x86/head64.c: Early update ucode in 64-bit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 [N_CPU] = { { [0] = 1UL } },
97 #endif /* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109 unsigned long dirty_balance_reserve __read_mostly;
110
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113
114 #ifdef CONFIG_PM_SLEEP
115 /*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
123
124 static gfp_t saved_gfp_mask;
125
126 void pm_restore_gfp_mask(void)
127 {
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
133 }
134
135 void pm_restrict_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
141 }
142
143 bool pm_suspended_storage(void)
144 {
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154
155 static void __free_pages_ok(struct page *page, unsigned int order);
156
157 /*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
167 */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 32,
177 #endif
178 32,
179 };
180
181 EXPORT_SYMBOL(totalram_pages);
182
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 "DMA32",
189 #endif
190 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 "HighMem",
193 #endif
194 "Movable",
195 };
196
197 int min_free_kbytes = 1024;
198
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221
222 int page_group_by_mobility_disabled __read_mostly;
223
224 void set_pageblock_migratetype(struct page *page, int migratetype)
225 {
226
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
229
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
232 }
233
234 bool oom_killer_disabled __read_mostly;
235
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 {
239 int ret = 0;
240 unsigned seq;
241 unsigned long pfn = page_to_pfn(page);
242
243 do {
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 ret = 1;
247 else if (pfn < zone->zone_start_pfn)
248 ret = 1;
249 } while (zone_span_seqretry(zone, seq));
250
251 return ret;
252 }
253
254 static int page_is_consistent(struct zone *zone, struct page *page)
255 {
256 if (!pfn_valid_within(page_to_pfn(page)))
257 return 0;
258 if (zone != page_zone(page))
259 return 0;
260
261 return 1;
262 }
263 /*
264 * Temporary debugging check for pages not lying within a given zone.
265 */
266 static int bad_range(struct zone *zone, struct page *page)
267 {
268 if (page_outside_zone_boundaries(zone, page))
269 return 1;
270 if (!page_is_consistent(zone, page))
271 return 1;
272
273 return 0;
274 }
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
277 {
278 return 0;
279 }
280 #endif
281
282 static void bad_page(struct page *page)
283 {
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
287
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
291 return;
292 }
293
294 /*
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
297 */
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
300 nr_unshown++;
301 goto out;
302 }
303 if (nr_unshown) {
304 printk(KERN_ALERT
305 "BUG: Bad page state: %lu messages suppressed\n",
306 nr_unshown);
307 nr_unshown = 0;
308 }
309 nr_shown = 0;
310 }
311 if (nr_shown++ == 0)
312 resume = jiffies + 60 * HZ;
313
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
316 dump_page(page);
317
318 print_modules();
319 dump_stack();
320 out:
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
324 }
325
326 /*
327 * Higher-order pages are called "compound pages". They are structured thusly:
328 *
329 * The first PAGE_SIZE page is called the "head page".
330 *
331 * The remaining PAGE_SIZE pages are called "tail pages".
332 *
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
335 *
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
339 */
340
341 static void free_compound_page(struct page *page)
342 {
343 __free_pages_ok(page, compound_order(page));
344 }
345
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 int i;
349 int nr_pages = 1 << order;
350
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
356 __SetPageTail(p);
357 set_page_count(p, 0);
358 p->first_page = page;
359 }
360 }
361
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367 int bad = 0;
368
369 if (unlikely(compound_order(page) != order)) {
370 bad_page(page);
371 bad++;
372 }
373
374 __ClearPageHead(page);
375
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
378
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 bad_page(page);
381 bad++;
382 }
383 __ClearPageTail(p);
384 }
385
386 return bad;
387 }
388
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 {
391 int i;
392
393 /*
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 */
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
400 }
401
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
404
405 static int __init debug_guardpage_minorder_setup(char *buf)
406 {
407 unsigned long res;
408
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 return 0;
412 }
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 return 0;
416 }
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418
419 static inline void set_page_guard_flag(struct page *page)
420 {
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422 }
423
424 static inline void clear_page_guard_flag(struct page *page)
425 {
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428 #else
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
431 #endif
432
433 static inline void set_page_order(struct page *page, int order)
434 {
435 set_page_private(page, order);
436 __SetPageBuddy(page);
437 }
438
439 static inline void rmv_page_order(struct page *page)
440 {
441 __ClearPageBuddy(page);
442 set_page_private(page, 0);
443 }
444
445 /*
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
448 *
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
451 * B2 = B1 ^ (1 << O)
452 * For example, if the starting buddy (buddy2) is #8 its order
453 * 1 buddy is #10:
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455 *
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
458 * P = B & ~(1 << O)
459 *
460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461 */
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
464 {
465 return page_idx ^ (1 << order);
466 }
467
468 /*
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
475 *
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478 *
479 * For recording page's order, we use page_private(page).
480 */
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
482 int order)
483 {
484 if (!pfn_valid_within(page_to_pfn(buddy)))
485 return 0;
486
487 if (page_zone_id(page) != page_zone_id(buddy))
488 return 0;
489
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
492 return 1;
493 }
494
495 if (PageBuddy(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
498 }
499 return 0;
500 }
501
502 /*
503 * Freeing function for a buddy system allocator.
504 *
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516 * order is recorded in page_private(page) field.
517 * So when we are allocating or freeing one, we can derive the state of the
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
520 * If a block is freed, and its buddy is also free, then this
521 * triggers coalescing into a block of larger size.
522 *
523 * -- nyc
524 */
525
526 static inline void __free_one_page(struct page *page,
527 struct zone *zone, unsigned int order,
528 int migratetype)
529 {
530 unsigned long page_idx;
531 unsigned long combined_idx;
532 unsigned long uninitialized_var(buddy_idx);
533 struct page *buddy;
534
535 if (unlikely(PageCompound(page)))
536 if (unlikely(destroy_compound_page(page, order)))
537 return;
538
539 VM_BUG_ON(migratetype == -1);
540
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542
543 VM_BUG_ON(page_idx & ((1 << order) - 1));
544 VM_BUG_ON(bad_range(zone, page));
545
546 while (order < MAX_ORDER-1) {
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
549 if (!page_is_buddy(page, buddy, order))
550 break;
551 /*
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
554 */
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
558 __mod_zone_freepage_state(zone, 1 << order,
559 migratetype);
560 } else {
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
564 }
565 combined_idx = buddy_idx & page_idx;
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
568 order++;
569 }
570 set_page_order(page, order);
571
572 /*
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
579 */
580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 struct page *higher_page, *higher_buddy;
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 higher_buddy = higher_page + (buddy_idx - combined_idx);
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
589 goto out;
590 }
591 }
592
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594 out:
595 zone->free_area[order].nr_free++;
596 }
597
598 static inline int free_pages_check(struct page *page)
599 {
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
602 (atomic_read(&page->_count) != 0) |
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
605 bad_page(page);
606 return 1;
607 }
608 reset_page_last_nid(page);
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 return 0;
612 }
613
614 /*
615 * Frees a number of pages from the PCP lists
616 * Assumes all pages on list are in same zone, and of same order.
617 * count is the number of pages to free.
618 *
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
621 *
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
624 */
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
627 {
628 int migratetype = 0;
629 int batch_free = 0;
630 int to_free = count;
631
632 spin_lock(&zone->lock);
633 zone->all_unreclaimable = 0;
634 zone->pages_scanned = 0;
635
636 while (to_free) {
637 struct page *page;
638 struct list_head *list;
639
640 /*
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
645 * lists
646 */
647 do {
648 batch_free++;
649 if (++migratetype == MIGRATE_PCPTYPES)
650 migratetype = 0;
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
653
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
657
658 do {
659 int mt; /* migratetype of the to-be-freed page */
660
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
664 mt = get_freepage_migratetype(page);
665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 }
673 } while (--to_free && --batch_free && !list_empty(list));
674 }
675 spin_unlock(&zone->lock);
676 }
677
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680 {
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
689 }
690
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715 }
716
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 unsigned long flags;
720 int migratetype;
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
731 }
732
733 /*
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
739 */
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
741 {
742 unsigned int nr_pages = 1 << order;
743 unsigned int loop;
744
745 prefetchw(page);
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
748
749 if (loop + 1 < nr_pages)
750 prefetchw(p + 1);
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
753 }
754
755 page_zone(page)->managed_pages += 1 << order;
756 set_page_refcounted(page);
757 __free_pages(page, order);
758 }
759
760 #ifdef CONFIG_CMA
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
763 {
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
766
767 do {
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
770 } while (++p, --i);
771
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
776 }
777 #endif
778
779 /*
780 * The order of subdivision here is critical for the IO subsystem.
781 * Please do not alter this order without good reasons and regression
782 * testing. Specifically, as large blocks of memory are subdivided,
783 * the order in which smaller blocks are delivered depends on the order
784 * they're subdivided in this function. This is the primary factor
785 * influencing the order in which pages are delivered to the IO
786 * subsystem according to empirical testing, and this is also justified
787 * by considering the behavior of a buddy system containing a single
788 * large block of memory acted on by a series of small allocations.
789 * This behavior is a critical factor in sglist merging's success.
790 *
791 * -- nyc
792 */
793 static inline void expand(struct zone *zone, struct page *page,
794 int low, int high, struct free_area *area,
795 int migratetype)
796 {
797 unsigned long size = 1 << high;
798
799 while (high > low) {
800 area--;
801 high--;
802 size >>= 1;
803 VM_BUG_ON(bad_range(zone, &page[size]));
804
805 #ifdef CONFIG_DEBUG_PAGEALLOC
806 if (high < debug_guardpage_minorder()) {
807 /*
808 * Mark as guard pages (or page), that will allow to
809 * merge back to allocator when buddy will be freed.
810 * Corresponding page table entries will not be touched,
811 * pages will stay not present in virtual address space
812 */
813 INIT_LIST_HEAD(&page[size].lru);
814 set_page_guard_flag(&page[size]);
815 set_page_private(&page[size], high);
816 /* Guard pages are not available for any usage */
817 __mod_zone_freepage_state(zone, -(1 << high),
818 migratetype);
819 continue;
820 }
821 #endif
822 list_add(&page[size].lru, &area->free_list[migratetype]);
823 area->nr_free++;
824 set_page_order(&page[size], high);
825 }
826 }
827
828 /*
829 * This page is about to be returned from the page allocator
830 */
831 static inline int check_new_page(struct page *page)
832 {
833 if (unlikely(page_mapcount(page) |
834 (page->mapping != NULL) |
835 (atomic_read(&page->_count) != 0) |
836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 (mem_cgroup_bad_page_check(page)))) {
838 bad_page(page);
839 return 1;
840 }
841 return 0;
842 }
843
844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
845 {
846 int i;
847
848 for (i = 0; i < (1 << order); i++) {
849 struct page *p = page + i;
850 if (unlikely(check_new_page(p)))
851 return 1;
852 }
853
854 set_page_private(page, 0);
855 set_page_refcounted(page);
856
857 arch_alloc_page(page, order);
858 kernel_map_pages(page, 1 << order, 1);
859
860 if (gfp_flags & __GFP_ZERO)
861 prep_zero_page(page, order, gfp_flags);
862
863 if (order && (gfp_flags & __GFP_COMP))
864 prep_compound_page(page, order);
865
866 return 0;
867 }
868
869 /*
870 * Go through the free lists for the given migratetype and remove
871 * the smallest available page from the freelists
872 */
873 static inline
874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
875 int migratetype)
876 {
877 unsigned int current_order;
878 struct free_area * area;
879 struct page *page;
880
881 /* Find a page of the appropriate size in the preferred list */
882 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 area = &(zone->free_area[current_order]);
884 if (list_empty(&area->free_list[migratetype]))
885 continue;
886
887 page = list_entry(area->free_list[migratetype].next,
888 struct page, lru);
889 list_del(&page->lru);
890 rmv_page_order(page);
891 area->nr_free--;
892 expand(zone, page, order, current_order, area, migratetype);
893 return page;
894 }
895
896 return NULL;
897 }
898
899
900 /*
901 * This array describes the order lists are fallen back to when
902 * the free lists for the desirable migrate type are depleted
903 */
904 static int fallbacks[MIGRATE_TYPES][4] = {
905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
907 #ifdef CONFIG_CMA
908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
910 #else
911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
912 #endif
913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
915 };
916
917 /*
918 * Move the free pages in a range to the free lists of the requested type.
919 * Note that start_page and end_pages are not aligned on a pageblock
920 * boundary. If alignment is required, use move_freepages_block()
921 */
922 int move_freepages(struct zone *zone,
923 struct page *start_page, struct page *end_page,
924 int migratetype)
925 {
926 struct page *page;
927 unsigned long order;
928 int pages_moved = 0;
929
930 #ifndef CONFIG_HOLES_IN_ZONE
931 /*
932 * page_zone is not safe to call in this context when
933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 * anyway as we check zone boundaries in move_freepages_block().
935 * Remove at a later date when no bug reports exist related to
936 * grouping pages by mobility
937 */
938 BUG_ON(page_zone(start_page) != page_zone(end_page));
939 #endif
940
941 for (page = start_page; page <= end_page;) {
942 /* Make sure we are not inadvertently changing nodes */
943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
944
945 if (!pfn_valid_within(page_to_pfn(page))) {
946 page++;
947 continue;
948 }
949
950 if (!PageBuddy(page)) {
951 page++;
952 continue;
953 }
954
955 order = page_order(page);
956 list_move(&page->lru,
957 &zone->free_area[order].free_list[migratetype]);
958 set_freepage_migratetype(page, migratetype);
959 page += 1 << order;
960 pages_moved += 1 << order;
961 }
962
963 return pages_moved;
964 }
965
966 int move_freepages_block(struct zone *zone, struct page *page,
967 int migratetype)
968 {
969 unsigned long start_pfn, end_pfn;
970 struct page *start_page, *end_page;
971
972 start_pfn = page_to_pfn(page);
973 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
974 start_page = pfn_to_page(start_pfn);
975 end_page = start_page + pageblock_nr_pages - 1;
976 end_pfn = start_pfn + pageblock_nr_pages - 1;
977
978 /* Do not cross zone boundaries */
979 if (start_pfn < zone->zone_start_pfn)
980 start_page = page;
981 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
982 return 0;
983
984 return move_freepages(zone, start_page, end_page, migratetype);
985 }
986
987 static void change_pageblock_range(struct page *pageblock_page,
988 int start_order, int migratetype)
989 {
990 int nr_pageblocks = 1 << (start_order - pageblock_order);
991
992 while (nr_pageblocks--) {
993 set_pageblock_migratetype(pageblock_page, migratetype);
994 pageblock_page += pageblock_nr_pages;
995 }
996 }
997
998 /* Remove an element from the buddy allocator from the fallback list */
999 static inline struct page *
1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1001 {
1002 struct free_area * area;
1003 int current_order;
1004 struct page *page;
1005 int migratetype, i;
1006
1007 /* Find the largest possible block of pages in the other list */
1008 for (current_order = MAX_ORDER-1; current_order >= order;
1009 --current_order) {
1010 for (i = 0;; i++) {
1011 migratetype = fallbacks[start_migratetype][i];
1012
1013 /* MIGRATE_RESERVE handled later if necessary */
1014 if (migratetype == MIGRATE_RESERVE)
1015 break;
1016
1017 area = &(zone->free_area[current_order]);
1018 if (list_empty(&area->free_list[migratetype]))
1019 continue;
1020
1021 page = list_entry(area->free_list[migratetype].next,
1022 struct page, lru);
1023 area->nr_free--;
1024
1025 /*
1026 * If breaking a large block of pages, move all free
1027 * pages to the preferred allocation list. If falling
1028 * back for a reclaimable kernel allocation, be more
1029 * aggressive about taking ownership of free pages
1030 *
1031 * On the other hand, never change migration
1032 * type of MIGRATE_CMA pageblocks nor move CMA
1033 * pages on different free lists. We don't
1034 * want unmovable pages to be allocated from
1035 * MIGRATE_CMA areas.
1036 */
1037 if (!is_migrate_cma(migratetype) &&
1038 (unlikely(current_order >= pageblock_order / 2) ||
1039 start_migratetype == MIGRATE_RECLAIMABLE ||
1040 page_group_by_mobility_disabled)) {
1041 int pages;
1042 pages = move_freepages_block(zone, page,
1043 start_migratetype);
1044
1045 /* Claim the whole block if over half of it is free */
1046 if (pages >= (1 << (pageblock_order-1)) ||
1047 page_group_by_mobility_disabled)
1048 set_pageblock_migratetype(page,
1049 start_migratetype);
1050
1051 migratetype = start_migratetype;
1052 }
1053
1054 /* Remove the page from the freelists */
1055 list_del(&page->lru);
1056 rmv_page_order(page);
1057
1058 /* Take ownership for orders >= pageblock_order */
1059 if (current_order >= pageblock_order &&
1060 !is_migrate_cma(migratetype))
1061 change_pageblock_range(page, current_order,
1062 start_migratetype);
1063
1064 expand(zone, page, order, current_order, area,
1065 is_migrate_cma(migratetype)
1066 ? migratetype : start_migratetype);
1067
1068 trace_mm_page_alloc_extfrag(page, order, current_order,
1069 start_migratetype, migratetype);
1070
1071 return page;
1072 }
1073 }
1074
1075 return NULL;
1076 }
1077
1078 /*
1079 * Do the hard work of removing an element from the buddy allocator.
1080 * Call me with the zone->lock already held.
1081 */
1082 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1083 int migratetype)
1084 {
1085 struct page *page;
1086
1087 retry_reserve:
1088 page = __rmqueue_smallest(zone, order, migratetype);
1089
1090 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1091 page = __rmqueue_fallback(zone, order, migratetype);
1092
1093 /*
1094 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1095 * is used because __rmqueue_smallest is an inline function
1096 * and we want just one call site
1097 */
1098 if (!page) {
1099 migratetype = MIGRATE_RESERVE;
1100 goto retry_reserve;
1101 }
1102 }
1103
1104 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1105 return page;
1106 }
1107
1108 /*
1109 * Obtain a specified number of elements from the buddy allocator, all under
1110 * a single hold of the lock, for efficiency. Add them to the supplied list.
1111 * Returns the number of new pages which were placed at *list.
1112 */
1113 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1114 unsigned long count, struct list_head *list,
1115 int migratetype, int cold)
1116 {
1117 int mt = migratetype, i;
1118
1119 spin_lock(&zone->lock);
1120 for (i = 0; i < count; ++i) {
1121 struct page *page = __rmqueue(zone, order, migratetype);
1122 if (unlikely(page == NULL))
1123 break;
1124
1125 /*
1126 * Split buddy pages returned by expand() are received here
1127 * in physical page order. The page is added to the callers and
1128 * list and the list head then moves forward. From the callers
1129 * perspective, the linked list is ordered by page number in
1130 * some conditions. This is useful for IO devices that can
1131 * merge IO requests if the physical pages are ordered
1132 * properly.
1133 */
1134 if (likely(cold == 0))
1135 list_add(&page->lru, list);
1136 else
1137 list_add_tail(&page->lru, list);
1138 if (IS_ENABLED(CONFIG_CMA)) {
1139 mt = get_pageblock_migratetype(page);
1140 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1141 mt = migratetype;
1142 }
1143 set_freepage_migratetype(page, mt);
1144 list = &page->lru;
1145 if (is_migrate_cma(mt))
1146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1147 -(1 << order));
1148 }
1149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1150 spin_unlock(&zone->lock);
1151 return i;
1152 }
1153
1154 #ifdef CONFIG_NUMA
1155 /*
1156 * Called from the vmstat counter updater to drain pagesets of this
1157 * currently executing processor on remote nodes after they have
1158 * expired.
1159 *
1160 * Note that this function must be called with the thread pinned to
1161 * a single processor.
1162 */
1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1164 {
1165 unsigned long flags;
1166 int to_drain;
1167
1168 local_irq_save(flags);
1169 if (pcp->count >= pcp->batch)
1170 to_drain = pcp->batch;
1171 else
1172 to_drain = pcp->count;
1173 if (to_drain > 0) {
1174 free_pcppages_bulk(zone, to_drain, pcp);
1175 pcp->count -= to_drain;
1176 }
1177 local_irq_restore(flags);
1178 }
1179 #endif
1180
1181 /*
1182 * Drain pages of the indicated processor.
1183 *
1184 * The processor must either be the current processor and the
1185 * thread pinned to the current processor or a processor that
1186 * is not online.
1187 */
1188 static void drain_pages(unsigned int cpu)
1189 {
1190 unsigned long flags;
1191 struct zone *zone;
1192
1193 for_each_populated_zone(zone) {
1194 struct per_cpu_pageset *pset;
1195 struct per_cpu_pages *pcp;
1196
1197 local_irq_save(flags);
1198 pset = per_cpu_ptr(zone->pageset, cpu);
1199
1200 pcp = &pset->pcp;
1201 if (pcp->count) {
1202 free_pcppages_bulk(zone, pcp->count, pcp);
1203 pcp->count = 0;
1204 }
1205 local_irq_restore(flags);
1206 }
1207 }
1208
1209 /*
1210 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1211 */
1212 void drain_local_pages(void *arg)
1213 {
1214 drain_pages(smp_processor_id());
1215 }
1216
1217 /*
1218 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1219 *
1220 * Note that this code is protected against sending an IPI to an offline
1221 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1222 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1223 * nothing keeps CPUs from showing up after we populated the cpumask and
1224 * before the call to on_each_cpu_mask().
