xtensa/mm: remove WANT_PAGE_VIRTUAL
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 #include <linux/memcontrol.h>
57 #include <linux/prefetch.h>
58
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 #include "internal.h"
62
63 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
64 DEFINE_PER_CPU(int, numa_node);
65 EXPORT_PER_CPU_SYMBOL(numa_node);
66 #endif
67
68 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
69 /*
70 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
71 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
72 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
73 * defined in <linux/topology.h>.
74 */
75 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
76 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
77 #endif
78
79 /*
80 * Array of node states.
81 */
82 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
83 [N_POSSIBLE] = NODE_MASK_ALL,
84 [N_ONLINE] = { { [0] = 1UL } },
85 #ifndef CONFIG_NUMA
86 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
87 #ifdef CONFIG_HIGHMEM
88 [N_HIGH_MEMORY] = { { [0] = 1UL } },
89 #endif
90 [N_CPU] = { { [0] = 1UL } },
91 #endif /* NUMA */
92 };
93 EXPORT_SYMBOL(node_states);
94
95 unsigned long totalram_pages __read_mostly;
96 unsigned long totalreserve_pages __read_mostly;
97 int percpu_pagelist_fraction;
98 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
99
100 #ifdef CONFIG_PM_SLEEP
101 /*
102 * The following functions are used by the suspend/hibernate code to temporarily
103 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
104 * while devices are suspended. To avoid races with the suspend/hibernate code,
105 * they should always be called with pm_mutex held (gfp_allowed_mask also should
106 * only be modified with pm_mutex held, unless the suspend/hibernate code is
107 * guaranteed not to run in parallel with that modification).
108 */
109
110 static gfp_t saved_gfp_mask;
111
112 void pm_restore_gfp_mask(void)
113 {
114 WARN_ON(!mutex_is_locked(&pm_mutex));
115 if (saved_gfp_mask) {
116 gfp_allowed_mask = saved_gfp_mask;
117 saved_gfp_mask = 0;
118 }
119 }
120
121 void pm_restrict_gfp_mask(void)
122 {
123 WARN_ON(!mutex_is_locked(&pm_mutex));
124 WARN_ON(saved_gfp_mask);
125 saved_gfp_mask = gfp_allowed_mask;
126 gfp_allowed_mask &= ~GFP_IOFS;
127 }
128 #endif /* CONFIG_PM_SLEEP */
129
130 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
131 int pageblock_order __read_mostly;
132 #endif
133
134 static void __free_pages_ok(struct page *page, unsigned int order);
135
136 /*
137 * results with 256, 32 in the lowmem_reserve sysctl:
138 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
139 * 1G machine -> (16M dma, 784M normal, 224M high)
140 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
141 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
142 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
143 *
144 * TBD: should special case ZONE_DMA32 machines here - in those we normally
145 * don't need any ZONE_NORMAL reservation
146 */
147 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
148 #ifdef CONFIG_ZONE_DMA
149 256,
150 #endif
151 #ifdef CONFIG_ZONE_DMA32
152 256,
153 #endif
154 #ifdef CONFIG_HIGHMEM
155 32,
156 #endif
157 32,
158 };
159
160 EXPORT_SYMBOL(totalram_pages);
161
162 static char * const zone_names[MAX_NR_ZONES] = {
163 #ifdef CONFIG_ZONE_DMA
164 "DMA",
165 #endif
166 #ifdef CONFIG_ZONE_DMA32
167 "DMA32",
168 #endif
169 "Normal",
170 #ifdef CONFIG_HIGHMEM
171 "HighMem",
172 #endif
173 "Movable",
174 };
175
176 int min_free_kbytes = 1024;
177
178 static unsigned long __meminitdata nr_kernel_pages;
179 static unsigned long __meminitdata nr_all_pages;
180 static unsigned long __meminitdata dma_reserve;
181
182 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
183 /*
184 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
185 * ranges of memory (RAM) that may be registered with add_active_range().
186 * Ranges passed to add_active_range() will be merged if possible
187 * so the number of times add_active_range() can be called is
188 * related to the number of nodes and the number of holes
189 */
190 #ifdef CONFIG_MAX_ACTIVE_REGIONS
191 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
192 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
193 #else
194 #if MAX_NUMNODES >= 32
195 /* If there can be many nodes, allow up to 50 holes per node */
196 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
197 #else
198 /* By default, allow up to 256 distinct regions */
199 #define MAX_ACTIVE_REGIONS 256
200 #endif
201 #endif
202
203 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
204 static int __meminitdata nr_nodemap_entries;
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243
244 do {
245 seq = zone_span_seqbegin(zone);
246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 ret = 1;
248 else if (pfn < zone->zone_start_pfn)
249 ret = 1;
250 } while (zone_span_seqretry(zone, seq));
251
252 return ret;
253 }
254
255 static int page_is_consistent(struct zone *zone, struct page *page)
256 {
257 if (!pfn_valid_within(page_to_pfn(page)))
258 return 0;
259 if (zone != page_zone(page))
260 return 0;
261
262 return 1;
263 }
264 /*
265 * Temporary debugging check for pages not lying within a given zone.
266 */
267 static int bad_range(struct zone *zone, struct page *page)
268 {
269 if (page_outside_zone_boundaries(zone, page))
270 return 1;
271 if (!page_is_consistent(zone, page))
272 return 1;
273
274 return 0;
275 }
276 #else
277 static inline int bad_range(struct zone *zone, struct page *page)
278 {
279 return 0;
280 }
281 #endif
282
283 static void bad_page(struct page *page)
284 {
285 static unsigned long resume;
286 static unsigned long nr_shown;
287 static unsigned long nr_unshown;
288
289 /* Don't complain about poisoned pages */
290 if (PageHWPoison(page)) {
291 reset_page_mapcount(page); /* remove PageBuddy */
292 return;
293 }
294
295 /*
296 * Allow a burst of 60 reports, then keep quiet for that minute;
297 * or allow a steady drip of one report per second.
298 */
299 if (nr_shown == 60) {
300 if (time_before(jiffies, resume)) {
301 nr_unshown++;
302 goto out;
303 }
304 if (nr_unshown) {
305 printk(KERN_ALERT
306 "BUG: Bad page state: %lu messages suppressed\n",
307 nr_unshown);
308 nr_unshown = 0;
309 }
310 nr_shown = 0;
311 }
312 if (nr_shown++ == 0)
313 resume = jiffies + 60 * HZ;
314
315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
316 current->comm, page_to_pfn(page));
317 dump_page(page);
318
319 dump_stack();
320 out:
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
324 }
325
326 /*
327 * Higher-order pages are called "compound pages". They are structured thusly:
328 *
329 * The first PAGE_SIZE page is called the "head page".
330 *
331 * The remaining PAGE_SIZE pages are called "tail pages".
332 *
333 * All pages have PG_compound set. All pages have their ->private pointing at
334 * the head page (even the head page has this).
335 *
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
339 */
340
341 static void free_compound_page(struct page *page)
342 {
343 __free_pages_ok(page, compound_order(page));
344 }
345
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 int i;
349 int nr_pages = 1 << order;
350
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
356
357 __SetPageTail(p);
358 p->first_page = page;
359 }
360 }
361
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367 int bad = 0;
368
369 if (unlikely(compound_order(page) != order) ||
370 unlikely(!PageHead(page))) {
371 bad_page(page);
372 bad++;
373 }
374
375 __ClearPageHead(page);
376
377 for (i = 1; i < nr_pages; i++) {
378 struct page *p = page + i;
379
380 if (unlikely(!PageTail(p) || (p->first_page != page))) {
381 bad_page(page);
382 bad++;
383 }
384 __ClearPageTail(p);
385 }
386
387 return bad;
388 }
389
390 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391 {
392 int i;
393
394 /*
395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 */
398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
399 for (i = 0; i < (1 << order); i++)
400 clear_highpage(page + i);
401 }
402
403 static inline void set_page_order(struct page *page, int order)
404 {
405 set_page_private(page, order);
406 __SetPageBuddy(page);
407 }
408
409 static inline void rmv_page_order(struct page *page)
410 {
411 __ClearPageBuddy(page);
412 set_page_private(page, 0);
413 }
414
415 /*
416 * Locate the struct page for both the matching buddy in our
417 * pair (buddy1) and the combined O(n+1) page they form (page).
418 *
419 * 1) Any buddy B1 will have an order O twin B2 which satisfies
420 * the following equation:
421 * B2 = B1 ^ (1 << O)
422 * For example, if the starting buddy (buddy2) is #8 its order
423 * 1 buddy is #10:
424 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
425 *
426 * 2) Any buddy B will have an order O+1 parent P which
427 * satisfies the following equation:
428 * P = B & ~(1 << O)
429 *
430 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
431 */
432 static inline unsigned long
433 __find_buddy_index(unsigned long page_idx, unsigned int order)
434 {
435 return page_idx ^ (1 << order);
436 }
437
438 /*
439 * This function checks whether a page is free && is the buddy
440 * we can do coalesce a page and its buddy if
441 * (a) the buddy is not in a hole &&
442 * (b) the buddy is in the buddy system &&
443 * (c) a page and its buddy have the same order &&
444 * (d) a page and its buddy are in the same zone.
445 *
446 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
447 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
448 *
449 * For recording page's order, we use page_private(page).
450 */
451 static inline int page_is_buddy(struct page *page, struct page *buddy,
452 int order)
453 {
454 if (!pfn_valid_within(page_to_pfn(buddy)))
455 return 0;
456
457 if (page_zone_id(page) != page_zone_id(buddy))
458 return 0;
459
460 if (PageBuddy(buddy) && page_order(buddy) == order) {
461 VM_BUG_ON(page_count(buddy) != 0);
462 return 1;
463 }
464 return 0;
465 }
466
467 /*
468 * Freeing function for a buddy system allocator.
469 *
470 * The concept of a buddy system is to maintain direct-mapped table
471 * (containing bit values) for memory blocks of various "orders".
472 * The bottom level table contains the map for the smallest allocatable
473 * units of memory (here, pages), and each level above it describes
474 * pairs of units from the levels below, hence, "buddies".
475 * At a high level, all that happens here is marking the table entry
476 * at the bottom level available, and propagating the changes upward
477 * as necessary, plus some accounting needed to play nicely with other
478 * parts of the VM system.
479 * At each level, we keep a list of pages, which are heads of continuous
480 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
481 * order is recorded in page_private(page) field.
482 * So when we are allocating or freeing one, we can derive the state of the
483 * other. That is, if we allocate a small block, and both were
484 * free, the remainder of the region must be split into blocks.
485 * If a block is freed, and its buddy is also free, then this
486 * triggers coalescing into a block of larger size.
487 *
488 * -- wli
489 */
490
491 static inline void __free_one_page(struct page *page,
492 struct zone *zone, unsigned int order,
493 int migratetype)
494 {
495 unsigned long page_idx;
496 unsigned long combined_idx;
497 unsigned long uninitialized_var(buddy_idx);
498 struct page *buddy;
499
500 if (unlikely(PageCompound(page)))
501 if (unlikely(destroy_compound_page(page, order)))
502 return;
503
504 VM_BUG_ON(migratetype == -1);
505
506 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
507
508 VM_BUG_ON(page_idx & ((1 << order) - 1));
509 VM_BUG_ON(bad_range(zone, page));
510
511 while (order < MAX_ORDER-1) {
512 buddy_idx = __find_buddy_index(page_idx, order);
513 buddy = page + (buddy_idx - page_idx);
514 if (!page_is_buddy(page, buddy, order))
515 break;
516
517 /* Our buddy is free, merge with it and move up one order. */
518 list_del(&buddy->lru);
519 zone->free_area[order].nr_free--;
520 rmv_page_order(buddy);
521 combined_idx = buddy_idx & page_idx;
522 page = page + (combined_idx - page_idx);
523 page_idx = combined_idx;
524 order++;
525 }
526 set_page_order(page, order);
527
528 /*
529 * If this is not the largest possible page, check if the buddy
530 * of the next-highest order is free. If it is, it's possible
531 * that pages are being freed that will coalesce soon. In case,
532 * that is happening, add the free page to the tail of the list
533 * so it's less likely to be used soon and more likely to be merged
534 * as a higher order page
535 */
536 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
537 struct page *higher_page, *higher_buddy;
538 combined_idx = buddy_idx & page_idx;
539 higher_page = page + (combined_idx - page_idx);
540 buddy_idx = __find_buddy_index(combined_idx, order + 1);
541 higher_buddy = page + (buddy_idx - combined_idx);
542 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
543 list_add_tail(&page->lru,
544 &zone->free_area[order].free_list[migratetype]);
545 goto out;
546 }
547 }
548
549 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
550 out:
551 zone->free_area[order].nr_free++;
552 }
553
554 /*
555 * free_page_mlock() -- clean up attempts to free and mlocked() page.
556 * Page should not be on lru, so no need to fix that up.
557 * free_pages_check() will verify...
558 */
559 static inline void free_page_mlock(struct page *page)
560 {
561 __dec_zone_page_state(page, NR_MLOCK);
562 __count_vm_event(UNEVICTABLE_MLOCKFREED);
563 }
564
565 static inline int free_pages_check(struct page *page)
566 {
567 if (unlikely(page_mapcount(page) |
568 (page->mapping != NULL) |
569 (atomic_read(&page->_count) != 0) |
570 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
571 (mem_cgroup_bad_page_check(page)))) {
572 bad_page(page);
573 return 1;
574 }
575 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
576 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
577 return 0;
578 }
579
580 /*
581 * Frees a number of pages from the PCP lists
582 * Assumes all pages on list are in same zone, and of same order.
583 * count is the number of pages to free.
584 *
585 * If the zone was previously in an "all pages pinned" state then look to
586 * see if this freeing clears that state.
587 *
588 * And clear the zone's pages_scanned counter, to hold off the "all pages are
589 * pinned" detection logic.
590 */
591 static void free_pcppages_bulk(struct zone *zone, int count,
592 struct per_cpu_pages *pcp)
593 {
594 int migratetype = 0;
595 int batch_free = 0;
596 int to_free = count;
597
598 spin_lock(&zone->lock);
599 zone->all_unreclaimable = 0;
600 zone->pages_scanned = 0;
601
602 while (to_free) {
603 struct page *page;
604 struct list_head *list;
605
606 /*
607 * Remove pages from lists in a round-robin fashion. A
608 * batch_free count is maintained that is incremented when an
609 * empty list is encountered. This is so more pages are freed
610 * off fuller lists instead of spinning excessively around empty
611 * lists
612 */
613 do {
614 batch_free++;
615 if (++migratetype == MIGRATE_PCPTYPES)
616 migratetype = 0;
617 list = &pcp->lists[migratetype];
618 } while (list_empty(list));
619
620 /* This is the only non-empty list. Free them all. */
621 if (batch_free == MIGRATE_PCPTYPES)
622 batch_free = to_free;
623
624 do {
625 page = list_entry(list->prev, struct page, lru);
626 /* must delete as __free_one_page list manipulates */
627 list_del(&page->lru);
628 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
629 __free_one_page(page, zone, 0, page_private(page));
630 trace_mm_page_pcpu_drain(page, 0, page_private(page));
631 } while (--to_free && --batch_free && !list_empty(list));
632 }
633 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
634 spin_unlock(&zone->lock);
635 }
636
637 static void free_one_page(struct zone *zone, struct page *page, int order,
638 int migratetype)
639 {
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 __free_one_page(page, zone, order, migratetype);
645 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
646 spin_unlock(&zone->lock);
647 }
648
649 static bool free_pages_prepare(struct page *page, unsigned int order)
650 {
651 int i;
652 int bad = 0;
653
654 trace_mm_page_free_direct(page, order);
655 kmemcheck_free_shadow(page, order);
656
657 if (PageAnon(page))
658 page->mapping = NULL;
659 for (i = 0; i < (1 << order); i++)
660 bad += free_pages_check(page + i);
661 if (bad)
662 return false;
663
664 if (!PageHighMem(page)) {
665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
668 }
669 arch_free_page(page, order);
670 kernel_map_pages(page, 1 << order, 0);
671
672 return true;
673 }
674
675 static void __free_pages_ok(struct page *page, unsigned int order)
676 {
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
679
680 if (!free_pages_prepare(page, order))
681 return;
682
683 local_irq_save(flags);
684 if (unlikely(wasMlocked))
685 free_page_mlock(page);
686 __count_vm_events(PGFREE, 1 << order);
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
689 local_irq_restore(flags);
690 }
691
692 /*
693 * permit the bootmem allocator to evade page validation on high-order frees
694 */
695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
696 {
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
700 set_page_refcounted(page);
701 __free_page(page);
702 } else {
703 int loop;
704
705 prefetchw(page);
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
708
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
713 }
714
715 set_page_refcounted(page);
716 __free_pages(page, order);
717 }
718 }
719
720
721 /*
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
732 *
733 * -- wli
734 */
735 static inline void expand(struct zone *zone, struct page *page,
736 int low, int high, struct free_area *area,
737 int migratetype)
738 {
739 unsigned long size = 1 << high;
740
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
745 VM_BUG_ON(bad_range(zone, &page[size]));
746 list_add(&page[size].lru, &area->free_list[migratetype]);
747 area->nr_free++;
748 set_page_order(&page[size], high);
749 }
750 }
751
752 /*
753 * This page is about to be returned from the page allocator
754 */
755 static inline int check_new_page(struct page *page)
756 {
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
759 (atomic_read(&page->_count) != 0) |
760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
761 (mem_cgroup_bad_page_check(page)))) {
762 bad_page(page);
763 return 1;
764 }
765 return 0;
766 }
767
768 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
769 {
770 int i;
771
772 for (i = 0; i < (1 << order); i++) {
773 struct page *p = page + i;
774 if (unlikely(check_new_page(p)))
775 return 1;
776 }
777
778 set_page_private(page, 0);
779 set_page_refcounted(page);
780
781 arch_alloc_page(page, order);
782 kernel_map_pages(page, 1 << order, 1);
783
784 if (gfp_flags & __GFP_ZERO)
785 prep_zero_page(page, order, gfp_flags);
786
787 if (order && (gfp_flags & __GFP_COMP))
788 prep_compound_page(page, order);
789
790 return 0;
791 }
792
793 /*
794 * Go through the free lists for the given migratetype and remove
795 * the smallest available page from the freelists
796 */
797 static inline
798 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
799 int migratetype)
800 {
801 unsigned int current_order;
802 struct free_area * area;
803 struct page *page;
804
805 /* Find a page of the appropriate size in the preferred list */
806 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
807 area = &(zone->free_area[current_order]);
808 if (list_empty(&area->free_list[migratetype]))
809 continue;
810
811 page = list_entry(area->free_list[migratetype].next,
812 struct page, lru);
813 list_del(&page->lru);
814 rmv_page_order(page);
815 area->nr_free--;
816 expand(zone, page, order, current_order, area, migratetype);
817 return page;
818 }
819
820 return NULL;
821 }
822
823
824 /*
825 * This array describes the order lists are fallen back to when
826 * the free lists for the desirable migrate type are depleted
827 */
828 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
829 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
833 };
834
835 /*
836 * Move the free pages in a range to the free lists of the requested type.
837 * Note that start_page and end_pages are not aligned on a pageblock
838 * boundary. If alignment is required, use move_freepages_block()
839 */
840 static int move_freepages(struct zone *zone,
841 struct page *start_page, struct page *end_page,
842 int migratetype)
843 {
844 struct page *page;
845 unsigned long order;
846 int pages_moved = 0;
847
848 #ifndef CONFIG_HOLES_IN_ZONE
849 /*
850 * page_zone is not safe to call in this context when
851 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
852 * anyway as we check zone boundaries in move_freepages_block().
