8e83f02cd2d3d0bdb7124588e11e6d2950bd67ea
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~(1 << PG_lru |
241 1 << PG_private |
242 1 << PG_locked |
243 1 << PG_active |
244 1 << PG_dirty |
245 1 << PG_reclaim |
246 1 << PG_slab |
247 1 << PG_swapcache |
248 1 << PG_writeback |
249 1 << PG_buddy );
250 set_page_count(page, 0);
251 reset_page_mapcount(page);
252 page->mapping = NULL;
253 add_taint(TAINT_BAD_PAGE);
254 }
255
256 /*
257 * Higher-order pages are called "compound pages". They are structured thusly:
258 *
259 * The first PAGE_SIZE page is called the "head page".
260 *
261 * The remaining PAGE_SIZE pages are called "tail pages".
262 *
263 * All pages have PG_compound set. All pages have their ->private pointing at
264 * the head page (even the head page has this).
265 *
266 * The first tail page's ->lru.next holds the address of the compound page's
267 * put_page() function. Its ->lru.prev holds the order of allocation.
268 * This usage means that zero-order pages may not be compound.
269 */
270
271 static void free_compound_page(struct page *page)
272 {
273 __free_pages_ok(page, compound_order(page));
274 }
275
276 static void prep_compound_page(struct page *page, unsigned long order)
277 {
278 int i;
279 int nr_pages = 1 << order;
280
281 set_compound_page_dtor(page, free_compound_page);
282 set_compound_order(page, order);
283 __SetPageHead(page);
284 for (i = 1; i < nr_pages; i++) {
285 struct page *p = page + i;
286
287 __SetPageTail(p);
288 p->first_page = page;
289 }
290 }
291
292 static void destroy_compound_page(struct page *page, unsigned long order)
293 {
294 int i;
295 int nr_pages = 1 << order;
296
297 if (unlikely(compound_order(page) != order))
298 bad_page(page);
299
300 if (unlikely(!PageHead(page)))
301 bad_page(page);
302 __ClearPageHead(page);
303 for (i = 1; i < nr_pages; i++) {
304 struct page *p = page + i;
305
306 if (unlikely(!PageTail(p) |
307 (p->first_page != page)))
308 bad_page(page);
309 __ClearPageTail(p);
310 }
311 }
312
313 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
314 {
315 int i;
316
317 /*
318 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
319 * and __GFP_HIGHMEM from hard or soft interrupt context.
320 */
321 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
322 for (i = 0; i < (1 << order); i++)
323 clear_highpage(page + i);
324 }
325
326 static inline void set_page_order(struct page *page, int order)
327 {
328 set_page_private(page, order);
329 __SetPageBuddy(page);
330 }
331
332 static inline void rmv_page_order(struct page *page)
333 {
334 __ClearPageBuddy(page);
335 set_page_private(page, 0);
336 }
337
338 /*
339 * Locate the struct page for both the matching buddy in our
340 * pair (buddy1) and the combined O(n+1) page they form (page).
341 *
342 * 1) Any buddy B1 will have an order O twin B2 which satisfies
343 * the following equation:
344 * B2 = B1 ^ (1 << O)
345 * For example, if the starting buddy (buddy2) is #8 its order
346 * 1 buddy is #10:
347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
348 *
349 * 2) Any buddy B will have an order O+1 parent P which
350 * satisfies the following equation:
351 * P = B & ~(1 << O)
352 *
353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
354 */
355 static inline struct page *
356 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
357 {
358 unsigned long buddy_idx = page_idx ^ (1 << order);
359
360 return page + (buddy_idx - page_idx);
361 }
362
363 static inline unsigned long
364 __find_combined_index(unsigned long page_idx, unsigned int order)
365 {
366 return (page_idx & ~(1 << order));
367 }
368
369 /*
370 * This function checks whether a page is free && is the buddy
371 * we can do coalesce a page and its buddy if
372 * (a) the buddy is not in a hole &&
373 * (b) the buddy is in the buddy system &&
374 * (c) a page and its buddy have the same order &&
375 * (d) a page and its buddy are in the same zone.
376 *
377 * For recording whether a page is in the buddy system, we use PG_buddy.
378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
379 *
380 * For recording page's order, we use page_private(page).
381 */
382 static inline int page_is_buddy(struct page *page, struct page *buddy,
383 int order)
384 {
385 if (!pfn_valid_within(page_to_pfn(buddy)))
386 return 0;
387
388 if (page_zone_id(page) != page_zone_id(buddy))
389 return 0;
390
391 if (PageBuddy(buddy) && page_order(buddy) == order) {
392 BUG_ON(page_count(buddy) != 0);
393 return 1;
394 }
395 return 0;
396 }
397
398 /*
399 * Freeing function for a buddy system allocator.
400 *
401 * The concept of a buddy system is to maintain direct-mapped table
402 * (containing bit values) for memory blocks of various "orders".
403 * The bottom level table contains the map for the smallest allocatable
404 * units of memory (here, pages), and each level above it describes
405 * pairs of units from the levels below, hence, "buddies".
406 * At a high level, all that happens here is marking the table entry
407 * at the bottom level available, and propagating the changes upward
408 * as necessary, plus some accounting needed to play nicely with other
409 * parts of the VM system.
410 * At each level, we keep a list of pages, which are heads of continuous
411 * free pages of length of (1 << order) and marked with PG_buddy. Page's
412 * order is recorded in page_private(page) field.
413 * So when we are allocating or freeing one, we can derive the state of the
414 * other. That is, if we allocate a small block, and both were
415 * free, the remainder of the region must be split into blocks.
416 * If a block is freed, and its buddy is also free, then this
417 * triggers coalescing into a block of larger size.
418 *
419 * -- wli
420 */
421
422 static inline void __free_one_page(struct page *page,
423 struct zone *zone, unsigned int order)
424 {
425 unsigned long page_idx;
426 int order_size = 1 << order;
427 int migratetype = get_pageblock_migratetype(page);
428
429 if (unlikely(PageCompound(page)))
430 destroy_compound_page(page, order);
431
432 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
433
434 VM_BUG_ON(page_idx & (order_size - 1));
435 VM_BUG_ON(bad_range(zone, page));
436
437 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
438 while (order < MAX_ORDER-1) {
439 unsigned long combined_idx;
440 struct page *buddy;
441
442 buddy = __page_find_buddy(page, page_idx, order);
443 if (!page_is_buddy(page, buddy, order))
444 break; /* Move the buddy up one level. */
445
446 list_del(&buddy->lru);
447 zone->free_area[order].nr_free--;
448 rmv_page_order(buddy);
449 combined_idx = __find_combined_index(page_idx, order);
450 page = page + (combined_idx - page_idx);
451 page_idx = combined_idx;
452 order++;
453 }
454 set_page_order(page, order);
455 list_add(&page->lru,
456 &zone->free_area[order].free_list[migratetype]);
457 zone->free_area[order].nr_free++;
458 }
459
460 static inline int free_pages_check(struct page *page)
461 {
462 if (unlikely(page_mapcount(page) |
463 (page->mapping != NULL) |
464 (page_get_page_cgroup(page) != NULL) |
465 (page_count(page) != 0) |
466 (page->flags & (
467 1 << PG_lru |
468 1 << PG_private |
469 1 << PG_locked |
470 1 << PG_active |
471 1 << PG_slab |
472 1 << PG_swapcache |
473 1 << PG_writeback |
474 1 << PG_reserved |
475 1 << PG_buddy ))))
476 bad_page(page);
477 if (PageDirty(page))
478 __ClearPageDirty(page);
479 /*
480 * For now, we report if PG_reserved was found set, but do not
481 * clear it, and do not free the page. But we shall soon need
482 * to do more, for when the ZERO_PAGE count wraps negative.
483 */
484 return PageReserved(page);
485 }
486
487 /*
488 * Frees a list of pages.
489 * Assumes all pages on list are in same zone, and of same order.
490 * count is the number of pages to free.
491 *
492 * If the zone was previously in an "all pages pinned" state then look to
493 * see if this freeing clears that state.
494 *
495 * And clear the zone's pages_scanned counter, to hold off the "all pages are
496 * pinned" detection logic.
497 */
498 static void free_pages_bulk(struct zone *zone, int count,
499 struct list_head *list, int order)
500 {
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 while (count--) {
505 struct page *page;
506
507 VM_BUG_ON(list_empty(list));
508 page = list_entry(list->prev, struct page, lru);
509 /* have to delete it as __free_one_page list manipulates */
510 list_del(&page->lru);
511 __free_one_page(page, zone, order);
512 }
513 spin_unlock(&zone->lock);
514 }
515
516 static void free_one_page(struct zone *zone, struct page *page, int order)
517 {
518 spin_lock(&zone->lock);
519 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
520 zone->pages_scanned = 0;
521 __free_one_page(page, zone, order);
522 spin_unlock(&zone->lock);
523 }
524
525 static void __free_pages_ok(struct page *page, unsigned int order)
526 {
527 unsigned long flags;
528 int i;
529 int reserved = 0;
530
531 for (i = 0 ; i < (1 << order) ; ++i)
532 reserved += free_pages_check(page + i);
533 if (reserved)
534 return;
535
536 if (!PageHighMem(page)) {
537 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
538 debug_check_no_obj_freed(page_address(page),
539 PAGE_SIZE << order);
540 }
541 arch_free_page(page, order);
542 kernel_map_pages(page, 1 << order, 0);
543
544 local_irq_save(flags);
545 __count_vm_events(PGFREE, 1 << order);
546 free_one_page(page_zone(page), page, order);
547 local_irq_restore(flags);
548 }
549
550 /*
551 * permit the bootmem allocator to evade page validation on high-order frees
552 */
553 void __free_pages_bootmem(struct page *page, unsigned int order)
554 {
555 if (order == 0) {
556 __ClearPageReserved(page);
557 set_page_count(page, 0);
558 set_page_refcounted(page);
559 __free_page(page);
560 } else {
561 int loop;
562
563 prefetchw(page);
564 for (loop = 0; loop < BITS_PER_LONG; loop++) {
565 struct page *p = &page[loop];
566
567 if (loop + 1 < BITS_PER_LONG)
568 prefetchw(p + 1);
569 __ClearPageReserved(p);
570 set_page_count(p, 0);
571 }
572
573 set_page_refcounted(page);
574 __free_pages(page, order);
575 }
576 }
577
578
579 /*
580 * The order of subdivision here is critical for the IO subsystem.
581 * Please do not alter this order without good reasons and regression
582 * testing. Specifically, as large blocks of memory are subdivided,
583 * the order in which smaller blocks are delivered depends on the order
584 * they're subdivided in this function. This is the primary factor
585 * influencing the order in which pages are delivered to the IO
586 * subsystem according to empirical testing, and this is also justified
587 * by considering the behavior of a buddy system containing a single
588 * large block of memory acted on by a series of small allocations.
589 * This behavior is a critical factor in sglist merging's success.
590 *
591 * -- wli
592 */
593 static inline void expand(struct zone *zone, struct page *page,
594 int low, int high, struct free_area *area,
595 int migratetype)
596 {
597 unsigned long size = 1 << high;
598
599 while (high > low) {
600 area--;
601 high--;
602 size >>= 1;
603 VM_BUG_ON(bad_range(zone, &page[size]));
604 list_add(&page[size].lru, &area->free_list[migratetype]);
605 area->nr_free++;
606 set_page_order(&page[size], high);
607 }
608 }
609
610 /*
611 * This page is about to be returned from the page allocator
612 */
613 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
614 {
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
617 (page_get_page_cgroup(page) != NULL) |
618 (page_count(page) != 0) |
619 (page->flags & (
620 1 << PG_lru |
621 1 << PG_private |
622 1 << PG_locked |
623 1 << PG_active |
624 1 << PG_dirty |
625 1 << PG_slab |
626 1 << PG_swapcache |
627 1 << PG_writeback |
628 1 << PG_reserved |
629 1 << PG_buddy ))))
630 bad_page(page);
631
632 /*
633 * For now, we report if PG_reserved was found set, but do not
634 * clear it, and do not allocate the page: as a safety net.
635 */
636 if (PageReserved(page))
637 return 1;
638
639 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
640 1 << PG_referenced | 1 << PG_arch_1 |
641 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
642 set_page_private(page, 0);
643 set_page_refcounted(page);
644
645 arch_alloc_page(page, order);
646 kernel_map_pages(page, 1 << order, 1);
647
648 if (gfp_flags & __GFP_ZERO)
649 prep_zero_page(page, order, gfp_flags);
650
651 if (order && (gfp_flags & __GFP_COMP))
652 prep_compound_page(page, order);
653
654 return 0;
655 }
656
657 /*
658 * Go through the free lists for the given migratetype and remove
659 * the smallest available page from the freelists
660 */
661 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
662 int migratetype)
663 {
664 unsigned int current_order;
665 struct free_area * area;
666 struct page *page;
667
668 /* Find a page of the appropriate size in the preferred list */
669 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
670 area = &(zone->free_area[current_order]);
671 if (list_empty(&area->free_list[migratetype]))
672 continue;
673
674 page = list_entry(area->free_list[migratetype].next,
675 struct page, lru);
676 list_del(&page->lru);
677 rmv_page_order(page);
678 area->nr_free--;
679 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
680 expand(zone, page, order, current_order, area, migratetype);
681 return page;
682 }
683
684 return NULL;
685 }
686
687
688 /*
689 * This array describes the order lists are fallen back to when
690 * the free lists for the desirable migrate type are depleted
691 */
692 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
693 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
694 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
695 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
697 };
698
699 /*
700 * Move the free pages in a range to the free lists of the requested type.
701 * Note that start_page and end_pages are not aligned on a pageblock
702 * boundary. If alignment is required, use move_freepages_block()
703 */
704 int move_freepages(struct zone *zone,
705 struct page *start_page, struct page *end_page,
706 int migratetype)
707 {
708 struct page *page;
709 unsigned long order;
710 int pages_moved = 0;
711
712 #ifndef CONFIG_HOLES_IN_ZONE
713 /*
714 * page_zone is not safe to call in this context when
715 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
716 * anyway as we check zone boundaries in move_freepages_block().
717 * Remove at a later date when no bug reports exist related to
718 * grouping pages by mobility
719 */
720 BUG_ON(page_zone(start_page) != page_zone(end_page));
721 #endif
722
723 for (page = start_page; page <= end_page;) {
724 if (!pfn_valid_within(page_to_pfn(page))) {
725 page++;
726 continue;
727 }
728
729 if (!PageBuddy(page)) {
730 page++;
731 continue;
732 }
733
734 order = page_order(page);
735 list_del(&page->lru);
736 list_add(&page->lru,
737 &zone->free_area[order].free_list[migratetype]);
738 page += 1 << order;
739 pages_moved += 1 << order;
740 }
741
742 return pages_moved;
743 }
744
745 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
746 {
747 unsigned long start_pfn, end_pfn;
748 struct page *start_page, *end_page;
749
750 start_pfn = page_to_pfn(page);
751 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
752 start_page = pfn_to_page(start_pfn);
753 end_page = start_page + pageblock_nr_pages - 1;
754 end_pfn = start_pfn + pageblock_nr_pages - 1;
755
756 /* Do not cross zone boundaries */
757 if (start_pfn < zone->zone_start_pfn)
758 start_page = page;
759 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
760 return 0;
761
762 return move_freepages(zone, start_page, end_page, migratetype);
763 }
764
765 /* Remove an element from the buddy allocator from the fallback list */
766 static struct page *__rmqueue_fallback(struct zone *zone, int order,
767 int start_migratetype)
768 {
769 struct free_area * area;
770 int current_order;
771 struct page *page;
772 int migratetype, i;
773
774 /* Find the largest possible block of pages in the other list */
775 for (current_order = MAX_ORDER-1; current_order >= order;
776 --current_order) {
777 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
778 migratetype = fallbacks[start_migratetype][i];
779
780 /* MIGRATE_RESERVE handled later if necessary */
781 if (migratetype == MIGRATE_RESERVE)
782 continue;
783
784 area = &(zone->free_area[current_order]);
785 if (list_empty(&area->free_list[migratetype]))
786 continue;
787
788 page = list_entry(area->free_list[migratetype].next,
789 struct page, lru);
790 area->nr_free--;
791
792 /*
793 * If breaking a large block of pages, move all free
794 * pages to the preferred allocation list. If falling
795 * back for a reclaimable kernel allocation, be more
796 * agressive about taking ownership of free pages
797 */
798 if (unlikely(current_order >= (pageblock_order >> 1)) ||
799 start_migratetype == MIGRATE_RECLAIMABLE) {
800 unsigned long pages;
801 pages = move_freepages_block(zone, page,
802 start_migratetype);
803
804 /* Claim the whole block if over half of it is free */
805 if (pages >= (1 << (pageblock_order-1)))
806 set_pageblock_migratetype(page,
807 start_migratetype);
808
809 migratetype = start_migratetype;
810 }
811
812 /* Remove the page from the freelists */
813 list_del(&page->lru);
814 rmv_page_order(page);
815 __mod_zone_page_state(zone, NR_FREE_PAGES,
816 -(1UL << order));
817
818 if (current_order == pageblock_order)
819 set_pageblock_migratetype(page,
820 start_migratetype);
821
822 expand(zone, page, order, current_order, area, migratetype);
823 return page;
824 }
825 }
826
827 /* Use MIGRATE_RESERVE rather than fail an allocation */
828 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
829 }
830
831 /*
832 * Do the hard work of removing an element from the buddy allocator.
