in the system), and should also prefer nodes
4080 * with no CPUs, since presumably they'll have very little allocation pressure
4081 * on them otherwise.
4082 * It returns -1 if no node is found.
4083 */
4084 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4085 {
4086 int n, val;
4087 int min_val = INT_MAX;
4088 int best_node = NUMA_NO_NODE;
4089 const struct cpumask *tmp = cpumask_of_node(0);
4090
4091 /* Use the local node if we haven't already */
4092 if (!node_isset(node, *used_node_mask)) {
4093 node_set(node, *used_node_mask);
4094 return node;
4095 }
4096
4097 for_each_node_state(n, N_MEMORY) {
4098
4099 /* Don't want a node to appear more than once */
4100 if (node_isset(n, *used_node_mask))
4101 continue;
4102
4103 /* Use the distance array to find the distance */
4104 val = node_distance(node, n);
4105
4106 /* Penalize nodes under us ("prefer the next node") */
4107 val += (n < node);
4108
4109 /* Give preference to headless and unused nodes */
4110 tmp = cpumask_of_node(n);
4111 if (!cpumask_empty(tmp))
4112 val += PENALTY_FOR_NODE_WITH_CPUS;
4113
4114 /* Slight preference for less loaded node */
4115 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4116 val += node_load[n];
4117
4118 if (val < min_val) {
4119 min_val = val;
4120 best_node = n;
4121 }
4122 }
4123
4124 if (best_node >= 0)
4125 node_set(best_node, *used_node_mask);
4126
4127 return best_node;
4128 }
4129
4130
4131 /*
4132 * Build zonelists ordered by node and zones within node.
4133 * This results in maximum locality--normal zone overflows into local
4134 * DMA zone, if any--but risks exhausting DMA zone.
4135 */
4136 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4137 {
4138 int j;
4139 struct zonelist *zonelist;
4140
4141 zonelist = &pgdat->node_zonelists[0];
4142 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4143 ;
4144 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4145 zonelist->_zonerefs[j].zone = NULL;
4146 zonelist->_zonerefs[j].zone_idx = 0;
4147 }
4148
4149 /*
4150 * Build gfp_thisnode zonelists
4151 */
4152 static void build_thisnode_zonelists(pg_data_t *pgdat)
4153 {
4154 int j;
4155 struct zonelist *zonelist;
4156
4157 zonelist = &pgdat->node_zonelists[1];
4158 j = build_zonelists_node(pgdat, zonelist, 0);
4159 zonelist->_zonerefs[j].zone = NULL;
4160 zonelist->_zonerefs[j].zone_idx = 0;
4161 }
4162
4163 /*
4164 * Build zonelists ordered by zone and nodes within zones.
4165 * This results in conserving DMA zone[s] until all Normal memory is
4166 * exhausted, but results in overflowing to remote node while memory
4167 * may still exist in local DMA zone.
4168 */
4169 static int node_order[MAX_NUMNODES];
4170
4171 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4172 {
4173 int pos, j, node;
4174 int zone_type; /* needs to be signed */
4175 struct zone *z;
4176 struct zonelist *zonelist;
4177
4178 zonelist = &pgdat->node_zonelists[0];
4179 pos = 0;
4180 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4181 for (j = 0; j < nr_nodes; j++) {
4182 node = node_order[j];
4183 z = &NODE_DATA(node)->node_zones[zone_type];
4184 if (populated_zone(z)) {
4185 zoneref_set_zone(z,
4186 &zonelist->_zonerefs[pos++]);
4187 check_highest_zone(zone_type);
4188 }
4189 }
4190 }
4191 zonelist->_zonerefs[pos].zone = NULL;
4192 zonelist->_zonerefs[pos].zone_idx = 0;
4193 }
4194
4195 #if defined(CONFIG_64BIT)
4196 /*
4197 * Devices that require DMA32/DMA are relatively rare and do not justify a
4198 * penalty to every machine in case the specialised case applies. Default
4199 * to Node-ordering on 64-bit NUMA machines
4200 */
4201 static int default_zonelist_order(void)
4202 {
4203 return ZONELIST_ORDER_NODE;
4204 }
4205 #else
4206 /*
4207 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4208 * by the kernel. If processes running on node 0 deplete the low memory zone
4209 * then reclaim will occur more frequency increasing stalls and potentially
4210 * be easier to OOM if a large percentage of the zone is under writeback or
4211 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4212 * Hence, default to zone ordering on 32-bit.
4213 */
4214 static int default_zonelist_order(void)
4215 {
4216 return ZONELIST_ORDER_ZONE;
4217 }
4218 #endif /* CONFIG_64BIT */
4219
4220 static void set_zonelist_order(void)
4221 {
4222 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4223 current_zonelist_order = default_zonelist_order();
4224 else
4225 current_zonelist_order = user_zonelist_order;
4226 }
4227
4228 static void build_zonelists(pg_data_t *pgdat)
4229 {
4230 int j, node, load;
4231 enum zone_type i;
4232 nodemask_t used_mask;
4233 int local_node, prev_node;
4234 struct zonelist *zonelist;
4235 unsigned int order = current_zonelist_order;
4236
4237 /* initialize zonelists */
4238 for (i = 0; i < MAX_ZONELISTS; i++) {
4239 zonelist = pgdat->node_zonelists + i;
4240 zonelist->_zonerefs[0].zone = NULL;
4241 zonelist->_zonerefs[0].zone_idx = 0;
4242 }
4243
4244 /* NUMA-aware ordering of nodes */
4245 local_node = pgdat->node_id;
4246 load = nr_online_nodes;
4247 prev_node = local_node;
4248 nodes_clear(used_mask);
4249
4250 memset(node_order, 0, sizeof(node_order));
4251 j = 0;
4252
4253 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4254 /*
4255 * We don't want to pressure a particular node.
4256 * So adding penalty to the first node in same
4257 * distance group to make it round-robin.
4258 */
4259 if (node_distance(local_node, node) !=
4260 node_distance(local_node, prev_node))
4261 node_load[node] = load;
4262
4263 prev_node = node;
4264 load--;
4265 if (order == ZONELIST_ORDER_NODE)
4266 build_zonelists_in_node_order(pgdat, node);
4267 else
4268 node_order[j++] = node; /* remember order */
4269 }
4270
4271 if (order == ZONELIST_ORDER_ZONE) {
4272 /* calculate node order -- i.e., DMA last! */
4273 build_zonelists_in_zone_order(pgdat, j);
4274 }
4275
4276 build_thisnode_zonelists(pgdat);
4277 }
4278
4279 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4280 /*
4281 * Return node id of node used for "local" allocations.
4282 * I.e., first node id of first zone in arg node's generic zonelist.
4283 * Used for initializing percpu 'numa_mem', which is used primarily
4284 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4285 */
4286 int local_memory_node(int node)
4287 {
4288 struct zone *zone;
4289
4290 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4291 gfp_zone(GFP_KERNEL),
4292 NULL,
4293 &zone);
4294 return zone->node;
4295 }
4296 #endif
4297
4298 #else /* CONFIG_NUMA */
4299
4300 static void set_zonelist_order(void)
4301 {
4302 current_zonelist_order = ZONELIST_ORDER_ZONE;
4303 }
4304
4305 static void build_zonelists(pg_data_t *pgdat)
4306 {
4307 int node, local_node;
4308 enum zone_type j;
4309 struct zonelist *zonelist;
4310
4311 local_node = pgdat->node_id;
4312
4313 zonelist = &pgdat->node_zonelists[0];
4314 j = build_zonelists_node(pgdat, zonelist, 0);
4315
4316 /*
4317 * Now we build the zonelist so that it contains the zones
4318 * of all the other nodes.
4319 * We don't want to pressure a particular node, so when
4320 * building the zones for node N, we make sure that the
4321 * zones coming right after the local ones are those from
4322 * node N+1 (modulo N)
4323 */
4324 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4325 if (!node_online(node))
4326 continue;
4327 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4328 }
4329 for (node = 0; node < local_node; node++) {
4330 if (!node_online(node))
4331 continue;
4332 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4333 }
4334
4335 zonelist->_zonerefs[j].zone = NULL;
4336 zonelist->_zonerefs[j].zone_idx = 0;
4337 }
4338
4339 #endif /* CONFIG_NUMA */
4340
4341 /*
4342 * Boot pageset table. One per cpu which is going to be used for all
4343 * zones and all nodes. The parameters will be set in such a way
4344 * that an item put on a list will immediately be handed over to
4345 * the buddy list. This is safe since pageset manipulation is done
4346 * with interrupts disabled.
4347 *
4348 * The boot_pagesets must be kept even after bootup is complete for
4349 * unused processors and/or zones. They do play a role for bootstrapping
4350 * hotplugged processors.
4351 *
4352 * zoneinfo_show() and maybe other functions do
4353 * not check if the processor is online before following the pageset pointer.
4354 * Other parts of the kernel may not check if the zone is available.
4355 */
4356 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4357 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4358 static void setup_zone_pageset(struct zone *zone);
4359
4360 /*
4361 * Global mutex to protect against size modification of zonelists
4362 * as well as to serialize pageset setup for the new populated zone.
4363 */
4364 DEFINE_MUTEX(zonelists_mutex);
4365
4366 /* return values int ....just for stop_machine() */
4367 static int __build_all_zonelists(void *data)
4368 {
4369 int nid;
4370 int cpu;
4371 pg_data_t *self = data;
4372
4373 #ifdef CONFIG_NUMA
4374 memset(node_load, 0, sizeof(node_load));
4375 #endif
4376
4377 if (self && !node_online(self->node_id)) {
4378 build_zonelists(self);
4379 }
4380
4381 for_each_online_node(nid) {
4382 pg_data_t *pgdat = NODE_DATA(nid);
4383
4384 build_zonelists(pgdat);
4385 }
4386
4387 /*
4388 * Initialize the boot_pagesets that are going to be used
4389 * for bootstrapping processors. The real pagesets for
4390 * each zone will be allocated later when the per cpu
4391 * allocator is available.
4392 *
4393 * boot_pagesets are used also for bootstrapping offline
4394 * cpus if the system is already booted because the pagesets
4395 * are needed to initialize allocators on a specific cpu too.
4396 * F.e. the percpu allocator needs the page allocator which
4397 * needs the percpu allocator in order to allocate its pagesets
4398 * (a chicken-egg dilemma).
4399 */
4400 for_each_possible_cpu(cpu) {
4401 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4402
4403 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4404 /*
4405 * We now know the "local memory node" for each node--
4406 * i.e., the node of the first zone in the generic zonelist.
4407 * Set up numa_mem percpu variable for on-line cpus. During
4408 * boot, only the boot cpu should be on-line; we'll init the
4409 * secondary cpus' numa_mem as they come on-line. During
4410 * node/memory hotplug, we'll fixup all on-line cpus.
4411 */
4412 if (cpu_online(cpu))
4413 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4414 #endif
4415 }
4416
4417 return 0;
4418 }
4419
4420 static noinline void __init
4421 build_all_zonelists_init(void)
4422 {
4423 __build_all_zonelists(NULL);
4424 mminit_verify_zonelist();
4425 cpuset_init_current_mems_allowed();
4426 }
4427
4428 /*
4429 * Called with zonelists_mutex held always
4430 * unless system_state == SYSTEM_BOOTING.
4431 *
4432 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4433 * [we're only called with non-NULL zone through __meminit paths] and
4434 * (2) call of __init annotated helper build_all_zonelists_init
4435 * [protected by SYSTEM_BOOTING].