1225 */
1226 void drain_all_pages(void)
1227 {
1228 int cpu;
1229 struct per_cpu_pageset *pcp;
1230 struct zone *zone;
1231
1232 /*
1233 * Allocate in the BSS so we wont require allocation in
1234 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1235 */
1236 static cpumask_t cpus_with_pcps;
1237
1238 /*
1239 * We don't care about racing with CPU hotplug event
1240 * as offline notification will cause the notified
1241 * cpu to drain that CPU pcps and on_each_cpu_mask
1242 * disables preemption as part of its processing
1243 */
1244 for_each_online_cpu(cpu) {
1245 bool has_pcps = false;
1246 for_each_populated_zone(zone) {
1247 pcp = per_cpu_ptr(zone->pageset, cpu);
1248 if (pcp->pcp.count) {
1249 has_pcps = true;
1250 break;
1251 }
1252 }
1253 if (has_pcps)
1254 cpumask_set_cpu(cpu, &cpus_with_pcps);
1255 else
1256 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1257 }
1258 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1259 }
1260
1261 #ifdef CONFIG_HIBERNATION
1262
1263 void mark_free_pages(struct zone *zone)
1264 {
1265 unsigned long pfn, max_zone_pfn;
1266 unsigned long flags;
1267 int order, t;
1268 struct list_head *curr;
1269
1270 if (!zone->spanned_pages)
1271 return;
1272
1273 spin_lock_irqsave(&zone->lock, flags);
1274
1275 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1276 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1277 if (pfn_valid(pfn)) {
1278 struct page *page = pfn_to_page(pfn);
1279
1280 if (!swsusp_page_is_forbidden(page))
1281 swsusp_unset_page_free(page);
1282 }
1283
1284 for_each_migratetype_order(order, t) {
1285 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1286 unsigned long i;
1287
1288 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1289 for (i = 0; i < (1UL << order); i++)
1290 swsusp_set_page_free(pfn_to_page(pfn + i));
1291 }
1292 }
1293 spin_unlock_irqrestore(&zone->lock, flags);
1294 }
1295 #endif /* CONFIG_PM */
1296
1297 /*
1298 * Free a 0-order page
1299 * cold == 1 ? free a cold page : free a hot page
1300 */
1301 void free_hot_cold_page(struct page *page, int cold)
1302 {
1303 struct zone *zone = page_zone(page);
1304 struct per_cpu_pages *pcp;
1305 unsigned long flags;
1306 int migratetype;
1307
1308 if (!free_pages_prepare(page, 0))
1309 return;
1310
1311 migratetype = get_pageblock_migratetype(page);
1312 set_freepage_migratetype(page, migratetype);
1313 local_irq_save(flags);
1314 __count_vm_event(PGFREE);
1315
1316 /*
1317 * We only track unmovable, reclaimable and movable on pcp lists.
1318 * Free ISOLATE pages back to the allocator because they are being
1319 * offlined but treat RESERVE as movable pages so we can get those
1320 * areas back if necessary. Otherwise, we may have to free
1321 * excessively into the page allocator
1322 */
1323 if (migratetype >= MIGRATE_PCPTYPES) {
1324 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1325 free_one_page(zone, page, 0, migratetype);
1326 goto out;
1327 }
1328 migratetype = MIGRATE_MOVABLE;
1329 }
1330
1331 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1332 if (cold)
1333 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1334 else
1335 list_add(&page->lru, &pcp->lists[migratetype]);
1336 pcp->count++;
1337 if (pcp->count >= pcp->high) {
1338 free_pcppages_bulk(zone, pcp->batch, pcp);
1339 pcp->count -= pcp->batch;
1340 }
1341
1342 out:
1343 local_irq_restore(flags);
1344 }
1345
1346 /*
1347 * Free a list of 0-order pages
1348 */
1349 void free_hot_cold_page_list(struct list_head *list, int cold)
1350 {
1351 struct page *page, *next;
1352
1353 list_for_each_entry_safe(page, next, list, lru) {
1354 trace_mm_page_free_batched(page, cold);
1355 free_hot_cold_page(page, cold);
1356 }
1357 }
1358
1359 /*
1360 * split_page takes a non-compound higher-order page, and splits it into
1361 * n (1<<order) sub-pages: page[0..n]
1362 * Each sub-page must be freed individually.
1363 *
1364 * Note: this is probably too low level an operation for use in drivers.
1365 * Please consult with lkml before using this in your driver.
1366 */
1367 void split_page(struct page *page, unsigned int order)
1368 {
1369 int i;
1370
1371 VM_BUG_ON(PageCompound(page));
1372 VM_BUG_ON(!page_count(page));
1373
1374 #ifdef CONFIG_KMEMCHECK
1375 /*
1376 * Split shadow pages too, because free(page[0]) would
1377 * otherwise free the whole shadow.
1378 */
1379 if (kmemcheck_page_is_tracked(page))
1380 split_page(virt_to_page(page[0].shadow), order);
1381 #endif
1382
1383 for (i = 1; i < (1 << order); i++)
1384 set_page_refcounted(page + i);
1385 }
1386
1387 static int __isolate_free_page(struct page *page, unsigned int order)
1388 {
1389 unsigned long watermark;
1390 struct zone *zone;
1391 int mt;
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 mt = get_pageblock_migratetype(page);
1397
1398 if (mt != MIGRATE_ISOLATE) {
1399 /* Obey watermarks as if the page was being allocated */
1400 watermark = low_wmark_pages(zone) + (1 << order);
1401 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1402 return 0;
1403
1404 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1405 }
1406
1407 /* Remove page from free list */
1408 list_del(&page->lru);
1409 zone->free_area[order].nr_free--;
1410 rmv_page_order(page);
1411
1412 /* Set the pageblock if the isolated page is at least a pageblock */
1413 if (order >= pageblock_order - 1) {
1414 struct page *endpage = page + (1 << order) - 1;
1415 for (; page < endpage; page += pageblock_nr_pages) {
1416 int mt = get_pageblock_migratetype(page);
1417 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1418 set_pageblock_migratetype(page,
1419 MIGRATE_MOVABLE);
1420 }
1421 }
1422
1423 return 1UL << order;
1424 }
1425
1426 /*
1427 * Similar to split_page except the page is already free. As this is only
1428 * being used for migration, the migratetype of the block also changes.
1429 * As this is called with interrupts disabled, the caller is responsible
1430 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1431 * are enabled.
1432 *
1433 * Note: this is probably too low level an operation for use in drivers.
1434 * Please consult with lkml before using this in your driver.
1435 */
1436 int split_free_page(struct page *page)
1437 {
1438 unsigned int order;
1439 int nr_pages;
1440
1441 order = page_order(page);
1442
1443 nr_pages = __isolate_free_page(page, order);
1444 if (!nr_pages)
1445 return 0;
1446
1447 /* Split into individual pages */
1448 set_page_refcounted(page);
1449 split_page(page, order);
1450 return nr_pages;
1451 }
1452
1453 /*
1454 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1455 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1456 * or two.
1457 */
1458 static inline
1459 struct page *buffered_rmqueue(struct zone *preferred_zone,
1460 struct zone *zone, int order, gfp_t gfp_flags,
1461 int migratetype)
1462 {
1463 unsigned long flags;
1464 struct page *page;
1465 int cold = !!(gfp_flags & __GFP_COLD);
1466
1467 again:
1468 if (likely(order == 0)) {
1469 struct per_cpu_pages *pcp;
1470 struct list_head *list;
1471
1472 local_irq_save(flags);
1473 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1474 list = &pcp->lists[migratetype];
1475 if (list_empty(list)) {
1476 pcp->count += rmqueue_bulk(zone, 0,
1477 pcp->batch, list,
1478 migratetype, cold);
1479 if (unlikely(list_empty(list)))
1480 goto failed;
1481 }
1482
1483 if (cold)
1484 page = list_entry(list->prev, struct page, lru);
1485 else
1486 page = list_entry(list->next, struct page, lru);
1487
1488 list_del(&page->lru);
1489 pcp->count--;
1490 } else {
1491 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1492 /*
1493 * __GFP_NOFAIL is not to be used in new code.
1494 *
1495 * All __GFP_NOFAIL callers should be fixed so that they
1496 * properly detect and handle allocation failures.
1497 *
1498 * We most definitely don't want callers attempting to
1499 * allocate greater than order-1 page units with
1500 * __GFP_NOFAIL.
1501 */
1502 WARN_ON_ONCE(order > 1);
1503 }
1504 spin_lock_irqsave(&zone->lock, flags);
1505 page = __rmqueue(zone, order, migratetype);
1506 spin_unlock(&zone->lock);
1507 if (!page)
1508 goto failed;
1509 __mod_zone_freepage_state(zone, -(1 << order),
1510 get_pageblock_migratetype(page));
1511 }
1512
1513 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1514 zone_statistics(preferred_zone, zone, gfp_flags);
1515 local_irq_restore(flags);
1516
1517 VM_BUG_ON(bad_range(zone, page));
1518 if (prep_new_page(page, order, gfp_flags))
1519 goto again;
1520 return page;
1521
1522 failed:
1523 local_irq_restore(flags);
1524 return NULL;
1525 }
1526
1527 #ifdef CONFIG_FAIL_PAGE_ALLOC
1528
1529 static struct {
1530 struct fault_attr attr;
1531
1532 u32 ignore_gfp_highmem;
1533 u32 ignore_gfp_wait;
1534 u32 min_order;
1535 } fail_page_alloc = {
1536 .attr = FAULT_ATTR_INITIALIZER,
1537 .ignore_gfp_wait = 1,
1538 .ignore_gfp_highmem = 1,
1539 .min_order = 1,
1540 };
1541
1542 static int __init setup_fail_page_alloc(char *str)
1543 {
1544 return setup_fault_attr(&fail_page_alloc.attr, str);
1545 }
1546 __setup("fail_page_alloc=", setup_fail_page_alloc);
1547
1548 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1549 {
1550 if (order < fail_page_alloc.min_order)
1551 return false;
1552 if (gfp_mask & __GFP_NOFAIL)
1553 return false;
1554 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1555 return false;
1556 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1557 return false;
1558
1559 return should_fail(&fail_page_alloc.attr, 1 << order);
1560 }
1561
1562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1563
1564 static int __init fail_page_alloc_debugfs(void)
1565 {
1566 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1567 struct dentry *dir;
1568
1569 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1570 &fail_page_alloc.attr);
1571 if (IS_ERR(dir))
1572 return PTR_ERR(dir);
1573
1574 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1575 &fail_page_alloc.ignore_gfp_wait))
1576 goto fail;
1577 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1578 &fail_page_alloc.ignore_gfp_highmem))
1579 goto fail;
1580 if (!debugfs_create_u32("min-order", mode, dir,
1581 &fail_page_alloc.min_order))
1582 goto fail;
1583
1584 return 0;
1585 fail:
1586 debugfs_remove_recursive(dir);
1587
1588 return -ENOMEM;
1589 }
1590
1591 late_initcall(fail_page_alloc_debugfs);
1592
1593 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1594
1595 #else /* CONFIG_FAIL_PAGE_ALLOC */
1596
1597 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1598 {
1599 return false;
1600 }
1601
1602 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1603
1604 /*
1605 * Return true if free pages are above 'mark'. This takes into account the order
1606 * of the allocation.
1607 */
1608 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1609 int classzone_idx, int alloc_flags, long free_pages)
1610 {
1611 /* free_pages my go negative - that's OK */
1612 long min = mark;
1613 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1614 int o;
1615
1616 free_pages -= (1 << order) - 1;
1617 if (alloc_flags & ALLOC_HIGH)
1618 min -= min / 2;
1619 if (alloc_flags & ALLOC_HARDER)
1620 min -= min / 4;
1621 #ifdef CONFIG_CMA
1622 /* If allocation can't use CMA areas don't use free CMA pages */
1623 if (!(alloc_flags & ALLOC_CMA))
1624 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1625 #endif
1626 if (free_pages <= min + lowmem_reserve)
1627 return false;
1628 for (o = 0; o < order; o++) {
1629 /* At the next order, this order's pages become unavailable */
1630 free_pages -= z->free_area[o].nr_free << o;
1631
1632 /* Require fewer higher order pages to be free */
1633 min >>= 1;
1634
1635 if (free_pages <= min)
1636 return false;
1637 }
1638 return true;
1639 }
1640
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1643 {
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1646 }
1647
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1650 {
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655
1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 free_pages);
1658 }
1659
1660 #ifdef CONFIG_NUMA
1661 /*
1662 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1663 * skip over zones that are not allowed by the cpuset, or that have
1664 * been recently (in last second) found to be nearly full. See further
1665 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1666 * that have to skip over a lot of full or unallowed zones.
1667 *
1668 * If the zonelist cache is present in the passed in zonelist, then
1669 * returns a pointer to the allowed node mask (either the current
1670 * tasks mems_allowed, or node_states[N_MEMORY].)
1671 *
1672 * If the zonelist cache is not available for this zonelist, does
1673 * nothing and returns NULL.
1674 *
1675 * If the fullzones BITMAP in the zonelist cache is stale (more than
1676 * a second since last zap'd) then we zap it out (clear its bits.)
1677 *
1678 * We hold off even calling zlc_setup, until after we've checked the
1679 * first zone in the zonelist, on the theory that most allocations will
1680 * be satisfied from that first zone, so best to examine that zone as
1681 * quickly as we can.
1682 */
1683 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1684 {
1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1686 nodemask_t *allowednodes; /* zonelist_cache approximation */
1687
1688 zlc = zonelist->zlcache_ptr;
1689 if (!zlc)
1690 return NULL;
1691
1692 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1694 zlc->last_full_zap = jiffies;
1695 }
1696
1697 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1698 &cpuset_current_mems_allowed :
1699 &node_states[N_MEMORY];
1700 return allowednodes;
1701 }
1702
1703 /*
1704 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1705 * if it is worth looking at further for free memory:
1706 * 1) Check that the zone isn't thought to be full (doesn't have its
1707 * bit set in the zonelist_cache fullzones BITMAP).
1708 * 2) Check that the zones node (obtained from the zonelist_cache
1709 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1710 * Return true (non-zero) if zone is worth looking at further, or
1711 * else return false (zero) if it is not.
1712 *
1713 * This check -ignores- the distinction between various watermarks,
1714 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1715 * found to be full for any variation of these watermarks, it will
1716 * be considered full for up to one second by all requests, unless
1717 * we are so low on memory on all allowed nodes that we are forced
1718 * into the second scan of the zonelist.
1719 *
1720 * In the second scan we ignore this zonelist cache and exactly
1721 * apply the watermarks to all zones, even it is slower to do so.
1722 * We are low on memory in the second scan, and should leave no stone
1723 * unturned looking for a free page.
1724 */
1725 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1726 nodemask_t *allowednodes)
1727 {
1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1729 int i; /* index of *z in zonelist zones */
1730 int n; /* node that zone *z is on */
1731
1732 zlc = zonelist->zlcache_ptr;
1733 if (!zlc)
1734 return 1;
1735
1736 i = z - zonelist->_zonerefs;
1737 n = zlc->z_to_n[i];
1738
1739 /* This zone is worth trying if it is allowed but not full */
1740 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1741 }
1742
1743 /*
1744 * Given 'z' scanning a zonelist, set the corresponding bit in
1745 * zlc->fullzones, so that subsequent attempts to allocate a page
1746 * from that zone don't waste time re-examining it.
1747 */
1748 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1749 {
1750 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1751 int i; /* index of *z in zonelist zones */
1752
1753 zlc = zonelist->zlcache_ptr;
1754 if (!zlc)
1755 return;
1756
1757 i = z - zonelist->_zonerefs;
1758
1759 set_bit(i, zlc->fullzones);
1760 }
1761
1762 /*
1763 * clear all zones full, called after direct reclaim makes progress so that
1764 * a zone that was recently full is not skipped over for up to a second
1765 */
1766 static void zlc_clear_zones_full(struct zonelist *zonelist)
1767 {
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769
1770 zlc = zonelist->zlcache_ptr;
1771 if (!zlc)
1772 return;
1773
1774 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1775 }
1776
1777 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1778 {
1779 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1780 }
1781
1782 static void __paginginit init_zone_allows_reclaim(int nid)
1783 {
1784 int i;
1785
1786 for_each_online_node(i)
1787 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1788 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1789 else
1790 zone_reclaim_mode = 1;
1791 }
1792
1793 #else /* CONFIG_NUMA */
1794
1795 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1796 {
1797 return NULL;
1798 }
1799
1800 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1801 nodemask_t *allowednodes)
1802 {
1803 return 1;
1804 }
1805
1806 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1807 {
1808 }
1809
1810 static void zlc_clear_zones_full(struct zonelist *zonelist)
1811 {
1812 }
1813
1814 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1815 {
1816 return true;
1817 }
1818
1819 static inline void init_zone_allows_reclaim(int nid)
1820 {
1821 }
1822 #endif /* CONFIG_NUMA */
1823
1824 /*
1825 * get_page_from_freelist goes through the zonelist trying to allocate
1826 * a page.
1827 */
1828 static struct page *
1829 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1830 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1831 struct zone *preferred_zone, int migratetype)
1832 {
1833 struct zoneref *z;
1834 struct page *page = NULL;
1835 int classzone_idx;
1836 struct zone *zone;
1837 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1838 int zlc_active = 0; /* set if using zonelist_cache */
1839 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1840
1841 classzone_idx = zone_idx(preferred_zone);
1842 zonelist_scan:
1843 /*
1844 * Scan zonelist, looking for a zone with enough free.
1845 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1846 */
1847 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1848 high_zoneidx, nodemask) {
1849 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1850 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1851 continue;
1852 if ((alloc_flags & ALLOC_CPUSET) &&
1853 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1854 continue;
1855 /*
1856 * When allocating a page cache page for writing, we
1857 * want to get it from a zone that is within its dirty
1858 * limit, such that no single zone holds more than its
1859 * proportional share of globally allowed dirty pages.
1860 * The dirty limits take into account the zone's
1861 * lowmem reserves and high watermark so that kswapd
1862 * should be able to balance it without having to
1863 * write pages from its LRU list.
1864 *
1865 * This may look like it could increase pressure on
1866 * lower zones by failing allocations in higher zones
1867 * before they are full. But the pages that do spill
1868 * over are limited as the lower zones are protected
1869 * by this very same mechanism. It should not become
1870 * a practical burden to them.
1871 *
1872 * XXX: For now, allow allocations to potentially
1873 * exceed the per-zone dirty limit in the slowpath
1874 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1875 * which is important when on a NUMA setup the allowed
1876 * zones are together not big enough to reach the
1877 * global limit. The proper fix for these situations
1878 * will require awareness of zones in the
1879 * dirty-throttling and the flusher threads.
1880 */
1881 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1882 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1883 goto this_zone_full;
1884
1885 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1886 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1887 unsigned long mark;
1888 int ret;
1889
1890 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1891 if (zone_watermark_ok(zone, order, mark,
1892 classzone_idx, alloc_flags))
1893 goto try_this_zone;
1894
1895 if (IS_ENABLED(CONFIG_NUMA) &&
1896 !did_zlc_setup && nr_online_nodes > 1) {
1897 /*
1898 * we do zlc_setup if there are multiple nodes
1899 * and before considering the first zone allowed
1900 * by the cpuset.
1901 */
1902 allowednodes = zlc_setup(zonelist, alloc_flags);
1903 zlc_active = 1;
1904 did_zlc_setup = 1;
1905 }
1906
1907 if (zone_reclaim_mode == 0 ||
1908 !zone_allows_reclaim(preferred_zone, zone))
1909 goto this_zone_full;
1910
1911 /*
1912 * As we may have just activated ZLC, check if the first
1913 * eligible zone has failed zone_reclaim recently.
1914 */
1915 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1916 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1917 continue;
1918
1919 ret = zone_reclaim(zone, gfp_mask, order);
1920 switch (ret) {
1921 case ZONE_RECLAIM_NOSCAN:
1922 /* did not scan */
1923 continue;
1924 case ZONE_RECLAIM_FULL:
1925 /* scanned but unreclaimable */
1926 continue;
1927 default:
1928 /* did we reclaim enough */
1929 if (!zone_watermark_ok(zone, order, mark,
1930 classzone_idx, alloc_flags))
1931 goto this_zone_full;
1932 }
1933 }
1934
1935 try_this_zone:
1936 page = buffered_rmqueue(preferred_zone, zone, order,
1937 gfp_mask, migratetype);
1938 if (page)
1939 break;
1940 this_zone_full:
1941 if (IS_ENABLED(CONFIG_NUMA))
1942 zlc_mark_zone_full(zonelist, z);
1943 }
1944
1945 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1946 /* Disable zlc cache for second zonelist scan */
1947 zlc_active = 0;
1948 goto zonelist_scan;
1949 }
1950
1951 if (page)
1952 /*
1953 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1954 * necessary to allocate the page. The expectation is
1955 * that the caller is taking steps that will free more
1956 * memory. The caller should avoid the page being used
1957 * for !PFMEMALLOC purposes.
1958 */
1959 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1960
1961 return page;
1962 }
1963
1964 /*
1965 * Large machines with many possible nodes should not always dump per-node
1966 * meminfo in irq context.
1967 */
1968 static inline bool should_suppress_show_mem(void)
1969 {
1970 bool ret = false;
1971
1972 #if NODES_SHIFT > 8
1973 ret = in_interrupt();
1974 #endif
1975 return ret;
1976 }
1977
1978 static DEFINE_RATELIMIT_STATE(nopage_rs,
1979 DEFAULT_RATELIMIT_INTERVAL,
1980 DEFAULT_RATELIMIT_BURST);
1981
1982 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1983 {
1984 unsigned int filter = SHOW_MEM_FILTER_NODES;
1985
1986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1987 debug_guardpage_minorder() > 0)
1988 return;
1989
1990 /*
1991 * This documents exceptions given to allocations in certain
1992 * contexts that are allowed to allocate outside current's set
1993 * of allowed nodes.