833 * Call me with the zone->lock already held.
834 */
835 static struct page *__rmqueue(struct zone *zone, unsigned int order,
836 int migratetype)
837 {
838 struct page *page;
839
840 page = __rmqueue_smallest(zone, order, migratetype);
841
842 if (unlikely(!page))
843 page = __rmqueue_fallback(zone, order, migratetype);
844
845 return page;
846 }
847
848 /*
849 * Obtain a specified number of elements from the buddy allocator, all under
850 * a single hold of the lock, for efficiency. Add them to the supplied list.
851 * Returns the number of new pages which were placed at *list.
852 */
853 static int rmqueue_bulk(struct zone *zone, unsigned int order,
854 unsigned long count, struct list_head *list,
855 int migratetype)
856 {
857 int i;
858
859 spin_lock(&zone->lock);
860 for (i = 0; i < count; ++i) {
861 struct page *page = __rmqueue(zone, order, migratetype);
862 if (unlikely(page == NULL))
863 break;
864
865 /*
866 * Split buddy pages returned by expand() are received here
867 * in physical page order. The page is added to the callers and
868 * list and the list head then moves forward. From the callers
869 * perspective, the linked list is ordered by page number in
870 * some conditions. This is useful for IO devices that can
871 * merge IO requests if the physical pages are ordered
872 * properly.
873 */
874 list_add(&page->lru, list);
875 set_page_private(page, migratetype);
876 list = &page->lru;
877 }
878 spin_unlock(&zone->lock);
879 return i;
880 }
881
882 #ifdef CONFIG_NUMA
883 /*
884 * Called from the vmstat counter updater to drain pagesets of this
885 * currently executing processor on remote nodes after they have
886 * expired.
887 *
888 * Note that this function must be called with the thread pinned to
889 * a single processor.
890 */
891 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
892 {
893 unsigned long flags;
894 int to_drain;
895
896 local_irq_save(flags);
897 if (pcp->count >= pcp->batch)
898 to_drain = pcp->batch;
899 else
900 to_drain = pcp->count;
901 free_pages_bulk(zone, to_drain, &pcp->list, 0);
902 pcp->count -= to_drain;
903 local_irq_restore(flags);
904 }
905 #endif
906
907 /*
908 * Drain pages of the indicated processor.
909 *
910 * The processor must either be the current processor and the
911 * thread pinned to the current processor or a processor that
912 * is not online.
913 */
914 static void drain_pages(unsigned int cpu)
915 {
916 unsigned long flags;
917 struct zone *zone;
918
919 for_each_zone(zone) {
920 struct per_cpu_pageset *pset;
921 struct per_cpu_pages *pcp;
922
923 if (!populated_zone(zone))
924 continue;
925
926 pset = zone_pcp(zone, cpu);
927
928 pcp = &pset->pcp;
929 local_irq_save(flags);
930 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931 pcp->count = 0;
932 local_irq_restore(flags);
933 }
934 }
935
936 /*
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
938 */
939 void drain_local_pages(void *arg)
940 {
941 drain_pages(smp_processor_id());
942 }
943
944 /*
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
946 */
947 void drain_all_pages(void)
948 {
949 on_each_cpu(drain_local_pages, NULL, 0, 1);
950 }
951
952 #ifdef CONFIG_HIBERNATION
953
954 void mark_free_pages(struct zone *zone)
955 {
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
958 int order, t;
959 struct list_head *curr;
960
961 if (!zone->spanned_pages)
962 return;
963
964 spin_lock_irqsave(&zone->lock, flags);
965
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
970
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
973 }
974
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
977 unsigned long i;
978
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
981 swsusp_set_page_free(pfn_to_page(pfn + i));
982 }
983 }
984 spin_unlock_irqrestore(&zone->lock, flags);
985 }
986 #endif /* CONFIG_PM */
987
988 /*
989 * Free a 0-order page
990 */
991 static void free_hot_cold_page(struct page *page, int cold)
992 {
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
996
997 if (PageAnon(page))
998 page->mapping = NULL;
999 if (free_pages_check(page))
1000 return;
1001
1002 if (!PageHighMem(page)) {
1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1005 }
1006 arch_free_page(page, 0);
1007 kernel_map_pages(page, 1, 0);
1008
1009 pcp = &zone_pcp(zone, get_cpu())->pcp;
1010 local_irq_save(flags);
1011 __count_vm_event(PGFREE);
1012 if (cold)
1013 list_add_tail(&page->lru, &pcp->list);
1014 else
1015 list_add(&page->lru, &pcp->list);
1016 set_page_private(page, get_pageblock_migratetype(page));
1017 pcp->count++;
1018 if (pcp->count >= pcp->high) {
1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020 pcp->count -= pcp->batch;
1021 }
1022 local_irq_restore(flags);
1023 put_cpu();
1024 }
1025
1026 void free_hot_page(struct page *page)
1027 {
1028 free_hot_cold_page(page, 0);
1029 }
1030
1031 void free_cold_page(struct page *page)
1032 {
1033 free_hot_cold_page(page, 1);
1034 }
1035
1036 /*
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1040 *
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1043 */
1044 void split_page(struct page *page, unsigned int order)
1045 {
1046 int i;
1047
1048 VM_BUG_ON(PageCompound(page));
1049 VM_BUG_ON(!page_count(page));
1050 for (i = 1; i < (1 << order); i++)
1051 set_page_refcounted(page + i);
1052 }
1053
1054 /*
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1057 * or two.
1058 */
1059 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1060 struct zone *zone, int order, gfp_t gfp_flags)
1061 {
1062 unsigned long flags;
1063 struct page *page;
1064 int cold = !!(gfp_flags & __GFP_COLD);
1065 int cpu;
1066 int migratetype = allocflags_to_migratetype(gfp_flags);
1067
1068 again:
1069 cpu = get_cpu();
1070 if (likely(order == 0)) {
1071 struct per_cpu_pages *pcp;
1072
1073 pcp = &zone_pcp(zone, cpu)->pcp;
1074 local_irq_save(flags);
1075 if (!pcp->count) {
1076 pcp->count = rmqueue_bulk(zone, 0,
1077 pcp->batch, &pcp->list, migratetype);
1078 if (unlikely(!pcp->count))
1079 goto failed;
1080 }
1081
1082 /* Find a page of the appropriate migrate type */
1083 if (cold) {
1084 list_for_each_entry_reverse(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1087 } else {
1088 list_for_each_entry(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 }
1092
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page->lru == &pcp->list)) {
1095 pcp->count += rmqueue_bulk(zone, 0,
1096 pcp->batch, &pcp->list, migratetype);
1097 page = list_entry(pcp->list.next, struct page, lru);
1098 }
1099
1100 list_del(&page->lru);
1101 pcp->count--;
1102 } else {
1103 spin_lock_irqsave(&zone->lock, flags);
1104 page = __rmqueue(zone, order, migratetype);
1105 spin_unlock(&zone->lock);
1106 if (!page)
1107 goto failed;
1108 }
1109
1110 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1111 zone_statistics(preferred_zone, zone);
1112 local_irq_restore(flags);
1113 put_cpu();
1114
1115 VM_BUG_ON(bad_range(zone, page));
1116 if (prep_new_page(page, order, gfp_flags))
1117 goto again;
1118 return page;
1119
1120 failed:
1121 local_irq_restore(flags);
1122 put_cpu();
1123 return NULL;
1124 }
1125
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1133
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1135
1136 static struct fail_page_alloc_attr {
1137 struct fault_attr attr;
1138
1139 u32 ignore_gfp_highmem;
1140 u32 ignore_gfp_wait;
1141 u32 min_order;
1142
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1144
1145 struct dentry *ignore_gfp_highmem_file;
1146 struct dentry *ignore_gfp_wait_file;
1147 struct dentry *min_order_file;
1148
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1150
1151 } fail_page_alloc = {
1152 .attr = FAULT_ATTR_INITIALIZER,
1153 .ignore_gfp_wait = 1,
1154 .ignore_gfp_highmem = 1,
1155 .min_order = 1,
1156 };
1157
1158 static int __init setup_fail_page_alloc(char *str)
1159 {
1160 return setup_fault_attr(&fail_page_alloc.attr, str);
1161 }
1162 __setup("fail_page_alloc=", setup_fail_page_alloc);
1163
1164 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1165 {
1166 if (order < fail_page_alloc.min_order)
1167 return 0;
1168 if (gfp_mask & __GFP_NOFAIL)
1169 return 0;
1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171 return 0;
1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173 return 0;
1174
1175 return should_fail(&fail_page_alloc.attr, 1 << order);
1176 }
1177
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1179
1180 static int __init fail_page_alloc_debugfs(void)
1181 {
1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183 struct dentry *dir;
1184 int err;
1185
1186 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187 "fail_page_alloc");
1188 if (err)
1189 return err;
1190 dir = fail_page_alloc.attr.dentries.dir;
1191
1192 fail_page_alloc.ignore_gfp_wait_file =
1193 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194 &fail_page_alloc.ignore_gfp_wait);
1195
1196 fail_page_alloc.ignore_gfp_highmem_file =
1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198 &fail_page_alloc.ignore_gfp_highmem);
1199 fail_page_alloc.min_order_file =
1200 debugfs_create_u32("min-order", mode, dir,
1201 &fail_page_alloc.min_order);
1202
1203 if (!fail_page_alloc.ignore_gfp_wait_file ||
1204 !fail_page_alloc.ignore_gfp_highmem_file ||
1205 !fail_page_alloc.min_order_file) {
1206 err = -ENOMEM;
1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1209 debugfs_remove(fail_page_alloc.min_order_file);
1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1211 }
1212
1213 return err;
1214 }
1215
1216 late_initcall(fail_page_alloc_debugfs);
1217
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1221
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223 {
1224 return 0;
1225 }
1226
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1228
1229 /*
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1232 */
1233 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1234 int classzone_idx, int alloc_flags)
1235 {
1236 /* free_pages my go negative - that's OK */
1237 long min = mark;
1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1239 int o;
1240
1241 if (alloc_flags & ALLOC_HIGH)
1242 min -= min / 2;
1243 if (alloc_flags & ALLOC_HARDER)
1244 min -= min / 4;
1245
1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247 return 0;
1248 for (o = 0; o < order; o++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages -= z->free_area[o].nr_free << o;
1251
1252 /* Require fewer higher order pages to be free */
1253 min >>= 1;
1254
1255 if (free_pages <= min)
1256 return 0;
1257 }
1258 return 1;
1259 }
1260
1261 #ifdef CONFIG_NUMA
1262 /*
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1268 *
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1272 *
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1275 *
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1278 *
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1283 */
1284 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1285 {
1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1287 nodemask_t *allowednodes; /* zonelist_cache approximation */
1288
1289 zlc = zonelist->zlcache_ptr;
1290 if (!zlc)
1291 return NULL;
1292
1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295 zlc->last_full_zap = jiffies;
1296 }
1297
1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299 &cpuset_current_mems_allowed :
1300 &node_states[N_HIGH_MEMORY];
1301 return allowednodes;
1302 }
1303
1304 /*
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1313 *
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1320 *
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1325 */
1326 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1327 nodemask_t *allowednodes)
1328 {
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331 int n; /* node that zone *z is on */
1332
1333 zlc = zonelist->zlcache_ptr;
1334 if (!zlc)
1335 return 1;
1336
1337 i = z - zonelist->_zonerefs;
1338 n = zlc->z_to_n[i];
1339
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1342 }
1343
1344 /*
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1348 */
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1350 {
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 int i; /* index of *z in zonelist zones */
1353
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return;
1357
1358 i = z - zonelist->_zonerefs;
1359
1360 set_bit(i, zlc->fullzones);
1361 }
1362
1363 #else /* CONFIG_NUMA */
1364
1365 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366 {
1367 return NULL;
1368 }
1369
1370 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1371 nodemask_t *allowednodes)
1372 {
1373 return 1;
1374 }
1375
1376 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1377 {
1378 }
1379 #endif /* CONFIG_NUMA */
1380
1381 /*
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1383 * a page.
1384 */
1385 static struct page *
1386 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1388 {
1389 struct zoneref *z;
1390 struct page *page = NULL;
1391 int classzone_idx;
1392 struct zone *zone, *preferred_zone;
1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394 int zlc_active = 0; /* set if using zonelist_cache */
1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1396
1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398 &preferred_zone);
1399 if (!preferred_zone)
1400 return NULL;
1401
1402 classzone_idx = zone_idx(preferred_zone);
1403
1404 zonelist_scan:
1405 /*
1406 * Scan zonelist, looking for a zone with enough free.
1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1408 */
1409 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1410 high_zoneidx, nodemask) {
1411 if (NUMA_BUILD && zlc_active &&
1412 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1413 continue;
1414 if ((alloc_flags & ALLOC_CPUSET) &&
1415 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1416 goto try_next_zone;
1417
1418 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1419 unsigned long mark;
1420 if (alloc_flags & ALLOC_WMARK_MIN)
1421 mark = zone->pages_min;
1422 else if (alloc_flags & ALLOC_WMARK_LOW)
1423 mark = zone->pages_low;
1424 else
1425 mark = zone->pages_high;
1426 if (!zone_watermark_ok(zone, order, mark,
1427 classzone_idx, alloc_flags)) {
1428 if (!zone_reclaim_mode ||
1429 !zone_reclaim(zone, gfp_mask, order))
1430 goto this_zone_full;
1431 }
1432 }
1433
1434 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1435 if (page)
1436 break;
1437 this_zone_full:
1438 if (NUMA_BUILD)
1439 zlc_mark_zone_full(zonelist, z);
1440 try_next_zone:
1441 if (NUMA_BUILD && !did_zlc_setup) {
1442 /* we do zlc_setup after the first zone is tried */
1443 allowednodes = zlc_setup(zonelist, alloc_flags);
1444 zlc_active = 1;
1445 did_zlc_setup = 1;
1446 }
1447 }
1448
1449 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1450 /* Disable zlc cache for second zonelist scan */
1451 zlc_active = 0;
1452 goto zonelist_scan;
1453 }
1454 return page;
1455 }
1456
1457 /*
1458 * This is the 'heart' of the zoned buddy allocator.
1459 */
1460 static struct page *
1461 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1462 struct zonelist *zonelist, nodemask_t *nodemask)
1463 {
1464 const gfp_t wait = gfp_mask & __GFP_WAIT;
1465 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1466 struct zoneref *z;
1467 struct zone *zone;
1468 struct page *page;
1469 struct reclaim_state reclaim_state;
1470 struct task_struct *p = current;
1471 int do_retry;
1472 int alloc_flags;
1473 unsigned long did_some_progress;
1474 unsigned long pages_reclaimed = 0;
1475
1476 might_sleep_if(wait);
1477
1478 if (should_fail_alloc_page(gfp_mask, order))
1479 return NULL;
1480
1481 restart:
1482 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1483
1484 if (unlikely(!z->zone)) {
1485 /*
1486 * Happens if we have an empty zonelist as a result of
1487 * GFP_THISNODE being used on a memoryless node
1488 */
1489 return NULL;
1490 }
1491
1492 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1493 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1494 if (page)
1495 goto got_pg;
1496
1497 /*
1498 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501 * using a larger set of nodes after it has established that the
1502 * allowed per node queues are empty and that nodes are
1503 * over allocated.