4436 */
4437 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4438 {
4439 set_zonelist_order();
4440
4441 if (system_state == SYSTEM_BOOTING) {
4442 build_all_zonelists_init();
4443 } else {
4444 #ifdef CONFIG_MEMORY_HOTPLUG
4445 if (zone)
4446 setup_zone_pageset(zone);
4447 #endif
4448 /* we have to stop all cpus to guarantee there is no user
4449 of zonelist */
4450 stop_machine(__build_all_zonelists, pgdat, NULL);
4451 /* cpuset refresh routine should be here */
4452 }
4453 vm_total_pages = nr_free_pagecache_pages();
4454 /*
4455 * Disable grouping by mobility if the number of pages in the
4456 * system is too low to allow the mechanism to work. It would be
4457 * more accurate, but expensive to check per-zone. This check is
4458 * made on memory-hotadd so a system can start with mobility
4459 * disabled and enable it later
4460 */
4461 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4462 page_group_by_mobility_disabled = 1;
4463 else
4464 page_group_by_mobility_disabled = 0;
4465
4466 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4467 "Total pages: %ld\n",
4468 nr_online_nodes,
4469 zonelist_order_name[current_zonelist_order],
4470 page_group_by_mobility_disabled ? "off" : "on",
4471 vm_total_pages);
4472 #ifdef CONFIG_NUMA
4473 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4474 #endif
4475 }
4476
4477 /*
4478 * Helper functions to size the waitqueue hash table.
4479 * Essentially these want to choose hash table sizes sufficiently
4480 * large so that collisions trying to wait on pages are rare.
4481 * But in fact, the number of active page waitqueues on typical
4482 * systems is ridiculously low, less than 200. So this is even
4483 * conservative, even though it seems large.
4484 *
4485 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4486 * waitqueues, i.e. the size of the waitq table given the number of pages.
4487 */
4488 #define PAGES_PER_WAITQUEUE 256
4489
4490 #ifndef CONFIG_MEMORY_HOTPLUG
4491 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4492 {
4493 unsigned long size = 1;
4494
4495 pages /= PAGES_PER_WAITQUEUE;
4496
4497 while (size < pages)
4498 size <<= 1;
4499
4500 /*
4501 * Once we have dozens or even hundreds of threads sleeping
4502 * on IO we've got bigger problems than wait queue collision.
4503 * Limit the size of the wait table to a reasonable size.
4504 */
4505 size = min(size, 4096UL);
4506
4507 return max(size, 4UL);
4508 }
4509 #else
4510 /*
4511 * A zone's size might be changed by hot-add, so it is not possible to determine
4512 * a suitable size for its wait_table. So we use the maximum size now.
4513 *
4514 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4515 *
4516 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4517 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4518 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4519 *
4520 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4521 * or more by the traditional way. (See above). It equals:
4522 *
4523 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4524 * ia64(16K page size) : = ( 8G + 4M)byte.
4525 * powerpc (64K page size) : = (32G +16M)byte.
4526 */
4527 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4528 {
4529 return 4096UL;
4530 }
4531 #endif
4532
4533 /*
4534 * This is an integer logarithm so that shifts can be used later
4535 * to extract the more random high bits from the multiplicative
4536 * hash function before the remainder is taken.
4537 */
4538 static inline unsigned long wait_table_bits(unsigned long size)
4539 {
4540 return ffz(~size);
4541 }
4542
4543 /*
4544 * Initially all pages are reserved - free ones are freed
4545 * up by free_all_bootmem() once the early boot process is
4546 * done. Non-atomic initialization, single-pass.
4547 */
4548 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4549 unsigned long start_pfn, enum memmap_context context)
4550 {
4551 pg_data_t *pgdat = NODE_DATA(nid);
4552 unsigned long end_pfn = start_pfn + size;
4553 unsigned long pfn;
4554 struct zone *z;
4555 unsigned long nr_initialised = 0;
4556
4557 if (highest_memmap_pfn < end_pfn - 1)
4558 highest_memmap_pfn = end_pfn - 1;
4559
4560 z = &pgdat->node_zones[zone];
4561 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4562 /*
4563 * There can be holes in boot-time mem_map[]s
4564 * handed to this function. They do not
4565 * exist on hotplugged memory.
4566 */
4567 if (context == MEMMAP_EARLY) {
4568 if (!early_pfn_valid(pfn))
4569 continue;
4570 if (!early_pfn_in_nid(pfn, nid))
4571 continue;
4572 if (!update_defer_init(pgdat, pfn, end_pfn,
4573 &nr_initialised))
4574 break;
4575 }
4576
4577 /*
4578 * Mark the block movable so that blocks are reserved for
4579 * movable at startup. This will force kernel allocations
4580 * to reserve their blocks rather than leaking throughout
4581 * the address space during boot when many long-lived
4582 * kernel allocations are made.
4583 *
4584 * bitmap is created for zone's valid pfn range. but memmap
4585 * can be created for invalid pages (for alignment)
4586 * check here not to call set_pageblock_migratetype() against
4587 * pfn out of zone.
4588 */
4589 if (!(pfn & (pageblock_nr_pages - 1))) {
4590 struct page *page = pfn_to_page(pfn);
4591
4592 __init_single_page(page, pfn, zone, nid);
4593 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4594 } else {
4595 __init_single_pfn(pfn, zone, nid);
4596 }
4597 }
4598 }
4599
4600 static void __meminit zone_init_free_lists(struct zone *zone)
4601 {
4602 unsigned int order, t;
4603 for_each_migratetype_order(order, t) {
4604 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4605 zone->free_area[order].nr_free = 0;
4606 }
4607 }
4608
4609 #ifndef __HAVE_ARCH_MEMMAP_INIT
4610 #define memmap_init(size, nid, zone, start_pfn) \
4611 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4612 #endif
4613
4614 static int zone_batchsize(struct zone *zone)
4615 {
4616 #ifdef CONFIG_MMU
4617 int batch;
4618
4619 /*
4620 * The per-cpu-pages pools are set to around 1000th of the
4621 * size of the zone. But no more than 1/2 of a meg.
4622 *
4623 * OK, so we don't know how big the cache is. So guess.
4624 */
4625 batch = zone->managed_pages / 1024;
4626 if (batch * PAGE_SIZE > 512 * 1024)
4627 batch = (512 * 1024) / PAGE_SIZE;
4628 batch /= 4; /* We effectively *= 4 below */
4629 if (batch < 1)
4630 batch = 1;
4631
4632 /*
4633 * Clamp the batch to a 2^n - 1 value. Having a power
4634 * of 2 value was found to be more likely to have
4635 * suboptimal cache aliasing properties in some cases.
4636 *
4637 * For example if 2 tasks are alternately allocating
4638 * batches of pages, one task can end up with a lot
4639 * of pages of one half of the possible page colors
4640 * and the other with pages of the other colors.
4641 */
4642 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4643
4644 return batch;
4645
4646 #else
4647 /* The deferral and batching of frees should be suppressed under NOMMU
4648 * conditions.
4649 *
4650 * The problem is that NOMMU needs to be able to allocate large chunks
4651 * of contiguous memory as there's no hardware page translation to
4652 * assemble apparent contiguous memory from discontiguous pages.
4653 *
4654 * Queueing large contiguous runs of pages for batching, however,
4655 * causes the pages to actually be freed in smaller chunks. As there
4656 * can be a significant delay between the individual batches being
4657 * recycled, this leads to the once large chunks of space being
4658 * fragmented and becoming unavailable for high-order allocations.
4659 */
4660 return 0;
4661 #endif
4662 }
4663
4664 /*
4665 * pcp->high and pcp->batch values are related and dependent on one another:
4666 * ->batch must never be higher then ->high.
4667 * The following function updates them in a safe manner without read side
4668 * locking.
4669 *
4670 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4671 * those fields changing asynchronously (acording the the above rule).
4672 *
4673 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4674 * outside of boot time (or some other assurance that no concurrent updaters
4675 * exist).
4676 */
4677 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4678 unsigned long batch)
4679 {
4680 /* start with a fail safe value for batch */
4681 pcp->batch = 1;
4682 smp_wmb();
4683
4684 /* Update high, then batch, in order */
4685 pcp->high = high;
4686 smp_wmb();
4687
4688 pcp->batch = batch;
4689 }
4690
4691 /* a companion to pageset_set_high() */
4692 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4693 {
4694 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4695 }
4696
4697 static void pageset_init(struct per_cpu_pageset *p)
4698 {
4699 struct per_cpu_pages *pcp;
4700 int migratetype;
4701
4702 memset(p, 0, sizeof(*p));
4703
4704 pcp = &p->pcp;
4705 pcp->count = 0;
4706 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4707 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4708 }
4709
4710 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4711 {
4712 pageset_init(p);
4713 pageset_set_batch(p, batch);
4714 }
4715
4716 /*
4717 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4718 * to the value high for the pageset p.
4719 */
4720 static void pageset_set_high(struct per_cpu_pageset *p,
4721 unsigned long high)
4722 {
4723 unsigned long batch = max(1UL, high / 4);
4724 if ((high / 4) > (PAGE_SHIFT * 8))
4725 batch = PAGE_SHIFT * 8;
4726
4727 pageset_update(&p->pcp, high, batch);
4728 }
4729
4730 static void pageset_set_high_and_batch(struct zone *zone,
4731 struct per_cpu_pageset *pcp)
4732 {
4733 if (percpu_pagelist_fraction)
4734 pageset_set_high(pcp,
4735 (zone->managed_pages /
4736 percpu_pagelist_fraction));
4737 else
4738 pageset_set_batch(pcp, zone_batchsize(zone));
4739 }
4740
4741 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4742 {
4743 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4744
4745 pageset_init(pcp);
4746 pageset_set_high_and_batch(zone, pcp);
4747 }
4748
4749 static void __meminit setup_zone_pageset(struct zone *zone)
4750 {
4751 int cpu;
4752 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4753 for_each_possible_cpu(cpu)
4754 zone_pageset_init(zone, cpu);
4755 }
4756
4757 /*
4758 * Allocate per cpu pagesets and initialize them.
4759 * Before this call only boot pagesets were available.
4760 */
4761 void __init setup_per_cpu_pageset(void)
4762 {
4763 struct zone *zone;
4764
4765 for_each_populated_zone(zone)
4766 setup_zone_pageset(zone);
4767 }
4768
4769 static noinline __init_refok
4770 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4771 {
4772 int i;
4773 size_t alloc_size;
4774
4775 /*
4776 * The per-page waitqueue mechanism uses hashed waitqueues
4777 * per zone.
4778 */
4779 zone->wait_table_hash_nr_entries =
4780 wait_table_hash_nr_entries(zone_size_pages);
4781 zone->wait_table_bits =
4782 wait_table_bits(zone->wait_table_hash_nr_entries);
4783 alloc_size = zone->wait_table_hash_nr_entries
4784 * sizeof(wait_queue_head_t);
4785
4786 if (!slab_is_available()) {
4787 zone->wait_table = (wait_queue_head_t *)
4788 memblock_virt_alloc_node_nopanic(
4789 alloc_size, zone->zone_pgdat->node_id);
4790 } else {
4791 /*
4792 * This case means that a zone whose size was 0 gets new memory
4793 * via memory hot-add.
4794 * But it may be the case that a new node was hot-added. In
4795 * this case vmalloc() will not be able to use this new node's
4796 * memory - this wait_table must be initialized to use this new
4797 * node itself as well.
4798 * To use this new node's memory, further consideration will be
4799 * necessary.