853 * Remove at a later date when no bug reports exist related to
854 * grouping pages by mobility
855 */
856 BUG_ON(page_zone(start_page) != page_zone(end_page));
857 #endif
858
859 for (page = start_page; page <= end_page;) {
860 /* Make sure we are not inadvertently changing nodes */
861 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
862
863 if (!pfn_valid_within(page_to_pfn(page))) {
864 page++;
865 continue;
866 }
867
868 if (!PageBuddy(page)) {
869 page++;
870 continue;
871 }
872
873 order = page_order(page);
874 list_move(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
877 pages_moved += 1 << order;
878 }
879
880 return pages_moved;
881 }
882
883 static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
885 {
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
888
889 start_pfn = page_to_pfn(page);
890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
891 start_page = pfn_to_page(start_pfn);
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
894
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
900
901 return move_freepages(zone, start_page, end_page, migratetype);
902 }
903
904 static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
906 {
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
908
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
912 }
913 }
914
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page *
917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
918 {
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
923
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
929
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
933
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
937
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
941
942 /*
943 * If breaking a large block of pages, move all free
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * aggressive about taking ownership of free pages
947 */
948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
954
955 /* Claim the whole block if over half of it is free */
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
958 set_pageblock_migratetype(page,
959 start_migratetype);
960
961 migratetype = start_migratetype;
962 }
963
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
967
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
971 start_migratetype);
972
973 expand(zone, page, order, current_order, area, migratetype);
974
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
977
978 return page;
979 }
980 }
981
982 return NULL;
983 }
984
985 /*
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
988 */
989 static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
991 {
992 struct page *page;
993
994 retry_reserve:
995 page = __rmqueue_smallest(zone, order, migratetype);
996
997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
998 page = __rmqueue_fallback(zone, order, migratetype);
999
1000 /*
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1004 */
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1008 }
1009 }
1010
1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1012 return page;
1013 }
1014
1015 /*
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1019 */
1020 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1021 unsigned long count, struct list_head *list,
1022 int migratetype, int cold)
1023 {
1024 int i;
1025
1026 spin_lock(&zone->lock);
1027 for (i = 0; i < count; ++i) {
1028 struct page *page = __rmqueue(zone, order, migratetype);
1029 if (unlikely(page == NULL))
1030 break;
1031
1032 /*
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1040 */
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
1045 set_page_private(page, migratetype);
1046 list = &page->lru;
1047 }
1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1049 spin_unlock(&zone->lock);
1050 return i;
1051 }
1052
1053 #ifdef CONFIG_NUMA
1054 /*
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1058 *
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
1061 */
1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1063 {
1064 unsigned long flags;
1065 int to_drain;
1066
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
1072 free_pcppages_bulk(zone, to_drain, pcp);
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
1075 }
1076 #endif
1077
1078 /*
1079 * Drain pages of the indicated processor.
1080 *
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1084 */
1085 static void drain_pages(unsigned int cpu)
1086 {
1087 unsigned long flags;
1088 struct zone *zone;
1089
1090 for_each_populated_zone(zone) {
1091 struct per_cpu_pageset *pset;
1092 struct per_cpu_pages *pcp;
1093
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
1096
1097 pcp = &pset->pcp;
1098 if (pcp->count) {
1099 free_pcppages_bulk(zone, pcp->count, pcp);
1100 pcp->count = 0;
1101 }
1102 local_irq_restore(flags);
1103 }
1104 }
1105
1106 /*
1107 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1108 */
1109 void drain_local_pages(void *arg)
1110 {
1111 drain_pages(smp_processor_id());
1112 }
1113
1114 /*
1115 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1116 */
1117 void drain_all_pages(void)
1118 {
1119 on_each_cpu(drain_local_pages, NULL, 1);
1120 }
1121
1122 #ifdef CONFIG_HIBERNATION
1123
1124 void mark_free_pages(struct zone *zone)
1125 {
1126 unsigned long pfn, max_zone_pfn;
1127 unsigned long flags;
1128 int order, t;
1129 struct list_head *curr;
1130
1131 if (!zone->spanned_pages)
1132 return;
1133
1134 spin_lock_irqsave(&zone->lock, flags);
1135
1136 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1137 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1138 if (pfn_valid(pfn)) {
1139 struct page *page = pfn_to_page(pfn);
1140
1141 if (!swsusp_page_is_forbidden(page))
1142 swsusp_unset_page_free(page);
1143 }
1144
1145 for_each_migratetype_order(order, t) {
1146 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1147 unsigned long i;
1148
1149 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1150 for (i = 0; i < (1UL << order); i++)
1151 swsusp_set_page_free(pfn_to_page(pfn + i));
1152 }
1153 }
1154 spin_unlock_irqrestore(&zone->lock, flags);
1155 }
1156 #endif /* CONFIG_PM */
1157
1158 /*
1159 * Free a 0-order page
1160 * cold == 1 ? free a cold page : free a hot page
1161 */
1162 void free_hot_cold_page(struct page *page, int cold)
1163 {
1164 struct zone *zone = page_zone(page);
1165 struct per_cpu_pages *pcp;
1166 unsigned long flags;
1167 int migratetype;
1168 int wasMlocked = __TestClearPageMlocked(page);
1169
1170 if (!free_pages_prepare(page, 0))
1171 return;
1172
1173 migratetype = get_pageblock_migratetype(page);
1174 set_page_private(page, migratetype);
1175 local_irq_save(flags);
1176 if (unlikely(wasMlocked))
1177 free_page_mlock(page);
1178 __count_vm_event(PGFREE);
1179
1180 /*
1181 * We only track unmovable, reclaimable and movable on pcp lists.
1182 * Free ISOLATE pages back to the allocator because they are being
1183 * offlined but treat RESERVE as movable pages so we can get those
1184 * areas back if necessary. Otherwise, we may have to free
1185 * excessively into the page allocator
1186 */
1187 if (migratetype >= MIGRATE_PCPTYPES) {
1188 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1189 free_one_page(zone, page, 0, migratetype);
1190 goto out;
1191 }
1192 migratetype = MIGRATE_MOVABLE;
1193 }
1194
1195 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1196 if (cold)
1197 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1198 else
1199 list_add(&page->lru, &pcp->lists[migratetype]);
1200 pcp->count++;
1201 if (pcp->count >= pcp->high) {
1202 free_pcppages_bulk(zone, pcp->batch, pcp);
1203 pcp->count -= pcp->batch;
1204 }
1205
1206 out:
1207 local_irq_restore(flags);
1208 }
1209
1210 /*
1211 * split_page takes a non-compound higher-order page, and splits it into
1212 * n (1<<order) sub-pages: page[0..n]
1213 * Each sub-page must be freed individually.
1214 *
1215 * Note: this is probably too low level an operation for use in drivers.
1216 * Please consult with lkml before using this in your driver.
1217 */
1218 void split_page(struct page *page, unsigned int order)
1219 {
1220 int i;
1221
1222 VM_BUG_ON(PageCompound(page));
1223 VM_BUG_ON(!page_count(page));
1224
1225 #ifdef CONFIG_KMEMCHECK
1226 /*
1227 * Split shadow pages too, because free(page[0]) would
1228 * otherwise free the whole shadow.
1229 */
1230 if (kmemcheck_page_is_tracked(page))
1231 split_page(virt_to_page(page[0].shadow), order);
1232 #endif
1233
1234 for (i = 1; i < (1 << order); i++)
1235 set_page_refcounted(page + i);
1236 }
1237
1238 /*
1239 * Similar to split_page except the page is already free. As this is only
1240 * being used for migration, the migratetype of the block also changes.
1241 * As this is called with interrupts disabled, the caller is responsible
1242 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1243 * are enabled.
1244 *
1245 * Note: this is probably too low level an operation for use in drivers.
1246 * Please consult with lkml before using this in your driver.
1247 */
1248 int split_free_page(struct page *page)
1249 {
1250 unsigned int order;
1251 unsigned long watermark;
1252 struct zone *zone;
1253
1254 BUG_ON(!PageBuddy(page));
1255
1256 zone = page_zone(page);
1257 order = page_order(page);
1258
1259 /* Obey watermarks as if the page was being allocated */
1260 watermark = low_wmark_pages(zone) + (1 << order);
1261 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1262 return 0;
1263
1264 /* Remove page from free list */
1265 list_del(&page->lru);
1266 zone->free_area[order].nr_free--;
1267 rmv_page_order(page);
1268 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1269
1270 /* Split into individual pages */
1271 set_page_refcounted(page);
1272 split_page(page, order);
1273
1274 if (order >= pageblock_order - 1) {
1275 struct page *endpage = page + (1 << order) - 1;
1276 for (; page < endpage; page += pageblock_nr_pages)
1277 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1278 }
1279
1280 return 1 << order;
1281 }
1282
1283 /*
1284 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1285 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1286 * or two.
1287 */
1288 static inline
1289 struct page *buffered_rmqueue(struct zone *preferred_zone,
1290 struct zone *zone, int order, gfp_t gfp_flags,
1291 int migratetype)
1292 {
1293 unsigned long flags;
1294 struct page *page;
1295 int cold = !!(gfp_flags & __GFP_COLD);
1296
1297 again:
1298 if (likely(order == 0)) {
1299 struct per_cpu_pages *pcp;
1300 struct list_head *list;
1301
1302 local_irq_save(flags);
1303 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1304 list = &pcp->lists[migratetype];
1305 if (list_empty(list)) {
1306 pcp->count += rmqueue_bulk(zone, 0,
1307 pcp->batch, list,
1308 migratetype, cold);
1309 if (unlikely(list_empty(list)))
1310 goto failed;
1311 }
1312
1313 if (cold)
1314 page = list_entry(list->prev, struct page, lru);
1315 else
1316 page = list_entry(list->next, struct page, lru);
1317
1318 list_del(&page->lru);
1319 pcp->count--;
1320 } else {
1321 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1322 /*
1323 * __GFP_NOFAIL is not to be used in new code.
1324 *
1325 * All __GFP_NOFAIL callers should be fixed so that they
1326 * properly detect and handle allocation failures.
1327 *
1328 * We most definitely don't want callers attempting to
1329 * allocate greater than order-1 page units with
1330 * __GFP_NOFAIL.
1331 */
1332 WARN_ON_ONCE(order > 1);
1333 }
1334 spin_lock_irqsave(&zone->lock, flags);
1335 page = __rmqueue(zone, order, migratetype);
1336 spin_unlock(&zone->lock);
1337 if (!page)
1338 goto failed;
1339 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1340 }
1341
1342 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1343 zone_statistics(preferred_zone, zone, gfp_flags);
1344 local_irq_restore(flags);
1345
1346 VM_BUG_ON(bad_range(zone, page));
1347 if (prep_new_page(page, order, gfp_flags))
1348 goto again;
1349 return page;
1350
1351 failed:
1352 local_irq_restore(flags);
1353 return NULL;
1354 }
1355
1356 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1357 #define ALLOC_WMARK_MIN WMARK_MIN
1358 #define ALLOC_WMARK_LOW WMARK_LOW
1359 #define ALLOC_WMARK_HIGH WMARK_HIGH
1360 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1361
1362 /* Mask to get the watermark bits */
1363 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1364
1365 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1366 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1367 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1368
1369 #ifdef CONFIG_FAIL_PAGE_ALLOC
1370
1371 static struct fail_page_alloc_attr {
1372 struct fault_attr attr;
1373
1374 u32 ignore_gfp_highmem;
1375 u32 ignore_gfp_wait;
1376 u32 min_order;
1377
1378 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1379
1380 struct dentry *ignore_gfp_highmem_file;
1381 struct dentry *ignore_gfp_wait_file;
1382 struct dentry *min_order_file;
1383
1384 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1385
1386 } fail_page_alloc = {
1387 .attr = FAULT_ATTR_INITIALIZER,
1388 .ignore_gfp_wait = 1,
1389 .ignore_gfp_highmem = 1,
1390 .min_order = 1,
1391 };
1392
1393 static int __init setup_fail_page_alloc(char *str)
1394 {
1395 return setup_fault_attr(&fail_page_alloc.attr, str);
1396 }
1397 __setup("fail_page_alloc=", setup_fail_page_alloc);
1398
1399 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1400 {
1401 if (order < fail_page_alloc.min_order)
1402 return 0;
1403 if (gfp_mask & __GFP_NOFAIL)
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1408 return 0;
1409
1410 return should_fail(&fail_page_alloc.attr, 1 << order);
1411 }
1412
1413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1414
1415 static int __init fail_page_alloc_debugfs(void)
1416 {
1417 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1418 struct dentry *dir;
1419 int err;
1420
1421 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1422 "fail_page_alloc");
1423 if (err)
1424 return err;
1425 dir = fail_page_alloc.attr.dentries.dir;
1426
1427 fail_page_alloc.ignore_gfp_wait_file =
1428 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1429 &fail_page_alloc.ignore_gfp_wait);
1430
1431 fail_page_alloc.ignore_gfp_highmem_file =
1432 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1433 &fail_page_alloc.ignore_gfp_highmem);
1434 fail_page_alloc.min_order_file =
1435 debugfs_create_u32("min-order", mode, dir,
1436 &fail_page_alloc.min_order);
1437
1438 if (!fail_page_alloc.ignore_gfp_wait_file ||
1439 !fail_page_alloc.ignore_gfp_highmem_file ||
1440 !fail_page_alloc.min_order_file) {
1441 err = -ENOMEM;
1442 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1443 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1444 debugfs_remove(fail_page_alloc.min_order_file);
1445 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1446 }
1447
1448 return err;
1449 }
1450
1451 late_initcall(fail_page_alloc_debugfs);
1452
1453 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1454
1455 #else /* CONFIG_FAIL_PAGE_ALLOC */
1456
1457 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1458 {
1459 return 0;
1460 }
1461
1462 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1463
1464 /*
1465 * Return true if free pages are above 'mark'. This takes into account the order
1466 * of the allocation.
1467 */
1468 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1469 int classzone_idx, int alloc_flags, long free_pages)
1470 {
1471 /* free_pages my go negative - that's OK */
1472 long min = mark;
1473 int o;
1474
1475 free_pages -= (1 << order) + 1;
1476 if (alloc_flags & ALLOC_HIGH)
1477 min -= min / 2;
1478 if (alloc_flags & ALLOC_HARDER)
1479 min -= min / 4;
1480
1481 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1482 return false;
1483 for (o = 0; o < order; o++) {
1484 /* At the next order, this order's pages become unavailable */
1485 free_pages -= z->free_area[o].nr_free << o;
1486
1487 /* Require fewer higher order pages to be free */
1488 min >>= 1;
1489
1490 if (free_pages <= min)
1491 return false;
1492 }
1493 return true;
1494 }
1495
1496 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1497 int classzone_idx, int alloc_flags)
1498 {
1499 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1500 zone_page_state(z, NR_FREE_PAGES));
1501 }
1502
1503 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1504 int classzone_idx, int alloc_flags)
1505 {
1506 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1507
1508 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1509 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1510
1511 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1512 free_pages);
1513 }
1514
1515 #ifdef CONFIG_NUMA
1516 /*
1517 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1518 * skip over zones that are not allowed by the cpuset, or that have
1519 * been recently (in last second) found to be nearly full. See further
1520 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1521 * that have to skip over a lot of full or unallowed zones.
1522 *
1523 * If the zonelist cache is present in the passed in zonelist, then
1524 * returns a pointer to the allowed node mask (either the current
1525 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1526 *
1527 * If the zonelist cache is not available for this zonelist, does
1528 * nothing and returns NULL.
1529 *
1530 * If the fullzones BITMAP in the zonelist cache is stale (more than
1531 * a second since last zap'd) then we zap it out (clear its bits.)
1532 *
1533 * We hold off even calling zlc_setup, until after we've checked the
1534 * first zone in the zonelist, on the theory that most allocations will
1535 * be satisfied from that first zone, so best to examine that zone as
1536 * quickly as we can.
1537 */
1538 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1539 {
1540 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1541 nodemask_t *allowednodes; /* zonelist_cache approximation */
1542
1543 zlc = zonelist->zlcache_ptr;
1544 if (!zlc)
1545 return NULL;
1546
1547 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1548 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1549 zlc->last_full_zap = jiffies;
1550 }
1551
1552 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1553 &cpuset_current_mems_allowed :
1554 &node_states[N_HIGH_MEMORY];
1555 return allowednodes;
1556 }
1557
1558 /*
1559 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1560 * if it is worth looking at further for free memory:
1561 * 1) Check that the zone isn't thought to be full (doesn't have its
1562 * bit set in the zonelist_cache fullzones BITMAP).
1563 * 2) Check that the zones node (obtained from the zonelist_cache
1564 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1565 * Return true (non-zero) if zone is worth looking at further, or
1566 * else return false (zero) if it is not.
1567 *
1568 * This check -ignores- the distinction between various watermarks,
1569 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1570 * found to be full for any variation of these watermarks, it will
1571 * be considered full for up to one second by all requests, unless
1572 * we are so low on memory on all allowed nodes that we are forced
1573 * into the second scan of the zonelist.
1574 *
1575 * In the second scan we ignore this zonelist cache and exactly
1576 * apply the watermarks to all zones, even it is slower to do so.
1577 * We are low on memory in the second scan, and should leave no stone
1578 * unturned looking for a free page.
1579 */
1580 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1581 nodemask_t *allowednodes)
1582 {
1583 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1584 int i; /* index of *z in zonelist zones */
1585 int n; /* node that zone *z is on */
1586
1587 zlc = zonelist->zlcache_ptr;
1588 if (!zlc)
1589 return 1;
1590
1591 i = z - zonelist->_zonerefs;
1592 n = zlc->z_to_n[i];
1593
1594 /* This zone is worth trying if it is allowed but not full */
1595 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1596 }
1597
1598 /*
1599 * Given 'z' scanning a zonelist, set the corresponding bit in
1600 * zlc->fullzones, so that subsequent attempts to allocate a page
1601 * from that zone don't waste time re-examining it.
1602 */
1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1604 {
1605 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1606 int i; /* index of *z in zonelist zones */
1607
1608 zlc = zonelist->zlcache_ptr;
1609 if (!zlc)
1610 return;
1611
1612 i = z - zonelist->_zonerefs;
1613
1614 set_bit(i, zlc->fullzones);
1615 }
1616
1617 #else /* CONFIG_NUMA */
1618
1619 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620 {
1621 return NULL;
1622 }
1623
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 nodemask_t *allowednodes)
1626 {
1627 return 1;
1628 }
1629
1630 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1631 {
1632 }
1633 #endif /* CONFIG_NUMA */
1634
1635 /*
1636 * get_page_from_freelist goes through the zonelist trying to allocate
1637 * a page.
1638 */
1639 static struct page *
1640 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1641 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1642 struct zone *preferred_zone, int migratetype)
1643 {
1644 struct zoneref *z;
1645 struct page *page = NULL;
1646 int classzone_idx;
1647 struct zone *zone;
1648 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1649 int zlc_active = 0; /* set if using zonelist_cache */
1650 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1651
1652 classzone_idx = zone_idx(preferred_zone);
1653 zonelist_scan:
1654 /*
1655 * Scan zonelist, looking for a zone with enough free.
1656 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1657 */
1658 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1659 high_zoneidx, nodemask) {
1660 if (NUMA_BUILD && zlc_active &&
1661 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1662 continue;
1663 if ((alloc_flags & ALLOC_CPUSET) &&
1664 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1665 goto try_next_zone;
1666
1667 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1668 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1669 unsigned long mark;
1670 int ret;
1671
1672 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1673 if (zone_watermark_ok(zone, order, mark,
1674 classzone_idx, alloc_flags))
1675 goto try_this_zone;
1676
1677 if (zone_reclaim_mode == 0)
1678 goto this_zone_full;
1679
1680 ret = zone_reclaim(zone, gfp_mask, order);
1681 switch (ret) {
1682 case ZONE_RECLAIM_NOSCAN:
1683 /* did not scan */
1684 goto try_next_zone;
1685 case ZONE_RECLAIM_FULL:
1686 /* scanned but unreclaimable */
1687 goto this_zone_full;
1688 default:
1689 /* did we reclaim enough */
1690 if (!zone_watermark_ok(zone, order, mark,
1691 classzone_idx, alloc_flags))
1692 goto this_zone_full;
1693 }
1694 }
1695
1696 try_this_zone:
1697 page = buffered_rmqueue(preferred_zone, zone, order,
1698 gfp_mask, migratetype);
1699 if (page)
1700 break;
1701 this_zone_full:
1702 if (NUMA_BUILD)
1703 zlc_mark_zone_full(zonelist, z);
1704 try_next_zone:
1705 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1706 /*
1707 * we do zlc_setup after the first zone is tried but only
1708 * if there are multiple nodes make it worthwhile
1709 */
1710 allowednodes = zlc_setup(zonelist, alloc_flags);
1711 zlc_active = 1;
1712 did_zlc_setup = 1;
1713 }
1714 }
1715
1716 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1717 /* Disable zlc cache for second zonelist scan */
1718 zlc_active = 0;
1719 goto zonelist_scan;
1720 }
1721 return page;
1722 }
1723
1724 /*
1725 * Large machines with many possible nodes should not always dump per-node
1726 * meminfo in irq context.
1727 */
1728 static inline bool should_suppress_show_mem(void)
1729 {
1730 bool ret = false;
1731
1732 #if NODES_SHIFT > 8
1733 ret = in_interrupt();
1734 #endif
1735 return ret;
1736 }
1737
1738 static inline int
1739 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1740 unsigned long pages_reclaimed)
1741 {
1742 /* Do not loop if specifically requested */
1743 if (gfp_mask & __GFP_NORETRY)
1744 return 0;
1745
1746 /*
1747 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1748 * means __GFP_NOFAIL, but that may not be true in other
1749 * implementations.
1750 */
1751 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1752 return 1;
1753
1754 /*
1755 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1756 * specified, then we retry until we no longer reclaim any pages
1757 * (above), or we've reclaimed an order of pages at least as
1758 * large as the allocation's order. In both cases, if the
1759 * allocation still fails, we stop retrying.