1504 */
1505 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1506 goto nopage;
1507
1508 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1509 wakeup_kswapd(zone, order);
1510
1511 /*
1512 * OK, we're below the kswapd watermark and have kicked background
1513 * reclaim. Now things get more complex, so set up alloc_flags according
1514 * to how we want to proceed.
1515 *
1516 * The caller may dip into page reserves a bit more if the caller
1517 * cannot run direct reclaim, or if the caller has realtime scheduling
1518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1519 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1520 */
1521 alloc_flags = ALLOC_WMARK_MIN;
1522 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1523 alloc_flags |= ALLOC_HARDER;
1524 if (gfp_mask & __GFP_HIGH)
1525 alloc_flags |= ALLOC_HIGH;
1526 if (wait)
1527 alloc_flags |= ALLOC_CPUSET;
1528
1529 /*
1530 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531 * coming from realtime tasks go deeper into reserves.
1532 *
1533 * This is the last chance, in general, before the goto nopage.
1534 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1536 */
1537 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1538 high_zoneidx, alloc_flags);
1539 if (page)
1540 goto got_pg;
1541
1542 /* This allocation should allow future memory freeing. */
1543
1544 rebalance:
1545 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1546 && !in_interrupt()) {
1547 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1548 nofail_alloc:
1549 /* go through the zonelist yet again, ignoring mins */
1550 page = get_page_from_freelist(gfp_mask, nodemask, order,
1551 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1552 if (page)
1553 goto got_pg;
1554 if (gfp_mask & __GFP_NOFAIL) {
1555 congestion_wait(WRITE, HZ/50);
1556 goto nofail_alloc;
1557 }
1558 }
1559 goto nopage;
1560 }
1561
1562 /* Atomic allocations - we can't balance anything */
1563 if (!wait)
1564 goto nopage;
1565
1566 cond_resched();
1567
1568 /* We now go into synchronous reclaim */
1569 cpuset_memory_pressure_bump();
1570 p->flags |= PF_MEMALLOC;
1571 reclaim_state.reclaimed_slab = 0;
1572 p->reclaim_state = &reclaim_state;
1573
1574 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1575
1576 p->reclaim_state = NULL;
1577 p->flags &= ~PF_MEMALLOC;
1578
1579 cond_resched();
1580
1581 if (order != 0)
1582 drain_all_pages();
1583
1584 if (likely(did_some_progress)) {
1585 page = get_page_from_freelist(gfp_mask, nodemask, order,
1586 zonelist, high_zoneidx, alloc_flags);
1587 if (page)
1588 goto got_pg;
1589 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1590 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1591 schedule_timeout_uninterruptible(1);
1592 goto restart;
1593 }
1594
1595 /*
1596 * Go through the zonelist yet one more time, keep
1597 * very high watermark here, this is only to catch
1598 * a parallel oom killing, we must fail if we're still
1599 * under heavy pressure.
1600 */
1601 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1602 order, zonelist, high_zoneidx,
1603 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1604 if (page) {
1605 clear_zonelist_oom(zonelist, gfp_mask);
1606 goto got_pg;
1607 }
1608
1609 /* The OOM killer will not help higher order allocs so fail */
1610 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1611 clear_zonelist_oom(zonelist, gfp_mask);
1612 goto nopage;
1613 }
1614
1615 out_of_memory(zonelist, gfp_mask, order);
1616 clear_zonelist_oom(zonelist, gfp_mask);
1617 goto restart;
1618 }
1619
1620 /*
1621 * Don't let big-order allocations loop unless the caller explicitly
1622 * requests that. Wait for some write requests to complete then retry.
1623 *
1624 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1625 * means __GFP_NOFAIL, but that may not be true in other
1626 * implementations.
1627 *
1628 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1629 * specified, then we retry until we no longer reclaim any pages
1630 * (above), or we've reclaimed an order of pages at least as
1631 * large as the allocation's order. In both cases, if the
1632 * allocation still fails, we stop retrying.
1633 */
1634 pages_reclaimed += did_some_progress;
1635 do_retry = 0;
1636 if (!(gfp_mask & __GFP_NORETRY)) {
1637 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1638 do_retry = 1;
1639 } else {
1640 if (gfp_mask & __GFP_REPEAT &&
1641 pages_reclaimed < (1 << order))
1642 do_retry = 1;
1643 }
1644 if (gfp_mask & __GFP_NOFAIL)
1645 do_retry = 1;
1646 }
1647 if (do_retry) {
1648 congestion_wait(WRITE, HZ/50);
1649 goto rebalance;
1650 }
1651
1652 nopage:
1653 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1654 printk(KERN_WARNING "%s: page allocation failure."
1655 " order:%d, mode:0x%x\n",
1656 p->comm, order, gfp_mask);
1657 dump_stack();
1658 show_mem();
1659 }
1660 got_pg:
1661 return page;
1662 }
1663
1664 struct page *
1665 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1666 struct zonelist *zonelist)
1667 {
1668 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1669 }
1670
1671 struct page *
1672 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1673 struct zonelist *zonelist, nodemask_t *nodemask)
1674 {
1675 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1676 }
1677
1678 EXPORT_SYMBOL(__alloc_pages);
1679
1680 /*
1681 * Common helper functions.
1682 */
1683 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1684 {
1685 struct page * page;
1686 page = alloc_pages(gfp_mask, order);
1687 if (!page)
1688 return 0;
1689 return (unsigned long) page_address(page);
1690 }
1691
1692 EXPORT_SYMBOL(__get_free_pages);
1693
1694 unsigned long get_zeroed_page(gfp_t gfp_mask)
1695 {
1696 struct page * page;
1697
1698 /*
1699 * get_zeroed_page() returns a 32-bit address, which cannot represent
1700 * a highmem page
1701 */
1702 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1703
1704 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1705 if (page)
1706 return (unsigned long) page_address(page);
1707 return 0;
1708 }
1709
1710 EXPORT_SYMBOL(get_zeroed_page);
1711
1712 void __pagevec_free(struct pagevec *pvec)
1713 {
1714 int i = pagevec_count(pvec);
1715
1716 while (--i >= 0)
1717 free_hot_cold_page(pvec->pages[i], pvec->cold);
1718 }
1719
1720 void __free_pages(struct page *page, unsigned int order)
1721 {
1722 if (put_page_testzero(page)) {
1723 if (order == 0)
1724 free_hot_page(page);
1725 else
1726 __free_pages_ok(page, order);
1727 }
1728 }
1729
1730 EXPORT_SYMBOL(__free_pages);
1731
1732 void free_pages(unsigned long addr, unsigned int order)
1733 {
1734 if (addr != 0) {
1735 VM_BUG_ON(!virt_addr_valid((void *)addr));
1736 __free_pages(virt_to_page((void *)addr), order);
1737 }
1738 }
1739
1740 EXPORT_SYMBOL(free_pages);
1741
1742 static unsigned int nr_free_zone_pages(int offset)
1743 {
1744 struct zoneref *z;
1745 struct zone *zone;
1746
1747 /* Just pick one node, since fallback list is circular */
1748 unsigned int sum = 0;
1749
1750 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1751
1752 for_each_zone_zonelist(zone, z, zonelist, offset) {
1753 unsigned long size = zone->present_pages;
1754 unsigned long high = zone->pages_high;
1755 if (size > high)
1756 sum += size - high;
1757 }
1758
1759 return sum;
1760 }
1761
1762 /*
1763 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1764 */
1765 unsigned int nr_free_buffer_pages(void)
1766 {
1767 return nr_free_zone_pages(gfp_zone(GFP_USER));
1768 }
1769 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1770
1771 /*
1772 * Amount of free RAM allocatable within all zones
1773 */
1774 unsigned int nr_free_pagecache_pages(void)
1775 {
1776 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1777 }
1778
1779 static inline void show_node(struct zone *zone)
1780 {
1781 if (NUMA_BUILD)
1782 printk("Node %d ", zone_to_nid(zone));
1783 }
1784
1785 void si_meminfo(struct sysinfo *val)
1786 {
1787 val->totalram = totalram_pages;
1788 val->sharedram = 0;
1789 val->freeram = global_page_state(NR_FREE_PAGES);
1790 val->bufferram = nr_blockdev_pages();
1791 val->totalhigh = totalhigh_pages;
1792 val->freehigh = nr_free_highpages();
1793 val->mem_unit = PAGE_SIZE;
1794 }
1795
1796 EXPORT_SYMBOL(si_meminfo);
1797
1798 #ifdef CONFIG_NUMA
1799 void si_meminfo_node(struct sysinfo *val, int nid)
1800 {
1801 pg_data_t *pgdat = NODE_DATA(nid);
1802
1803 val->totalram = pgdat->node_present_pages;
1804 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1805 #ifdef CONFIG_HIGHMEM
1806 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1807 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1808 NR_FREE_PAGES);
1809 #else
1810 val->totalhigh = 0;
1811 val->freehigh = 0;
1812 #endif
1813 val->mem_unit = PAGE_SIZE;
1814 }
1815 #endif
1816
1817 #define K(x) ((x) << (PAGE_SHIFT-10))
1818
1819 /*
1820 * Show free area list (used inside shift_scroll-lock stuff)
1821 * We also calculate the percentage fragmentation. We do this by counting the
1822 * memory on each free list with the exception of the first item on the list.
1823 */
1824 void show_free_areas(void)
1825 {
1826 int cpu;
1827 struct zone *zone;
1828
1829 for_each_zone(zone) {
1830 if (!populated_zone(zone))
1831 continue;
1832
1833 show_node(zone);
1834 printk("%s per-cpu:\n", zone->name);
1835
1836 for_each_online_cpu(cpu) {
1837 struct per_cpu_pageset *pageset;
1838
1839 pageset = zone_pcp(zone, cpu);
1840
1841 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1842 cpu, pageset->pcp.high,
1843 pageset->pcp.batch, pageset->pcp.count);
1844 }
1845 }
1846
1847 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1848 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1849 global_page_state(NR_ACTIVE),
1850 global_page_state(NR_INACTIVE),
1851 global_page_state(NR_FILE_DIRTY),
1852 global_page_state(NR_WRITEBACK),
1853 global_page_state(NR_UNSTABLE_NFS),
1854 global_page_state(NR_FREE_PAGES),
1855 global_page_state(NR_SLAB_RECLAIMABLE) +
1856 global_page_state(NR_SLAB_UNRECLAIMABLE),
1857 global_page_state(NR_FILE_MAPPED),
1858 global_page_state(NR_PAGETABLE),
1859 global_page_state(NR_BOUNCE));
1860
1861 for_each_zone(zone) {
1862 int i;
1863
1864 if (!populated_zone(zone))
1865 continue;
1866
1867 show_node(zone);
1868 printk("%s"
1869 " free:%lukB"
1870 " min:%lukB"
1871 " low:%lukB"
1872 " high:%lukB"
1873 " active:%lukB"
1874 " inactive:%lukB"
1875 " present:%lukB"
1876 " pages_scanned:%lu"
1877 " all_unreclaimable? %s"
1878 "\n",
1879 zone->name,
1880 K(zone_page_state(zone, NR_FREE_PAGES)),
1881 K(zone->pages_min),
1882 K(zone->pages_low),
1883 K(zone->pages_high),
1884 K(zone_page_state(zone, NR_ACTIVE)),
1885 K(zone_page_state(zone, NR_INACTIVE)),
1886 K(zone->present_pages),
1887 zone->pages_scanned,
1888 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1889 );
1890 printk("lowmem_reserve[]:");
1891 for (i = 0; i < MAX_NR_ZONES; i++)
1892 printk(" %lu", zone->lowmem_reserve[i]);
1893 printk("\n");
1894 }
1895
1896 for_each_zone(zone) {
1897 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1898
1899 if (!populated_zone(zone))
1900 continue;
1901
1902 show_node(zone);
1903 printk("%s: ", zone->name);
1904
1905 spin_lock_irqsave(&zone->lock, flags);
1906 for (order = 0; order < MAX_ORDER; order++) {
1907 nr[order] = zone->free_area[order].nr_free;
1908 total += nr[order] << order;
1909 }
1910 spin_unlock_irqrestore(&zone->lock, flags);
1911 for (order = 0; order < MAX_ORDER; order++)
1912 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1913 printk("= %lukB\n", K(total));
1914 }
1915
1916 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1917
1918 show_swap_cache_info();
1919 }
1920
1921 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1922 {
1923 zoneref->zone = zone;
1924 zoneref->zone_idx = zone_idx(zone);
1925 }
1926
1927 /*
1928 * Builds allocation fallback zone lists.
1929 *
1930 * Add all populated zones of a node to the zonelist.
1931 */
1932 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1933 int nr_zones, enum zone_type zone_type)
1934 {
1935 struct zone *zone;
1936
1937 BUG_ON(zone_type >= MAX_NR_ZONES);
1938 zone_type++;
1939
1940 do {
1941 zone_type--;
1942 zone = pgdat->node_zones + zone_type;
1943 if (populated_zone(zone)) {
1944 zoneref_set_zone(zone,
1945 &zonelist->_zonerefs[nr_zones++]);
1946 check_highest_zone(zone_type);
1947 }
1948
1949 } while (zone_type);
1950 return nr_zones;
1951 }
1952
1953
1954 /*
1955 * zonelist_order:
1956 * 0 = automatic detection of better ordering.
1957 * 1 = order by ([node] distance, -zonetype)
1958 * 2 = order by (-zonetype, [node] distance)
1959 *
1960 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1961 * the same zonelist. So only NUMA can configure this param.
1962 */
1963 #define ZONELIST_ORDER_DEFAULT 0
1964 #define ZONELIST_ORDER_NODE 1
1965 #define ZONELIST_ORDER_ZONE 2
1966
1967 /* zonelist order in the kernel.
1968 * set_zonelist_order() will set this to NODE or ZONE.
1969 */
1970 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1971 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1972
1973
1974 #ifdef CONFIG_NUMA
1975 /* The value user specified ....changed by config */
1976 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1977 /* string for sysctl */
1978 #define NUMA_ZONELIST_ORDER_LEN 16
1979 char numa_zonelist_order[16] = "default";
1980
1981 /*
1982 * interface for configure zonelist ordering.
1983 * command line option "numa_zonelist_order"
1984 * = "[dD]efault - default, automatic configuration.
1985 * = "[nN]ode - order by node locality, then by zone within node
1986 * = "[zZ]one - order by zone, then by locality within zone
1987 */
1988
1989 static int __parse_numa_zonelist_order(char *s)
1990 {
1991 if (*s == 'd' || *s == 'D') {
1992 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1993 } else if (*s == 'n' || *s == 'N') {
1994 user_zonelist_order = ZONELIST_ORDER_NODE;
1995 } else if (*s == 'z' || *s == 'Z') {
1996 user_zonelist_order = ZONELIST_ORDER_ZONE;
1997 } else {
1998 printk(KERN_WARNING
1999 "Ignoring invalid numa_zonelist_order value: "
2000 "%s\n", s);
2001 return -EINVAL;
2002 }
2003 return 0;
2004 }
2005
2006 static __init int setup_numa_zonelist_order(char *s)
2007 {
2008 if (s)
2009 return __parse_numa_zonelist_order(s);
2010 return 0;
2011 }
2012 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2013
2014 /*
2015 * sysctl handler for numa_zonelist_order
2016 */
2017 int numa_zonelist_order_handler(ctl_table *table, int write,
2018 struct file *file, void __user *buffer, size_t *length,
2019 loff_t *ppos)
2020 {
2021 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2022 int ret;
2023
2024 if (write)
2025 strncpy(saved_string, (char*)table->data,
2026 NUMA_ZONELIST_ORDER_LEN);
2027 ret = proc_dostring(table, write, file, buffer, length, ppos);
2028 if (ret)
2029 return ret;
2030 if (write) {
2031 int oldval = user_zonelist_order;
2032 if (__parse_numa_zonelist_order((char*)table->data)) {
2033 /*
2034 * bogus value. restore saved string
2035 */
2036 strncpy((char*)table->data, saved_string,
2037 NUMA_ZONELIST_ORDER_LEN);
2038 user_zonelist_order = oldval;
2039 } else if (oldval != user_zonelist_order)
2040 build_all_zonelists();
2041 }
2042 return 0;
2043 }
2044
2045
2046 #define MAX_NODE_LOAD (num_online_nodes())
2047 static int node_load[MAX_NUMNODES];
2048
2049 /**
2050 * find_next_best_node - find the next node that should appear in a given node's fallback list
2051 * @node: node whose fallback list we're appending
2052 * @used_node_mask: nodemask_t of already used nodes
2053 *
2054 * We use a number of factors to determine which is the next node that should
2055 * appear on a given node's fallback list. The node should not have appeared
2056 * already in @node's fallback list, and it should be the next closest node
2057 * according to the distance array (which contains arbitrary distance values
2058 * from each node to each node in the system), and should also prefer nodes
2059 * with no CPUs, since presumably they'll have very little allocation pressure
2060 * on them otherwise.
