acpi, memory-hotplug: extend movablemem_map ranges to the end of node
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 /* Movable memory ranges, will also be used by memblock subsystem. */
206 struct movablemem_map movablemem_map;
207
208 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
210 static unsigned long __initdata required_kernelcore;
211 static unsigned long __initdata required_movablecore;
212 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
213 static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
214
215 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
216 int movable_zone;
217 EXPORT_SYMBOL(movable_zone);
218 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
219
220 #if MAX_NUMNODES > 1
221 int nr_node_ids __read_mostly = MAX_NUMNODES;
222 int nr_online_nodes __read_mostly = 1;
223 EXPORT_SYMBOL(nr_node_ids);
224 EXPORT_SYMBOL(nr_online_nodes);
225 #endif
226
227 int page_group_by_mobility_disabled __read_mostly;
228
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237 }
238
239 bool oom_killer_disabled __read_mostly;
240
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
247
248 do {
249 seq = zone_span_seqbegin(zone);
250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 ret = 1;
252 else if (pfn < zone->zone_start_pfn)
253 ret = 1;
254 } while (zone_span_seqretry(zone, seq));
255
256 return ret;
257 }
258
259 static int page_is_consistent(struct zone *zone, struct page *page)
260 {
261 if (!pfn_valid_within(page_to_pfn(page)))
262 return 0;
263 if (zone != page_zone(page))
264 return 0;
265
266 return 1;
267 }
268 /*
269 * Temporary debugging check for pages not lying within a given zone.
270 */
271 static int bad_range(struct zone *zone, struct page *page)
272 {
273 if (page_outside_zone_boundaries(zone, page))
274 return 1;
275 if (!page_is_consistent(zone, page))
276 return 1;
277
278 return 0;
279 }
280 #else
281 static inline int bad_range(struct zone *zone, struct page *page)
282 {
283 return 0;
284 }
285 #endif
286
287 static void bad_page(struct page *page)
288 {
289 static unsigned long resume;
290 static unsigned long nr_shown;
291 static unsigned long nr_unshown;
292
293 /* Don't complain about poisoned pages */
294 if (PageHWPoison(page)) {
295 reset_page_mapcount(page); /* remove PageBuddy */
296 return;
297 }
298
299 /*
300 * Allow a burst of 60 reports, then keep quiet for that minute;
301 * or allow a steady drip of one report per second.
302 */
303 if (nr_shown == 60) {
304 if (time_before(jiffies, resume)) {
305 nr_unshown++;
306 goto out;
307 }
308 if (nr_unshown) {
309 printk(KERN_ALERT
310 "BUG: Bad page state: %lu messages suppressed\n",
311 nr_unshown);
312 nr_unshown = 0;
313 }
314 nr_shown = 0;
315 }
316 if (nr_shown++ == 0)
317 resume = jiffies + 60 * HZ;
318
319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
320 current->comm, page_to_pfn(page));
321 dump_page(page);
322
323 print_modules();
324 dump_stack();
325 out:
326 /* Leave bad fields for debug, except PageBuddy could make trouble */
327 reset_page_mapcount(page); /* remove PageBuddy */
328 add_taint(TAINT_BAD_PAGE);
329 }
330
331 /*
332 * Higher-order pages are called "compound pages". They are structured thusly:
333 *
334 * The first PAGE_SIZE page is called the "head page".
335 *
336 * The remaining PAGE_SIZE pages are called "tail pages".
337 *
338 * All pages have PG_compound set. All tail pages have their ->first_page
339 * pointing at the head page.
340 *
341 * The first tail page's ->lru.next holds the address of the compound page's
342 * put_page() function. Its ->lru.prev holds the order of allocation.
343 * This usage means that zero-order pages may not be compound.