4800 */
4801 zone->wait_table = vmalloc(alloc_size);
4802 }
4803 if (!zone->wait_table)
4804 return -ENOMEM;
4805
4806 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4807 init_waitqueue_head(zone->wait_table + i);
4808
4809 return 0;
4810 }
4811
4812 static __meminit void zone_pcp_init(struct zone *zone)
4813 {
4814 /*
4815 * per cpu subsystem is not up at this point. The following code
4816 * relies on the ability of the linker to provide the
4817 * offset of a (static) per cpu variable into the per cpu area.
4818 */
4819 zone->pageset = &boot_pageset;
4820
4821 if (populated_zone(zone))
4822 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4823 zone->name, zone->present_pages,
4824 zone_batchsize(zone));
4825 }
4826
4827 int __meminit init_currently_empty_zone(struct zone *zone,
4828 unsigned long zone_start_pfn,
4829 unsigned long size)
4830 {
4831 struct pglist_data *pgdat = zone->zone_pgdat;
4832 int ret;
4833 ret = zone_wait_table_init(zone, size);
4834 if (ret)
4835 return ret;
4836 pgdat->nr_zones = zone_idx(zone) + 1;
4837
4838 zone->zone_start_pfn = zone_start_pfn;
4839
4840 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4841 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4842 pgdat->node_id,
4843 (unsigned long)zone_idx(zone),
4844 zone_start_pfn, (zone_start_pfn + size));
4845
4846 zone_init_free_lists(zone);
4847
4848 return 0;
4849 }
4850
4851 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4852 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4853
4854 /*
4855 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4856 */
4857 int __meminit __early_pfn_to_nid(unsigned long pfn,
4858 struct mminit_pfnnid_cache *state)
4859 {
4860 unsigned long start_pfn, end_pfn;
4861 int nid;
4862
4863 if (state->last_start <= pfn && pfn < state->last_end)
4864 return state->last_nid;
4865
4866 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4867 if (nid != -1) {
4868 state->last_start = start_pfn;
4869 state->last_end = end_pfn;
4870 state->last_nid = nid;
4871 }
4872
4873 return nid;
4874 }
4875 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4876
4877 /**
4878 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4879 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4880 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4881 *
4882 * If an architecture guarantees that all ranges registered contain no holes
4883 * and may be freed, this this function may be used instead of calling
4884 * memblock_free_early_nid() manually.
4885 */
4886 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4887 {
4888 unsigned long start_pfn, end_pfn;
4889 int i, this_nid;
4890
4891 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4892 start_pfn = min(start_pfn, max_low_pfn);
4893 end_pfn = min(end_pfn, max_low_pfn);
4894
4895 if (start_pfn < end_pfn)
4896 memblock_free_early_nid(PFN_PHYS(start_pfn),
4897 (end_pfn - start_pfn) << PAGE_SHIFT,
4898 this_nid);
4899 }
4900 }
4901
4902 /**
4903 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4904 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4905 *
4906 * If an architecture guarantees that all ranges registered contain no holes and may
4907 * be freed, this function may be used instead of calling memory_present() manually.
4908 */
4909 void __init sparse_memory_present_with_active_regions(int nid)
4910 {
4911 unsigned long start_pfn, end_pfn;
4912 int i, this_nid;
4913
4914 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4915 memory_present(this_nid, start_pfn, end_pfn);
4916 }
4917
4918 /**
4919 * get_pfn_range_for_nid - Return the start and end page frames for a node
4920 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4921 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4922 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4923 *
4924 * It returns the start and end page frame of a node based on information
4925 * provided by memblock_set_node(). If called for a node
4926 * with no available memory, a warning is printed and the start and end
4927 * PFNs will be 0.
4928 */
4929 void __meminit get_pfn_range_for_nid(unsigned int nid,
4930 unsigned long *start_pfn, unsigned long *end_pfn)
4931 {
4932 unsigned long this_start_pfn, this_end_pfn;
4933 int i;
4934
4935 *start_pfn = -1UL;
4936 *end_pfn = 0;
4937
4938 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4939 *start_pfn = min(*start_pfn, this_start_pfn);
4940 *end_pfn = max(*end_pfn, this_end_pfn);
4941 }
4942
4943 if (*start_pfn == -1UL)
4944 *start_pfn = 0;
4945 }
4946
4947 /*
4948 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4949 * assumption is made that zones within a node are ordered in monotonic
4950 * increasing memory addresses so that the "highest" populated zone is used
4951 */
4952 static void __init find_usable_zone_for_movable(void)
4953 {
4954 int zone_index;
4955 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4956 if (zone_index == ZONE_MOVABLE)
4957 continue;
4958
4959 if (arch_zone_highest_possible_pfn[zone_index] >
4960 arch_zone_lowest_possible_pfn[zone_index])
4961 break;
4962 }
4963
4964 VM_BUG_ON(zone_index == -1);
4965 movable_zone = zone_index;
4966 }
4967
4968 /*
4969 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4970 * because it is sized independent of architecture. Unlike the other zones,
4971 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4972 * in each node depending on the size of each node and how evenly kernelcore
4973 * is distributed. This helper function adjusts the zone ranges
4974 * provided by the architecture for a given node by using the end of the
4975 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4976 * zones within a node are in order of monotonic increases memory addresses
4977 */
4978 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4979 unsigned long zone_type,
4980 unsigned long node_start_pfn,
4981 unsigned long node_end_pfn,
4982 unsigned long *zone_start_pfn,
4983 unsigned long *zone_end_pfn)
4984 {
4985 /* Only adjust if ZONE_MOVABLE is on this node */
4986 if (zone_movable_pfn[nid]) {
4987 /* Size ZONE_MOVABLE */
4988 if (zone_type == ZONE_MOVABLE) {
4989 *zone_start_pfn = zone_movable_pfn[nid];
4990 *zone_end_pfn = min(node_end_pfn,
4991 arch_zone_highest_possible_pfn[movable_zone]);
4992
4993 /* Adjust for ZONE_MOVABLE starting within this range */
4994 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4995 *zone_end_pfn > zone_movable_pfn[nid]) {
4996 *zone_end_pfn = zone_movable_pfn[nid];
4997
4998 /* Check if this whole range is within ZONE_MOVABLE */
4999 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5000 *zone_start_pfn = *zone_end_pfn;
5001 }
5002 }
5003
5004 /*
5005 * Return the number of pages a zone spans in a node, including holes
5006 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5007 */
5008 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5009 unsigned long zone_type,
5010 unsigned long node_start_pfn,
5011 unsigned long node_end_pfn,
5012 unsigned long *ignored)
5013 {
5014 unsigned long zone_start_pfn, zone_end_pfn;
5015
5016 /* When hotadd a new node from cpu_up(), the node should be empty */
5017 if (!node_start_pfn && !node_end_pfn)
5018 return 0;
5019
5020 /* Get the start and end of the zone */
5021 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5022 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5023 adjust_zone_range_for_zone_movable(nid, zone_type,
5024 node_start_pfn, node_end_pfn,
5025 &zone_start_pfn, &zone_end_pfn);
5026
5027 /* Check that this node has pages within the zone's required range */
5028 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5029 return 0;
5030
5031 /* Move the zone boundaries inside the node if necessary */
5032 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5033 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5034
5035 /* Return the spanned pages */
5036 return zone_end_pfn - zone_start_pfn;
5037 }
5038
5039 /*
5040 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5041 * then all holes in the requested range will be accounted for.
5042 */
5043 unsigned long __meminit __absent_pages_in_range(int nid,
5044 unsigned long range_start_pfn,
5045 unsigned long range_end_pfn)
5046 {
5047 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5048 unsigned long start_pfn, end_pfn;
5049 int i;
5050
5051 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5052 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5053 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5054 nr_absent -= end_pfn - start_pfn;
5055 }
5056 return nr_absent;
5057 }
5058
5059 /**
5060 * absent_pages_in_range - Return number of page frames in holes within a range
5061 * @start_pfn: The start PFN to start searching for holes
5062 * @end_pfn: The end PFN to stop searching for holes
5063 *
5064 * It returns the number of pages frames in memory holes within a range.
5065 */
5066 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5067 unsigned long end_pfn)
5068 {
5069 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5070 }
5071
5072 /* Return the number of page frames in holes in a zone on a node */
5073 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5074 unsigned long zone_type,
5075 unsigned long node_start_pfn,
5076 unsigned long node_end_pfn,
5077 unsigned long *ignored)
5078 {
5079 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5080 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5081 unsigned long zone_start_pfn, zone_end_pfn;
5082
5083 /* When hotadd a new node from cpu_up(), the node should be empty */
5084 if (!node_start_pfn && !node_end_pfn)
5085 return 0;
5086
5087 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5088 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5089
5090 adjust_zone_range_for_zone_movable(nid, zone_type,
5091 node_start_pfn, node_end_pfn,
5092 &zone_start_pfn, &zone_end_pfn);
5093 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5094 }
5095
5096 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5097 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5098 unsigned long zone_type,
5099 unsigned long node_start_pfn,
5100 unsigned long node_end_pfn,
5101 unsigned long *zones_size)
5102 {
5103 return zones_size[zone_type];
5104 }
5105
5106 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5107 unsigned long zone_type,
5108 unsigned long node_start_pfn,
5109 unsigned long node_end_pfn,
5110 unsigned long *zholes_size)
5111 {
5112 if (!zholes_size)
5113 return 0;
5114
5115 return zholes_size[zone_type];
5116 }
5117
5118 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5119
5120 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5121 unsigned long node_start_pfn,
5122 unsigned long node_end_pfn,
5123 unsigned long *zones_size,
5124 unsigned long *zholes_size)
5125 {
5126 unsigned long realtotalpages = 0, totalpages = 0;
5127 enum zone_type i;
5128
5129 for (i = 0; i < MAX_NR_ZONES; i++) {
5130 struct zone *zone = pgdat->node_zones + i;
5131 unsigned long size, real_size;
5132
5133 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5134 node_start_pfn,
5135 node_end_pfn,
5136 zones_size);
5137 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5138 node_start_pfn, node_end_pfn,
5139 zholes_size);
5140 zone->spanned_pages = size;
5141 zone->present_pages = real_size;
5142
5143 totalpages += size;
5144 realtotalpages += real_size;
5145 }
5146
5147 pgdat->node_spanned_pages = totalpages;
5148 pgdat->node_present_pages = realtotalpages;
5149 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5150 realtotalpages);
5151 }
5152
5153 #ifndef CONFIG_SPARSEMEM
5154 /*
5155 * Calculate the size of the zone->blockflags rounded to an unsigned long
5156 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5157 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5158 * round what is now in bits to nearest long in bits, then return it in
5159 * bytes.
5160 */
5161 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5162 {
5163 unsigned long usemapsize;
5164
5165 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5166 usemapsize = roundup(zonesize, pageblock_nr_pages);
5167 usemapsize = usemapsize >> pageblock_order;
5168 usemapsize *= NR_PAGEBLOCK_BITS;
5169 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5170
5171 return usemapsize / 8;
5172 }
5173
5174 static void __init setup_usemap(struct pglist_data *pgdat,
5175 struct zone *zone,
5176 unsigned long zone_start_pfn,
5177 unsigned long zonesize)
5178 {
5179 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5180 zone->pageblock_flags = NULL;
5181 if (usemapsize)
5182 zone->pageblock_flags =
5183 memblock_virt_alloc_node_nopanic(usemapsize,
5184 pgdat->node_id);
5185 }
5186 #else
5187 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5188 unsigned long zone_start_pfn, unsigned long zonesize) {}
5189 #endif /* CONFIG_SPARSEMEM */
5190
5191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5192
5193 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5194 void __paginginit set_pageblock_order(void)
5195 {
5196 unsigned int order;
5197
5198 /* Check that pageblock_nr_pages has not already been setup */
5199 if (pageblock_order)
5200 return;
5201
5202 if (HPAGE_SHIFT > PAGE_SHIFT)
5203 order = HUGETLB_PAGE_ORDER;
5204 else
5205 order = MAX_ORDER - 1;
5206
5207 /*
5208 * Assume the largest contiguous order of interest is a huge page.
