mm: add alloc_pages_exact() and free_pages_exact()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
245 }
246
247 /*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262 static void free_compound_page(struct page *page)
263 {
264 __free_pages_ok(page, compound_order(page));
265 }
266
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 int i;
270 int nr_pages = 1 << order;
271
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
277
278 __SetPageTail(p);
279 p->first_page = page;
280 }
281 }
282
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 int i;
286 int nr_pages = 1 << order;
287
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
290
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
296
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
301 }
302 }
303
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 int i;
307
308 /*
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 */
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
315 }
316
317 static inline void set_page_order(struct page *page, int order)
318 {
319 set_page_private(page, order);
320 __SetPageBuddy(page);
321 }
322
323 static inline void rmv_page_order(struct page *page)
324 {
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
327 }
328
329 /*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 unsigned long buddy_idx = page_idx ^ (1 << order);
350
351 return page + (buddy_idx - page_idx);
352 }
353
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 return (page_idx & ~(1 << order));
358 }
359
360 /*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
375 {
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
378
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
381
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
385 }
386 return 0;
387 }
388
389 /*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
415 {
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
419
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
422
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
427
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
432
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break;
436
437 /* Our buddy is free, merge with it and move up one order. */
438 list_del(&buddy->lru);
439 zone->free_area[order].nr_free--;
440 rmv_page_order(buddy);
441 combined_idx = __find_combined_index(page_idx, order);
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
444 order++;
445 }
446 set_page_order(page, order);
447 list_add(&page->lru,
448 &zone->free_area[order].free_list[migratetype]);
449 zone->free_area[order].nr_free++;
450 }
451
452 static inline int free_pages_check(struct page *page)
453 {
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
456 (page_get_page_cgroup(page) != NULL) |
457 (page_count(page) != 0) |
458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459 bad_page(page);
460 if (PageDirty(page))
461 __ClearPageDirty(page);
462 /*
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
466 */
467 return PageReserved(page);
468 }
469
470 /*
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
474 *
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
477 *
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
480 */
481 static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
483 {
484 spin_lock(&zone->lock);
485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 zone->pages_scanned = 0;
487 while (count--) {
488 struct page *page;
489
490 VM_BUG_ON(list_empty(list));
491 page = list_entry(list->prev, struct page, lru);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page->lru);
494 __free_one_page(page, zone, order);
495 }
496 spin_unlock(&zone->lock);
497 }
498
499 static void free_one_page(struct zone *zone, struct page *page, int order)
500 {
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 __free_one_page(page, zone, order);
505 spin_unlock(&zone->lock);
506 }
507
508 static void __free_pages_ok(struct page *page, unsigned int order)
509 {
510 unsigned long flags;
511 int i;
512 int reserved = 0;
513
514 for (i = 0 ; i < (1 << order) ; ++i)
515 reserved += free_pages_check(page + i);
516 if (reserved)
517 return;
518
519 if (!PageHighMem(page)) {
520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 debug_check_no_obj_freed(page_address(page),
522 PAGE_SIZE << order);
523 }
524 arch_free_page(page, order);
525 kernel_map_pages(page, 1 << order, 0);
526
527 local_irq_save(flags);
528 __count_vm_events(PGFREE, 1 << order);
529 free_one_page(page_zone(page), page, order);
530 local_irq_restore(flags);
531 }
532
533 /*
534 * permit the bootmem allocator to evade page validation on high-order frees
535 */
536 void __free_pages_bootmem(struct page *page, unsigned int order)
537 {
538 if (order == 0) {
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
541 set_page_refcounted(page);
542 __free_page(page);
543 } else {
544 int loop;
545
546 prefetchw(page);
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
549
550 if (loop + 1 < BITS_PER_LONG)
551 prefetchw(p + 1);
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
554 }
555
556 set_page_refcounted(page);
557 __free_pages(page, order);
558 }
559 }
560
561
562 /*
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
573 *
574 * -- wli
575 */
576 static inline void expand(struct zone *zone, struct page *page,
577 int low, int high, struct free_area *area,
578 int migratetype)
579 {
580 unsigned long size = 1 << high;
581
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list[migratetype]);
588 area->nr_free++;
589 set_page_order(&page[size], high);
590 }
591 }
592
593 /*
594 * This page is about to be returned from the page allocator
595 */
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 {
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_get_page_cgroup(page) != NULL) |
601 (page_count(page) != 0) |
602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
603 bad_page(page);
604
605 /*
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
608 */
609 if (PageReserved(page))
610 return 1;
611
612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613 1 << PG_referenced | 1 << PG_arch_1 |
614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615 set_page_private(page, 0);
616 set_page_refcounted(page);
617
618 arch_alloc_page(page, order);
619 kernel_map_pages(page, 1 << order, 1);
620
621 if (gfp_flags & __GFP_ZERO)
622 prep_zero_page(page, order, gfp_flags);
623
624 if (order && (gfp_flags & __GFP_COMP))
625 prep_compound_page(page, order);
626
627 return 0;
628 }
629
630 /*
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
633 */
634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 int migratetype)
636 {
637 unsigned int current_order;
638 struct free_area * area;
639 struct page *page;
640
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 area = &(zone->free_area[current_order]);
644 if (list_empty(&area->free_list[migratetype]))
645 continue;
646
647 page = list_entry(area->free_list[migratetype].next,
648 struct page, lru);
649 list_del(&page->lru);
650 rmv_page_order(page);
651 area->nr_free--;
652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 expand(zone, page, order, current_order, area, migratetype);
654 return page;
655 }
656
657 return NULL;
658 }
659
660
661 /*
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
664 */
665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
670 };
671
672 /*
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
676 */
677 int move_freepages(struct zone *zone,
678 struct page *start_page, struct page *end_page,
679 int migratetype)
680 {
681 struct page *page;
682 unsigned long order;
683 int pages_moved = 0;
684
685 #ifndef CONFIG_HOLES_IN_ZONE
686 /*
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
691 * grouping pages by mobility
692 */
693 BUG_ON(page_zone(start_page) != page_zone(end_page));
694 #endif
695
696 for (page = start_page; page <= end_page;) {
697 if (!pfn_valid_within(page_to_pfn(page))) {
698 page++;
699 continue;
700 }
701
702 if (!PageBuddy(page)) {
703 page++;
704 continue;
705 }
706
707 order = page_order(page);
708 list_del(&page->lru);
709 list_add(&page->lru,
710 &zone->free_area[order].free_list[migratetype]);
711 page += 1 << order;
712 pages_moved += 1 << order;
713 }
714
715 return pages_moved;
716 }
717
718 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
719 {
720 unsigned long start_pfn, end_pfn;
721 struct page *start_page, *end_page;
722
723 start_pfn = page_to_pfn(page);
724 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
725 start_page = pfn_to_page(start_pfn);
726 end_page = start_page + pageblock_nr_pages - 1;
727 end_pfn = start_pfn + pageblock_nr_pages - 1;
728
729 /* Do not cross zone boundaries */
730 if (start_pfn < zone->zone_start_pfn)
731 start_page = page;
732 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
733 return 0;
734
735 return move_freepages(zone, start_page, end_page, migratetype);
736 }
737
738 /* Remove an element from the buddy allocator from the fallback list */
739 static struct page *__rmqueue_fallback(struct zone *zone, int order,
740 int start_migratetype)
741 {
742 struct free_area * area;
743 int current_order;
744 struct page *page;
745 int migratetype, i;
746
747 /* Find the largest possible block of pages in the other list */
748 for (current_order = MAX_ORDER-1; current_order >= order;
749 --current_order) {
750 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
751 migratetype = fallbacks[start_migratetype][i];
752
753 /* MIGRATE_RESERVE handled later if necessary */
754 if (migratetype == MIGRATE_RESERVE)
755 continue;
756
757 area = &(zone->free_area[current_order]);
758 if (list_empty(&area->free_list[migratetype]))
759 continue;
760
761 page = list_entry(area->free_list[migratetype].next,
762 struct page, lru);
763 area->nr_free--;
764
765 /*
766 * If breaking a large block of pages, move all free
767 * pages to the preferred allocation list. If falling
768 * back for a reclaimable kernel allocation, be more
769 * agressive about taking ownership of free pages
770 */
771 if (unlikely(current_order >= (pageblock_order >> 1)) ||
772 start_migratetype == MIGRATE_RECLAIMABLE) {
773 unsigned long pages;
774 pages = move_freepages_block(zone, page,
775 start_migratetype);
776
777 /* Claim the whole block if over half of it is free */
778 if (pages >= (1 << (pageblock_order-1)))
779 set_pageblock_migratetype(page,
780 start_migratetype);
781
782 migratetype = start_migratetype;
783 }
784
785 /* Remove the page from the freelists */
786 list_del(&page->lru);
787 rmv_page_order(page);
788 __mod_zone_page_state(zone, NR_FREE_PAGES,
789 -(1UL << order));
790
791 if (current_order == pageblock_order)
792 set_pageblock_migratetype(page,
793 start_migratetype);
794
795 expand(zone, page, order, current_order, area, migratetype);
796 return page;
797 }
798 }
799
800 /* Use MIGRATE_RESERVE rather than fail an allocation */
801 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
802 }
803
804 /*
805 * Do the hard work of removing an element from the buddy allocator.
806 * Call me with the zone->lock already held.
807 */
808 static struct page *__rmqueue(struct zone *zone, unsigned int order,
809 int migratetype)
810 {
811 struct page *page;
812
813 page = __rmqueue_smallest(zone, order, migratetype);
814
815 if (unlikely(!page))
816 page = __rmqueue_fallback(zone, order, migratetype);
817
818 return page;
819 }
820
821 /*
822 * Obtain a specified number of elements from the buddy allocator, all under
823 * a single hold of the lock, for efficiency. Add them to the supplied list.
824 * Returns the number of new pages which were placed at *list.
825 */
826 static int rmqueue_bulk(struct zone *zone, unsigned int order,
827 unsigned long count, struct list_head *list,
828 int migratetype)
829 {
830 int i;
831
832 spin_lock(&zone->lock);
833 for (i = 0; i < count; ++i) {
834 struct page *page = __rmqueue(zone, order, migratetype);
835 if (unlikely(page == NULL))
836 break;
837
838 /*
839 * Split buddy pages returned by expand() are received here
840 * in physical page order. The page is added to the callers and
841 * list and the list head then moves forward. From the callers
842 * perspective, the linked list is ordered by page number in
843 * some conditions. This is useful for IO devices that can
844 * merge IO requests if the physical pages are ordered
845 * properly.
846 */
847 list_add(&page->lru, list);
848 set_page_private(page, migratetype);
849 list = &page->lru;
850 }
851 spin_unlock(&zone->lock);
852 return i;
853 }
854
855 #ifdef CONFIG_NUMA
856 /*
857 * Called from the vmstat counter updater to drain pagesets of this
858 * currently executing processor on remote nodes after they have
859 * expired.
860 *
861 * Note that this function must be called with the thread pinned to
862 * a single processor.
863 */
864 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
865 {
866 unsigned long flags;
867 int to_drain;
868
869 local_irq_save(flags);
870 if (pcp->count >= pcp->batch)
871 to_drain = pcp->batch;
872 else
873 to_drain = pcp->count;
874 free_pages_bulk(zone, to_drain, &pcp->list, 0);
875 pcp->count -= to_drain;
876 local_irq_restore(flags);
877 }
878 #endif
879
880 /*
881 * Drain pages of the indicated processor.
882 *
883 * The processor must either be the current processor and the
884 * thread pinned to the current processor or a processor that
885 * is not online.
886 */
887 static void drain_pages(unsigned int cpu)
888 {
889 unsigned long flags;
890 struct zone *zone;
891
892 for_each_zone(zone) {
893 struct per_cpu_pageset *pset;
894 struct per_cpu_pages *pcp;
895
896 if (!populated_zone(zone))
897 continue;
898
899 pset = zone_pcp(zone, cpu);
900
901 pcp = &pset->pcp;
902 local_irq_save(flags);
903 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
904 pcp->count = 0;
905 local_irq_restore(flags);
906 }
907 }
908
909 /*
910 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
911 */
912 void drain_local_pages(void *arg)
913 {
914 drain_pages(smp_processor_id());
915 }
916
917 /*
918 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
919 */
920 void drain_all_pages(void)
921 {
922 on_each_cpu(drain_local_pages, NULL, 1);
923 }
924
925 #ifdef CONFIG_HIBERNATION
926
927 void mark_free_pages(struct zone *zone)
928 {
929 unsigned long pfn, max_zone_pfn;
930 unsigned long flags;
931 int order, t;
932 struct list_head *curr;
933
934 if (!zone->spanned_pages)
935 return;
936
937 spin_lock_irqsave(&zone->lock, flags);
938
939 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
940 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
941 if (pfn_valid(pfn)) {
942 struct page *page = pfn_to_page(pfn);
943
944 if (!swsusp_page_is_forbidden(page))
945 swsusp_unset_page_free(page);
946 }
947
948 for_each_migratetype_order(order, t) {
949 list_for_each(curr, &zone->free_area[order].free_list[t]) {
950 unsigned long i;
951
952 pfn = page_to_pfn(list_entry(curr, struct page, lru));
953 for (i = 0; i < (1UL << order); i++)
954 swsusp_set_page_free(pfn_to_page(pfn + i));
955 }
956 }
957 spin_unlock_irqrestore(&zone->lock, flags);
958 }
959 #endif /* CONFIG_PM */
960
961 /*
962 * Free a 0-order page
963 */
964 static void free_hot_cold_page(struct page *page, int cold)
965 {
966 struct zone *zone = page_zone(page);
967 struct per_cpu_pages *pcp;
968 unsigned long flags;
969
970 if (PageAnon(page))
971 page->mapping = NULL;
972 if (free_pages_check(page))
973 return;
974
975 if (!PageHighMem(page)) {
976 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
977 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
978 }
979 arch_free_page(page, 0);
980 kernel_map_pages(page, 1, 0);
981
982 pcp = &zone_pcp(zone, get_cpu())->pcp;
983 local_irq_save(flags);
984 __count_vm_event(PGFREE);
985 if (cold)
986 list_add_tail(&page->lru, &pcp->list);
987 else
988 list_add(&page->lru, &pcp->list);
989 set_page_private(page, get_pageblock_migratetype(page));
990 pcp->count++;
991 if (pcp->count >= pcp->high) {
992 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
993 pcp->count -= pcp->batch;
994 }
995 local_irq_restore(flags);
996 put_cpu();
997 }
998
999 void free_hot_page(struct page *page)
1000 {
1001 free_hot_cold_page(page, 0);
1002 }
1003
1004 void free_cold_page(struct page *page)
1005 {
1006 free_hot_cold_page(page, 1);
1007 }
1008
1009 /*
1010 * split_page takes a non-compound higher-order page, and splits it into
1011 * n (1<<order) sub-pages: page[0..n]
1012 * Each sub-page must be freed individually.
1013 *
1014 * Note: this is probably too low level an operation for use in drivers.
1015 * Please consult with lkml before using this in your driver.
1016 */
1017 void split_page(struct page *page, unsigned int order)
1018 {
1019 int i;
1020
1021 VM_BUG_ON(PageCompound(page));
1022 VM_BUG_ON(!page_count(page));
1023 for (i = 1; i < (1 << order); i++)
1024 set_page_refcounted(page + i);
1025 }
1026
1027 /*
1028 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1029 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1030 * or two.