344 */
345
346 static void free_compound_page(struct page *page)
347 {
348 __free_pages_ok(page, compound_order(page));
349 }
350
351 void prep_compound_page(struct page *page, unsigned long order)
352 {
353 int i;
354 int nr_pages = 1 << order;
355
356 set_compound_page_dtor(page, free_compound_page);
357 set_compound_order(page, order);
358 __SetPageHead(page);
359 for (i = 1; i < nr_pages; i++) {
360 struct page *p = page + i;
361 __SetPageTail(p);
362 set_page_count(p, 0);
363 p->first_page = page;
364 }
365 }
366
367 /* update __split_huge_page_refcount if you change this function */
368 static int destroy_compound_page(struct page *page, unsigned long order)
369 {
370 int i;
371 int nr_pages = 1 << order;
372 int bad = 0;
373
374 if (unlikely(compound_order(page) != order)) {
375 bad_page(page);
376 bad++;
377 }
378
379 __ClearPageHead(page);
380
381 for (i = 1; i < nr_pages; i++) {
382 struct page *p = page + i;
383
384 if (unlikely(!PageTail(p) || (p->first_page != page))) {
385 bad_page(page);
386 bad++;
387 }
388 __ClearPageTail(p);
389 }
390
391 return bad;
392 }
393
394 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
395 {
396 int i;
397
398 /*
399 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
400 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 */
402 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
403 for (i = 0; i < (1 << order); i++)
404 clear_highpage(page + i);
405 }
406
407 #ifdef CONFIG_DEBUG_PAGEALLOC
408 unsigned int _debug_guardpage_minorder;
409
410 static int __init debug_guardpage_minorder_setup(char *buf)
411 {
412 unsigned long res;
413
414 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
415 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
416 return 0;
417 }
418 _debug_guardpage_minorder = res;
419 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
420 return 0;
421 }
422 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
423
424 static inline void set_page_guard_flag(struct page *page)
425 {
426 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428
429 static inline void clear_page_guard_flag(struct page *page)
430 {
431 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 }
433 #else
434 static inline void set_page_guard_flag(struct page *page) { }
435 static inline void clear_page_guard_flag(struct page *page) { }
436 #endif
437
438 static inline void set_page_order(struct page *page, int order)
439 {
440 set_page_private(page, order);
441 __SetPageBuddy(page);
442 }
443
444 static inline void rmv_page_order(struct page *page)
445 {
446 __ClearPageBuddy(page);
447 set_page_private(page, 0);
448 }
449
450 /*
451 * Locate the struct page for both the matching buddy in our
452 * pair (buddy1) and the combined O(n+1) page they form (page).
453 *
454 * 1) Any buddy B1 will have an order O twin B2 which satisfies
455 * the following equation:
456 * B2 = B1 ^ (1 << O)
457 * For example, if the starting buddy (buddy2) is #8 its order
458 * 1 buddy is #10:
459 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
460 *
461 * 2) Any buddy B will have an order O+1 parent P which
462 * satisfies the following equation:
463 * P = B & ~(1 << O)
464 *
465 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
466 */
467 static inline unsigned long
468 __find_buddy_index(unsigned long page_idx, unsigned int order)
469 {
470 return page_idx ^ (1 << order);
471 }
472
473 /*
474 * This function checks whether a page is free && is the buddy
475 * we can do coalesce a page and its buddy if
476 * (a) the buddy is not in a hole &&
477 * (b) the buddy is in the buddy system &&
478 * (c) a page and its buddy have the same order &&
479 * (d) a page and its buddy are in the same zone.
480 *
481 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
482 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
483 *
484 * For recording page's order, we use page_private(page).
485 */
486 static inline int page_is_buddy(struct page *page, struct page *buddy,
487 int order)
488 {
489 if (!pfn_valid_within(page_to_pfn(buddy)))
490 return 0;
491
492 if (page_zone_id(page) != page_zone_id(buddy))
493 return 0;
494
495 if (page_is_guard(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
498 }
499
500 if (PageBuddy(buddy) && page_order(buddy) == order) {
501 VM_BUG_ON(page_count(buddy) != 0);
502 return 1;
503 }
504 return 0;
505 }
506
507 /*
508 * Freeing function for a buddy system allocator.
509 *
510 * The concept of a buddy system is to maintain direct-mapped table
511 * (containing bit values) for memory blocks of various "orders".
512 * The bottom level table contains the map for the smallest allocatable
513 * units of memory (here, pages), and each level above it describes
514 * pairs of units from the levels below, hence, "buddies".
515 * At a high level, all that happens here is marking the table entry
516 * at the bottom level available, and propagating the changes upward
517 * as necessary, plus some accounting needed to play nicely with other
518 * parts of the VM system.
519 * At each level, we keep a list of pages, which are heads of continuous
520 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
521 * order is recorded in page_private(page) field.
522 * So when we are allocating or freeing one, we can derive the state of the
523 * other. That is, if we allocate a small block, and both were
524 * free, the remainder of the region must be split into blocks.
525 * If a block is freed, and its buddy is also free, then this
526 * triggers coalescing into a block of larger size.