2061 * It returns -1 if no node is found.
2062 */
2063 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2064 {
2065 int n, val;
2066 int min_val = INT_MAX;
2067 int best_node = -1;
2068 node_to_cpumask_ptr(tmp, 0);
2069
2070 /* Use the local node if we haven't already */
2071 if (!node_isset(node, *used_node_mask)) {
2072 node_set(node, *used_node_mask);
2073 return node;
2074 }
2075
2076 for_each_node_state(n, N_HIGH_MEMORY) {
2077
2078 /* Don't want a node to appear more than once */
2079 if (node_isset(n, *used_node_mask))
2080 continue;
2081
2082 /* Use the distance array to find the distance */
2083 val = node_distance(node, n);
2084
2085 /* Penalize nodes under us ("prefer the next node") */
2086 val += (n < node);
2087
2088 /* Give preference to headless and unused nodes */
2089 node_to_cpumask_ptr_next(tmp, n);
2090 if (!cpus_empty(*tmp))
2091 val += PENALTY_FOR_NODE_WITH_CPUS;
2092
2093 /* Slight preference for less loaded node */
2094 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2095 val += node_load[n];
2096
2097 if (val < min_val) {
2098 min_val = val;
2099 best_node = n;
2100 }
2101 }
2102
2103 if (best_node >= 0)
2104 node_set(best_node, *used_node_mask);
2105
2106 return best_node;
2107 }
2108
2109
2110 /*
2111 * Build zonelists ordered by node and zones within node.
2112 * This results in maximum locality--normal zone overflows into local
2113 * DMA zone, if any--but risks exhausting DMA zone.
2114 */
2115 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2116 {
2117 int j;
2118 struct zonelist *zonelist;
2119
2120 zonelist = &pgdat->node_zonelists[0];
2121 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2122 ;
2123 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2124 MAX_NR_ZONES - 1);
2125 zonelist->_zonerefs[j].zone = NULL;
2126 zonelist->_zonerefs[j].zone_idx = 0;
2127 }
2128
2129 /*
2130 * Build gfp_thisnode zonelists
2131 */
2132 static void build_thisnode_zonelists(pg_data_t *pgdat)
2133 {
2134 int j;
2135 struct zonelist *zonelist;
2136
2137 zonelist = &pgdat->node_zonelists[1];
2138 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2139 zonelist->_zonerefs[j].zone = NULL;
2140 zonelist->_zonerefs[j].zone_idx = 0;
2141 }
2142
2143 /*
2144 * Build zonelists ordered by zone and nodes within zones.
2145 * This results in conserving DMA zone[s] until all Normal memory is
2146 * exhausted, but results in overflowing to remote node while memory
2147 * may still exist in local DMA zone.
2148 */
2149 static int node_order[MAX_NUMNODES];
2150
2151 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2152 {
2153 int pos, j, node;
2154 int zone_type; /* needs to be signed */
2155 struct zone *z;
2156 struct zonelist *zonelist;
2157
2158 zonelist = &pgdat->node_zonelists[0];
2159 pos = 0;
2160 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2161 for (j = 0; j < nr_nodes; j++) {
2162 node = node_order[j];
2163 z = &NODE_DATA(node)->node_zones[zone_type];
2164 if (populated_zone(z)) {
2165 zoneref_set_zone(z,
2166 &zonelist->_zonerefs[pos++]);
2167 check_highest_zone(zone_type);
2168 }
2169 }
2170 }
2171 zonelist->_zonerefs[pos].zone = NULL;
2172 zonelist->_zonerefs[pos].zone_idx = 0;
2173 }
2174
2175 static int default_zonelist_order(void)
2176 {
2177 int nid, zone_type;
2178 unsigned long low_kmem_size,total_size;
2179 struct zone *z;
2180 int average_size;
2181 /*
2182 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2183 * If they are really small and used heavily, the system can fall
2184 * into OOM very easily.
2185 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2186 */
2187 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2188 low_kmem_size = 0;
2189 total_size = 0;
2190 for_each_online_node(nid) {
2191 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2192 z = &NODE_DATA(nid)->node_zones[zone_type];
2193 if (populated_zone(z)) {
2194 if (zone_type < ZONE_NORMAL)
2195 low_kmem_size += z->present_pages;
2196 total_size += z->present_pages;
2197 }
2198 }
2199 }
2200 if (!low_kmem_size || /* there are no DMA area. */
2201 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2202 return ZONELIST_ORDER_NODE;
2203 /*
2204 * look into each node's config.
2205 * If there is a node whose DMA/DMA32 memory is very big area on
2206 * local memory, NODE_ORDER may be suitable.
2207 */
2208 average_size = total_size /
2209 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2210 for_each_online_node(nid) {
2211 low_kmem_size = 0;
2212 total_size = 0;
2213 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2214 z = &NODE_DATA(nid)->node_zones[zone_type];
2215 if (populated_zone(z)) {
2216 if (zone_type < ZONE_NORMAL)
2217 low_kmem_size += z->present_pages;
2218 total_size += z->present_pages;
2219 }
2220 }
2221 if (low_kmem_size &&
2222 total_size > average_size && /* ignore small node */
2223 low_kmem_size > total_size * 70/100)
2224 return ZONELIST_ORDER_NODE;
2225 }
2226 return ZONELIST_ORDER_ZONE;
2227 }
2228
2229 static void set_zonelist_order(void)
2230 {
2231 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2232 current_zonelist_order = default_zonelist_order();
2233 else
2234 current_zonelist_order = user_zonelist_order;
2235 }
2236
2237 static void build_zonelists(pg_data_t *pgdat)
2238 {
2239 int j, node, load;
2240 enum zone_type i;
2241 nodemask_t used_mask;
2242 int local_node, prev_node;
2243 struct zonelist *zonelist;
2244 int order = current_zonelist_order;
2245
2246 /* initialize zonelists */
2247 for (i = 0; i < MAX_ZONELISTS; i++) {
2248 zonelist = pgdat->node_zonelists + i;
2249 zonelist->_zonerefs[0].zone = NULL;
2250 zonelist->_zonerefs[0].zone_idx = 0;
2251 }
2252
2253 /* NUMA-aware ordering of nodes */
2254 local_node = pgdat->node_id;
2255 load = num_online_nodes();
2256 prev_node = local_node;
2257 nodes_clear(used_mask);
2258
2259 memset(node_load, 0, sizeof(node_load));
2260 memset(node_order, 0, sizeof(node_order));
2261 j = 0;
2262
2263 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2264 int distance = node_distance(local_node, node);
2265
2266 /*
2267 * If another node is sufficiently far away then it is better
2268 * to reclaim pages in a zone before going off node.
2269 */
2270 if (distance > RECLAIM_DISTANCE)
2271 zone_reclaim_mode = 1;
2272
2273 /*
2274 * We don't want to pressure a particular node.
2275 * So adding penalty to the first node in same
2276 * distance group to make it round-robin.
2277 */
2278 if (distance != node_distance(local_node, prev_node))
2279 node_load[node] = load;
2280
2281 prev_node = node;
2282 load--;
2283 if (order == ZONELIST_ORDER_NODE)
2284 build_zonelists_in_node_order(pgdat, node);
2285 else
2286 node_order[j++] = node; /* remember order */
2287 }
2288
2289 if (order == ZONELIST_ORDER_ZONE) {
2290 /* calculate node order -- i.e., DMA last! */
2291 build_zonelists_in_zone_order(pgdat, j);
2292 }
2293
2294 build_thisnode_zonelists(pgdat);
2295 }
2296
2297 /* Construct the zonelist performance cache - see further mmzone.h */
2298 static void build_zonelist_cache(pg_data_t *pgdat)
2299 {
2300 struct zonelist *zonelist;
2301 struct zonelist_cache *zlc;
2302 struct zoneref *z;
2303
2304 zonelist = &pgdat->node_zonelists[0];
2305 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2306 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2307 for (z = zonelist->_zonerefs; z->zone; z++)
2308 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2309 }
2310
2311
2312 #else /* CONFIG_NUMA */
2313
2314 static void set_zonelist_order(void)
2315 {
2316 current_zonelist_order = ZONELIST_ORDER_ZONE;
2317 }
2318
2319 static void build_zonelists(pg_data_t *pgdat)
2320 {
2321 int node, local_node;
2322 enum zone_type j;
2323 struct zonelist *zonelist;
2324
2325 local_node = pgdat->node_id;
2326
2327 zonelist = &pgdat->node_zonelists[0];
2328 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2329
2330 /*
2331 * Now we build the zonelist so that it contains the zones
2332 * of all the other nodes.
2333 * We don't want to pressure a particular node, so when
2334 * building the zones for node N, we make sure that the
2335 * zones coming right after the local ones are those from
2336 * node N+1 (modulo N)
2337 */
2338 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2339 if (!node_online(node))
2340 continue;
2341 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2342 MAX_NR_ZONES - 1);
2343 }
2344 for (node = 0; node < local_node; node++) {
2345 if (!node_online(node))
2346 continue;
2347 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2348 MAX_NR_ZONES - 1);
2349 }
2350
2351 zonelist->_zonerefs[j].zone = NULL;
2352 zonelist->_zonerefs[j].zone_idx = 0;
2353 }
2354
2355 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2356 static void build_zonelist_cache(pg_data_t *pgdat)
2357 {
2358 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2359 pgdat->node_zonelists[1].zlcache_ptr = NULL;
2360 }
2361
2362 #endif /* CONFIG_NUMA */
2363
2364 /* return values int ....just for stop_machine_run() */
2365 static int __build_all_zonelists(void *dummy)
2366 {
2367 int nid;
2368
2369 for_each_online_node(nid) {
2370 pg_data_t *pgdat = NODE_DATA(nid);
2371
2372 build_zonelists(pgdat);
2373 build_zonelist_cache(pgdat);
2374 }
2375 return 0;
2376 }
2377
2378 void build_all_zonelists(void)
2379 {
2380 set_zonelist_order();
2381
2382 if (system_state == SYSTEM_BOOTING) {
2383 __build_all_zonelists(NULL);
2384 cpuset_init_current_mems_allowed();
2385 } else {
2386 /* we have to stop all cpus to guarantee there is no user
2387 of zonelist */
2388 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2389 /* cpuset refresh routine should be here */
2390 }
2391 vm_total_pages = nr_free_pagecache_pages();
2392 /*
2393 * Disable grouping by mobility if the number of pages in the
2394 * system is too low to allow the mechanism to work. It would be
2395 * more accurate, but expensive to check per-zone. This check is
2396 * made on memory-hotadd so a system can start with mobility
2397 * disabled and enable it later
2398 */
2399 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2400 page_group_by_mobility_disabled = 1;
2401 else
2402 page_group_by_mobility_disabled = 0;
2403
2404 printk("Built %i zonelists in %s order, mobility grouping %s. "
2405 "Total pages: %ld\n",
2406 num_online_nodes(),
2407 zonelist_order_name[current_zonelist_order],
2408 page_group_by_mobility_disabled ? "off" : "on",
2409 vm_total_pages);
2410 #ifdef CONFIG_NUMA
2411 printk("Policy zone: %s\n", zone_names[policy_zone]);
2412 #endif
2413 }
2414
2415 /*
2416 * Helper functions to size the waitqueue hash table.
2417 * Essentially these want to choose hash table sizes sufficiently
2418 * large so that collisions trying to wait on pages are rare.
2419 * But in fact, the number of active page waitqueues on typical
2420 * systems is ridiculously low, less than 200. So this is even
2421 * conservative, even though it seems large.
2422 *
2423 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2424 * waitqueues, i.e. the size of the waitq table given the number of pages.
2425 */
2426 #define PAGES_PER_WAITQUEUE 256
2427
2428 #ifndef CONFIG_MEMORY_HOTPLUG
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2430 {
2431 unsigned long size = 1;
2432
2433 pages /= PAGES_PER_WAITQUEUE;
2434
2435 while (size < pages)
2436 size <<= 1;
2437
2438 /*
2439 * Once we have dozens or even hundreds of threads sleeping
2440 * on IO we've got bigger problems than wait queue collision.
2441 * Limit the size of the wait table to a reasonable size.
2442 */
2443 size = min(size, 4096UL);
2444
2445 return max(size, 4UL);
2446 }
2447 #else
2448 /*
2449 * A zone's size might be changed by hot-add, so it is not possible to determine
2450 * a suitable size for its wait_table. So we use the maximum size now.
2451 *
2452 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2453 *
2454 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2455 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2456 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2457 *
2458 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2459 * or more by the traditional way. (See above). It equals:
2460 *
2461 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2462 * ia64(16K page size) : = ( 8G + 4M)byte.
2463 * powerpc (64K page size) : = (32G +16M)byte.
2464 */
2465 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2466 {
2467 return 4096UL;
2468 }
2469 #endif
2470
2471 /*
2472 * This is an integer logarithm so that shifts can be used later
2473 * to extract the more random high bits from the multiplicative
2474 * hash function before the remainder is taken.
2475 */
2476 static inline unsigned long wait_table_bits(unsigned long size)
2477 {
2478 return ffz(~size);
2479 }
2480
2481 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2482
2483 /*
2484 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2485 * of blocks reserved is based on zone->pages_min. The memory within the
2486 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2487 * higher will lead to a bigger reserve which will get freed as contiguous
2488 * blocks as reclaim kicks in
2489 */
2490 static void setup_zone_migrate_reserve(struct zone *zone)
2491 {
2492 unsigned long start_pfn, pfn, end_pfn;
2493 struct page *page;
2494 unsigned long reserve, block_migratetype;
2495
2496 /* Get the start pfn, end pfn and the number of blocks to reserve */
2497 start_pfn = zone->zone_start_pfn;
2498 end_pfn = start_pfn + zone->spanned_pages;
2499 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2500 pageblock_order;
2501
2502 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2503 if (!pfn_valid(pfn))
2504 continue;
2505 page = pfn_to_page(pfn);
2506
2507 /* Blocks with reserved pages will never free, skip them. */
2508 if (PageReserved(page))
2509 continue;
2510
2511 block_migratetype = get_pageblock_migratetype(page);
2512
2513 /* If this block is reserved, account for it */
2514 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2515 reserve--;
2516 continue;
2517 }
2518
2519 /* Suitable for reserving if this block is movable */
2520 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2521 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2522 move_freepages_block(zone, page, MIGRATE_RESERVE);
2523 reserve--;
2524 continue;
2525 }
2526
2527 /*
2528 * If the reserve is met and this is a previous reserved block,
2529 * take it back
2530 */
2531 if (block_migratetype == MIGRATE_RESERVE) {
2532 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2533 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2534 }
2535 }
2536 }
2537
2538 /*
2539 * Initially all pages are reserved - free ones are freed
2540 * up by free_all_bootmem() once the early boot process is
2541 * done. Non-atomic initialization, single-pass.