1031 */
1032 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1033 struct zone *zone, int order, gfp_t gfp_flags)
1034 {
1035 unsigned long flags;
1036 struct page *page;
1037 int cold = !!(gfp_flags & __GFP_COLD);
1038 int cpu;
1039 int migratetype = allocflags_to_migratetype(gfp_flags);
1040
1041 again:
1042 cpu = get_cpu();
1043 if (likely(order == 0)) {
1044 struct per_cpu_pages *pcp;
1045
1046 pcp = &zone_pcp(zone, cpu)->pcp;
1047 local_irq_save(flags);
1048 if (!pcp->count) {
1049 pcp->count = rmqueue_bulk(zone, 0,
1050 pcp->batch, &pcp->list, migratetype);
1051 if (unlikely(!pcp->count))
1052 goto failed;
1053 }
1054
1055 /* Find a page of the appropriate migrate type */
1056 if (cold) {
1057 list_for_each_entry_reverse(page, &pcp->list, lru)
1058 if (page_private(page) == migratetype)
1059 break;
1060 } else {
1061 list_for_each_entry(page, &pcp->list, lru)
1062 if (page_private(page) == migratetype)
1063 break;
1064 }
1065
1066 /* Allocate more to the pcp list if necessary */
1067 if (unlikely(&page->lru == &pcp->list)) {
1068 pcp->count += rmqueue_bulk(zone, 0,
1069 pcp->batch, &pcp->list, migratetype);
1070 page = list_entry(pcp->list.next, struct page, lru);
1071 }
1072
1073 list_del(&page->lru);
1074 pcp->count--;
1075 } else {
1076 spin_lock_irqsave(&zone->lock, flags);
1077 page = __rmqueue(zone, order, migratetype);
1078 spin_unlock(&zone->lock);
1079 if (!page)
1080 goto failed;
1081 }
1082
1083 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1084 zone_statistics(preferred_zone, zone);
1085 local_irq_restore(flags);
1086 put_cpu();
1087
1088 VM_BUG_ON(bad_range(zone, page));
1089 if (prep_new_page(page, order, gfp_flags))
1090 goto again;
1091 return page;
1092
1093 failed:
1094 local_irq_restore(flags);
1095 put_cpu();
1096 return NULL;
1097 }
1098
1099 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1100 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1101 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1102 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1103 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1104 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1105 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1106
1107 #ifdef CONFIG_FAIL_PAGE_ALLOC
1108
1109 static struct fail_page_alloc_attr {
1110 struct fault_attr attr;
1111
1112 u32 ignore_gfp_highmem;
1113 u32 ignore_gfp_wait;
1114 u32 min_order;
1115
1116 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1117
1118 struct dentry *ignore_gfp_highmem_file;
1119 struct dentry *ignore_gfp_wait_file;
1120 struct dentry *min_order_file;
1121
1122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1123
1124 } fail_page_alloc = {
1125 .attr = FAULT_ATTR_INITIALIZER,
1126 .ignore_gfp_wait = 1,
1127 .ignore_gfp_highmem = 1,
1128 .min_order = 1,
1129 };
1130
1131 static int __init setup_fail_page_alloc(char *str)
1132 {
1133 return setup_fault_attr(&fail_page_alloc.attr, str);
1134 }
1135 __setup("fail_page_alloc=", setup_fail_page_alloc);
1136
1137 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1138 {
1139 if (order < fail_page_alloc.min_order)
1140 return 0;
1141 if (gfp_mask & __GFP_NOFAIL)
1142 return 0;
1143 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1144 return 0;
1145 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1146 return 0;
1147
1148 return should_fail(&fail_page_alloc.attr, 1 << order);
1149 }
1150
1151 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1152
1153 static int __init fail_page_alloc_debugfs(void)
1154 {
1155 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1156 struct dentry *dir;
1157 int err;
1158
1159 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1160 "fail_page_alloc");
1161 if (err)
1162 return err;
1163 dir = fail_page_alloc.attr.dentries.dir;
1164
1165 fail_page_alloc.ignore_gfp_wait_file =
1166 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1167 &fail_page_alloc.ignore_gfp_wait);
1168
1169 fail_page_alloc.ignore_gfp_highmem_file =
1170 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1171 &fail_page_alloc.ignore_gfp_highmem);
1172 fail_page_alloc.min_order_file =
1173 debugfs_create_u32("min-order", mode, dir,
1174 &fail_page_alloc.min_order);
1175
1176 if (!fail_page_alloc.ignore_gfp_wait_file ||
1177 !fail_page_alloc.ignore_gfp_highmem_file ||
1178 !fail_page_alloc.min_order_file) {
1179 err = -ENOMEM;
1180 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1181 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1182 debugfs_remove(fail_page_alloc.min_order_file);
1183 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1184 }
1185
1186 return err;
1187 }
1188
1189 late_initcall(fail_page_alloc_debugfs);
1190
1191 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1192
1193 #else /* CONFIG_FAIL_PAGE_ALLOC */
1194
1195 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1196 {
1197 return 0;
1198 }
1199
1200 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1201
1202 /*
1203 * Return 1 if free pages are above 'mark'. This takes into account the order
1204 * of the allocation.
1205 */
1206 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1207 int classzone_idx, int alloc_flags)
1208 {
1209 /* free_pages my go negative - that's OK */
1210 long min = mark;
1211 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1212 int o;
1213
1214 if (alloc_flags & ALLOC_HIGH)
1215 min -= min / 2;
1216 if (alloc_flags & ALLOC_HARDER)
1217 min -= min / 4;
1218
1219 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1220 return 0;
1221 for (o = 0; o < order; o++) {
1222 /* At the next order, this order's pages become unavailable */
1223 free_pages -= z->free_area[o].nr_free << o;
1224
1225 /* Require fewer higher order pages to be free */
1226 min >>= 1;
1227
1228 if (free_pages <= min)
1229 return 0;
1230 }
1231 return 1;
1232 }
1233
1234 #ifdef CONFIG_NUMA
1235 /*
1236 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1237 * skip over zones that are not allowed by the cpuset, or that have
1238 * been recently (in last second) found to be nearly full. See further
1239 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1240 * that have to skip over a lot of full or unallowed zones.
1241 *
1242 * If the zonelist cache is present in the passed in zonelist, then
1243 * returns a pointer to the allowed node mask (either the current
1244 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1245 *
1246 * If the zonelist cache is not available for this zonelist, does
1247 * nothing and returns NULL.
1248 *
1249 * If the fullzones BITMAP in the zonelist cache is stale (more than
1250 * a second since last zap'd) then we zap it out (clear its bits.)
1251 *
1252 * We hold off even calling zlc_setup, until after we've checked the
1253 * first zone in the zonelist, on the theory that most allocations will
1254 * be satisfied from that first zone, so best to examine that zone as
1255 * quickly as we can.
1256 */
1257 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1258 {
1259 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1260 nodemask_t *allowednodes; /* zonelist_cache approximation */
1261
1262 zlc = zonelist->zlcache_ptr;
1263 if (!zlc)
1264 return NULL;
1265
1266 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1267 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1268 zlc->last_full_zap = jiffies;
1269 }
1270
1271 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1272 &cpuset_current_mems_allowed :
1273 &node_states[N_HIGH_MEMORY];
1274 return allowednodes;
1275 }
1276
1277 /*
1278 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1279 * if it is worth looking at further for free memory:
1280 * 1) Check that the zone isn't thought to be full (doesn't have its
1281 * bit set in the zonelist_cache fullzones BITMAP).
1282 * 2) Check that the zones node (obtained from the zonelist_cache
1283 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1284 * Return true (non-zero) if zone is worth looking at further, or
1285 * else return false (zero) if it is not.
1286 *
1287 * This check -ignores- the distinction between various watermarks,
1288 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1289 * found to be full for any variation of these watermarks, it will
1290 * be considered full for up to one second by all requests, unless
1291 * we are so low on memory on all allowed nodes that we are forced
1292 * into the second scan of the zonelist.
1293 *
1294 * In the second scan we ignore this zonelist cache and exactly
1295 * apply the watermarks to all zones, even it is slower to do so.
1296 * We are low on memory in the second scan, and should leave no stone
1297 * unturned looking for a free page.
1298 */
1299 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1300 nodemask_t *allowednodes)
1301 {
1302 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1303 int i; /* index of *z in zonelist zones */
1304 int n; /* node that zone *z is on */
1305
1306 zlc = zonelist->zlcache_ptr;
1307 if (!zlc)
1308 return 1;
1309
1310 i = z - zonelist->_zonerefs;
1311 n = zlc->z_to_n[i];
1312
1313 /* This zone is worth trying if it is allowed but not full */
1314 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1315 }
1316
1317 /*
1318 * Given 'z' scanning a zonelist, set the corresponding bit in
1319 * zlc->fullzones, so that subsequent attempts to allocate a page
1320 * from that zone don't waste time re-examining it.
1321 */
1322 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1323 {
1324 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1325 int i; /* index of *z in zonelist zones */
1326
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return;
1330
1331 i = z - zonelist->_zonerefs;
1332
1333 set_bit(i, zlc->fullzones);
1334 }
1335
1336 #else /* CONFIG_NUMA */
1337
1338 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1339 {
1340 return NULL;
1341 }
1342
1343 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1344 nodemask_t *allowednodes)
1345 {
1346 return 1;
1347 }
1348
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1350 {
1351 }
1352 #endif /* CONFIG_NUMA */
1353
1354 /*
1355 * get_page_from_freelist goes through the zonelist trying to allocate
1356 * a page.
1357 */
1358 static struct page *
1359 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1360 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1361 {
1362 struct zoneref *z;
1363 struct page *page = NULL;
1364 int classzone_idx;
1365 struct zone *zone, *preferred_zone;
1366 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1367 int zlc_active = 0; /* set if using zonelist_cache */
1368 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1369
1370 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1371 &preferred_zone);
1372 if (!preferred_zone)
1373 return NULL;
1374
1375 classzone_idx = zone_idx(preferred_zone);
1376
1377 zonelist_scan:
1378 /*
1379 * Scan zonelist, looking for a zone with enough free.
1380 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1381 */
1382 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1383 high_zoneidx, nodemask) {
1384 if (NUMA_BUILD && zlc_active &&
1385 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1386 continue;
1387 if ((alloc_flags & ALLOC_CPUSET) &&
1388 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1389 goto try_next_zone;
1390
1391 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1392 unsigned long mark;
1393 if (alloc_flags & ALLOC_WMARK_MIN)
1394 mark = zone->pages_min;
1395 else if (alloc_flags & ALLOC_WMARK_LOW)
1396 mark = zone->pages_low;
1397 else
1398 mark = zone->pages_high;
1399 if (!zone_watermark_ok(zone, order, mark,
1400 classzone_idx, alloc_flags)) {
1401 if (!zone_reclaim_mode ||
1402 !zone_reclaim(zone, gfp_mask, order))
1403 goto this_zone_full;
1404 }
1405 }
1406
1407 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1408 if (page)
1409 break;
1410 this_zone_full:
1411 if (NUMA_BUILD)
1412 zlc_mark_zone_full(zonelist, z);
1413 try_next_zone:
1414 if (NUMA_BUILD && !did_zlc_setup) {
1415 /* we do zlc_setup after the first zone is tried */
1416 allowednodes = zlc_setup(zonelist, alloc_flags);
1417 zlc_active = 1;
1418 did_zlc_setup = 1;
1419 }
1420 }
1421
1422 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1423 /* Disable zlc cache for second zonelist scan */
1424 zlc_active = 0;
1425 goto zonelist_scan;
1426 }
1427 return page;
1428 }
1429
1430 /*
1431 * This is the 'heart' of the zoned buddy allocator.
1432 */
1433 struct page *
1434 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1435 struct zonelist *zonelist, nodemask_t *nodemask)
1436 {
1437 const gfp_t wait = gfp_mask & __GFP_WAIT;
1438 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1439 struct zoneref *z;
1440 struct zone *zone;
1441 struct page *page;
1442 struct reclaim_state reclaim_state;
1443 struct task_struct *p = current;
1444 int do_retry;
1445 int alloc_flags;
1446 unsigned long did_some_progress;
1447 unsigned long pages_reclaimed = 0;
1448
1449 might_sleep_if(wait);
1450
1451 if (should_fail_alloc_page(gfp_mask, order))
1452 return NULL;
1453
1454 restart:
1455 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1456
1457 if (unlikely(!z->zone)) {
1458 /*
1459 * Happens if we have an empty zonelist as a result of
1460 * GFP_THISNODE being used on a memoryless node
1461 */
1462 return NULL;
1463 }
1464
1465 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1466 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1467 if (page)
1468 goto got_pg;
1469
1470 /*
1471 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1472 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1473 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1474 * using a larger set of nodes after it has established that the
1475 * allowed per node queues are empty and that nodes are
1476 * over allocated.
1477 */
1478 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1479 goto nopage;
1480
1481 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1482 wakeup_kswapd(zone, order);
1483
1484 /*
1485 * OK, we're below the kswapd watermark and have kicked background
1486 * reclaim. Now things get more complex, so set up alloc_flags according
1487 * to how we want to proceed.
1488 *
1489 * The caller may dip into page reserves a bit more if the caller
1490 * cannot run direct reclaim, or if the caller has realtime scheduling
1491 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1492 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1493 */
1494 alloc_flags = ALLOC_WMARK_MIN;
1495 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1496 alloc_flags |= ALLOC_HARDER;
1497 if (gfp_mask & __GFP_HIGH)
1498 alloc_flags |= ALLOC_HIGH;
1499 if (wait)
1500 alloc_flags |= ALLOC_CPUSET;
1501
1502 /*
1503 * Go through the zonelist again. Let __GFP_HIGH and allocations
1504 * coming from realtime tasks go deeper into reserves.
1505 *
1506 * This is the last chance, in general, before the goto nopage.
1507 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1508 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1509 */
1510 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1511 high_zoneidx, alloc_flags);
1512 if (page)
1513 goto got_pg;
1514
1515 /* This allocation should allow future memory freeing. */
1516
1517 rebalance:
1518 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1519 && !in_interrupt()) {
1520 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1521 nofail_alloc:
1522 /* go through the zonelist yet again, ignoring mins */
1523 page = get_page_from_freelist(gfp_mask, nodemask, order,
1524 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1525 if (page)
1526 goto got_pg;
1527 if (gfp_mask & __GFP_NOFAIL) {
1528 congestion_wait(WRITE, HZ/50);
1529 goto nofail_alloc;
1530 }
1531 }
1532 goto nopage;
1533 }
1534
1535 /* Atomic allocations - we can't balance anything */
1536 if (!wait)
1537 goto nopage;
1538
1539 cond_resched();
1540
1541 /* We now go into synchronous reclaim */
1542 cpuset_memory_pressure_bump();
1543 p->flags |= PF_MEMALLOC;
1544 reclaim_state.reclaimed_slab = 0;
1545 p->reclaim_state = &reclaim_state;
1546
1547 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1548
1549 p->reclaim_state = NULL;
1550 p->flags &= ~PF_MEMALLOC;
1551
1552 cond_resched();
1553
1554 if (order != 0)
1555 drain_all_pages();
1556
1557 if (likely(did_some_progress)) {
1558 page = get_page_from_freelist(gfp_mask, nodemask, order,
1559 zonelist, high_zoneidx, alloc_flags);
1560 if (page)
1561 goto got_pg;
1562 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1563 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1564 schedule_timeout_uninterruptible(1);
1565 goto restart;
1566 }
1567
1568 /*
1569 * Go through the zonelist yet one more time, keep
1570 * very high watermark here, this is only to catch
1571 * a parallel oom killing, we must fail if we're still
1572 * under heavy pressure.
1573 */
1574 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1575 order, zonelist, high_zoneidx,
1576 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1577 if (page) {
1578 clear_zonelist_oom(zonelist, gfp_mask);
1579 goto got_pg;
1580 }
1581
1582 /* The OOM killer will not help higher order allocs so fail */
1583 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1584 clear_zonelist_oom(zonelist, gfp_mask);
1585 goto nopage;
1586 }
1587
1588 out_of_memory(zonelist, gfp_mask, order);
1589 clear_zonelist_oom(zonelist, gfp_mask);
1590 goto restart;
1591 }
1592
1593 /*
1594 * Don't let big-order allocations loop unless the caller explicitly
1595 * requests that. Wait for some write requests to complete then retry.
1596 *
1597 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1598 * means __GFP_NOFAIL, but that may not be true in other
1599 * implementations.
1600 *
1601 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1602 * specified, then we retry until we no longer reclaim any pages
1603 * (above), or we've reclaimed an order of pages at least as
1604 * large as the allocation's order. In both cases, if the
1605 * allocation still fails, we stop retrying.