5209 * This value may be variable depending on boot parameters on IA64 and
5210 * powerpc.
5211 */
5212 pageblock_order = order;
5213 }
5214 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5215
5216 /*
5217 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5218 * is unused as pageblock_order is set at compile-time. See
5219 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5220 * the kernel config
5221 */
5222 void __paginginit set_pageblock_order(void)
5223 {
5224 }
5225
5226 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5227
5228 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5229 unsigned long present_pages)
5230 {
5231 unsigned long pages = spanned_pages;
5232
5233 /*
5234 * Provide a more accurate estimation if there are holes within
5235 * the zone and SPARSEMEM is in use. If there are holes within the
5236 * zone, each populated memory region may cost us one or two extra
5237 * memmap pages due to alignment because memmap pages for each
5238 * populated regions may not naturally algined on page boundary.
5239 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5240 */
5241 if (spanned_pages > present_pages + (present_pages >> 4) &&
5242 IS_ENABLED(CONFIG_SPARSEMEM))
5243 pages = present_pages;
5244
5245 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5246 }
5247
5248 /*
5249 * Set up the zone data structures:
5250 * - mark all pages reserved
5251 * - mark all memory queues empty
5252 * - clear the memory bitmaps
5253 *
5254 * NOTE: pgdat should get zeroed by caller.
5255 */
5256 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5257 {
5258 enum zone_type j;
5259 int nid = pgdat->node_id;
5260 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5261 int ret;
5262
5263 pgdat_resize_init(pgdat);
5264 #ifdef CONFIG_NUMA_BALANCING
5265 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5266 pgdat->numabalancing_migrate_nr_pages = 0;
5267 pgdat->numabalancing_migrate_next_window = jiffies;
5268 #endif
5269 init_waitqueue_head(&pgdat->kswapd_wait);
5270 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5271 pgdat_page_ext_init(pgdat);
5272
5273 for (j = 0; j < MAX_NR_ZONES; j++) {
5274 struct zone *zone = pgdat->node_zones + j;
5275 unsigned long size, realsize, freesize, memmap_pages;
5276
5277 size = zone->spanned_pages;
5278 realsize = freesize = zone->present_pages;
5279
5280 /*
5281 * Adjust freesize so that it accounts for how much memory
5282 * is used by this zone for memmap. This affects the watermark
5283 * and per-cpu initialisations
5284 */
5285 memmap_pages = calc_memmap_size(size, realsize);
5286 if (!is_highmem_idx(j)) {
5287 if (freesize >= memmap_pages) {
5288 freesize -= memmap_pages;
5289 if (memmap_pages)
5290 printk(KERN_DEBUG
5291 " %s zone: %lu pages used for memmap\n",
5292 zone_names[j], memmap_pages);
5293 } else
5294 printk(KERN_WARNING
5295 " %s zone: %lu pages exceeds freesize %lu\n",
5296 zone_names[j], memmap_pages, freesize);
5297 }
5298
5299 /* Account for reserved pages */
5300 if (j == 0 && freesize > dma_reserve) {
5301 freesize -= dma_reserve;
5302 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5303 zone_names[0], dma_reserve);
5304 }
5305
5306 if (!is_highmem_idx(j))
5307 nr_kernel_pages += freesize;
5308 /* Charge for highmem memmap if there are enough kernel pages */
5309 else if (nr_kernel_pages > memmap_pages * 2)
5310 nr_kernel_pages -= memmap_pages;
5311 nr_all_pages += freesize;
5312
5313 /*
5314 * Set an approximate value for lowmem here, it will be adjusted
5315 * when the bootmem allocator frees pages into the buddy system.
5316 * And all highmem pages will be managed by the buddy system.
5317 */
5318 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5319 #ifdef CONFIG_NUMA
5320 zone->node = nid;
5321 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5322 / 100;
5323 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5324 #endif
5325 zone->name = zone_names[j];
5326 spin_lock_init(&zone->lock);
5327 spin_lock_init(&zone->lru_lock);
5328 zone_seqlock_init(zone);
5329 zone->zone_pgdat = pgdat;
5330 zone_pcp_init(zone);
5331
5332 /* For bootup, initialized properly in watermark setup */
5333 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5334
5335 lruvec_init(&zone->lruvec);
5336 if (!size)
5337 continue;
5338
5339 set_pageblock_order();
5340 setup_usemap(pgdat, zone, zone_start_pfn, size);
5341 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5342 BUG_ON(ret);
5343 memmap_init(size, nid, j, zone_start_pfn);
5344 zone_start_pfn += size;
5345 }
5346 }
5347
5348 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5349 {
5350 unsigned long __maybe_unused start = 0;
5351 unsigned long __maybe_unused offset = 0;
5352
5353 /* Skip empty nodes */
5354 if (!pgdat->node_spanned_pages)
5355 return;
5356
5357 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5358 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5359 offset = pgdat->node_start_pfn - start;
5360 /* ia64 gets its own node_mem_map, before this, without bootmem */
5361 if (!pgdat->node_mem_map) {
5362 unsigned long size, end;
5363 struct page *map;
5364
5365 /*
5366 * The zone's endpoints aren't required to be MAX_ORDER
5367 * aligned but the node_mem_map endpoints must be in order
5368 * for the buddy allocator to function correctly.
5369 */
5370 end = pgdat_end_pfn(pgdat);
5371 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5372 size = (end - start) * sizeof(struct page);
5373 map = alloc_remap(pgdat->node_id, size);
5374 if (!map)
5375 map = memblock_virt_alloc_node_nopanic(size,
5376 pgdat->node_id);
5377 pgdat->node_mem_map = map + offset;
5378 }
5379 #ifndef CONFIG_NEED_MULTIPLE_NODES
5380 /*
5381 * With no DISCONTIG, the global mem_map is just set as node 0's
5382 */
5383 if (pgdat == NODE_DATA(0)) {
5384 mem_map = NODE_DATA(0)->node_mem_map;
5385 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5386 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5387 mem_map -= offset;
5388 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5389 }
5390 #endif
5391 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5392 }
5393
5394 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5395 unsigned long node_start_pfn, unsigned long *zholes_size)
5396 {
5397 pg_data_t *pgdat = NODE_DATA(nid);
5398 unsigned long start_pfn = 0;
5399 unsigned long end_pfn = 0;
5400
5401 /* pg_data_t should be reset to zero when it's allocated */
5402 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5403
5404 pgdat->node_id = nid;
5405 pgdat->node_start_pfn = node_start_pfn;
5406 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5407 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5408 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5409 (u64)start_pfn << PAGE_SHIFT,
5410 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5411 #endif
5412 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5413 zones_size, zholes_size);
5414
5415 alloc_node_mem_map(pgdat);
5416 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5417 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5418 nid, (unsigned long)pgdat,
5419 (unsigned long)pgdat->node_mem_map);
5420 #endif
5421
5422 reset_deferred_meminit(pgdat);
5423 free_area_init_core(pgdat);
5424 }
5425
5426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5427
5428 #if MAX_NUMNODES > 1
5429 /*
5430 * Figure out the number of possible node ids.
5431 */
5432 void __init setup_nr_node_ids(void)
5433 {
5434 unsigned int highest;
5435
5436 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5437 nr_node_ids = highest + 1;
5438 }
5439 #endif
5440
5441 /**
5442 * node_map_pfn_alignment - determine the maximum internode alignment
5443 *
5444 * This function should be called after node map is populated and sorted.
5445 * It calculates the maximum power of two alignment which can distinguish
5446 * all the nodes.
5447 *
5448 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5449 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5450 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5451 * shifted, 1GiB is enough and this function will indicate so.
5452 *
5453 * This is used to test whether pfn -> nid mapping of the chosen memory
5454 * model has fine enough granularity to avoid incorrect mapping for the
5455 * populated node map.
5456 *
5457 * Returns the determined alignment in pfn's. 0 if there is no alignment
5458 * requirement (single node).
5459 */
5460 unsigned long __init node_map_pfn_alignment(void)
5461 {
5462 unsigned long accl_mask = 0, last_end = 0;
5463 unsigned long start, end, mask;
5464 int last_nid = -1;
5465 int i, nid;
5466
5467 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5468 if (!start || last_nid < 0 || last_nid == nid) {
5469 last_nid = nid;
5470 last_end = end;
5471 continue;
5472 }
5473
5474 /*
5475 * Start with a mask granular enough to pin-point to the
5476 * start pfn and tick off bits one-by-one until it becomes
5477 * too coarse to separate the current node from the last.
5478 */
5479 mask = ~((1 << __ffs(start)) - 1);
5480 while (mask && last_end <= (start & (mask << 1)))
5481 mask <<= 1;
5482
5483 /* accumulate all internode masks */
5484 accl_mask |= mask;
5485 }
5486
5487 /* convert mask to number of pages */
5488 return ~accl_mask + 1;
5489 }
5490
5491 /* Find the lowest pfn for a node */
5492 static unsigned long __init find_min_pfn_for_node(int nid)
5493 {
5494 unsigned long min_pfn = ULONG_MAX;
5495 unsigned long start_pfn;
5496 int i;
5497
5498 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5499 min_pfn = min(min_pfn, start_pfn);
5500
5501 if (min_pfn == ULONG_MAX) {
5502 printk(KERN_WARNING
5503 "Could not find start_pfn for node %d\n", nid);
5504 return 0;
5505 }
5506
5507 return min_pfn;
5508 }
5509
5510 /**
5511 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5512 *
5513 * It returns the minimum PFN based on information provided via
5514 * memblock_set_node().
5515 */
5516 unsigned long __init find_min_pfn_with_active_regions(void)
5517 {
5518 return find_min_pfn_for_node(MAX_NUMNODES);
5519 }
5520
5521 /*
5522 * early_calculate_totalpages()
5523 * Sum pages in active regions for movable zone.
5524 * Populate N_MEMORY for calculating usable_nodes.
5525 */
5526 static unsigned long __init early_calculate_totalpages(void)
5527 {
5528 unsigned long totalpages = 0;
5529 unsigned long start_pfn, end_pfn;
5530 int i, nid;
5531
5532 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5533 unsigned long pages = end_pfn - start_pfn;
5534
5535 totalpages += pages;
5536 if (pages)
5537 node_set_state(nid, N_MEMORY);
5538 }
5539 return totalpages;
5540 }
5541
5542 /*
5543 * Find the PFN the Movable zone begins in each node. Kernel memory
5544 * is spread evenly between nodes as long as the nodes have enough
5545 * memory. When they don't, some nodes will have more kernelcore than
5546 * others
5547 */
5548 static void __init find_zone_movable_pfns_for_nodes(void)
5549 {
5550 int i, nid;
5551 unsigned long usable_startpfn;
5552 unsigned long kernelcore_node, kernelcore_remaining;
5553 /* save the state before borrow the nodemask */
5554 nodemask_t saved_node_state = node_states[N_MEMORY];
5555 unsigned long totalpages = early_calculate_totalpages();
5556 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5557 struct memblock_region *r;
5558
5559 /* Need to find movable_zone earlier when movable_node is specified. */
5560 find_usable_zone_for_movable();
5561
5562 /*
5563 * If movable_node is specified, ignore kernelcore and movablecore
5564 * options.