1994 */
1995 if (!(gfp_mask & __GFP_NOMEMALLOC))
1996 if (test_thread_flag(TIF_MEMDIE) ||
1997 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1998 filter &= ~SHOW_MEM_FILTER_NODES;
1999 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2000 filter &= ~SHOW_MEM_FILTER_NODES;
2001
2002 if (fmt) {
2003 struct va_format vaf;
2004 va_list args;
2005
2006 va_start(args, fmt);
2007
2008 vaf.fmt = fmt;
2009 vaf.va = &args;
2010
2011 pr_warn("%pV", &vaf);
2012
2013 va_end(args);
2014 }
2015
2016 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2017 current->comm, order, gfp_mask);
2018
2019 dump_stack();
2020 if (!should_suppress_show_mem())
2021 show_mem(filter);
2022 }
2023
2024 static inline int
2025 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2026 unsigned long did_some_progress,
2027 unsigned long pages_reclaimed)
2028 {
2029 /* Do not loop if specifically requested */
2030 if (gfp_mask & __GFP_NORETRY)
2031 return 0;
2032
2033 /* Always retry if specifically requested */
2034 if (gfp_mask & __GFP_NOFAIL)
2035 return 1;
2036
2037 /*
2038 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2039 * making forward progress without invoking OOM. Suspend also disables
2040 * storage devices so kswapd will not help. Bail if we are suspending.
2041 */
2042 if (!did_some_progress && pm_suspended_storage())
2043 return 0;
2044
2045 /*
2046 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2047 * means __GFP_NOFAIL, but that may not be true in other
2048 * implementations.
2049 */
2050 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2051 return 1;
2052
2053 /*
2054 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2055 * specified, then we retry until we no longer reclaim any pages
2056 * (above), or we've reclaimed an order of pages at least as
2057 * large as the allocation's order. In both cases, if the
2058 * allocation still fails, we stop retrying.
2059 */
2060 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2061 return 1;
2062
2063 return 0;
2064 }
2065
2066 static inline struct page *
2067 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2068 struct zonelist *zonelist, enum zone_type high_zoneidx,
2069 nodemask_t *nodemask, struct zone *preferred_zone,
2070 int migratetype)
2071 {
2072 struct page *page;
2073
2074 /* Acquire the OOM killer lock for the zones in zonelist */
2075 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2076 schedule_timeout_uninterruptible(1);
2077 return NULL;
2078 }
2079
2080 /*
2081 * Go through the zonelist yet one more time, keep very high watermark
2082 * here, this is only to catch a parallel oom killing, we must fail if
2083 * we're still under heavy pressure.
2084 */
2085 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2086 order, zonelist, high_zoneidx,
2087 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2088 preferred_zone, migratetype);
2089 if (page)
2090 goto out;
2091
2092 if (!(gfp_mask & __GFP_NOFAIL)) {
2093 /* The OOM killer will not help higher order allocs */
2094 if (order > PAGE_ALLOC_COSTLY_ORDER)
2095 goto out;
2096 /* The OOM killer does not needlessly kill tasks for lowmem */
2097 if (high_zoneidx < ZONE_NORMAL)
2098 goto out;
2099 /*
2100 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2101 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2102 * The caller should handle page allocation failure by itself if
2103 * it specifies __GFP_THISNODE.
2104 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2105 */
2106 if (gfp_mask & __GFP_THISNODE)
2107 goto out;
2108 }
2109 /* Exhausted what can be done so it's blamo time */
2110 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2111
2112 out:
2113 clear_zonelist_oom(zonelist, gfp_mask);
2114 return page;
2115 }
2116
2117 #ifdef CONFIG_COMPACTION
2118 /* Try memory compaction for high-order allocations before reclaim */
2119 static struct page *
2120 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2121 struct zonelist *zonelist, enum zone_type high_zoneidx,
2122 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2123 int migratetype, bool sync_migration,
2124 bool *contended_compaction, bool *deferred_compaction,
2125 unsigned long *did_some_progress)
2126 {
2127 if (!order)
2128 return NULL;
2129
2130 if (compaction_deferred(preferred_zone, order)) {
2131 *deferred_compaction = true;
2132 return NULL;
2133 }
2134
2135 current->flags |= PF_MEMALLOC;
2136 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2137 nodemask, sync_migration,
2138 contended_compaction);
2139 current->flags &= ~PF_MEMALLOC;
2140
2141 if (*did_some_progress != COMPACT_SKIPPED) {
2142 struct page *page;
2143
2144 /* Page migration frees to the PCP lists but we want merging */
2145 drain_pages(get_cpu());
2146 put_cpu();
2147
2148 page = get_page_from_freelist(gfp_mask, nodemask,
2149 order, zonelist, high_zoneidx,
2150 alloc_flags & ~ALLOC_NO_WATERMARKS,
2151 preferred_zone, migratetype);
2152 if (page) {
2153 preferred_zone->compact_blockskip_flush = false;
2154 preferred_zone->compact_considered = 0;
2155 preferred_zone->compact_defer_shift = 0;
2156 if (order >= preferred_zone->compact_order_failed)
2157 preferred_zone->compact_order_failed = order + 1;
2158 count_vm_event(COMPACTSUCCESS);
2159 return page;
2160 }
2161
2162 /*
2163 * It's bad if compaction run occurs and fails.
2164 * The most likely reason is that pages exist,
2165 * but not enough to satisfy watermarks.
2166 */
2167 count_vm_event(COMPACTFAIL);
2168
2169 /*
2170 * As async compaction considers a subset of pageblocks, only
2171 * defer if the failure was a sync compaction failure.
2172 */
2173 if (sync_migration)
2174 defer_compaction(preferred_zone, order);
2175
2176 cond_resched();
2177 }
2178
2179 return NULL;
2180 }
2181 #else
2182 static inline struct page *
2183 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2184 struct zonelist *zonelist, enum zone_type high_zoneidx,
2185 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2186 int migratetype, bool sync_migration,
2187 bool *contended_compaction, bool *deferred_compaction,
2188 unsigned long *did_some_progress)
2189 {
2190 return NULL;
2191 }
2192 #endif /* CONFIG_COMPACTION */
2193
2194 /* Perform direct synchronous page reclaim */
2195 static int
2196 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2197 nodemask_t *nodemask)
2198 {
2199 struct reclaim_state reclaim_state;
2200 int progress;
2201
2202 cond_resched();
2203
2204 /* We now go into synchronous reclaim */
2205 cpuset_memory_pressure_bump();
2206 current->flags |= PF_MEMALLOC;
2207 lockdep_set_current_reclaim_state(gfp_mask);
2208 reclaim_state.reclaimed_slab = 0;
2209 current->reclaim_state = &reclaim_state;
2210
2211 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2212
2213 current->reclaim_state = NULL;
2214 lockdep_clear_current_reclaim_state();
2215 current->flags &= ~PF_MEMALLOC;
2216
2217 cond_resched();
2218
2219 return progress;
2220 }
2221
2222 /* The really slow allocator path where we enter direct reclaim */
2223 static inline struct page *
2224 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2225 struct zonelist *zonelist, enum zone_type high_zoneidx,
2226 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2227 int migratetype, unsigned long *did_some_progress)
2228 {
2229 struct page *page = NULL;
2230 bool drained = false;
2231
2232 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2233 nodemask);
2234 if (unlikely(!(*did_some_progress)))
2235 return NULL;
2236
2237 /* After successful reclaim, reconsider all zones for allocation */
2238 if (IS_ENABLED(CONFIG_NUMA))
2239 zlc_clear_zones_full(zonelist);
2240
2241 retry:
2242 page = get_page_from_freelist(gfp_mask, nodemask, order,
2243 zonelist, high_zoneidx,
2244 alloc_flags & ~ALLOC_NO_WATERMARKS,
2245 preferred_zone, migratetype);
2246
2247 /*
2248 * If an allocation failed after direct reclaim, it could be because
2249 * pages are pinned on the per-cpu lists. Drain them and try again
2250 */
2251 if (!page && !drained) {
2252 drain_all_pages();
2253 drained = true;
2254 goto retry;
2255 }
2256
2257 return page;
2258 }
2259
2260 /*
2261 * This is called in the allocator slow-path if the allocation request is of
2262 * sufficient urgency to ignore watermarks and take other desperate measures
2263 */
2264 static inline struct page *
2265 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2266 struct zonelist *zonelist, enum zone_type high_zoneidx,
2267 nodemask_t *nodemask, struct zone *preferred_zone,
2268 int migratetype)
2269 {
2270 struct page *page;
2271
2272 do {
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2275 preferred_zone, migratetype);
2276
2277 if (!page && gfp_mask & __GFP_NOFAIL)
2278 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2279 } while (!page && (gfp_mask & __GFP_NOFAIL));
2280
2281 return page;
2282 }
2283
2284 static inline
2285 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2286 enum zone_type high_zoneidx,
2287 enum zone_type classzone_idx)
2288 {
2289 struct zoneref *z;
2290 struct zone *zone;
2291
2292 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2293 wakeup_kswapd(zone, order, classzone_idx);
2294 }
2295
2296 static inline int
2297 gfp_to_alloc_flags(gfp_t gfp_mask)
2298 {
2299 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2300 const gfp_t wait = gfp_mask & __GFP_WAIT;
2301
2302 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2303 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2304
2305 /*
2306 * The caller may dip into page reserves a bit more if the caller
2307 * cannot run direct reclaim, or if the caller has realtime scheduling
2308 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2309 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2310 */
2311 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2312
2313 if (!wait) {
2314 /*
2315 * Not worth trying to allocate harder for
2316 * __GFP_NOMEMALLOC even if it can't schedule.
2317 */
2318 if (!(gfp_mask & __GFP_NOMEMALLOC))
2319 alloc_flags |= ALLOC_HARDER;
2320 /*
2321 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2322 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2323 */
2324 alloc_flags &= ~ALLOC_CPUSET;
2325 } else if (unlikely(rt_task(current)) && !in_interrupt())
2326 alloc_flags |= ALLOC_HARDER;
2327
2328 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2329 if (gfp_mask & __GFP_MEMALLOC)
2330 alloc_flags |= ALLOC_NO_WATERMARKS;
2331 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2332 alloc_flags |= ALLOC_NO_WATERMARKS;
2333 else if (!in_interrupt() &&
2334 ((current->flags & PF_MEMALLOC) ||
2335 unlikely(test_thread_flag(TIF_MEMDIE))))
2336 alloc_flags |= ALLOC_NO_WATERMARKS;
2337 }
2338 #ifdef CONFIG_CMA
2339 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2340 alloc_flags |= ALLOC_CMA;
2341 #endif
2342 return alloc_flags;
2343 }
2344
2345 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2346 {
2347 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2348 }
2349
2350 static inline struct page *
2351 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2352 struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 nodemask_t *nodemask, struct zone *preferred_zone,
2354 int migratetype)
2355 {
2356 const gfp_t wait = gfp_mask & __GFP_WAIT;
2357 struct page *page = NULL;
2358 int alloc_flags;
2359 unsigned long pages_reclaimed = 0;
2360 unsigned long did_some_progress;
2361 bool sync_migration = false;
2362 bool deferred_compaction = false;
2363 bool contended_compaction = false;
2364
2365 /*
2366 * In the slowpath, we sanity check order to avoid ever trying to
2367 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2368 * be using allocators in order of preference for an area that is
2369 * too large.
2370 */
2371 if (order >= MAX_ORDER) {
2372 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2373 return NULL;
2374 }
2375
2376 /*
2377 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2378 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2379 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2380 * using a larger set of nodes after it has established that the
2381 * allowed per node queues are empty and that nodes are
2382 * over allocated.
2383 */
2384 if (IS_ENABLED(CONFIG_NUMA) &&
2385 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2386 goto nopage;
2387
2388 restart:
2389 if (!(gfp_mask & __GFP_NO_KSWAPD))
2390 wake_all_kswapd(order, zonelist, high_zoneidx,
2391 zone_idx(preferred_zone));
2392
2393 /*
2394 * OK, we're below the kswapd watermark and have kicked background
2395 * reclaim. Now things get more complex, so set up alloc_flags according
2396 * to how we want to proceed.
2397 */
2398 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2399
2400 /*
2401 * Find the true preferred zone if the allocation is unconstrained by
2402 * cpusets.
2403 */
2404 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2405 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2406 &preferred_zone);
2407
2408 rebalance:
2409 /* This is the last chance, in general, before the goto nopage. */
2410 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2411 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2412 preferred_zone, migratetype);
2413 if (page)
2414 goto got_pg;
2415
2416 /* Allocate without watermarks if the context allows */
2417 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2418 /*
2419 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2420 * the allocation is high priority and these type of
2421 * allocations are system rather than user orientated
2422 */
2423 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2424
2425 page = __alloc_pages_high_priority(gfp_mask, order,
2426 zonelist, high_zoneidx, nodemask,
2427 preferred_zone, migratetype);
2428 if (page) {
2429 goto got_pg;
2430 }
2431 }
2432
2433 /* Atomic allocations - we can't balance anything */
2434 if (!wait)
2435 goto nopage;
2436
2437 /* Avoid recursion of direct reclaim */
2438 if (current->flags & PF_MEMALLOC)
2439 goto nopage;
2440
2441 /* Avoid allocations with no watermarks from looping endlessly */
2442 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2443 goto nopage;
2444
2445 /*
2446 * Try direct compaction. The first pass is asynchronous. Subsequent
2447 * attempts after direct reclaim are synchronous
2448 */
2449 page = __alloc_pages_direct_compact(gfp_mask, order,
2450 zonelist, high_zoneidx,
2451 nodemask,
2452 alloc_flags, preferred_zone,
2453 migratetype, sync_migration,
2454 &contended_compaction,
2455 &deferred_compaction,
2456 &did_some_progress);
2457 if (page)
2458 goto got_pg;
2459 sync_migration = true;
2460
2461 /*
2462 * If compaction is deferred for high-order allocations, it is because
2463 * sync compaction recently failed. In this is the case and the caller
2464 * requested a movable allocation that does not heavily disrupt the
2465 * system then fail the allocation instead of entering direct reclaim.
2466 */
2467 if ((deferred_compaction || contended_compaction) &&
2468 (gfp_mask & __GFP_NO_KSWAPD))
2469 goto nopage;
2470
2471 /* Try direct reclaim and then allocating */
2472 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2473 zonelist, high_zoneidx,
2474 nodemask,
2475 alloc_flags, preferred_zone,
2476 migratetype, &did_some_progress);
2477 if (page)
2478 goto got_pg;
2479
2480 /*
2481 * If we failed to make any progress reclaiming, then we are
2482 * running out of options and have to consider going OOM
2483 */
2484 if (!did_some_progress) {
2485 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2486 if (oom_killer_disabled)
2487 goto nopage;
2488 /* Coredumps can quickly deplete all memory reserves */
2489 if ((current->flags & PF_DUMPCORE) &&
2490 !(gfp_mask & __GFP_NOFAIL))
2491 goto nopage;
2492 page = __alloc_pages_may_oom(gfp_mask, order,
2493 zonelist, high_zoneidx,
2494 nodemask, preferred_zone,
2495 migratetype);
2496 if (page)
2497 goto got_pg;
2498
2499 if (!(gfp_mask & __GFP_NOFAIL)) {
2500 /*
2501 * The oom killer is not called for high-order
2502 * allocations that may fail, so if no progress
2503 * is being made, there are no other options and
2504 * retrying is unlikely to help.
2505 */
2506 if (order > PAGE_ALLOC_COSTLY_ORDER)
2507 goto nopage;
2508 /*
2509 * The oom killer is not called for lowmem
2510 * allocations to prevent needlessly killing
2511 * innocent tasks.
2512 */
2513 if (high_zoneidx < ZONE_NORMAL)
2514 goto nopage;
2515 }
2516
2517 goto restart;
2518 }
2519 }
2520
2521 /* Check if we should retry the allocation */
2522 pages_reclaimed += did_some_progress;
2523 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2524 pages_reclaimed)) {
2525 /* Wait for some write requests to complete then retry */
2526 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2527 goto rebalance;
2528 } else {
2529 /*
2530 * High-order allocations do not necessarily loop after
2531 * direct reclaim and reclaim/compaction depends on compaction
2532 * being called after reclaim so call directly if necessary
2533 */
2534 page = __alloc_pages_direct_compact(gfp_mask, order,
2535 zonelist, high_zoneidx,
2536 nodemask,
2537 alloc_flags, preferred_zone,
2538 migratetype, sync_migration,
2539 &contended_compaction,
2540 &deferred_compaction,
2541 &did_some_progress);
2542 if (page)
2543 goto got_pg;
2544 }
2545
2546 nopage:
2547 warn_alloc_failed(gfp_mask, order, NULL);
2548 return page;
2549 got_pg:
2550 if (kmemcheck_enabled)
2551 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2552
2553 return page;
2554 }
2555
2556 /*
2557 * This is the 'heart' of the zoned buddy allocator.
2558 */
2559 struct page *
2560 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2561 struct zonelist *zonelist, nodemask_t *nodemask)
2562 {
2563 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2564 struct zone *preferred_zone;
2565 struct page *page = NULL;
2566 int migratetype = allocflags_to_migratetype(gfp_mask);
2567 unsigned int cpuset_mems_cookie;
2568 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2569 struct mem_cgroup *memcg = NULL;
2570
2571 gfp_mask &= gfp_allowed_mask;
2572
2573 lockdep_trace_alloc(gfp_mask);
2574
2575 might_sleep_if(gfp_mask & __GFP_WAIT);
2576
2577 if (should_fail_alloc_page(gfp_mask, order))
2578 return NULL;
2579
2580 /*
2581 * Check the zones suitable for the gfp_mask contain at least one
2582 * valid zone. It's possible to have an empty zonelist as a result
2583 * of GFP_THISNODE and a memoryless node
2584 */
2585 if (unlikely(!zonelist->_zonerefs->zone))
2586 return NULL;
2587
2588 /*
2589 * Will only have any effect when __GFP_KMEMCG is set. This is
2590 * verified in the (always inline) callee
2591 */
2592 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2593 return NULL;
2594
2595 retry_cpuset:
2596 cpuset_mems_cookie = get_mems_allowed();
2597
2598 /* The preferred zone is used for statistics later */
2599 first_zones_zonelist(zonelist, high_zoneidx,
2600 nodemask ? : &cpuset_current_mems_allowed,
2601 &preferred_zone);
2602 if (!preferred_zone)
2603 goto out;
2604
2605 #ifdef CONFIG_CMA
2606 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2607 alloc_flags |= ALLOC_CMA;
2608 #endif
2609 /* First allocation attempt */
2610 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2611 zonelist, high_zoneidx, alloc_flags,
2612 preferred_zone, migratetype);
2613 if (unlikely(!page))
2614 page = __alloc_pages_slowpath(gfp_mask, order,
2615 zonelist, high_zoneidx, nodemask,
2616 preferred_zone, migratetype);
2617
2618 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2619
2620 out:
2621 /*
2622 * When updating a task's mems_allowed, it is possible to race with
2623 * parallel threads in such a way that an allocation can fail while
2624 * the mask is being updated. If a page allocation is about to fail,
2625 * check if the cpuset changed during allocation and if so, retry.
2626 */
2627 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2628 goto retry_cpuset;
2629
2630 memcg_kmem_commit_charge(page, memcg, order);
2631
2632 return page;
2633 }
2634 EXPORT_SYMBOL(__alloc_pages_nodemask);
2635
2636 /*
2637 * Common helper functions.
2638 */
2639 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2640 {
2641 struct page *page;
2642
2643 /*
2644 * __get_free_pages() returns a 32-bit address, which cannot represent
2645 * a highmem page
2646 */
2647 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2648
2649 page = alloc_pages(gfp_mask, order);
2650 if (!page)
2651 return 0;
2652 return (unsigned long) page_address(page);
2653 }
2654 EXPORT_SYMBOL(__get_free_pages);
2655
2656 unsigned long get_zeroed_page(gfp_t gfp_mask)
2657 {
2658 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2659 }
2660 EXPORT_SYMBOL(get_zeroed_page);
2661
2662 void __free_pages(struct page *page, unsigned int order)
2663 {
2664 if (put_page_testzero(page)) {
2665 if (order == 0)
2666 free_hot_cold_page(page, 0);
2667 else
2668 __free_pages_ok(page, order);
2669 }
2670 }
2671
2672 EXPORT_SYMBOL(__free_pages);
2673
2674 void free_pages(unsigned long addr, unsigned int order)
2675 {
2676 if (addr != 0) {
2677 VM_BUG_ON(!virt_addr_valid((void *)addr));
2678 __free_pages(virt_to_page((void *)addr), order);
2679 }
2680 }
2681
2682 EXPORT_SYMBOL(free_pages);
2683
2684 /*
2685 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2686 * pages allocated with __GFP_KMEMCG.
2687 *
2688 * Those pages are accounted to a particular memcg, embedded in the
2689 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2690 * for that information only to find out that it is NULL for users who have no
2691 * interest in that whatsoever, we provide these functions.
2692 *
2693 * The caller knows better which flags it relies on.
2694 */
2695 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2696 {
2697 memcg_kmem_uncharge_pages(page, order);
2698 __free_pages(page, order);
2699 }
2700
2701 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2702 {
2703 if (addr != 0) {
2704 VM_BUG_ON(!virt_addr_valid((void *)addr));
2705 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2706 }
2707 }
2708
2709 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2710 {
2711 if (addr) {
2712 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2713 unsigned long used = addr + PAGE_ALIGN(size);
2714
2715 split_page(virt_to_page((void *)addr), order);
2716 while (used < alloc_end) {
2717 free_page(used);
2718 used += PAGE_SIZE;
2719 }
2720 }
2721 return (void *)addr;
2722 }
2723
2724 /**
2725 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2726 * @size: the number of bytes to allocate
2727 * @gfp_mask: GFP flags for the allocation
2728 *
2729 * This function is similar to alloc_pages(), except that it allocates the
2730 * minimum number of pages to satisfy the request. alloc_pages() can only
2731 * allocate memory in power-of-two pages.