2542 */
2543 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2544 unsigned long start_pfn, enum memmap_context context)
2545 {
2546 struct page *page;
2547 unsigned long end_pfn = start_pfn + size;
2548 unsigned long pfn;
2549 struct zone *z;
2550
2551 z = &NODE_DATA(nid)->node_zones[zone];
2552 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2553 /*
2554 * There can be holes in boot-time mem_map[]s
2555 * handed to this function. They do not
2556 * exist on hotplugged memory.
2557 */
2558 if (context == MEMMAP_EARLY) {
2559 if (!early_pfn_valid(pfn))
2560 continue;
2561 if (!early_pfn_in_nid(pfn, nid))
2562 continue;
2563 }
2564 page = pfn_to_page(pfn);
2565 set_page_links(page, zone, nid, pfn);
2566 init_page_count(page);
2567 reset_page_mapcount(page);
2568 SetPageReserved(page);
2569 /*
2570 * Mark the block movable so that blocks are reserved for
2571 * movable at startup. This will force kernel allocations
2572 * to reserve their blocks rather than leaking throughout
2573 * the address space during boot when many long-lived
2574 * kernel allocations are made. Later some blocks near
2575 * the start are marked MIGRATE_RESERVE by
2576 * setup_zone_migrate_reserve()
2577 *
2578 * bitmap is created for zone's valid pfn range. but memmap
2579 * can be created for invalid pages (for alignment)
2580 * check here not to call set_pageblock_migratetype() against
2581 * pfn out of zone.
2582 */
2583 if ((z->zone_start_pfn <= pfn)
2584 && (pfn < z->zone_start_pfn + z->spanned_pages)
2585 && !(pfn & (pageblock_nr_pages - 1)))
2586 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2587
2588 INIT_LIST_HEAD(&page->lru);
2589 #ifdef WANT_PAGE_VIRTUAL
2590 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2591 if (!is_highmem_idx(zone))
2592 set_page_address(page, __va(pfn << PAGE_SHIFT));
2593 #endif
2594 }
2595 }
2596
2597 static void __meminit zone_init_free_lists(struct zone *zone)
2598 {
2599 int order, t;
2600 for_each_migratetype_order(order, t) {
2601 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2602 zone->free_area[order].nr_free = 0;
2603 }
2604 }
2605
2606 #ifndef __HAVE_ARCH_MEMMAP_INIT
2607 #define memmap_init(size, nid, zone, start_pfn) \
2608 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2609 #endif
2610
2611 static int zone_batchsize(struct zone *zone)
2612 {
2613 int batch;
2614
2615 /*
2616 * The per-cpu-pages pools are set to around 1000th of the
2617 * size of the zone. But no more than 1/2 of a meg.
2618 *
2619 * OK, so we don't know how big the cache is. So guess.
2620 */
2621 batch = zone->present_pages / 1024;
2622 if (batch * PAGE_SIZE > 512 * 1024)
2623 batch = (512 * 1024) / PAGE_SIZE;
2624 batch /= 4; /* We effectively *= 4 below */
2625 if (batch < 1)
2626 batch = 1;
2627
2628 /*
2629 * Clamp the batch to a 2^n - 1 value. Having a power
2630 * of 2 value was found to be more likely to have
2631 * suboptimal cache aliasing properties in some cases.
2632 *
2633 * For example if 2 tasks are alternately allocating
2634 * batches of pages, one task can end up with a lot
2635 * of pages of one half of the possible page colors
2636 * and the other with pages of the other colors.
2637 */
2638 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2639
2640 return batch;
2641 }
2642
2643 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2644 {
2645 struct per_cpu_pages *pcp;
2646
2647 memset(p, 0, sizeof(*p));
2648
2649 pcp = &p->pcp;
2650 pcp->count = 0;
2651 pcp->high = 6 * batch;
2652 pcp->batch = max(1UL, 1 * batch);
2653 INIT_LIST_HEAD(&pcp->list);
2654 }
2655
2656 /*
2657 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2658 * to the value high for the pageset p.
2659 */
2660
2661 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2662 unsigned long high)
2663 {
2664 struct per_cpu_pages *pcp;
2665
2666 pcp = &p->pcp;
2667 pcp->high = high;
2668 pcp->batch = max(1UL, high/4);
2669 if ((high/4) > (PAGE_SHIFT * 8))
2670 pcp->batch = PAGE_SHIFT * 8;
2671 }
2672
2673
2674 #ifdef CONFIG_NUMA
2675 /*
2676 * Boot pageset table. One per cpu which is going to be used for all
2677 * zones and all nodes. The parameters will be set in such a way
2678 * that an item put on a list will immediately be handed over to
2679 * the buddy list. This is safe since pageset manipulation is done
2680 * with interrupts disabled.
2681 *
2682 * Some NUMA counter updates may also be caught by the boot pagesets.
2683 *
2684 * The boot_pagesets must be kept even after bootup is complete for
2685 * unused processors and/or zones. They do play a role for bootstrapping
2686 * hotplugged processors.
2687 *
2688 * zoneinfo_show() and maybe other functions do
2689 * not check if the processor is online before following the pageset pointer.
2690 * Other parts of the kernel may not check if the zone is available.
2691 */
2692 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2693
2694 /*
2695 * Dynamically allocate memory for the
2696 * per cpu pageset array in struct zone.
2697 */
2698 static int __cpuinit process_zones(int cpu)
2699 {
2700 struct zone *zone, *dzone;
2701 int node = cpu_to_node(cpu);
2702
2703 node_set_state(node, N_CPU); /* this node has a cpu */
2704
2705 for_each_zone(zone) {
2706
2707 if (!populated_zone(zone))
2708 continue;
2709
2710 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2711 GFP_KERNEL, node);
2712 if (!zone_pcp(zone, cpu))
2713 goto bad;
2714
2715 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2716
2717 if (percpu_pagelist_fraction)
2718 setup_pagelist_highmark(zone_pcp(zone, cpu),
2719 (zone->present_pages / percpu_pagelist_fraction));
2720 }
2721
2722 return 0;
2723 bad:
2724 for_each_zone(dzone) {
2725 if (!populated_zone(dzone))
2726 continue;
2727 if (dzone == zone)
2728 break;
2729 kfree(zone_pcp(dzone, cpu));
2730 zone_pcp(dzone, cpu) = NULL;
2731 }
2732 return -ENOMEM;
2733 }
2734
2735 static inline void free_zone_pagesets(int cpu)
2736 {
2737 struct zone *zone;
2738
2739 for_each_zone(zone) {
2740 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2741
2742 /* Free per_cpu_pageset if it is slab allocated */
2743 if (pset != &boot_pageset[cpu])
2744 kfree(pset);
2745 zone_pcp(zone, cpu) = NULL;
2746 }
2747 }
2748
2749 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2750 unsigned long action,
2751 void *hcpu)
2752 {
2753 int cpu = (long)hcpu;
2754 int ret = NOTIFY_OK;
2755
2756 switch (action) {
2757 case CPU_UP_PREPARE:
2758 case CPU_UP_PREPARE_FROZEN:
2759 if (process_zones(cpu))
2760 ret = NOTIFY_BAD;
2761 break;
2762 case CPU_UP_CANCELED:
2763 case CPU_UP_CANCELED_FROZEN:
2764 case CPU_DEAD:
2765 case CPU_DEAD_FROZEN:
2766 free_zone_pagesets(cpu);
2767 break;
2768 default:
2769 break;
2770 }
2771 return ret;
2772 }
2773
2774 static struct notifier_block __cpuinitdata pageset_notifier =
2775 { &pageset_cpuup_callback, NULL, 0 };
2776
2777 void __init setup_per_cpu_pageset(void)
2778 {
2779 int err;
2780
2781 /* Initialize per_cpu_pageset for cpu 0.
2782 * A cpuup callback will do this for every cpu
2783 * as it comes online
2784 */
2785 err = process_zones(smp_processor_id());
2786 BUG_ON(err);
2787 register_cpu_notifier(&pageset_notifier);
2788 }
2789
2790 #endif
2791
2792 static noinline __init_refok
2793 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2794 {
2795 int i;
2796 struct pglist_data *pgdat = zone->zone_pgdat;
2797 size_t alloc_size;
2798
2799 /*
2800 * The per-page waitqueue mechanism uses hashed waitqueues
2801 * per zone.
2802 */
2803 zone->wait_table_hash_nr_entries =
2804 wait_table_hash_nr_entries(zone_size_pages);
2805 zone->wait_table_bits =
2806 wait_table_bits(zone->wait_table_hash_nr_entries);
2807 alloc_size = zone->wait_table_hash_nr_entries
2808 * sizeof(wait_queue_head_t);
2809
2810 if (!slab_is_available()) {
2811 zone->wait_table = (wait_queue_head_t *)
2812 alloc_bootmem_node(pgdat, alloc_size);
2813 } else {
2814 /*
2815 * This case means that a zone whose size was 0 gets new memory
2816 * via memory hot-add.
2817 * But it may be the case that a new node was hot-added. In
2818 * this case vmalloc() will not be able to use this new node's
2819 * memory - this wait_table must be initialized to use this new
2820 * node itself as well.
2821 * To use this new node's memory, further consideration will be
2822 * necessary.
2823 */
2824 zone->wait_table = vmalloc(alloc_size);
2825 }
2826 if (!zone->wait_table)
2827 return -ENOMEM;
2828
2829 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2830 init_waitqueue_head(zone->wait_table + i);
2831
2832 return 0;
2833 }
2834
2835 static __meminit void zone_pcp_init(struct zone *zone)
2836 {
2837 int cpu;
2838 unsigned long batch = zone_batchsize(zone);
2839
2840 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2841 #ifdef CONFIG_NUMA
2842 /* Early boot. Slab allocator not functional yet */
2843 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2844 setup_pageset(&boot_pageset[cpu],0);
2845 #else
2846 setup_pageset(zone_pcp(zone,cpu), batch);
2847 #endif
2848 }
2849 if (zone->present_pages)
2850 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2851 zone->name, zone->present_pages, batch);
2852 }
2853
2854 __meminit int init_currently_empty_zone(struct zone *zone,
2855 unsigned long zone_start_pfn,
2856 unsigned long size,
2857 enum memmap_context context)
2858 {
2859 struct pglist_data *pgdat = zone->zone_pgdat;
2860 int ret;
2861 ret = zone_wait_table_init(zone, size);
2862 if (ret)
2863 return ret;
2864 pgdat->nr_zones = zone_idx(zone) + 1;
2865
2866 zone->zone_start_pfn = zone_start_pfn;
2867
2868 zone_init_free_lists(zone);
2869
2870 return 0;
2871 }
2872
2873 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2874 /*
2875 * Basic iterator support. Return the first range of PFNs for a node
2876 * Note: nid == MAX_NUMNODES returns first region regardless of node
2877 */
2878 static int __meminit first_active_region_index_in_nid(int nid)
2879 {
2880 int i;
2881
2882 for (i = 0; i < nr_nodemap_entries; i++)
2883 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2884 return i;
2885
2886 return -1;
2887 }
2888
2889 /*
2890 * Basic iterator support. Return the next active range of PFNs for a node
2891 * Note: nid == MAX_NUMNODES returns next region regardless of node
2892 */
2893 static int __meminit next_active_region_index_in_nid(int index, int nid)
2894 {
2895 for (index = index + 1; index < nr_nodemap_entries; index++)
2896 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2897 return index;
2898
2899 return -1;
2900 }
2901
2902 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2903 /*
2904 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2905 * Architectures may implement their own version but if add_active_range()
2906 * was used and there are no special requirements, this is a convenient
2907 * alternative
2908 */
2909 int __meminit early_pfn_to_nid(unsigned long pfn)
2910 {
2911 int i;
2912
2913 for (i = 0; i < nr_nodemap_entries; i++) {
2914 unsigned long start_pfn = early_node_map[i].start_pfn;
2915 unsigned long end_pfn = early_node_map[i].end_pfn;
2916
2917 if (start_pfn <= pfn && pfn < end_pfn)
2918 return early_node_map[i].nid;
2919 }
2920
2921 return 0;
2922 }
2923 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2924
2925 /* Basic iterator support to walk early_node_map[] */
2926 #define for_each_active_range_index_in_nid(i, nid) \
2927 for (i = first_active_region_index_in_nid(nid); i != -1; \
2928 i = next_active_region_index_in_nid(i, nid))
2929
2930 /**
2931 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2932 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2933 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2934 *
2935 * If an architecture guarantees that all ranges registered with
2936 * add_active_ranges() contain no holes and may be freed, this
2937 * this function may be used instead of calling free_bootmem() manually.
2938 */
2939 void __init free_bootmem_with_active_regions(int nid,
2940 unsigned long max_low_pfn)
2941 {
2942 int i;
2943
2944 for_each_active_range_index_in_nid(i, nid) {
2945 unsigned long size_pages = 0;
2946 unsigned long end_pfn = early_node_map[i].end_pfn;
2947
2948 if (early_node_map[i].start_pfn >= max_low_pfn)
2949 continue;
2950
2951 if (end_pfn > max_low_pfn)
2952 end_pfn = max_low_pfn;
2953
2954 size_pages = end_pfn - early_node_map[i].start_pfn;
2955 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2956 PFN_PHYS(early_node_map[i].start_pfn),
2957 size_pages << PAGE_SHIFT);
2958 }
2959 }
2960
2961 /**
2962 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2963 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2964 *
2965 * If an architecture guarantees that all ranges registered with
2966 * add_active_ranges() contain no holes and may be freed, this
2967 * function may be used instead of calling memory_present() manually.
2968 */
2969 void __init sparse_memory_present_with_active_regions(int nid)
2970 {
2971 int i;
2972
2973 for_each_active_range_index_in_nid(i, nid)
2974 memory_present(early_node_map[i].nid,
2975 early_node_map[i].start_pfn,
2976 early_node_map[i].end_pfn);
2977 }
2978
2979 /**
2980 * push_node_boundaries - Push node boundaries to at least the requested boundary
2981 * @nid: The nid of the node to push the boundary for
2982 * @start_pfn: The start pfn of the node
2983 * @end_pfn: The end pfn of the node
2984 *
2985 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2986 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2987 * be hotplugged even though no physical memory exists. This function allows
2988 * an arch to push out the node boundaries so mem_map is allocated that can
2989 * be used later.
2990 */
2991 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2992 void __init push_node_boundaries(unsigned int nid,
2993 unsigned long start_pfn, unsigned long end_pfn)
2994 {
2995 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2996 nid, start_pfn, end_pfn);
2997
2998 /* Initialise the boundary for this node if necessary */
2999 if (node_boundary_end_pfn[nid] == 0)
3000 node_boundary_start_pfn[nid] = -1UL;
3001
3002 /* Update the boundaries */
3003 if (node_boundary_start_pfn[nid] > start_pfn)
3004 node_boundary_start_pfn[nid] = start_pfn;
3005 if (node_boundary_end_pfn[nid] < end_pfn)
3006 node_boundary_end_pfn[nid] = end_pfn;
3007 }
3008
3009 /* If necessary, push the node boundary out for reserve hotadd */
3010 static void __meminit account_node_boundary(unsigned int nid,
3011 unsigned long *start_pfn, unsigned long *end_pfn)
3012 {
3013 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3014 nid, *start_pfn, *end_pfn);
3015
3016 /* Return if boundary information has not been provided */
3017 if (node_boundary_end_pfn[nid] == 0)
3018 return;
3019
3020 /* Check the boundaries and update if necessary */
3021 if (node_boundary_start_pfn[nid] < *start_pfn)
3022 *start_pfn = node_boundary_start_pfn[nid];
3023 if (node_boundary_end_pfn[nid] > *end_pfn)
3024 *end_pfn = node_boundary_end_pfn[nid];
3025 }
3026 #else
3027 void __init push_node_boundaries(unsigned int nid,
3028 unsigned long start_pfn, unsigned long end_pfn) {}
3029
3030 static void __meminit account_node_boundary(unsigned int nid,
3031 unsigned long *start_pfn, unsigned long *end_pfn) {}
3032 #endif
3033
3034
3035 /**
3036 * get_pfn_range_for_nid - Return the start and end page frames for a node
3037 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3038 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3039 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3040 *
3041 * It returns the start and end page frame of a node based on information
3042 * provided by an arch calling add_active_range(). If called for a node
3043 * with no available memory, a warning is printed and the start and end
3044 * PFNs will be 0.