527 *
528 * -- nyc
529 */
530
531 static inline void __free_one_page(struct page *page,
532 struct zone *zone, unsigned int order,
533 int migratetype)
534 {
535 unsigned long page_idx;
536 unsigned long combined_idx;
537 unsigned long uninitialized_var(buddy_idx);
538 struct page *buddy;
539
540 if (unlikely(PageCompound(page)))
541 if (unlikely(destroy_compound_page(page, order)))
542 return;
543
544 VM_BUG_ON(migratetype == -1);
545
546 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
547
548 VM_BUG_ON(page_idx & ((1 << order) - 1));
549 VM_BUG_ON(bad_range(zone, page));
550
551 while (order < MAX_ORDER-1) {
552 buddy_idx = __find_buddy_index(page_idx, order);
553 buddy = page + (buddy_idx - page_idx);
554 if (!page_is_buddy(page, buddy, order))
555 break;
556 /*
557 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
558 * merge with it and move up one order.
559 */
560 if (page_is_guard(buddy)) {
561 clear_page_guard_flag(buddy);
562 set_page_private(page, 0);
563 __mod_zone_freepage_state(zone, 1 << order,
564 migratetype);
565 } else {
566 list_del(&buddy->lru);
567 zone->free_area[order].nr_free--;
568 rmv_page_order(buddy);
569 }
570 combined_idx = buddy_idx & page_idx;
571 page = page + (combined_idx - page_idx);
572 page_idx = combined_idx;
573 order++;
574 }
575 set_page_order(page, order);
576
577 /*
578 * If this is not the largest possible page, check if the buddy
579 * of the next-highest order is free. If it is, it's possible
580 * that pages are being freed that will coalesce soon. In case,
581 * that is happening, add the free page to the tail of the list
582 * so it's less likely to be used soon and more likely to be merged
583 * as a higher order page
584 */
585 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
586 struct page *higher_page, *higher_buddy;
587 combined_idx = buddy_idx & page_idx;
588 higher_page = page + (combined_idx - page_idx);
589 buddy_idx = __find_buddy_index(combined_idx, order + 1);
590 higher_buddy = higher_page + (buddy_idx - combined_idx);
591 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
592 list_add_tail(&page->lru,
593 &zone->free_area[order].free_list[migratetype]);
594 goto out;
595 }
596 }
597
598 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
599 out:
600 zone->free_area[order].nr_free++;
601 }
602
603 static inline int free_pages_check(struct page *page)
604 {
605 if (unlikely(page_mapcount(page) |
606 (page->mapping != NULL) |
607 (atomic_read(&page->_count) != 0) |
608 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
609 (mem_cgroup_bad_page_check(page)))) {
610 bad_page(page);
611 return 1;
612 }
613 reset_page_last_nid(page);
614 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
615 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
616 return 0;
617 }
618
619 /*
620 * Frees a number of pages from the PCP lists
621 * Assumes all pages on list are in same zone, and of same order.
622 * count is the number of pages to free.
623 *
624 * If the zone was previously in an "all pages pinned" state then look to
625 * see if this freeing clears that state.
626 *
627 * And clear the zone's pages_scanned counter, to hold off the "all pages are
628 * pinned" detection logic.