1606 */
1607 pages_reclaimed += did_some_progress;
1608 do_retry = 0;
1609 if (!(gfp_mask & __GFP_NORETRY)) {
1610 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1611 do_retry = 1;
1612 } else {
1613 if (gfp_mask & __GFP_REPEAT &&
1614 pages_reclaimed < (1 << order))
1615 do_retry = 1;
1616 }
1617 if (gfp_mask & __GFP_NOFAIL)
1618 do_retry = 1;
1619 }
1620 if (do_retry) {
1621 congestion_wait(WRITE, HZ/50);
1622 goto rebalance;
1623 }
1624
1625 nopage:
1626 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1627 printk(KERN_WARNING "%s: page allocation failure."
1628 " order:%d, mode:0x%x\n",
1629 p->comm, order, gfp_mask);
1630 dump_stack();
1631 show_mem();
1632 }
1633 got_pg:
1634 return page;
1635 }
1636 EXPORT_SYMBOL(__alloc_pages_internal);
1637
1638 /*
1639 * Common helper functions.
1640 */
1641 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1642 {
1643 struct page * page;
1644 page = alloc_pages(gfp_mask, order);
1645 if (!page)
1646 return 0;
1647 return (unsigned long) page_address(page);
1648 }
1649
1650 EXPORT_SYMBOL(__get_free_pages);
1651
1652 unsigned long get_zeroed_page(gfp_t gfp_mask)
1653 {
1654 struct page * page;
1655
1656 /*
1657 * get_zeroed_page() returns a 32-bit address, which cannot represent
1658 * a highmem page
1659 */
1660 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1661
1662 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1663 if (page)
1664 return (unsigned long) page_address(page);
1665 return 0;
1666 }
1667
1668 EXPORT_SYMBOL(get_zeroed_page);
1669
1670 void __pagevec_free(struct pagevec *pvec)
1671 {
1672 int i = pagevec_count(pvec);
1673
1674 while (--i >= 0)
1675 free_hot_cold_page(pvec->pages[i], pvec->cold);
1676 }
1677
1678 void __free_pages(struct page *page, unsigned int order)
1679 {
1680 if (put_page_testzero(page)) {
1681 if (order == 0)
1682 free_hot_page(page);
1683 else
1684 __free_pages_ok(page, order);
1685 }
1686 }
1687
1688 EXPORT_SYMBOL(__free_pages);
1689
1690 void free_pages(unsigned long addr, unsigned int order)
1691 {
1692 if (addr != 0) {
1693 VM_BUG_ON(!virt_addr_valid((void *)addr));
1694 __free_pages(virt_to_page((void *)addr), order);
1695 }
1696 }
1697
1698 EXPORT_SYMBOL(free_pages);
1699
1700 /**
1701 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1702 * @size: the number of bytes to allocate
1703 * @gfp_mask: GFP flags for the allocation
1704 *
1705 * This function is similar to alloc_pages(), except that it allocates the
1706 * minimum number of pages to satisfy the request. alloc_pages() can only
1707 * allocate memory in power-of-two pages.
1708 *
1709 * This function is also limited by MAX_ORDER.
1710 *
1711 * Memory allocated by this function must be released by free_pages_exact().
1712 */
1713 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1714 {
1715 unsigned int order = get_order(size);
1716 unsigned long addr;
1717
1718 addr = __get_free_pages(gfp_mask, order);
1719 if (addr) {
1720 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1721 unsigned long used = addr + PAGE_ALIGN(size);
1722
1723 split_page(virt_to_page(addr), order);
1724 while (used < alloc_end) {
1725 free_page(used);
1726 used += PAGE_SIZE;
1727 }
1728 }
1729
1730 return (void *)addr;
1731 }
1732 EXPORT_SYMBOL(alloc_pages_exact);
1733
1734 /**
1735 * free_pages_exact - release memory allocated via alloc_pages_exact()
1736 * @virt: the value returned by alloc_pages_exact.
1737 * @size: size of allocation, same value as passed to alloc_pages_exact().
1738 *
1739 * Release the memory allocated by a previous call to alloc_pages_exact.
1740 */
1741 void free_pages_exact(void *virt, size_t size)
1742 {
1743 unsigned long addr = (unsigned long)virt;
1744 unsigned long end = addr + PAGE_ALIGN(size);
1745
1746 while (addr < end) {
1747 free_page(addr);
1748 addr += PAGE_SIZE;
1749 }
1750 }
1751 EXPORT_SYMBOL(free_pages_exact);
1752
1753 static unsigned int nr_free_zone_pages(int offset)
1754 {
1755 struct zoneref *z;
1756 struct zone *zone;
1757
1758 /* Just pick one node, since fallback list is circular */
1759 unsigned int sum = 0;
1760
1761 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1762
1763 for_each_zone_zonelist(zone, z, zonelist, offset) {
1764 unsigned long size = zone->present_pages;
1765 unsigned long high = zone->pages_high;
1766 if (size > high)
1767 sum += size - high;
1768 }
1769
1770 return sum;
1771 }
1772
1773 /*
1774 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1775 */
1776 unsigned int nr_free_buffer_pages(void)
1777 {
1778 return nr_free_zone_pages(gfp_zone(GFP_USER));
1779 }
1780 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1781
1782 /*
1783 * Amount of free RAM allocatable within all zones
1784 */
1785 unsigned int nr_free_pagecache_pages(void)
1786 {
1787 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1788 }
1789
1790 static inline void show_node(struct zone *zone)
1791 {
1792 if (NUMA_BUILD)
1793 printk("Node %d ", zone_to_nid(zone));
1794 }
1795
1796 void si_meminfo(struct sysinfo *val)
1797 {
1798 val->totalram = totalram_pages;
1799 val->sharedram = 0;
1800 val->freeram = global_page_state(NR_FREE_PAGES);
1801 val->bufferram = nr_blockdev_pages();
1802 val->totalhigh = totalhigh_pages;
1803 val->freehigh = nr_free_highpages();
1804 val->mem_unit = PAGE_SIZE;
1805 }
1806
1807 EXPORT_SYMBOL(si_meminfo);
1808
1809 #ifdef CONFIG_NUMA
1810 void si_meminfo_node(struct sysinfo *val, int nid)
1811 {
1812 pg_data_t *pgdat = NODE_DATA(nid);
1813
1814 val->totalram = pgdat->node_present_pages;
1815 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1816 #ifdef CONFIG_HIGHMEM
1817 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1818 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1819 NR_FREE_PAGES);
1820 #else
1821 val->totalhigh = 0;
1822 val->freehigh = 0;
1823 #endif
1824 val->mem_unit = PAGE_SIZE;
1825 }
1826 #endif
1827
1828 #define K(x) ((x) << (PAGE_SHIFT-10))
1829
1830 /*
1831 * Show free area list (used inside shift_scroll-lock stuff)
1832 * We also calculate the percentage fragmentation. We do this by counting the
1833 * memory on each free list with the exception of the first item on the list.
1834 */
1835 void show_free_areas(void)
1836 {
1837 int cpu;
1838 struct zone *zone;
1839
1840 for_each_zone(zone) {
1841 if (!populated_zone(zone))
1842 continue;
1843
1844 show_node(zone);
1845 printk("%s per-cpu:\n", zone->name);
1846
1847 for_each_online_cpu(cpu) {
1848 struct per_cpu_pageset *pageset;
1849
1850 pageset = zone_pcp(zone, cpu);
1851
1852 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1853 cpu, pageset->pcp.high,
1854 pageset->pcp.batch, pageset->pcp.count);
1855 }
1856 }
1857
1858 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1859 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1860 global_page_state(NR_ACTIVE),
1861 global_page_state(NR_INACTIVE),
1862 global_page_state(NR_FILE_DIRTY),
1863 global_page_state(NR_WRITEBACK),
1864 global_page_state(NR_UNSTABLE_NFS),
1865 global_page_state(NR_FREE_PAGES),
1866 global_page_state(NR_SLAB_RECLAIMABLE) +
1867 global_page_state(NR_SLAB_UNRECLAIMABLE),
1868 global_page_state(NR_FILE_MAPPED),
1869 global_page_state(NR_PAGETABLE),
1870 global_page_state(NR_BOUNCE));
1871
1872 for_each_zone(zone) {
1873 int i;
1874
1875 if (!populated_zone(zone))
1876 continue;
1877
1878 show_node(zone);
1879 printk("%s"
1880 " free:%lukB"
1881 " min:%lukB"
1882 " low:%lukB"
1883 " high:%lukB"
1884 " active:%lukB"
1885 " inactive:%lukB"
1886 " present:%lukB"
1887 " pages_scanned:%lu"
1888 " all_unreclaimable? %s"
1889 "\n",
1890 zone->name,
1891 K(zone_page_state(zone, NR_FREE_PAGES)),
1892 K(zone->pages_min),
1893 K(zone->pages_low),
1894 K(zone->pages_high),
1895 K(zone_page_state(zone, NR_ACTIVE)),
1896 K(zone_page_state(zone, NR_INACTIVE)),
1897 K(zone->present_pages),
1898 zone->pages_scanned,
1899 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1900 );
1901 printk("lowmem_reserve[]:");
1902 for (i = 0; i < MAX_NR_ZONES; i++)
1903 printk(" %lu", zone->lowmem_reserve[i]);
1904 printk("\n");
1905 }
1906
1907 for_each_zone(zone) {
1908 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1909
1910 if (!populated_zone(zone))
1911 continue;
1912
1913 show_node(zone);
1914 printk("%s: ", zone->name);
1915
1916 spin_lock_irqsave(&zone->lock, flags);
1917 for (order = 0; order < MAX_ORDER; order++) {
1918 nr[order] = zone->free_area[order].nr_free;
1919 total += nr[order] << order;
1920 }
1921 spin_unlock_irqrestore(&zone->lock, flags);
1922 for (order = 0; order < MAX_ORDER; order++)
1923 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1924 printk("= %lukB\n", K(total));
1925 }
1926
1927 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1928
1929 show_swap_cache_info();
1930 }
1931
1932 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1933 {
1934 zoneref->zone = zone;
1935 zoneref->zone_idx = zone_idx(zone);
1936 }
1937
1938 /*
1939 * Builds allocation fallback zone lists.
1940 *
1941 * Add all populated zones of a node to the zonelist.
1942 */
1943 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1944 int nr_zones, enum zone_type zone_type)
1945 {
1946 struct zone *zone;
1947
1948 BUG_ON(zone_type >= MAX_NR_ZONES);
1949 zone_type++;
1950
1951 do {
1952 zone_type--;
1953 zone = pgdat->node_zones + zone_type;
1954 if (populated_zone(zone)) {
1955 zoneref_set_zone(zone,
1956 &zonelist->_zonerefs[nr_zones++]);
1957 check_highest_zone(zone_type);
1958 }
1959
1960 } while (zone_type);
1961 return nr_zones;
1962 }
1963
1964
1965 /*
1966 * zonelist_order:
1967 * 0 = automatic detection of better ordering.
1968 * 1 = order by ([node] distance, -zonetype)
1969 * 2 = order by (-zonetype, [node] distance)
1970 *
1971 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1972 * the same zonelist. So only NUMA can configure this param.
1973 */
1974 #define ZONELIST_ORDER_DEFAULT 0
1975 #define ZONELIST_ORDER_NODE 1
1976 #define ZONELIST_ORDER_ZONE 2
1977
1978 /* zonelist order in the kernel.
1979 * set_zonelist_order() will set this to NODE or ZONE.
1980 */
1981 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1982 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1983
1984
1985 #ifdef CONFIG_NUMA
1986 /* The value user specified ....changed by config */
1987 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1988 /* string for sysctl */
1989 #define NUMA_ZONELIST_ORDER_LEN 16
1990 char numa_zonelist_order[16] = "default";
1991
1992 /*
1993 * interface for configure zonelist ordering.
1994 * command line option "numa_zonelist_order"
1995 * = "[dD]efault - default, automatic configuration.
1996 * = "[nN]ode - order by node locality, then by zone within node
1997 * = "[zZ]one - order by zone, then by locality within zone
1998 */
1999
2000 static int __parse_numa_zonelist_order(char *s)
2001 {
2002 if (*s == 'd' || *s == 'D') {
2003 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2004 } else if (*s == 'n' || *s == 'N') {
2005 user_zonelist_order = ZONELIST_ORDER_NODE;
2006 } else if (*s == 'z' || *s == 'Z') {
2007 user_zonelist_order = ZONELIST_ORDER_ZONE;
2008 } else {
2009 printk(KERN_WARNING
2010 "Ignoring invalid numa_zonelist_order value: "
2011 "%s\n", s);
2012 return -EINVAL;
2013 }
2014 return 0;
2015 }
2016
2017 static __init int setup_numa_zonelist_order(char *s)
2018 {
2019 if (s)
2020 return __parse_numa_zonelist_order(s);
2021 return 0;
2022 }
2023 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2024
2025 /*
2026 * sysctl handler for numa_zonelist_order
2027 */
2028 int numa_zonelist_order_handler(ctl_table *table, int write,
2029 struct file *file, void __user *buffer, size_t *length,
2030 loff_t *ppos)
2031 {
2032 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2033 int ret;
2034
2035 if (write)
2036 strncpy(saved_string, (char*)table->data,
2037 NUMA_ZONELIST_ORDER_LEN);
2038 ret = proc_dostring(table, write, file, buffer, length, ppos);
2039 if (ret)
2040 return ret;
2041 if (write) {
2042 int oldval = user_zonelist_order;
2043 if (__parse_numa_zonelist_order((char*)table->data)) {
2044 /*
2045 * bogus value. restore saved string
2046 */
2047 strncpy((char*)table->data, saved_string,
2048 NUMA_ZONELIST_ORDER_LEN);
2049 user_zonelist_order = oldval;
2050 } else if (oldval != user_zonelist_order)
2051 build_all_zonelists();
2052 }
2053 return 0;
2054 }
2055
2056
2057 #define MAX_NODE_LOAD (num_online_nodes())
2058 static int node_load[MAX_NUMNODES];
2059
2060 /**
2061 * find_next_best_node - find the next node that should appear in a given node's fallback list
2062 * @node: node whose fallback list we're appending
2063 * @used_node_mask: nodemask_t of already used nodes
2064 *
2065 * We use a number of factors to determine which is the next node that should
2066 * appear on a given node's fallback list. The node should not have appeared
2067 * already in @node's fallback list, and it should be the next closest node
2068 * according to the distance array (which contains arbitrary distance values
2069 * from each node to each node in the system), and should also prefer nodes
2070 * with no CPUs, since presumably they'll have very little allocation pressure
2071 * on them otherwise.
2072 * It returns -1 if no node is found.
2073 */
2074 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2075 {
2076 int n, val;
2077 int min_val = INT_MAX;
2078 int best_node = -1;
2079 node_to_cpumask_ptr(tmp, 0);
2080
2081 /* Use the local node if we haven't already */
2082 if (!node_isset(node, *used_node_mask)) {
2083 node_set(node, *used_node_mask);
2084 return node;
2085 }
2086
2087 for_each_node_state(n, N_HIGH_MEMORY) {
2088
2089 /* Don't want a node to appear more than once */
2090 if (node_isset(n, *used_node_mask))
2091 continue;
2092
2093 /* Use the distance array to find the distance */
2094 val = node_distance(node, n);
2095
2096 /* Penalize nodes under us ("prefer the next node") */
2097 val += (n < node);
2098
2099 /* Give preference to headless and unused nodes */
2100 node_to_cpumask_ptr_next(tmp, n);
2101 if (!cpus_empty(*tmp))
2102 val += PENALTY_FOR_NODE_WITH_CPUS;
2103
2104 /* Slight preference for less loaded node */
2105 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2106 val += node_load[n];
2107
2108 if (val < min_val) {
2109 min_val = val;
2110 best_node = n;
2111 }
2112 }
2113
2114 if (best_node >= 0)
2115 node_set(best_node, *used_node_mask);
2116
2117 return best_node;
2118 }
2119
2120
2121 /*
2122 * Build zonelists ordered by node and zones within node.
2123 * This results in maximum locality--normal zone overflows into local
2124 * DMA zone, if any--but risks exhausting DMA zone.