3045 */
3046 void __meminit get_pfn_range_for_nid(unsigned int nid,
3047 unsigned long *start_pfn, unsigned long *end_pfn)
3048 {
3049 int i;
3050 *start_pfn = -1UL;
3051 *end_pfn = 0;
3052
3053 for_each_active_range_index_in_nid(i, nid) {
3054 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3055 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3056 }
3057
3058 if (*start_pfn == -1UL)
3059 *start_pfn = 0;
3060
3061 /* Push the node boundaries out if requested */
3062 account_node_boundary(nid, start_pfn, end_pfn);
3063 }
3064
3065 /*
3066 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3067 * assumption is made that zones within a node are ordered in monotonic
3068 * increasing memory addresses so that the "highest" populated zone is used
3069 */
3070 void __init find_usable_zone_for_movable(void)
3071 {
3072 int zone_index;
3073 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3074 if (zone_index == ZONE_MOVABLE)
3075 continue;
3076
3077 if (arch_zone_highest_possible_pfn[zone_index] >
3078 arch_zone_lowest_possible_pfn[zone_index])
3079 break;
3080 }
3081
3082 VM_BUG_ON(zone_index == -1);
3083 movable_zone = zone_index;
3084 }
3085
3086 /*
3087 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3088 * because it is sized independant of architecture. Unlike the other zones,
3089 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3090 * in each node depending on the size of each node and how evenly kernelcore
3091 * is distributed. This helper function adjusts the zone ranges
3092 * provided by the architecture for a given node by using the end of the
3093 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3094 * zones within a node are in order of monotonic increases memory addresses
3095 */
3096 void __meminit adjust_zone_range_for_zone_movable(int nid,
3097 unsigned long zone_type,
3098 unsigned long node_start_pfn,
3099 unsigned long node_end_pfn,
3100 unsigned long *zone_start_pfn,
3101 unsigned long *zone_end_pfn)
3102 {
3103 /* Only adjust if ZONE_MOVABLE is on this node */
3104 if (zone_movable_pfn[nid]) {
3105 /* Size ZONE_MOVABLE */
3106 if (zone_type == ZONE_MOVABLE) {
3107 *zone_start_pfn = zone_movable_pfn[nid];
3108 *zone_end_pfn = min(node_end_pfn,
3109 arch_zone_highest_possible_pfn[movable_zone]);
3110
3111 /* Adjust for ZONE_MOVABLE starting within this range */
3112 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3113 *zone_end_pfn > zone_movable_pfn[nid]) {
3114 *zone_end_pfn = zone_movable_pfn[nid];
3115
3116 /* Check if this whole range is within ZONE_MOVABLE */
3117 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3118 *zone_start_pfn = *zone_end_pfn;
3119 }
3120 }
3121
3122 /*
3123 * Return the number of pages a zone spans in a node, including holes
3124 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3125 */
3126 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3127 unsigned long zone_type,
3128 unsigned long *ignored)
3129 {
3130 unsigned long node_start_pfn, node_end_pfn;
3131 unsigned long zone_start_pfn, zone_end_pfn;
3132
3133 /* Get the start and end of the node and zone */
3134 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3135 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3136 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3137 adjust_zone_range_for_zone_movable(nid, zone_type,
3138 node_start_pfn, node_end_pfn,
3139 &zone_start_pfn, &zone_end_pfn);
3140
3141 /* Check that this node has pages within the zone's required range */
3142 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3143 return 0;
3144
3145 /* Move the zone boundaries inside the node if necessary */
3146 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3147 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3148
3149 /* Return the spanned pages */
3150 return zone_end_pfn - zone_start_pfn;
3151 }
3152
3153 /*
3154 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3155 * then all holes in the requested range will be accounted for.
3156 */
3157 unsigned long __meminit __absent_pages_in_range(int nid,
3158 unsigned long range_start_pfn,
3159 unsigned long range_end_pfn)
3160 {
3161 int i = 0;
3162 unsigned long prev_end_pfn = 0, hole_pages = 0;
3163 unsigned long start_pfn;
3164
3165 /* Find the end_pfn of the first active range of pfns in the node */
3166 i = first_active_region_index_in_nid(nid);
3167 if (i == -1)
3168 return 0;
3169
3170 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3171
3172 /* Account for ranges before physical memory on this node */
3173 if (early_node_map[i].start_pfn > range_start_pfn)
3174 hole_pages = prev_end_pfn - range_start_pfn;
3175
3176 /* Find all holes for the zone within the node */
3177 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3178
3179 /* No need to continue if prev_end_pfn is outside the zone */
3180 if (prev_end_pfn >= range_end_pfn)
3181 break;
3182
3183 /* Make sure the end of the zone is not within the hole */
3184 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3185 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3186
3187 /* Update the hole size cound and move on */
3188 if (start_pfn > range_start_pfn) {
3189 BUG_ON(prev_end_pfn > start_pfn);
3190 hole_pages += start_pfn - prev_end_pfn;
3191 }
3192 prev_end_pfn = early_node_map[i].end_pfn;
3193 }
3194
3195 /* Account for ranges past physical memory on this node */
3196 if (range_end_pfn > prev_end_pfn)
3197 hole_pages += range_end_pfn -
3198 max(range_start_pfn, prev_end_pfn);
3199
3200 return hole_pages;
3201 }
3202
3203 /**
3204 * absent_pages_in_range - Return number of page frames in holes within a range
3205 * @start_pfn: The start PFN to start searching for holes
3206 * @end_pfn: The end PFN to stop searching for holes
3207 *
3208 * It returns the number of pages frames in memory holes within a range.
3209 */
3210 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3211 unsigned long end_pfn)
3212 {
3213 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3214 }
3215
3216 /* Return the number of page frames in holes in a zone on a node */
3217 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3218 unsigned long zone_type,
3219 unsigned long *ignored)
3220 {
3221 unsigned long node_start_pfn, node_end_pfn;
3222 unsigned long zone_start_pfn, zone_end_pfn;
3223
3224 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3225 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3226 node_start_pfn);
3227 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3228 node_end_pfn);
3229
3230 adjust_zone_range_for_zone_movable(nid, zone_type,
3231 node_start_pfn, node_end_pfn,
3232 &zone_start_pfn, &zone_end_pfn);
3233 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3234 }
3235
3236 #else
3237 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3238 unsigned long zone_type,
3239 unsigned long *zones_size)
3240 {
3241 return zones_size[zone_type];
3242 }
3243
3244 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3245 unsigned long zone_type,
3246 unsigned long *zholes_size)
3247 {
3248 if (!zholes_size)
3249 return 0;
3250
3251 return zholes_size[zone_type];
3252 }
3253
3254 #endif
3255
3256 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3257 unsigned long *zones_size, unsigned long *zholes_size)
3258 {
3259 unsigned long realtotalpages, totalpages = 0;
3260 enum zone_type i;
3261
3262 for (i = 0; i < MAX_NR_ZONES; i++)
3263 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3264 zones_size);
3265 pgdat->node_spanned_pages = totalpages;
3266
3267 realtotalpages = totalpages;
3268 for (i = 0; i < MAX_NR_ZONES; i++)
3269 realtotalpages -=
3270 zone_absent_pages_in_node(pgdat->node_id, i,
3271 zholes_size);
3272 pgdat->node_present_pages = realtotalpages;
3273 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3274 realtotalpages);
3275 }
3276
3277 #ifndef CONFIG_SPARSEMEM
3278 /*
3279 * Calculate the size of the zone->blockflags rounded to an unsigned long
3280 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3281 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3282 * round what is now in bits to nearest long in bits, then return it in
3283 * bytes.
3284 */
3285 static unsigned long __init usemap_size(unsigned long zonesize)
3286 {
3287 unsigned long usemapsize;
3288
3289 usemapsize = roundup(zonesize, pageblock_nr_pages);
3290 usemapsize = usemapsize >> pageblock_order;
3291 usemapsize *= NR_PAGEBLOCK_BITS;
3292 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3293
3294 return usemapsize / 8;
3295 }
3296
3297 static void __init setup_usemap(struct pglist_data *pgdat,
3298 struct zone *zone, unsigned long zonesize)
3299 {
3300 unsigned long usemapsize = usemap_size(zonesize);
3301 zone->pageblock_flags = NULL;
3302 if (usemapsize) {
3303 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3304 memset(zone->pageblock_flags, 0, usemapsize);
3305 }
3306 }
3307 #else
3308 static void inline setup_usemap(struct pglist_data *pgdat,
3309 struct zone *zone, unsigned long zonesize) {}
3310 #endif /* CONFIG_SPARSEMEM */
3311
3312 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3313
3314 /* Return a sensible default order for the pageblock size. */
3315 static inline int pageblock_default_order(void)
3316 {
3317 if (HPAGE_SHIFT > PAGE_SHIFT)
3318 return HUGETLB_PAGE_ORDER;
3319
3320 return MAX_ORDER-1;
3321 }
3322
3323 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3324 static inline void __init set_pageblock_order(unsigned int order)
3325 {
3326 /* Check that pageblock_nr_pages has not already been setup */
3327 if (pageblock_order)
3328 return;
3329
3330 /*
3331 * Assume the largest contiguous order of interest is a huge page.
3332 * This value may be variable depending on boot parameters on IA64
3333 */
3334 pageblock_order = order;
3335 }
3336 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3337
3338 /*
3339 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3340 * and pageblock_default_order() are unused as pageblock_order is set
3341 * at compile-time. See include/linux/pageblock-flags.h for the values of
3342 * pageblock_order based on the kernel config
3343 */
3344 static inline int pageblock_default_order(unsigned int order)
3345 {
3346 return MAX_ORDER-1;
3347 }
3348 #define set_pageblock_order(x) do {} while (0)
3349
3350 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3351
3352 /*
3353 * Set up the zone data structures:
3354 * - mark all pages reserved
3355 * - mark all memory queues empty
3356 * - clear the memory bitmaps
3357 */
3358 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3359 unsigned long *zones_size, unsigned long *zholes_size)
3360 {
3361 enum zone_type j;
3362 int nid = pgdat->node_id;
3363 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3364 int ret;
3365
3366 pgdat_resize_init(pgdat);
3367 pgdat->nr_zones = 0;
3368 init_waitqueue_head(&pgdat->kswapd_wait);
3369 pgdat->kswapd_max_order = 0;
3370
3371 for (j = 0; j < MAX_NR_ZONES; j++) {
3372 struct zone *zone = pgdat->node_zones + j;
3373 unsigned long size, realsize, memmap_pages;
3374
3375 size = zone_spanned_pages_in_node(nid, j, zones_size);
3376 realsize = size - zone_absent_pages_in_node(nid, j,
3377 zholes_size);
3378
3379 /*
3380 * Adjust realsize so that it accounts for how much memory
3381 * is used by this zone for memmap. This affects the watermark
3382 * and per-cpu initialisations
3383 */
3384 memmap_pages =
3385 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3386 if (realsize >= memmap_pages) {
3387 realsize -= memmap_pages;
3388 printk(KERN_DEBUG
3389 " %s zone: %lu pages used for memmap\n",
3390 zone_names[j], memmap_pages);
3391 } else
3392 printk(KERN_WARNING
3393 " %s zone: %lu pages exceeds realsize %lu\n",
3394 zone_names[j], memmap_pages, realsize);
3395
3396 /* Account for reserved pages */
3397 if (j == 0 && realsize > dma_reserve) {
3398 realsize -= dma_reserve;
3399 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3400 zone_names[0], dma_reserve);
3401 }
3402
3403 if (!is_highmem_idx(j))
3404 nr_kernel_pages += realsize;
3405 nr_all_pages += realsize;
3406
3407 zone->spanned_pages = size;
3408 zone->present_pages = realsize;
3409 #ifdef CONFIG_NUMA
3410 zone->node = nid;
3411 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3412 / 100;
3413 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3414 #endif
3415 zone->name = zone_names[j];
3416 spin_lock_init(&zone->lock);
3417 spin_lock_init(&zone->lru_lock);
3418 zone_seqlock_init(zone);
3419 zone->zone_pgdat = pgdat;
3420
3421 zone->prev_priority = DEF_PRIORITY;
3422
3423 zone_pcp_init(zone);
3424 INIT_LIST_HEAD(&zone->active_list);
3425 INIT_LIST_HEAD(&zone->inactive_list);
3426 zone->nr_scan_active = 0;
3427 zone->nr_scan_inactive = 0;
3428 zap_zone_vm_stats(zone);
3429 zone->flags = 0;
3430 if (!size)
3431 continue;
3432
3433 set_pageblock_order(pageblock_default_order());
3434 setup_usemap(pgdat, zone, size);
3435 ret = init_currently_empty_zone(zone, zone_start_pfn,
3436 size, MEMMAP_EARLY);
3437 BUG_ON(ret);
3438 memmap_init(size, nid, j, zone_start_pfn);
3439 zone_start_pfn += size;
3440 }
3441 }
3442
3443 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3444 {
3445 /* Skip empty nodes */
3446 if (!pgdat->node_spanned_pages)
3447 return;
3448
3449 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3450 /* ia64 gets its own node_mem_map, before this, without bootmem */
3451 if (!pgdat->node_mem_map) {
3452 unsigned long size, start, end;
3453 struct page *map;
3454
3455 /*
3456 * The zone's endpoints aren't required to be MAX_ORDER
3457 * aligned but the node_mem_map endpoints must be in order
3458 * for the buddy allocator to function correctly.
3459 */
3460 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3461 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3462 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3463 size = (end - start) * sizeof(struct page);
3464 map = alloc_remap(pgdat->node_id, size);
3465 if (!map)
3466 map = alloc_bootmem_node(pgdat, size);
3467 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3468 }
3469 #ifndef CONFIG_NEED_MULTIPLE_NODES
3470 /*
3471 * With no DISCONTIG, the global mem_map is just set as node 0's
3472 */
3473 if (pgdat == NODE_DATA(0)) {
3474 mem_map = NODE_DATA(0)->node_mem_map;
3475 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3476 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3477 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3478 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3479 }
3480 #endif
3481 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3482 }
3483
3484 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3485 unsigned long *zones_size, unsigned long node_start_pfn,
3486 unsigned long *zholes_size)
3487 {
3488 pgdat->node_id = nid;
3489 pgdat->node_start_pfn = node_start_pfn;
3490 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3491
3492 alloc_node_mem_map(pgdat);
3493
3494 free_area_init_core(pgdat, zones_size, zholes_size);
3495 }
3496
3497 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3498
3499 #if MAX_NUMNODES > 1
3500 /*
3501 * Figure out the number of possible node ids.
3502 */
3503 static void __init setup_nr_node_ids(void)
3504 {
3505 unsigned int node;
3506 unsigned int highest = 0;
3507
3508 for_each_node_mask(node, node_possible_map)
3509 highest = node;
3510 nr_node_ids = highest + 1;
3511 }
3512 #else
3513 static inline void setup_nr_node_ids(void)
3514 {
3515 }
3516 #endif
3517
3518 /**
3519 * add_active_range - Register a range of PFNs backed by physical memory
3520 * @nid: The node ID the range resides on
3521 * @start_pfn: The start PFN of the available physical memory
3522 * @end_pfn: The end PFN of the available physical memory
3523 *
3524 * These ranges are stored in an early_node_map[] and later used by
3525 * free_area_init_nodes() to calculate zone sizes and holes. If the
3526 * range spans a memory hole, it is up to the architecture to ensure
3527 * the memory is not freed by the bootmem allocator. If possible
3528 * the range being registered will be merged with existing ranges.