2732 *
2733 * This function is also limited by MAX_ORDER.
2734 *
2735 * Memory allocated by this function must be released by free_pages_exact().
2736 */
2737 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2738 {
2739 unsigned int order = get_order(size);
2740 unsigned long addr;
2741
2742 addr = __get_free_pages(gfp_mask, order);
2743 return make_alloc_exact(addr, order, size);
2744 }
2745 EXPORT_SYMBOL(alloc_pages_exact);
2746
2747 /**
2748 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2749 * pages on a node.
2750 * @nid: the preferred node ID where memory should be allocated
2751 * @size: the number of bytes to allocate
2752 * @gfp_mask: GFP flags for the allocation
2753 *
2754 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2755 * back.
2756 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2757 * but is not exact.
2758 */
2759 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2760 {
2761 unsigned order = get_order(size);
2762 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2763 if (!p)
2764 return NULL;
2765 return make_alloc_exact((unsigned long)page_address(p), order, size);
2766 }
2767 EXPORT_SYMBOL(alloc_pages_exact_nid);
2768
2769 /**
2770 * free_pages_exact - release memory allocated via alloc_pages_exact()
2771 * @virt: the value returned by alloc_pages_exact.
2772 * @size: size of allocation, same value as passed to alloc_pages_exact().
2773 *
2774 * Release the memory allocated by a previous call to alloc_pages_exact.
2775 */
2776 void free_pages_exact(void *virt, size_t size)
2777 {
2778 unsigned long addr = (unsigned long)virt;
2779 unsigned long end = addr + PAGE_ALIGN(size);
2780
2781 while (addr < end) {
2782 free_page(addr);
2783 addr += PAGE_SIZE;
2784 }
2785 }
2786 EXPORT_SYMBOL(free_pages_exact);
2787
2788 static unsigned int nr_free_zone_pages(int offset)
2789 {
2790 struct zoneref *z;
2791 struct zone *zone;
2792
2793 /* Just pick one node, since fallback list is circular */
2794 unsigned int sum = 0;
2795
2796 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2797
2798 for_each_zone_zonelist(zone, z, zonelist, offset) {
2799 unsigned long size = zone->present_pages;
2800 unsigned long high = high_wmark_pages(zone);
2801 if (size > high)
2802 sum += size - high;
2803 }
2804
2805 return sum;
2806 }
2807
2808 /*
2809 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2810 */
2811 unsigned int nr_free_buffer_pages(void)
2812 {
2813 return nr_free_zone_pages(gfp_zone(GFP_USER));
2814 }
2815 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2816
2817 /*
2818 * Amount of free RAM allocatable within all zones
2819 */
2820 unsigned int nr_free_pagecache_pages(void)
2821 {
2822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2823 }
2824
2825 static inline void show_node(struct zone *zone)
2826 {
2827 if (IS_ENABLED(CONFIG_NUMA))
2828 printk("Node %d ", zone_to_nid(zone));
2829 }
2830
2831 void si_meminfo(struct sysinfo *val)
2832 {
2833 val->totalram = totalram_pages;
2834 val->sharedram = 0;
2835 val->freeram = global_page_state(NR_FREE_PAGES);
2836 val->bufferram = nr_blockdev_pages();
2837 val->totalhigh = totalhigh_pages;
2838 val->freehigh = nr_free_highpages();
2839 val->mem_unit = PAGE_SIZE;
2840 }
2841
2842 EXPORT_SYMBOL(si_meminfo);
2843
2844 #ifdef CONFIG_NUMA
2845 void si_meminfo_node(struct sysinfo *val, int nid)
2846 {
2847 pg_data_t *pgdat = NODE_DATA(nid);
2848
2849 val->totalram = pgdat->node_present_pages;
2850 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2851 #ifdef CONFIG_HIGHMEM
2852 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2853 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2854 NR_FREE_PAGES);
2855 #else
2856 val->totalhigh = 0;
2857 val->freehigh = 0;
2858 #endif
2859 val->mem_unit = PAGE_SIZE;
2860 }
2861 #endif
2862
2863 /*
2864 * Determine whether the node should be displayed or not, depending on whether
2865 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2866 */
2867 bool skip_free_areas_node(unsigned int flags, int nid)
2868 {
2869 bool ret = false;
2870 unsigned int cpuset_mems_cookie;
2871
2872 if (!(flags & SHOW_MEM_FILTER_NODES))
2873 goto out;
2874
2875 do {
2876 cpuset_mems_cookie = get_mems_allowed();
2877 ret = !node_isset(nid, cpuset_current_mems_allowed);
2878 } while (!put_mems_allowed(cpuset_mems_cookie));
2879 out:
2880 return ret;
2881 }
2882
2883 #define K(x) ((x) << (PAGE_SHIFT-10))
2884
2885 static void show_migration_types(unsigned char type)
2886 {
2887 static const char types[MIGRATE_TYPES] = {
2888 [MIGRATE_UNMOVABLE] = 'U',
2889 [MIGRATE_RECLAIMABLE] = 'E',
2890 [MIGRATE_MOVABLE] = 'M',
2891 [MIGRATE_RESERVE] = 'R',
2892 #ifdef CONFIG_CMA
2893 [MIGRATE_CMA] = 'C',
2894 #endif
2895 [MIGRATE_ISOLATE] = 'I',
2896 };
2897 char tmp[MIGRATE_TYPES + 1];
2898 char *p = tmp;
2899 int i;
2900
2901 for (i = 0; i < MIGRATE_TYPES; i++) {
2902 if (type & (1 << i))
2903 *p++ = types[i];
2904 }
2905
2906 *p = '\0';
2907 printk("(%s) ", tmp);
2908 }
2909
2910 /*
2911 * Show free area list (used inside shift_scroll-lock stuff)
2912 * We also calculate the percentage fragmentation. We do this by counting the
2913 * memory on each free list with the exception of the first item on the list.
2914 * Suppresses nodes that are not allowed by current's cpuset if
2915 * SHOW_MEM_FILTER_NODES is passed.
2916 */
2917 void show_free_areas(unsigned int filter)
2918 {
2919 int cpu;
2920 struct zone *zone;
2921
2922 for_each_populated_zone(zone) {
2923 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2924 continue;
2925 show_node(zone);
2926 printk("%s per-cpu:\n", zone->name);
2927
2928 for_each_online_cpu(cpu) {
2929 struct per_cpu_pageset *pageset;
2930
2931 pageset = per_cpu_ptr(zone->pageset, cpu);
2932
2933 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2934 cpu, pageset->pcp.high,
2935 pageset->pcp.batch, pageset->pcp.count);
2936 }
2937 }
2938
2939 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2940 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2941 " unevictable:%lu"
2942 " dirty:%lu writeback:%lu unstable:%lu\n"
2943 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2944 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2945 " free_cma:%lu\n",
2946 global_page_state(NR_ACTIVE_ANON),
2947 global_page_state(NR_INACTIVE_ANON),
2948 global_page_state(NR_ISOLATED_ANON),
2949 global_page_state(NR_ACTIVE_FILE),
2950 global_page_state(NR_INACTIVE_FILE),
2951 global_page_state(NR_ISOLATED_FILE),
2952 global_page_state(NR_UNEVICTABLE),
2953 global_page_state(NR_FILE_DIRTY),
2954 global_page_state(NR_WRITEBACK),
2955 global_page_state(NR_UNSTABLE_NFS),
2956 global_page_state(NR_FREE_PAGES),
2957 global_page_state(NR_SLAB_RECLAIMABLE),
2958 global_page_state(NR_SLAB_UNRECLAIMABLE),
2959 global_page_state(NR_FILE_MAPPED),
2960 global_page_state(NR_SHMEM),
2961 global_page_state(NR_PAGETABLE),
2962 global_page_state(NR_BOUNCE),
2963 global_page_state(NR_FREE_CMA_PAGES));
2964
2965 for_each_populated_zone(zone) {
2966 int i;
2967
2968 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2969 continue;
2970 show_node(zone);
2971 printk("%s"
2972 " free:%lukB"
2973 " min:%lukB"
2974 " low:%lukB"
2975 " high:%lukB"
2976 " active_anon:%lukB"
2977 " inactive_anon:%lukB"
2978 " active_file:%lukB"
2979 " inactive_file:%lukB"
2980 " unevictable:%lukB"
2981 " isolated(anon):%lukB"
2982 " isolated(file):%lukB"
2983 " present:%lukB"
2984 " managed:%lukB"
2985 " mlocked:%lukB"
2986 " dirty:%lukB"
2987 " writeback:%lukB"
2988 " mapped:%lukB"
2989 " shmem:%lukB"
2990 " slab_reclaimable:%lukB"
2991 " slab_unreclaimable:%lukB"
2992 " kernel_stack:%lukB"
2993 " pagetables:%lukB"
2994 " unstable:%lukB"
2995 " bounce:%lukB"
2996 " free_cma:%lukB"
2997 " writeback_tmp:%lukB"
2998 " pages_scanned:%lu"
2999 " all_unreclaimable? %s"
3000 "\n",
3001 zone->name,
3002 K(zone_page_state(zone, NR_FREE_PAGES)),
3003 K(min_wmark_pages(zone)),
3004 K(low_wmark_pages(zone)),
3005 K(high_wmark_pages(zone)),
3006 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3007 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3008 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3009 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3010 K(zone_page_state(zone, NR_UNEVICTABLE)),
3011 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3012 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3013 K(zone->present_pages),
3014 K(zone->managed_pages),
3015 K(zone_page_state(zone, NR_MLOCK)),
3016 K(zone_page_state(zone, NR_FILE_DIRTY)),
3017 K(zone_page_state(zone, NR_WRITEBACK)),
3018 K(zone_page_state(zone, NR_FILE_MAPPED)),
3019 K(zone_page_state(zone, NR_SHMEM)),
3020 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3021 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3022 zone_page_state(zone, NR_KERNEL_STACK) *
3023 THREAD_SIZE / 1024,
3024 K(zone_page_state(zone, NR_PAGETABLE)),
3025 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3026 K(zone_page_state(zone, NR_BOUNCE)),
3027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3028 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3029 zone->pages_scanned,
3030 (zone->all_unreclaimable ? "yes" : "no")
3031 );
3032 printk("lowmem_reserve[]:");
3033 for (i = 0; i < MAX_NR_ZONES; i++)
3034 printk(" %lu", zone->lowmem_reserve[i]);
3035 printk("\n");
3036 }
3037
3038 for_each_populated_zone(zone) {
3039 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3040 unsigned char types[MAX_ORDER];
3041
3042 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3043 continue;
3044 show_node(zone);
3045 printk("%s: ", zone->name);
3046
3047 spin_lock_irqsave(&zone->lock, flags);
3048 for (order = 0; order < MAX_ORDER; order++) {
3049 struct free_area *area = &zone->free_area[order];
3050 int type;
3051
3052 nr[order] = area->nr_free;
3053 total += nr[order] << order;
3054
3055 types[order] = 0;
3056 for (type = 0; type < MIGRATE_TYPES; type++) {
3057 if (!list_empty(&area->free_list[type]))
3058 types[order] |= 1 << type;
3059 }
3060 }
3061 spin_unlock_irqrestore(&zone->lock, flags);
3062 for (order = 0; order < MAX_ORDER; order++) {
3063 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3064 if (nr[order])
3065 show_migration_types(types[order]);
3066 }
3067 printk("= %lukB\n", K(total));
3068 }
3069
3070 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3071
3072 show_swap_cache_info();
3073 }
3074
3075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3076 {
3077 zoneref->zone = zone;
3078 zoneref->zone_idx = zone_idx(zone);
3079 }
3080
3081 /*
3082 * Builds allocation fallback zone lists.
3083 *
3084 * Add all populated zones of a node to the zonelist.
3085 */
3086 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3087 int nr_zones, enum zone_type zone_type)
3088 {
3089 struct zone *zone;
3090
3091 BUG_ON(zone_type >= MAX_NR_ZONES);
3092 zone_type++;
3093
3094 do {
3095 zone_type--;
3096 zone = pgdat->node_zones + zone_type;
3097 if (populated_zone(zone)) {
3098 zoneref_set_zone(zone,
3099 &zonelist->_zonerefs[nr_zones++]);
3100 check_highest_zone(zone_type);
3101 }
3102
3103 } while (zone_type);
3104 return nr_zones;
3105 }
3106
3107
3108 /*
3109 * zonelist_order:
3110 * 0 = automatic detection of better ordering.
3111 * 1 = order by ([node] distance, -zonetype)
3112 * 2 = order by (-zonetype, [node] distance)
3113 *
3114 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3115 * the same zonelist. So only NUMA can configure this param.
3116 */
3117 #define ZONELIST_ORDER_DEFAULT 0
3118 #define ZONELIST_ORDER_NODE 1
3119 #define ZONELIST_ORDER_ZONE 2
3120
3121 /* zonelist order in the kernel.
3122 * set_zonelist_order() will set this to NODE or ZONE.
3123 */
3124 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3125 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3126
3127
3128 #ifdef CONFIG_NUMA
3129 /* The value user specified ....changed by config */
3130 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3131 /* string for sysctl */
3132 #define NUMA_ZONELIST_ORDER_LEN 16
3133 char numa_zonelist_order[16] = "default";
3134
3135 /*
3136 * interface for configure zonelist ordering.
3137 * command line option "numa_zonelist_order"
3138 * = "[dD]efault - default, automatic configuration.
3139 * = "[nN]ode - order by node locality, then by zone within node
3140 * = "[zZ]one - order by zone, then by locality within zone
3141 */
3142
3143 static int __parse_numa_zonelist_order(char *s)
3144 {
3145 if (*s == 'd' || *s == 'D') {
3146 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3147 } else if (*s == 'n' || *s == 'N') {
3148 user_zonelist_order = ZONELIST_ORDER_NODE;
3149 } else if (*s == 'z' || *s == 'Z') {
3150 user_zonelist_order = ZONELIST_ORDER_ZONE;
3151 } else {
3152 printk(KERN_WARNING
3153 "Ignoring invalid numa_zonelist_order value: "
3154 "%s\n", s);
3155 return -EINVAL;
3156 }
3157 return 0;
3158 }
3159
3160 static __init int setup_numa_zonelist_order(char *s)
3161 {
3162 int ret;
3163
3164 if (!s)
3165 return 0;
3166
3167 ret = __parse_numa_zonelist_order(s);
3168 if (ret == 0)
3169 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3170
3171 return ret;
3172 }
3173 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3174
3175 /*
3176 * sysctl handler for numa_zonelist_order
3177 */
3178 int numa_zonelist_order_handler(ctl_table *table, int write,
3179 void __user *buffer, size_t *length,
3180 loff_t *ppos)
3181 {
3182 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3183 int ret;
3184 static DEFINE_MUTEX(zl_order_mutex);
3185
3186 mutex_lock(&zl_order_mutex);
3187 if (write)
3188 strcpy(saved_string, (char*)table->data);
3189 ret = proc_dostring(table, write, buffer, length, ppos);
3190 if (ret)
3191 goto out;
3192 if (write) {
3193 int oldval = user_zonelist_order;
3194 if (__parse_numa_zonelist_order((char*)table->data)) {
3195 /*
3196 * bogus value. restore saved string
3197 */
3198 strncpy((char*)table->data, saved_string,
3199 NUMA_ZONELIST_ORDER_LEN);
3200 user_zonelist_order = oldval;
3201 } else if (oldval != user_zonelist_order) {
3202 mutex_lock(&zonelists_mutex);
3203 build_all_zonelists(NULL, NULL);
3204 mutex_unlock(&zonelists_mutex);
3205 }
3206 }
3207 out:
3208 mutex_unlock(&zl_order_mutex);
3209 return ret;
3210 }
3211
3212
3213 #define MAX_NODE_LOAD (nr_online_nodes)
3214 static int node_load[MAX_NUMNODES];
3215
3216 /**
3217 * find_next_best_node - find the next node that should appear in a given node's fallback list
3218 * @node: node whose fallback list we're appending
3219 * @used_node_mask: nodemask_t of already used nodes
3220 *
3221 * We use a number of factors to determine which is the next node that should
3222 * appear on a given node's fallback list. The node should not have appeared
3223 * already in @node's fallback list, and it should be the next closest node
3224 * according to the distance array (which contains arbitrary distance values
3225 * from each node to each node in the system), and should also prefer nodes
3226 * with no CPUs, since presumably they'll have very little allocation pressure
3227 * on them otherwise.
3228 * It returns -1 if no node is found.
3229 */
3230 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3231 {
3232 int n, val;
3233 int min_val = INT_MAX;
3234 int best_node = -1;
3235 const struct cpumask *tmp = cpumask_of_node(0);
3236
3237 /* Use the local node if we haven't already */
3238 if (!node_isset(node, *used_node_mask)) {
3239 node_set(node, *used_node_mask);
3240 return node;
3241 }
3242
3243 for_each_node_state(n, N_MEMORY) {
3244
3245 /* Don't want a node to appear more than once */
3246 if (node_isset(n, *used_node_mask))
3247 continue;
3248
3249 /* Use the distance array to find the distance */
3250 val = node_distance(node, n);
3251
3252 /* Penalize nodes under us ("prefer the next node") */
3253 val += (n < node);
3254
3255 /* Give preference to headless and unused nodes */
3256 tmp = cpumask_of_node(n);
3257 if (!cpumask_empty(tmp))
3258 val += PENALTY_FOR_NODE_WITH_CPUS;
3259
3260 /* Slight preference for less loaded node */
3261 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3262 val += node_load[n];
3263
3264 if (val < min_val) {
3265 min_val = val;
3266 best_node = n;
3267 }
3268 }
3269
3270 if (best_node >= 0)
3271 node_set(best_node, *used_node_mask);
3272
3273 return best_node;
3274 }
3275
3276
3277 /*
3278 * Build zonelists ordered by node and zones within node.
3279 * This results in maximum locality--normal zone overflows into local
3280 * DMA zone, if any--but risks exhausting DMA zone.
3281 */
3282 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3283 {
3284 int j;
3285 struct zonelist *zonelist;
3286
3287 zonelist = &pgdat->node_zonelists[0];
3288 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3289 ;
3290 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3291 MAX_NR_ZONES - 1);
3292 zonelist->_zonerefs[j].zone = NULL;
3293 zonelist->_zonerefs[j].zone_idx = 0;
3294 }
3295
3296 /*
3297 * Build gfp_thisnode zonelists
3298 */
3299 static void build_thisnode_zonelists(pg_data_t *pgdat)
3300 {
3301 int j;
3302 struct zonelist *zonelist;
3303
3304 zonelist = &pgdat->node_zonelists[1];
3305 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3306 zonelist->_zonerefs[j].zone = NULL;
3307 zonelist->_zonerefs[j].zone_idx = 0;
3308 }
3309
3310 /*
3311 * Build zonelists ordered by zone and nodes within zones.
3312 * This results in conserving DMA zone[s] until all Normal memory is
3313 * exhausted, but results in overflowing to remote node while memory
3314 * may still exist in local DMA zone.
3315 */
3316 static int node_order[MAX_NUMNODES];
3317
3318 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3319 {
3320 int pos, j, node;
3321 int zone_type; /* needs to be signed */
3322 struct zone *z;
3323 struct zonelist *zonelist;
3324
3325 zonelist = &pgdat->node_zonelists[0];
3326 pos = 0;
3327 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3328 for (j = 0; j < nr_nodes; j++) {
3329 node = node_order[j];
3330 z = &NODE_DATA(node)->node_zones[zone_type];
3331 if (populated_zone(z)) {
3332 zoneref_set_zone(z,
3333 &zonelist->_zonerefs[pos++]);
3334 check_highest_zone(zone_type);
3335 }
3336 }
3337 }
3338 zonelist->_zonerefs[pos].zone = NULL;
3339 zonelist->_zonerefs[pos].zone_idx = 0;
3340 }
3341
3342 static int default_zonelist_order(void)
3343 {
3344 int nid, zone_type;
3345 unsigned long low_kmem_size,total_size;
3346 struct zone *z;
3347 int average_size;
3348 /*
3349 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3350 * If they are really small and used heavily, the system can fall
3351 * into OOM very easily.
3352 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3353 */
3354 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3355 low_kmem_size = 0;
3356 total_size = 0;
3357 for_each_online_node(nid) {
3358 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3359 z = &NODE_DATA(nid)->node_zones[zone_type];
3360 if (populated_zone(z)) {
3361 if (zone_type < ZONE_NORMAL)
3362 low_kmem_size += z->present_pages;
3363 total_size += z->present_pages;
3364 } else if (zone_type == ZONE_NORMAL) {
3365 /*
3366 * If any node has only lowmem, then node order
3367 * is preferred to allow kernel allocations
3368 * locally; otherwise, they can easily infringe
3369 * on other nodes when there is an abundance of
3370 * lowmem available to allocate from.
3371 */
3372 return ZONELIST_ORDER_NODE;
3373 }
3374 }
3375 }
3376 if (!low_kmem_size || /* there are no DMA area. */
3377 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3378 return ZONELIST_ORDER_NODE;
3379 /*
3380 * look into each node's config.
3381 * If there is a node whose DMA/DMA32 memory is very big area on
3382 * local memory, NODE_ORDER may be suitable.