5565 */
5566 if (movable_node_is_enabled()) {
5567 for_each_memblock(memory, r) {
5568 if (!memblock_is_hotpluggable(r))
5569 continue;
5570
5571 nid = r->nid;
5572
5573 usable_startpfn = PFN_DOWN(r->base);
5574 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5575 min(usable_startpfn, zone_movable_pfn[nid]) :
5576 usable_startpfn;
5577 }
5578
5579 goto out2;
5580 }
5581
5582 /*
5583 * If movablecore=nn[KMG] was specified, calculate what size of
5584 * kernelcore that corresponds so that memory usable for
5585 * any allocation type is evenly spread. If both kernelcore
5586 * and movablecore are specified, then the value of kernelcore
5587 * will be used for required_kernelcore if it's greater than
5588 * what movablecore would have allowed.
5589 */
5590 if (required_movablecore) {
5591 unsigned long corepages;
5592
5593 /*
5594 * Round-up so that ZONE_MOVABLE is at least as large as what
5595 * was requested by the user
5596 */
5597 required_movablecore =
5598 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5599 required_movablecore = min(totalpages, required_movablecore);
5600 corepages = totalpages - required_movablecore;
5601
5602 required_kernelcore = max(required_kernelcore, corepages);
5603 }
5604
5605 /*
5606 * If kernelcore was not specified or kernelcore size is larger
5607 * than totalpages, there is no ZONE_MOVABLE.
5608 */
5609 if (!required_kernelcore || required_kernelcore >= totalpages)
5610 goto out;
5611
5612 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5613 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5614
5615 restart:
5616 /* Spread kernelcore memory as evenly as possible throughout nodes */
5617 kernelcore_node = required_kernelcore / usable_nodes;
5618 for_each_node_state(nid, N_MEMORY) {
5619 unsigned long start_pfn, end_pfn;
5620
5621 /*
5622 * Recalculate kernelcore_node if the division per node
5623 * now exceeds what is necessary to satisfy the requested
5624 * amount of memory for the kernel
5625 */
5626 if (required_kernelcore < kernelcore_node)
5627 kernelcore_node = required_kernelcore / usable_nodes;
5628
5629 /*
5630 * As the map is walked, we track how much memory is usable
5631 * by the kernel using kernelcore_remaining. When it is
5632 * 0, the rest of the node is usable by ZONE_MOVABLE
5633 */
5634 kernelcore_remaining = kernelcore_node;
5635
5636 /* Go through each range of PFNs within this node */
5637 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5638 unsigned long size_pages;
5639
5640 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5641 if (start_pfn >= end_pfn)
5642 continue;
5643
5644 /* Account for what is only usable for kernelcore */
5645 if (start_pfn < usable_startpfn) {
5646 unsigned long kernel_pages;
5647 kernel_pages = min(end_pfn, usable_startpfn)
5648 - start_pfn;
5649
5650 kernelcore_remaining -= min(kernel_pages,
5651 kernelcore_remaining);
5652 required_kernelcore -= min(kernel_pages,
5653 required_kernelcore);
5654
5655 /* Continue if range is now fully accounted */
5656 if (end_pfn <= usable_startpfn) {
5657
5658 /*
5659 * Push zone_movable_pfn to the end so
5660 * that if we have to rebalance
5661 * kernelcore across nodes, we will
5662 * not double account here
5663 */
5664 zone_movable_pfn[nid] = end_pfn;
5665 continue;
5666 }
5667 start_pfn = usable_startpfn;
5668 }
5669
5670 /*
5671 * The usable PFN range for ZONE_MOVABLE is from
5672 * start_pfn->end_pfn. Calculate size_pages as the
5673 * number of pages used as kernelcore
5674 */
5675 size_pages = end_pfn - start_pfn;
5676 if (size_pages > kernelcore_remaining)
5677 size_pages = kernelcore_remaining;
5678 zone_movable_pfn[nid] = start_pfn + size_pages;
5679
5680 /*
5681 * Some kernelcore has been met, update counts and
5682 * break if the kernelcore for this node has been
5683 * satisfied
5684 */
5685 required_kernelcore -= min(required_kernelcore,
5686 size_pages);
5687 kernelcore_remaining -= size_pages;
5688 if (!kernelcore_remaining)
5689 break;
5690 }
5691 }
5692
5693 /*
5694 * If there is still required_kernelcore, we do another pass with one
5695 * less node in the count. This will push zone_movable_pfn[nid] further
5696 * along on the nodes that still have memory until kernelcore is
5697 * satisfied
5698 */
5699 usable_nodes--;
5700 if (usable_nodes && required_kernelcore > usable_nodes)
5701 goto restart;
5702
5703 out2:
5704 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5705 for (nid = 0; nid < MAX_NUMNODES; nid++)
5706 zone_movable_pfn[nid] =
5707 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5708
5709 out:
5710 /* restore the node_state */
5711 node_states[N_MEMORY] = saved_node_state;
5712 }
5713
5714 /* Any regular or high memory on that node ? */
5715 static void check_for_memory(pg_data_t *pgdat, int nid)
5716 {
5717 enum zone_type zone_type;
5718
5719 if (N_MEMORY == N_NORMAL_MEMORY)
5720 return;
5721
5722 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5723 struct zone *zone = &pgdat->node_zones[zone_type];
5724 if (populated_zone(zone)) {
5725 node_set_state(nid, N_HIGH_MEMORY);
5726 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5727 zone_type <= ZONE_NORMAL)
5728 node_set_state(nid, N_NORMAL_MEMORY);
5729 break;
5730 }
5731 }
5732 }
5733
5734 /**
5735 * free_area_init_nodes - Initialise all pg_data_t and zone data
5736 * @max_zone_pfn: an array of max PFNs for each zone
5737 *
5738 * This will call free_area_init_node() for each active node in the system.
5739 * Using the page ranges provided by memblock_set_node(), the size of each
5740 * zone in each node and their holes is calculated. If the maximum PFN
5741 * between two adjacent zones match, it is assumed that the zone is empty.
5742 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5743 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5744 * starts where the previous one ended. For example, ZONE_DMA32 starts
5745 * at arch_max_dma_pfn.
5746 */
5747 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5748 {
5749 unsigned long start_pfn, end_pfn;
5750 int i, nid;
5751
5752 /* Record where the zone boundaries are */
5753 memset(arch_zone_lowest_possible_pfn, 0,
5754 sizeof(arch_zone_lowest_possible_pfn));
5755 memset(arch_zone_highest_possible_pfn, 0,
5756 sizeof(arch_zone_highest_possible_pfn));
5757
5758 start_pfn = find_min_pfn_with_active_regions();
5759
5760 for (i = 0; i < MAX_NR_ZONES; i++) {
5761 if (i == ZONE_MOVABLE)
5762 continue;
5763
5764 end_pfn = max(max_zone_pfn[i], start_pfn);
5765 arch_zone_lowest_possible_pfn[i] = start_pfn;
5766 arch_zone_highest_possible_pfn[i] = end_pfn;
5767
5768 start_pfn = end_pfn;
5769 }
5770 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5771 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5772
5773 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5774 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5775 find_zone_movable_pfns_for_nodes();
5776
5777 /* Print out the zone ranges */
5778 pr_info("Zone ranges:\n");
5779 for (i = 0; i < MAX_NR_ZONES; i++) {
5780 if (i == ZONE_MOVABLE)
5781 continue;
5782 pr_info(" %-8s ", zone_names[i]);
5783 if (arch_zone_lowest_possible_pfn[i] ==
5784 arch_zone_highest_possible_pfn[i])
5785 pr_cont("empty\n");
5786 else
5787 pr_cont("[mem %#018Lx-%#018Lx]\n",
5788 (u64)arch_zone_lowest_possible_pfn[i]
5789 << PAGE_SHIFT,
5790 ((u64)arch_zone_highest_possible_pfn[i]
5791 << PAGE_SHIFT) - 1);
5792 }
5793
5794 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5795 pr_info("Movable zone start for each node\n");
5796 for (i = 0; i < MAX_NUMNODES; i++) {
5797 if (zone_movable_pfn[i])
5798 pr_info(" Node %d: %#018Lx\n", i,
5799 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5800 }
5801
5802 /* Print out the early node map */
5803 pr_info("Early memory node ranges\n");
5804 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5805 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5806 (u64)start_pfn << PAGE_SHIFT,
5807 ((u64)end_pfn << PAGE_SHIFT) - 1);
5808
5809 /* Initialise every node */
5810 mminit_verify_pageflags_layout();
5811 setup_nr_node_ids();
5812 for_each_online_node(nid) {
5813 pg_data_t *pgdat = NODE_DATA(nid);
5814 free_area_init_node(nid, NULL,
5815 find_min_pfn_for_node(nid), NULL);
5816
5817 /* Any memory on that node */
5818 if (pgdat->node_present_pages)
5819 node_set_state(nid, N_MEMORY);
5820 check_for_memory(pgdat, nid);
5821 }
5822 }
5823
5824 static int __init cmdline_parse_core(char *p, unsigned long *core)
5825 {
5826 unsigned long long coremem;
5827 if (!p)
5828 return -EINVAL;
5829
5830 coremem = memparse(p, &p);
5831 *core = coremem >> PAGE_SHIFT;
5832
5833 /* Paranoid check that UL is enough for the coremem value */
5834 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5835
5836 return 0;
5837 }
5838
5839 /*
5840 * kernelcore=size sets the amount of memory for use for allocations that
5841 * cannot be reclaimed or migrated.
5842 */
5843 static int __init cmdline_parse_kernelcore(char *p)
5844 {
5845 return cmdline_parse_core(p, &required_kernelcore);
5846 }
5847
5848 /*
5849 * movablecore=size sets the amount of memory for use for allocations that
5850 * can be reclaimed or migrated.
5851 */
5852 static int __init cmdline_parse_movablecore(char *p)
5853 {
5854 return cmdline_parse_core(p, &required_movablecore);
5855 }
5856
5857 early_param("kernelcore", cmdline_parse_kernelcore);
5858 early_param("movablecore", cmdline_parse_movablecore);
5859
5860 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5861
5862 void adjust_managed_page_count(struct page *page, long count)
5863 {
5864 spin_lock(&managed_page_count_lock);
5865 page_zone(page)->managed_pages += count;
5866 totalram_pages += count;
5867 #ifdef CONFIG_HIGHMEM
5868 if (PageHighMem(page))
5869 totalhigh_pages += count;
5870 #endif
5871 spin_unlock(&managed_page_count_lock);
5872 }
5873 EXPORT_SYMBOL(adjust_managed_page_count);
5874
5875 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5876 {
5877 void *pos;
5878 unsigned long pages = 0;
5879
5880 start = (void *)PAGE_ALIGN((unsigned long)start);
5881 end = (void *)((unsigned long)end & PAGE_MASK);
5882 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5883 if ((unsigned int)poison <= 0xFF)
5884 memset(pos, poison, PAGE_SIZE);
5885 free_reserved_page(virt_to_page(pos));
5886 }
5887
5888 if (pages && s)
5889 pr_info("Freeing %s memory: %ldK\n",
5890 s, pages << (PAGE_SHIFT - 10));
5891
5892 return pages;
5893 }
5894 EXPORT_SYMBOL(free_reserved_area);
5895
5896 #ifdef CONFIG_HIGHMEM
5897 void free_highmem_page(struct page *page)
5898 {
5899 __free_reserved_page(page);
5900 totalram_pages++;
5901 page_zone(page)->managed_pages++;
5902 totalhigh_pages++;
5903 }
5904 #endif
5905
5906
5907 void __init mem_init_print_info(const char *str)
5908 {
5909 unsigned long physpages, codesize, datasize, rosize, bss_size;
5910 unsigned long init_code_size, init_data_size;
5911
5912 physpages = get_num_physpages();
5913 codesize = _etext - _stext;
5914 datasize = _edata - _sdata;
5915 rosize = __end_rodata - __start_rodata;
5916 bss_size = __bss_stop - __bss_start;
5917 init_data_size = __init_end - __init_begin;
5918 init_code_size = _einittext - _sinittext;
5919
5920 /*
5921 * Detect special cases and adjust section sizes accordingly:
5922 * 1) .init.* may be embedded into .data sections
5923 * 2) .init.text.* may be out of [__init_begin, __init_end],
5924 * please refer to arch/tile/kernel/vmlinux.lds.S.