1760 */
1761 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1762 return 1;
1763
1764 /*
1765 * Don't let big-order allocations loop unless the caller
1766 * explicitly requests that.
1767 */
1768 if (gfp_mask & __GFP_NOFAIL)
1769 return 1;
1770
1771 return 0;
1772 }
1773
1774 static inline struct page *
1775 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1776 struct zonelist *zonelist, enum zone_type high_zoneidx,
1777 nodemask_t *nodemask, struct zone *preferred_zone,
1778 int migratetype)
1779 {
1780 struct page *page;
1781
1782 /* Acquire the OOM killer lock for the zones in zonelist */
1783 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1784 schedule_timeout_uninterruptible(1);
1785 return NULL;
1786 }
1787
1788 /*
1789 * Go through the zonelist yet one more time, keep very high watermark
1790 * here, this is only to catch a parallel oom killing, we must fail if
1791 * we're still under heavy pressure.
1792 */
1793 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1794 order, zonelist, high_zoneidx,
1795 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1796 preferred_zone, migratetype);
1797 if (page)
1798 goto out;
1799
1800 if (!(gfp_mask & __GFP_NOFAIL)) {
1801 /* The OOM killer will not help higher order allocs */
1802 if (order > PAGE_ALLOC_COSTLY_ORDER)
1803 goto out;
1804 /* The OOM killer does not needlessly kill tasks for lowmem */
1805 if (high_zoneidx < ZONE_NORMAL)
1806 goto out;
1807 /*
1808 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1809 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1810 * The caller should handle page allocation failure by itself if
1811 * it specifies __GFP_THISNODE.
1812 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1813 */
1814 if (gfp_mask & __GFP_THISNODE)
1815 goto out;
1816 }
1817 /* Exhausted what can be done so it's blamo time */
1818 out_of_memory(zonelist, gfp_mask, order, nodemask);
1819
1820 out:
1821 clear_zonelist_oom(zonelist, gfp_mask);
1822 return page;
1823 }
1824
1825 #ifdef CONFIG_COMPACTION
1826 /* Try memory compaction for high-order allocations before reclaim */
1827 static struct page *
1828 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1829 struct zonelist *zonelist, enum zone_type high_zoneidx,
1830 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1831 int migratetype, unsigned long *did_some_progress,
1832 bool sync_migration)
1833 {
1834 struct page *page;
1835
1836 if (!order || compaction_deferred(preferred_zone))
1837 return NULL;
1838
1839 current->flags |= PF_MEMALLOC;
1840 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1841 nodemask, sync_migration);
1842 current->flags &= ~PF_MEMALLOC;
1843 if (*did_some_progress != COMPACT_SKIPPED) {
1844
1845 /* Page migration frees to the PCP lists but we want merging */
1846 drain_pages(get_cpu());
1847 put_cpu();
1848
1849 page = get_page_from_freelist(gfp_mask, nodemask,
1850 order, zonelist, high_zoneidx,
1851 alloc_flags, preferred_zone,
1852 migratetype);
1853 if (page) {
1854 preferred_zone->compact_considered = 0;
1855 preferred_zone->compact_defer_shift = 0;
1856 count_vm_event(COMPACTSUCCESS);
1857 return page;
1858 }
1859
1860 /*
1861 * It's bad if compaction run occurs and fails.
1862 * The most likely reason is that pages exist,
1863 * but not enough to satisfy watermarks.
1864 */
1865 count_vm_event(COMPACTFAIL);
1866 defer_compaction(preferred_zone);
1867
1868 cond_resched();
1869 }
1870
1871 return NULL;
1872 }
1873 #else
1874 static inline struct page *
1875 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1876 struct zonelist *zonelist, enum zone_type high_zoneidx,
1877 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1878 int migratetype, unsigned long *did_some_progress,
1879 bool sync_migration)
1880 {
1881 return NULL;
1882 }
1883 #endif /* CONFIG_COMPACTION */
1884
1885 /* The really slow allocator path where we enter direct reclaim */
1886 static inline struct page *
1887 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1888 struct zonelist *zonelist, enum zone_type high_zoneidx,
1889 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1890 int migratetype, unsigned long *did_some_progress)
1891 {
1892 struct page *page = NULL;
1893 struct reclaim_state reclaim_state;
1894 bool drained = false;
1895
1896 cond_resched();
1897
1898 /* We now go into synchronous reclaim */
1899 cpuset_memory_pressure_bump();
1900 current->flags |= PF_MEMALLOC;
1901 lockdep_set_current_reclaim_state(gfp_mask);
1902 reclaim_state.reclaimed_slab = 0;
1903 current->reclaim_state = &reclaim_state;
1904
1905 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1906
1907 current->reclaim_state = NULL;
1908 lockdep_clear_current_reclaim_state();
1909 current->flags &= ~PF_MEMALLOC;
1910
1911 cond_resched();
1912
1913 if (unlikely(!(*did_some_progress)))
1914 return NULL;
1915
1916 retry:
1917 page = get_page_from_freelist(gfp_mask, nodemask, order,
1918 zonelist, high_zoneidx,
1919 alloc_flags, preferred_zone,
1920 migratetype);
1921
1922 /*
1923 * If an allocation failed after direct reclaim, it could be because
1924 * pages are pinned on the per-cpu lists. Drain them and try again
1925 */
1926 if (!page && !drained) {
1927 drain_all_pages();
1928 drained = true;
1929 goto retry;
1930 }
1931
1932 return page;
1933 }
1934
1935 /*
1936 * This is called in the allocator slow-path if the allocation request is of
1937 * sufficient urgency to ignore watermarks and take other desperate measures
1938 */
1939 static inline struct page *
1940 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1941 struct zonelist *zonelist, enum zone_type high_zoneidx,
1942 nodemask_t *nodemask, struct zone *preferred_zone,
1943 int migratetype)
1944 {
1945 struct page *page;
1946
1947 do {
1948 page = get_page_from_freelist(gfp_mask, nodemask, order,
1949 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1950 preferred_zone, migratetype);
1951
1952 if (!page && gfp_mask & __GFP_NOFAIL)
1953 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1954 } while (!page && (gfp_mask & __GFP_NOFAIL));
1955
1956 return page;
1957 }
1958
1959 static inline
1960 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1961 enum zone_type high_zoneidx,
1962 enum zone_type classzone_idx)
1963 {
1964 struct zoneref *z;
1965 struct zone *zone;
1966
1967 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1968 wakeup_kswapd(zone, order, classzone_idx);
1969 }
1970
1971 static inline int
1972 gfp_to_alloc_flags(gfp_t gfp_mask)
1973 {
1974 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1975 const gfp_t wait = gfp_mask & __GFP_WAIT;
1976
1977 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1978 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1979
1980 /*
1981 * The caller may dip into page reserves a bit more if the caller
1982 * cannot run direct reclaim, or if the caller has realtime scheduling
1983 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1984 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1985 */
1986 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1987
1988 if (!wait) {
1989 /*
1990 * Not worth trying to allocate harder for
1991 * __GFP_NOMEMALLOC even if it can't schedule.
1992 */
1993 if (!(gfp_mask & __GFP_NOMEMALLOC))
1994 alloc_flags |= ALLOC_HARDER;
1995 /*
1996 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1997 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1998 */
1999 alloc_flags &= ~ALLOC_CPUSET;
2000 } else if (unlikely(rt_task(current)) && !in_interrupt())
2001 alloc_flags |= ALLOC_HARDER;
2002
2003 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2004 if (!in_interrupt() &&
2005 ((current->flags & PF_MEMALLOC) ||
2006 unlikely(test_thread_flag(TIF_MEMDIE))))
2007 alloc_flags |= ALLOC_NO_WATERMARKS;
2008 }
2009
2010 return alloc_flags;
2011 }
2012
2013 static inline struct page *
2014 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2015 struct zonelist *zonelist, enum zone_type high_zoneidx,
2016 nodemask_t *nodemask, struct zone *preferred_zone,
2017 int migratetype)
2018 {
2019 const gfp_t wait = gfp_mask & __GFP_WAIT;
2020 struct page *page = NULL;
2021 int alloc_flags;
2022 unsigned long pages_reclaimed = 0;
2023 unsigned long did_some_progress;
2024 bool sync_migration = false;
2025
2026 /*
2027 * In the slowpath, we sanity check order to avoid ever trying to
2028 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2029 * be using allocators in order of preference for an area that is
2030 * too large.
2031 */
2032 if (order >= MAX_ORDER) {
2033 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2034 return NULL;
2035 }
2036
2037 /*
2038 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2039 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2040 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2041 * using a larger set of nodes after it has established that the
2042 * allowed per node queues are empty and that nodes are
2043 * over allocated.
2044 */
2045 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2046 goto nopage;
2047
2048 restart:
2049 if (!(gfp_mask & __GFP_NO_KSWAPD))
2050 wake_all_kswapd(order, zonelist, high_zoneidx,
2051 zone_idx(preferred_zone));
2052
2053 /*
2054 * OK, we're below the kswapd watermark and have kicked background
2055 * reclaim. Now things get more complex, so set up alloc_flags according
2056 * to how we want to proceed.
2057 */
2058 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2059
2060 /*
2061 * Find the true preferred zone if the allocation is unconstrained by
2062 * cpusets.
2063 */
2064 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2065 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2066 &preferred_zone);
2067
2068 /* This is the last chance, in general, before the goto nopage. */
2069 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2070 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2071 preferred_zone, migratetype);
2072 if (page)
2073 goto got_pg;
2074
2075 rebalance:
2076 /* Allocate without watermarks if the context allows */
2077 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2078 page = __alloc_pages_high_priority(gfp_mask, order,
2079 zonelist, high_zoneidx, nodemask,
2080 preferred_zone, migratetype);
2081 if (page)
2082 goto got_pg;
2083 }
2084
2085 /* Atomic allocations - we can't balance anything */
2086 if (!wait)
2087 goto nopage;
2088
2089 /* Avoid recursion of direct reclaim */
2090 if (current->flags & PF_MEMALLOC)
2091 goto nopage;
2092
2093 /* Avoid allocations with no watermarks from looping endlessly */
2094 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2095 goto nopage;
2096
2097 /*
2098 * Try direct compaction. The first pass is asynchronous. Subsequent
2099 * attempts after direct reclaim are synchronous
2100 */
2101 page = __alloc_pages_direct_compact(gfp_mask, order,
2102 zonelist, high_zoneidx,
2103 nodemask,
2104 alloc_flags, preferred_zone,
2105 migratetype, &did_some_progress,
2106 sync_migration);
2107 if (page)
2108 goto got_pg;
2109 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2110
2111 /* Try direct reclaim and then allocating */
2112 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2113 zonelist, high_zoneidx,
2114 nodemask,
2115 alloc_flags, preferred_zone,
2116 migratetype, &did_some_progress);
2117 if (page)
2118 goto got_pg;
2119
2120 /*
2121 * If we failed to make any progress reclaiming, then we are
2122 * running out of options and have to consider going OOM
2123 */
2124 if (!did_some_progress) {
2125 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2126 if (oom_killer_disabled)
2127 goto nopage;
2128 page = __alloc_pages_may_oom(gfp_mask, order,
2129 zonelist, high_zoneidx,
2130 nodemask, preferred_zone,
2131 migratetype);
2132 if (page)
2133 goto got_pg;
2134
2135 if (!(gfp_mask & __GFP_NOFAIL)) {
2136 /*
2137 * The oom killer is not called for high-order
2138 * allocations that may fail, so if no progress
2139 * is being made, there are no other options and
2140 * retrying is unlikely to help.
2141 */
2142 if (order > PAGE_ALLOC_COSTLY_ORDER)
2143 goto nopage;
2144 /*
2145 * The oom killer is not called for lowmem
2146 * allocations to prevent needlessly killing
2147 * innocent tasks.
2148 */
2149 if (high_zoneidx < ZONE_NORMAL)
2150 goto nopage;
2151 }
2152
2153 goto restart;
2154 }
2155 }
2156
2157 /* Check if we should retry the allocation */
2158 pages_reclaimed += did_some_progress;
2159 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2160 /* Wait for some write requests to complete then retry */
2161 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2162 goto rebalance;
2163 } else {
2164 /*
2165 * High-order allocations do not necessarily loop after
2166 * direct reclaim and reclaim/compaction depends on compaction
2167 * being called after reclaim so call directly if necessary
2168 */
2169 page = __alloc_pages_direct_compact(gfp_mask, order,
2170 zonelist, high_zoneidx,
2171 nodemask,
2172 alloc_flags, preferred_zone,
2173 migratetype, &did_some_progress,
2174 sync_migration);
2175 if (page)
2176 goto got_pg;
2177 }
2178
2179 nopage:
2180 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2181 unsigned int filter = SHOW_MEM_FILTER_NODES;
2182
2183 /*
2184 * This documents exceptions given to allocations in certain
2185 * contexts that are allowed to allocate outside current's set
2186 * of allowed nodes.
2187 */
2188 if (!(gfp_mask & __GFP_NOMEMALLOC))
2189 if (test_thread_flag(TIF_MEMDIE) ||
2190 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2191 filter &= ~SHOW_MEM_FILTER_NODES;
2192 if (in_interrupt() || !wait)
2193 filter &= ~SHOW_MEM_FILTER_NODES;
2194
2195 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2196 current->comm, order, gfp_mask);
2197 dump_stack();
2198 if (!should_suppress_show_mem())
2199 show_mem(filter);
2200 }
2201 return page;
2202 got_pg:
2203 if (kmemcheck_enabled)
2204 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2205 return page;
2206
2207 }
2208
2209 /*
2210 * This is the 'heart' of the zoned buddy allocator.
2211 */
2212 struct page *
2213 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2214 struct zonelist *zonelist, nodemask_t *nodemask)
2215 {
2216 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2217 struct zone *preferred_zone;
2218 struct page *page;
2219 int migratetype = allocflags_to_migratetype(gfp_mask);
2220
2221 gfp_mask &= gfp_allowed_mask;
2222
2223 lockdep_trace_alloc(gfp_mask);
2224
2225 might_sleep_if(gfp_mask & __GFP_WAIT);
2226
2227 if (should_fail_alloc_page(gfp_mask, order))
2228 return NULL;
2229
2230 /*
2231 * Check the zones suitable for the gfp_mask contain at least one
2232 * valid zone. It's possible to have an empty zonelist as a result
2233 * of GFP_THISNODE and a memoryless node
2234 */
2235 if (unlikely(!zonelist->_zonerefs->zone))
2236 return NULL;
2237
2238 get_mems_allowed();
2239 /* The preferred zone is used for statistics later */
2240 first_zones_zonelist(zonelist, high_zoneidx,
2241 nodemask ? : &cpuset_current_mems_allowed,
2242 &preferred_zone);
2243 if (!preferred_zone) {
2244 put_mems_allowed();
2245 return NULL;
2246 }
2247
2248 /* First allocation attempt */
2249 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2250 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2251 preferred_zone, migratetype);
2252 if (unlikely(!page))
2253 page = __alloc_pages_slowpath(gfp_mask, order,
2254 zonelist, high_zoneidx, nodemask,
2255 preferred_zone, migratetype);
2256 put_mems_allowed();
2257
2258 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2259 return page;
2260 }
2261 EXPORT_SYMBOL(__alloc_pages_nodemask);
2262
2263 /*
2264 * Common helper functions.
2265 */
2266 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2267 {
2268 struct page *page;
2269
2270 /*
2271 * __get_free_pages() returns a 32-bit address, which cannot represent
2272 * a highmem page
2273 */
2274 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2275
2276 page = alloc_pages(gfp_mask, order);
2277 if (!page)
2278 return 0;
2279 return (unsigned long) page_address(page);
2280 }
2281 EXPORT_SYMBOL(__get_free_pages);
2282
2283 unsigned long get_zeroed_page(gfp_t gfp_mask)
2284 {
2285 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2286 }
2287 EXPORT_SYMBOL(get_zeroed_page);
2288
2289 void __pagevec_free(struct pagevec *pvec)
2290 {
2291 int i = pagevec_count(pvec);
2292
2293 while (--i >= 0) {
2294 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2295 free_hot_cold_page(pvec->pages[i], pvec->cold);
2296 }
2297 }
2298
2299 void __free_pages(struct page *page, unsigned int order)
2300 {
2301 if (put_page_testzero(page)) {
2302 if (order == 0)
2303 free_hot_cold_page(page, 0);
2304 else
2305 __free_pages_ok(page, order);
2306 }
2307 }
2308
2309 EXPORT_SYMBOL(__free_pages);
2310
2311 void free_pages(unsigned long addr, unsigned int order)
2312 {
2313 if (addr != 0) {
2314 VM_BUG_ON(!virt_addr_valid((void *)addr));
2315 __free_pages(virt_to_page((void *)addr), order);
2316 }
2317 }
2318
2319 EXPORT_SYMBOL(free_pages);
2320
2321 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2322 {
2323 if (addr) {
2324 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2325 unsigned long used = addr + PAGE_ALIGN(size);
2326
2327 split_page(virt_to_page((void *)addr), order);
2328 while (used < alloc_end) {
2329 free_page(used);
2330 used += PAGE_SIZE;
2331 }
2332 }
2333 return (void *)addr;
2334 }
2335
2336 /**
2337 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2338 * @size: the number of bytes to allocate
2339 * @gfp_mask: GFP flags for the allocation
2340 *
2341 * This function is similar to alloc_pages(), except that it allocates the
2342 * minimum number of pages to satisfy the request. alloc_pages() can only
2343 * allocate memory in power-of-two pages.
2344 *
2345 * This function is also limited by MAX_ORDER.
2346 *
2347 * Memory allocated by this function must be released by free_pages_exact().
2348 */
2349 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2350 {
2351 unsigned int order = get_order(size);
2352 unsigned long addr;
2353
2354 addr = __get_free_pages(gfp_mask, order);
2355 return make_alloc_exact(addr, order, size);
2356 }
2357 EXPORT_SYMBOL(alloc_pages_exact);
2358
2359 /**
2360 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2361 * pages on a node.
2362 * @nid: the preferred node ID where memory should be allocated
2363 * @size: the number of bytes to allocate
2364 * @gfp_mask: GFP flags for the allocation
2365 *
2366 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2367 * back.
2368 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2369 * but is not exact.
2370 */
2371 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2372 {
2373 unsigned order = get_order(size);
2374 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2375 if (!p)
2376 return NULL;
2377 return make_alloc_exact((unsigned long)page_address(p), order, size);
2378 }
2379 EXPORT_SYMBOL(alloc_pages_exact_nid);
2380
2381 /**
2382 * free_pages_exact - release memory allocated via alloc_pages_exact()
2383 * @virt: the value returned by alloc_pages_exact.
2384 * @size: size of allocation, same value as passed to alloc_pages_exact().
2385 *
2386 * Release the memory allocated by a previous call to alloc_pages_exact.
2387 */
2388 void free_pages_exact(void *virt, size_t size)
2389 {
2390 unsigned long addr = (unsigned long)virt;
2391 unsigned long end = addr + PAGE_ALIGN(size);
2392
2393 while (addr < end) {
2394 free_page(addr);
2395 addr += PAGE_SIZE;
2396 }
2397 }
2398 EXPORT_SYMBOL(free_pages_exact);
2399
2400 static unsigned int nr_free_zone_pages(int offset)
2401 {
2402 struct zoneref *z;
2403 struct zone *zone;
2404
2405 /* Just pick one node, since fallback list is circular */
2406 unsigned int sum = 0;
2407
2408 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2409
2410 for_each_zone_zonelist(zone, z, zonelist, offset) {
2411 unsigned long size = zone->present_pages;
2412 unsigned long high = high_wmark_pages(zone);
2413 if (size > high)
2414 sum += size - high;
2415 }
2416
2417 return sum;
2418 }
2419
2420 /*
2421 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2422 */
2423 unsigned int nr_free_buffer_pages(void)
2424 {
2425 return nr_free_zone_pages(gfp_zone(GFP_USER));
2426 }
2427 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2428
2429 /*
2430 * Amount of free RAM allocatable within all zones
2431 */
2432 unsigned int nr_free_pagecache_pages(void)
2433 {
2434 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2435 }
2436
2437 static inline void show_node(struct zone *zone)
2438 {
2439 if (NUMA_BUILD)
2440 printk("Node %d ", zone_to_nid(zone));
2441 }
2442
2443 void si_meminfo(struct sysinfo *val)
2444 {
2445 val->totalram = totalram_pages;
2446 val->sharedram = 0;
2447 val->freeram = global_page_state(NR_FREE_PAGES);
2448 val->bufferram = nr_blockdev_pages();
2449 val->totalhigh = totalhigh_pages;
2450 val->freehigh = nr_free_highpages();
2451 val->mem_unit = PAGE_SIZE;
2452 }
2453
2454 EXPORT_SYMBOL(si_meminfo);
2455
2456 #ifdef CONFIG_NUMA
2457 void si_meminfo_node(struct sysinfo *val, int nid)
2458 {
2459 pg_data_t *pgdat = NODE_DATA(nid);
2460
2461 val->totalram = pgdat->node_present_pages;
2462 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2463 #ifdef CONFIG_HIGHMEM
2464 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2465 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2466 NR_FREE_PAGES);
2467 #else
2468 val->totalhigh = 0;
2469 val->freehigh = 0;
2470 #endif
2471 val->mem_unit = PAGE_SIZE;
2472 }
2473 #endif
2474
2475 /*
2476 * Determine whether the zone's node should be displayed or not, depending on
2477 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2478 */
2479 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2480 {
2481 bool ret = false;
2482
2483 if (!(flags & SHOW_MEM_FILTER_NODES))
2484 goto out;
2485
2486 get_mems_allowed();
2487 ret = !node_isset(zone->zone_pgdat->node_id,
2488 cpuset_current_mems_allowed);
2489 put_mems_allowed();
2490 out:
2491 return ret;
2492 }
2493
2494 #define K(x) ((x) << (PAGE_SHIFT-10))
2495
2496 /*
2497 * Show free area list (used inside shift_scroll-lock stuff)
2498 * We also calculate the percentage fragmentation. We do this by counting the
2499 * memory on each free list with the exception of the first item on the list.