629 */
630 static void free_pcppages_bulk(struct zone *zone, int count,
631 struct per_cpu_pages *pcp)
632 {
633 int migratetype = 0;
634 int batch_free = 0;
635 int to_free = count;
636
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
640
641 while (to_free) {
642 struct page *page;
643 struct list_head *list;
644
645 /*
646 * Remove pages from lists in a round-robin fashion. A
647 * batch_free count is maintained that is incremented when an
648 * empty list is encountered. This is so more pages are freed
649 * off fuller lists instead of spinning excessively around empty
650 * lists
651 */
652 do {
653 batch_free++;
654 if (++migratetype == MIGRATE_PCPTYPES)
655 migratetype = 0;
656 list = &pcp->lists[migratetype];
657 } while (list_empty(list));
658
659 /* This is the only non-empty list. Free them all. */
660 if (batch_free == MIGRATE_PCPTYPES)
661 batch_free = to_free;
662
663 do {
664 int mt; /* migratetype of the to-be-freed page */
665
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
669 mt = get_freepage_migratetype(page);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, mt);
672 trace_mm_page_pcpu_drain(page, 0, mt);
673 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
674 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
675 if (is_migrate_cma(mt))
676 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
677 }
678 } while (--to_free && --batch_free && !list_empty(list));
679 }
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 if (unlikely(migratetype != MIGRATE_ISOLATE))
692 __mod_zone_freepage_state(zone, 1 << order, migratetype);
693 spin_unlock(&zone->lock);
694 }
695
696 static bool free_pages_prepare(struct page *page, unsigned int order)
697 {
698 int i;
699 int bad = 0;
700
701 trace_mm_page_free(page, order);
702 kmemcheck_free_shadow(page, order);
703
704 if (PageAnon(page))
705 page->mapping = NULL;
706 for (i = 0; i < (1 << order); i++)
707 bad += free_pages_check(page + i);
708 if (bad)
709 return false;
710
711 if (!PageHighMem(page)) {
712 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
713 debug_check_no_obj_freed(page_address(page),
714 PAGE_SIZE << order);
715 }
716 arch_free_page(page, order);
717 kernel_map_pages(page, 1 << order, 0);
718
719 return true;
720 }
721
722 static void __free_pages_ok(struct page *page, unsigned int order)
723 {
724 unsigned long flags;
725 int migratetype;
726
727 if (!free_pages_prepare(page, order))
728 return;
729
730 local_irq_save(flags);
731 __count_vm_events(PGFREE, 1 << order);
732 migratetype = get_pageblock_migratetype(page);
733 set_freepage_migratetype(page, migratetype);
734 free_one_page(page_zone(page), page, order, migratetype);
735 local_irq_restore(flags);
736 }
737
738 /*
739 * Read access to zone->managed_pages is safe because it's unsigned long,
740 * but we still need to serialize writers. Currently all callers of
741 * __free_pages_bootmem() except put_page_bootmem() should only be used
742 * at boot time. So for shorter boot time, we shift the burden to
743 * put_page_bootmem() to serialize writers.
744 */
745 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
746 {
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
749
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
758 }
759
760 page_zone(page)->managed_pages += 1 << order;
761 set_page_refcounted(page);
762 __free_pages(page, order);
763 }
764
765 #ifdef CONFIG_CMA
766 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
767 void __init init_cma_reserved_pageblock(struct page *page)
768 {
769 unsigned i = pageblock_nr_pages;
770 struct page *p = page;
771
772 do {
773 __ClearPageReserved(p);
774 set_page_count(p, 0);
775 } while (++p, --i);
776
777 set_page_refcounted(page);
778 set_pageblock_migratetype(page, MIGRATE_CMA);
779 __free_pages(page, pageblock_order);
780 totalram_pages += pageblock_nr_pages;
781 #ifdef CONFIG_HIGHMEM
782 if (PageHighMem(page))
783 totalhigh_pages += pageblock_nr_pages;
784 #endif
785 }
786 #endif
787
788 /*
789 * The order of subdivision here is critical for the IO subsystem.
790 * Please do not alter this order without good reasons and regression
791 * testing. Specifically, as large blocks of memory are subdivided,
792 * the order in which smaller blocks are delivered depends on the order
793 * they're subdivided in this function. This is the primary factor
794 * influencing the order in which pages are delivered to the IO
795 * subsystem according to empirical testing, and this is also justified
796 * by considering the behavior of a buddy system containing a single
797 * large block of memory acted on by a series of small allocations.
798 * This behavior is a critical factor in sglist merging's success.
799 *
800 * -- nyc
801 */
802 static inline void expand(struct zone *zone, struct page *page,
803 int low, int high, struct free_area *area,
804 int migratetype)
805 {
806 unsigned long size = 1 << high;
807
808 while (high > low) {
809 area--;
810 high--;
811 size >>= 1;
812 VM_BUG_ON(bad_range(zone, &page[size]));
813
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 if (high < debug_guardpage_minorder()) {
816 /*
817 * Mark as guard pages (or page), that will allow to
818 * merge back to allocator when buddy will be freed.