2125 */
2126 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2127 {
2128 int j;
2129 struct zonelist *zonelist;
2130
2131 zonelist = &pgdat->node_zonelists[0];
2132 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2133 ;
2134 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2135 MAX_NR_ZONES - 1);
2136 zonelist->_zonerefs[j].zone = NULL;
2137 zonelist->_zonerefs[j].zone_idx = 0;
2138 }
2139
2140 /*
2141 * Build gfp_thisnode zonelists
2142 */
2143 static void build_thisnode_zonelists(pg_data_t *pgdat)
2144 {
2145 int j;
2146 struct zonelist *zonelist;
2147
2148 zonelist = &pgdat->node_zonelists[1];
2149 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2150 zonelist->_zonerefs[j].zone = NULL;
2151 zonelist->_zonerefs[j].zone_idx = 0;
2152 }
2153
2154 /*
2155 * Build zonelists ordered by zone and nodes within zones.
2156 * This results in conserving DMA zone[s] until all Normal memory is
2157 * exhausted, but results in overflowing to remote node while memory
2158 * may still exist in local DMA zone.
2159 */
2160 static int node_order[MAX_NUMNODES];
2161
2162 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2163 {
2164 int pos, j, node;
2165 int zone_type; /* needs to be signed */
2166 struct zone *z;
2167 struct zonelist *zonelist;
2168
2169 zonelist = &pgdat->node_zonelists[0];
2170 pos = 0;
2171 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2172 for (j = 0; j < nr_nodes; j++) {
2173 node = node_order[j];
2174 z = &NODE_DATA(node)->node_zones[zone_type];
2175 if (populated_zone(z)) {
2176 zoneref_set_zone(z,
2177 &zonelist->_zonerefs[pos++]);
2178 check_highest_zone(zone_type);
2179 }
2180 }
2181 }
2182 zonelist->_zonerefs[pos].zone = NULL;
2183 zonelist->_zonerefs[pos].zone_idx = 0;
2184 }
2185
2186 static int default_zonelist_order(void)
2187 {
2188 int nid, zone_type;
2189 unsigned long low_kmem_size,total_size;
2190 struct zone *z;
2191 int average_size;
2192 /*
2193 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2194 * If they are really small and used heavily, the system can fall
2195 * into OOM very easily.
2196 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2197 */
2198 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2199 low_kmem_size = 0;
2200 total_size = 0;
2201 for_each_online_node(nid) {
2202 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2203 z = &NODE_DATA(nid)->node_zones[zone_type];
2204 if (populated_zone(z)) {
2205 if (zone_type < ZONE_NORMAL)
2206 low_kmem_size += z->present_pages;
2207 total_size += z->present_pages;
2208 }
2209 }
2210 }
2211 if (!low_kmem_size || /* there are no DMA area. */
2212 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2213 return ZONELIST_ORDER_NODE;
2214 /*
2215 * look into each node's config.
2216 * If there is a node whose DMA/DMA32 memory is very big area on
2217 * local memory, NODE_ORDER may be suitable.
2218 */
2219 average_size = total_size /
2220 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2221 for_each_online_node(nid) {
2222 low_kmem_size = 0;
2223 total_size = 0;
2224 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2225 z = &NODE_DATA(nid)->node_zones[zone_type];
2226 if (populated_zone(z)) {
2227 if (zone_type < ZONE_NORMAL)
2228 low_kmem_size += z->present_pages;
2229 total_size += z->present_pages;
2230 }
2231 }
2232 if (low_kmem_size &&
2233 total_size > average_size && /* ignore small node */
2234 low_kmem_size > total_size * 70/100)
2235 return ZONELIST_ORDER_NODE;
2236 }
2237 return ZONELIST_ORDER_ZONE;
2238 }
2239
2240 static void set_zonelist_order(void)
2241 {
2242 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2243 current_zonelist_order = default_zonelist_order();
2244 else
2245 current_zonelist_order = user_zonelist_order;
2246 }
2247
2248 static void build_zonelists(pg_data_t *pgdat)
2249 {
2250 int j, node, load;
2251 enum zone_type i;
2252 nodemask_t used_mask;
2253 int local_node, prev_node;
2254 struct zonelist *zonelist;
2255 int order = current_zonelist_order;
2256
2257 /* initialize zonelists */
2258 for (i = 0; i < MAX_ZONELISTS; i++) {
2259 zonelist = pgdat->node_zonelists + i;
2260 zonelist->_zonerefs[0].zone = NULL;
2261 zonelist->_zonerefs[0].zone_idx = 0;
2262 }
2263
2264 /* NUMA-aware ordering of nodes */
2265 local_node = pgdat->node_id;
2266 load = num_online_nodes();
2267 prev_node = local_node;
2268 nodes_clear(used_mask);
2269
2270 memset(node_load, 0, sizeof(node_load));
2271 memset(node_order, 0, sizeof(node_order));
2272 j = 0;
2273
2274 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2275 int distance = node_distance(local_node, node);
2276
2277 /*
2278 * If another node is sufficiently far away then it is better
2279 * to reclaim pages in a zone before going off node.
2280 */
2281 if (distance > RECLAIM_DISTANCE)
2282 zone_reclaim_mode = 1;
2283
2284 /*
2285 * We don't want to pressure a particular node.
2286 * So adding penalty to the first node in same
2287 * distance group to make it round-robin.
2288 */
2289 if (distance != node_distance(local_node, prev_node))
2290 node_load[node] = load;
2291
2292 prev_node = node;
2293 load--;
2294 if (order == ZONELIST_ORDER_NODE)
2295 build_zonelists_in_node_order(pgdat, node);
2296 else
2297 node_order[j++] = node; /* remember order */
2298 }
2299
2300 if (order == ZONELIST_ORDER_ZONE) {
2301 /* calculate node order -- i.e., DMA last! */
2302 build_zonelists_in_zone_order(pgdat, j);
2303 }
2304
2305 build_thisnode_zonelists(pgdat);
2306 }
2307
2308 /* Construct the zonelist performance cache - see further mmzone.h */
2309 static void build_zonelist_cache(pg_data_t *pgdat)
2310 {
2311 struct zonelist *zonelist;
2312 struct zonelist_cache *zlc;
2313 struct zoneref *z;
2314
2315 zonelist = &pgdat->node_zonelists[0];
2316 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2317 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2318 for (z = zonelist->_zonerefs; z->zone; z++)
2319 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2320 }
2321
2322
2323 #else /* CONFIG_NUMA */
2324
2325 static void set_zonelist_order(void)
2326 {
2327 current_zonelist_order = ZONELIST_ORDER_ZONE;
2328 }
2329
2330 static void build_zonelists(pg_data_t *pgdat)
2331 {
2332 int node, local_node;
2333 enum zone_type j;
2334 struct zonelist *zonelist;
2335
2336 local_node = pgdat->node_id;
2337
2338 zonelist = &pgdat->node_zonelists[0];
2339 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2340
2341 /*
2342 * Now we build the zonelist so that it contains the zones
2343 * of all the other nodes.
2344 * We don't want to pressure a particular node, so when
2345 * building the zones for node N, we make sure that the
2346 * zones coming right after the local ones are those from
2347 * node N+1 (modulo N)
2348 */
2349 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2350 if (!node_online(node))
2351 continue;
2352 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2353 MAX_NR_ZONES - 1);
2354 }
2355 for (node = 0; node < local_node; node++) {
2356 if (!node_online(node))
2357 continue;
2358 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2359 MAX_NR_ZONES - 1);
2360 }
2361
2362 zonelist->_zonerefs[j].zone = NULL;
2363 zonelist->_zonerefs[j].zone_idx = 0;
2364 }
2365
2366 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2367 static void build_zonelist_cache(pg_data_t *pgdat)
2368 {
2369 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2370 }
2371
2372 #endif /* CONFIG_NUMA */
2373
2374 /* return values int ....just for stop_machine_run() */
2375 static int __build_all_zonelists(void *dummy)
2376 {
2377 int nid;
2378
2379 for_each_online_node(nid) {
2380 pg_data_t *pgdat = NODE_DATA(nid);
2381
2382 build_zonelists(pgdat);
2383 build_zonelist_cache(pgdat);
2384 }
2385 return 0;
2386 }
2387
2388 void build_all_zonelists(void)
2389 {
2390 set_zonelist_order();
2391
2392 if (system_state == SYSTEM_BOOTING) {
2393 __build_all_zonelists(NULL);
2394 mminit_verify_zonelist();
2395 cpuset_init_current_mems_allowed();
2396 } else {
2397 /* we have to stop all cpus to guarantee there is no user
2398 of zonelist */
2399 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2400 /* cpuset refresh routine should be here */
2401 }
2402 vm_total_pages = nr_free_pagecache_pages();
2403 /*
2404 * Disable grouping by mobility if the number of pages in the
2405 * system is too low to allow the mechanism to work. It would be
2406 * more accurate, but expensive to check per-zone. This check is
2407 * made on memory-hotadd so a system can start with mobility
2408 * disabled and enable it later
2409 */
2410 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2411 page_group_by_mobility_disabled = 1;
2412 else
2413 page_group_by_mobility_disabled = 0;
2414
2415 printk("Built %i zonelists in %s order, mobility grouping %s. "
2416 "Total pages: %ld\n",
2417 num_online_nodes(),
2418 zonelist_order_name[current_zonelist_order],
2419 page_group_by_mobility_disabled ? "off" : "on",
2420 vm_total_pages);
2421 #ifdef CONFIG_NUMA
2422 printk("Policy zone: %s\n", zone_names[policy_zone]);
2423 #endif
2424 }
2425
2426 /*
2427 * Helper functions to size the waitqueue hash table.
2428 * Essentially these want to choose hash table sizes sufficiently
2429 * large so that collisions trying to wait on pages are rare.
2430 * But in fact, the number of active page waitqueues on typical
2431 * systems is ridiculously low, less than 200. So this is even
2432 * conservative, even though it seems large.
2433 *
2434 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2435 * waitqueues, i.e. the size of the waitq table given the number of pages.
2436 */
2437 #define PAGES_PER_WAITQUEUE 256
2438
2439 #ifndef CONFIG_MEMORY_HOTPLUG
2440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2441 {
2442 unsigned long size = 1;
2443
2444 pages /= PAGES_PER_WAITQUEUE;
2445
2446 while (size < pages)
2447 size <<= 1;
2448
2449 /*
2450 * Once we have dozens or even hundreds of threads sleeping
2451 * on IO we've got bigger problems than wait queue collision.
2452 * Limit the size of the wait table to a reasonable size.
2453 */
2454 size = min(size, 4096UL);
2455
2456 return max(size, 4UL);
2457 }
2458 #else
2459 /*
2460 * A zone's size might be changed by hot-add, so it is not possible to determine
2461 * a suitable size for its wait_table. So we use the maximum size now.
2462 *
2463 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2464 *
2465 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2466 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2467 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2468 *
2469 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2470 * or more by the traditional way. (See above). It equals:
2471 *
2472 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2473 * ia64(16K page size) : = ( 8G + 4M)byte.
2474 * powerpc (64K page size) : = (32G +16M)byte.
2475 */
2476 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2477 {
2478 return 4096UL;
2479 }
2480 #endif
2481
2482 /*
2483 * This is an integer logarithm so that shifts can be used later
2484 * to extract the more random high bits from the multiplicative
2485 * hash function before the remainder is taken.
2486 */
2487 static inline unsigned long wait_table_bits(unsigned long size)
2488 {
2489 return ffz(~size);
2490 }
2491
2492 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2493
2494 /*
2495 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2496 * of blocks reserved is based on zone->pages_min. The memory within the
2497 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2498 * higher will lead to a bigger reserve which will get freed as contiguous
2499 * blocks as reclaim kicks in
2500 */
2501 static void setup_zone_migrate_reserve(struct zone *zone)
2502 {
2503 unsigned long start_pfn, pfn, end_pfn;
2504 struct page *page;
2505 unsigned long reserve, block_migratetype;
2506
2507 /* Get the start pfn, end pfn and the number of blocks to reserve */
2508 start_pfn = zone->zone_start_pfn;
2509 end_pfn = start_pfn + zone->spanned_pages;
2510 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2511 pageblock_order;
2512
2513 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2514 if (!pfn_valid(pfn))
2515 continue;
2516 page = pfn_to_page(pfn);
2517
2518 /* Blocks with reserved pages will never free, skip them. */
2519 if (PageReserved(page))
2520 continue;
2521
2522 block_migratetype = get_pageblock_migratetype(page);
2523
2524 /* If this block is reserved, account for it */
2525 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2526 reserve--;
2527 continue;
2528 }
2529
2530 /* Suitable for reserving if this block is movable */
2531 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2532 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2533 move_freepages_block(zone, page, MIGRATE_RESERVE);
2534 reserve--;
2535 continue;
2536 }
2537
2538 /*
2539 * If the reserve is met and this is a previous reserved block,
2540 * take it back
2541 */
2542 if (block_migratetype == MIGRATE_RESERVE) {
2543 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2544 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2545 }
2546 }
2547 }
2548
2549 /*
2550 * Initially all pages are reserved - free ones are freed
2551 * up by free_all_bootmem() once the early boot process is
2552 * done. Non-atomic initialization, single-pass.
2553 */
2554 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2555 unsigned long start_pfn, enum memmap_context context)
2556 {
2557 struct page *page;
2558 unsigned long end_pfn = start_pfn + size;
2559 unsigned long pfn;
2560 struct zone *z;
2561
2562 z = &NODE_DATA(nid)->node_zones[zone];
2563 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2564 /*
2565 * There can be holes in boot-time mem_map[]s
2566 * handed to this function. They do not
2567 * exist on hotplugged memory.
2568 */
2569 if (context == MEMMAP_EARLY) {
2570 if (!early_pfn_valid(pfn))
2571 continue;
2572 if (!early_pfn_in_nid(pfn, nid))
2573 continue;
2574 }
2575 page = pfn_to_page(pfn);
2576 set_page_links(page, zone, nid, pfn);
2577 mminit_verify_page_links(page, zone, nid, pfn);
2578 init_page_count(page);
2579 reset_page_mapcount(page);
2580 SetPageReserved(page);
2581 /*
2582 * Mark the block movable so that blocks are reserved for
2583 * movable at startup. This will force kernel allocations
2584 * to reserve their blocks rather than leaking throughout
2585 * the address space during boot when many long-lived
2586 * kernel allocations are made. Later some blocks near
2587 * the start are marked MIGRATE_RESERVE by
2588 * setup_zone_migrate_reserve()
2589 *
2590 * bitmap is created for zone's valid pfn range. but memmap
2591 * can be created for invalid pages (for alignment)
2592 * check here not to call set_pageblock_migratetype() against
2593 * pfn out of zone.
2594 */
2595 if ((z->zone_start_pfn <= pfn)
2596 && (pfn < z->zone_start_pfn + z->spanned_pages)
2597 && !(pfn & (pageblock_nr_pages - 1)))
2598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2599
2600 INIT_LIST_HEAD(&page->lru);
2601 #ifdef WANT_PAGE_VIRTUAL
2602 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2603 if (!is_highmem_idx(zone))
2604 set_page_address(page, __va(pfn << PAGE_SHIFT));
2605 #endif
2606 }
2607 }
2608
2609 static void __meminit zone_init_free_lists(struct zone *zone)
2610 {
2611 int order, t;
2612 for_each_migratetype_order(order, t) {
2613 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2614 zone->free_area[order].nr_free = 0;
2615 }
2616 }
2617
2618 #ifndef __HAVE_ARCH_MEMMAP_INIT
2619 #define memmap_init(size, nid, zone, start_pfn) \
2620 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2621 #endif
2622
2623 static int zone_batchsize(struct zone *zone)
2624 {
2625 int batch;
2626
2627 /*
2628 * The per-cpu-pages pools are set to around 1000th of the
2629 * size of the zone. But no more than 1/2 of a meg.
2630 *
2631 * OK, so we don't know how big the cache is. So guess.