2500 * Suppresses nodes that are not allowed by current's cpuset if
2501 * SHOW_MEM_FILTER_NODES is passed.
2502 */
2503 void __show_free_areas(unsigned int filter)
2504 {
2505 int cpu;
2506 struct zone *zone;
2507
2508 for_each_populated_zone(zone) {
2509 if (skip_free_areas_zone(filter, zone))
2510 continue;
2511 show_node(zone);
2512 printk("%s per-cpu:\n", zone->name);
2513
2514 for_each_online_cpu(cpu) {
2515 struct per_cpu_pageset *pageset;
2516
2517 pageset = per_cpu_ptr(zone->pageset, cpu);
2518
2519 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2520 cpu, pageset->pcp.high,
2521 pageset->pcp.batch, pageset->pcp.count);
2522 }
2523 }
2524
2525 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2526 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2527 " unevictable:%lu"
2528 " dirty:%lu writeback:%lu unstable:%lu\n"
2529 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2530 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2531 global_page_state(NR_ACTIVE_ANON),
2532 global_page_state(NR_INACTIVE_ANON),
2533 global_page_state(NR_ISOLATED_ANON),
2534 global_page_state(NR_ACTIVE_FILE),
2535 global_page_state(NR_INACTIVE_FILE),
2536 global_page_state(NR_ISOLATED_FILE),
2537 global_page_state(NR_UNEVICTABLE),
2538 global_page_state(NR_FILE_DIRTY),
2539 global_page_state(NR_WRITEBACK),
2540 global_page_state(NR_UNSTABLE_NFS),
2541 global_page_state(NR_FREE_PAGES),
2542 global_page_state(NR_SLAB_RECLAIMABLE),
2543 global_page_state(NR_SLAB_UNRECLAIMABLE),
2544 global_page_state(NR_FILE_MAPPED),
2545 global_page_state(NR_SHMEM),
2546 global_page_state(NR_PAGETABLE),
2547 global_page_state(NR_BOUNCE));
2548
2549 for_each_populated_zone(zone) {
2550 int i;
2551
2552 if (skip_free_areas_zone(filter, zone))
2553 continue;
2554 show_node(zone);
2555 printk("%s"
2556 " free:%lukB"
2557 " min:%lukB"
2558 " low:%lukB"
2559 " high:%lukB"
2560 " active_anon:%lukB"
2561 " inactive_anon:%lukB"
2562 " active_file:%lukB"
2563 " inactive_file:%lukB"
2564 " unevictable:%lukB"
2565 " isolated(anon):%lukB"
2566 " isolated(file):%lukB"
2567 " present:%lukB"
2568 " mlocked:%lukB"
2569 " dirty:%lukB"
2570 " writeback:%lukB"
2571 " mapped:%lukB"
2572 " shmem:%lukB"
2573 " slab_reclaimable:%lukB"
2574 " slab_unreclaimable:%lukB"
2575 " kernel_stack:%lukB"
2576 " pagetables:%lukB"
2577 " unstable:%lukB"
2578 " bounce:%lukB"
2579 " writeback_tmp:%lukB"
2580 " pages_scanned:%lu"
2581 " all_unreclaimable? %s"
2582 "\n",
2583 zone->name,
2584 K(zone_page_state(zone, NR_FREE_PAGES)),
2585 K(min_wmark_pages(zone)),
2586 K(low_wmark_pages(zone)),
2587 K(high_wmark_pages(zone)),
2588 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2589 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2590 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2591 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2592 K(zone_page_state(zone, NR_UNEVICTABLE)),
2593 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2594 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2595 K(zone->present_pages),
2596 K(zone_page_state(zone, NR_MLOCK)),
2597 K(zone_page_state(zone, NR_FILE_DIRTY)),
2598 K(zone_page_state(zone, NR_WRITEBACK)),
2599 K(zone_page_state(zone, NR_FILE_MAPPED)),
2600 K(zone_page_state(zone, NR_SHMEM)),
2601 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2602 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2603 zone_page_state(zone, NR_KERNEL_STACK) *
2604 THREAD_SIZE / 1024,
2605 K(zone_page_state(zone, NR_PAGETABLE)),
2606 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2607 K(zone_page_state(zone, NR_BOUNCE)),
2608 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2609 zone->pages_scanned,
2610 (zone->all_unreclaimable ? "yes" : "no")
2611 );
2612 printk("lowmem_reserve[]:");
2613 for (i = 0; i < MAX_NR_ZONES; i++)
2614 printk(" %lu", zone->lowmem_reserve[i]);
2615 printk("\n");
2616 }
2617
2618 for_each_populated_zone(zone) {
2619 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2620
2621 if (skip_free_areas_zone(filter, zone))
2622 continue;
2623 show_node(zone);
2624 printk("%s: ", zone->name);
2625
2626 spin_lock_irqsave(&zone->lock, flags);
2627 for (order = 0; order < MAX_ORDER; order++) {
2628 nr[order] = zone->free_area[order].nr_free;
2629 total += nr[order] << order;
2630 }
2631 spin_unlock_irqrestore(&zone->lock, flags);
2632 for (order = 0; order < MAX_ORDER; order++)
2633 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2634 printk("= %lukB\n", K(total));
2635 }
2636
2637 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2638
2639 show_swap_cache_info();
2640 }
2641
2642 void show_free_areas(void)
2643 {
2644 __show_free_areas(0);
2645 }
2646
2647 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2648 {
2649 zoneref->zone = zone;
2650 zoneref->zone_idx = zone_idx(zone);
2651 }
2652
2653 /*
2654 * Builds allocation fallback zone lists.
2655 *
2656 * Add all populated zones of a node to the zonelist.
2657 */
2658 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2659 int nr_zones, enum zone_type zone_type)
2660 {
2661 struct zone *zone;
2662
2663 BUG_ON(zone_type >= MAX_NR_ZONES);
2664 zone_type++;
2665
2666 do {
2667 zone_type--;
2668 zone = pgdat->node_zones + zone_type;
2669 if (populated_zone(zone)) {
2670 zoneref_set_zone(zone,
2671 &zonelist->_zonerefs[nr_zones++]);
2672 check_highest_zone(zone_type);
2673 }
2674
2675 } while (zone_type);
2676 return nr_zones;
2677 }
2678
2679
2680 /*
2681 * zonelist_order:
2682 * 0 = automatic detection of better ordering.
2683 * 1 = order by ([node] distance, -zonetype)
2684 * 2 = order by (-zonetype, [node] distance)
2685 *
2686 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2687 * the same zonelist. So only NUMA can configure this param.
2688 */
2689 #define ZONELIST_ORDER_DEFAULT 0
2690 #define ZONELIST_ORDER_NODE 1
2691 #define ZONELIST_ORDER_ZONE 2
2692
2693 /* zonelist order in the kernel.
2694 * set_zonelist_order() will set this to NODE or ZONE.
2695 */
2696 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2697 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2698
2699
2700 #ifdef CONFIG_NUMA
2701 /* The value user specified ....changed by config */
2702 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2703 /* string for sysctl */
2704 #define NUMA_ZONELIST_ORDER_LEN 16
2705 char numa_zonelist_order[16] = "default";
2706
2707 /*
2708 * interface for configure zonelist ordering.
2709 * command line option "numa_zonelist_order"
2710 * = "[dD]efault - default, automatic configuration.
2711 * = "[nN]ode - order by node locality, then by zone within node
2712 * = "[zZ]one - order by zone, then by locality within zone
2713 */
2714
2715 static int __parse_numa_zonelist_order(char *s)
2716 {
2717 if (*s == 'd' || *s == 'D') {
2718 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2719 } else if (*s == 'n' || *s == 'N') {
2720 user_zonelist_order = ZONELIST_ORDER_NODE;
2721 } else if (*s == 'z' || *s == 'Z') {
2722 user_zonelist_order = ZONELIST_ORDER_ZONE;
2723 } else {
2724 printk(KERN_WARNING
2725 "Ignoring invalid numa_zonelist_order value: "
2726 "%s\n", s);
2727 return -EINVAL;
2728 }
2729 return 0;
2730 }
2731
2732 static __init int setup_numa_zonelist_order(char *s)
2733 {
2734 int ret;
2735
2736 if (!s)
2737 return 0;
2738
2739 ret = __parse_numa_zonelist_order(s);
2740 if (ret == 0)
2741 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2742
2743 return ret;
2744 }
2745 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2746
2747 /*
2748 * sysctl handler for numa_zonelist_order
2749 */
2750 int numa_zonelist_order_handler(ctl_table *table, int write,
2751 void __user *buffer, size_t *length,
2752 loff_t *ppos)
2753 {
2754 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2755 int ret;
2756 static DEFINE_MUTEX(zl_order_mutex);
2757
2758 mutex_lock(&zl_order_mutex);
2759 if (write)
2760 strcpy(saved_string, (char*)table->data);
2761 ret = proc_dostring(table, write, buffer, length, ppos);
2762 if (ret)
2763 goto out;
2764 if (write) {
2765 int oldval = user_zonelist_order;
2766 if (__parse_numa_zonelist_order((char*)table->data)) {
2767 /*
2768 * bogus value. restore saved string
2769 */
2770 strncpy((char*)table->data, saved_string,
2771 NUMA_ZONELIST_ORDER_LEN);
2772 user_zonelist_order = oldval;
2773 } else if (oldval != user_zonelist_order) {
2774 mutex_lock(&zonelists_mutex);
2775 build_all_zonelists(NULL);
2776 mutex_unlock(&zonelists_mutex);
2777 }
2778 }
2779 out:
2780 mutex_unlock(&zl_order_mutex);
2781 return ret;
2782 }
2783
2784
2785 #define MAX_NODE_LOAD (nr_online_nodes)
2786 static int node_load[MAX_NUMNODES];
2787
2788 /**
2789 * find_next_best_node - find the next node that should appear in a given node's fallback list
2790 * @node: node whose fallback list we're appending
2791 * @used_node_mask: nodemask_t of already used nodes
2792 *
2793 * We use a number of factors to determine which is the next node that should
2794 * appear on a given node's fallback list. The node should not have appeared
2795 * already in @node's fallback list, and it should be the next closest node
2796 * according to the distance array (which contains arbitrary distance values
2797 * from each node to each node in the system), and should also prefer nodes
2798 * with no CPUs, since presumably they'll have very little allocation pressure
2799 * on them otherwise.
2800 * It returns -1 if no node is found.
2801 */
2802 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2803 {
2804 int n, val;
2805 int min_val = INT_MAX;
2806 int best_node = -1;
2807 const struct cpumask *tmp = cpumask_of_node(0);
2808
2809 /* Use the local node if we haven't already */
2810 if (!node_isset(node, *used_node_mask)) {
2811 node_set(node, *used_node_mask);
2812 return node;
2813 }
2814
2815 for_each_node_state(n, N_HIGH_MEMORY) {
2816
2817 /* Don't want a node to appear more than once */
2818 if (node_isset(n, *used_node_mask))
2819 continue;
2820
2821 /* Use the distance array to find the distance */
2822 val = node_distance(node, n);
2823
2824 /* Penalize nodes under us ("prefer the next node") */
2825 val += (n < node);
2826
2827 /* Give preference to headless and unused nodes */
2828 tmp = cpumask_of_node(n);
2829 if (!cpumask_empty(tmp))
2830 val += PENALTY_FOR_NODE_WITH_CPUS;
2831
2832 /* Slight preference for less loaded node */
2833 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2834 val += node_load[n];
2835
2836 if (val < min_val) {
2837 min_val = val;
2838 best_node = n;
2839 }
2840 }
2841
2842 if (best_node >= 0)
2843 node_set(best_node, *used_node_mask);
2844
2845 return best_node;
2846 }
2847
2848
2849 /*
2850 * Build zonelists ordered by node and zones within node.
2851 * This results in maximum locality--normal zone overflows into local
2852 * DMA zone, if any--but risks exhausting DMA zone.
2853 */
2854 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2855 {
2856 int j;
2857 struct zonelist *zonelist;
2858
2859 zonelist = &pgdat->node_zonelists[0];
2860 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2861 ;
2862 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2863 MAX_NR_ZONES - 1);
2864 zonelist->_zonerefs[j].zone = NULL;
2865 zonelist->_zonerefs[j].zone_idx = 0;
2866 }
2867
2868 /*
2869 * Build gfp_thisnode zonelists
2870 */
2871 static void build_thisnode_zonelists(pg_data_t *pgdat)
2872 {
2873 int j;
2874 struct zonelist *zonelist;
2875
2876 zonelist = &pgdat->node_zonelists[1];
2877 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2878 zonelist->_zonerefs[j].zone = NULL;
2879 zonelist->_zonerefs[j].zone_idx = 0;
2880 }
2881
2882 /*
2883 * Build zonelists ordered by zone and nodes within zones.
2884 * This results in conserving DMA zone[s] until all Normal memory is
2885 * exhausted, but results in overflowing to remote node while memory
2886 * may still exist in local DMA zone.
2887 */
2888 static int node_order[MAX_NUMNODES];
2889
2890 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2891 {
2892 int pos, j, node;
2893 int zone_type; /* needs to be signed */
2894 struct zone *z;
2895 struct zonelist *zonelist;
2896
2897 zonelist = &pgdat->node_zonelists[0];
2898 pos = 0;
2899 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2900 for (j = 0; j < nr_nodes; j++) {
2901 node = node_order[j];
2902 z = &NODE_DATA(node)->node_zones[zone_type];
2903 if (populated_zone(z)) {
2904 zoneref_set_zone(z,
2905 &zonelist->_zonerefs[pos++]);
2906 check_highest_zone(zone_type);
2907 }
2908 }
2909 }
2910 zonelist->_zonerefs[pos].zone = NULL;
2911 zonelist->_zonerefs[pos].zone_idx = 0;
2912 }
2913
2914 static int default_zonelist_order(void)
2915 {
2916 int nid, zone_type;
2917 unsigned long low_kmem_size,total_size;
2918 struct zone *z;
2919 int average_size;
2920 /*
2921 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2922 * If they are really small and used heavily, the system can fall
2923 * into OOM very easily.
2924 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2925 */
2926 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2927 low_kmem_size = 0;
2928 total_size = 0;
2929 for_each_online_node(nid) {
2930 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2931 z = &NODE_DATA(nid)->node_zones[zone_type];
2932 if (populated_zone(z)) {
2933 if (zone_type < ZONE_NORMAL)
2934 low_kmem_size += z->present_pages;
2935 total_size += z->present_pages;
2936 } else if (zone_type == ZONE_NORMAL) {
2937 /*
2938 * If any node has only lowmem, then node order
2939 * is preferred to allow kernel allocations
2940 * locally; otherwise, they can easily infringe
2941 * on other nodes when there is an abundance of
2942 * lowmem available to allocate from.
2943 */
2944 return ZONELIST_ORDER_NODE;
2945 }
2946 }
2947 }
2948 if (!low_kmem_size || /* there are no DMA area. */
2949 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2950 return ZONELIST_ORDER_NODE;
2951 /*
2952 * look into each node's config.
2953 * If there is a node whose DMA/DMA32 memory is very big area on
2954 * local memory, NODE_ORDER may be suitable.
2955 */
2956 average_size = total_size /
2957 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2958 for_each_online_node(nid) {
2959 low_kmem_size = 0;
2960 total_size = 0;
2961 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2962 z = &NODE_DATA(nid)->node_zones[zone_type];
2963 if (populated_zone(z)) {
2964 if (zone_type < ZONE_NORMAL)
2965 low_kmem_size += z->present_pages;
2966 total_size += z->present_pages;
2967 }
2968 }
2969 if (low_kmem_size &&
2970 total_size > average_size && /* ignore small node */
2971 low_kmem_size > total_size * 70/100)
2972 return ZONELIST_ORDER_NODE;
2973 }
2974 return ZONELIST_ORDER_ZONE;
2975 }
2976
2977 static void set_zonelist_order(void)
2978 {
2979 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2980 current_zonelist_order = default_zonelist_order();
2981 else
2982 current_zonelist_order = user_zonelist_order;
2983 }
2984
2985 static void build_zonelists(pg_data_t *pgdat)
2986 {
2987 int j, node, load;
2988 enum zone_type i;
2989 nodemask_t used_mask;
2990 int local_node, prev_node;
2991 struct zonelist *zonelist;
2992 int order = current_zonelist_order;
2993
2994 /* initialize zonelists */
2995 for (i = 0; i < MAX_ZONELISTS; i++) {
2996 zonelist = pgdat->node_zonelists + i;
2997 zonelist->_zonerefs[0].zone = NULL;
2998 zonelist->_zonerefs[0].zone_idx = 0;
2999 }
3000
3001 /* NUMA-aware ordering of nodes */
3002 local_node = pgdat->node_id;
3003 load = nr_online_nodes;
3004 prev_node = local_node;
3005 nodes_clear(used_mask);
3006
3007 memset(node_order, 0, sizeof(node_order));
3008 j = 0;
3009
3010 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3011 int distance = node_distance(local_node, node);
3012
3013 /*
3014 * If another node is sufficiently far away then it is better
3015 * to reclaim pages in a zone before going off node.
3016 */
3017 if (distance > RECLAIM_DISTANCE)
3018 zone_reclaim_mode = 1;
3019
3020 /*
3021 * We don't want to pressure a particular node.
3022 * So adding penalty to the first node in same
3023 * distance group to make it round-robin.
3024 */
3025 if (distance != node_distance(local_node, prev_node))
3026 node_load[node] = load;
3027
3028 prev_node = node;
3029 load--;
3030 if (order == ZONELIST_ORDER_NODE)
3031 build_zonelists_in_node_order(pgdat, node);
3032 else
3033 node_order[j++] = node; /* remember order */
3034 }
3035
3036 if (order == ZONELIST_ORDER_ZONE) {
3037 /* calculate node order -- i.e., DMA last! */
3038 build_zonelists_in_zone_order(pgdat, j);
3039 }
3040
3041 build_thisnode_zonelists(pgdat);
3042 }
3043
3044 /* Construct the zonelist performance cache - see further mmzone.h */
3045 static void build_zonelist_cache(pg_data_t *pgdat)
3046 {
3047 struct zonelist *zonelist;
3048 struct zonelist_cache *zlc;
3049 struct zoneref *z;
3050
3051 zonelist = &pgdat->node_zonelists[0];
3052 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3053 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3054 for (z = zonelist->_zonerefs; z->zone; z++)
3055 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3056 }
3057
3058 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3059 /*
3060 * Return node id of node used for "local" allocations.
3061 * I.e., first node id of first zone in arg node's generic zonelist.
3062 * Used for initializing percpu 'numa_mem', which is used primarily
3063 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3064 */
3065 int local_memory_node(int node)
3066 {
3067 struct zone *zone;
3068
3069 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3070 gfp_zone(GFP_KERNEL),
3071 NULL,
3072 &zone);
3073 return zone->node;
3074 }
3075 #endif
3076
3077 #else /* CONFIG_NUMA */
3078
3079 static void set_zonelist_order(void)
3080 {
3081 current_zonelist_order = ZONELIST_ORDER_ZONE;
3082 }
3083
3084 static void build_zonelists(pg_data_t *pgdat)
3085 {
3086 int node, local_node;
3087 enum zone_type j;
3088 struct zonelist *zonelist;
3089
3090 local_node = pgdat->node_id;
3091
3092 zonelist = &pgdat->node_zonelists[0];
3093 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3094
3095 /*
3096 * Now we build the zonelist so that it contains the zones
3097 * of all the other nodes.