819 * Corresponding page table entries will not be touched,
820 * pages will stay not present in virtual address space
821 */
822 INIT_LIST_HEAD(&page[size].lru);
823 set_page_guard_flag(&page[size]);
824 set_page_private(&page[size], high);
825 /* Guard pages are not available for any usage */
826 __mod_zone_freepage_state(zone, -(1 << high),
827 migratetype);
828 continue;
829 }
830 #endif
831 list_add(&page[size].lru, &area->free_list[migratetype]);
832 area->nr_free++;
833 set_page_order(&page[size], high);
834 }
835 }
836
837 /*
838 * This page is about to be returned from the page allocator
839 */
840 static inline int check_new_page(struct page *page)
841 {
842 if (unlikely(page_mapcount(page) |
843 (page->mapping != NULL) |
844 (atomic_read(&page->_count) != 0) |
845 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
846 (mem_cgroup_bad_page_check(page)))) {
847 bad_page(page);
848 return 1;
849 }
850 return 0;
851 }
852
853 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
854 {
855 int i;
856
857 for (i = 0; i < (1 << order); i++) {
858 struct page *p = page + i;
859 if (unlikely(check_new_page(p)))
860 return 1;
861 }
862
863 set_page_private(page, 0);
864 set_page_refcounted(page);
865
866 arch_alloc_page(page, order);
867 kernel_map_pages(page, 1 << order, 1);
868
869 if (gfp_flags & __GFP_ZERO)
870 prep_zero_page(page, order, gfp_flags);
871
872 if (order && (gfp_flags & __GFP_COMP))
873 prep_compound_page(page, order);
874
875 return 0;
876 }
877
878 /*
879 * Go through the free lists for the given migratetype and remove
880 * the smallest available page from the freelists
881 */
882 static inline
883 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
884 int migratetype)
885 {
886 unsigned int current_order;
887 struct free_area * area;
888 struct page *page;
889
890 /* Find a page of the appropriate size in the preferred list */
891 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
892 area = &(zone->free_area[current_order]);
893 if (list_empty(&area->free_list[migratetype]))
894 continue;
895
896 page = list_entry(area->free_list[migratetype].next,
897 struct page, lru);
898 list_del(&page->lru);
899 rmv_page_order(page);
900 area->nr_free--;
901 expand(zone, page, order, current_order, area, migratetype);
902 return page;
903 }
904
905 return NULL;
906 }
907
908
909 /*
910 * This array describes the order lists are fallen back to when
911 * the free lists for the desirable migrate type are depleted
912 */
913 static int fallbacks[MIGRATE_TYPES][4] = {
914 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
915 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 #ifdef CONFIG_CMA
917 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
919 #else
920 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 #endif
922 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
923 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
924 };
925
926 /*
927 * Move the free pages in a range to the free lists of the requested type.
928 * Note that start_page and end_pages are not aligned on a pageblock
929 * boundary. If alignment is required, use move_freepages_block()
930 */
931 int move_freepages(struct zone *zone,
932 struct page *start_page, struct page *end_page,
933 int migratetype)
934 {
935 struct page *page;
936 unsigned long order;
937 int pages_moved = 0;
938
939 #ifndef CONFIG_HOLES_IN_ZONE
940 /*
941 * page_zone is not safe to call in this context when
942 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
943 * anyway as we check zone boundaries in move_freepages_block().
944 * Remove at a later date when no bug reports exist related to
945 * grouping pages by mobility
946 */
947 BUG_ON(page_zone(start_page) != page_zone(end_page));
948 #endif
949
950 for (page = start_page; page <= end_page;) {
951 /* Make sure we are not inadvertently changing nodes */
952 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
953
954 if (!pfn_valid_within(page_to_pfn(page))) {
955 page++;
956 continue;
957 }
958
959 if (!PageBuddy(page)) {
960 page++;
961 continue;
962 }
963
964 order = page_order(page);
965 list_move(&page->lru,
966 &zone->free_area[order].free_list[migratetype]);
967 set_freepage_migratetype(page, migratetype);
968 page += 1 << order;
969 pages_moved += 1 << order;
970 }
971
972 return pages_moved;
973 }
974
975 int move_freepages_block(struct zone *zone, struct page *page,
976 int migratetype)
977 {
978 unsigned long start_pfn, end_pfn;
979 struct page *start_page, *end_page;
980
981 start_pfn = page_to_pfn(page);
982 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
983 start_page = pfn_to_page(start_pfn);
984 end_page = start_page + pageblock_nr_pages - 1;