5925 * 3) .rodata.* may be embedded into .text or .data sections.
5926 */
5927 #define adj_init_size(start, end, size, pos, adj) \
5928 do { \
5929 if (start <= pos && pos < end && size > adj) \
5930 size -= adj; \
5931 } while (0)
5932
5933 adj_init_size(__init_begin, __init_end, init_data_size,
5934 _sinittext, init_code_size);
5935 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5936 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5937 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5938 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5939
5940 #undef adj_init_size
5941
5942 pr_info("Memory: %luK/%luK available "
5943 "(%luK kernel code, %luK rwdata, %luK rodata, "
5944 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5945 #ifdef CONFIG_HIGHMEM
5946 ", %luK highmem"
5947 #endif
5948 "%s%s)\n",
5949 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5950 codesize >> 10, datasize >> 10, rosize >> 10,
5951 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5952 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5953 totalcma_pages << (PAGE_SHIFT-10),
5954 #ifdef CONFIG_HIGHMEM
5955 totalhigh_pages << (PAGE_SHIFT-10),
5956 #endif
5957 str ? ", " : "", str ? str : "");
5958 }
5959
5960 /**
5961 * set_dma_reserve - set the specified number of pages reserved in the first zone
5962 * @new_dma_reserve: The number of pages to mark reserved
5963 *
5964 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5965 * In the DMA zone, a significant percentage may be consumed by kernel image
5966 * and other unfreeable allocations which can skew the watermarks badly. This
5967 * function may optionally be used to account for unfreeable pages in the
5968 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5969 * smaller per-cpu batchsize.
5970 */
5971 void __init set_dma_reserve(unsigned long new_dma_reserve)
5972 {
5973 dma_reserve = new_dma_reserve;
5974 }
5975
5976 void __init free_area_init(unsigned long *zones_size)
5977 {
5978 free_area_init_node(0, zones_size,
5979 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5980 }
5981
5982 static int page_alloc_cpu_notify(struct notifier_block *self,
5983 unsigned long action, void *hcpu)
5984 {
5985 int cpu = (unsigned long)hcpu;
5986
5987 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5988 lru_add_drain_cpu(cpu);
5989 drain_pages(cpu);
5990
5991 /*
5992 * Spill the event counters of the dead processor
5993 * into the current processors event counters.
5994 * This artificially elevates the count of the current
5995 * processor.
5996 */
5997 vm_events_fold_cpu(cpu);
5998
5999 /*
6000 * Zero the differential counters of the dead processor
6001 * so that the vm statistics are consistent.
6002 *
6003 * This is only okay since the processor is dead and cannot
6004 * race with what we are doing.
6005 */
6006 cpu_vm_stats_fold(cpu);
6007 }
6008 return NOTIFY_OK;
6009 }
6010
6011 void __init page_alloc_init(void)
6012 {
6013 hotcpu_notifier(page_alloc_cpu_notify, 0);
6014 }
6015
6016 /*
6017 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6018 * or min_free_kbytes changes.
6019 */
6020 static void calculate_totalreserve_pages(void)
6021 {
6022 struct pglist_data *pgdat;
6023 unsigned long reserve_pages = 0;
6024 enum zone_type i, j;
6025
6026 for_each_online_pgdat(pgdat) {
6027 for (i = 0; i < MAX_NR_ZONES; i++) {
6028 struct zone *zone = pgdat->node_zones + i;
6029 long max = 0;
6030
6031 /* Find valid and maximum lowmem_reserve in the zone */
6032 for (j = i; j < MAX_NR_ZONES; j++) {
6033 if (zone->lowmem_reserve[j] > max)
6034 max = zone->lowmem_reserve[j];
6035 }
6036
6037 /* we treat the high watermark as reserved pages. */
6038 max += high_wmark_pages(zone);
6039
6040 if (max > zone->managed_pages)
6041 max = zone->managed_pages;
6042 reserve_pages += max;
6043 /*
6044 * Lowmem reserves are not available to
6045 * GFP_HIGHUSER page cache allocations and
6046 * kswapd tries to balance zones to their high
6047 * watermark. As a result, neither should be
6048 * regarded as dirtyable memory, to prevent a
6049 * situation where reclaim has to clean pages
6050 * in order to balance the zones.
6051 */
6052 zone->dirty_balance_reserve = max;
6053 }
6054 }
6055 dirty_balance_reserve = reserve_pages;
6056 totalreserve_pages = reserve_pages;
6057 }
6058
6059 /*
6060 * setup_per_zone_lowmem_reserve - called whenever
6061 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6062 * has a correct pages reserved value, so an adequate number of
6063 * pages are left in the zone after a successful __alloc_pages().
6064 */
6065 static void setup_per_zone_lowmem_reserve(void)
6066 {
6067 struct pglist_data *pgdat;
6068 enum zone_type j, idx;
6069
6070 for_each_online_pgdat(pgdat) {
6071 for (j = 0; j < MAX_NR_ZONES; j++) {
6072 struct zone *zone = pgdat->node_zones + j;
6073 unsigned long managed_pages = zone->managed_pages;
6074
6075 zone->lowmem_reserve[j] = 0;
6076
6077 idx = j;
6078 while (idx) {
6079 struct zone *lower_zone;
6080
6081 idx--;
6082
6083 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6084 sysctl_lowmem_reserve_ratio[idx] = 1;
6085
6086 lower_zone = pgdat->node_zones + idx;
6087 lower_zone->lowmem_reserve[j] = managed_pages /
6088 sysctl_lowmem_reserve_ratio[idx];
6089 managed_pages += lower_zone->managed_pages;
6090 }
6091 }
6092 }
6093
6094 /* update totalreserve_pages */
6095 calculate_totalreserve_pages();
6096 }
6097
6098 static void __setup_per_zone_wmarks(void)
6099 {
6100 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6101 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6102 unsigned long lowmem_pages = 0;
6103 struct zone *zone;
6104 unsigned long flags;
6105
6106 /* Calculate total number of !ZONE_HIGHMEM pages */
6107 for_each_zone(zone) {
6108 if (!is_highmem(zone))
6109 lowmem_pages += zone->managed_pages;
6110 }
6111
6112 for_each_zone(zone) {
6113 u64 min, low;
6114
6115 spin_lock_irqsave(&zone->lock, flags);
6116 min = (u64)pages_min * zone->managed_pages;
6117 do_div(min, lowmem_pages);
6118 low = (u64)pages_low * zone->managed_pages;
6119 do_div(low, vm_total_pages);
6120
6121 if (is_highmem(zone)) {
6122 /*
6123 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6124 * need highmem pages, so cap pages_min to a small
6125 * value here.
6126 *
6127 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6128 * deltas control asynch page reclaim, and so should
6129 * not be capped for highmem.
6130 */
6131 unsigned long min_pages;
6132
6133 min_pages = zone->managed_pages / 1024;
6134 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6135 zone->watermark[WMARK_MIN] = min_pages;
6136 } else {
6137 /*
6138 * If it's a lowmem zone, reserve a number of pages
6139 * proportionate to the zone's size.
6140 */
6141 zone->watermark[WMARK_MIN] = min;
6142 }
6143
6144 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6145 low + (min >> 2);
6146 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6147 low + (min >> 1);
6148
6149 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6150 high_wmark_pages(zone) - low_wmark_pages(zone) -
6151 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6152
6153 spin_unlock_irqrestore(&zone->lock, flags);
6154 }
6155
6156 /* update totalreserve_pages */
6157 calculate_totalreserve_pages();
6158 }
6159
6160 /**
6161 * setup_per_zone_wmarks - called when min_free_kbytes changes
6162 * or when memory is hot-{added|removed}
6163 *
6164 * Ensures that the watermark[min,low,high] values for each zone are set
6165 * correctly with respect to min_free_kbytes.
6166 */
6167 void setup_per_zone_wmarks(void)
6168 {
6169 mutex_lock(&zonelists_mutex);
6170 __setup_per_zone_wmarks();
6171 mutex_unlock(&zonelists_mutex);
6172 }
6173
6174 /*
6175 * The inactive anon list should be small enough that the VM never has to
6176 * do too much work, but large enough that each inactive page has a chance
6177 * to be referenced again before it is swapped out.
6178 *
6179 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6180 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6181 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6182 * the anonymous pages are kept on the inactive list.
6183 *
6184 * total target max
6185 * memory ratio inactive anon
6186 * -------------------------------------
6187 * 10MB 1 5MB
6188 * 100MB 1 50MB
6189 * 1GB 3 250MB
6190 * 10GB 10 0.9GB
6191 * 100GB 31 3GB
6192 * 1TB 101 10GB
6193 * 10TB 320 32GB
6194 */
6195 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6196 {
6197 unsigned int gb, ratio;
6198
6199 /* Zone size in gigabytes */
6200 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6201 if (gb)
6202 ratio = int_sqrt(10 * gb);
6203 else
6204 ratio = 1;
6205
6206 zone->inactive_ratio = ratio;
6207 }
6208
6209 static void __meminit setup_per_zone_inactive_ratio(void)
6210 {
6211 struct zone *zone;
6212
6213 for_each_zone(zone)
6214 calculate_zone_inactive_ratio(zone);
6215 }
6216
6217 /*
6218 * Initialise min_free_kbytes.
6219 *
6220 * For small machines we want it small (128k min). For large machines
6221 * we want it large (64MB max). But it is not linear, because network
6222 * bandwidth does not increase linearly with machine size. We use
6223 *
6224 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6225 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6226 *
6227 * which yields
6228 *
6229 * 16MB: 512k
6230 * 32MB: 724k
6231 * 64MB: 1024k
6232 * 128MB: 1448k
6233 * 256MB: 2048k
6234 * 512MB: 2896k
6235 * 1024MB: 4096k
6236 * 2048MB: 5792k
6237 * 4096MB: 8192k
6238 * 8192MB: 11584k
6239 * 16384MB: 16384k
6240 */
6241 int __meminit init_per_zone_wmark_min(void)
6242 {
6243 unsigned long lowmem_kbytes;
6244 int new_min_free_kbytes;
6245
6246 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6247 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6248
6249 if (new_min_free_kbytes > user_min_free_kbytes) {
6250 min_free_kbytes = new_min_free_kbytes;
6251 if (min_free_kbytes < 128)
6252 min_free_kbytes = 128;
6253 if (min_free_kbytes > 65536)
6254 min_free_kbytes = 65536;
6255 } else {
6256 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6257 new_min_free_kbytes, user_min_free_kbytes);
6258 }
6259 setup_per_zone_wmarks();
6260 refresh_zone_stat_thresholds();
6261 setup_per_zone_lowmem_reserve();
6262 setup_per_zone_inactive_ratio();
6263 return 0;
6264 }
6265 core_initcall(init_per_zone_wmark_min)
6266
6267 /*
6268 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6269 * that we can call two helper functions whenever min_free_kbytes
6270 * or extra_free_kbytes changes.