3098 * We don't want to pressure a particular node, so when
3099 * building the zones for node N, we make sure that the
3100 * zones coming right after the local ones are those from
3101 * node N+1 (modulo N)
3102 */
3103 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3104 if (!node_online(node))
3105 continue;
3106 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3107 MAX_NR_ZONES - 1);
3108 }
3109 for (node = 0; node < local_node; node++) {
3110 if (!node_online(node))
3111 continue;
3112 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3113 MAX_NR_ZONES - 1);
3114 }
3115
3116 zonelist->_zonerefs[j].zone = NULL;
3117 zonelist->_zonerefs[j].zone_idx = 0;
3118 }
3119
3120 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3121 static void build_zonelist_cache(pg_data_t *pgdat)
3122 {
3123 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3124 }
3125
3126 #endif /* CONFIG_NUMA */
3127
3128 /*
3129 * Boot pageset table. One per cpu which is going to be used for all
3130 * zones and all nodes. The parameters will be set in such a way
3131 * that an item put on a list will immediately be handed over to
3132 * the buddy list. This is safe since pageset manipulation is done
3133 * with interrupts disabled.
3134 *
3135 * The boot_pagesets must be kept even after bootup is complete for
3136 * unused processors and/or zones. They do play a role for bootstrapping
3137 * hotplugged processors.
3138 *
3139 * zoneinfo_show() and maybe other functions do
3140 * not check if the processor is online before following the pageset pointer.
3141 * Other parts of the kernel may not check if the zone is available.
3142 */
3143 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3144 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3145 static void setup_zone_pageset(struct zone *zone);
3146
3147 /*
3148 * Global mutex to protect against size modification of zonelists
3149 * as well as to serialize pageset setup for the new populated zone.
3150 */
3151 DEFINE_MUTEX(zonelists_mutex);
3152
3153 /* return values int ....just for stop_machine() */
3154 static __init_refok int __build_all_zonelists(void *data)
3155 {
3156 int nid;
3157 int cpu;
3158
3159 #ifdef CONFIG_NUMA
3160 memset(node_load, 0, sizeof(node_load));
3161 #endif
3162 for_each_online_node(nid) {
3163 pg_data_t *pgdat = NODE_DATA(nid);
3164
3165 build_zonelists(pgdat);
3166 build_zonelist_cache(pgdat);
3167 }
3168
3169 /*
3170 * Initialize the boot_pagesets that are going to be used
3171 * for bootstrapping processors. The real pagesets for
3172 * each zone will be allocated later when the per cpu
3173 * allocator is available.
3174 *
3175 * boot_pagesets are used also for bootstrapping offline
3176 * cpus if the system is already booted because the pagesets
3177 * are needed to initialize allocators on a specific cpu too.
3178 * F.e. the percpu allocator needs the page allocator which
3179 * needs the percpu allocator in order to allocate its pagesets
3180 * (a chicken-egg dilemma).
3181 */
3182 for_each_possible_cpu(cpu) {
3183 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3184
3185 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3186 /*
3187 * We now know the "local memory node" for each node--
3188 * i.e., the node of the first zone in the generic zonelist.
3189 * Set up numa_mem percpu variable for on-line cpus. During
3190 * boot, only the boot cpu should be on-line; we'll init the
3191 * secondary cpus' numa_mem as they come on-line. During
3192 * node/memory hotplug, we'll fixup all on-line cpus.
3193 */
3194 if (cpu_online(cpu))
3195 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3196 #endif
3197 }
3198
3199 return 0;
3200 }
3201
3202 /*
3203 * Called with zonelists_mutex held always
3204 * unless system_state == SYSTEM_BOOTING.
3205 */
3206 void __ref build_all_zonelists(void *data)
3207 {
3208 set_zonelist_order();
3209
3210 if (system_state == SYSTEM_BOOTING) {
3211 __build_all_zonelists(NULL);
3212 mminit_verify_zonelist();
3213 cpuset_init_current_mems_allowed();
3214 } else {
3215 /* we have to stop all cpus to guarantee there is no user
3216 of zonelist */
3217 #ifdef CONFIG_MEMORY_HOTPLUG
3218 if (data)
3219 setup_zone_pageset((struct zone *)data);
3220 #endif
3221 stop_machine(__build_all_zonelists, NULL, NULL);
3222 /* cpuset refresh routine should be here */
3223 }
3224 vm_total_pages = nr_free_pagecache_pages();
3225 /*
3226 * Disable grouping by mobility if the number of pages in the
3227 * system is too low to allow the mechanism to work. It would be
3228 * more accurate, but expensive to check per-zone. This check is
3229 * made on memory-hotadd so a system can start with mobility
3230 * disabled and enable it later
3231 */
3232 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3233 page_group_by_mobility_disabled = 1;
3234 else
3235 page_group_by_mobility_disabled = 0;
3236
3237 printk("Built %i zonelists in %s order, mobility grouping %s. "
3238 "Total pages: %ld\n",
3239 nr_online_nodes,
3240 zonelist_order_name[current_zonelist_order],
3241 page_group_by_mobility_disabled ? "off" : "on",
3242 vm_total_pages);
3243 #ifdef CONFIG_NUMA
3244 printk("Policy zone: %s\n", zone_names[policy_zone]);
3245 #endif
3246 }
3247
3248 /*
3249 * Helper functions to size the waitqueue hash table.
3250 * Essentially these want to choose hash table sizes sufficiently
3251 * large so that collisions trying to wait on pages are rare.
3252 * But in fact, the number of active page waitqueues on typical
3253 * systems is ridiculously low, less than 200. So this is even
3254 * conservative, even though it seems large.
3255 *
3256 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3257 * waitqueues, i.e. the size of the waitq table given the number of pages.
3258 */
3259 #define PAGES_PER_WAITQUEUE 256
3260
3261 #ifndef CONFIG_MEMORY_HOTPLUG
3262 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3263 {
3264 unsigned long size = 1;
3265
3266 pages /= PAGES_PER_WAITQUEUE;
3267
3268 while (size < pages)
3269 size <<= 1;
3270
3271 /*
3272 * Once we have dozens or even hundreds of threads sleeping
3273 * on IO we've got bigger problems than wait queue collision.
3274 * Limit the size of the wait table to a reasonable size.
3275 */
3276 size = min(size, 4096UL);
3277
3278 return max(size, 4UL);
3279 }
3280 #else
3281 /*
3282 * A zone's size might be changed by hot-add, so it is not possible to determine
3283 * a suitable size for its wait_table. So we use the maximum size now.
3284 *
3285 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3286 *
3287 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3288 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3289 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3290 *
3291 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3292 * or more by the traditional way. (See above). It equals:
3293 *
3294 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3295 * ia64(16K page size) : = ( 8G + 4M)byte.
3296 * powerpc (64K page size) : = (32G +16M)byte.
3297 */
3298 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3299 {
3300 return 4096UL;
3301 }
3302 #endif
3303
3304 /*
3305 * This is an integer logarithm so that shifts can be used later
3306 * to extract the more random high bits from the multiplicative
3307 * hash function before the remainder is taken.
3308 */
3309 static inline unsigned long wait_table_bits(unsigned long size)
3310 {
3311 return ffz(~size);
3312 }
3313
3314 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3315
3316 /*
3317 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3318 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3319 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3320 * higher will lead to a bigger reserve which will get freed as contiguous
3321 * blocks as reclaim kicks in
3322 */
3323 static void setup_zone_migrate_reserve(struct zone *zone)
3324 {
3325 unsigned long start_pfn, pfn, end_pfn;
3326 struct page *page;
3327 unsigned long block_migratetype;
3328 int reserve;
3329
3330 /* Get the start pfn, end pfn and the number of blocks to reserve */
3331 start_pfn = zone->zone_start_pfn;
3332 end_pfn = start_pfn + zone->spanned_pages;
3333 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3334 pageblock_order;
3335
3336 /*
3337 * Reserve blocks are generally in place to help high-order atomic
3338 * allocations that are short-lived. A min_free_kbytes value that
3339 * would result in more than 2 reserve blocks for atomic allocations
3340 * is assumed to be in place to help anti-fragmentation for the
3341 * future allocation of hugepages at runtime.
3342 */
3343 reserve = min(2, reserve);
3344
3345 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3346 if (!pfn_valid(pfn))
3347 continue;
3348 page = pfn_to_page(pfn);
3349
3350 /* Watch out for overlapping nodes */
3351 if (page_to_nid(page) != zone_to_nid(zone))
3352 continue;
3353
3354 /* Blocks with reserved pages will never free, skip them. */
3355 if (PageReserved(page))
3356 continue;
3357
3358 block_migratetype = get_pageblock_migratetype(page);
3359
3360 /* If this block is reserved, account for it */
3361 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3362 reserve--;
3363 continue;
3364 }
3365
3366 /* Suitable for reserving if this block is movable */
3367 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3368 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3369 move_freepages_block(zone, page, MIGRATE_RESERVE);
3370 reserve--;
3371 continue;
3372 }
3373
3374 /*
3375 * If the reserve is met and this is a previous reserved block,
3376 * take it back
3377 */
3378 if (block_migratetype == MIGRATE_RESERVE) {
3379 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3380 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3381 }
3382 }
3383 }
3384
3385 /*
3386 * Initially all pages are reserved - free ones are freed
3387 * up by free_all_bootmem() once the early boot process is
3388 * done. Non-atomic initialization, single-pass.
3389 */
3390 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3391 unsigned long start_pfn, enum memmap_context context)
3392 {
3393 struct page *page;
3394 unsigned long end_pfn = start_pfn + size;
3395 unsigned long pfn;
3396 struct zone *z;
3397
3398 if (highest_memmap_pfn < end_pfn - 1)
3399 highest_memmap_pfn = end_pfn - 1;
3400
3401 z = &NODE_DATA(nid)->node_zones[zone];
3402 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3403 /*
3404 * There can be holes in boot-time mem_map[]s
3405 * handed to this function. They do not
3406 * exist on hotplugged memory.
3407 */
3408 if (context == MEMMAP_EARLY) {
3409 if (!early_pfn_valid(pfn))
3410 continue;
3411 if (!early_pfn_in_nid(pfn, nid))
3412 continue;
3413 }
3414 page = pfn_to_page(pfn);
3415 set_page_links(page, zone, nid, pfn);
3416 mminit_verify_page_links(page, zone, nid, pfn);
3417 init_page_count(page);
3418 reset_page_mapcount(page);
3419 SetPageReserved(page);
3420 /*
3421 * Mark the block movable so that blocks are reserved for
3422 * movable at startup. This will force kernel allocations
3423 * to reserve their blocks rather than leaking throughout
3424 * the address space during boot when many long-lived
3425 * kernel allocations are made. Later some blocks near
3426 * the start are marked MIGRATE_RESERVE by
3427 * setup_zone_migrate_reserve()
3428 *
3429 * bitmap is created for zone's valid pfn range. but memmap
3430 * can be created for invalid pages (for alignment)
3431 * check here not to call set_pageblock_migratetype() against
3432 * pfn out of zone.
3433 */
3434 if ((z->zone_start_pfn <= pfn)
3435 && (pfn < z->zone_start_pfn + z->spanned_pages)
3436 && !(pfn & (pageblock_nr_pages - 1)))
3437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3438
3439 INIT_LIST_HEAD(&page->lru);
3440 #ifdef WANT_PAGE_VIRTUAL
3441 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3442 if (!is_highmem_idx(zone))
3443 set_page_address(page, __va(pfn << PAGE_SHIFT));
3444 #endif
3445 }
3446 }
3447
3448 static void __meminit zone_init_free_lists(struct zone *zone)
3449 {
3450 int order, t;
3451 for_each_migratetype_order(order, t) {
3452 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3453 zone->free_area[order].nr_free = 0;
3454 }
3455 }
3456
3457 #ifndef __HAVE_ARCH_MEMMAP_INIT
3458 #define memmap_init(size, nid, zone, start_pfn) \
3459 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3460 #endif
3461
3462 static int zone_batchsize(struct zone *zone)
3463 {
3464 #ifdef CONFIG_MMU
3465 int batch;
3466
3467 /*
3468 * The per-cpu-pages pools are set to around 1000th of the
3469 * size of the zone. But no more than 1/2 of a meg.
3470 *
3471 * OK, so we don't know how big the cache is. So guess.
3472 */
3473 batch = zone->present_pages / 1024;
3474 if (batch * PAGE_SIZE > 512 * 1024)
3475 batch = (512 * 1024) / PAGE_SIZE;
3476 batch /= 4; /* We effectively *= 4 below */
3477 if (batch < 1)
3478 batch = 1;
3479
3480 /*
3481 * Clamp the batch to a 2^n - 1 value. Having a power
3482 * of 2 value was found to be more likely to have
3483 * suboptimal cache aliasing properties in some cases.
3484 *
3485 * For example if 2 tasks are alternately allocating
3486 * batches of pages, one task can end up with a lot
3487 * of pages of one half of the possible page colors
3488 * and the other with pages of the other colors.
3489 */
3490 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3491
3492 return batch;
3493
3494 #else
3495 /* The deferral and batching of frees should be suppressed under NOMMU
3496 * conditions.
3497 *
3498 * The problem is that NOMMU needs to be able to allocate large chunks
3499 * of contiguous memory as there's no hardware page translation to
3500 * assemble apparent contiguous memory from discontiguous pages.
3501 *
3502 * Queueing large contiguous runs of pages for batching, however,
3503 * causes the pages to actually be freed in smaller chunks. As there
3504 * can be a significant delay between the individual batches being
3505 * recycled, this leads to the once large chunks of space being
3506 * fragmented and becoming unavailable for high-order allocations.
3507 */
3508 return 0;
3509 #endif
3510 }
3511
3512 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3513 {
3514 struct per_cpu_pages *pcp;
3515 int migratetype;
3516
3517 memset(p, 0, sizeof(*p));
3518
3519 pcp = &p->pcp;
3520 pcp->count = 0;
3521 pcp->high = 6 * batch;
3522 pcp->batch = max(1UL, 1 * batch);
3523 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3524 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3525 }
3526
3527 /*
3528 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3529 * to the value high for the pageset p.
3530 */
3531
3532 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3533 unsigned long high)
3534 {
3535 struct per_cpu_pages *pcp;
3536
3537 pcp = &p->pcp;
3538 pcp->high = high;
3539 pcp->batch = max(1UL, high/4);
3540 if ((high/4) > (PAGE_SHIFT * 8))
3541 pcp->batch = PAGE_SHIFT * 8;
3542 }
3543
3544 static void setup_zone_pageset(struct zone *zone)
3545 {
3546 int cpu;
3547
3548 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3549
3550 for_each_possible_cpu(cpu) {
3551 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3552
3553 setup_pageset(pcp, zone_batchsize(zone));
3554
3555 if (percpu_pagelist_fraction)
3556 setup_pagelist_highmark(pcp,
3557 (zone->present_pages /
3558 percpu_pagelist_fraction));
3559 }
3560 }
3561
3562 /*
3563 * Allocate per cpu pagesets and initialize them.
3564 * Before this call only boot pagesets were available.
3565 */
3566 void __init setup_per_cpu_pageset(void)
3567 {
3568 struct zone *zone;
3569
3570 for_each_populated_zone(zone)
3571 setup_zone_pageset(zone);
3572 }
3573
3574 static noinline __init_refok
3575 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3576 {
3577 int i;
3578 struct pglist_data *pgdat = zone->zone_pgdat;
3579 size_t alloc_size;
3580
3581 /*
3582 * The per-page waitqueue mechanism uses hashed waitqueues
3583 * per zone.
3584 */
3585 zone->wait_table_hash_nr_entries =
3586 wait_table_hash_nr_entries(zone_size_pages);
3587 zone->wait_table_bits =
3588 wait_table_bits(zone->wait_table_hash_nr_entries);
3589 alloc_size = zone->wait_table_hash_nr_entries
3590 * sizeof(wait_queue_head_t);
3591
3592 if (!slab_is_available()) {
3593 zone->wait_table = (wait_queue_head_t *)
3594 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3595 } else {
3596 /*
3597 * This case means that a zone whose size was 0 gets new memory
3598 * via memory hot-add.
3599 * But it may be the case that a new node was hot-added. In
3600 * this case vmalloc() will not be able to use this new node's
3601 * memory - this wait_table must be initialized to use this new
3602 * node itself as well.
3603 * To use this new node's memory, further consideration will be
3604 * necessary.
3605 */
3606 zone->wait_table = vmalloc(alloc_size);
3607 }
3608 if (!zone->wait_table)
3609 return -ENOMEM;
3610
3611 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3612 init_waitqueue_head(zone->wait_table + i);
3613
3614 return 0;
3615 }
3616
3617 static int __zone_pcp_update(void *data)
3618 {
3619 struct zone *zone = data;
3620 int cpu;
3621 unsigned long batch = zone_batchsize(zone), flags;
3622
3623 for_each_possible_cpu(cpu) {
3624 struct per_cpu_pageset *pset;
3625 struct per_cpu_pages *pcp;
3626
3627 pset = per_cpu_ptr(zone->pageset, cpu);
3628 pcp = &pset->pcp;
3629
3630 local_irq_save(flags);
3631 free_pcppages_bulk(zone, pcp->count, pcp);
3632 setup_pageset(pset, batch);
3633 local_irq_restore(flags);
3634 }
3635 return 0;
3636 }
3637
3638 void zone_pcp_update(struct zone *zone)
3639 {
3640 stop_machine(__zone_pcp_update, zone, NULL);
3641 }
3642
3643 static __meminit void zone_pcp_init(struct zone *zone)
3644 {
3645 /*
3646 * per cpu subsystem is not up at this point. The following code
3647 * relies on the ability of the linker to provide the
3648 * offset of a (static) per cpu variable into the per cpu area.
3649 */
3650 zone->pageset = &boot_pageset;
3651
3652 if (zone->present_pages)
3653 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3654 zone->name, zone->present_pages,
3655 zone_batchsize(zone));
3656 }
3657
3658 __meminit int init_currently_empty_zone(struct zone *zone,
3659 unsigned long zone_start_pfn,
3660 unsigned long size,
3661 enum memmap_context context)
3662 {
3663 struct pglist_data *pgdat = zone->zone_pgdat;
3664 int ret;
3665 ret = zone_wait_table_init(zone, size);
3666 if (ret)
3667 return ret;
3668 pgdat->nr_zones = zone_idx(zone) + 1;
3669
3670 zone->zone_start_pfn = zone_start_pfn;
3671
3672 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3673 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3674 pgdat->node_id,
3675 (unsigned long)zone_idx(zone),
3676 zone_start_pfn, (zone_start_pfn + size));
3677
3678 zone_init_free_lists(zone);
3679
3680 return 0;
3681 }
3682
3683 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3684 /*
3685 * Basic iterator support. Return the first range of PFNs for a node
3686 * Note: nid == MAX_NUMNODES returns first region regardless of node
3687 */
3688 static int __meminit first_active_region_index_in_nid(int nid)
3689 {
3690 int i;
3691
3692 for (i = 0; i < nr_nodemap_entries; i++)
3693 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3694 return i;
3695
3696 return -1;
3697 }
3698
3699 /*
3700 * Basic iterator support. Return the next active range of PFNs for a node
3701 * Note: nid == MAX_NUMNODES returns next region regardless of node
3702 */
3703 static int __meminit next_active_region_index_in_nid(int index, int nid)
3704 {
3705 for (index = index + 1; index < nr_nodemap_entries; index++)
3706 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3707 return index;
3708
3709 return -1;
3710 }
3711
3712 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3713 /*
3714 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3715 * Architectures may implement their own version but if add_active_range()
3716 * was used and there are no special requirements, this is a convenient
3717 * alternative
3718 */
3719 int __meminit __early_pfn_to_nid(unsigned long pfn)
3720 {
3721 int i;
3722
3723 for (i = 0; i < nr_nodemap_entries; i++) {
3724 unsigned long start_pfn = early_node_map[i].start_pfn;
3725 unsigned long end_pfn = early_node_map[i].end_pfn;
3726
3727 if (start_pfn <= pfn && pfn < end_pfn)
3728 return early_node_map[i].nid;
3729 }
3730 /* This is a memory hole */
3731 return -1;
3732 }
3733 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3734
3735 int __meminit early_pfn_to_nid(unsigned long pfn)
3736 {
3737 int nid;
3738
3739 nid = __early_pfn_to_nid(pfn);
3740 if (nid >= 0)
3741 return nid;
3742 /* just returns 0 */
3743 return 0;
3744 }
3745
3746 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3747 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3748 {
3749 int nid;
3750
3751 nid = __early_pfn_to_nid(pfn);
3752 if (nid >= 0 && nid != node)
3753 return false;
3754 return true;
3755 }
3756 #endif
3757
3758 /* Basic iterator support to walk early_node_map[] */
3759 #define for_each_active_range_index_in_nid(i, nid) \
3760 for (i = first_active_region_index_in_nid(nid); i != -1; \
3761 i = next_active_region_index_in_nid(i, nid))
3762
3763 /**
3764 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3765 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3766 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3767 *
3768 * If an architecture guarantees that all ranges registered with
3769 * add_active_ranges() contain no holes and may be freed, this
3770 * this function may be used instead of calling free_bootmem() manually.