2632 */
2633 batch = zone->present_pages / 1024;
2634 if (batch * PAGE_SIZE > 512 * 1024)
2635 batch = (512 * 1024) / PAGE_SIZE;
2636 batch /= 4; /* We effectively *= 4 below */
2637 if (batch < 1)
2638 batch = 1;
2639
2640 /*
2641 * Clamp the batch to a 2^n - 1 value. Having a power
2642 * of 2 value was found to be more likely to have
2643 * suboptimal cache aliasing properties in some cases.
2644 *
2645 * For example if 2 tasks are alternately allocating
2646 * batches of pages, one task can end up with a lot
2647 * of pages of one half of the possible page colors
2648 * and the other with pages of the other colors.
2649 */
2650 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2651
2652 return batch;
2653 }
2654
2655 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2656 {
2657 struct per_cpu_pages *pcp;
2658
2659 memset(p, 0, sizeof(*p));
2660
2661 pcp = &p->pcp;
2662 pcp->count = 0;
2663 pcp->high = 6 * batch;
2664 pcp->batch = max(1UL, 1 * batch);
2665 INIT_LIST_HEAD(&pcp->list);
2666 }
2667
2668 /*
2669 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2670 * to the value high for the pageset p.
2671 */
2672
2673 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2674 unsigned long high)
2675 {
2676 struct per_cpu_pages *pcp;
2677
2678 pcp = &p->pcp;
2679 pcp->high = high;
2680 pcp->batch = max(1UL, high/4);
2681 if ((high/4) > (PAGE_SHIFT * 8))
2682 pcp->batch = PAGE_SHIFT * 8;
2683 }
2684
2685
2686 #ifdef CONFIG_NUMA
2687 /*
2688 * Boot pageset table. One per cpu which is going to be used for all
2689 * zones and all nodes. The parameters will be set in such a way
2690 * that an item put on a list will immediately be handed over to
2691 * the buddy list. This is safe since pageset manipulation is done
2692 * with interrupts disabled.
2693 *
2694 * Some NUMA counter updates may also be caught by the boot pagesets.
2695 *
2696 * The boot_pagesets must be kept even after bootup is complete for
2697 * unused processors and/or zones. They do play a role for bootstrapping
2698 * hotplugged processors.
2699 *
2700 * zoneinfo_show() and maybe other functions do
2701 * not check if the processor is online before following the pageset pointer.
2702 * Other parts of the kernel may not check if the zone is available.
2703 */
2704 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2705
2706 /*
2707 * Dynamically allocate memory for the
2708 * per cpu pageset array in struct zone.
2709 */
2710 static int __cpuinit process_zones(int cpu)
2711 {
2712 struct zone *zone, *dzone;
2713 int node = cpu_to_node(cpu);
2714
2715 node_set_state(node, N_CPU); /* this node has a cpu */
2716
2717 for_each_zone(zone) {
2718
2719 if (!populated_zone(zone))
2720 continue;
2721
2722 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2723 GFP_KERNEL, node);
2724 if (!zone_pcp(zone, cpu))
2725 goto bad;
2726
2727 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2728
2729 if (percpu_pagelist_fraction)
2730 setup_pagelist_highmark(zone_pcp(zone, cpu),
2731 (zone->present_pages / percpu_pagelist_fraction));
2732 }
2733
2734 return 0;
2735 bad:
2736 for_each_zone(dzone) {
2737 if (!populated_zone(dzone))
2738 continue;
2739 if (dzone == zone)
2740 break;
2741 kfree(zone_pcp(dzone, cpu));
2742 zone_pcp(dzone, cpu) = NULL;
2743 }
2744 return -ENOMEM;
2745 }
2746
2747 static inline void free_zone_pagesets(int cpu)
2748 {
2749 struct zone *zone;
2750
2751 for_each_zone(zone) {
2752 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2753
2754 /* Free per_cpu_pageset if it is slab allocated */
2755 if (pset != &boot_pageset[cpu])
2756 kfree(pset);
2757 zone_pcp(zone, cpu) = NULL;
2758 }
2759 }
2760
2761 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2762 unsigned long action,
2763 void *hcpu)
2764 {
2765 int cpu = (long)hcpu;
2766 int ret = NOTIFY_OK;
2767
2768 switch (action) {
2769 case CPU_UP_PREPARE:
2770 case CPU_UP_PREPARE_FROZEN:
2771 if (process_zones(cpu))
2772 ret = NOTIFY_BAD;
2773 break;
2774 case CPU_UP_CANCELED:
2775 case CPU_UP_CANCELED_FROZEN:
2776 case CPU_DEAD:
2777 case CPU_DEAD_FROZEN:
2778 free_zone_pagesets(cpu);
2779 break;
2780 default:
2781 break;
2782 }
2783 return ret;
2784 }
2785
2786 static struct notifier_block __cpuinitdata pageset_notifier =
2787 { &pageset_cpuup_callback, NULL, 0 };
2788
2789 void __init setup_per_cpu_pageset(void)
2790 {
2791 int err;
2792
2793 /* Initialize per_cpu_pageset for cpu 0.
2794 * A cpuup callback will do this for every cpu
2795 * as it comes online
2796 */
2797 err = process_zones(smp_processor_id());
2798 BUG_ON(err);
2799 register_cpu_notifier(&pageset_notifier);
2800 }
2801
2802 #endif
2803
2804 static noinline __init_refok
2805 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2806 {
2807 int i;
2808 struct pglist_data *pgdat = zone->zone_pgdat;
2809 size_t alloc_size;
2810
2811 /*
2812 * The per-page waitqueue mechanism uses hashed waitqueues
2813 * per zone.
2814 */
2815 zone->wait_table_hash_nr_entries =
2816 wait_table_hash_nr_entries(zone_size_pages);
2817 zone->wait_table_bits =
2818 wait_table_bits(zone->wait_table_hash_nr_entries);
2819 alloc_size = zone->wait_table_hash_nr_entries
2820 * sizeof(wait_queue_head_t);
2821
2822 if (!slab_is_available()) {
2823 zone->wait_table = (wait_queue_head_t *)
2824 alloc_bootmem_node(pgdat, alloc_size);
2825 } else {
2826 /*
2827 * This case means that a zone whose size was 0 gets new memory
2828 * via memory hot-add.
2829 * But it may be the case that a new node was hot-added. In
2830 * this case vmalloc() will not be able to use this new node's
2831 * memory - this wait_table must be initialized to use this new
2832 * node itself as well.
2833 * To use this new node's memory, further consideration will be
2834 * necessary.
2835 */
2836 zone->wait_table = vmalloc(alloc_size);
2837 }
2838 if (!zone->wait_table)
2839 return -ENOMEM;
2840
2841 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2842 init_waitqueue_head(zone->wait_table + i);
2843
2844 return 0;
2845 }
2846
2847 static __meminit void zone_pcp_init(struct zone *zone)
2848 {
2849 int cpu;
2850 unsigned long batch = zone_batchsize(zone);
2851
2852 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2853 #ifdef CONFIG_NUMA
2854 /* Early boot. Slab allocator not functional yet */
2855 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2856 setup_pageset(&boot_pageset[cpu],0);
2857 #else
2858 setup_pageset(zone_pcp(zone,cpu), batch);
2859 #endif
2860 }
2861 if (zone->present_pages)
2862 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2863 zone->name, zone->present_pages, batch);
2864 }
2865
2866 __meminit int init_currently_empty_zone(struct zone *zone,
2867 unsigned long zone_start_pfn,
2868 unsigned long size,
2869 enum memmap_context context)
2870 {
2871 struct pglist_data *pgdat = zone->zone_pgdat;
2872 int ret;
2873 ret = zone_wait_table_init(zone, size);
2874 if (ret)
2875 return ret;
2876 pgdat->nr_zones = zone_idx(zone) + 1;
2877
2878 zone->zone_start_pfn = zone_start_pfn;
2879
2880 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2881 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2882 pgdat->node_id,
2883 (unsigned long)zone_idx(zone),
2884 zone_start_pfn, (zone_start_pfn + size));
2885
2886 zone_init_free_lists(zone);
2887
2888 return 0;
2889 }
2890
2891 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2892 /*
2893 * Basic iterator support. Return the first range of PFNs for a node
2894 * Note: nid == MAX_NUMNODES returns first region regardless of node
2895 */
2896 static int __meminit first_active_region_index_in_nid(int nid)
2897 {
2898 int i;
2899
2900 for (i = 0; i < nr_nodemap_entries; i++)
2901 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2902 return i;
2903
2904 return -1;
2905 }
2906
2907 /*
2908 * Basic iterator support. Return the next active range of PFNs for a node
2909 * Note: nid == MAX_NUMNODES returns next region regardless of node
2910 */
2911 static int __meminit next_active_region_index_in_nid(int index, int nid)
2912 {
2913 for (index = index + 1; index < nr_nodemap_entries; index++)
2914 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2915 return index;
2916
2917 return -1;
2918 }
2919
2920 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2921 /*
2922 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2923 * Architectures may implement their own version but if add_active_range()
2924 * was used and there are no special requirements, this is a convenient
2925 * alternative
2926 */
2927 int __meminit early_pfn_to_nid(unsigned long pfn)
2928 {
2929 int i;
2930
2931 for (i = 0; i < nr_nodemap_entries; i++) {
2932 unsigned long start_pfn = early_node_map[i].start_pfn;
2933 unsigned long end_pfn = early_node_map[i].end_pfn;
2934
2935 if (start_pfn <= pfn && pfn < end_pfn)
2936 return early_node_map[i].nid;
2937 }
2938
2939 return 0;
2940 }
2941 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2942
2943 /* Basic iterator support to walk early_node_map[] */
2944 #define for_each_active_range_index_in_nid(i, nid) \
2945 for (i = first_active_region_index_in_nid(nid); i != -1; \
2946 i = next_active_region_index_in_nid(i, nid))
2947
2948 /**
2949 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2950 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2951 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2952 *
2953 * If an architecture guarantees that all ranges registered with
2954 * add_active_ranges() contain no holes and may be freed, this
2955 * this function may be used instead of calling free_bootmem() manually.
2956 */
2957 void __init free_bootmem_with_active_regions(int nid,
2958 unsigned long max_low_pfn)
2959 {
2960 int i;
2961
2962 for_each_active_range_index_in_nid(i, nid) {
2963 unsigned long size_pages = 0;
2964 unsigned long end_pfn = early_node_map[i].end_pfn;
2965
2966 if (early_node_map[i].start_pfn >= max_low_pfn)
2967 continue;
2968
2969 if (end_pfn > max_low_pfn)
2970 end_pfn = max_low_pfn;
2971
2972 size_pages = end_pfn - early_node_map[i].start_pfn;
2973 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2974 PFN_PHYS(early_node_map[i].start_pfn),
2975 size_pages << PAGE_SHIFT);
2976 }
2977 }
2978
2979 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2980 {
2981 int i;
2982 int ret;
2983
2984 for_each_active_range_index_in_nid(i, nid) {
2985 ret = work_fn(early_node_map[i].start_pfn,
2986 early_node_map[i].end_pfn, data);
2987 if (ret)
2988 break;
2989 }
2990 }
2991 /**
2992 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2993 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2994 *
2995 * If an architecture guarantees that all ranges registered with
2996 * add_active_ranges() contain no holes and may be freed, this
2997 * function may be used instead of calling memory_present() manually.
2998 */
2999 void __init sparse_memory_present_with_active_regions(int nid)
3000 {
3001 int i;
3002
3003 for_each_active_range_index_in_nid(i, nid)
3004 memory_present(early_node_map[i].nid,
3005 early_node_map[i].start_pfn,
3006 early_node_map[i].end_pfn);
3007 }
3008
3009 /**
3010 * push_node_boundaries - Push node boundaries to at least the requested boundary
3011 * @nid: The nid of the node to push the boundary for
3012 * @start_pfn: The start pfn of the node
3013 * @end_pfn: The end pfn of the node
3014 *
3015 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3016 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3017 * be hotplugged even though no physical memory exists. This function allows
3018 * an arch to push out the node boundaries so mem_map is allocated that can
3019 * be used later.
3020 */
3021 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3022 void __init push_node_boundaries(unsigned int nid,
3023 unsigned long start_pfn, unsigned long end_pfn)
3024 {
3025 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3026 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3027 nid, start_pfn, end_pfn);
3028
3029 /* Initialise the boundary for this node if necessary */
3030 if (node_boundary_end_pfn[nid] == 0)
3031 node_boundary_start_pfn[nid] = -1UL;
3032
3033 /* Update the boundaries */
3034 if (node_boundary_start_pfn[nid] > start_pfn)
3035 node_boundary_start_pfn[nid] = start_pfn;
3036 if (node_boundary_end_pfn[nid] < end_pfn)
3037 node_boundary_end_pfn[nid] = end_pfn;
3038 }
3039
3040 /* If necessary, push the node boundary out for reserve hotadd */
3041 static void __meminit account_node_boundary(unsigned int nid,
3042 unsigned long *start_pfn, unsigned long *end_pfn)
3043 {
3044 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3045 "Entering account_node_boundary(%u, %lu, %lu)\n",
3046 nid, *start_pfn, *end_pfn);
3047
3048 /* Return if boundary information has not been provided */
3049 if (node_boundary_end_pfn[nid] == 0)
3050 return;
3051
3052 /* Check the boundaries and update if necessary */
3053 if (node_boundary_start_pfn[nid] < *start_pfn)
3054 *start_pfn = node_boundary_start_pfn[nid];
3055 if (node_boundary_end_pfn[nid] > *end_pfn)
3056 *end_pfn = node_boundary_end_pfn[nid];
3057 }
3058 #else
3059 void __init push_node_boundaries(unsigned int nid,
3060 unsigned long start_pfn, unsigned long end_pfn) {}
3061
3062 static void __meminit account_node_boundary(unsigned int nid,
3063 unsigned long *start_pfn, unsigned long *end_pfn) {}
3064 #endif
3065
3066
3067 /**
3068 * get_pfn_range_for_nid - Return the start and end page frames for a node
3069 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3070 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3071 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3072 *
3073 * It returns the start and end page frame of a node based on information
3074 * provided by an arch calling add_active_range(). If called for a node
3075 * with no available memory, a warning is printed and the start and end
3076 * PFNs will be 0.
3077 */
3078 void __meminit get_pfn_range_for_nid(unsigned int nid,
3079 unsigned long *start_pfn, unsigned long *end_pfn)
3080 {
3081 int i;
3082 *start_pfn = -1UL;
3083 *end_pfn = 0;
3084
3085 for_each_active_range_index_in_nid(i, nid) {
3086 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3087 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3088 }
3089
3090 if (*start_pfn == -1UL)
3091 *start_pfn = 0;
3092
3093 /* Push the node boundaries out if requested */
3094 account_node_boundary(nid, start_pfn, end_pfn);
3095 }
3096
3097 /*
3098 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3099 * assumption is made that zones within a node are ordered in monotonic
3100 * increasing memory addresses so that the "highest" populated zone is used
3101 */
3102 void __init find_usable_zone_for_movable(void)
3103 {
3104 int zone_index;
3105 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3106 if (zone_index == ZONE_MOVABLE)
3107 continue;
3108
3109 if (arch_zone_highest_possible_pfn[zone_index] >
3110 arch_zone_lowest_possible_pfn[zone_index])
3111 break;
3112 }
3113
3114 VM_BUG_ON(zone_index == -1);
3115 movable_zone = zone_index;
3116 }
3117
3118 /*
3119 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3120 * because it is sized independant of architecture. Unlike the other zones,
3121 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3122 * in each node depending on the size of each node and how evenly kernelcore
3123 * is distributed. This helper function adjusts the zone ranges
3124 * provided by the architecture for a given node by using the end of the
3125 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3126 * zones within a node are in order of monotonic increases memory addresses
3127 */
3128 void __meminit adjust_zone_range_for_zone_movable(int nid,
3129 unsigned long zone_type,
3130 unsigned long node_start_pfn,
3131 unsigned long node_end_pfn,
3132 unsigned long *zone_start_pfn,
3133 unsigned long *zone_end_pfn)
3134 {
3135 /* Only adjust if ZONE_MOVABLE is on this node */
3136 if (zone_movable_pfn[nid]) {
3137 /* Size ZONE_MOVABLE */
3138 if (zone_type == ZONE_MOVABLE) {
3139 *zone_start_pfn = zone_movable_pfn[nid];
3140 *zone_end_pfn = min(node_end_pfn,
3141 arch_zone_highest_possible_pfn[movable_zone]);
3142
3143 /* Adjust for ZONE_MOVABLE starting within this range */
3144 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3145 *zone_end_pfn > zone_movable_pfn[nid]) {
3146 *zone_end_pfn = zone_movable_pfn[nid];
3147
3148 /* Check if this whole range is within ZONE_MOVABLE */
3149 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3150 *zone_start_pfn = *zone_end_pfn;
3151 }
3152 }
3153
3154 /*
3155 * Return the number of pages a zone spans in a node, including holes
3156 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3157 */
3158 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3159 unsigned long zone_type,
3160 unsigned long *ignored)
3161 {
3162 unsigned long node_start_pfn, node_end_pfn;
3163 unsigned long zone_start_pfn, zone_end_pfn;
3164
3165 /* Get the start and end of the node and zone */
3166 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3167 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3168 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3169 adjust_zone_range_for_zone_movable(nid, zone_type,
3170 node_start_pfn, node_end_pfn,
3171 &zone_start_pfn, &zone_end_pfn);
3172
3173 /* Check that this node has pages within the zone's required range */
3174 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3175 return 0;
3176
3177 /* Move the zone boundaries inside the node if necessary */
3178 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3179 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3180
3181 /* Return the spanned pages */
3182 return zone_end_pfn - zone_start_pfn;
3183 }
3184
3185 /*
3186 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3187 * then all holes in the requested range will be accounted for.