3383 */
3384 average_size = total_size /
3385 (nodes_weight(node_states[N_MEMORY]) + 1);
3386 for_each_online_node(nid) {
3387 low_kmem_size = 0;
3388 total_size = 0;
3389 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3390 z = &NODE_DATA(nid)->node_zones[zone_type];
3391 if (populated_zone(z)) {
3392 if (zone_type < ZONE_NORMAL)
3393 low_kmem_size += z->present_pages;
3394 total_size += z->present_pages;
3395 }
3396 }
3397 if (low_kmem_size &&
3398 total_size > average_size && /* ignore small node */
3399 low_kmem_size > total_size * 70/100)
3400 return ZONELIST_ORDER_NODE;
3401 }
3402 return ZONELIST_ORDER_ZONE;
3403 }
3404
3405 static void set_zonelist_order(void)
3406 {
3407 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3408 current_zonelist_order = default_zonelist_order();
3409 else
3410 current_zonelist_order = user_zonelist_order;
3411 }
3412
3413 static void build_zonelists(pg_data_t *pgdat)
3414 {
3415 int j, node, load;
3416 enum zone_type i;
3417 nodemask_t used_mask;
3418 int local_node, prev_node;
3419 struct zonelist *zonelist;
3420 int order = current_zonelist_order;
3421
3422 /* initialize zonelists */
3423 for (i = 0; i < MAX_ZONELISTS; i++) {
3424 zonelist = pgdat->node_zonelists + i;
3425 zonelist->_zonerefs[0].zone = NULL;
3426 zonelist->_zonerefs[0].zone_idx = 0;
3427 }
3428
3429 /* NUMA-aware ordering of nodes */
3430 local_node = pgdat->node_id;
3431 load = nr_online_nodes;
3432 prev_node = local_node;
3433 nodes_clear(used_mask);
3434
3435 memset(node_order, 0, sizeof(node_order));
3436 j = 0;
3437
3438 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3439 /*
3440 * We don't want to pressure a particular node.
3441 * So adding penalty to the first node in same
3442 * distance group to make it round-robin.
3443 */
3444 if (node_distance(local_node, node) !=
3445 node_distance(local_node, prev_node))
3446 node_load[node] = load;
3447
3448 prev_node = node;
3449 load--;
3450 if (order == ZONELIST_ORDER_NODE)
3451 build_zonelists_in_node_order(pgdat, node);
3452 else
3453 node_order[j++] = node; /* remember order */
3454 }
3455
3456 if (order == ZONELIST_ORDER_ZONE) {
3457 /* calculate node order -- i.e., DMA last! */
3458 build_zonelists_in_zone_order(pgdat, j);
3459 }
3460
3461 build_thisnode_zonelists(pgdat);
3462 }
3463
3464 /* Construct the zonelist performance cache - see further mmzone.h */
3465 static void build_zonelist_cache(pg_data_t *pgdat)
3466 {
3467 struct zonelist *zonelist;
3468 struct zonelist_cache *zlc;
3469 struct zoneref *z;
3470
3471 zonelist = &pgdat->node_zonelists[0];
3472 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3473 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3474 for (z = zonelist->_zonerefs; z->zone; z++)
3475 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3476 }
3477
3478 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3479 /*
3480 * Return node id of node used for "local" allocations.
3481 * I.e., first node id of first zone in arg node's generic zonelist.
3482 * Used for initializing percpu 'numa_mem', which is used primarily
3483 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3484 */
3485 int local_memory_node(int node)
3486 {
3487 struct zone *zone;
3488
3489 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3490 gfp_zone(GFP_KERNEL),
3491 NULL,
3492 &zone);
3493 return zone->node;
3494 }
3495 #endif
3496
3497 #else /* CONFIG_NUMA */
3498
3499 static void set_zonelist_order(void)
3500 {
3501 current_zonelist_order = ZONELIST_ORDER_ZONE;
3502 }
3503
3504 static void build_zonelists(pg_data_t *pgdat)
3505 {
3506 int node, local_node;
3507 enum zone_type j;
3508 struct zonelist *zonelist;
3509
3510 local_node = pgdat->node_id;
3511
3512 zonelist = &pgdat->node_zonelists[0];
3513 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3514
3515 /*
3516 * Now we build the zonelist so that it contains the zones
3517 * of all the other nodes.
3518 * We don't want to pressure a particular node, so when
3519 * building the zones for node N, we make sure that the
3520 * zones coming right after the local ones are those from
3521 * node N+1 (modulo N)
3522 */
3523 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3524 if (!node_online(node))
3525 continue;
3526 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3527 MAX_NR_ZONES - 1);
3528 }
3529 for (node = 0; node < local_node; node++) {
3530 if (!node_online(node))
3531 continue;
3532 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3533 MAX_NR_ZONES - 1);
3534 }
3535
3536 zonelist->_zonerefs[j].zone = NULL;
3537 zonelist->_zonerefs[j].zone_idx = 0;
3538 }
3539
3540 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3541 static void build_zonelist_cache(pg_data_t *pgdat)
3542 {
3543 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3544 }
3545
3546 #endif /* CONFIG_NUMA */
3547
3548 /*
3549 * Boot pageset table. One per cpu which is going to be used for all
3550 * zones and all nodes. The parameters will be set in such a way
3551 * that an item put on a list will immediately be handed over to
3552 * the buddy list. This is safe since pageset manipulation is done
3553 * with interrupts disabled.
3554 *
3555 * The boot_pagesets must be kept even after bootup is complete for
3556 * unused processors and/or zones. They do play a role for bootstrapping
3557 * hotplugged processors.
3558 *
3559 * zoneinfo_show() and maybe other functions do
3560 * not check if the processor is online before following the pageset pointer.
3561 * Other parts of the kernel may not check if the zone is available.
3562 */
3563 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3564 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3565 static void setup_zone_pageset(struct zone *zone);
3566
3567 /*
3568 * Global mutex to protect against size modification of zonelists
3569 * as well as to serialize pageset setup for the new populated zone.
3570 */
3571 DEFINE_MUTEX(zonelists_mutex);
3572
3573 /* return values int ....just for stop_machine() */
3574 static int __build_all_zonelists(void *data)
3575 {
3576 int nid;
3577 int cpu;
3578 pg_data_t *self = data;
3579
3580 #ifdef CONFIG_NUMA
3581 memset(node_load, 0, sizeof(node_load));
3582 #endif
3583
3584 if (self && !node_online(self->node_id)) {
3585 build_zonelists(self);
3586 build_zonelist_cache(self);
3587 }
3588
3589 for_each_online_node(nid) {
3590 pg_data_t *pgdat = NODE_DATA(nid);
3591
3592 build_zonelists(pgdat);
3593 build_zonelist_cache(pgdat);
3594 }
3595
3596 /*
3597 * Initialize the boot_pagesets that are going to be used
3598 * for bootstrapping processors. The real pagesets for
3599 * each zone will be allocated later when the per cpu
3600 * allocator is available.
3601 *
3602 * boot_pagesets are used also for bootstrapping offline
3603 * cpus if the system is already booted because the pagesets
3604 * are needed to initialize allocators on a specific cpu too.
3605 * F.e. the percpu allocator needs the page allocator which
3606 * needs the percpu allocator in order to allocate its pagesets
3607 * (a chicken-egg dilemma).
3608 */
3609 for_each_possible_cpu(cpu) {
3610 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3611
3612 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3613 /*
3614 * We now know the "local memory node" for each node--
3615 * i.e., the node of the first zone in the generic zonelist.
3616 * Set up numa_mem percpu variable for on-line cpus. During
3617 * boot, only the boot cpu should be on-line; we'll init the
3618 * secondary cpus' numa_mem as they come on-line. During
3619 * node/memory hotplug, we'll fixup all on-line cpus.
3620 */
3621 if (cpu_online(cpu))
3622 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3623 #endif
3624 }
3625
3626 return 0;
3627 }
3628
3629 /*
3630 * Called with zonelists_mutex held always
3631 * unless system_state == SYSTEM_BOOTING.
3632 */
3633 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3634 {
3635 set_zonelist_order();
3636
3637 if (system_state == SYSTEM_BOOTING) {
3638 __build_all_zonelists(NULL);
3639 mminit_verify_zonelist();
3640 cpuset_init_current_mems_allowed();
3641 } else {
3642 /* we have to stop all cpus to guarantee there is no user
3643 of zonelist */
3644 #ifdef CONFIG_MEMORY_HOTPLUG
3645 if (zone)
3646 setup_zone_pageset(zone);
3647 #endif
3648 stop_machine(__build_all_zonelists, pgdat, NULL);
3649 /* cpuset refresh routine should be here */
3650 }
3651 vm_total_pages = nr_free_pagecache_pages();
3652 /*
3653 * Disable grouping by mobility if the number of pages in the
3654 * system is too low to allow the mechanism to work. It would be
3655 * more accurate, but expensive to check per-zone. This check is
3656 * made on memory-hotadd so a system can start with mobility
3657 * disabled and enable it later
3658 */
3659 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3660 page_group_by_mobility_disabled = 1;
3661 else
3662 page_group_by_mobility_disabled = 0;
3663
3664 printk("Built %i zonelists in %s order, mobility grouping %s. "
3665 "Total pages: %ld\n",
3666 nr_online_nodes,
3667 zonelist_order_name[current_zonelist_order],
3668 page_group_by_mobility_disabled ? "off" : "on",
3669 vm_total_pages);
3670 #ifdef CONFIG_NUMA
3671 printk("Policy zone: %s\n", zone_names[policy_zone]);
3672 #endif
3673 }
3674
3675 /*
3676 * Helper functions to size the waitqueue hash table.
3677 * Essentially these want to choose hash table sizes sufficiently
3678 * large so that collisions trying to wait on pages are rare.
3679 * But in fact, the number of active page waitqueues on typical
3680 * systems is ridiculously low, less than 200. So this is even
3681 * conservative, even though it seems large.
3682 *
3683 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3684 * waitqueues, i.e. the size of the waitq table given the number of pages.
3685 */
3686 #define PAGES_PER_WAITQUEUE 256
3687
3688 #ifndef CONFIG_MEMORY_HOTPLUG
3689 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3690 {
3691 unsigned long size = 1;
3692
3693 pages /= PAGES_PER_WAITQUEUE;
3694
3695 while (size < pages)
3696 size <<= 1;
3697
3698 /*
3699 * Once we have dozens or even hundreds of threads sleeping
3700 * on IO we've got bigger problems than wait queue collision.
3701 * Limit the size of the wait table to a reasonable size.
3702 */
3703 size = min(size, 4096UL);
3704
3705 return max(size, 4UL);
3706 }
3707 #else
3708 /*
3709 * A zone's size might be changed by hot-add, so it is not possible to determine
3710 * a suitable size for its wait_table. So we use the maximum size now.
3711 *
3712 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3713 *
3714 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3715 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3716 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3717 *
3718 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3719 * or more by the traditional way. (See above). It equals:
3720 *
3721 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3722 * ia64(16K page size) : = ( 8G + 4M)byte.
3723 * powerpc (64K page size) : = (32G +16M)byte.
3724 */
3725 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3726 {
3727 return 4096UL;
3728 }
3729 #endif
3730
3731 /*
3732 * This is an integer logarithm so that shifts can be used later
3733 * to extract the more random high bits from the multiplicative
3734 * hash function before the remainder is taken.
3735 */
3736 static inline unsigned long wait_table_bits(unsigned long size)
3737 {
3738 return ffz(~size);
3739 }
3740
3741 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3742
3743 /*
3744 * Check if a pageblock contains reserved pages
3745 */
3746 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3747 {
3748 unsigned long pfn;
3749
3750 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3751 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3752 return 1;
3753 }
3754 return 0;
3755 }
3756
3757 /*
3758 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3759 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3760 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3761 * higher will lead to a bigger reserve which will get freed as contiguous
3762 * blocks as reclaim kicks in
3763 */
3764 static void setup_zone_migrate_reserve(struct zone *zone)
3765 {
3766 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3767 struct page *page;
3768 unsigned long block_migratetype;
3769 int reserve;
3770
3771 /*
3772 * Get the start pfn, end pfn and the number of blocks to reserve
3773 * We have to be careful to be aligned to pageblock_nr_pages to
3774 * make sure that we always check pfn_valid for the first page in
3775 * the block.
3776 */
3777 start_pfn = zone->zone_start_pfn;
3778 end_pfn = start_pfn + zone->spanned_pages;
3779 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3780 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3781 pageblock_order;
3782
3783 /*
3784 * Reserve blocks are generally in place to help high-order atomic
3785 * allocations that are short-lived. A min_free_kbytes value that
3786 * would result in more than 2 reserve blocks for atomic allocations
3787 * is assumed to be in place to help anti-fragmentation for the
3788 * future allocation of hugepages at runtime.
3789 */
3790 reserve = min(2, reserve);
3791
3792 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3793 if (!pfn_valid(pfn))
3794 continue;
3795 page = pfn_to_page(pfn);
3796
3797 /* Watch out for overlapping nodes */
3798 if (page_to_nid(page) != zone_to_nid(zone))
3799 continue;
3800
3801 block_migratetype = get_pageblock_migratetype(page);
3802
3803 /* Only test what is necessary when the reserves are not met */
3804 if (reserve > 0) {
3805 /*
3806 * Blocks with reserved pages will never free, skip
3807 * them.
3808 */
3809 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3810 if (pageblock_is_reserved(pfn, block_end_pfn))
3811 continue;
3812
3813 /* If this block is reserved, account for it */
3814 if (block_migratetype == MIGRATE_RESERVE) {
3815 reserve--;
3816 continue;
3817 }
3818
3819 /* Suitable for reserving if this block is movable */
3820 if (block_migratetype == MIGRATE_MOVABLE) {
3821 set_pageblock_migratetype(page,
3822 MIGRATE_RESERVE);
3823 move_freepages_block(zone, page,
3824 MIGRATE_RESERVE);
3825 reserve--;
3826 continue;
3827 }
3828 }
3829
3830 /*
3831 * If the reserve is met and this is a previous reserved block,
3832 * take it back
3833 */
3834 if (block_migratetype == MIGRATE_RESERVE) {
3835 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3836 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3837 }
3838 }
3839 }
3840
3841 /*
3842 * Initially all pages are reserved - free ones are freed
3843 * up by free_all_bootmem() once the early boot process is
3844 * done. Non-atomic initialization, single-pass.
3845 */
3846 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3847 unsigned long start_pfn, enum memmap_context context)
3848 {
3849 struct page *page;
3850 unsigned long end_pfn = start_pfn + size;
3851 unsigned long pfn;
3852 struct zone *z;
3853
3854 if (highest_memmap_pfn < end_pfn - 1)
3855 highest_memmap_pfn = end_pfn - 1;
3856
3857 z = &NODE_DATA(nid)->node_zones[zone];
3858 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3859 /*
3860 * There can be holes in boot-time mem_map[]s
3861 * handed to this function. They do not
3862 * exist on hotplugged memory.
3863 */
3864 if (context == MEMMAP_EARLY) {
3865 if (!early_pfn_valid(pfn))
3866 continue;
3867 if (!early_pfn_in_nid(pfn, nid))
3868 continue;
3869 }
3870 page = pfn_to_page(pfn);
3871 set_page_links(page, zone, nid, pfn);
3872 mminit_verify_page_links(page, zone, nid, pfn);
3873 init_page_count(page);
3874 reset_page_mapcount(page);
3875 reset_page_last_nid(page);
3876 SetPageReserved(page);
3877 /*
3878 * Mark the block movable so that blocks are reserved for
3879 * movable at startup. This will force kernel allocations
3880 * to reserve their blocks rather than leaking throughout
3881 * the address space during boot when many long-lived
3882 * kernel allocations are made. Later some blocks near
3883 * the start are marked MIGRATE_RESERVE by
3884 * setup_zone_migrate_reserve()
3885 *
3886 * bitmap is created for zone's valid pfn range. but memmap
3887 * can be created for invalid pages (for alignment)
3888 * check here not to call set_pageblock_migratetype() against
3889 * pfn out of zone.
3890 */
3891 if ((z->zone_start_pfn <= pfn)
3892 && (pfn < z->zone_start_pfn + z->spanned_pages)
3893 && !(pfn & (pageblock_nr_pages - 1)))
3894 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3895
3896 INIT_LIST_HEAD(&page->lru);
3897 #ifdef WANT_PAGE_VIRTUAL
3898 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3899 if (!is_highmem_idx(zone))
3900 set_page_address(page, __va(pfn << PAGE_SHIFT));
3901 #endif
3902 }
3903 }
3904
3905 static void __meminit zone_init_free_lists(struct zone *zone)
3906 {
3907 int order, t;
3908 for_each_migratetype_order(order, t) {
3909 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3910 zone->free_area[order].nr_free = 0;
3911 }
3912 }
3913
3914 #ifndef __HAVE_ARCH_MEMMAP_INIT
3915 #define memmap_init(size, nid, zone, start_pfn) \
3916 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3917 #endif
3918
3919 static int __meminit zone_batchsize(struct zone *zone)
3920 {
3921 #ifdef CONFIG_MMU
3922 int batch;
3923
3924 /*
3925 * The per-cpu-pages pools are set to around 1000th of the
3926 * size of the zone. But no more than 1/2 of a meg.
3927 *
3928 * OK, so we don't know how big the cache is. So guess.
3929 */
3930 batch = zone->present_pages / 1024;
3931 if (batch * PAGE_SIZE > 512 * 1024)
3932 batch = (512 * 1024) / PAGE_SIZE;
3933 batch /= 4; /* We effectively *= 4 below */
3934 if (batch < 1)
3935 batch = 1;
3936
3937 /*
3938 * Clamp the batch to a 2^n - 1 value. Having a power
3939 * of 2 value was found to be more likely to have
3940 * suboptimal cache aliasing properties in some cases.
3941 *
3942 * For example if 2 tasks are alternately allocating
3943 * batches of pages, one task can end up with a lot
3944 * of pages of one half of the possible page colors
3945 * and the other with pages of the other colors.
3946 */
3947 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3948
3949 return batch;
3950
3951 #else
3952 /* The deferral and batching of frees should be suppressed under NOMMU
3953 * conditions.
3954 *
3955 * The problem is that NOMMU needs to be able to allocate large chunks
3956 * of contiguous memory as there's no hardware page translation to
3957 * assemble apparent contiguous memory from discontiguous pages.
3958 *
3959 * Queueing large contiguous runs of pages for batching, however,
3960 * causes the pages to actually be freed in smaller chunks. As there
3961 * can be a significant delay between the individual batches being
3962 * recycled, this leads to the once large chunks of space being
3963 * fragmented and becoming unavailable for high-order allocations.
3964 */
3965 return 0;
3966 #endif
3967 }
3968
3969 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3970 {
3971 struct per_cpu_pages *pcp;
3972 int migratetype;
3973
3974 memset(p, 0, sizeof(*p));
3975
3976 pcp = &p->pcp;
3977 pcp->count = 0;
3978 pcp->high = 6 * batch;
3979 pcp->batch = max(1UL, 1 * batch);
3980 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3981 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3982 }
3983
3984 /*
3985 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3986 * to the value high for the pageset p.
3987 */
3988
3989 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3990 unsigned long high)
3991 {
3992 struct per_cpu_pages *pcp;
3993
3994 pcp = &p->pcp;
3995 pcp->high = high;
3996 pcp->batch = max(1UL, high/4);
3997 if ((high/4) > (PAGE_SHIFT * 8))
3998 pcp->batch = PAGE_SHIFT * 8;
3999 }
4000
4001 static void __meminit setup_zone_pageset(struct zone *zone)
4002 {
4003 int cpu;
4004
4005 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4006
4007 for_each_possible_cpu(cpu) {
4008 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4009
4010 setup_pageset(pcp, zone_batchsize(zone));
4011
4012 if (percpu_pagelist_fraction)
4013 setup_pagelist_highmark(pcp,
4014 (zone->present_pages /
4015 percpu_pagelist_fraction));
4016 }
4017 }
4018
4019 /*
4020 * Allocate per cpu pagesets and initialize them.
4021 * Before this call only boot pagesets were available.
4022 */
4023 void __init setup_per_cpu_pageset(void)
4024 {
4025 struct zone *zone;
4026
4027 for_each_populated_zone(zone)
4028 setup_zone_pageset(zone);
4029 }
4030
4031 static noinline __init_refok
4032 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4033 {
4034 int i;
4035 struct pglist_data *pgdat = zone->zone_pgdat;
4036 size_t alloc_size;
4037
4038 /*
4039 * The per-page waitqueue mechanism uses hashed waitqueues
4040 * per zone.
4041 */
4042 zone->wait_table_hash_nr_entries =
4043 wait_table_hash_nr_entries(zone_size_pages);
4044 zone->wait_table_bits =
4045 wait_table_bits(zone->wait_table_hash_nr_entries);
4046 alloc_size = zone->wait_table_hash_nr_entries
4047 * sizeof(wait_queue_head_t);
4048
4049 if (!slab_is_available()) {
4050 zone->wait_table = (wait_queue_head_t *)
4051 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4052 } else {
4053 /*
4054 * This case means that a zone whose size was 0 gets new memory
4055 * via memory hot-add.
4056 * But it may be the case that a new node was hot-added. In
4057 * this case vmalloc() will not be able to use this new node's
4058 * memory - this wait_table must be initialized to use this new
4059 * node itself as well.
4060 * To use this new node's memory, further consideration will be
4061 * necessary.