3771 */
3772 void __init free_bootmem_with_active_regions(int nid,
3773 unsigned long max_low_pfn)
3774 {
3775 int i;
3776
3777 for_each_active_range_index_in_nid(i, nid) {
3778 unsigned long size_pages = 0;
3779 unsigned long end_pfn = early_node_map[i].end_pfn;
3780
3781 if (early_node_map[i].start_pfn >= max_low_pfn)
3782 continue;
3783
3784 if (end_pfn > max_low_pfn)
3785 end_pfn = max_low_pfn;
3786
3787 size_pages = end_pfn - early_node_map[i].start_pfn;
3788 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3789 PFN_PHYS(early_node_map[i].start_pfn),
3790 size_pages << PAGE_SHIFT);
3791 }
3792 }
3793
3794 #ifdef CONFIG_HAVE_MEMBLOCK
3795 /*
3796 * Basic iterator support. Return the last range of PFNs for a node
3797 * Note: nid == MAX_NUMNODES returns last region regardless of node
3798 */
3799 static int __meminit last_active_region_index_in_nid(int nid)
3800 {
3801 int i;
3802
3803 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3804 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3805 return i;
3806
3807 return -1;
3808 }
3809
3810 /*
3811 * Basic iterator support. Return the previous active range of PFNs for a node
3812 * Note: nid == MAX_NUMNODES returns next region regardless of node
3813 */
3814 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3815 {
3816 for (index = index - 1; index >= 0; index--)
3817 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3818 return index;
3819
3820 return -1;
3821 }
3822
3823 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3824 for (i = last_active_region_index_in_nid(nid); i != -1; \
3825 i = previous_active_region_index_in_nid(i, nid))
3826
3827 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3828 u64 goal, u64 limit)
3829 {
3830 int i;
3831
3832 /* Need to go over early_node_map to find out good range for node */
3833 for_each_active_range_index_in_nid_reverse(i, nid) {
3834 u64 addr;
3835 u64 ei_start, ei_last;
3836 u64 final_start, final_end;
3837
3838 ei_last = early_node_map[i].end_pfn;
3839 ei_last <<= PAGE_SHIFT;
3840 ei_start = early_node_map[i].start_pfn;
3841 ei_start <<= PAGE_SHIFT;
3842
3843 final_start = max(ei_start, goal);
3844 final_end = min(ei_last, limit);
3845
3846 if (final_start >= final_end)
3847 continue;
3848
3849 addr = memblock_find_in_range(final_start, final_end, size, align);
3850
3851 if (addr == MEMBLOCK_ERROR)
3852 continue;
3853
3854 return addr;
3855 }
3856
3857 return MEMBLOCK_ERROR;
3858 }
3859 #endif
3860
3861 int __init add_from_early_node_map(struct range *range, int az,
3862 int nr_range, int nid)
3863 {
3864 int i;
3865 u64 start, end;
3866
3867 /* need to go over early_node_map to find out good range for node */
3868 for_each_active_range_index_in_nid(i, nid) {
3869 start = early_node_map[i].start_pfn;
3870 end = early_node_map[i].end_pfn;
3871 nr_range = add_range(range, az, nr_range, start, end);
3872 }
3873 return nr_range;
3874 }
3875
3876 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3877 {
3878 int i;
3879 int ret;
3880
3881 for_each_active_range_index_in_nid(i, nid) {
3882 ret = work_fn(early_node_map[i].start_pfn,
3883 early_node_map[i].end_pfn, data);
3884 if (ret)
3885 break;
3886 }
3887 }
3888 /**
3889 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3890 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3891 *
3892 * If an architecture guarantees that all ranges registered with
3893 * add_active_ranges() contain no holes and may be freed, this
3894 * function may be used instead of calling memory_present() manually.
3895 */
3896 void __init sparse_memory_present_with_active_regions(int nid)
3897 {
3898 int i;
3899
3900 for_each_active_range_index_in_nid(i, nid)
3901 memory_present(early_node_map[i].nid,
3902 early_node_map[i].start_pfn,
3903 early_node_map[i].end_pfn);
3904 }
3905
3906 /**
3907 * get_pfn_range_for_nid - Return the start and end page frames for a node
3908 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3909 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3910 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3911 *
3912 * It returns the start and end page frame of a node based on information
3913 * provided by an arch calling add_active_range(). If called for a node
3914 * with no available memory, a warning is printed and the start and end
3915 * PFNs will be 0.
3916 */
3917 void __meminit get_pfn_range_for_nid(unsigned int nid,
3918 unsigned long *start_pfn, unsigned long *end_pfn)
3919 {
3920 int i;
3921 *start_pfn = -1UL;
3922 *end_pfn = 0;
3923
3924 for_each_active_range_index_in_nid(i, nid) {
3925 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3926 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3927 }
3928
3929 if (*start_pfn == -1UL)
3930 *start_pfn = 0;
3931 }
3932
3933 /*
3934 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3935 * assumption is made that zones within a node are ordered in monotonic
3936 * increasing memory addresses so that the "highest" populated zone is used
3937 */
3938 static void __init find_usable_zone_for_movable(void)
3939 {
3940 int zone_index;
3941 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3942 if (zone_index == ZONE_MOVABLE)
3943 continue;
3944
3945 if (arch_zone_highest_possible_pfn[zone_index] >
3946 arch_zone_lowest_possible_pfn[zone_index])
3947 break;
3948 }
3949
3950 VM_BUG_ON(zone_index == -1);
3951 movable_zone = zone_index;
3952 }
3953
3954 /*
3955 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3956 * because it is sized independent of architecture. Unlike the other zones,
3957 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3958 * in each node depending on the size of each node and how evenly kernelcore
3959 * is distributed. This helper function adjusts the zone ranges
3960 * provided by the architecture for a given node by using the end of the
3961 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3962 * zones within a node are in order of monotonic increases memory addresses
3963 */
3964 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3965 unsigned long zone_type,
3966 unsigned long node_start_pfn,
3967 unsigned long node_end_pfn,
3968 unsigned long *zone_start_pfn,
3969 unsigned long *zone_end_pfn)
3970 {
3971 /* Only adjust if ZONE_MOVABLE is on this node */
3972 if (zone_movable_pfn[nid]) {
3973 /* Size ZONE_MOVABLE */
3974 if (zone_type == ZONE_MOVABLE) {
3975 *zone_start_pfn = zone_movable_pfn[nid];
3976 *zone_end_pfn = min(node_end_pfn,
3977 arch_zone_highest_possible_pfn[movable_zone]);
3978
3979 /* Adjust for ZONE_MOVABLE starting within this range */
3980 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3981 *zone_end_pfn > zone_movable_pfn[nid]) {
3982 *zone_end_pfn = zone_movable_pfn[nid];
3983
3984 /* Check if this whole range is within ZONE_MOVABLE */
3985 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3986 *zone_start_pfn = *zone_end_pfn;
3987 }
3988 }
3989
3990 /*
3991 * Return the number of pages a zone spans in a node, including holes
3992 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3993 */
3994 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3995 unsigned long zone_type,
3996 unsigned long *ignored)
3997 {
3998 unsigned long node_start_pfn, node_end_pfn;
3999 unsigned long zone_start_pfn, zone_end_pfn;
4000
4001 /* Get the start and end of the node and zone */
4002 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4003 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4004 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4005 adjust_zone_range_for_zone_movable(nid, zone_type,
4006 node_start_pfn, node_end_pfn,
4007 &zone_start_pfn, &zone_end_pfn);
4008
4009 /* Check that this node has pages within the zone's required range */
4010 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4011 return 0;
4012
4013 /* Move the zone boundaries inside the node if necessary */
4014 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4015 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4016
4017 /* Return the spanned pages */
4018 return zone_end_pfn - zone_start_pfn;
4019 }
4020
4021 /*
4022 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4023 * then all holes in the requested range will be accounted for.
4024 */
4025 unsigned long __meminit __absent_pages_in_range(int nid,
4026 unsigned long range_start_pfn,
4027 unsigned long range_end_pfn)
4028 {
4029 int i = 0;
4030 unsigned long prev_end_pfn = 0, hole_pages = 0;
4031 unsigned long start_pfn;
4032
4033 /* Find the end_pfn of the first active range of pfns in the node */
4034 i = first_active_region_index_in_nid(nid);
4035 if (i == -1)
4036 return 0;
4037
4038 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4039
4040 /* Account for ranges before physical memory on this node */
4041 if (early_node_map[i].start_pfn > range_start_pfn)
4042 hole_pages = prev_end_pfn - range_start_pfn;
4043
4044 /* Find all holes for the zone within the node */
4045 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4046
4047 /* No need to continue if prev_end_pfn is outside the zone */
4048 if (prev_end_pfn >= range_end_pfn)
4049 break;
4050
4051 /* Make sure the end of the zone is not within the hole */
4052 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4053 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4054
4055 /* Update the hole size cound and move on */
4056 if (start_pfn > range_start_pfn) {
4057 BUG_ON(prev_end_pfn > start_pfn);
4058 hole_pages += start_pfn - prev_end_pfn;
4059 }
4060 prev_end_pfn = early_node_map[i].end_pfn;
4061 }
4062
4063 /* Account for ranges past physical memory on this node */
4064 if (range_end_pfn > prev_end_pfn)
4065 hole_pages += range_end_pfn -
4066 max(range_start_pfn, prev_end_pfn);
4067
4068 return hole_pages;
4069 }
4070
4071 /**
4072 * absent_pages_in_range - Return number of page frames in holes within a range
4073 * @start_pfn: The start PFN to start searching for holes
4074 * @end_pfn: The end PFN to stop searching for holes
4075 *
4076 * It returns the number of pages frames in memory holes within a range.
4077 */
4078 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4079 unsigned long end_pfn)
4080 {
4081 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4082 }
4083
4084 /* Return the number of page frames in holes in a zone on a node */
4085 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4086 unsigned long zone_type,
4087 unsigned long *ignored)
4088 {
4089 unsigned long node_start_pfn, node_end_pfn;
4090 unsigned long zone_start_pfn, zone_end_pfn;
4091
4092 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4093 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4094 node_start_pfn);
4095 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4096 node_end_pfn);
4097
4098 adjust_zone_range_for_zone_movable(nid, zone_type,
4099 node_start_pfn, node_end_pfn,
4100 &zone_start_pfn, &zone_end_pfn);
4101 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4102 }
4103
4104 #else
4105 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4106 unsigned long zone_type,
4107 unsigned long *zones_size)
4108 {
4109 return zones_size[zone_type];
4110 }
4111
4112 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4113 unsigned long zone_type,
4114 unsigned long *zholes_size)
4115 {
4116 if (!zholes_size)
4117 return 0;
4118
4119 return zholes_size[zone_type];
4120 }
4121
4122 #endif
4123
4124 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4125 unsigned long *zones_size, unsigned long *zholes_size)
4126 {
4127 unsigned long realtotalpages, totalpages = 0;
4128 enum zone_type i;
4129
4130 for (i = 0; i < MAX_NR_ZONES; i++)
4131 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4132 zones_size);
4133 pgdat->node_spanned_pages = totalpages;
4134
4135 realtotalpages = totalpages;
4136 for (i = 0; i < MAX_NR_ZONES; i++)
4137 realtotalpages -=
4138 zone_absent_pages_in_node(pgdat->node_id, i,
4139 zholes_size);
4140 pgdat->node_present_pages = realtotalpages;
4141 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4142 realtotalpages);
4143 }
4144
4145 #ifndef CONFIG_SPARSEMEM
4146 /*
4147 * Calculate the size of the zone->blockflags rounded to an unsigned long
4148 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4149 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4150 * round what is now in bits to nearest long in bits, then return it in
4151 * bytes.
4152 */
4153 static unsigned long __init usemap_size(unsigned long zonesize)
4154 {
4155 unsigned long usemapsize;
4156
4157 usemapsize = roundup(zonesize, pageblock_nr_pages);
4158 usemapsize = usemapsize >> pageblock_order;
4159 usemapsize *= NR_PAGEBLOCK_BITS;
4160 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4161
4162 return usemapsize / 8;
4163 }
4164
4165 static void __init setup_usemap(struct pglist_data *pgdat,
4166 struct zone *zone, unsigned long zonesize)
4167 {
4168 unsigned long usemapsize = usemap_size(zonesize);
4169 zone->pageblock_flags = NULL;
4170 if (usemapsize)
4171 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4172 usemapsize);
4173 }
4174 #else
4175 static inline void setup_usemap(struct pglist_data *pgdat,
4176 struct zone *zone, unsigned long zonesize) {}
4177 #endif /* CONFIG_SPARSEMEM */
4178
4179 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4180
4181 /* Return a sensible default order for the pageblock size. */
4182 static inline int pageblock_default_order(void)
4183 {
4184 if (HPAGE_SHIFT > PAGE_SHIFT)
4185 return HUGETLB_PAGE_ORDER;
4186
4187 return MAX_ORDER-1;
4188 }
4189
4190 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4191 static inline void __init set_pageblock_order(unsigned int order)
4192 {
4193 /* Check that pageblock_nr_pages has not already been setup */
4194 if (pageblock_order)
4195 return;
4196
4197 /*
4198 * Assume the largest contiguous order of interest is a huge page.
4199 * This value may be variable depending on boot parameters on IA64
4200 */
4201 pageblock_order = order;
4202 }
4203 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4204
4205 /*
4206 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4207 * and pageblock_default_order() are unused as pageblock_order is set
4208 * at compile-time. See include/linux/pageblock-flags.h for the values of
4209 * pageblock_order based on the kernel config
4210 */
4211 static inline int pageblock_default_order(unsigned int order)
4212 {
4213 return MAX_ORDER-1;
4214 }
4215 #define set_pageblock_order(x) do {} while (0)
4216
4217 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4218
4219 /*
4220 * Set up the zone data structures:
4221 * - mark all pages reserved
4222 * - mark all memory queues empty
4223 * - clear the memory bitmaps
4224 */
4225 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4226 unsigned long *zones_size, unsigned long *zholes_size)
4227 {
4228 enum zone_type j;
4229 int nid = pgdat->node_id;
4230 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4231 int ret;
4232
4233 pgdat_resize_init(pgdat);
4234 pgdat->nr_zones = 0;
4235 init_waitqueue_head(&pgdat->kswapd_wait);
4236 pgdat->kswapd_max_order = 0;
4237 pgdat_page_cgroup_init(pgdat);
4238
4239 for (j = 0; j < MAX_NR_ZONES; j++) {
4240 struct zone *zone = pgdat->node_zones + j;
4241 unsigned long size, realsize, memmap_pages;
4242 enum lru_list l;
4243
4244 size = zone_spanned_pages_in_node(nid, j, zones_size);
4245 realsize = size - zone_absent_pages_in_node(nid, j,
4246 zholes_size);
4247
4248 /*
4249 * Adjust realsize so that it accounts for how much memory
4250 * is used by this zone for memmap. This affects the watermark
4251 * and per-cpu initialisations
4252 */
4253 memmap_pages =
4254 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4255 if (realsize >= memmap_pages) {
4256 realsize -= memmap_pages;
4257 if (memmap_pages)
4258 printk(KERN_DEBUG
4259 " %s zone: %lu pages used for memmap\n",
4260 zone_names[j], memmap_pages);
4261 } else
4262 printk(KERN_WARNING
4263 " %s zone: %lu pages exceeds realsize %lu\n",
4264 zone_names[j], memmap_pages, realsize);
4265
4266 /* Account for reserved pages */
4267 if (j == 0 && realsize > dma_reserve) {
4268 realsize -= dma_reserve;
4269 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4270 zone_names[0], dma_reserve);
4271 }
4272
4273 if (!is_highmem_idx(j))
4274 nr_kernel_pages += realsize;
4275 nr_all_pages += realsize;
4276
4277 zone->spanned_pages = size;
4278 zone->present_pages = realsize;
4279 #ifdef CONFIG_NUMA
4280 zone->node = nid;
4281 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4282 / 100;
4283 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4284 #endif
4285 zone->name = zone_names[j];
4286 spin_lock_init(&zone->lock);
4287 spin_lock_init(&zone->lru_lock);
4288 zone_seqlock_init(zone);
4289 zone->zone_pgdat = pgdat;
4290
4291 zone_pcp_init(zone);
4292 for_each_lru(l) {
4293 INIT_LIST_HEAD(&zone->lru[l].list);
4294 zone->reclaim_stat.nr_saved_scan[l] = 0;
4295 }
4296 zone->reclaim_stat.recent_rotated[0] = 0;
4297 zone->reclaim_stat.recent_rotated[1] = 0;
4298 zone->reclaim_stat.recent_scanned[0] = 0;
4299 zone->reclaim_stat.recent_scanned[1] = 0;
4300 zap_zone_vm_stats(zone);
4301 zone->flags = 0;
4302 if (!size)
4303 continue;
4304
4305 set_pageblock_order(pageblock_default_order());
4306 setup_usemap(pgdat, zone, size);
4307 ret = init_currently_empty_zone(zone, zone_start_pfn,
4308 size, MEMMAP_EARLY);
4309 BUG_ON(ret);
4310 memmap_init(size, nid, j, zone_start_pfn);
4311 zone_start_pfn += size;
4312 }
4313 }
4314
4315 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4316 {
4317 /* Skip empty nodes */
4318 if (!pgdat->node_spanned_pages)
4319 return;
4320
4321 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4322 /* ia64 gets its own node_mem_map, before this, without bootmem */
4323 if (!pgdat->node_mem_map) {
4324 unsigned long size, start, end;
4325 struct page *map;
4326
4327 /*
4328 * The zone's endpoints aren't required to be MAX_ORDER
4329 * aligned but the node_mem_map endpoints must be in order
4330 * for the buddy allocator to function correctly.
4331 */
4332 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4333 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4334 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4335 size = (end - start) * sizeof(struct page);
4336 map = alloc_remap(pgdat->node_id, size);
4337 if (!map)
4338 map = alloc_bootmem_node_nopanic(pgdat, size);
4339 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4340 }
4341 #ifndef CONFIG_NEED_MULTIPLE_NODES
4342 /*
4343 * With no DISCONTIG, the global mem_map is just set as node 0's
4344 */
4345 if (pgdat == NODE_DATA(0)) {
4346 mem_map = NODE_DATA(0)->node_mem_map;
4347 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4348 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4349 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4350 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4351 }
4352 #endif
4353 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4354 }
4355
4356 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4357 unsigned long node_start_pfn, unsigned long *zholes_size)
4358 {
4359 pg_data_t *pgdat = NODE_DATA(nid);
4360
4361 pgdat->node_id = nid;
4362 pgdat->node_start_pfn = node_start_pfn;
4363 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4364
4365 alloc_node_mem_map(pgdat);
4366 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4367 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4368 nid, (unsigned long)pgdat,
4369 (unsigned long)pgdat->node_mem_map);
4370 #endif
4371
4372 free_area_init_core(pgdat, zones_size, zholes_size);
4373 }
4374
4375 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4376
4377 #if MAX_NUMNODES > 1
4378 /*
4379 * Figure out the number of possible node ids.
4380 */
4381 static void __init setup_nr_node_ids(void)
4382 {
4383 unsigned int node;
4384 unsigned int highest = 0;
4385
4386 for_each_node_mask(node, node_possible_map)
4387 highest = node;
4388 nr_node_ids = highest + 1;
4389 }
4390 #else
4391 static inline void setup_nr_node_ids(void)
4392 {
4393 }
4394 #endif
4395
4396 /**
4397 * add_active_range - Register a range of PFNs backed by physical memory
4398 * @nid: The node ID the range resides on
4399 * @start_pfn: The start PFN of the available physical memory
4400 * @end_pfn: The end PFN of the available physical memory
4401 *
4402 * These ranges are stored in an early_node_map[] and later used by
4403 * free_area_init_nodes() to calculate zone sizes and holes. If the
4404 * range spans a memory hole, it is up to the architecture to ensure
4405 * the memory is not freed by the bootmem allocator. If possible
4406 * the range being registered will be merged with existing ranges.