6271 */
6272 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6273 void __user *buffer, size_t *length, loff_t *ppos)
6274 {
6275 int rc;
6276
6277 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6278 if (rc)
6279 return rc;
6280
6281 if (write) {
6282 user_min_free_kbytes = min_free_kbytes;
6283 setup_per_zone_wmarks();
6284 }
6285 return 0;
6286 }
6287
6288 #ifdef CONFIG_NUMA
6289 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6290 void __user *buffer, size_t *length, loff_t *ppos)
6291 {
6292 struct zone *zone;
6293 int rc;
6294
6295 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6296 if (rc)
6297 return rc;
6298
6299 for_each_zone(zone)
6300 zone->min_unmapped_pages = (zone->managed_pages *
6301 sysctl_min_unmapped_ratio) / 100;
6302 return 0;
6303 }
6304
6305 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6306 void __user *buffer, size_t *length, loff_t *ppos)
6307 {
6308 struct zone *zone;
6309 int rc;
6310
6311 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6312 if (rc)
6313 return rc;
6314
6315 for_each_zone(zone)
6316 zone->min_slab_pages = (zone->managed_pages *
6317 sysctl_min_slab_ratio) / 100;
6318 return 0;
6319 }
6320 #endif
6321
6322 /*
6323 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6324 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6325 * whenever sysctl_lowmem_reserve_ratio changes.
6326 *
6327 * The reserve ratio obviously has absolutely no relation with the
6328 * minimum watermarks. The lowmem reserve ratio can only make sense
6329 * if in function of the boot time zone sizes.
6330 */
6331 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6332 void __user *buffer, size_t *length, loff_t *ppos)
6333 {
6334 proc_dointvec_minmax(table, write, buffer, length, ppos);
6335 setup_per_zone_lowmem_reserve();
6336 return 0;
6337 }
6338
6339 /*
6340 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6341 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6342 * pagelist can have before it gets flushed back to buddy allocator.
6343 */
6344 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6345 void __user *buffer, size_t *length, loff_t *ppos)
6346 {
6347 struct zone *zone;
6348 int old_percpu_pagelist_fraction;
6349 int ret;
6350
6351 mutex_lock(&pcp_batch_high_lock);
6352 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6353
6354 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6355 if (!write || ret < 0)
6356 goto out;
6357
6358 /* Sanity checking to avoid pcp imbalance */
6359 if (percpu_pagelist_fraction &&
6360 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6361 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6362 ret = -EINVAL;
6363 goto out;
6364 }
6365
6366 /* No change? */
6367 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6368 goto out;
6369
6370 for_each_populated_zone(zone) {
6371 unsigned int cpu;
6372
6373 for_each_possible_cpu(cpu)
6374 pageset_set_high_and_batch(zone,
6375 per_cpu_ptr(zone->pageset, cpu));
6376 }
6377 out:
6378 mutex_unlock(&pcp_batch_high_lock);
6379 return ret;
6380 }
6381
6382 #ifdef CONFIG_NUMA
6383 int hashdist = HASHDIST_DEFAULT;
6384
6385 static int __init set_hashdist(char *str)
6386 {
6387 if (!str)
6388 return 0;
6389 hashdist = simple_strtoul(str, &str, 0);
6390 return 1;
6391 }
6392 __setup("hashdist=", set_hashdist);
6393 #endif
6394
6395 /*
6396 * allocate a large system hash table from bootmem
6397 * - it is assumed that the hash table must contain an exact power-of-2
6398 * quantity of entries
6399 * - limit is the number of hash buckets, not the total allocation size
6400 */
6401 void *__init alloc_large_system_hash(const char *tablename,
6402 unsigned long bucketsize,
6403 unsigned long numentries,
6404 int scale,
6405 int flags,
6406 unsigned int *_hash_shift,
6407 unsigned int *_hash_mask,
6408 unsigned long low_limit,
6409 unsigned long high_limit)
6410 {
6411 unsigned long long max = high_limit;
6412 unsigned long log2qty, size;
6413 void *table = NULL;
6414
6415 /* allow the kernel cmdline to have a say */
6416 if (!numentries) {
6417 /* round applicable memory size up to nearest megabyte */
6418 numentries = nr_kernel_pages;
6419
6420 /* It isn't necessary when PAGE_SIZE >= 1MB */
6421 if (PAGE_SHIFT < 20)
6422 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6423
6424 /* limit to 1 bucket per 2^scale bytes of low memory */
6425 if (scale > PAGE_SHIFT)
6426 numentries >>= (scale - PAGE_SHIFT);
6427 else
6428 numentries <<= (PAGE_SHIFT - scale);
6429
6430 /* Make sure we've got at least a 0-order allocation.. */
6431 if (unlikely(flags & HASH_SMALL)) {
6432 /* Makes no sense without HASH_EARLY */
6433 WARN_ON(!(flags & HASH_EARLY));
6434 if (!(numentries >> *_hash_shift)) {
6435 numentries = 1UL << *_hash_shift;
6436 BUG_ON(!numentries);
6437 }
6438 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6439 numentries = PAGE_SIZE / bucketsize;
6440 }
6441 numentries = roundup_pow_of_two(numentries);
6442
6443 /* limit allocation size to 1/16 total memory by default */
6444 if (max == 0) {
6445 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6446 do_div(max, bucketsize);
6447 }
6448 max = min(max, 0x80000000ULL);
6449
6450 if (numentries < low_limit)
6451 numentries = low_limit;
6452 if (numentries > max)
6453 numentries = max;
6454
6455 log2qty = ilog2(numentries);
6456
6457 do {
6458 size = bucketsize << log2qty;
6459 if (flags & HASH_EARLY)
6460 table = memblock_virt_alloc_nopanic(size, 0);
6461 else if (hashdist)
6462 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6463 else {
6464 /*
6465 * If bucketsize is not a power-of-two, we may free
6466 * some pages at the end of hash table which
6467 * alloc_pages_exact() automatically does
6468 */
6469 if (get_order(size) < MAX_ORDER) {
6470 table = alloc_pages_exact(size, GFP_ATOMIC);
6471 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6472 }
6473 }
6474 } while (!table && size > PAGE_SIZE && --log2qty);
6475
6476 if (!table)
6477 panic("Failed to allocate %s hash table\n", tablename);
6478
6479 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6480 tablename,
6481 (1UL << log2qty),
6482 ilog2(size) - PAGE_SHIFT,
6483 size);
6484
6485 if (_hash_shift)
6486 *_hash_shift = log2qty;
6487 if (_hash_mask)
6488 *_hash_mask = (1 << log2qty) - 1;
6489
6490 return table;
6491 }
6492
6493 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6494 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6495 unsigned long pfn)
6496 {
6497 #ifdef CONFIG_SPARSEMEM
6498 return __pfn_to_section(pfn)->pageblock_flags;
6499 #else
6500 return zone->pageblock_flags;
6501 #endif /* CONFIG_SPARSEMEM */
6502 }
6503
6504 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6505 {
6506 #ifdef CONFIG_SPARSEMEM
6507 pfn &= (PAGES_PER_SECTION-1);
6508 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6509 #else
6510 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6511 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6512 #endif /* CONFIG_SPARSEMEM */
6513 }
6514
6515 /**
6516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6517 * @page: The page within the block of interest
6518 * @pfn: The target page frame number
6519 * @end_bitidx: The last bit of interest to retrieve
6520 * @mask: mask of bits that the caller is interested in
6521 *
6522 * Return: pageblock_bits flags
6523 */
6524 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6525 unsigned long end_bitidx,
6526 unsigned long mask)
6527 {
6528 struct zone *zone;
6529 unsigned long *bitmap;
6530 unsigned long bitidx, word_bitidx;
6531 unsigned long word;
6532
6533 zone = page_zone(page);
6534 bitmap = get_pageblock_bitmap(zone, pfn);
6535 bitidx = pfn_to_bitidx(zone, pfn);
6536 word_bitidx = bitidx / BITS_PER_LONG;
6537 bitidx &= (BITS_PER_LONG-1);
6538
6539 word = bitmap[word_bitidx];
6540 bitidx += end_bitidx;
6541 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6542 }
6543
6544 /**
6545 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6546 * @page: The page within the block of interest
6547 * @flags: The flags to set
6548 * @pfn: The target page frame number
6549 * @end_bitidx: The last bit of interest
6550 * @mask: mask of bits that the caller is interested in
6551 */
6552 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6553 unsigned long pfn,
6554 unsigned long end_bitidx,
6555 unsigned long mask)
6556 {
6557 struct zone *zone;
6558 unsigned long *bitmap;
6559 unsigned long bitidx, word_bitidx;
6560 unsigned long old_word, word;
6561
6562 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6563
6564 zone = page_zone(page);
6565 bitmap = get_pageblock_bitmap(zone, pfn);
6566 bitidx = pfn_to_bitidx(zone, pfn);
6567 word_bitidx = bitidx / BITS_PER_LONG;
6568 bitidx &= (BITS_PER_LONG-1);
6569
6570 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6571
6572 bitidx += end_bitidx;
6573 mask <<= (BITS_PER_LONG - bitidx - 1);
6574 flags <<= (BITS_PER_LONG - bitidx - 1);
6575
6576 word = READ_ONCE(bitmap[word_bitidx]);
6577 for (;;) {
6578 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6579 if (word == old_word)
6580 break;
6581 word = old_word;
6582 }
6583 }
6584
6585 /*
6586 * This function checks whether pageblock includes unmovable pages or not.
6587 * If @count is not zero, it is okay to include less @count unmovable pages
6588 *
6589 * PageLRU check without isolation or lru_lock could race so that
6590 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6591 * expect this function should be exact.
6592 */
6593 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6594 bool skip_hwpoisoned_pages)
6595 {
6596 unsigned long pfn, iter, found;
6597 int mt;
6598
6599 /*
6600 * For avoiding noise data, lru_add_drain_all() should be called
6601 * If ZONE_MOVABLE, the zone never contains unmovable pages
6602 */
6603 if (zone_idx(zone) == ZONE_MOVABLE)
6604 return false;
6605 mt = get_pageblock_migratetype(page);
6606 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6607 return false;
6608
6609 pfn = page_to_pfn(page);
6610 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6611 unsigned long check = pfn + iter;
6612
6613 if (!pfn_valid_within(check))
6614 continue;
6615
6616 page = pfn_to_page(check);
6617
6618 /*
6619 * Hugepages are not in LRU lists, but they're movable.
6620 * We need not scan over tail pages bacause we don't
6621 * handle each tail page individually in migration.
6622 */
6623 if (PageHuge(page)) {
6624 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6625 continue;
6626 }
6627
6628 /*
6629 * We can't use page_count without pin a page
6630 * because another CPU can free compound page.
6631 * This check already skips compound tails of THP
6632 * because their page->_count is zero at all time.
6633 */
6634 if (!atomic_read(&page->_count)) {
6635 if (PageBuddy(page))
6636 iter += (1 << page_order(page)) - 1;
6637 continue;
6638 }
6639
6640 /*
6641 * The HWPoisoned page may be not in buddy system, and
6642 * page_count() is not 0.