4062 */
4063 zone->wait_table = vmalloc(alloc_size);
4064 }
4065 if (!zone->wait_table)
4066 return -ENOMEM;
4067
4068 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4069 init_waitqueue_head(zone->wait_table + i);
4070
4071 return 0;
4072 }
4073
4074 static __meminit void zone_pcp_init(struct zone *zone)
4075 {
4076 /*
4077 * per cpu subsystem is not up at this point. The following code
4078 * relies on the ability of the linker to provide the
4079 * offset of a (static) per cpu variable into the per cpu area.
4080 */
4081 zone->pageset = &boot_pageset;
4082
4083 if (zone->present_pages)
4084 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4085 zone->name, zone->present_pages,
4086 zone_batchsize(zone));
4087 }
4088
4089 int __meminit init_currently_empty_zone(struct zone *zone,
4090 unsigned long zone_start_pfn,
4091 unsigned long size,
4092 enum memmap_context context)
4093 {
4094 struct pglist_data *pgdat = zone->zone_pgdat;
4095 int ret;
4096 ret = zone_wait_table_init(zone, size);
4097 if (ret)
4098 return ret;
4099 pgdat->nr_zones = zone_idx(zone) + 1;
4100
4101 zone->zone_start_pfn = zone_start_pfn;
4102
4103 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4104 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4105 pgdat->node_id,
4106 (unsigned long)zone_idx(zone),
4107 zone_start_pfn, (zone_start_pfn + size));
4108
4109 zone_init_free_lists(zone);
4110
4111 return 0;
4112 }
4113
4114 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4115 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4116 /*
4117 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4118 * Architectures may implement their own version but if add_active_range()
4119 * was used and there are no special requirements, this is a convenient
4120 * alternative
4121 */
4122 int __meminit __early_pfn_to_nid(unsigned long pfn)
4123 {
4124 unsigned long start_pfn, end_pfn;
4125 int i, nid;
4126
4127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4128 if (start_pfn <= pfn && pfn < end_pfn)
4129 return nid;
4130 /* This is a memory hole */
4131 return -1;
4132 }
4133 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4134
4135 int __meminit early_pfn_to_nid(unsigned long pfn)
4136 {
4137 int nid;
4138
4139 nid = __early_pfn_to_nid(pfn);
4140 if (nid >= 0)
4141 return nid;
4142 /* just returns 0 */
4143 return 0;
4144 }
4145
4146 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4147 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4148 {
4149 int nid;
4150
4151 nid = __early_pfn_to_nid(pfn);
4152 if (nid >= 0 && nid != node)
4153 return false;
4154 return true;
4155 }
4156 #endif
4157
4158 /**
4159 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4160 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4161 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4162 *
4163 * If an architecture guarantees that all ranges registered with
4164 * add_active_ranges() contain no holes and may be freed, this
4165 * this function may be used instead of calling free_bootmem() manually.
4166 */
4167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4168 {
4169 unsigned long start_pfn, end_pfn;
4170 int i, this_nid;
4171
4172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4173 start_pfn = min(start_pfn, max_low_pfn);
4174 end_pfn = min(end_pfn, max_low_pfn);
4175
4176 if (start_pfn < end_pfn)
4177 free_bootmem_node(NODE_DATA(this_nid),
4178 PFN_PHYS(start_pfn),
4179 (end_pfn - start_pfn) << PAGE_SHIFT);
4180 }
4181 }
4182
4183 /**
4184 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4185 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4186 *
4187 * If an architecture guarantees that all ranges registered with
4188 * add_active_ranges() contain no holes and may be freed, this
4189 * function may be used instead of calling memory_present() manually.
4190 */
4191 void __init sparse_memory_present_with_active_regions(int nid)
4192 {
4193 unsigned long start_pfn, end_pfn;
4194 int i, this_nid;
4195
4196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4197 memory_present(this_nid, start_pfn, end_pfn);
4198 }
4199
4200 /**
4201 * get_pfn_range_for_nid - Return the start and end page frames for a node
4202 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4203 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4204 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4205 *
4206 * It returns the start and end page frame of a node based on information
4207 * provided by an arch calling add_active_range(). If called for a node
4208 * with no available memory, a warning is printed and the start and end
4209 * PFNs will be 0.
4210 */
4211 void __meminit get_pfn_range_for_nid(unsigned int nid,
4212 unsigned long *start_pfn, unsigned long *end_pfn)
4213 {
4214 unsigned long this_start_pfn, this_end_pfn;
4215 int i;
4216
4217 *start_pfn = -1UL;
4218 *end_pfn = 0;
4219
4220 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4221 *start_pfn = min(*start_pfn, this_start_pfn);
4222 *end_pfn = max(*end_pfn, this_end_pfn);
4223 }
4224
4225 if (*start_pfn == -1UL)
4226 *start_pfn = 0;
4227 }
4228
4229 /*
4230 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4231 * assumption is made that zones within a node are ordered in monotonic
4232 * increasing memory addresses so that the "highest" populated zone is used
4233 */
4234 static void __init find_usable_zone_for_movable(void)
4235 {
4236 int zone_index;
4237 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4238 if (zone_index == ZONE_MOVABLE)
4239 continue;
4240
4241 if (arch_zone_highest_possible_pfn[zone_index] >
4242 arch_zone_lowest_possible_pfn[zone_index])
4243 break;
4244 }
4245
4246 VM_BUG_ON(zone_index == -1);
4247 movable_zone = zone_index;
4248 }
4249
4250 /*
4251 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4252 * because it is sized independent of architecture. Unlike the other zones,
4253 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4254 * in each node depending on the size of each node and how evenly kernelcore
4255 * is distributed. This helper function adjusts the zone ranges
4256 * provided by the architecture for a given node by using the end of the
4257 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4258 * zones within a node are in order of monotonic increases memory addresses
4259 */
4260 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4261 unsigned long zone_type,
4262 unsigned long node_start_pfn,
4263 unsigned long node_end_pfn,
4264 unsigned long *zone_start_pfn,
4265 unsigned long *zone_end_pfn)
4266 {
4267 /* Only adjust if ZONE_MOVABLE is on this node */
4268 if (zone_movable_pfn[nid]) {
4269 /* Size ZONE_MOVABLE */
4270 if (zone_type == ZONE_MOVABLE) {
4271 *zone_start_pfn = zone_movable_pfn[nid];
4272 *zone_end_pfn = min(node_end_pfn,
4273 arch_zone_highest_possible_pfn[movable_zone]);
4274
4275 /* Adjust for ZONE_MOVABLE starting within this range */
4276 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4277 *zone_end_pfn > zone_movable_pfn[nid]) {
4278 *zone_end_pfn = zone_movable_pfn[nid];
4279
4280 /* Check if this whole range is within ZONE_MOVABLE */
4281 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4282 *zone_start_pfn = *zone_end_pfn;
4283 }
4284 }
4285
4286 /*
4287 * Return the number of pages a zone spans in a node, including holes
4288 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4289 */
4290 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4291 unsigned long zone_type,
4292 unsigned long *ignored)
4293 {
4294 unsigned long node_start_pfn, node_end_pfn;
4295 unsigned long zone_start_pfn, zone_end_pfn;
4296
4297 /* Get the start and end of the node and zone */
4298 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4299 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4300 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4301 adjust_zone_range_for_zone_movable(nid, zone_type,
4302 node_start_pfn, node_end_pfn,
4303 &zone_start_pfn, &zone_end_pfn);
4304
4305 /* Check that this node has pages within the zone's required range */
4306 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4307 return 0;
4308
4309 /* Move the zone boundaries inside the node if necessary */
4310 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4311 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4312
4313 /* Return the spanned pages */
4314 return zone_end_pfn - zone_start_pfn;
4315 }
4316
4317 /*
4318 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4319 * then all holes in the requested range will be accounted for.
4320 */
4321 unsigned long __meminit __absent_pages_in_range(int nid,
4322 unsigned long range_start_pfn,
4323 unsigned long range_end_pfn)
4324 {
4325 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4326 unsigned long start_pfn, end_pfn;
4327 int i;
4328
4329 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4330 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4331 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4332 nr_absent -= end_pfn - start_pfn;
4333 }
4334 return nr_absent;
4335 }
4336
4337 /**
4338 * absent_pages_in_range - Return number of page frames in holes within a range
4339 * @start_pfn: The start PFN to start searching for holes
4340 * @end_pfn: The end PFN to stop searching for holes
4341 *
4342 * It returns the number of pages frames in memory holes within a range.
4343 */
4344 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4345 unsigned long end_pfn)
4346 {
4347 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4348 }
4349
4350 /* Return the number of page frames in holes in a zone on a node */
4351 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4352 unsigned long zone_type,
4353 unsigned long *ignored)
4354 {
4355 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4356 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4357 unsigned long node_start_pfn, node_end_pfn;
4358 unsigned long zone_start_pfn, zone_end_pfn;
4359
4360 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4361 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4362 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4363
4364 adjust_zone_range_for_zone_movable(nid, zone_type,
4365 node_start_pfn, node_end_pfn,
4366 &zone_start_pfn, &zone_end_pfn);
4367 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4368 }
4369
4370 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4371 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4372 unsigned long zone_type,
4373 unsigned long *zones_size)
4374 {
4375 return zones_size[zone_type];
4376 }
4377
4378 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4379 unsigned long zone_type,
4380 unsigned long *zholes_size)
4381 {
4382 if (!zholes_size)
4383 return 0;
4384
4385 return zholes_size[zone_type];
4386 }
4387
4388 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4389
4390 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4391 unsigned long *zones_size, unsigned long *zholes_size)
4392 {
4393 unsigned long realtotalpages, totalpages = 0;
4394 enum zone_type i;
4395
4396 for (i = 0; i < MAX_NR_ZONES; i++)
4397 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4398 zones_size);
4399 pgdat->node_spanned_pages = totalpages;
4400
4401 realtotalpages = totalpages;
4402 for (i = 0; i < MAX_NR_ZONES; i++)
4403 realtotalpages -=
4404 zone_absent_pages_in_node(pgdat->node_id, i,
4405 zholes_size);
4406 pgdat->node_present_pages = realtotalpages;
4407 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4408 realtotalpages);
4409 }
4410
4411 #ifndef CONFIG_SPARSEMEM
4412 /*
4413 * Calculate the size of the zone->blockflags rounded to an unsigned long
4414 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4415 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4416 * round what is now in bits to nearest long in bits, then return it in
4417 * bytes.
4418 */
4419 static unsigned long __init usemap_size(unsigned long zonesize)
4420 {
4421 unsigned long usemapsize;
4422
4423 usemapsize = roundup(zonesize, pageblock_nr_pages);
4424 usemapsize = usemapsize >> pageblock_order;
4425 usemapsize *= NR_PAGEBLOCK_BITS;
4426 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4427
4428 return usemapsize / 8;
4429 }
4430
4431 static void __init setup_usemap(struct pglist_data *pgdat,
4432 struct zone *zone, unsigned long zonesize)
4433 {
4434 unsigned long usemapsize = usemap_size(zonesize);
4435 zone->pageblock_flags = NULL;
4436 if (usemapsize)
4437 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4438 usemapsize);
4439 }
4440 #else
4441 static inline void setup_usemap(struct pglist_data *pgdat,
4442 struct zone *zone, unsigned long zonesize) {}
4443 #endif /* CONFIG_SPARSEMEM */
4444
4445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4446
4447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4448 void __init set_pageblock_order(void)
4449 {
4450 unsigned int order;
4451
4452 /* Check that pageblock_nr_pages has not already been setup */
4453 if (pageblock_order)
4454 return;
4455
4456 if (HPAGE_SHIFT > PAGE_SHIFT)
4457 order = HUGETLB_PAGE_ORDER;
4458 else
4459 order = MAX_ORDER - 1;
4460
4461 /*
4462 * Assume the largest contiguous order of interest is a huge page.
4463 * This value may be variable depending on boot parameters on IA64 and
4464 * powerpc.
4465 */
4466 pageblock_order = order;
4467 }
4468 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4469
4470 /*
4471 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4472 * is unused as pageblock_order is set at compile-time. See
4473 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4474 * the kernel config
4475 */
4476 void __init set_pageblock_order(void)
4477 {
4478 }
4479
4480 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4481
4482 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4483 unsigned long present_pages)
4484 {
4485 unsigned long pages = spanned_pages;
4486
4487 /*
4488 * Provide a more accurate estimation if there are holes within
4489 * the zone and SPARSEMEM is in use. If there are holes within the
4490 * zone, each populated memory region may cost us one or two extra
4491 * memmap pages due to alignment because memmap pages for each
4492 * populated regions may not naturally algined on page boundary.
4493 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4494 */
4495 if (spanned_pages > present_pages + (present_pages >> 4) &&
4496 IS_ENABLED(CONFIG_SPARSEMEM))
4497 pages = present_pages;
4498
4499 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4500 }
4501
4502 /*
4503 * Set up the zone data structures:
4504 * - mark all pages reserved
4505 * - mark all memory queues empty
4506 * - clear the memory bitmaps
4507 *
4508 * NOTE: pgdat should get zeroed by caller.
4509 */
4510 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4511 unsigned long *zones_size, unsigned long *zholes_size)
4512 {
4513 enum zone_type j;
4514 int nid = pgdat->node_id;
4515 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4516 int ret;
4517
4518 pgdat_resize_init(pgdat);
4519 #ifdef CONFIG_NUMA_BALANCING
4520 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4521 pgdat->numabalancing_migrate_nr_pages = 0;
4522 pgdat->numabalancing_migrate_next_window = jiffies;
4523 #endif
4524 init_waitqueue_head(&pgdat->kswapd_wait);
4525 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4526 pgdat_page_cgroup_init(pgdat);
4527
4528 for (j = 0; j < MAX_NR_ZONES; j++) {
4529 struct zone *zone = pgdat->node_zones + j;
4530 unsigned long size, realsize, freesize, memmap_pages;
4531
4532 size = zone_spanned_pages_in_node(nid, j, zones_size);
4533 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4534 zholes_size);
4535
4536 /*
4537 * Adjust freesize so that it accounts for how much memory
4538 * is used by this zone for memmap. This affects the watermark
4539 * and per-cpu initialisations
4540 */
4541 memmap_pages = calc_memmap_size(size, realsize);
4542 if (freesize >= memmap_pages) {
4543 freesize -= memmap_pages;
4544 if (memmap_pages)
4545 printk(KERN_DEBUG
4546 " %s zone: %lu pages used for memmap\n",
4547 zone_names[j], memmap_pages);
4548 } else
4549 printk(KERN_WARNING
4550 " %s zone: %lu pages exceeds freesize %lu\n",
4551 zone_names[j], memmap_pages, freesize);
4552
4553 /* Account for reserved pages */
4554 if (j == 0 && freesize > dma_reserve) {
4555 freesize -= dma_reserve;
4556 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4557 zone_names[0], dma_reserve);
4558 }
4559
4560 if (!is_highmem_idx(j))
4561 nr_kernel_pages += freesize;
4562 /* Charge for highmem memmap if there are enough kernel pages */
4563 else if (nr_kernel_pages > memmap_pages * 2)
4564 nr_kernel_pages -= memmap_pages;
4565 nr_all_pages += freesize;
4566
4567 zone->spanned_pages = size;
4568 zone->present_pages = freesize;
4569 /*
4570 * Set an approximate value for lowmem here, it will be adjusted
4571 * when the bootmem allocator frees pages into the buddy system.
4572 * And all highmem pages will be managed by the buddy system.
4573 */
4574 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4575 #ifdef CONFIG_NUMA
4576 zone->node = nid;
4577 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4578 / 100;
4579 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4580 #endif
4581 zone->name = zone_names[j];
4582 spin_lock_init(&zone->lock);
4583 spin_lock_init(&zone->lru_lock);
4584 zone_seqlock_init(zone);
4585 zone->zone_pgdat = pgdat;
4586
4587 zone_pcp_init(zone);
4588 lruvec_init(&zone->lruvec);
4589 if (!size)
4590 continue;
4591
4592 set_pageblock_order();
4593 setup_usemap(pgdat, zone, size);
4594 ret = init_currently_empty_zone(zone, zone_start_pfn,
4595 size, MEMMAP_EARLY);
4596 BUG_ON(ret);
4597 memmap_init(size, nid, j, zone_start_pfn);
4598 zone_start_pfn += size;
4599 }
4600 }
4601
4602 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4603 {
4604 /* Skip empty nodes */
4605 if (!pgdat->node_spanned_pages)
4606 return;
4607
4608 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4609 /* ia64 gets its own node_mem_map, before this, without bootmem */
4610 if (!pgdat->node_mem_map) {
4611 unsigned long size, start, end;
4612 struct page *map;
4613
4614 /*
4615 * The zone's endpoints aren't required to be MAX_ORDER
4616 * aligned but the node_mem_map endpoints must be in order
4617 * for the buddy allocator to function correctly.
4618 */
4619 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4620 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4621 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4622 size = (end - start) * sizeof(struct page);
4623 map = alloc_remap(pgdat->node_id, size);
4624 if (!map)
4625 map = alloc_bootmem_node_nopanic(pgdat, size);
4626 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4627 }
4628 #ifndef CONFIG_NEED_MULTIPLE_NODES
4629 /*
4630 * With no DISCONTIG, the global mem_map is just set as node 0's
4631 */
4632 if (pgdat == NODE_DATA(0)) {
4633 mem_map = NODE_DATA(0)->node_mem_map;
4634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4635 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4636 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4637 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4638 }
4639 #endif
4640 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4641 }
4642
4643 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4644 unsigned long node_start_pfn, unsigned long *zholes_size)
4645 {
4646 pg_data_t *pgdat = NODE_DATA(nid);
4647
4648 /* pg_data_t should be reset to zero when it's allocated */
4649 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4650
4651 pgdat->node_id = nid;
4652 pgdat->node_start_pfn = node_start_pfn;
4653 init_zone_allows_reclaim(nid);
4654 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4655
4656 alloc_node_mem_map(pgdat);
4657 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4658 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4659 nid, (unsigned long)pgdat,
4660 (unsigned long)pgdat->node_mem_map);
4661 #endif
4662
4663 free_area_init_core(pgdat, zones_size, zholes_size);
4664 }
4665
4666 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4667
4668 #if MAX_NUMNODES > 1
4669 /*
4670 * Figure out the number of possible node ids.
4671 */
4672 static void __init setup_nr_node_ids(void)
4673 {
4674 unsigned int node;
4675 unsigned int highest = 0;
4676
4677 for_each_node_mask(node, node_possible_map)
4678 highest = node;
4679 nr_node_ids = highest + 1;
4680 }
4681 #else
4682 static inline void setup_nr_node_ids(void)
4683 {
4684 }
4685 #endif
4686
4687 /**
4688 * node_map_pfn_alignment - determine the maximum internode alignment
4689 *
4690 * This function should be called after node map is populated and sorted.
4691 * It calculates the maximum power of two alignment which can distinguish
4692 * all the nodes.
4693 *
4694 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4695 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4696 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4697 * shifted, 1GiB is enough and this function will indicate so.
4698 *
4699 * This is used to test whether pfn -> nid mapping of the chosen memory
4700 * model has fine enough granularity to avoid incorrect mapping for the
4701 * populated node map.
4702 *
4703 * Returns the determined alignment in pfn's. 0 if there is no alignment
4704 * requirement (single node).
4705 */
4706 unsigned long __init node_map_pfn_alignment(void)
4707 {
4708 unsigned long accl_mask = 0, last_end = 0;
4709 unsigned long start, end, mask;
4710 int last_nid = -1;
4711 int i, nid;
4712
4713 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4714 if (!start || last_nid < 0 || last_nid == nid) {
4715 last_nid = nid;
4716 last_end = end;
4717 continue;
4718 }
4719
4720 /*
4721 * Start with a mask granular enough to pin-point to the
4722 * start pfn and tick off bits one-by-one until it becomes
4723 * too coarse to separate the current node from the last.
4724 */
4725 mask = ~((1 << __ffs(start)) - 1);
4726 while (mask && last_end <= (start & (mask << 1)))
4727 mask <<= 1;
4728
4729 /* accumulate all internode masks */
4730 accl_mask |= mask;
4731 }
4732
4733 /* convert mask to number of pages */
4734 return ~accl_mask + 1;
4735 }
4736
4737 /* Find the lowest pfn for a node */
4738 static unsigned long __init find_min_pfn_for_node(int nid)
4739 {
4740 unsigned long min_pfn = ULONG_MAX;
4741 unsigned long start_pfn;
4742 int i;
4743
4744 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4745 min_pfn = min(min_pfn, start_pfn);
4746
4747 if (min_pfn == ULONG_MAX) {
4748 printk(KERN_WARNING
4749 "Could not find start_pfn for node %d\n", nid);
4750 return 0;
4751 }
4752
4753 return min_pfn;
4754 }
4755
4756 /**
4757 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4758 *
4759 * It returns the minimum PFN based on information provided via
4760 * add_active_range().
4761 */
4762 unsigned long __init find_min_pfn_with_active_regions(void)
4763 {
4764 return find_min_pfn_for_node(MAX_NUMNODES);
4765 }
4766
4767 /*
4768 * early_calculate_totalpages()
4769 * Sum pages in active regions for movable zone.
4770 * Populate N_MEMORY for calculating usable_nodes.