4407 */
4408 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4409 unsigned long end_pfn)
4410 {
4411 int i;
4412
4413 mminit_dprintk(MMINIT_TRACE, "memory_register",
4414 "Entering add_active_range(%d, %#lx, %#lx) "
4415 "%d entries of %d used\n",
4416 nid, start_pfn, end_pfn,
4417 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4418
4419 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4420
4421 /* Merge with existing active regions if possible */
4422 for (i = 0; i < nr_nodemap_entries; i++) {
4423 if (early_node_map[i].nid != nid)
4424 continue;
4425
4426 /* Skip if an existing region covers this new one */
4427 if (start_pfn >= early_node_map[i].start_pfn &&
4428 end_pfn <= early_node_map[i].end_pfn)
4429 return;
4430
4431 /* Merge forward if suitable */
4432 if (start_pfn <= early_node_map[i].end_pfn &&
4433 end_pfn > early_node_map[i].end_pfn) {
4434 early_node_map[i].end_pfn = end_pfn;
4435 return;
4436 }
4437
4438 /* Merge backward if suitable */
4439 if (start_pfn < early_node_map[i].start_pfn &&
4440 end_pfn >= early_node_map[i].start_pfn) {
4441 early_node_map[i].start_pfn = start_pfn;
4442 return;
4443 }
4444 }
4445
4446 /* Check that early_node_map is large enough */
4447 if (i >= MAX_ACTIVE_REGIONS) {
4448 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4449 MAX_ACTIVE_REGIONS);
4450 return;
4451 }
4452
4453 early_node_map[i].nid = nid;
4454 early_node_map[i].start_pfn = start_pfn;
4455 early_node_map[i].end_pfn = end_pfn;
4456 nr_nodemap_entries = i + 1;
4457 }
4458
4459 /**
4460 * remove_active_range - Shrink an existing registered range of PFNs
4461 * @nid: The node id the range is on that should be shrunk
4462 * @start_pfn: The new PFN of the range
4463 * @end_pfn: The new PFN of the range
4464 *
4465 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4466 * The map is kept near the end physical page range that has already been
4467 * registered. This function allows an arch to shrink an existing registered
4468 * range.
4469 */
4470 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4471 unsigned long end_pfn)
4472 {
4473 int i, j;
4474 int removed = 0;
4475
4476 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4477 nid, start_pfn, end_pfn);
4478
4479 /* Find the old active region end and shrink */
4480 for_each_active_range_index_in_nid(i, nid) {
4481 if (early_node_map[i].start_pfn >= start_pfn &&
4482 early_node_map[i].end_pfn <= end_pfn) {
4483 /* clear it */
4484 early_node_map[i].start_pfn = 0;
4485 early_node_map[i].end_pfn = 0;
4486 removed = 1;
4487 continue;
4488 }
4489 if (early_node_map[i].start_pfn < start_pfn &&
4490 early_node_map[i].end_pfn > start_pfn) {
4491 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4492 early_node_map[i].end_pfn = start_pfn;
4493 if (temp_end_pfn > end_pfn)
4494 add_active_range(nid, end_pfn, temp_end_pfn);
4495 continue;
4496 }
4497 if (early_node_map[i].start_pfn >= start_pfn &&
4498 early_node_map[i].end_pfn > end_pfn &&
4499 early_node_map[i].start_pfn < end_pfn) {
4500 early_node_map[i].start_pfn = end_pfn;
4501 continue;
4502 }
4503 }
4504
4505 if (!removed)
4506 return;
4507
4508 /* remove the blank ones */
4509 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4510 if (early_node_map[i].nid != nid)
4511 continue;
4512 if (early_node_map[i].end_pfn)
4513 continue;
4514 /* we found it, get rid of it */
4515 for (j = i; j < nr_nodemap_entries - 1; j++)
4516 memcpy(&early_node_map[j], &early_node_map[j+1],
4517 sizeof(early_node_map[j]));
4518 j = nr_nodemap_entries - 1;
4519 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4520 nr_nodemap_entries--;
4521 }
4522 }
4523
4524 /**
4525 * remove_all_active_ranges - Remove all currently registered regions
4526 *
4527 * During discovery, it may be found that a table like SRAT is invalid
4528 * and an alternative discovery method must be used. This function removes
4529 * all currently registered regions.
4530 */
4531 void __init remove_all_active_ranges(void)
4532 {
4533 memset(early_node_map, 0, sizeof(early_node_map));
4534 nr_nodemap_entries = 0;
4535 }
4536
4537 /* Compare two active node_active_regions */
4538 static int __init cmp_node_active_region(const void *a, const void *b)
4539 {
4540 struct node_active_region *arange = (struct node_active_region *)a;
4541 struct node_active_region *brange = (struct node_active_region *)b;
4542
4543 /* Done this way to avoid overflows */
4544 if (arange->start_pfn > brange->start_pfn)
4545 return 1;
4546 if (arange->start_pfn < brange->start_pfn)
4547 return -1;
4548
4549 return 0;
4550 }
4551
4552 /* sort the node_map by start_pfn */
4553 void __init sort_node_map(void)
4554 {
4555 sort(early_node_map, (size_t)nr_nodemap_entries,
4556 sizeof(struct node_active_region),
4557 cmp_node_active_region, NULL);
4558 }
4559
4560 /* Find the lowest pfn for a node */
4561 static unsigned long __init find_min_pfn_for_node(int nid)
4562 {
4563 int i;
4564 unsigned long min_pfn = ULONG_MAX;
4565
4566 /* Assuming a sorted map, the first range found has the starting pfn */
4567 for_each_active_range_index_in_nid(i, nid)
4568 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4569
4570 if (min_pfn == ULONG_MAX) {
4571 printk(KERN_WARNING
4572 "Could not find start_pfn for node %d\n", nid);
4573 return 0;
4574 }
4575
4576 return min_pfn;
4577 }
4578
4579 /**
4580 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4581 *
4582 * It returns the minimum PFN based on information provided via
4583 * add_active_range().
4584 */
4585 unsigned long __init find_min_pfn_with_active_regions(void)
4586 {
4587 return find_min_pfn_for_node(MAX_NUMNODES);
4588 }
4589
4590 /*
4591 * early_calculate_totalpages()
4592 * Sum pages in active regions for movable zone.
4593 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4594 */
4595 static unsigned long __init early_calculate_totalpages(void)
4596 {
4597 int i;
4598 unsigned long totalpages = 0;
4599
4600 for (i = 0; i < nr_nodemap_entries; i++) {
4601 unsigned long pages = early_node_map[i].end_pfn -
4602 early_node_map[i].start_pfn;
4603 totalpages += pages;
4604 if (pages)
4605 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4606 }
4607 return totalpages;
4608 }
4609
4610 /*
4611 * Find the PFN the Movable zone begins in each node. Kernel memory
4612 * is spread evenly between nodes as long as the nodes have enough
4613 * memory. When they don't, some nodes will have more kernelcore than
4614 * others
4615 */
4616 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4617 {
4618 int i, nid;
4619 unsigned long usable_startpfn;
4620 unsigned long kernelcore_node, kernelcore_remaining;
4621 /* save the state before borrow the nodemask */
4622 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4623 unsigned long totalpages = early_calculate_totalpages();
4624 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4625
4626 /*
4627 * If movablecore was specified, calculate what size of
4628 * kernelcore that corresponds so that memory usable for
4629 * any allocation type is evenly spread. If both kernelcore
4630 * and movablecore are specified, then the value of kernelcore
4631 * will be used for required_kernelcore if it's greater than
4632 * what movablecore would have allowed.
4633 */
4634 if (required_movablecore) {
4635 unsigned long corepages;
4636
4637 /*
4638 * Round-up so that ZONE_MOVABLE is at least as large as what
4639 * was requested by the user
4640 */
4641 required_movablecore =
4642 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4643 corepages = totalpages - required_movablecore;
4644
4645 required_kernelcore = max(required_kernelcore, corepages);
4646 }
4647
4648 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4649 if (!required_kernelcore)
4650 goto out;
4651
4652 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4653 find_usable_zone_for_movable();
4654 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4655
4656 restart:
4657 /* Spread kernelcore memory as evenly as possible throughout nodes */
4658 kernelcore_node = required_kernelcore / usable_nodes;
4659 for_each_node_state(nid, N_HIGH_MEMORY) {
4660 /*
4661 * Recalculate kernelcore_node if the division per node
4662 * now exceeds what is necessary to satisfy the requested
4663 * amount of memory for the kernel
4664 */
4665 if (required_kernelcore < kernelcore_node)
4666 kernelcore_node = required_kernelcore / usable_nodes;
4667
4668 /*
4669 * As the map is walked, we track how much memory is usable
4670 * by the kernel using kernelcore_remaining. When it is
4671 * 0, the rest of the node is usable by ZONE_MOVABLE
4672 */
4673 kernelcore_remaining = kernelcore_node;
4674
4675 /* Go through each range of PFNs within this node */
4676 for_each_active_range_index_in_nid(i, nid) {
4677 unsigned long start_pfn, end_pfn;
4678 unsigned long size_pages;
4679
4680 start_pfn = max(early_node_map[i].start_pfn,
4681 zone_movable_pfn[nid]);
4682 end_pfn = early_node_map[i].end_pfn;
4683 if (start_pfn >= end_pfn)
4684 continue;
4685
4686 /* Account for what is only usable for kernelcore */
4687 if (start_pfn < usable_startpfn) {
4688 unsigned long kernel_pages;
4689 kernel_pages = min(end_pfn, usable_startpfn)
4690 - start_pfn;
4691
4692 kernelcore_remaining -= min(kernel_pages,
4693 kernelcore_remaining);
4694 required_kernelcore -= min(kernel_pages,
4695 required_kernelcore);
4696
4697 /* Continue if range is now fully accounted */
4698 if (end_pfn <= usable_startpfn) {
4699
4700 /*
4701 * Push zone_movable_pfn to the end so
4702 * that if we have to rebalance
4703 * kernelcore across nodes, we will
4704 * not double account here
4705 */
4706 zone_movable_pfn[nid] = end_pfn;
4707 continue;
4708 }
4709 start_pfn = usable_startpfn;
4710 }
4711
4712 /*
4713 * The usable PFN range for ZONE_MOVABLE is from
4714 * start_pfn->end_pfn. Calculate size_pages as the
4715 * number of pages used as kernelcore
4716 */
4717 size_pages = end_pfn - start_pfn;
4718 if (size_pages > kernelcore_remaining)
4719 size_pages = kernelcore_remaining;
4720 zone_movable_pfn[nid] = start_pfn + size_pages;
4721
4722 /*
4723 * Some kernelcore has been met, update counts and
4724 * break if the kernelcore for this node has been
4725 * satisified
4726 */
4727 required_kernelcore -= min(required_kernelcore,
4728 size_pages);
4729 kernelcore_remaining -= size_pages;
4730 if (!kernelcore_remaining)
4731 break;
4732 }
4733 }
4734
4735 /*
4736 * If there is still required_kernelcore, we do another pass with one
4737 * less node in the count. This will push zone_movable_pfn[nid] further
4738 * along on the nodes that still have memory until kernelcore is
4739 * satisified
4740 */
4741 usable_nodes--;
4742 if (usable_nodes && required_kernelcore > usable_nodes)
4743 goto restart;
4744
4745 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4746 for (nid = 0; nid < MAX_NUMNODES; nid++)
4747 zone_movable_pfn[nid] =
4748 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4749
4750 out:
4751 /* restore the node_state */
4752 node_states[N_HIGH_MEMORY] = saved_node_state;
4753 }
4754
4755 /* Any regular memory on that node ? */
4756 static void check_for_regular_memory(pg_data_t *pgdat)
4757 {
4758 #ifdef CONFIG_HIGHMEM
4759 enum zone_type zone_type;
4760
4761 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4762 struct zone *zone = &pgdat->node_zones[zone_type];
4763 if (zone->present_pages)
4764 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4765 }
4766 #endif
4767 }
4768
4769 /**
4770 * free_area_init_nodes - Initialise all pg_data_t and zone data
4771 * @max_zone_pfn: an array of max PFNs for each zone
4772 *
4773 * This will call free_area_init_node() for each active node in the system.
4774 * Using the page ranges provided by add_active_range(), the size of each
4775 * zone in each node and their holes is calculated. If the maximum PFN
4776 * between two adjacent zones match, it is assumed that the zone is empty.
4777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4779 * starts where the previous one ended. For example, ZONE_DMA32 starts
4780 * at arch_max_dma_pfn.
4781 */
4782 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4783 {
4784 unsigned long nid;
4785 int i;
4786
4787 /* Sort early_node_map as initialisation assumes it is sorted */
4788 sort_node_map();
4789
4790 /* Record where the zone boundaries are */
4791 memset(arch_zone_lowest_possible_pfn, 0,
4792 sizeof(arch_zone_lowest_possible_pfn));
4793 memset(arch_zone_highest_possible_pfn, 0,
4794 sizeof(arch_zone_highest_possible_pfn));
4795 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4796 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4797 for (i = 1; i < MAX_NR_ZONES; i++) {
4798 if (i == ZONE_MOVABLE)
4799 continue;
4800 arch_zone_lowest_possible_pfn[i] =
4801 arch_zone_highest_possible_pfn[i-1];
4802 arch_zone_highest_possible_pfn[i] =
4803 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4804 }
4805 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4806 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4807
4808 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4809 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4810 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4811
4812 /* Print out the zone ranges */
4813 printk("Zone PFN ranges:\n");
4814 for (i = 0; i < MAX_NR_ZONES; i++) {
4815 if (i == ZONE_MOVABLE)
4816 continue;
4817 printk(" %-8s ", zone_names[i]);
4818 if (arch_zone_lowest_possible_pfn[i] ==
4819 arch_zone_highest_possible_pfn[i])
4820 printk("empty\n");
4821 else
4822 printk("%0#10lx -> %0#10lx\n",
4823 arch_zone_lowest_possible_pfn[i],
4824 arch_zone_highest_possible_pfn[i]);
4825 }
4826
4827 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4828 printk("Movable zone start PFN for each node\n");
4829 for (i = 0; i < MAX_NUMNODES; i++) {
4830 if (zone_movable_pfn[i])
4831 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4832 }
4833
4834 /* Print out the early_node_map[] */
4835 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4836 for (i = 0; i < nr_nodemap_entries; i++)
4837 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4838 early_node_map[i].start_pfn,
4839 early_node_map[i].end_pfn);
4840
4841 /* Initialise every node */
4842 mminit_verify_pageflags_layout();
4843 setup_nr_node_ids();
4844 for_each_online_node(nid) {
4845 pg_data_t *pgdat = NODE_DATA(nid);
4846 free_area_init_node(nid, NULL,
4847 find_min_pfn_for_node(nid), NULL);
4848
4849 /* Any memory on that node */
4850 if (pgdat->node_present_pages)
4851 node_set_state(nid, N_HIGH_MEMORY);
4852 check_for_regular_memory(pgdat);
4853 }
4854 }
4855
4856 static int __init cmdline_parse_core(char *p, unsigned long *core)
4857 {
4858 unsigned long long coremem;
4859 if (!p)
4860 return -EINVAL;
4861
4862 coremem = memparse(p, &p);
4863 *core = coremem >> PAGE_SHIFT;
4864
4865 /* Paranoid check that UL is enough for the coremem value */
4866 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4867
4868 return 0;
4869 }
4870
4871 /*
4872 * kernelcore=size sets the amount of memory for use for allocations that
4873 * cannot be reclaimed or migrated.
4874 */
4875 static int __init cmdline_parse_kernelcore(char *p)
4876 {
4877 return cmdline_parse_core(p, &required_kernelcore);
4878 }
4879
4880 /*
4881 * movablecore=size sets the amount of memory for use for allocations that
4882 * can be reclaimed or migrated.
4883 */
4884 static int __init cmdline_parse_movablecore(char *p)
4885 {
4886 return cmdline_parse_core(p, &required_movablecore);
4887 }
4888
4889 early_param("kernelcore", cmdline_parse_kernelcore);
4890 early_param("movablecore", cmdline_parse_movablecore);
4891
4892 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4893
4894 /**
4895 * set_dma_reserve - set the specified number of pages reserved in the first zone
4896 * @new_dma_reserve: The number of pages to mark reserved
4897 *
4898 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4899 * In the DMA zone, a significant percentage may be consumed by kernel image
4900 * and other unfreeable allocations which can skew the watermarks badly. This
4901 * function may optionally be used to account for unfreeable pages in the
4902 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4903 * smaller per-cpu batchsize.
4904 */
4905 void __init set_dma_reserve(unsigned long new_dma_reserve)
4906 {
4907 dma_reserve = new_dma_reserve;
4908 }
4909
4910 void __init free_area_init(unsigned long *zones_size)
4911 {
4912 free_area_init_node(0, zones_size,
4913 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4914 }
4915
4916 static int page_alloc_cpu_notify(struct notifier_block *self,
4917 unsigned long action, void *hcpu)
4918 {
4919 int cpu = (unsigned long)hcpu;
4920
4921 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4922 drain_pages(cpu);
4923
4924 /*
4925 * Spill the event counters of the dead processor
4926 * into the current processors event counters.
4927 * This artificially elevates the count of the current
4928 * processor.
4929 */
4930 vm_events_fold_cpu(cpu);
4931
4932 /*
4933 * Zero the differential counters of the dead processor
4934 * so that the vm statistics are consistent.
4935 *
4936 * This is only okay since the processor is dead and cannot
4937 * race with what we are doing.
4938 */
4939 refresh_cpu_vm_stats(cpu);
4940 }
4941 return NOTIFY_OK;
4942 }
4943
4944 void __init page_alloc_init(void)
4945 {
4946 hotcpu_notifier(page_alloc_cpu_notify, 0);
4947 }
4948
4949 /*
4950 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4951 * or min_free_kbytes changes.
4952 */
4953 static void calculate_totalreserve_pages(void)
4954 {
4955 struct pglist_data *pgdat;
4956 unsigned long reserve_pages = 0;
4957 enum zone_type i, j;
4958
4959 for_each_online_pgdat(pgdat) {
4960 for (i = 0; i < MAX_NR_ZONES; i++) {
4961 struct zone *zone = pgdat->node_zones + i;
4962 unsigned long max = 0;
4963
4964 /* Find valid and maximum lowmem_reserve in the zone */
4965 for (j = i; j < MAX_NR_ZONES; j++) {
4966 if (zone->lowmem_reserve[j] > max)
4967 max = zone->lowmem_reserve[j];
4968 }
4969
4970 /* we treat the high watermark as reserved pages. */
4971 max += high_wmark_pages(zone);
4972
4973 if (max > zone->present_pages)
4974 max = zone->present_pages;
4975 reserve_pages += max;
4976 }
4977 }
4978 totalreserve_pages = reserve_pages;
4979 }
4980
4981 /*
4982 * setup_per_zone_lowmem_reserve - called whenever
4983 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4984 * has a correct pages reserved value, so an adequate number of
4985 * pages are left in the zone after a successful __alloc_pages().
4986 */
4987 static void setup_per_zone_lowmem_reserve(void)
4988 {
4989 struct pglist_data *pgdat;
4990 enum zone_type j, idx;
4991
4992 for_each_online_pgdat(pgdat) {
4993 for (j = 0; j < MAX_NR_ZONES; j++) {
4994 struct zone *zone = pgdat->node_zones + j;
4995 unsigned long present_pages = zone->present_pages;
4996
4997 zone->lowmem_reserve[j] = 0;
4998
4999 idx = j;
5000 while (idx) {
5001 struct zone *lower_zone;
5002
5003 idx--;
5004
5005 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5006 sysctl_lowmem_reserve_ratio[idx] = 1;
5007
5008 lower_zone = pgdat->node_zones + idx;
5009 lower_zone->lowmem_reserve[j] = present_pages /
5010 sysctl_lowmem_reserve_ratio[idx];
5011 present_pages += lower_zone->present_pages;
5012 }
5013 }
5014 }
5015
5016 /* update totalreserve_pages */
5017 calculate_totalreserve_pages();
5018 }
5019
5020 /**
5021 * setup_per_zone_wmarks - called when min_free_kbytes changes
5022 * or when memory is hot-{added|removed}
5023 *
5024 * Ensures that the watermark[min,low,high] values for each zone are set
5025 * correctly with respect to min_free_kbytes.
5026 */
5027 void setup_per_zone_wmarks(void)
5028 {
5029 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5030 unsigned long lowmem_pages = 0;
5031 struct zone *zone;
5032 unsigned long flags;
5033
5034 /* Calculate total number of !ZONE_HIGHMEM pages */
5035 for_each_zone(zone) {
5036 if (!is_highmem(zone))
5037 lowmem_pages += zone->present_pages;
5038 }
5039
5040 for_each_zone(zone) {
5041 u64 tmp;
5042
5043 spin_lock_irqsave(&zone->lock, flags);
5044 tmp = (u64)pages_min * zone->present_pages;
5045 do_div(tmp, lowmem_pages);
5046 if (is_highmem(zone)) {
5047 /*
5048 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5049 * need highmem pages, so cap pages_min to a small
5050 * value here.
5051 *
5052 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5053 * deltas controls asynch page reclaim, and so should
5054 * not be capped for highmem.