3188 */
3189 unsigned long __meminit __absent_pages_in_range(int nid,
3190 unsigned long range_start_pfn,
3191 unsigned long range_end_pfn)
3192 {
3193 int i = 0;
3194 unsigned long prev_end_pfn = 0, hole_pages = 0;
3195 unsigned long start_pfn;
3196
3197 /* Find the end_pfn of the first active range of pfns in the node */
3198 i = first_active_region_index_in_nid(nid);
3199 if (i == -1)
3200 return 0;
3201
3202 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3203
3204 /* Account for ranges before physical memory on this node */
3205 if (early_node_map[i].start_pfn > range_start_pfn)
3206 hole_pages = prev_end_pfn - range_start_pfn;
3207
3208 /* Find all holes for the zone within the node */
3209 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3210
3211 /* No need to continue if prev_end_pfn is outside the zone */
3212 if (prev_end_pfn >= range_end_pfn)
3213 break;
3214
3215 /* Make sure the end of the zone is not within the hole */
3216 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3217 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3218
3219 /* Update the hole size cound and move on */
3220 if (start_pfn > range_start_pfn) {
3221 BUG_ON(prev_end_pfn > start_pfn);
3222 hole_pages += start_pfn - prev_end_pfn;
3223 }
3224 prev_end_pfn = early_node_map[i].end_pfn;
3225 }
3226
3227 /* Account for ranges past physical memory on this node */
3228 if (range_end_pfn > prev_end_pfn)
3229 hole_pages += range_end_pfn -
3230 max(range_start_pfn, prev_end_pfn);
3231
3232 return hole_pages;
3233 }
3234
3235 /**
3236 * absent_pages_in_range - Return number of page frames in holes within a range
3237 * @start_pfn: The start PFN to start searching for holes
3238 * @end_pfn: The end PFN to stop searching for holes
3239 *
3240 * It returns the number of pages frames in memory holes within a range.
3241 */
3242 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3243 unsigned long end_pfn)
3244 {
3245 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3246 }
3247
3248 /* Return the number of page frames in holes in a zone on a node */
3249 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3250 unsigned long zone_type,
3251 unsigned long *ignored)
3252 {
3253 unsigned long node_start_pfn, node_end_pfn;
3254 unsigned long zone_start_pfn, zone_end_pfn;
3255
3256 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3257 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3258 node_start_pfn);
3259 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3260 node_end_pfn);
3261
3262 adjust_zone_range_for_zone_movable(nid, zone_type,
3263 node_start_pfn, node_end_pfn,
3264 &zone_start_pfn, &zone_end_pfn);
3265 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3266 }
3267
3268 #else
3269 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3270 unsigned long zone_type,
3271 unsigned long *zones_size)
3272 {
3273 return zones_size[zone_type];
3274 }
3275
3276 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3277 unsigned long zone_type,
3278 unsigned long *zholes_size)
3279 {
3280 if (!zholes_size)
3281 return 0;
3282
3283 return zholes_size[zone_type];
3284 }
3285
3286 #endif
3287
3288 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3289 unsigned long *zones_size, unsigned long *zholes_size)
3290 {
3291 unsigned long realtotalpages, totalpages = 0;
3292 enum zone_type i;
3293
3294 for (i = 0; i < MAX_NR_ZONES; i++)
3295 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3296 zones_size);
3297 pgdat->node_spanned_pages = totalpages;
3298
3299 realtotalpages = totalpages;
3300 for (i = 0; i < MAX_NR_ZONES; i++)
3301 realtotalpages -=
3302 zone_absent_pages_in_node(pgdat->node_id, i,
3303 zholes_size);
3304 pgdat->node_present_pages = realtotalpages;
3305 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3306 realtotalpages);
3307 }
3308
3309 #ifndef CONFIG_SPARSEMEM
3310 /*
3311 * Calculate the size of the zone->blockflags rounded to an unsigned long
3312 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3313 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3314 * round what is now in bits to nearest long in bits, then return it in
3315 * bytes.
3316 */
3317 static unsigned long __init usemap_size(unsigned long zonesize)
3318 {
3319 unsigned long usemapsize;
3320
3321 usemapsize = roundup(zonesize, pageblock_nr_pages);
3322 usemapsize = usemapsize >> pageblock_order;
3323 usemapsize *= NR_PAGEBLOCK_BITS;
3324 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3325
3326 return usemapsize / 8;
3327 }
3328
3329 static void __init setup_usemap(struct pglist_data *pgdat,
3330 struct zone *zone, unsigned long zonesize)
3331 {
3332 unsigned long usemapsize = usemap_size(zonesize);
3333 zone->pageblock_flags = NULL;
3334 if (usemapsize) {
3335 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3336 memset(zone->pageblock_flags, 0, usemapsize);
3337 }
3338 }
3339 #else
3340 static void inline setup_usemap(struct pglist_data *pgdat,
3341 struct zone *zone, unsigned long zonesize) {}
3342 #endif /* CONFIG_SPARSEMEM */
3343
3344 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3345
3346 /* Return a sensible default order for the pageblock size. */
3347 static inline int pageblock_default_order(void)
3348 {
3349 if (HPAGE_SHIFT > PAGE_SHIFT)
3350 return HUGETLB_PAGE_ORDER;
3351
3352 return MAX_ORDER-1;
3353 }
3354
3355 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3356 static inline void __init set_pageblock_order(unsigned int order)
3357 {
3358 /* Check that pageblock_nr_pages has not already been setup */
3359 if (pageblock_order)
3360 return;
3361
3362 /*
3363 * Assume the largest contiguous order of interest is a huge page.
3364 * This value may be variable depending on boot parameters on IA64
3365 */
3366 pageblock_order = order;
3367 }
3368 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3369
3370 /*
3371 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3372 * and pageblock_default_order() are unused as pageblock_order is set
3373 * at compile-time. See include/linux/pageblock-flags.h for the values of
3374 * pageblock_order based on the kernel config
3375 */
3376 static inline int pageblock_default_order(unsigned int order)
3377 {
3378 return MAX_ORDER-1;
3379 }
3380 #define set_pageblock_order(x) do {} while (0)
3381
3382 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3383
3384 /*
3385 * Set up the zone data structures:
3386 * - mark all pages reserved
3387 * - mark all memory queues empty
3388 * - clear the memory bitmaps
3389 */
3390 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3391 unsigned long *zones_size, unsigned long *zholes_size)
3392 {
3393 enum zone_type j;
3394 int nid = pgdat->node_id;
3395 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3396 int ret;
3397
3398 pgdat_resize_init(pgdat);
3399 pgdat->nr_zones = 0;
3400 init_waitqueue_head(&pgdat->kswapd_wait);
3401 pgdat->kswapd_max_order = 0;
3402
3403 for (j = 0; j < MAX_NR_ZONES; j++) {
3404 struct zone *zone = pgdat->node_zones + j;
3405 unsigned long size, realsize, memmap_pages;
3406
3407 size = zone_spanned_pages_in_node(nid, j, zones_size);
3408 realsize = size - zone_absent_pages_in_node(nid, j,
3409 zholes_size);
3410
3411 /*
3412 * Adjust realsize so that it accounts for how much memory
3413 * is used by this zone for memmap. This affects the watermark
3414 * and per-cpu initialisations
3415 */
3416 memmap_pages =
3417 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3418 if (realsize >= memmap_pages) {
3419 realsize -= memmap_pages;
3420 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3421 "%s zone: %lu pages used for memmap\n",
3422 zone_names[j], memmap_pages);
3423 } else
3424 printk(KERN_WARNING
3425 " %s zone: %lu pages exceeds realsize %lu\n",
3426 zone_names[j], memmap_pages, realsize);
3427
3428 /* Account for reserved pages */
3429 if (j == 0 && realsize > dma_reserve) {
3430 realsize -= dma_reserve;
3431 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3432 "%s zone: %lu pages reserved\n",
3433 zone_names[0], dma_reserve);
3434 }
3435
3436 if (!is_highmem_idx(j))
3437 nr_kernel_pages += realsize;
3438 nr_all_pages += realsize;
3439
3440 zone->spanned_pages = size;
3441 zone->present_pages = realsize;
3442 #ifdef CONFIG_NUMA
3443 zone->node = nid;
3444 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3445 / 100;
3446 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3447 #endif
3448 zone->name = zone_names[j];
3449 spin_lock_init(&zone->lock);
3450 spin_lock_init(&zone->lru_lock);
3451 zone_seqlock_init(zone);
3452 zone->zone_pgdat = pgdat;
3453
3454 zone->prev_priority = DEF_PRIORITY;
3455
3456 zone_pcp_init(zone);
3457 INIT_LIST_HEAD(&zone->active_list);
3458 INIT_LIST_HEAD(&zone->inactive_list);
3459 zone->nr_scan_active = 0;
3460 zone->nr_scan_inactive = 0;
3461 zap_zone_vm_stats(zone);
3462 zone->flags = 0;
3463 if (!size)
3464 continue;
3465
3466 set_pageblock_order(pageblock_default_order());
3467 setup_usemap(pgdat, zone, size);
3468 ret = init_currently_empty_zone(zone, zone_start_pfn,
3469 size, MEMMAP_EARLY);
3470 BUG_ON(ret);
3471 memmap_init(size, nid, j, zone_start_pfn);
3472 zone_start_pfn += size;
3473 }
3474 }
3475
3476 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3477 {
3478 /* Skip empty nodes */
3479 if (!pgdat->node_spanned_pages)
3480 return;
3481
3482 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3483 /* ia64 gets its own node_mem_map, before this, without bootmem */
3484 if (!pgdat->node_mem_map) {
3485 unsigned long size, start, end;
3486 struct page *map;
3487
3488 /*
3489 * The zone's endpoints aren't required to be MAX_ORDER
3490 * aligned but the node_mem_map endpoints must be in order
3491 * for the buddy allocator to function correctly.
3492 */
3493 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3494 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3495 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3496 size = (end - start) * sizeof(struct page);
3497 map = alloc_remap(pgdat->node_id, size);
3498 if (!map)
3499 map = alloc_bootmem_node(pgdat, size);
3500 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3501 }
3502 #ifndef CONFIG_NEED_MULTIPLE_NODES
3503 /*
3504 * With no DISCONTIG, the global mem_map is just set as node 0's
3505 */
3506 if (pgdat == NODE_DATA(0)) {
3507 mem_map = NODE_DATA(0)->node_mem_map;
3508 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3509 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3510 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3511 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3512 }
3513 #endif
3514 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3515 }
3516
3517 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3518 unsigned long node_start_pfn, unsigned long *zholes_size)
3519 {
3520 pg_data_t *pgdat = NODE_DATA(nid);
3521
3522 pgdat->node_id = nid;
3523 pgdat->node_start_pfn = node_start_pfn;
3524 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3525
3526 alloc_node_mem_map(pgdat);
3527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3528 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3529 nid, (unsigned long)pgdat,
3530 (unsigned long)pgdat->node_mem_map);
3531 #endif
3532
3533 free_area_init_core(pgdat, zones_size, zholes_size);
3534 }
3535
3536 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3537
3538 #if MAX_NUMNODES > 1
3539 /*
3540 * Figure out the number of possible node ids.
3541 */
3542 static void __init setup_nr_node_ids(void)
3543 {
3544 unsigned int node;
3545 unsigned int highest = 0;
3546
3547 for_each_node_mask(node, node_possible_map)
3548 highest = node;
3549 nr_node_ids = highest + 1;
3550 }
3551 #else
3552 static inline void setup_nr_node_ids(void)
3553 {
3554 }
3555 #endif
3556
3557 /**
3558 * add_active_range - Register a range of PFNs backed by physical memory
3559 * @nid: The node ID the range resides on
3560 * @start_pfn: The start PFN of the available physical memory
3561 * @end_pfn: The end PFN of the available physical memory
3562 *
3563 * These ranges are stored in an early_node_map[] and later used by
3564 * free_area_init_nodes() to calculate zone sizes and holes. If the
3565 * range spans a memory hole, it is up to the architecture to ensure
3566 * the memory is not freed by the bootmem allocator. If possible
3567 * the range being registered will be merged with existing ranges.
3568 */
3569 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3570 unsigned long end_pfn)
3571 {
3572 int i;
3573
3574 mminit_dprintk(MMINIT_TRACE, "memory_register",
3575 "Entering add_active_range(%d, %#lx, %#lx) "
3576 "%d entries of %d used\n",
3577 nid, start_pfn, end_pfn,
3578 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3579
3580 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3581
3582 /* Merge with existing active regions if possible */
3583 for (i = 0; i < nr_nodemap_entries; i++) {
3584 if (early_node_map[i].nid != nid)
3585 continue;
3586
3587 /* Skip if an existing region covers this new one */
3588 if (start_pfn >= early_node_map[i].start_pfn &&
3589 end_pfn <= early_node_map[i].end_pfn)
3590 return;
3591
3592 /* Merge forward if suitable */
3593 if (start_pfn <= early_node_map[i].end_pfn &&
3594 end_pfn > early_node_map[i].end_pfn) {
3595 early_node_map[i].end_pfn = end_pfn;
3596 return;
3597 }
3598
3599 /* Merge backward if suitable */
3600 if (start_pfn < early_node_map[i].end_pfn &&
3601 end_pfn >= early_node_map[i].start_pfn) {
3602 early_node_map[i].start_pfn = start_pfn;
3603 return;
3604 }
3605 }
3606
3607 /* Check that early_node_map is large enough */
3608 if (i >= MAX_ACTIVE_REGIONS) {
3609 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3610 MAX_ACTIVE_REGIONS);
3611 return;
3612 }
3613
3614 early_node_map[i].nid = nid;
3615 early_node_map[i].start_pfn = start_pfn;
3616 early_node_map[i].end_pfn = end_pfn;
3617 nr_nodemap_entries = i + 1;
3618 }
3619
3620 /**
3621 * remove_active_range - Shrink an existing registered range of PFNs
3622 * @nid: The node id the range is on that should be shrunk
3623 * @start_pfn: The new PFN of the range
3624 * @end_pfn: The new PFN of the range
3625 *
3626 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3627 * The map is kept near the end physical page range that has already been
3628 * registered. This function allows an arch to shrink an existing registered
3629 * range.