4771 */
4772 static unsigned long __init early_calculate_totalpages(void)
4773 {
4774 unsigned long totalpages = 0;
4775 unsigned long start_pfn, end_pfn;
4776 int i, nid;
4777
4778 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4779 unsigned long pages = end_pfn - start_pfn;
4780
4781 totalpages += pages;
4782 if (pages)
4783 node_set_state(nid, N_MEMORY);
4784 }
4785 return totalpages;
4786 }
4787
4788 /*
4789 * Find the PFN the Movable zone begins in each node. Kernel memory
4790 * is spread evenly between nodes as long as the nodes have enough
4791 * memory. When they don't, some nodes will have more kernelcore than
4792 * others
4793 */
4794 static void __init find_zone_movable_pfns_for_nodes(void)
4795 {
4796 int i, nid;
4797 unsigned long usable_startpfn;
4798 unsigned long kernelcore_node, kernelcore_remaining;
4799 /* save the state before borrow the nodemask */
4800 nodemask_t saved_node_state = node_states[N_MEMORY];
4801 unsigned long totalpages = early_calculate_totalpages();
4802 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4803
4804 /*
4805 * If movablecore was specified, calculate what size of
4806 * kernelcore that corresponds so that memory usable for
4807 * any allocation type is evenly spread. If both kernelcore
4808 * and movablecore are specified, then the value of kernelcore
4809 * will be used for required_kernelcore if it's greater than
4810 * what movablecore would have allowed.
4811 */
4812 if (required_movablecore) {
4813 unsigned long corepages;
4814
4815 /*
4816 * Round-up so that ZONE_MOVABLE is at least as large as what
4817 * was requested by the user
4818 */
4819 required_movablecore =
4820 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4821 corepages = totalpages - required_movablecore;
4822
4823 required_kernelcore = max(required_kernelcore, corepages);
4824 }
4825
4826 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4827 if (!required_kernelcore)
4828 goto out;
4829
4830 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4831 find_usable_zone_for_movable();
4832 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4833
4834 restart:
4835 /* Spread kernelcore memory as evenly as possible throughout nodes */
4836 kernelcore_node = required_kernelcore / usable_nodes;
4837 for_each_node_state(nid, N_MEMORY) {
4838 unsigned long start_pfn, end_pfn;
4839
4840 /*
4841 * Recalculate kernelcore_node if the division per node
4842 * now exceeds what is necessary to satisfy the requested
4843 * amount of memory for the kernel
4844 */
4845 if (required_kernelcore < kernelcore_node)
4846 kernelcore_node = required_kernelcore / usable_nodes;
4847
4848 /*
4849 * As the map is walked, we track how much memory is usable
4850 * by the kernel using kernelcore_remaining. When it is
4851 * 0, the rest of the node is usable by ZONE_MOVABLE
4852 */
4853 kernelcore_remaining = kernelcore_node;
4854
4855 /* Go through each range of PFNs within this node */
4856 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4857 unsigned long size_pages;
4858
4859 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4860 if (start_pfn >= end_pfn)
4861 continue;
4862
4863 /* Account for what is only usable for kernelcore */
4864 if (start_pfn < usable_startpfn) {
4865 unsigned long kernel_pages;
4866 kernel_pages = min(end_pfn, usable_startpfn)
4867 - start_pfn;
4868
4869 kernelcore_remaining -= min(kernel_pages,
4870 kernelcore_remaining);
4871 required_kernelcore -= min(kernel_pages,
4872 required_kernelcore);
4873
4874 /* Continue if range is now fully accounted */
4875 if (end_pfn <= usable_startpfn) {
4876
4877 /*
4878 * Push zone_movable_pfn to the end so
4879 * that if we have to rebalance
4880 * kernelcore across nodes, we will
4881 * not double account here
4882 */
4883 zone_movable_pfn[nid] = end_pfn;
4884 continue;
4885 }
4886 start_pfn = usable_startpfn;
4887 }
4888
4889 /*
4890 * The usable PFN range for ZONE_MOVABLE is from
4891 * start_pfn->end_pfn. Calculate size_pages as the
4892 * number of pages used as kernelcore
4893 */
4894 size_pages = end_pfn - start_pfn;
4895 if (size_pages > kernelcore_remaining)
4896 size_pages = kernelcore_remaining;
4897 zone_movable_pfn[nid] = start_pfn + size_pages;
4898
4899 /*
4900 * Some kernelcore has been met, update counts and
4901 * break if the kernelcore for this node has been
4902 * satisified
4903 */
4904 required_kernelcore -= min(required_kernelcore,
4905 size_pages);
4906 kernelcore_remaining -= size_pages;
4907 if (!kernelcore_remaining)
4908 break;
4909 }
4910 }
4911
4912 /*
4913 * If there is still required_kernelcore, we do another pass with one
4914 * less node in the count. This will push zone_movable_pfn[nid] further
4915 * along on the nodes that still have memory until kernelcore is
4916 * satisified
4917 */
4918 usable_nodes--;
4919 if (usable_nodes && required_kernelcore > usable_nodes)
4920 goto restart;
4921
4922 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4923 for (nid = 0; nid < MAX_NUMNODES; nid++)
4924 zone_movable_pfn[nid] =
4925 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4926
4927 out:
4928 /* restore the node_state */
4929 node_states[N_MEMORY] = saved_node_state;
4930 }
4931
4932 /* Any regular or high memory on that node ? */
4933 static void check_for_memory(pg_data_t *pgdat, int nid)
4934 {
4935 enum zone_type zone_type;
4936
4937 if (N_MEMORY == N_NORMAL_MEMORY)
4938 return;
4939
4940 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4941 struct zone *zone = &pgdat->node_zones[zone_type];
4942 if (zone->present_pages) {
4943 node_set_state(nid, N_HIGH_MEMORY);
4944 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4945 zone_type <= ZONE_NORMAL)
4946 node_set_state(nid, N_NORMAL_MEMORY);
4947 break;
4948 }
4949 }
4950 }
4951
4952 /**
4953 * free_area_init_nodes - Initialise all pg_data_t and zone data
4954 * @max_zone_pfn: an array of max PFNs for each zone
4955 *
4956 * This will call free_area_init_node() for each active node in the system.
4957 * Using the page ranges provided by add_active_range(), the size of each
4958 * zone in each node and their holes is calculated. If the maximum PFN
4959 * between two adjacent zones match, it is assumed that the zone is empty.
4960 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4961 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4962 * starts where the previous one ended. For example, ZONE_DMA32 starts
4963 * at arch_max_dma_pfn.
4964 */
4965 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4966 {
4967 unsigned long start_pfn, end_pfn;
4968 int i, nid;
4969
4970 /* Record where the zone boundaries are */
4971 memset(arch_zone_lowest_possible_pfn, 0,
4972 sizeof(arch_zone_lowest_possible_pfn));
4973 memset(arch_zone_highest_possible_pfn, 0,
4974 sizeof(arch_zone_highest_possible_pfn));
4975 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4976 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4977 for (i = 1; i < MAX_NR_ZONES; i++) {
4978 if (i == ZONE_MOVABLE)
4979 continue;
4980 arch_zone_lowest_possible_pfn[i] =
4981 arch_zone_highest_possible_pfn[i-1];
4982 arch_zone_highest_possible_pfn[i] =
4983 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4984 }
4985 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4986 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4987
4988 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4989 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4990 find_zone_movable_pfns_for_nodes();
4991
4992 /* Print out the zone ranges */
4993 printk("Zone ranges:\n");
4994 for (i = 0; i < MAX_NR_ZONES; i++) {
4995 if (i == ZONE_MOVABLE)
4996 continue;
4997 printk(KERN_CONT " %-8s ", zone_names[i]);
4998 if (arch_zone_lowest_possible_pfn[i] ==
4999 arch_zone_highest_possible_pfn[i])
5000 printk(KERN_CONT "empty\n");
5001 else
5002 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5003 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5004 (arch_zone_highest_possible_pfn[i]
5005 << PAGE_SHIFT) - 1);
5006 }
5007
5008 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5009 printk("Movable zone start for each node\n");
5010 for (i = 0; i < MAX_NUMNODES; i++) {
5011 if (zone_movable_pfn[i])
5012 printk(" Node %d: %#010lx\n", i,
5013 zone_movable_pfn[i] << PAGE_SHIFT);
5014 }
5015
5016 /* Print out the early node map */
5017 printk("Early memory node ranges\n");
5018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5019 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5020 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5021
5022 /* Initialise every node */
5023 mminit_verify_pageflags_layout();
5024 setup_nr_node_ids();
5025 for_each_online_node(nid) {
5026 pg_data_t *pgdat = NODE_DATA(nid);
5027 free_area_init_node(nid, NULL,
5028 find_min_pfn_for_node(nid), NULL);
5029
5030 /* Any memory on that node */
5031 if (pgdat->node_present_pages)
5032 node_set_state(nid, N_MEMORY);
5033 check_for_memory(pgdat, nid);
5034 }
5035 }
5036
5037 static int __init cmdline_parse_core(char *p, unsigned long *core)
5038 {
5039 unsigned long long coremem;
5040 if (!p)
5041 return -EINVAL;
5042
5043 coremem = memparse(p, &p);
5044 *core = coremem >> PAGE_SHIFT;
5045
5046 /* Paranoid check that UL is enough for the coremem value */
5047 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5048
5049 return 0;
5050 }
5051
5052 /*
5053 * kernelcore=size sets the amount of memory for use for allocations that
5054 * cannot be reclaimed or migrated.
5055 */
5056 static int __init cmdline_parse_kernelcore(char *p)
5057 {
5058 return cmdline_parse_core(p, &required_kernelcore);
5059 }
5060
5061 /*
5062 * movablecore=size sets the amount of memory for use for allocations that
5063 * can be reclaimed or migrated.
5064 */
5065 static int __init cmdline_parse_movablecore(char *p)
5066 {
5067 return cmdline_parse_core(p, &required_movablecore);
5068 }
5069
5070 early_param("kernelcore", cmdline_parse_kernelcore);
5071 early_param("movablecore", cmdline_parse_movablecore);
5072
5073 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5074
5075 /**
5076 * set_dma_reserve - set the specified number of pages reserved in the first zone
5077 * @new_dma_reserve: The number of pages to mark reserved
5078 *
5079 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5080 * In the DMA zone, a significant percentage may be consumed by kernel image
5081 * and other unfreeable allocations which can skew the watermarks badly. This
5082 * function may optionally be used to account for unfreeable pages in the
5083 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5084 * smaller per-cpu batchsize.
5085 */
5086 void __init set_dma_reserve(unsigned long new_dma_reserve)
5087 {
5088 dma_reserve = new_dma_reserve;
5089 }
5090
5091 void __init free_area_init(unsigned long *zones_size)
5092 {
5093 free_area_init_node(0, zones_size,
5094 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5095 }
5096
5097 static int page_alloc_cpu_notify(struct notifier_block *self,
5098 unsigned long action, void *hcpu)
5099 {
5100 int cpu = (unsigned long)hcpu;
5101
5102 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5103 lru_add_drain_cpu(cpu);
5104 drain_pages(cpu);
5105
5106 /*
5107 * Spill the event counters of the dead processor
5108 * into the current processors event counters.
5109 * This artificially elevates the count of the current
5110 * processor.
5111 */
5112 vm_events_fold_cpu(cpu);
5113
5114 /*
5115 * Zero the differential counters of the dead processor
5116 * so that the vm statistics are consistent.
5117 *
5118 * This is only okay since the processor is dead and cannot
5119 * race with what we are doing.
5120 */
5121 refresh_cpu_vm_stats(cpu);
5122 }
5123 return NOTIFY_OK;
5124 }
5125
5126 void __init page_alloc_init(void)
5127 {
5128 hotcpu_notifier(page_alloc_cpu_notify, 0);
5129 }
5130
5131 /*
5132 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5133 * or min_free_kbytes changes.
5134 */
5135 static void calculate_totalreserve_pages(void)
5136 {
5137 struct pglist_data *pgdat;
5138 unsigned long reserve_pages = 0;
5139 enum zone_type i, j;
5140
5141 for_each_online_pgdat(pgdat) {
5142 for (i = 0; i < MAX_NR_ZONES; i++) {
5143 struct zone *zone = pgdat->node_zones + i;
5144 unsigned long max = 0;
5145
5146 /* Find valid and maximum lowmem_reserve in the zone */
5147 for (j = i; j < MAX_NR_ZONES; j++) {
5148 if (zone->lowmem_reserve[j] > max)
5149 max = zone->lowmem_reserve[j];
5150 }
5151
5152 /* we treat the high watermark as reserved pages. */
5153 max += high_wmark_pages(zone);
5154
5155 if (max > zone->present_pages)
5156 max = zone->present_pages;
5157 reserve_pages += max;
5158 /*
5159 * Lowmem reserves are not available to
5160 * GFP_HIGHUSER page cache allocations and
5161 * kswapd tries to balance zones to their high
5162 * watermark. As a result, neither should be
5163 * regarded as dirtyable memory, to prevent a
5164 * situation where reclaim has to clean pages
5165 * in order to balance the zones.
5166 */
5167 zone->dirty_balance_reserve = max;
5168 }
5169 }
5170 dirty_balance_reserve = reserve_pages;
5171 totalreserve_pages = reserve_pages;
5172 }
5173
5174 /*
5175 * setup_per_zone_lowmem_reserve - called whenever
5176 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5177 * has a correct pages reserved value, so an adequate number of
5178 * pages are left in the zone after a successful __alloc_pages().
5179 */
5180 static void setup_per_zone_lowmem_reserve(void)
5181 {
5182 struct pglist_data *pgdat;
5183 enum zone_type j, idx;
5184
5185 for_each_online_pgdat(pgdat) {
5186 for (j = 0; j < MAX_NR_ZONES; j++) {
5187 struct zone *zone = pgdat->node_zones + j;
5188 unsigned long present_pages = zone->present_pages;
5189
5190 zone->lowmem_reserve[j] = 0;
5191
5192 idx = j;
5193 while (idx) {
5194 struct zone *lower_zone;
5195
5196 idx--;
5197
5198 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5199 sysctl_lowmem_reserve_ratio[idx] = 1;
5200
5201 lower_zone = pgdat->node_zones + idx;
5202 lower_zone->lowmem_reserve[j] = present_pages /
5203 sysctl_lowmem_reserve_ratio[idx];
5204 present_pages += lower_zone->present_pages;
5205 }
5206 }
5207 }
5208
5209 /* update totalreserve_pages */
5210 calculate_totalreserve_pages();
5211 }
5212
5213 static void __setup_per_zone_wmarks(void)
5214 {
5215 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5216 unsigned long lowmem_pages = 0;
5217 struct zone *zone;
5218 unsigned long flags;
5219
5220 /* Calculate total number of !ZONE_HIGHMEM pages */
5221 for_each_zone(zone) {
5222 if (!is_highmem(zone))
5223 lowmem_pages += zone->present_pages;
5224 }
5225
5226 for_each_zone(zone) {
5227 u64 tmp;
5228
5229 spin_lock_irqsave(&zone->lock, flags);
5230 tmp = (u64)pages_min * zone->present_pages;
5231 do_div(tmp, lowmem_pages);
5232 if (is_highmem(zone)) {
5233 /*
5234 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5235 * need highmem pages, so cap pages_min to a small
5236 * value here.
5237 *
5238 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5239 * deltas controls asynch page reclaim, and so should
5240 * not be capped for highmem.
5241 */
5242 int min_pages;
5243
5244 min_pages = zone->present_pages / 1024;
5245 if (min_pages < SWAP_CLUSTER_MAX)
5246 min_pages = SWAP_CLUSTER_MAX;
5247 if (min_pages > 128)
5248 min_pages = 128;
5249 zone->watermark[WMARK_MIN] = min_pages;
5250 } else {
5251 /*
5252 * If it's a lowmem zone, reserve a number of pages
5253 * proportionate to the zone's size.
5254 */
5255 zone->watermark[WMARK_MIN] = tmp;
5256 }
5257
5258 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5259 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5260
5261 setup_zone_migrate_reserve(zone);
5262 spin_unlock_irqrestore(&zone->lock, flags);
5263 }
5264
5265 /* update totalreserve_pages */
5266 calculate_totalreserve_pages();
5267 }
5268
5269 /**
5270 * setup_per_zone_wmarks - called when min_free_kbytes changes
5271 * or when memory is hot-{added|removed}
5272 *
5273 * Ensures that the watermark[min,low,high] values for each zone are set
5274 * correctly with respect to min_free_kbytes.
5275 */
5276 void setup_per_zone_wmarks(void)
5277 {
5278 mutex_lock(&zonelists_mutex);
5279 __setup_per_zone_wmarks();
5280 mutex_unlock(&zonelists_mutex);
5281 }
5282
5283 /*
5284 * The inactive anon list should be small enough that the VM never has to
5285 * do too much work, but large enough that each inactive page has a chance
5286 * to be referenced again before it is swapped out.
5287 *
5288 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5289 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5290 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5291 * the anonymous pages are kept on the inactive list.
5292 *
5293 * total target max
5294 * memory ratio inactive anon
5295 * -------------------------------------
5296 * 10MB 1 5MB
5297 * 100MB 1 50MB
5298 * 1GB 3 250MB
5299 * 10GB 10 0.9GB
5300 * 100GB 31 3GB
5301 * 1TB 101 10GB
5302 * 10TB 320 32GB
5303 */
5304 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5305 {
5306 unsigned int gb, ratio;
5307
5308 /* Zone size in gigabytes */
5309 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5310 if (gb)
5311 ratio = int_sqrt(10 * gb);
5312 else
5313 ratio = 1;
5314
5315 zone->inactive_ratio = ratio;
5316 }
5317
5318 static void __meminit setup_per_zone_inactive_ratio(void)
5319 {
5320 struct zone *zone;
5321
5322 for_each_zone(zone)
5323 calculate_zone_inactive_ratio(zone);
5324 }
5325
5326 /*
5327 * Initialise min_free_kbytes.
5328 *
5329 * For small machines we want it small (128k min). For large machines
5330 * we want it large (64MB max). But it is not linear, because network
5331 * bandwidth does not increase linearly with machine size. We use
5332 *
5333 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5334 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5335 *
5336 * which yields
5337 *
5338 * 16MB: 512k
5339 * 32MB: 724k
5340 * 64MB: 1024k
5341 * 128MB: 1448k
5342 * 256MB: 2048k
5343 * 512MB: 2896k
5344 * 1024MB: 4096k
5345 * 2048MB: 5792k
5346 * 4096MB: 8192k
5347 * 8192MB: 11584k
5348 * 16384MB: 16384k
5349 */
5350 int __meminit init_per_zone_wmark_min(void)
5351 {
5352 unsigned long lowmem_kbytes;
5353
5354 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5355
5356 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5357 if (min_free_kbytes < 128)
5358 min_free_kbytes = 128;
5359 if (min_free_kbytes > 65536)
5360 min_free_kbytes = 65536;
5361 setup_per_zone_wmarks();
5362 refresh_zone_stat_thresholds();
5363 setup_per_zone_lowmem_reserve();
5364 setup_per_zone_inactive_ratio();
5365 return 0;
5366 }
5367 module_init(init_per_zone_wmark_min)
5368
5369 /*
5370 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5371 * that we can call two helper functions whenever min_free_kbytes
5372 * changes.
5373 */
5374 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5375 void __user *buffer, size_t *length, loff_t *ppos)
5376 {
5377 proc_dointvec(table, write, buffer, length, ppos);
5378 if (write)
5379 setup_per_zone_wmarks();
5380 return 0;
5381 }
5382
5383 #ifdef CONFIG_NUMA
5384 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5385 void __user *buffer, size_t *length, loff_t *ppos)
5386 {
5387 struct zone *zone;
5388 int rc;
5389
5390 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5391 if (rc)
5392 return rc;
5393
5394 for_each_zone(zone)
5395 zone->min_unmapped_pages = (zone->present_pages *
5396 sysctl_min_unmapped_ratio) / 100;
5397 return 0;
5398 }
5399
5400 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5401 void __user *buffer, size_t *length, loff_t *ppos)
5402 {
5403 struct zone *zone;
5404 int rc;
5405
5406 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5407 if (rc)
5408 return rc;
5409
5410 for_each_zone(zone)
5411 zone->min_slab_pages = (zone->present_pages *
5412 sysctl_min_slab_ratio) / 100;
5413 return 0;
5414 }
5415 #endif
5416
5417 /*
5418 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5419 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5420 * whenever sysctl_lowmem_reserve_ratio changes.
5421 *
5422 * The reserve ratio obviously has absolutely no relation with the
5423 * minimum watermarks. The lowmem reserve ratio can only make sense
5424 * if in function of the boot time zone sizes.
5425 */
5426 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5427 void __user *buffer, size_t *length, loff_t *ppos)
5428 {
5429 proc_dointvec_minmax(table, write, buffer, length, ppos);
5430 setup_per_zone_lowmem_reserve();
5431 return 0;
5432 }
5433
5434 /*
5435 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5436 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5437 * can have before it gets flushed back to buddy allocator.