5055 */
5056 int min_pages;
5057
5058 min_pages = zone->present_pages / 1024;
5059 if (min_pages < SWAP_CLUSTER_MAX)
5060 min_pages = SWAP_CLUSTER_MAX;
5061 if (min_pages > 128)
5062 min_pages = 128;
5063 zone->watermark[WMARK_MIN] = min_pages;
5064 } else {
5065 /*
5066 * If it's a lowmem zone, reserve a number of pages
5067 * proportionate to the zone's size.
5068 */
5069 zone->watermark[WMARK_MIN] = tmp;
5070 }
5071
5072 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5073 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5074 setup_zone_migrate_reserve(zone);
5075 spin_unlock_irqrestore(&zone->lock, flags);
5076 }
5077
5078 /* update totalreserve_pages */
5079 calculate_totalreserve_pages();
5080 }
5081
5082 /*
5083 * The inactive anon list should be small enough that the VM never has to
5084 * do too much work, but large enough that each inactive page has a chance
5085 * to be referenced again before it is swapped out.
5086 *
5087 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5088 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5089 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5090 * the anonymous pages are kept on the inactive list.
5091 *
5092 * total target max
5093 * memory ratio inactive anon
5094 * -------------------------------------
5095 * 10MB 1 5MB
5096 * 100MB 1 50MB
5097 * 1GB 3 250MB
5098 * 10GB 10 0.9GB
5099 * 100GB 31 3GB
5100 * 1TB 101 10GB
5101 * 10TB 320 32GB
5102 */
5103 void calculate_zone_inactive_ratio(struct zone *zone)
5104 {
5105 unsigned int gb, ratio;
5106
5107 /* Zone size in gigabytes */
5108 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5109 if (gb)
5110 ratio = int_sqrt(10 * gb);
5111 else
5112 ratio = 1;
5113
5114 zone->inactive_ratio = ratio;
5115 }
5116
5117 static void __init setup_per_zone_inactive_ratio(void)
5118 {
5119 struct zone *zone;
5120
5121 for_each_zone(zone)
5122 calculate_zone_inactive_ratio(zone);
5123 }
5124
5125 /*
5126 * Initialise min_free_kbytes.
5127 *
5128 * For small machines we want it small (128k min). For large machines
5129 * we want it large (64MB max). But it is not linear, because network
5130 * bandwidth does not increase linearly with machine size. We use
5131 *
5132 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5133 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5134 *
5135 * which yields
5136 *
5137 * 16MB: 512k
5138 * 32MB: 724k
5139 * 64MB: 1024k
5140 * 128MB: 1448k
5141 * 256MB: 2048k
5142 * 512MB: 2896k
5143 * 1024MB: 4096k
5144 * 2048MB: 5792k
5145 * 4096MB: 8192k
5146 * 8192MB: 11584k
5147 * 16384MB: 16384k
5148 */
5149 static int __init init_per_zone_wmark_min(void)
5150 {
5151 unsigned long lowmem_kbytes;
5152
5153 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5154
5155 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5156 if (min_free_kbytes < 128)
5157 min_free_kbytes = 128;
5158 if (min_free_kbytes > 65536)
5159 min_free_kbytes = 65536;
5160 setup_per_zone_wmarks();
5161 setup_per_zone_lowmem_reserve();
5162 setup_per_zone_inactive_ratio();
5163 return 0;
5164 }
5165 module_init(init_per_zone_wmark_min)
5166
5167 /*
5168 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5169 * that we can call two helper functions whenever min_free_kbytes
5170 * changes.
5171 */
5172 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5173 void __user *buffer, size_t *length, loff_t *ppos)
5174 {
5175 proc_dointvec(table, write, buffer, length, ppos);
5176 if (write)
5177 setup_per_zone_wmarks();
5178 return 0;
5179 }
5180
5181 #ifdef CONFIG_NUMA
5182 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5183 void __user *buffer, size_t *length, loff_t *ppos)
5184 {
5185 struct zone *zone;
5186 int rc;
5187
5188 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5189 if (rc)
5190 return rc;
5191
5192 for_each_zone(zone)
5193 zone->min_unmapped_pages = (zone->present_pages *
5194 sysctl_min_unmapped_ratio) / 100;
5195 return 0;
5196 }
5197
5198 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5199 void __user *buffer, size_t *length, loff_t *ppos)
5200 {
5201 struct zone *zone;
5202 int rc;
5203
5204 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5205 if (rc)
5206 return rc;
5207
5208 for_each_zone(zone)
5209 zone->min_slab_pages = (zone->present_pages *
5210 sysctl_min_slab_ratio) / 100;
5211 return 0;
5212 }
5213 #endif
5214
5215 /*
5216 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5217 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5218 * whenever sysctl_lowmem_reserve_ratio changes.
5219 *
5220 * The reserve ratio obviously has absolutely no relation with the
5221 * minimum watermarks. The lowmem reserve ratio can only make sense
5222 * if in function of the boot time zone sizes.
5223 */
5224 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5225 void __user *buffer, size_t *length, loff_t *ppos)
5226 {
5227 proc_dointvec_minmax(table, write, buffer, length, ppos);
5228 setup_per_zone_lowmem_reserve();
5229 return 0;
5230 }
5231
5232 /*
5233 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5234 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5235 * can have before it gets flushed back to buddy allocator.
5236 */
5237
5238 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5239 void __user *buffer, size_t *length, loff_t *ppos)
5240 {
5241 struct zone *zone;
5242 unsigned int cpu;
5243 int ret;
5244
5245 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5246 if (!write || (ret == -EINVAL))
5247 return ret;
5248 for_each_populated_zone(zone) {
5249 for_each_possible_cpu(cpu) {
5250 unsigned long high;
5251 high = zone->present_pages / percpu_pagelist_fraction;
5252 setup_pagelist_highmark(
5253 per_cpu_ptr(zone->pageset, cpu), high);
5254 }
5255 }
5256 return 0;
5257 }
5258
5259 int hashdist = HASHDIST_DEFAULT;
5260
5261 #ifdef CONFIG_NUMA
5262 static int __init set_hashdist(char *str)
5263 {
5264 if (!str)
5265 return 0;
5266 hashdist = simple_strtoul(str, &str, 0);
5267 return 1;
5268 }
5269 __setup("hashdist=", set_hashdist);
5270 #endif
5271
5272 /*
5273 * allocate a large system hash table from bootmem
5274 * - it is assumed that the hash table must contain an exact power-of-2
5275 * quantity of entries
5276 * - limit is the number of hash buckets, not the total allocation size
5277 */
5278 void *__init alloc_large_system_hash(const char *tablename,
5279 unsigned long bucketsize,
5280 unsigned long numentries,
5281 int scale,
5282 int flags,
5283 unsigned int *_hash_shift,
5284 unsigned int *_hash_mask,
5285 unsigned long limit)
5286 {
5287 unsigned long long max = limit;
5288 unsigned long log2qty, size;
5289 void *table = NULL;
5290
5291 /* allow the kernel cmdline to have a say */
5292 if (!numentries) {
5293 /* round applicable memory size up to nearest megabyte */
5294 numentries = nr_kernel_pages;
5295 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5296 numentries >>= 20 - PAGE_SHIFT;
5297 numentries <<= 20 - PAGE_SHIFT;
5298
5299 /* limit to 1 bucket per 2^scale bytes of low memory */
5300 if (scale > PAGE_SHIFT)
5301 numentries >>= (scale - PAGE_SHIFT);
5302 else
5303 numentries <<= (PAGE_SHIFT - scale);
5304
5305 /* Make sure we've got at least a 0-order allocation.. */
5306 if (unlikely(flags & HASH_SMALL)) {
5307 /* Makes no sense without HASH_EARLY */
5308 WARN_ON(!(flags & HASH_EARLY));
5309 if (!(numentries >> *_hash_shift)) {
5310 numentries = 1UL << *_hash_shift;
5311 BUG_ON(!numentries);
5312 }
5313 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5314 numentries = PAGE_SIZE / bucketsize;
5315 }
5316 numentries = roundup_pow_of_two(numentries);
5317
5318 /* limit allocation size to 1/16 total memory by default */
5319 if (max == 0) {
5320 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5321 do_div(max, bucketsize);
5322 }
5323
5324 if (numentries > max)
5325 numentries = max;
5326
5327 log2qty = ilog2(numentries);
5328
5329 do {
5330 size = bucketsize << log2qty;
5331 if (flags & HASH_EARLY)
5332 table = alloc_bootmem_nopanic(size);
5333 else if (hashdist)
5334 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5335 else {
5336 /*
5337 * If bucketsize is not a power-of-two, we may free
5338 * some pages at the end of hash table which
5339 * alloc_pages_exact() automatically does
5340 */
5341 if (get_order(size) < MAX_ORDER) {
5342 table = alloc_pages_exact(size, GFP_ATOMIC);
5343 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5344 }
5345 }
5346 } while (!table && size > PAGE_SIZE && --log2qty);
5347
5348 if (!table)
5349 panic("Failed to allocate %s hash table\n", tablename);
5350
5351 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5352 tablename,
5353 (1UL << log2qty),
5354 ilog2(size) - PAGE_SHIFT,
5355 size);
5356
5357 if (_hash_shift)
5358 *_hash_shift = log2qty;
5359 if (_hash_mask)
5360 *_hash_mask = (1 << log2qty) - 1;
5361
5362 return table;
5363 }
5364
5365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5366 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5367 unsigned long pfn)
5368 {
5369 #ifdef CONFIG_SPARSEMEM
5370 return __pfn_to_section(pfn)->pageblock_flags;
5371 #else
5372 return zone->pageblock_flags;
5373 #endif /* CONFIG_SPARSEMEM */
5374 }
5375
5376 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5377 {
5378 #ifdef CONFIG_SPARSEMEM
5379 pfn &= (PAGES_PER_SECTION-1);
5380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5381 #else
5382 pfn = pfn - zone->zone_start_pfn;
5383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5384 #endif /* CONFIG_SPARSEMEM */
5385 }
5386
5387 /**
5388 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5389 * @page: The page within the block of interest
5390 * @start_bitidx: The first bit of interest to retrieve
5391 * @end_bitidx: The last bit of interest
5392 * returns pageblock_bits flags
5393 */
5394 unsigned long get_pageblock_flags_group(struct page *page,
5395 int start_bitidx, int end_bitidx)
5396 {
5397 struct zone *zone;
5398 unsigned long *bitmap;
5399 unsigned long pfn, bitidx;
5400 unsigned long flags = 0;
5401 unsigned long value = 1;
5402
5403 zone = page_zone(page);
5404 pfn = page_to_pfn(page);
5405 bitmap = get_pageblock_bitmap(zone, pfn);
5406 bitidx = pfn_to_bitidx(zone, pfn);
5407
5408 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5409 if (test_bit(bitidx + start_bitidx, bitmap))
5410 flags |= value;
5411
5412 return flags;
5413 }
5414
5415 /**
5416 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5417 * @page: The page within the block of interest
5418 * @start_bitidx: The first bit of interest
5419 * @end_bitidx: The last bit of interest
5420 * @flags: The flags to set
5421 */
5422 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5423 int start_bitidx, int end_bitidx)
5424 {
5425 struct zone *zone;
5426 unsigned long *bitmap;
5427 unsigned long pfn, bitidx;
5428 unsigned long value = 1;
5429
5430 zone = page_zone(page);
5431 pfn = page_to_pfn(page);
5432 bitmap = get_pageblock_bitmap(zone, pfn);
5433 bitidx = pfn_to_bitidx(zone, pfn);
5434 VM_BUG_ON(pfn < zone->zone_start_pfn);
5435 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5436
5437 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5438 if (flags & value)
5439 __set_bit(bitidx + start_bitidx, bitmap);
5440 else
5441 __clear_bit(bitidx + start_bitidx, bitmap);
5442 }
5443
5444 /*
5445 * This is designed as sub function...plz see page_isolation.c also.
5446 * set/clear page block's type to be ISOLATE.
5447 * page allocater never alloc memory from ISOLATE block.
5448 */
5449
5450 static int
5451 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5452 {
5453 unsigned long pfn, iter, found;
5454 /*
5455 * For avoiding noise data, lru_add_drain_all() should be called
5456 * If ZONE_MOVABLE, the zone never contains immobile pages
5457 */
5458 if (zone_idx(zone) == ZONE_MOVABLE)
5459 return true;
5460
5461 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5462 return true;
5463
5464 pfn = page_to_pfn(page);
5465 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5466 unsigned long check = pfn + iter;
5467
5468 if (!pfn_valid_within(check))
5469 continue;
5470
5471 page = pfn_to_page(check);
5472 if (!page_count(page)) {
5473 if (PageBuddy(page))
5474 iter += (1 << page_order(page)) - 1;
5475 continue;
5476 }
5477 if (!PageLRU(page))
5478 found++;
5479 /*
5480 * If there are RECLAIMABLE pages, we need to check it.
5481 * But now, memory offline itself doesn't call shrink_slab()
5482 * and it still to be fixed.
5483 */
5484 /*
5485 * If the page is not RAM, page_count()should be 0.
5486 * we don't need more check. This is an _used_ not-movable page.
5487 *
5488 * The problematic thing here is PG_reserved pages. PG_reserved
5489 * is set to both of a memory hole page and a _used_ kernel
5490 * page at boot.
5491 */
5492 if (found > count)
5493 return false;
5494 }
5495 return true;
5496 }
5497
5498 bool is_pageblock_removable_nolock(struct page *page)
5499 {
5500 struct zone *zone = page_zone(page);
5501 return __count_immobile_pages(zone, page, 0);
5502 }
5503
5504 int set_migratetype_isolate(struct page *page)
5505 {
5506 struct zone *zone;
5507 unsigned long flags, pfn;
5508 struct memory_isolate_notify arg;
5509 int notifier_ret;
5510 int ret = -EBUSY;
5511 int zone_idx;
5512
5513 zone = page_zone(page);
5514 zone_idx = zone_idx(zone);
5515
5516 spin_lock_irqsave(&zone->lock, flags);
5517
5518 pfn = page_to_pfn(page);
5519 arg.start_pfn = pfn;
5520 arg.nr_pages = pageblock_nr_pages;
5521 arg.pages_found = 0;
5522
5523 /*
5524 * It may be possible to isolate a pageblock even if the
5525 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5526 * notifier chain is used by balloon drivers to return the
5527 * number of pages in a range that are held by the balloon
5528 * driver to shrink memory. If all the pages are accounted for
5529 * by balloons, are free, or on the LRU, isolation can continue.
5530 * Later, for example, when memory hotplug notifier runs, these
5531 * pages reported as "can be isolated" should be isolated(freed)
5532 * by the balloon driver through the memory notifier chain.
5533 */
5534 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5535 notifier_ret = notifier_to_errno(notifier_ret);
5536 if (notifier_ret)
5537 goto out;
5538 /*
5539 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5540 * We just check MOVABLE pages.
5541 */
5542 if (__count_immobile_pages(zone, page, arg.pages_found))
5543 ret = 0;
5544
5545 /*
5546 * immobile means "not-on-lru" paes. If immobile is larger than
5547 * removable-by-driver pages reported by notifier, we'll fail.
5548 */
5549
5550 out:
5551 if (!ret) {
5552 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5553 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5554 }
5555
5556 spin_unlock_irqrestore(&zone->lock, flags);
5557 if (!ret)
5558 drain_all_pages();
5559 return ret;
5560 }
5561
5562 void unset_migratetype_isolate(struct page *page)
5563 {
5564 struct zone *zone;
5565 unsigned long flags;
5566 zone = page_zone(page);
5567 spin_lock_irqsave(&zone->lock, flags);
5568 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5569 goto out;
5570 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5571 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5572 out:
5573 spin_unlock_irqrestore(&zone->lock, flags);
5574 }
5575
5576 #ifdef CONFIG_MEMORY_HOTREMOVE
5577 /*
5578 * All pages in the range must be isolated before calling this.
5579 */
5580 void
5581 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5582 {
5583 struct page *page;
5584 struct zone *zone;
5585 int order, i;
5586 unsigned long pfn;
5587 unsigned long flags;
5588 /* find the first valid pfn */
5589 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5590 if (pfn_valid(pfn))
5591 break;
5592 if (pfn == end_pfn)
5593 return;
5594 zone = page_zone(pfn_to_page(pfn));
5595 spin_lock_irqsave(&zone->lock, flags);
5596 pfn = start_pfn;
5597 while (pfn < end_pfn) {
5598 if (!pfn_valid(pfn)) {
5599 pfn++;
5600 continue;
5601 }
5602 page = pfn_to_page(pfn);
5603 BUG_ON(page_count(page));
5604 BUG_ON(!PageBuddy(page));
5605 order = page_order(page);
5606 #ifdef CONFIG_DEBUG_VM
5607 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5608 pfn, 1 << order, end_pfn);
5609 #endif
5610 list_del(&page->lru);
5611 rmv_page_order(page);
5612 zone->free_area[order].nr_free--;
5613 __mod_zone_page_state(zone, NR_FREE_PAGES,
5614 - (1UL << order));
5615 for (i = 0; i < (1 << order); i++)
5616 SetPageReserved((page+i));
5617 pfn += (1 << order);
5618 }
5619 spin_unlock_irqrestore(&zone->lock, flags);
5620 }
5621 #endif
5622
5623 #ifdef CONFIG_MEMORY_FAILURE
5624 bool is_free_buddy_page(struct page *page)
5625 {
5626 struct zone *zone = page_zone(page);
5627 unsigned long pfn = page_to_pfn(page);
5628 unsigned long flags;
5629 int order;
5630
5631 spin_lock_irqsave(&zone->lock, flags);
5632 for (order = 0; order < MAX_ORDER; order++) {
5633 struct page *page_head = page - (pfn & ((1 << order) - 1));
5634
5635 if (PageBuddy(page_head) && page_order(page_head) >= order)
5636 break;
5637 }
5638 spin_unlock_irqrestore(&zone->lock, flags);
5639
5640 return order < MAX_ORDER;
5641 }
5642 #endif
5643
5644 static struct trace_print_flags pageflag_names[] = {
5645 {1UL << PG_locked, "locked" },
5646 {1UL << PG_error, "error" },
5647 {1UL << PG_referenced, "referenced" },
5648 {1UL << PG_uptodate, "uptodate" },
5649 {1UL << PG_dirty, "dirty" },
5650 {1UL << PG_lru, "lru" },
5651 {1UL << PG_active, "active" },
5652 {1UL << PG_slab, "slab" },
5653 {1UL << PG_owner_priv_1, "owner_priv_1" },
5654 {1UL << PG_arch_1, "arch_1" },
5655 {1UL << PG_reserved, "reserved" },
5656 {1UL << PG_private, "private" },
5657 {1UL << PG_private_2, "private_2" },
5658 {1UL << PG_writeback, "writeback" },
5659 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5660 {1UL << PG_head, "head" },
5661 {1UL << PG_tail, "tail" },
5662 #else
5663 {1UL << PG_compound, "compound" },
5664 #endif
5665 {1UL << PG_swapcache, "swapcache" },
5666 {1UL << PG_mappedtodisk, "mappedtodisk" },
5667 {1UL << PG_reclaim, "reclaim" },
5668 {1UL << PG_swapbacked, "swapbacked" },
5669 {1UL << PG_unevictable, "unevictable" },
5670 #ifdef CONFIG_MMU
5671 {1UL << PG_mlocked, "mlocked" },
5672 #endif
5673 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5674 {1UL << PG_uncached, "uncached" },
5675 #endif
5676 #ifdef CONFIG_MEMORY_FAILURE
5677 {1UL << PG_hwpoison, "hwpoison" },
5678 #endif
5679 {-1UL, NULL },
5680 };
5681
5682 static void dump_page_flags(unsigned long flags)
5683 {
5684 const char *delim = "";
5685 unsigned long mask;
5686 int i;
5687
5688 printk(KERN_ALERT "page flags: %#lx(", flags);
5689
5690 /* remove zone id */
5691 flags &= (1UL << NR_PAGEFLAGS) - 1;
5692
5693 for (i = 0; pageflag_names[i].name && flags; i++) {
5694
5695 mask = pageflag_names[i].mask;
5696 if ((flags & mask) != mask)
5697 continue;
5698
5699 flags &= ~mask;
5700 printk("%s%s", delim, pageflag_names[i].name);
5701 delim = "|";
5702 }
5703
5704 /* check for left over flags */
5705 if (flags)
5706 printk("%s%#lx", delim, flags);
5707
5708 printk(")\n");
5709 }
5710
5711 void dump_page(struct page *page)
5712 {
5713 printk(KERN_ALERT
5714 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5715 page, atomic_read(&page->_count), page_mapcount(page),
5716 page->mapping, page->index);
5717 dump_page_flags(page->flags);
5718 mem_cgroup_print_bad_page(page);
5719 }