3529 */
3530 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3531 unsigned long end_pfn)
3532 {
3533 int i;
3534
3535 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3536 "%d entries of %d used\n",
3537 nid, start_pfn, end_pfn,
3538 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3539
3540 /* Merge with existing active regions if possible */
3541 for (i = 0; i < nr_nodemap_entries; i++) {
3542 if (early_node_map[i].nid != nid)
3543 continue;
3544
3545 /* Skip if an existing region covers this new one */
3546 if (start_pfn >= early_node_map[i].start_pfn &&
3547 end_pfn <= early_node_map[i].end_pfn)
3548 return;
3549
3550 /* Merge forward if suitable */
3551 if (start_pfn <= early_node_map[i].end_pfn &&
3552 end_pfn > early_node_map[i].end_pfn) {
3553 early_node_map[i].end_pfn = end_pfn;
3554 return;
3555 }
3556
3557 /* Merge backward if suitable */
3558 if (start_pfn < early_node_map[i].end_pfn &&
3559 end_pfn >= early_node_map[i].start_pfn) {
3560 early_node_map[i].start_pfn = start_pfn;
3561 return;
3562 }
3563 }
3564
3565 /* Check that early_node_map is large enough */
3566 if (i >= MAX_ACTIVE_REGIONS) {
3567 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3568 MAX_ACTIVE_REGIONS);
3569 return;
3570 }
3571
3572 early_node_map[i].nid = nid;
3573 early_node_map[i].start_pfn = start_pfn;
3574 early_node_map[i].end_pfn = end_pfn;
3575 nr_nodemap_entries = i + 1;
3576 }
3577
3578 /**
3579 * shrink_active_range - Shrink an existing registered range of PFNs
3580 * @nid: The node id the range is on that should be shrunk
3581 * @old_end_pfn: The old end PFN of the range
3582 * @new_end_pfn: The new PFN of the range
3583 *
3584 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3585 * The map is kept at the end physical page range that has already been
3586 * registered with add_active_range(). This function allows an arch to shrink
3587 * an existing registered range.
3588 */
3589 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3590 unsigned long new_end_pfn)
3591 {
3592 int i;
3593
3594 /* Find the old active region end and shrink */
3595 for_each_active_range_index_in_nid(i, nid)
3596 if (early_node_map[i].end_pfn == old_end_pfn) {
3597 early_node_map[i].end_pfn = new_end_pfn;
3598 break;
3599 }
3600 }
3601
3602 /**
3603 * remove_all_active_ranges - Remove all currently registered regions
3604 *
3605 * During discovery, it may be found that a table like SRAT is invalid
3606 * and an alternative discovery method must be used. This function removes
3607 * all currently registered regions.
3608 */
3609 void __init remove_all_active_ranges(void)
3610 {
3611 memset(early_node_map, 0, sizeof(early_node_map));
3612 nr_nodemap_entries = 0;
3613 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3614 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3615 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3616 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3617 }
3618
3619 /* Compare two active node_active_regions */
3620 static int __init cmp_node_active_region(const void *a, const void *b)
3621 {
3622 struct node_active_region *arange = (struct node_active_region *)a;
3623 struct node_active_region *brange = (struct node_active_region *)b;
3624
3625 /* Done this way to avoid overflows */
3626 if (arange->start_pfn > brange->start_pfn)
3627 return 1;
3628 if (arange->start_pfn < brange->start_pfn)
3629 return -1;
3630
3631 return 0;
3632 }
3633
3634 /* sort the node_map by start_pfn */
3635 static void __init sort_node_map(void)
3636 {
3637 sort(early_node_map, (size_t)nr_nodemap_entries,
3638 sizeof(struct node_active_region),
3639 cmp_node_active_region, NULL);
3640 }
3641
3642 /* Find the lowest pfn for a node */
3643 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3644 {
3645 int i;
3646 unsigned long min_pfn = ULONG_MAX;
3647
3648 /* Assuming a sorted map, the first range found has the starting pfn */
3649 for_each_active_range_index_in_nid(i, nid)
3650 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3651
3652 if (min_pfn == ULONG_MAX) {
3653 printk(KERN_WARNING
3654 "Could not find start_pfn for node %lu\n", nid);
3655 return 0;
3656 }
3657
3658 return min_pfn;
3659 }
3660
3661 /**
3662 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3663 *
3664 * It returns the minimum PFN based on information provided via
3665 * add_active_range().
3666 */
3667 unsigned long __init find_min_pfn_with_active_regions(void)
3668 {
3669 return find_min_pfn_for_node(MAX_NUMNODES);
3670 }
3671
3672 /**
3673 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3674 *
3675 * It returns the maximum PFN based on information provided via
3676 * add_active_range().
3677 */
3678 unsigned long __init find_max_pfn_with_active_regions(void)
3679 {
3680 int i;
3681 unsigned long max_pfn = 0;
3682
3683 for (i = 0; i < nr_nodemap_entries; i++)
3684 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3685
3686 return max_pfn;
3687 }
3688
3689 /*
3690 * early_calculate_totalpages()
3691 * Sum pages in active regions for movable zone.
3692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3693 */
3694 static unsigned long __init early_calculate_totalpages(void)
3695 {
3696 int i;
3697 unsigned long totalpages = 0;
3698
3699 for (i = 0; i < nr_nodemap_entries; i++) {
3700 unsigned long pages = early_node_map[i].end_pfn -
3701 early_node_map[i].start_pfn;
3702 totalpages += pages;
3703 if (pages)
3704 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3705 }
3706 return totalpages;
3707 }
3708
3709 /*
3710 * Find the PFN the Movable zone begins in each node. Kernel memory
3711 * is spread evenly between nodes as long as the nodes have enough
3712 * memory. When they don't, some nodes will have more kernelcore than
3713 * others
3714 */
3715 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3716 {
3717 int i, nid;
3718 unsigned long usable_startpfn;
3719 unsigned long kernelcore_node, kernelcore_remaining;
3720 unsigned long totalpages = early_calculate_totalpages();
3721 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3722
3723 /*
3724 * If movablecore was specified, calculate what size of
3725 * kernelcore that corresponds so that memory usable for
3726 * any allocation type is evenly spread. If both kernelcore
3727 * and movablecore are specified, then the value of kernelcore
3728 * will be used for required_kernelcore if it's greater than
3729 * what movablecore would have allowed.
3730 */
3731 if (required_movablecore) {
3732 unsigned long corepages;
3733
3734 /*
3735 * Round-up so that ZONE_MOVABLE is at least as large as what
3736 * was requested by the user
3737 */
3738 required_movablecore =
3739 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3740 corepages = totalpages - required_movablecore;
3741
3742 required_kernelcore = max(required_kernelcore, corepages);
3743 }
3744
3745 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3746 if (!required_kernelcore)
3747 return;
3748
3749 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3750 find_usable_zone_for_movable();
3751 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3752
3753 restart:
3754 /* Spread kernelcore memory as evenly as possible throughout nodes */
3755 kernelcore_node = required_kernelcore / usable_nodes;
3756 for_each_node_state(nid, N_HIGH_MEMORY) {
3757 /*
3758 * Recalculate kernelcore_node if the division per node
3759 * now exceeds what is necessary to satisfy the requested
3760 * amount of memory for the kernel
3761 */
3762 if (required_kernelcore < kernelcore_node)
3763 kernelcore_node = required_kernelcore / usable_nodes;
3764
3765 /*
3766 * As the map is walked, we track how much memory is usable
3767 * by the kernel using kernelcore_remaining. When it is
3768 * 0, the rest of the node is usable by ZONE_MOVABLE
3769 */
3770 kernelcore_remaining = kernelcore_node;
3771
3772 /* Go through each range of PFNs within this node */
3773 for_each_active_range_index_in_nid(i, nid) {
3774 unsigned long start_pfn, end_pfn;
3775 unsigned long size_pages;
3776
3777 start_pfn = max(early_node_map[i].start_pfn,
3778 zone_movable_pfn[nid]);
3779 end_pfn = early_node_map[i].end_pfn;
3780 if (start_pfn >= end_pfn)
3781 continue;
3782
3783 /* Account for what is only usable for kernelcore */
3784 if (start_pfn < usable_startpfn) {
3785 unsigned long kernel_pages;
3786 kernel_pages = min(end_pfn, usable_startpfn)
3787 - start_pfn;
3788
3789 kernelcore_remaining -= min(kernel_pages,
3790 kernelcore_remaining);
3791 required_kernelcore -= min(kernel_pages,
3792 required_kernelcore);
3793
3794 /* Continue if range is now fully accounted */
3795 if (end_pfn <= usable_startpfn) {
3796
3797 /*
3798 * Push zone_movable_pfn to the end so
3799 * that if we have to rebalance
3800 * kernelcore across nodes, we will
3801 * not double account here
3802 */
3803 zone_movable_pfn[nid] = end_pfn;
3804 continue;
3805 }
3806 start_pfn = usable_startpfn;
3807 }
3808
3809 /*
3810 * The usable PFN range for ZONE_MOVABLE is from
3811 * start_pfn->end_pfn. Calculate size_pages as the
3812 * number of pages used as kernelcore
3813 */
3814 size_pages = end_pfn - start_pfn;
3815 if (size_pages > kernelcore_remaining)
3816 size_pages = kernelcore_remaining;
3817 zone_movable_pfn[nid] = start_pfn + size_pages;
3818
3819 /*
3820 * Some kernelcore has been met, update counts and
3821 * break if the kernelcore for this node has been
3822 * satisified
3823 */
3824 required_kernelcore -= min(required_kernelcore,
3825 size_pages);
3826 kernelcore_remaining -= size_pages;
3827 if (!kernelcore_remaining)
3828 break;
3829 }
3830 }
3831
3832 /*
3833 * If there is still required_kernelcore, we do another pass with one
3834 * less node in the count. This will push zone_movable_pfn[nid] further
3835 * along on the nodes that still have memory until kernelcore is
3836 * satisified
3837 */
3838 usable_nodes--;
3839 if (usable_nodes && required_kernelcore > usable_nodes)
3840 goto restart;
3841
3842 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3843 for (nid = 0; nid < MAX_NUMNODES; nid++)
3844 zone_movable_pfn[nid] =
3845 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3846 }
3847
3848 /* Any regular memory on that node ? */
3849 static void check_for_regular_memory(pg_data_t *pgdat)
3850 {
3851 #ifdef CONFIG_HIGHMEM
3852 enum zone_type zone_type;
3853
3854 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3855 struct zone *zone = &pgdat->node_zones[zone_type];
3856 if (zone->present_pages)
3857 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3858 }
3859 #endif
3860 }
3861
3862 /**
3863 * free_area_init_nodes - Initialise all pg_data_t and zone data
3864 * @max_zone_pfn: an array of max PFNs for each zone
3865 *
3866 * This will call free_area_init_node() for each active node in the system.
3867 * Using the page ranges provided by add_active_range(), the size of each
3868 * zone in each node and their holes is calculated. If the maximum PFN
3869 * between two adjacent zones match, it is assumed that the zone is empty.
3870 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3871 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3872 * starts where the previous one ended. For example, ZONE_DMA32 starts
3873 * at arch_max_dma_pfn.
3874 */
3875 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3876 {
3877 unsigned long nid;
3878 enum zone_type i;
3879
3880 /* Sort early_node_map as initialisation assumes it is sorted */
3881 sort_node_map();
3882
3883 /* Record where the zone boundaries are */
3884 memset(arch_zone_lowest_possible_pfn, 0,
3885 sizeof(arch_zone_lowest_possible_pfn));
3886 memset(arch_zone_highest_possible_pfn, 0,
3887 sizeof(arch_zone_highest_possible_pfn));
3888 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3889 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3890 for (i = 1; i < MAX_NR_ZONES; i++) {
3891 if (i == ZONE_MOVABLE)
3892 continue;
3893 arch_zone_lowest_possible_pfn[i] =
3894 arch_zone_highest_possible_pfn[i-1];
3895 arch_zone_highest_possible_pfn[i] =
3896 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3897 }
3898 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3899 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3900
3901 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3902 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3903 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3904
3905 /* Print out the zone ranges */
3906 printk("Zone PFN ranges:\n");
3907 for (i = 0; i < MAX_NR_ZONES; i++) {
3908 if (i == ZONE_MOVABLE)
3909 continue;
3910 printk(" %-8s %8lu -> %8lu\n",
3911 zone_names[i],
3912 arch_zone_lowest_possible_pfn[i],
3913 arch_zone_highest_possible_pfn[i]);
3914 }
3915
3916 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3917 printk("Movable zone start PFN for each node\n");
3918 for (i = 0; i < MAX_NUMNODES; i++) {
3919 if (zone_movable_pfn[i])
3920 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3921 }
3922
3923 /* Print out the early_node_map[] */
3924 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3925 for (i = 0; i < nr_nodemap_entries; i++)
3926 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3927 early_node_map[i].start_pfn,
3928 early_node_map[i].end_pfn);
3929
3930 /* Initialise every node */
3931 setup_nr_node_ids();
3932 for_each_online_node(nid) {
3933 pg_data_t *pgdat = NODE_DATA(nid);
3934 free_area_init_node(nid, pgdat, NULL,
3935 find_min_pfn_for_node(nid), NULL);
3936
3937 /* Any memory on that node */
3938 if (pgdat->node_present_pages)
3939 node_set_state(nid, N_HIGH_MEMORY);
3940 check_for_regular_memory(pgdat);
3941 }
3942 }
3943
3944 static int __init cmdline_parse_core(char *p, unsigned long *core)
3945 {
3946 unsigned long long coremem;
3947 if (!p)
3948 return -EINVAL;
3949
3950 coremem = memparse(p, &p);
3951 *core = coremem >> PAGE_SHIFT;
3952
3953 /* Paranoid check that UL is enough for the coremem value */
3954 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3955
3956 return 0;
3957 }
3958
3959 /*
3960 * kernelcore=size sets the amount of memory for use for allocations that
3961 * cannot be reclaimed or migrated.
3962 */
3963 static int __init cmdline_parse_kernelcore(char *p)
3964 {
3965 return cmdline_parse_core(p, &required_kernelcore);
3966 }
3967
3968 /*
3969 * movablecore=size sets the amount of memory for use for allocations that
3970 * can be reclaimed or migrated.
3971 */
3972 static int __init cmdline_parse_movablecore(char *p)
3973 {
3974 return cmdline_parse_core(p, &required_movablecore);
3975 }
3976
3977 early_param("kernelcore", cmdline_parse_kernelcore);
3978 early_param("movablecore", cmdline_parse_movablecore);
3979
3980 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3981
3982 /**
3983 * set_dma_reserve - set the specified number of pages reserved in the first zone
3984 * @new_dma_reserve: The number of pages to mark reserved
3985 *
3986 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3987 * In the DMA zone, a significant percentage may be consumed by kernel image
3988 * and other unfreeable allocations which can skew the watermarks badly. This
3989 * function may optionally be used to account for unfreeable pages in the
3990 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3991 * smaller per-cpu batchsize.
3992 */
3993 void __init set_dma_reserve(unsigned long new_dma_reserve)
3994 {
3995 dma_reserve = new_dma_reserve;
3996 }
3997
3998 #ifndef CONFIG_NEED_MULTIPLE_NODES
3999 static bootmem_data_t contig_bootmem_data;
4000 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
4001
4002 EXPORT_SYMBOL(contig_page_data);
4003 #endif
4004
4005 void __init free_area_init(unsigned long *zones_size)
4006 {
4007 free_area_init_node(0, NODE_DATA(0), zones_size,
4008 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4009 }
4010
4011 static int page_alloc_cpu_notify(struct notifier_block *self,
4012 unsigned long action, void *hcpu)
4013 {
4014 int cpu = (unsigned long)hcpu;
4015
4016 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4017 drain_pages(cpu);
4018
4019 /*
4020 * Spill the event counters of the dead processor
4021 * into the current processors event counters.
4022 * This artificially elevates the count of the current
4023 * processor.
4024 */
4025 vm_events_fold_cpu(cpu);
4026
4027 /*
4028 * Zero the differential counters of the dead processor
4029 * so that the vm statistics are consistent.
4030 *
4031 * This is only okay since the processor is dead and cannot
4032 * race with what we are doing.
4033 */
4034 refresh_cpu_vm_stats(cpu);
4035 }
4036 return NOTIFY_OK;
4037 }
4038
4039 void __init page_alloc_init(void)
4040 {
4041 hotcpu_notifier(page_alloc_cpu_notify, 0);
4042 }
4043
4044 /*
4045 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4046 * or min_free_kbytes changes.