5438 */
5439
5440 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5441 void __user *buffer, size_t *length, loff_t *ppos)
5442 {
5443 struct zone *zone;
5444 unsigned int cpu;
5445 int ret;
5446
5447 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5448 if (!write || (ret < 0))
5449 return ret;
5450 for_each_populated_zone(zone) {
5451 for_each_possible_cpu(cpu) {
5452 unsigned long high;
5453 high = zone->present_pages / percpu_pagelist_fraction;
5454 setup_pagelist_highmark(
5455 per_cpu_ptr(zone->pageset, cpu), high);
5456 }
5457 }
5458 return 0;
5459 }
5460
5461 int hashdist = HASHDIST_DEFAULT;
5462
5463 #ifdef CONFIG_NUMA
5464 static int __init set_hashdist(char *str)
5465 {
5466 if (!str)
5467 return 0;
5468 hashdist = simple_strtoul(str, &str, 0);
5469 return 1;
5470 }
5471 __setup("hashdist=", set_hashdist);
5472 #endif
5473
5474 /*
5475 * allocate a large system hash table from bootmem
5476 * - it is assumed that the hash table must contain an exact power-of-2
5477 * quantity of entries
5478 * - limit is the number of hash buckets, not the total allocation size
5479 */
5480 void *__init alloc_large_system_hash(const char *tablename,
5481 unsigned long bucketsize,
5482 unsigned long numentries,
5483 int scale,
5484 int flags,
5485 unsigned int *_hash_shift,
5486 unsigned int *_hash_mask,
5487 unsigned long low_limit,
5488 unsigned long high_limit)
5489 {
5490 unsigned long long max = high_limit;
5491 unsigned long log2qty, size;
5492 void *table = NULL;
5493
5494 /* allow the kernel cmdline to have a say */
5495 if (!numentries) {
5496 /* round applicable memory size up to nearest megabyte */
5497 numentries = nr_kernel_pages;
5498 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5499 numentries >>= 20 - PAGE_SHIFT;
5500 numentries <<= 20 - PAGE_SHIFT;
5501
5502 /* limit to 1 bucket per 2^scale bytes of low memory */
5503 if (scale > PAGE_SHIFT)
5504 numentries >>= (scale - PAGE_SHIFT);
5505 else
5506 numentries <<= (PAGE_SHIFT - scale);
5507
5508 /* Make sure we've got at least a 0-order allocation.. */
5509 if (unlikely(flags & HASH_SMALL)) {
5510 /* Makes no sense without HASH_EARLY */
5511 WARN_ON(!(flags & HASH_EARLY));
5512 if (!(numentries >> *_hash_shift)) {
5513 numentries = 1UL << *_hash_shift;
5514 BUG_ON(!numentries);
5515 }
5516 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5517 numentries = PAGE_SIZE / bucketsize;
5518 }
5519 numentries = roundup_pow_of_two(numentries);
5520
5521 /* limit allocation size to 1/16 total memory by default */
5522 if (max == 0) {
5523 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5524 do_div(max, bucketsize);
5525 }
5526 max = min(max, 0x80000000ULL);
5527
5528 if (numentries < low_limit)
5529 numentries = low_limit;
5530 if (numentries > max)
5531 numentries = max;
5532
5533 log2qty = ilog2(numentries);
5534
5535 do {
5536 size = bucketsize << log2qty;
5537 if (flags & HASH_EARLY)
5538 table = alloc_bootmem_nopanic(size);
5539 else if (hashdist)
5540 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5541 else {
5542 /*
5543 * If bucketsize is not a power-of-two, we may free
5544 * some pages at the end of hash table which
5545 * alloc_pages_exact() automatically does
5546 */
5547 if (get_order(size) < MAX_ORDER) {
5548 table = alloc_pages_exact(size, GFP_ATOMIC);
5549 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5550 }
5551 }
5552 } while (!table && size > PAGE_SIZE && --log2qty);
5553
5554 if (!table)
5555 panic("Failed to allocate %s hash table\n", tablename);
5556
5557 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5558 tablename,
5559 (1UL << log2qty),
5560 ilog2(size) - PAGE_SHIFT,
5561 size);
5562
5563 if (_hash_shift)
5564 *_hash_shift = log2qty;
5565 if (_hash_mask)
5566 *_hash_mask = (1 << log2qty) - 1;
5567
5568 return table;
5569 }
5570
5571 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5573 unsigned long pfn)
5574 {
5575 #ifdef CONFIG_SPARSEMEM
5576 return __pfn_to_section(pfn)->pageblock_flags;
5577 #else
5578 return zone->pageblock_flags;
5579 #endif /* CONFIG_SPARSEMEM */
5580 }
5581
5582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5583 {
5584 #ifdef CONFIG_SPARSEMEM
5585 pfn &= (PAGES_PER_SECTION-1);
5586 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5587 #else
5588 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5589 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5590 #endif /* CONFIG_SPARSEMEM */
5591 }
5592
5593 /**
5594 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5595 * @page: The page within the block of interest
5596 * @start_bitidx: The first bit of interest to retrieve
5597 * @end_bitidx: The last bit of interest
5598 * returns pageblock_bits flags
5599 */
5600 unsigned long get_pageblock_flags_group(struct page *page,
5601 int start_bitidx, int end_bitidx)
5602 {
5603 struct zone *zone;
5604 unsigned long *bitmap;
5605 unsigned long pfn, bitidx;
5606 unsigned long flags = 0;
5607 unsigned long value = 1;
5608
5609 zone = page_zone(page);
5610 pfn = page_to_pfn(page);
5611 bitmap = get_pageblock_bitmap(zone, pfn);
5612 bitidx = pfn_to_bitidx(zone, pfn);
5613
5614 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5615 if (test_bit(bitidx + start_bitidx, bitmap))
5616 flags |= value;
5617
5618 return flags;
5619 }
5620
5621 /**
5622 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5623 * @page: The page within the block of interest
5624 * @start_bitidx: The first bit of interest
5625 * @end_bitidx: The last bit of interest
5626 * @flags: The flags to set
5627 */
5628 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5629 int start_bitidx, int end_bitidx)
5630 {
5631 struct zone *zone;
5632 unsigned long *bitmap;
5633 unsigned long pfn, bitidx;
5634 unsigned long value = 1;
5635
5636 zone = page_zone(page);
5637 pfn = page_to_pfn(page);
5638 bitmap = get_pageblock_bitmap(zone, pfn);
5639 bitidx = pfn_to_bitidx(zone, pfn);
5640 VM_BUG_ON(pfn < zone->zone_start_pfn);
5641 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5642
5643 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5644 if (flags & value)
5645 __set_bit(bitidx + start_bitidx, bitmap);
5646 else
5647 __clear_bit(bitidx + start_bitidx, bitmap);
5648 }
5649
5650 /*
5651 * This function checks whether pageblock includes unmovable pages or not.
5652 * If @count is not zero, it is okay to include less @count unmovable pages
5653 *
5654 * PageLRU check wihtout isolation or lru_lock could race so that
5655 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5656 * expect this function should be exact.
5657 */
5658 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5659 bool skip_hwpoisoned_pages)
5660 {
5661 unsigned long pfn, iter, found;
5662 int mt;
5663
5664 /*
5665 * For avoiding noise data, lru_add_drain_all() should be called
5666 * If ZONE_MOVABLE, the zone never contains unmovable pages
5667 */
5668 if (zone_idx(zone) == ZONE_MOVABLE)
5669 return false;
5670 mt = get_pageblock_migratetype(page);
5671 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5672 return false;
5673
5674 pfn = page_to_pfn(page);
5675 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5676 unsigned long check = pfn + iter;
5677
5678 if (!pfn_valid_within(check))
5679 continue;
5680
5681 page = pfn_to_page(check);
5682 /*
5683 * We can't use page_count without pin a page
5684 * because another CPU can free compound page.
5685 * This check already skips compound tails of THP
5686 * because their page->_count is zero at all time.
5687 */
5688 if (!atomic_read(&page->_count)) {
5689 if (PageBuddy(page))
5690 iter += (1 << page_order(page)) - 1;
5691 continue;
5692 }
5693
5694 /*
5695 * The HWPoisoned page may be not in buddy system, and
5696 * page_count() is not 0.
5697 */
5698 if (skip_hwpoisoned_pages && PageHWPoison(page))
5699 continue;
5700
5701 if (!PageLRU(page))
5702 found++;
5703 /*
5704 * If there are RECLAIMABLE pages, we need to check it.
5705 * But now, memory offline itself doesn't call shrink_slab()
5706 * and it still to be fixed.
5707 */
5708 /*
5709 * If the page is not RAM, page_count()should be 0.
5710 * we don't need more check. This is an _used_ not-movable page.
5711 *
5712 * The problematic thing here is PG_reserved pages. PG_reserved
5713 * is set to both of a memory hole page and a _used_ kernel
5714 * page at boot.
5715 */
5716 if (found > count)
5717 return true;
5718 }
5719 return false;
5720 }
5721
5722 bool is_pageblock_removable_nolock(struct page *page)
5723 {
5724 struct zone *zone;
5725 unsigned long pfn;
5726
5727 /*
5728 * We have to be careful here because we are iterating over memory
5729 * sections which are not zone aware so we might end up outside of
5730 * the zone but still within the section.
5731 * We have to take care about the node as well. If the node is offline
5732 * its NODE_DATA will be NULL - see page_zone.
5733 */
5734 if (!node_online(page_to_nid(page)))
5735 return false;
5736
5737 zone = page_zone(page);
5738 pfn = page_to_pfn(page);
5739 if (zone->zone_start_pfn > pfn ||
5740 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5741 return false;
5742
5743 return !has_unmovable_pages(zone, page, 0, true);
5744 }
5745
5746 #ifdef CONFIG_CMA
5747
5748 static unsigned long pfn_max_align_down(unsigned long pfn)
5749 {
5750 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5751 pageblock_nr_pages) - 1);
5752 }
5753
5754 static unsigned long pfn_max_align_up(unsigned long pfn)
5755 {
5756 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5757 pageblock_nr_pages));
5758 }
5759
5760 /* [start, end) must belong to a single zone. */
5761 static int __alloc_contig_migrate_range(struct compact_control *cc,
5762 unsigned long start, unsigned long end)
5763 {
5764 /* This function is based on compact_zone() from compaction.c. */
5765 unsigned long nr_reclaimed;
5766 unsigned long pfn = start;
5767 unsigned int tries = 0;
5768 int ret = 0;
5769
5770 migrate_prep();
5771
5772 while (pfn < end || !list_empty(&cc->migratepages)) {
5773 if (fatal_signal_pending(current)) {
5774 ret = -EINTR;
5775 break;
5776 }
5777
5778 if (list_empty(&cc->migratepages)) {
5779 cc->nr_migratepages = 0;
5780 pfn = isolate_migratepages_range(cc->zone, cc,
5781 pfn, end, true);
5782 if (!pfn) {
5783 ret = -EINTR;
5784 break;
5785 }
5786 tries = 0;
5787 } else if (++tries == 5) {
5788 ret = ret < 0 ? ret : -EBUSY;
5789 break;
5790 }
5791
5792 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5793 &cc->migratepages);
5794 cc->nr_migratepages -= nr_reclaimed;
5795
5796 ret = migrate_pages(&cc->migratepages,
5797 alloc_migrate_target,
5798 0, false, MIGRATE_SYNC,
5799 MR_CMA);
5800 }
5801
5802 putback_movable_pages(&cc->migratepages);
5803 return ret > 0 ? 0 : ret;
5804 }
5805
5806 /**
5807 * alloc_contig_range() -- tries to allocate given range of pages
5808 * @start: start PFN to allocate
5809 * @end: one-past-the-last PFN to allocate
5810 * @migratetype: migratetype of the underlaying pageblocks (either
5811 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5812 * in range must have the same migratetype and it must
5813 * be either of the two.
5814 *
5815 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5816 * aligned, however it's the caller's responsibility to guarantee that
5817 * we are the only thread that changes migrate type of pageblocks the
5818 * pages fall in.
5819 *
5820 * The PFN range must belong to a single zone.
5821 *
5822 * Returns zero on success or negative error code. On success all
5823 * pages which PFN is in [start, end) are allocated for the caller and
5824 * need to be freed with free_contig_range().
5825 */
5826 int alloc_contig_range(unsigned long start, unsigned long end,
5827 unsigned migratetype)
5828 {
5829 unsigned long outer_start, outer_end;
5830 int ret = 0, order;
5831
5832 struct compact_control cc = {
5833 .nr_migratepages = 0,
5834 .order = -1,
5835 .zone = page_zone(pfn_to_page(start)),
5836 .sync = true,
5837 .ignore_skip_hint = true,
5838 };
5839 INIT_LIST_HEAD(&cc.migratepages);
5840
5841 /*
5842 * What we do here is we mark all pageblocks in range as
5843 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5844 * have different sizes, and due to the way page allocator
5845 * work, we align the range to biggest of the two pages so
5846 * that page allocator won't try to merge buddies from
5847 * different pageblocks and change MIGRATE_ISOLATE to some
5848 * other migration type.
5849 *
5850 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5851 * migrate the pages from an unaligned range (ie. pages that
5852 * we are interested in). This will put all the pages in
5853 * range back to page allocator as MIGRATE_ISOLATE.
5854 *
5855 * When this is done, we take the pages in range from page
5856 * allocator removing them from the buddy system. This way
5857 * page allocator will never consider using them.
5858 *
5859 * This lets us mark the pageblocks back as
5860 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5861 * aligned range but not in the unaligned, original range are
5862 * put back to page allocator so that buddy can use them.
5863 */
5864
5865 ret = start_isolate_page_range(pfn_max_align_down(start),
5866 pfn_max_align_up(end), migratetype,
5867 false);
5868 if (ret)
5869 return ret;
5870
5871 ret = __alloc_contig_migrate_range(&cc, start, end);
5872 if (ret)
5873 goto done;
5874
5875 /*
5876 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5877 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5878 * more, all pages in [start, end) are free in page allocator.
5879 * What we are going to do is to allocate all pages from
5880 * [start, end) (that is remove them from page allocator).
5881 *
5882 * The only problem is that pages at the beginning and at the
5883 * end of interesting range may be not aligned with pages that
5884 * page allocator holds, ie. they can be part of higher order
5885 * pages. Because of this, we reserve the bigger range and
5886 * once this is done free the pages we are not interested in.
5887 *
5888 * We don't have to hold zone->lock here because the pages are
5889 * isolated thus they won't get removed from buddy.
5890 */
5891
5892 lru_add_drain_all();
5893 drain_all_pages();
5894
5895 order = 0;
5896 outer_start = start;
5897 while (!PageBuddy(pfn_to_page(outer_start))) {
5898 if (++order >= MAX_ORDER) {
5899 ret = -EBUSY;
5900 goto done;
5901 }
5902 outer_start &= ~0UL << order;
5903 }
5904
5905 /* Make sure the range is really isolated. */
5906 if (test_pages_isolated(outer_start, end, false)) {
5907 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5908 outer_start, end);
5909 ret = -EBUSY;
5910 goto done;
5911 }
5912
5913
5914 /* Grab isolated pages from freelists. */
5915 outer_end = isolate_freepages_range(&cc, outer_start, end);
5916 if (!outer_end) {
5917 ret = -EBUSY;
5918 goto done;
5919 }
5920
5921 /* Free head and tail (if any) */
5922 if (start != outer_start)
5923 free_contig_range(outer_start, start - outer_start);
5924 if (end != outer_end)
5925 free_contig_range(end, outer_end - end);
5926
5927 done:
5928 undo_isolate_page_range(pfn_max_align_down(start),
5929 pfn_max_align_up(end), migratetype);
5930 return ret;
5931 }
5932
5933 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5934 {
5935 unsigned int count = 0;
5936
5937 for (; nr_pages--; pfn++) {
5938 struct page *page = pfn_to_page(pfn);
5939
5940 count += page_count(page) != 1;
5941 __free_page(page);
5942 }
5943 WARN(count != 0, "%d pages are still in use!\n", count);
5944 }
5945 #endif
5946
5947 #ifdef CONFIG_MEMORY_HOTPLUG
5948 static int __meminit __zone_pcp_update(void *data)
5949 {
5950 struct zone *zone = data;
5951 int cpu;
5952 unsigned long batch = zone_batchsize(zone), flags;
5953
5954 for_each_possible_cpu(cpu) {
5955 struct per_cpu_pageset *pset;
5956 struct per_cpu_pages *pcp;
5957
5958 pset = per_cpu_ptr(zone->pageset, cpu);
5959 pcp = &pset->pcp;
5960
5961 local_irq_save(flags);
5962 if (pcp->count > 0)
5963 free_pcppages_bulk(zone, pcp->count, pcp);
5964 drain_zonestat(zone, pset);
5965 setup_pageset(pset, batch);
5966 local_irq_restore(flags);
5967 }
5968 return 0;
5969 }
5970
5971 void __meminit zone_pcp_update(struct zone *zone)
5972 {
5973 stop_machine(__zone_pcp_update, zone, NULL);
5974 }
5975 #endif
5976
5977 void zone_pcp_reset(struct zone *zone)
5978 {
5979 unsigned long flags;
5980 int cpu;
5981 struct per_cpu_pageset *pset;
5982
5983 /* avoid races with drain_pages() */
5984 local_irq_save(flags);
5985 if (zone->pageset != &boot_pageset) {
5986 for_each_online_cpu(cpu) {
5987 pset = per_cpu_ptr(zone->pageset, cpu);
5988 drain_zonestat(zone, pset);
5989 }
5990 free_percpu(zone->pageset);
5991 zone->pageset = &boot_pageset;
5992 }
5993 local_irq_restore(flags);
5994 }
5995
5996 #ifdef CONFIG_MEMORY_HOTREMOVE
5997 /*
5998 * All pages in the range must be isolated before calling this.
5999 */
6000 void
6001 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6002 {
6003 struct page *page;
6004 struct zone *zone;
6005 int order, i;
6006 unsigned long pfn;
6007 unsigned long flags;
6008 /* find the first valid pfn */
6009 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6010 if (pfn_valid(pfn))
6011 break;
6012 if (pfn == end_pfn)
6013 return;
6014 zone = page_zone(pfn_to_page(pfn));
6015 spin_lock_irqsave(&zone->lock, flags);
6016 pfn = start_pfn;
6017 while (pfn < end_pfn) {
6018 if (!pfn_valid(pfn)) {
6019 pfn++;
6020 continue;
6021 }
6022 page = pfn_to_page(pfn);
6023 /*
6024 * The HWPoisoned page may be not in buddy system, and
6025 * page_count() is not 0.
6026 */
6027 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6028 pfn++;
6029 SetPageReserved(page);
6030 continue;
6031 }
6032
6033 BUG_ON(page_count(page));
6034 BUG_ON(!PageBuddy(page));
6035 order = page_order(page);
6036 #ifdef CONFIG_DEBUG_VM
6037 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6038 pfn, 1 << order, end_pfn);
6039 #endif
6040 list_del(&page->lru);
6041 rmv_page_order(page);
6042 zone->free_area[order].nr_free--;
6043 for (i = 0; i < (1 << order); i++)
6044 SetPageReserved((page+i));
6045 pfn += (1 << order);
6046 }
6047 spin_unlock_irqrestore(&zone->lock, flags);
6048 }
6049 #endif
6050
6051 #ifdef CONFIG_MEMORY_FAILURE
6052 bool is_free_buddy_page(struct page *page)
6053 {
6054 struct zone *zone = page_zone(page);
6055 unsigned long pfn = page_to_pfn(page);
6056 unsigned long flags;
6057 int order;
6058
6059 spin_lock_irqsave(&zone->lock, flags);
6060 for (order = 0; order < MAX_ORDER; order++) {
6061 struct page *page_head = page - (pfn & ((1 << order) - 1));
6062
6063 if (PageBuddy(page_head) && page_order(page_head) >= order)
6064 break;
6065 }
6066 spin_unlock_irqrestore(&zone->lock, flags);
6067
6068 return order < MAX_ORDER;
6069 }
6070 #endif
6071
6072 static const struct trace_print_flags pageflag_names[] = {
6073 {1UL << PG_locked, "locked" },
6074 {1UL << PG_error, "error" },
6075 {1UL << PG_referenced, "referenced" },
6076 {1UL << PG_uptodate, "uptodate" },
6077 {1UL << PG_dirty, "dirty" },
6078 {1UL << PG_lru, "lru" },
6079 {1UL << PG_active, "active" },
6080 {1UL << PG_slab, "slab" },
6081 {1UL << PG_owner_priv_1, "owner_priv_1" },
6082 {1UL << PG_arch_1, "arch_1" },
6083 {1UL << PG_reserved, "reserved" },
6084 {1UL << PG_private, "private" },
6085 {1UL << PG_private_2, "private_2" },
6086 {1UL << PG_writeback, "writeback" },
6087 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6088 {1UL << PG_head, "head" },
6089 {1UL << PG_tail, "tail" },
6090 #else
6091 {1UL << PG_compound, "compound" },
6092 #endif
6093 {1UL << PG_swapcache, "swapcache" },
6094 {1UL << PG_mappedtodisk, "mappedtodisk" },
6095 {1UL << PG_reclaim, "reclaim" },
6096 {1UL << PG_swapbacked, "swapbacked" },
6097 {1UL << PG_unevictable, "unevictable" },
6098 #ifdef CONFIG_MMU
6099 {1UL << PG_mlocked, "mlocked" },
6100 #endif
6101 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6102 {1UL << PG_uncached, "uncached" },
6103 #endif
6104 #ifdef CONFIG_MEMORY_FAILURE
6105 {1UL << PG_hwpoison, "hwpoison" },
6106 #endif
6107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6108 {1UL << PG_compound_lock, "compound_lock" },
6109 #endif
6110 };
6111
6112 static void dump_page_flags(unsigned long flags)
6113 {
6114 const char *delim = "";
6115 unsigned long mask;
6116 int i;
6117
6118 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6119
6120 printk(KERN_ALERT "page flags: %#lx(", flags);
6121
6122 /* remove zone id */
6123 flags &= (1UL << NR_PAGEFLAGS) - 1;
6124
6125 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6126
6127 mask = pageflag_names[i].mask;
6128 if ((flags & mask) != mask)
6129 continue;
6130
6131 flags &= ~mask;
6132 printk("%s%s", delim, pageflag_names[i].name);
6133 delim = "|";
6134 }
6135
6136 /* check for left over flags */
6137 if (flags)
6138 printk("%s%#lx", delim, flags);
6139
6140 printk(")\n");
6141 }
6142
6143 void dump_page(struct page *page)
6144 {
6145 printk(KERN_ALERT
6146 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6147 page, atomic_read(&page->_count), page_mapcount(page),
6148 page->mapping, page->index);
6149 dump_page_flags(page->flags);
6150 mem_cgroup_print_bad_page(page);
6151 }