3630 */
3631 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3632 unsigned long end_pfn)
3633 {
3634 int i, j;
3635 int removed = 0;
3636
3637 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3638 nid, start_pfn, end_pfn);
3639
3640 /* Find the old active region end and shrink */
3641 for_each_active_range_index_in_nid(i, nid) {
3642 if (early_node_map[i].start_pfn >= start_pfn &&
3643 early_node_map[i].end_pfn <= end_pfn) {
3644 /* clear it */
3645 early_node_map[i].start_pfn = 0;
3646 early_node_map[i].end_pfn = 0;
3647 removed = 1;
3648 continue;
3649 }
3650 if (early_node_map[i].start_pfn < start_pfn &&
3651 early_node_map[i].end_pfn > start_pfn) {
3652 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3653 early_node_map[i].end_pfn = start_pfn;
3654 if (temp_end_pfn > end_pfn)
3655 add_active_range(nid, end_pfn, temp_end_pfn);
3656 continue;
3657 }
3658 if (early_node_map[i].start_pfn >= start_pfn &&
3659 early_node_map[i].end_pfn > end_pfn &&
3660 early_node_map[i].start_pfn < end_pfn) {
3661 early_node_map[i].start_pfn = end_pfn;
3662 continue;
3663 }
3664 }
3665
3666 if (!removed)
3667 return;
3668
3669 /* remove the blank ones */
3670 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3671 if (early_node_map[i].nid != nid)
3672 continue;
3673 if (early_node_map[i].end_pfn)
3674 continue;
3675 /* we found it, get rid of it */
3676 for (j = i; j < nr_nodemap_entries - 1; j++)
3677 memcpy(&early_node_map[j], &early_node_map[j+1],
3678 sizeof(early_node_map[j]));
3679 j = nr_nodemap_entries - 1;
3680 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3681 nr_nodemap_entries--;
3682 }
3683 }
3684
3685 /**
3686 * remove_all_active_ranges - Remove all currently registered regions
3687 *
3688 * During discovery, it may be found that a table like SRAT is invalid
3689 * and an alternative discovery method must be used. This function removes
3690 * all currently registered regions.
3691 */
3692 void __init remove_all_active_ranges(void)
3693 {
3694 memset(early_node_map, 0, sizeof(early_node_map));
3695 nr_nodemap_entries = 0;
3696 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3697 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3698 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3699 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3700 }
3701
3702 /* Compare two active node_active_regions */
3703 static int __init cmp_node_active_region(const void *a, const void *b)
3704 {
3705 struct node_active_region *arange = (struct node_active_region *)a;
3706 struct node_active_region *brange = (struct node_active_region *)b;
3707
3708 /* Done this way to avoid overflows */
3709 if (arange->start_pfn > brange->start_pfn)
3710 return 1;
3711 if (arange->start_pfn < brange->start_pfn)
3712 return -1;
3713
3714 return 0;
3715 }
3716
3717 /* sort the node_map by start_pfn */
3718 static void __init sort_node_map(void)
3719 {
3720 sort(early_node_map, (size_t)nr_nodemap_entries,
3721 sizeof(struct node_active_region),
3722 cmp_node_active_region, NULL);
3723 }
3724
3725 /* Find the lowest pfn for a node */
3726 unsigned long __init find_min_pfn_for_node(int nid)
3727 {
3728 int i;
3729 unsigned long min_pfn = ULONG_MAX;
3730
3731 /* Assuming a sorted map, the first range found has the starting pfn */
3732 for_each_active_range_index_in_nid(i, nid)
3733 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3734
3735 if (min_pfn == ULONG_MAX) {
3736 printk(KERN_WARNING
3737 "Could not find start_pfn for node %d\n", nid);
3738 return 0;
3739 }
3740
3741 return min_pfn;
3742 }
3743
3744 /**
3745 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3746 *
3747 * It returns the minimum PFN based on information provided via
3748 * add_active_range().
3749 */
3750 unsigned long __init find_min_pfn_with_active_regions(void)
3751 {
3752 return find_min_pfn_for_node(MAX_NUMNODES);
3753 }
3754
3755 /**
3756 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3757 *
3758 * It returns the maximum PFN based on information provided via
3759 * add_active_range().
3760 */
3761 unsigned long __init find_max_pfn_with_active_regions(void)
3762 {
3763 int i;
3764 unsigned long max_pfn = 0;
3765
3766 for (i = 0; i < nr_nodemap_entries; i++)
3767 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3768
3769 return max_pfn;
3770 }
3771
3772 /*
3773 * early_calculate_totalpages()
3774 * Sum pages in active regions for movable zone.
3775 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3776 */
3777 static unsigned long __init early_calculate_totalpages(void)
3778 {
3779 int i;
3780 unsigned long totalpages = 0;
3781
3782 for (i = 0; i < nr_nodemap_entries; i++) {
3783 unsigned long pages = early_node_map[i].end_pfn -
3784 early_node_map[i].start_pfn;
3785 totalpages += pages;
3786 if (pages)
3787 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3788 }
3789 return totalpages;
3790 }
3791
3792 /*
3793 * Find the PFN the Movable zone begins in each node. Kernel memory
3794 * is spread evenly between nodes as long as the nodes have enough
3795 * memory. When they don't, some nodes will have more kernelcore than
3796 * others
3797 */
3798 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3799 {
3800 int i, nid;
3801 unsigned long usable_startpfn;
3802 unsigned long kernelcore_node, kernelcore_remaining;
3803 unsigned long totalpages = early_calculate_totalpages();
3804 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3805
3806 /*
3807 * If movablecore was specified, calculate what size of
3808 * kernelcore that corresponds so that memory usable for
3809 * any allocation type is evenly spread. If both kernelcore
3810 * and movablecore are specified, then the value of kernelcore
3811 * will be used for required_kernelcore if it's greater than
3812 * what movablecore would have allowed.
3813 */
3814 if (required_movablecore) {
3815 unsigned long corepages;
3816
3817 /*
3818 * Round-up so that ZONE_MOVABLE is at least as large as what
3819 * was requested by the user
3820 */
3821 required_movablecore =
3822 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3823 corepages = totalpages - required_movablecore;
3824
3825 required_kernelcore = max(required_kernelcore, corepages);
3826 }
3827
3828 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3829 if (!required_kernelcore)
3830 return;
3831
3832 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3833 find_usable_zone_for_movable();
3834 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3835
3836 restart:
3837 /* Spread kernelcore memory as evenly as possible throughout nodes */
3838 kernelcore_node = required_kernelcore / usable_nodes;
3839 for_each_node_state(nid, N_HIGH_MEMORY) {
3840 /*
3841 * Recalculate kernelcore_node if the division per node
3842 * now exceeds what is necessary to satisfy the requested
3843 * amount of memory for the kernel
3844 */
3845 if (required_kernelcore < kernelcore_node)
3846 kernelcore_node = required_kernelcore / usable_nodes;
3847
3848 /*
3849 * As the map is walked, we track how much memory is usable
3850 * by the kernel using kernelcore_remaining. When it is
3851 * 0, the rest of the node is usable by ZONE_MOVABLE
3852 */
3853 kernelcore_remaining = kernelcore_node;
3854
3855 /* Go through each range of PFNs within this node */
3856 for_each_active_range_index_in_nid(i, nid) {
3857 unsigned long start_pfn, end_pfn;
3858 unsigned long size_pages;
3859
3860 start_pfn = max(early_node_map[i].start_pfn,
3861 zone_movable_pfn[nid]);
3862 end_pfn = early_node_map[i].end_pfn;
3863 if (start_pfn >= end_pfn)
3864 continue;
3865
3866 /* Account for what is only usable for kernelcore */
3867 if (start_pfn < usable_startpfn) {
3868 unsigned long kernel_pages;
3869 kernel_pages = min(end_pfn, usable_startpfn)
3870 - start_pfn;
3871
3872 kernelcore_remaining -= min(kernel_pages,
3873 kernelcore_remaining);
3874 required_kernelcore -= min(kernel_pages,
3875 required_kernelcore);
3876
3877 /* Continue if range is now fully accounted */
3878 if (end_pfn <= usable_startpfn) {
3879
3880 /*
3881 * Push zone_movable_pfn to the end so
3882 * that if we have to rebalance
3883 * kernelcore across nodes, we will
3884 * not double account here
3885 */
3886 zone_movable_pfn[nid] = end_pfn;
3887 continue;
3888 }
3889 start_pfn = usable_startpfn;
3890 }
3891
3892 /*
3893 * The usable PFN range for ZONE_MOVABLE is from
3894 * start_pfn->end_pfn. Calculate size_pages as the
3895 * number of pages used as kernelcore
3896 */
3897 size_pages = end_pfn - start_pfn;
3898 if (size_pages > kernelcore_remaining)
3899 size_pages = kernelcore_remaining;
3900 zone_movable_pfn[nid] = start_pfn + size_pages;
3901
3902 /*
3903 * Some kernelcore has been met, update counts and
3904 * break if the kernelcore for this node has been
3905 * satisified
3906 */
3907 required_kernelcore -= min(required_kernelcore,
3908 size_pages);
3909 kernelcore_remaining -= size_pages;
3910 if (!kernelcore_remaining)
3911 break;
3912 }
3913 }
3914
3915 /*
3916 * If there is still required_kernelcore, we do another pass with one
3917 * less node in the count. This will push zone_movable_pfn[nid] further
3918 * along on the nodes that still have memory until kernelcore is
3919 * satisified
3920 */
3921 usable_nodes--;
3922 if (usable_nodes && required_kernelcore > usable_nodes)
3923 goto restart;
3924
3925 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3926 for (nid = 0; nid < MAX_NUMNODES; nid++)
3927 zone_movable_pfn[nid] =
3928 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3929 }
3930
3931 /* Any regular memory on that node ? */
3932 static void check_for_regular_memory(pg_data_t *pgdat)
3933 {
3934 #ifdef CONFIG_HIGHMEM
3935 enum zone_type zone_type;
3936
3937 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3938 struct zone *zone = &pgdat->node_zones[zone_type];
3939 if (zone->present_pages)
3940 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3941 }
3942 #endif
3943 }
3944
3945 /**
3946 * free_area_init_nodes - Initialise all pg_data_t and zone data
3947 * @max_zone_pfn: an array of max PFNs for each zone
3948 *
3949 * This will call free_area_init_node() for each active node in the system.
3950 * Using the page ranges provided by add_active_range(), the size of each
3951 * zone in each node and their holes is calculated. If the maximum PFN
3952 * between two adjacent zones match, it is assumed that the zone is empty.
3953 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3954 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3955 * starts where the previous one ended. For example, ZONE_DMA32 starts
3956 * at arch_max_dma_pfn.
3957 */
3958 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3959 {
3960 unsigned long nid;
3961 enum zone_type i;
3962
3963 /* Sort early_node_map as initialisation assumes it is sorted */
3964 sort_node_map();
3965
3966 /* Record where the zone boundaries are */
3967 memset(arch_zone_lowest_possible_pfn, 0,
3968 sizeof(arch_zone_lowest_possible_pfn));
3969 memset(arch_zone_highest_possible_pfn, 0,
3970 sizeof(arch_zone_highest_possible_pfn));
3971 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3972 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3973 for (i = 1; i < MAX_NR_ZONES; i++) {
3974 if (i == ZONE_MOVABLE)
3975 continue;
3976 arch_zone_lowest_possible_pfn[i] =
3977 arch_zone_highest_possible_pfn[i-1];
3978 arch_zone_highest_possible_pfn[i] =
3979 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3980 }
3981 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3982 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3983
3984 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3985 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3986 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3987
3988 /* Print out the zone ranges */
3989 printk("Zone PFN ranges:\n");
3990 for (i = 0; i < MAX_NR_ZONES; i++) {
3991 if (i == ZONE_MOVABLE)
3992 continue;
3993 printk(" %-8s %0#10lx -> %0#10lx\n",
3994 zone_names[i],
3995 arch_zone_lowest_possible_pfn[i],
3996 arch_zone_highest_possible_pfn[i]);
3997 }
3998
3999 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4000 printk("Movable zone start PFN for each node\n");
4001 for (i = 0; i < MAX_NUMNODES; i++) {
4002 if (zone_movable_pfn[i])
4003 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4004 }
4005
4006 /* Print out the early_node_map[] */
4007 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4008 for (i = 0; i < nr_nodemap_entries; i++)
4009 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4010 early_node_map[i].start_pfn,
4011 early_node_map[i].end_pfn);
4012
4013 /* Initialise every node */
4014 mminit_verify_pageflags_layout();
4015 setup_nr_node_ids();
4016 for_each_online_node(nid) {
4017 pg_data_t *pgdat = NODE_DATA(nid);
4018 free_area_init_node(nid, NULL,
4019 find_min_pfn_for_node(nid), NULL);
4020
4021 /* Any memory on that node */
4022 if (pgdat->node_present_pages)
4023 node_set_state(nid, N_HIGH_MEMORY);
4024 check_for_regular_memory(pgdat);
4025 }
4026 }
4027
4028 static int __init cmdline_parse_core(char *p, unsigned long *core)
4029 {
4030 unsigned long long coremem;
4031 if (!p)
4032 return -EINVAL;
4033
4034 coremem = memparse(p, &p);
4035 *core = coremem >> PAGE_SHIFT;
4036
4037 /* Paranoid check that UL is enough for the coremem value */
4038 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4039
4040 return 0;
4041 }
4042
4043 /*
4044 * kernelcore=size sets the amount of memory for use for allocations that
4045 * cannot be reclaimed or migrated.
4046 */
4047 static int __init cmdline_parse_kernelcore(char *p)
4048 {
4049 return cmdline_parse_core(p, &required_kernelcore);
4050 }
4051
4052 /*
4053 * movablecore=size sets the amount of memory for use for allocations that
4054 * can be reclaimed or migrated.
4055 */
4056 static int __init cmdline_parse_movablecore(char *p)
4057 {
4058 return cmdline_parse_core(p, &required_movablecore);
4059 }
4060
4061 early_param("kernelcore", cmdline_parse_kernelcore);
4062 early_param("movablecore", cmdline_parse_movablecore);
4063
4064 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4065
4066 /**
4067 * set_dma_reserve - set the specified number of pages reserved in the first zone
4068 * @new_dma_reserve: The number of pages to mark reserved
4069 *
4070 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4071 * In the DMA zone, a significant percentage may be consumed by kernel image
4072 * and other unfreeable allocations which can skew the watermarks badly. This
4073 * function may optionally be used to account for unfreeable pages in the
4074 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4075 * smaller per-cpu batchsize.
4076 */
4077 void __init set_dma_reserve(unsigned long new_dma_reserve)
4078 {
4079 dma_reserve = new_dma_reserve;
4080 }
4081
4082 #ifndef CONFIG_NEED_MULTIPLE_NODES
4083 struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
4084 EXPORT_SYMBOL(contig_page_data);
4085 #endif
4086
4087 void __init free_area_init(unsigned long *zones_size)
4088 {
4089 free_area_init_node(0, zones_size,
4090 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4091 }
4092
4093 static int page_alloc_cpu_notify(struct notifier_block *self,
4094 unsigned long action, void *hcpu)
4095 {
4096 int cpu = (unsigned long)hcpu;
4097
4098 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4099 drain_pages(cpu);
4100
4101 /*
4102 * Spill the event counters of the dead processor
4103 * into the current processors event counters.
4104 * This artificially elevates the count of the current
4105 * processor.
4106 */
4107 vm_events_fold_cpu(cpu);
4108
4109 /*
4110 * Zero the differential counters of the dead processor
4111 * so that the vm statistics are consistent.
4112 *
4113 * This is only okay since the processor is dead and cannot
4114 * race with what we are doing.
4115 */
4116 refresh_cpu_vm_stats(cpu);
4117 }
4118 return NOTIFY_OK;
4119 }
4120
4121 void __init page_alloc_init(void)
4122 {
4123 hotcpu_notifier(page_alloc_cpu_notify, 0);
4124 }
4125
4126 /*
4127 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4128 * or min_free_kbytes changes.