6643 */
6644 if (skip_hwpoisoned_pages && PageHWPoison(page))
6645 continue;
6646
6647 if (!PageLRU(page))
6648 found++;
6649 /*
6650 * If there are RECLAIMABLE pages, we need to check
6651 * it. But now, memory offline itself doesn't call
6652 * shrink_node_slabs() and it still to be fixed.
6653 */
6654 /*
6655 * If the page is not RAM, page_count()should be 0.
6656 * we don't need more check. This is an _used_ not-movable page.
6657 *
6658 * The problematic thing here is PG_reserved pages. PG_reserved
6659 * is set to both of a memory hole page and a _used_ kernel
6660 * page at boot.
6661 */
6662 if (found > count)
6663 return true;
6664 }
6665 return false;
6666 }
6667
6668 bool is_pageblock_removable_nolock(struct page *page)
6669 {
6670 struct zone *zone;
6671 unsigned long pfn;
6672
6673 /*
6674 * We have to be careful here because we are iterating over memory
6675 * sections which are not zone aware so we might end up outside of
6676 * the zone but still within the section.
6677 * We have to take care about the node as well. If the node is offline
6678 * its NODE_DATA will be NULL - see page_zone.
6679 */
6680 if (!node_online(page_to_nid(page)))
6681 return false;
6682
6683 zone = page_zone(page);
6684 pfn = page_to_pfn(page);
6685 if (!zone_spans_pfn(zone, pfn))
6686 return false;
6687
6688 return !has_unmovable_pages(zone, page, 0, true);
6689 }
6690
6691 #ifdef CONFIG_CMA
6692
6693 static unsigned long pfn_max_align_down(unsigned long pfn)
6694 {
6695 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6696 pageblock_nr_pages) - 1);
6697 }
6698
6699 static unsigned long pfn_max_align_up(unsigned long pfn)
6700 {
6701 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6702 pageblock_nr_pages));
6703 }
6704
6705 /* [start, end) must belong to a single zone. */
6706 static int __alloc_contig_migrate_range(struct compact_control *cc,
6707 unsigned long start, unsigned long end)
6708 {
6709 /* This function is based on compact_zone() from compaction.c. */
6710 unsigned long nr_reclaimed;
6711 unsigned long pfn = start;
6712 unsigned int tries = 0;
6713 int ret = 0;
6714
6715 migrate_prep();
6716
6717 while (pfn < end || !list_empty(&cc->migratepages)) {
6718 if (fatal_signal_pending(current)) {
6719 ret = -EINTR;
6720 break;
6721 }
6722
6723 if (list_empty(&cc->migratepages)) {
6724 cc->nr_migratepages = 0;
6725 pfn = isolate_migratepages_range(cc, pfn, end);
6726 if (!pfn) {
6727 ret = -EINTR;
6728 break;
6729 }
6730 tries = 0;
6731 } else if (++tries == 5) {
6732 ret = ret < 0 ? ret : -EBUSY;
6733 break;
6734 }
6735
6736 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6737 &cc->migratepages);
6738 cc->nr_migratepages -= nr_reclaimed;
6739
6740 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6741 NULL, 0, cc->mode, MR_CMA);
6742 }
6743 if (ret < 0) {
6744 putback_movable_pages(&cc->migratepages);
6745 return ret;
6746 }
6747 return 0;
6748 }
6749
6750 /**
6751 * alloc_contig_range() -- tries to allocate given range of pages
6752 * @start: start PFN to allocate
6753 * @end: one-past-the-last PFN to allocate
6754 * @migratetype: migratetype of the underlaying pageblocks (either
6755 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6756 * in range must have the same migratetype and it must
6757 * be either of the two.
6758 *
6759 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6760 * aligned, however it's the caller's responsibility to guarantee that
6761 * we are the only thread that changes migrate type of pageblocks the
6762 * pages fall in.
6763 *
6764 * The PFN range must belong to a single zone.
6765 *
6766 * Returns zero on success or negative error code. On success all
6767 * pages which PFN is in [start, end) are allocated for the caller and
6768 * need to be freed with free_contig_range().
6769 */
6770 int alloc_contig_range(unsigned long start, unsigned long end,
6771 unsigned migratetype)
6772 {
6773 unsigned long outer_start, outer_end;
6774 unsigned int order;
6775 int ret = 0;
6776
6777 struct compact_control cc = {
6778 .nr_migratepages = 0,
6779 .order = -1,
6780 .zone = page_zone(pfn_to_page(start)),
6781 .mode = MIGRATE_SYNC,
6782 .ignore_skip_hint = true,
6783 };
6784 INIT_LIST_HEAD(&cc.migratepages);
6785
6786 /*
6787 * What we do here is we mark all pageblocks in range as
6788 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6789 * have different sizes, and due to the way page allocator
6790 * work, we align the range to biggest of the two pages so
6791 * that page allocator won't try to merge buddies from
6792 * different pageblocks and change MIGRATE_ISOLATE to some
6793 * other migration type.
6794 *
6795 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6796 * migrate the pages from an unaligned range (ie. pages that
6797 * we are interested in). This will put all the pages in
6798 * range back to page allocator as MIGRATE_ISOLATE.
6799 *
6800 * When this is done, we take the pages in range from page
6801 * allocator removing them from the buddy system. This way
6802 * page allocator will never consider using them.
6803 *
6804 * This lets us mark the pageblocks back as
6805 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6806 * aligned range but not in the unaligned, original range are
6807 * put back to page allocator so that buddy can use them.
6808 */
6809
6810 ret = start_isolate_page_range(pfn_max_align_down(start),
6811 pfn_max_align_up(end), migratetype,
6812 false);
6813 if (ret)
6814 return ret;
6815
6816 ret = __alloc_contig_migrate_range(&cc, start, end);
6817 if (ret)
6818 goto done;
6819
6820 /*
6821 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6822 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6823 * more, all pages in [start, end) are free in page allocator.
6824 * What we are going to do is to allocate all pages from
6825 * [start, end) (that is remove them from page allocator).
6826 *
6827 * The only problem is that pages at the beginning and at the
6828 * end of interesting range may be not aligned with pages that
6829 * page allocator holds, ie. they can be part of higher order
6830 * pages. Because of this, we reserve the bigger range and
6831 * once this is done free the pages we are not interested in.
6832 *
6833 * We don't have to hold zone->lock here because the pages are
6834 * isolated thus they won't get removed from buddy.
6835 */
6836
6837 lru_add_drain_all();
6838 drain_all_pages(cc.zone);
6839
6840 order = 0;
6841 outer_start = start;
6842 while (!PageBuddy(pfn_to_page(outer_start))) {
6843 if (++order >= MAX_ORDER) {
6844 ret = -EBUSY;
6845 goto done;
6846 }
6847 outer_start &= ~0UL << order;
6848 }
6849
6850 /* Make sure the range is really isolated. */
6851 if (test_pages_isolated(outer_start, end, false)) {
6852 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6853 __func__, outer_start, end);
6854 ret = -EBUSY;
6855 goto done;
6856 }
6857
6858 /* Grab isolated pages from freelists. */
6859 outer_end = isolate_freepages_range(&cc, outer_start, end);
6860 if (!outer_end) {
6861 ret = -EBUSY;
6862 goto done;
6863 }
6864
6865 /* Free head and tail (if any) */
6866 if (start != outer_start)
6867 free_contig_range(outer_start, start - outer_start);
6868 if (end != outer_end)
6869 free_contig_range(end, outer_end - end);
6870
6871 done:
6872 undo_isolate_page_range(pfn_max_align_down(start),
6873 pfn_max_align_up(end), migratetype);
6874 return ret;
6875 }
6876
6877 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6878 {
6879 unsigned int count = 0;
6880
6881 for (; nr_pages--; pfn++) {
6882 struct page *page = pfn_to_page(pfn);
6883
6884 count += page_count(page) != 1;
6885 __free_page(page);
6886 }
6887 WARN(count != 0, "%d pages are still in use!\n", count);
6888 }
6889 #endif
6890
6891 #ifdef CONFIG_MEMORY_HOTPLUG
6892 /*
6893 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6894 * page high values need to be recalulated.
6895 */
6896 void __meminit zone_pcp_update(struct zone *zone)
6897 {
6898 unsigned cpu;
6899 mutex_lock(&pcp_batch_high_lock);
6900 for_each_possible_cpu(cpu)
6901 pageset_set_high_and_batch(zone,
6902 per_cpu_ptr(zone->pageset, cpu));
6903 mutex_unlock(&pcp_batch_high_lock);
6904 }
6905 #endif
6906
6907 void zone_pcp_reset(struct zone *zone)
6908 {
6909 unsigned long flags;
6910 int cpu;
6911 struct per_cpu_pageset *pset;
6912
6913 /* avoid races with drain_pages() */
6914 local_irq_save(flags);
6915 if (zone->pageset != &boot_pageset) {
6916 for_each_online_cpu(cpu) {
6917 pset = per_cpu_ptr(zone->pageset, cpu);
6918 drain_zonestat(zone, pset);
6919 }
6920 free_percpu(zone->pageset);
6921 zone->pageset = &boot_pageset;
6922 }
6923 local_irq_restore(flags);
6924 }
6925
6926 #ifdef CONFIG_MEMORY_HOTREMOVE
6927 /*
6928 * All pages in the range must be isolated before calling this.
6929 */
6930 void
6931 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6932 {
6933 struct page *page;
6934 struct zone *zone;
6935 unsigned int order, i;
6936 unsigned long pfn;
6937 unsigned long flags;
6938 /* find the first valid pfn */
6939 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6940 if (pfn_valid(pfn))
6941 break;
6942 if (pfn == end_pfn)
6943 return;
6944 zone = page_zone(pfn_to_page(pfn));
6945 spin_lock_irqsave(&zone->lock, flags);
6946 pfn = start_pfn;
6947 while (pfn < end_pfn) {
6948 if (!pfn_valid(pfn)) {
6949 pfn++;
6950 continue;
6951 }
6952 page = pfn_to_page(pfn);
6953 /*
6954 * The HWPoisoned page may be not in buddy system, and
6955 * page_count() is not 0.
6956 */
6957 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6958 pfn++;
6959 SetPageReserved(page);
6960 continue;
6961 }
6962
6963 BUG_ON(page_count(page));
6964 BUG_ON(!PageBuddy(page));
6965 order = page_order(page);
6966 #ifdef CONFIG_DEBUG_VM
6967 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6968 pfn, 1 << order, end_pfn);
6969 #endif
6970 list_del(&page->lru);
6971 rmv_page_order(page);
6972 zone->free_area[order].nr_free--;
6973 for (i = 0; i < (1 << order); i++)
6974 SetPageReserved((page+i));
6975 pfn += (1 << order);
6976 }
6977 spin_unlock_irqrestore(&zone->lock, flags);
6978 }
6979 #endif
6980
6981 #ifdef CONFIG_MEMORY_FAILURE
6982 bool is_free_buddy_page(struct page *page)
6983 {
6984 struct zone *zone = page_zone(page);
6985 unsigned long pfn = page_to_pfn(page);
6986 unsigned long flags;
6987 unsigned int order;
6988
6989 spin_lock_irqsave(&zone->lock, flags);
6990 for (order = 0; order < MAX_ORDER; order++) {
6991 struct page *page_head = page - (pfn & ((1 << order) - 1));
6992
6993 if (PageBuddy(page_head) && page_order(page_head) >= order)
6994 break;
6995 }
6996 spin_unlock_irqrestore(&zone->lock, flags);
6997
6998 return order < MAX_ORDER;
6999 }
7000 #endif