4047 */
4048 static void calculate_totalreserve_pages(void)
4049 {
4050 struct pglist_data *pgdat;
4051 unsigned long reserve_pages = 0;
4052 enum zone_type i, j;
4053
4054 for_each_online_pgdat(pgdat) {
4055 for (i = 0; i < MAX_NR_ZONES; i++) {
4056 struct zone *zone = pgdat->node_zones + i;
4057 unsigned long max = 0;
4058
4059 /* Find valid and maximum lowmem_reserve in the zone */
4060 for (j = i; j < MAX_NR_ZONES; j++) {
4061 if (zone->lowmem_reserve[j] > max)
4062 max = zone->lowmem_reserve[j];
4063 }
4064
4065 /* we treat pages_high as reserved pages. */
4066 max += zone->pages_high;
4067
4068 if (max > zone->present_pages)
4069 max = zone->present_pages;
4070 reserve_pages += max;
4071 }
4072 }
4073 totalreserve_pages = reserve_pages;
4074 }
4075
4076 /*
4077 * setup_per_zone_lowmem_reserve - called whenever
4078 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4079 * has a correct pages reserved value, so an adequate number of
4080 * pages are left in the zone after a successful __alloc_pages().
4081 */
4082 static void setup_per_zone_lowmem_reserve(void)
4083 {
4084 struct pglist_data *pgdat;
4085 enum zone_type j, idx;
4086
4087 for_each_online_pgdat(pgdat) {
4088 for (j = 0; j < MAX_NR_ZONES; j++) {
4089 struct zone *zone = pgdat->node_zones + j;
4090 unsigned long present_pages = zone->present_pages;
4091
4092 zone->lowmem_reserve[j] = 0;
4093
4094 idx = j;
4095 while (idx) {
4096 struct zone *lower_zone;
4097
4098 idx--;
4099
4100 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4101 sysctl_lowmem_reserve_ratio[idx] = 1;
4102
4103 lower_zone = pgdat->node_zones + idx;
4104 lower_zone->lowmem_reserve[j] = present_pages /
4105 sysctl_lowmem_reserve_ratio[idx];
4106 present_pages += lower_zone->present_pages;
4107 }
4108 }
4109 }
4110
4111 /* update totalreserve_pages */
4112 calculate_totalreserve_pages();
4113 }
4114
4115 /**
4116 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4117 *
4118 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4119 * with respect to min_free_kbytes.
4120 */
4121 void setup_per_zone_pages_min(void)
4122 {
4123 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4124 unsigned long lowmem_pages = 0;
4125 struct zone *zone;
4126 unsigned long flags;
4127
4128 /* Calculate total number of !ZONE_HIGHMEM pages */
4129 for_each_zone(zone) {
4130 if (!is_highmem(zone))
4131 lowmem_pages += zone->present_pages;
4132 }
4133
4134 for_each_zone(zone) {
4135 u64 tmp;
4136
4137 spin_lock_irqsave(&zone->lru_lock, flags);
4138 tmp = (u64)pages_min * zone->present_pages;
4139 do_div(tmp, lowmem_pages);
4140 if (is_highmem(zone)) {
4141 /*
4142 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4143 * need highmem pages, so cap pages_min to a small
4144 * value here.
4145 *
4146 * The (pages_high-pages_low) and (pages_low-pages_min)
4147 * deltas controls asynch page reclaim, and so should
4148 * not be capped for highmem.
4149 */
4150 int min_pages;
4151
4152 min_pages = zone->present_pages / 1024;
4153 if (min_pages < SWAP_CLUSTER_MAX)
4154 min_pages = SWAP_CLUSTER_MAX;
4155 if (min_pages > 128)
4156 min_pages = 128;
4157 zone->pages_min = min_pages;
4158 } else {
4159 /*
4160 * If it's a lowmem zone, reserve a number of pages
4161 * proportionate to the zone's size.
4162 */
4163 zone->pages_min = tmp;
4164 }
4165
4166 zone->pages_low = zone->pages_min + (tmp >> 2);
4167 zone->pages_high = zone->pages_min + (tmp >> 1);
4168 setup_zone_migrate_reserve(zone);
4169 spin_unlock_irqrestore(&zone->lru_lock, flags);
4170 }
4171
4172 /* update totalreserve_pages */
4173 calculate_totalreserve_pages();
4174 }
4175
4176 /*
4177 * Initialise min_free_kbytes.
4178 *
4179 * For small machines we want it small (128k min). For large machines
4180 * we want it large (64MB max). But it is not linear, because network
4181 * bandwidth does not increase linearly with machine size. We use
4182 *
4183 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4184 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4185 *
4186 * which yields
4187 *
4188 * 16MB: 512k
4189 * 32MB: 724k
4190 * 64MB: 1024k
4191 * 128MB: 1448k
4192 * 256MB: 2048k
4193 * 512MB: 2896k
4194 * 1024MB: 4096k
4195 * 2048MB: 5792k
4196 * 4096MB: 8192k
4197 * 8192MB: 11584k
4198 * 16384MB: 16384k
4199 */
4200 static int __init init_per_zone_pages_min(void)
4201 {
4202 unsigned long lowmem_kbytes;
4203
4204 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4205
4206 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4207 if (min_free_kbytes < 128)
4208 min_free_kbytes = 128;
4209 if (min_free_kbytes > 65536)
4210 min_free_kbytes = 65536;
4211 setup_per_zone_pages_min();
4212 setup_per_zone_lowmem_reserve();
4213 return 0;
4214 }
4215 module_init(init_per_zone_pages_min)
4216
4217 /*
4218 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4219 * that we can call two helper functions whenever min_free_kbytes
4220 * changes.
4221 */
4222 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4223 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4224 {
4225 proc_dointvec(table, write, file, buffer, length, ppos);
4226 if (write)
4227 setup_per_zone_pages_min();
4228 return 0;
4229 }
4230
4231 #ifdef CONFIG_NUMA
4232 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4233 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4234 {
4235 struct zone *zone;
4236 int rc;
4237
4238 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4239 if (rc)
4240 return rc;
4241
4242 for_each_zone(zone)
4243 zone->min_unmapped_pages = (zone->present_pages *
4244 sysctl_min_unmapped_ratio) / 100;
4245 return 0;
4246 }
4247
4248 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4249 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4250 {
4251 struct zone *zone;
4252 int rc;
4253
4254 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4255 if (rc)
4256 return rc;
4257
4258 for_each_zone(zone)
4259 zone->min_slab_pages = (zone->present_pages *
4260 sysctl_min_slab_ratio) / 100;
4261 return 0;
4262 }
4263 #endif
4264
4265 /*
4266 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4267 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4268 * whenever sysctl_lowmem_reserve_ratio changes.
4269 *
4270 * The reserve ratio obviously has absolutely no relation with the
4271 * pages_min watermarks. The lowmem reserve ratio can only make sense
4272 * if in function of the boot time zone sizes.
4273 */
4274 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4275 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4276 {
4277 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4278 setup_per_zone_lowmem_reserve();
4279 return 0;
4280 }
4281
4282 /*
4283 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4284 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4285 * can have before it gets flushed back to buddy allocator.
4286 */
4287
4288 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4289 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4290 {
4291 struct zone *zone;
4292 unsigned int cpu;
4293 int ret;
4294
4295 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4296 if (!write || (ret == -EINVAL))
4297 return ret;
4298 for_each_zone(zone) {
4299 for_each_online_cpu(cpu) {
4300 unsigned long high;
4301 high = zone->present_pages / percpu_pagelist_fraction;
4302 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4303 }
4304 }
4305 return 0;
4306 }
4307
4308 int hashdist = HASHDIST_DEFAULT;
4309
4310 #ifdef CONFIG_NUMA
4311 static int __init set_hashdist(char *str)
4312 {
4313 if (!str)
4314 return 0;
4315 hashdist = simple_strtoul(str, &str, 0);
4316 return 1;
4317 }
4318 __setup("hashdist=", set_hashdist);
4319 #endif
4320
4321 /*
4322 * allocate a large system hash table from bootmem
4323 * - it is assumed that the hash table must contain an exact power-of-2
4324 * quantity of entries
4325 * - limit is the number of hash buckets, not the total allocation size
4326 */
4327 void *__init alloc_large_system_hash(const char *tablename,
4328 unsigned long bucketsize,
4329 unsigned long numentries,
4330 int scale,
4331 int flags,
4332 unsigned int *_hash_shift,
4333 unsigned int *_hash_mask,
4334 unsigned long limit)
4335 {
4336 unsigned long long max = limit;
4337 unsigned long log2qty, size;
4338 void *table = NULL;
4339
4340 /* allow the kernel cmdline to have a say */
4341 if (!numentries) {
4342 /* round applicable memory size up to nearest megabyte */
4343 numentries = nr_kernel_pages;
4344 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4345 numentries >>= 20 - PAGE_SHIFT;
4346 numentries <<= 20 - PAGE_SHIFT;
4347
4348 /* limit to 1 bucket per 2^scale bytes of low memory */
4349 if (scale > PAGE_SHIFT)
4350 numentries >>= (scale - PAGE_SHIFT);
4351 else
4352 numentries <<= (PAGE_SHIFT - scale);
4353
4354 /* Make sure we've got at least a 0-order allocation.. */
4355 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4356 numentries = PAGE_SIZE / bucketsize;
4357 }
4358 numentries = roundup_pow_of_two(numentries);
4359
4360 /* limit allocation size to 1/16 total memory by default */
4361 if (max == 0) {
4362 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4363 do_div(max, bucketsize);
4364 }
4365
4366 if (numentries > max)
4367 numentries = max;
4368
4369 log2qty = ilog2(numentries);
4370
4371 do {
4372 size = bucketsize << log2qty;
4373 if (flags & HASH_EARLY)
4374 table = alloc_bootmem(size);
4375 else if (hashdist)
4376 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4377 else {
4378 unsigned long order = get_order(size);
4379 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4380 /*
4381 * If bucketsize is not a power-of-two, we may free
4382 * some pages at the end of hash table.
4383 */
4384 if (table) {
4385 unsigned long alloc_end = (unsigned long)table +
4386 (PAGE_SIZE << order);
4387 unsigned long used = (unsigned long)table +
4388 PAGE_ALIGN(size);
4389 split_page(virt_to_page(table), order);
4390 while (used < alloc_end) {
4391 free_page(used);
4392 used += PAGE_SIZE;
4393 }
4394 }
4395 }
4396 } while (!table && size > PAGE_SIZE && --log2qty);
4397
4398 if (!table)
4399 panic("Failed to allocate %s hash table\n", tablename);
4400
4401 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4402 tablename,
4403 (1U << log2qty),
4404 ilog2(size) - PAGE_SHIFT,
4405 size);
4406
4407 if (_hash_shift)
4408 *_hash_shift = log2qty;
4409 if (_hash_mask)
4410 *_hash_mask = (1 << log2qty) - 1;
4411
4412 return table;
4413 }
4414
4415 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4416 struct page *pfn_to_page(unsigned long pfn)
4417 {
4418 return __pfn_to_page(pfn);
4419 }
4420 unsigned long page_to_pfn(struct page *page)
4421 {
4422 return __page_to_pfn(page);
4423 }
4424 EXPORT_SYMBOL(pfn_to_page);
4425 EXPORT_SYMBOL(page_to_pfn);
4426 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4427
4428 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4429 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4430 unsigned long pfn)
4431 {
4432 #ifdef CONFIG_SPARSEMEM
4433 return __pfn_to_section(pfn)->pageblock_flags;
4434 #else
4435 return zone->pageblock_flags;
4436 #endif /* CONFIG_SPARSEMEM */
4437 }
4438
4439 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4440 {
4441 #ifdef CONFIG_SPARSEMEM
4442 pfn &= (PAGES_PER_SECTION-1);
4443 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4444 #else
4445 pfn = pfn - zone->zone_start_pfn;
4446 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4447 #endif /* CONFIG_SPARSEMEM */
4448 }
4449
4450 /**
4451 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4452 * @page: The page within the block of interest
4453 * @start_bitidx: The first bit of interest to retrieve
4454 * @end_bitidx: The last bit of interest
4455 * returns pageblock_bits flags
4456 */
4457 unsigned long get_pageblock_flags_group(struct page *page,
4458 int start_bitidx, int end_bitidx)
4459 {
4460 struct zone *zone;
4461 unsigned long *bitmap;
4462 unsigned long pfn, bitidx;
4463 unsigned long flags = 0;
4464 unsigned long value = 1;
4465
4466 zone = page_zone(page);
4467 pfn = page_to_pfn(page);
4468 bitmap = get_pageblock_bitmap(zone, pfn);
4469 bitidx = pfn_to_bitidx(zone, pfn);
4470
4471 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4472 if (test_bit(bitidx + start_bitidx, bitmap))
4473 flags |= value;
4474
4475 return flags;
4476 }
4477
4478 /**
4479 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4480 * @page: The page within the block of interest
4481 * @start_bitidx: The first bit of interest
4482 * @end_bitidx: The last bit of interest
4483 * @flags: The flags to set
4484 */
4485 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4486 int start_bitidx, int end_bitidx)
4487 {
4488 struct zone *zone;
4489 unsigned long *bitmap;
4490 unsigned long pfn, bitidx;
4491 unsigned long value = 1;
4492
4493 zone = page_zone(page);
4494 pfn = page_to_pfn(page);
4495 bitmap = get_pageblock_bitmap(zone, pfn);
4496 bitidx = pfn_to_bitidx(zone, pfn);
4497 VM_BUG_ON(pfn < zone->zone_start_pfn);
4498 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4499
4500 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4501 if (flags & value)
4502 __set_bit(bitidx + start_bitidx, bitmap);
4503 else
4504 __clear_bit(bitidx + start_bitidx, bitmap);
4505 }
4506
4507 /*
4508 * This is designed as sub function...plz see page_isolation.c also.
4509 * set/clear page block's type to be ISOLATE.
4510 * page allocater never alloc memory from ISOLATE block.
4511 */
4512
4513 int set_migratetype_isolate(struct page *page)
4514 {
4515 struct zone *zone;
4516 unsigned long flags;
4517 int ret = -EBUSY;
4518
4519 zone = page_zone(page);
4520 spin_lock_irqsave(&zone->lock, flags);
4521 /*
4522 * In future, more migrate types will be able to be isolation target.
4523 */
4524 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4525 goto out;
4526 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4527 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4528 ret = 0;
4529 out:
4530 spin_unlock_irqrestore(&zone->lock, flags);
4531 if (!ret)
4532 drain_all_pages();
4533 return ret;
4534 }
4535
4536 void unset_migratetype_isolate(struct page *page)
4537 {
4538 struct zone *zone;
4539 unsigned long flags;
4540 zone = page_zone(page);
4541 spin_lock_irqsave(&zone->lock, flags);
4542 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4543 goto out;
4544 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4545 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4546 out:
4547 spin_unlock_irqrestore(&zone->lock, flags);
4548 }
4549
4550 #ifdef CONFIG_MEMORY_HOTREMOVE
4551 /*
4552 * All pages in the range must be isolated before calling this.
4553 */
4554 void
4555 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4556 {
4557 struct page *page;
4558 struct zone *zone;
4559 int order, i;
4560 unsigned long pfn;
4561 unsigned long flags;
4562 /* find the first valid pfn */
4563 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4564 if (pfn_valid(pfn))
4565 break;
4566 if (pfn == end_pfn)
4567 return;
4568 zone = page_zone(pfn_to_page(pfn));
4569 spin_lock_irqsave(&zone->lock, flags);
4570 pfn = start_pfn;
4571 while (pfn < end_pfn) {
4572 if (!pfn_valid(pfn)) {
4573 pfn++;
4574 continue;
4575 }
4576 page = pfn_to_page(pfn);
4577 BUG_ON(page_count(page));
4578 BUG_ON(!PageBuddy(page));
4579 order = page_order(page);
4580 #ifdef CONFIG_DEBUG_VM
4581 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4582 pfn, 1 << order, end_pfn);
4583 #endif
4584 list_del(&page->lru);
4585 rmv_page_order(page);
4586 zone->free_area[order].nr_free--;
4587 __mod_zone_page_state(zone, NR_FREE_PAGES,
4588 - (1UL << order));
4589 for (i = 0; i < (1 << order); i++)
4590 SetPageReserved((page+i));
4591 pfn += (1 << order);
4592 }
4593 spin_unlock_irqrestore(&zone->lock, flags);
4594 }
4595 #endif