4129 */
4130 static void calculate_totalreserve_pages(void)
4131 {
4132 struct pglist_data *pgdat;
4133 unsigned long reserve_pages = 0;
4134 enum zone_type i, j;
4135
4136 for_each_online_pgdat(pgdat) {
4137 for (i = 0; i < MAX_NR_ZONES; i++) {
4138 struct zone *zone = pgdat->node_zones + i;
4139 unsigned long max = 0;
4140
4141 /* Find valid and maximum lowmem_reserve in the zone */
4142 for (j = i; j < MAX_NR_ZONES; j++) {
4143 if (zone->lowmem_reserve[j] > max)
4144 max = zone->lowmem_reserve[j];
4145 }
4146
4147 /* we treat pages_high as reserved pages. */
4148 max += zone->pages_high;
4149
4150 if (max > zone->present_pages)
4151 max = zone->present_pages;
4152 reserve_pages += max;
4153 }
4154 }
4155 totalreserve_pages = reserve_pages;
4156 }
4157
4158 /*
4159 * setup_per_zone_lowmem_reserve - called whenever
4160 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4161 * has a correct pages reserved value, so an adequate number of
4162 * pages are left in the zone after a successful __alloc_pages().
4163 */
4164 static void setup_per_zone_lowmem_reserve(void)
4165 {
4166 struct pglist_data *pgdat;
4167 enum zone_type j, idx;
4168
4169 for_each_online_pgdat(pgdat) {
4170 for (j = 0; j < MAX_NR_ZONES; j++) {
4171 struct zone *zone = pgdat->node_zones + j;
4172 unsigned long present_pages = zone->present_pages;
4173
4174 zone->lowmem_reserve[j] = 0;
4175
4176 idx = j;
4177 while (idx) {
4178 struct zone *lower_zone;
4179
4180 idx--;
4181
4182 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4183 sysctl_lowmem_reserve_ratio[idx] = 1;
4184
4185 lower_zone = pgdat->node_zones + idx;
4186 lower_zone->lowmem_reserve[j] = present_pages /
4187 sysctl_lowmem_reserve_ratio[idx];
4188 present_pages += lower_zone->present_pages;
4189 }
4190 }
4191 }
4192
4193 /* update totalreserve_pages */
4194 calculate_totalreserve_pages();
4195 }
4196
4197 /**
4198 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4199 *
4200 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4201 * with respect to min_free_kbytes.
4202 */
4203 void setup_per_zone_pages_min(void)
4204 {
4205 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4206 unsigned long lowmem_pages = 0;
4207 struct zone *zone;
4208 unsigned long flags;
4209
4210 /* Calculate total number of !ZONE_HIGHMEM pages */
4211 for_each_zone(zone) {
4212 if (!is_highmem(zone))
4213 lowmem_pages += zone->present_pages;
4214 }
4215
4216 for_each_zone(zone) {
4217 u64 tmp;
4218
4219 spin_lock_irqsave(&zone->lru_lock, flags);
4220 tmp = (u64)pages_min * zone->present_pages;
4221 do_div(tmp, lowmem_pages);
4222 if (is_highmem(zone)) {
4223 /*
4224 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4225 * need highmem pages, so cap pages_min to a small
4226 * value here.
4227 *
4228 * The (pages_high-pages_low) and (pages_low-pages_min)
4229 * deltas controls asynch page reclaim, and so should
4230 * not be capped for highmem.
4231 */
4232 int min_pages;
4233
4234 min_pages = zone->present_pages / 1024;
4235 if (min_pages < SWAP_CLUSTER_MAX)
4236 min_pages = SWAP_CLUSTER_MAX;
4237 if (min_pages > 128)
4238 min_pages = 128;
4239 zone->pages_min = min_pages;
4240 } else {
4241 /*
4242 * If it's a lowmem zone, reserve a number of pages
4243 * proportionate to the zone's size.
4244 */
4245 zone->pages_min = tmp;
4246 }
4247
4248 zone->pages_low = zone->pages_min + (tmp >> 2);
4249 zone->pages_high = zone->pages_min + (tmp >> 1);
4250 setup_zone_migrate_reserve(zone);
4251 spin_unlock_irqrestore(&zone->lru_lock, flags);
4252 }
4253
4254 /* update totalreserve_pages */
4255 calculate_totalreserve_pages();
4256 }
4257
4258 /*
4259 * Initialise min_free_kbytes.
4260 *
4261 * For small machines we want it small (128k min). For large machines
4262 * we want it large (64MB max). But it is not linear, because network
4263 * bandwidth does not increase linearly with machine size. We use
4264 *
4265 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4266 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4267 *
4268 * which yields
4269 *
4270 * 16MB: 512k
4271 * 32MB: 724k
4272 * 64MB: 1024k
4273 * 128MB: 1448k
4274 * 256MB: 2048k
4275 * 512MB: 2896k
4276 * 1024MB: 4096k
4277 * 2048MB: 5792k
4278 * 4096MB: 8192k
4279 * 8192MB: 11584k
4280 * 16384MB: 16384k
4281 */
4282 static int __init init_per_zone_pages_min(void)
4283 {
4284 unsigned long lowmem_kbytes;
4285
4286 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4287
4288 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4289 if (min_free_kbytes < 128)
4290 min_free_kbytes = 128;
4291 if (min_free_kbytes > 65536)
4292 min_free_kbytes = 65536;
4293 setup_per_zone_pages_min();
4294 setup_per_zone_lowmem_reserve();
4295 return 0;
4296 }
4297 module_init(init_per_zone_pages_min)
4298
4299 /*
4300 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4301 * that we can call two helper functions whenever min_free_kbytes
4302 * changes.
4303 */
4304 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4305 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4306 {
4307 proc_dointvec(table, write, file, buffer, length, ppos);
4308 if (write)
4309 setup_per_zone_pages_min();
4310 return 0;
4311 }
4312
4313 #ifdef CONFIG_NUMA
4314 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4315 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4316 {
4317 struct zone *zone;
4318 int rc;
4319
4320 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4321 if (rc)
4322 return rc;
4323
4324 for_each_zone(zone)
4325 zone->min_unmapped_pages = (zone->present_pages *
4326 sysctl_min_unmapped_ratio) / 100;
4327 return 0;
4328 }
4329
4330 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4331 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4332 {
4333 struct zone *zone;
4334 int rc;
4335
4336 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4337 if (rc)
4338 return rc;
4339
4340 for_each_zone(zone)
4341 zone->min_slab_pages = (zone->present_pages *
4342 sysctl_min_slab_ratio) / 100;
4343 return 0;
4344 }
4345 #endif
4346
4347 /*
4348 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4349 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4350 * whenever sysctl_lowmem_reserve_ratio changes.
4351 *
4352 * The reserve ratio obviously has absolutely no relation with the
4353 * pages_min watermarks. The lowmem reserve ratio can only make sense
4354 * if in function of the boot time zone sizes.
4355 */
4356 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4357 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4358 {
4359 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4360 setup_per_zone_lowmem_reserve();
4361 return 0;
4362 }
4363
4364 /*
4365 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4366 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4367 * can have before it gets flushed back to buddy allocator.
4368 */
4369
4370 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4371 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4372 {
4373 struct zone *zone;
4374 unsigned int cpu;
4375 int ret;
4376
4377 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4378 if (!write || (ret == -EINVAL))
4379 return ret;
4380 for_each_zone(zone) {
4381 for_each_online_cpu(cpu) {
4382 unsigned long high;
4383 high = zone->present_pages / percpu_pagelist_fraction;
4384 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4385 }
4386 }
4387 return 0;
4388 }
4389
4390 int hashdist = HASHDIST_DEFAULT;
4391
4392 #ifdef CONFIG_NUMA
4393 static int __init set_hashdist(char *str)
4394 {
4395 if (!str)
4396 return 0;
4397 hashdist = simple_strtoul(str, &str, 0);
4398 return 1;
4399 }
4400 __setup("hashdist=", set_hashdist);
4401 #endif
4402
4403 /*
4404 * allocate a large system hash table from bootmem
4405 * - it is assumed that the hash table must contain an exact power-of-2
4406 * quantity of entries
4407 * - limit is the number of hash buckets, not the total allocation size
4408 */
4409 void *__init alloc_large_system_hash(const char *tablename,
4410 unsigned long bucketsize,
4411 unsigned long numentries,
4412 int scale,
4413 int flags,
4414 unsigned int *_hash_shift,
4415 unsigned int *_hash_mask,
4416 unsigned long limit)
4417 {
4418 unsigned long long max = limit;
4419 unsigned long log2qty, size;
4420 void *table = NULL;
4421
4422 /* allow the kernel cmdline to have a say */
4423 if (!numentries) {
4424 /* round applicable memory size up to nearest megabyte */
4425 numentries = nr_kernel_pages;
4426 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4427 numentries >>= 20 - PAGE_SHIFT;
4428 numentries <<= 20 - PAGE_SHIFT;
4429
4430 /* limit to 1 bucket per 2^scale bytes of low memory */
4431 if (scale > PAGE_SHIFT)
4432 numentries >>= (scale - PAGE_SHIFT);
4433 else
4434 numentries <<= (PAGE_SHIFT - scale);
4435
4436 /* Make sure we've got at least a 0-order allocation.. */
4437 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4438 numentries = PAGE_SIZE / bucketsize;
4439 }
4440 numentries = roundup_pow_of_two(numentries);
4441
4442 /* limit allocation size to 1/16 total memory by default */
4443 if (max == 0) {
4444 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4445 do_div(max, bucketsize);
4446 }
4447
4448 if (numentries > max)
4449 numentries = max;
4450
4451 log2qty = ilog2(numentries);
4452
4453 do {
4454 size = bucketsize << log2qty;
4455 if (flags & HASH_EARLY)
4456 table = alloc_bootmem(size);
4457 else if (hashdist)
4458 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4459 else {
4460 unsigned long order = get_order(size);
4461 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4462 /*
4463 * If bucketsize is not a power-of-two, we may free
4464 * some pages at the end of hash table.
4465 */
4466 if (table) {
4467 unsigned long alloc_end = (unsigned long)table +
4468 (PAGE_SIZE << order);
4469 unsigned long used = (unsigned long)table +
4470 PAGE_ALIGN(size);
4471 split_page(virt_to_page(table), order);
4472 while (used < alloc_end) {
4473 free_page(used);
4474 used += PAGE_SIZE;
4475 }
4476 }
4477 }
4478 } while (!table && size > PAGE_SIZE && --log2qty);
4479
4480 if (!table)
4481 panic("Failed to allocate %s hash table\n", tablename);
4482
4483 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4484 tablename,
4485 (1U << log2qty),
4486 ilog2(size) - PAGE_SHIFT,
4487 size);
4488
4489 if (_hash_shift)
4490 *_hash_shift = log2qty;
4491 if (_hash_mask)
4492 *_hash_mask = (1 << log2qty) - 1;
4493
4494 return table;
4495 }
4496
4497 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4498 struct page *pfn_to_page(unsigned long pfn)
4499 {
4500 return __pfn_to_page(pfn);
4501 }
4502 unsigned long page_to_pfn(struct page *page)
4503 {
4504 return __page_to_pfn(page);
4505 }
4506 EXPORT_SYMBOL(pfn_to_page);
4507 EXPORT_SYMBOL(page_to_pfn);
4508 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4509
4510 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4511 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4512 unsigned long pfn)
4513 {
4514 #ifdef CONFIG_SPARSEMEM
4515 return __pfn_to_section(pfn)->pageblock_flags;
4516 #else
4517 return zone->pageblock_flags;
4518 #endif /* CONFIG_SPARSEMEM */
4519 }
4520
4521 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4522 {
4523 #ifdef CONFIG_SPARSEMEM
4524 pfn &= (PAGES_PER_SECTION-1);
4525 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4526 #else
4527 pfn = pfn - zone->zone_start_pfn;
4528 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4529 #endif /* CONFIG_SPARSEMEM */
4530 }
4531
4532 /**
4533 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4534 * @page: The page within the block of interest
4535 * @start_bitidx: The first bit of interest to retrieve
4536 * @end_bitidx: The last bit of interest
4537 * returns pageblock_bits flags
4538 */
4539 unsigned long get_pageblock_flags_group(struct page *page,
4540 int start_bitidx, int end_bitidx)
4541 {
4542 struct zone *zone;
4543 unsigned long *bitmap;
4544 unsigned long pfn, bitidx;
4545 unsigned long flags = 0;
4546 unsigned long value = 1;
4547
4548 zone = page_zone(page);
4549 pfn = page_to_pfn(page);
4550 bitmap = get_pageblock_bitmap(zone, pfn);
4551 bitidx = pfn_to_bitidx(zone, pfn);
4552
4553 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4554 if (test_bit(bitidx + start_bitidx, bitmap))
4555 flags |= value;
4556
4557 return flags;
4558 }
4559
4560 /**
4561 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4562 * @page: The page within the block of interest
4563 * @start_bitidx: The first bit of interest
4564 * @end_bitidx: The last bit of interest
4565 * @flags: The flags to set
4566 */
4567 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4568 int start_bitidx, int end_bitidx)
4569 {
4570 struct zone *zone;
4571 unsigned long *bitmap;
4572 unsigned long pfn, bitidx;
4573 unsigned long value = 1;
4574
4575 zone = page_zone(page);
4576 pfn = page_to_pfn(page);
4577 bitmap = get_pageblock_bitmap(zone, pfn);
4578 bitidx = pfn_to_bitidx(zone, pfn);
4579 VM_BUG_ON(pfn < zone->zone_start_pfn);
4580 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4581
4582 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4583 if (flags & value)
4584 __set_bit(bitidx + start_bitidx, bitmap);
4585 else
4586 __clear_bit(bitidx + start_bitidx, bitmap);
4587 }
4588
4589 /*
4590 * This is designed as sub function...plz see page_isolation.c also.
4591 * set/clear page block's type to be ISOLATE.
4592 * page allocater never alloc memory from ISOLATE block.
4593 */
4594
4595 int set_migratetype_isolate(struct page *page)
4596 {
4597 struct zone *zone;
4598 unsigned long flags;
4599 int ret = -EBUSY;
4600
4601 zone = page_zone(page);
4602 spin_lock_irqsave(&zone->lock, flags);
4603 /*
4604 * In future, more migrate types will be able to be isolation target.
4605 */
4606 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4607 goto out;
4608 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4609 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4610 ret = 0;
4611 out:
4612 spin_unlock_irqrestore(&zone->lock, flags);
4613 if (!ret)
4614 drain_all_pages();
4615 return ret;
4616 }
4617
4618 void unset_migratetype_isolate(struct page *page)
4619 {
4620 struct zone *zone;
4621 unsigned long flags;
4622 zone = page_zone(page);
4623 spin_lock_irqsave(&zone->lock, flags);
4624 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4625 goto out;
4626 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4627 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4628 out:
4629 spin_unlock_irqrestore(&zone->lock, flags);
4630 }
4631
4632 #ifdef CONFIG_MEMORY_HOTREMOVE
4633 /*
4634 * All pages in the range must be isolated before calling this.
4635 */
4636 void
4637 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4638 {
4639 struct page *page;
4640 struct zone *zone;
4641 int order, i;
4642 unsigned long pfn;
4643 unsigned long flags;
4644 /* find the first valid pfn */
4645 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4646 if (pfn_valid(pfn))
4647 break;
4648 if (pfn == end_pfn)
4649 return;
4650 zone = page_zone(pfn_to_page(pfn));
4651 spin_lock_irqsave(&zone->lock, flags);
4652 pfn = start_pfn;
4653 while (pfn < end_pfn) {
4654 if (!pfn_valid(pfn)) {
4655 pfn++;
4656 continue;
4657 }
4658 page = pfn_to_page(pfn);
4659 BUG_ON(page_count(page));
4660 BUG_ON(!PageBuddy(page));
4661 order = page_order(page);
4662 #ifdef CONFIG_DEBUG_VM
4663 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4664 pfn, 1 << order, end_pfn);
4665 #endif
4666 list_del(&page->lru);
4667 rmv_page_order(page);
4668 zone->free_area[order].nr_free--;
4669 __mod_zone_page_state(zone, NR_FREE_PAGES,
4670 - (1UL << order));
4671 for (i = 0; i < (1 << order); i++)
4672 SetPageReserved((page+i));
4673 pfn += (1 << order);
4674 }
4675 spin_unlock_irqrestore(&zone->lock, flags);
4676 }
4677 #endif