985 end_pfn = start_pfn + pageblock_nr_pages - 1;
986
987 /* Do not cross zone boundaries */
988 if (start_pfn < zone->zone_start_pfn)
989 start_page = page;
990 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
991 return 0;
992
993 return move_freepages(zone, start_page, end_page, migratetype);
994 }
995
996 static void change_pageblock_range(struct page *pageblock_page,
997 int start_order, int migratetype)
998 {
999 int nr_pageblocks = 1 << (start_order - pageblock_order);
1000
1001 while (nr_pageblocks--) {
1002 set_pageblock_migratetype(pageblock_page, migratetype);
1003 pageblock_page += pageblock_nr_pages;
1004 }
1005 }
1006
1007 /* Remove an element from the buddy allocator from the fallback list */
1008 static inline struct page *
1009 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1010 {
1011 struct free_area * area;
1012 int current_order;
1013 struct page *page;
1014 int migratetype, i;
1015
1016 /* Find the largest possible block of pages in the other list */
1017 for (current_order = MAX_ORDER-1; current_order >= order;
1018 --current_order) {
1019 for (i = 0;; i++) {
1020 migratetype = fallbacks[start_migratetype][i];
1021
1022 /* MIGRATE_RESERVE handled later if necessary */
1023 if (migratetype == MIGRATE_RESERVE)
1024 break;
1025
1026 area = &(zone->free_area[current_order]);
1027 if (list_empty(&area->free_list[migratetype]))
1028 continue;
1029
1030 page = list_entry(area->free_list[migratetype].next,
1031 struct page, lru);
1032 area->nr_free--;
1033
1034 /*
1035 * If breaking a large block of pages, move all free
1036 * pages to the preferred allocation list. If falling
1037 * back for a reclaimable kernel allocation, be more
1038 * aggressive about taking ownership of free pages
1039 *
1040 * On the other hand, never change migration
1041 * type of MIGRATE_CMA pageblocks nor move CMA
1042 * pages on different free lists. We don't
1043 * want unmovable pages to be allocated from
1044 * MIGRATE_CMA areas.
1045 */
1046 if (!is_migrate_cma(migratetype) &&
1047 (unlikely(current_order >= pageblock_order / 2) ||
1048 start_migratetype == MIGRATE_RECLAIMABLE ||
1049 page_group_by_mobility_disabled)) {
1050 int pages;
1051 pages = move_freepages_block(zone, page,
1052 start_migratetype);
1053
1054 /* Claim the whole block if over half of it is free */
1055 if (pages >= (1 << (pageblock_order-1)) ||
1056 page_group_by_mobility_disabled)
1057 set_pageblock_migratetype(page,
1058 start_migratetype);
1059
1060 migratetype = start_migratetype;
1061 }
1062
1063 /* Remove the page from the freelists */
1064 list_del(&page->lru);
1065 rmv_page_order(page);
1066
1067 /* Take ownership for orders >= pageblock_order */
1068 if (current_order >= pageblock_order &&
1069 !is_migrate_cma(migratetype))
1070 change_pageblock_range(page, current_order,
1071 start_migratetype);
1072
1073 expand(zone, page, order, current_order, area,
1074 is_migrate_cma(migratetype)
1075 ? migratetype : start_migratetype);
1076
1077 trace_mm_page_alloc_extfrag(page, order, current_order,
1078 start_migratetype, migratetype);
1079
1080 return page;
1081 }
1082 }
1083
1084 return NULL;
1085 }
1086
1087 /*
1088 * Do the hard work of removing an element from the buddy allocator.
1089 * Call me with the zone->lock already held.
1090 */
1091 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1092 int migratetype)
1093 {
1094 struct page *page;
1095
1096 retry_reserve:
1097 page = __rmqueue_smallest(zone, order, migratetype);
1098
1099 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1100 page = __rmqueue_fallback(zone, order, migratetype);
1101
1102 /*
1103 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1104 * is used because __rmqueue_smallest is an inline function
1105 * and we want just one call site
1106 */
1107 if (!page) {
1108 migratetype = MIGRATE_RESERVE;
1109 goto retry_reserve;
1110 }
1111 }
1112
1113 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1114 return page;
1115 }
1116
1117 /*
1118 * Obtain a specified number of elements from the buddy allocator, all under
1119 * a single hold of the lock, for efficiency. Add them to the supplied list.
1120 * Returns the number of new pages which were placed at *list.
1121 */
1122 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1123 unsigned long count, struct list_head *list,
1124 int migratetype, int cold)
1125 {
1126 int mt = migratetype, i;
1127
1128 spin_lock(&zone->lock);
1129 for (i = 0; i < count; ++i) {
1130 struct page *page = __rmqueue(zone, order, migratetype);
1131 if (unlikely(page == NULL))
1132 break;
1133
1134 /*
1135 * Split buddy pages returned by expand() are received here
1136 * in physical page order. The page is added to the callers and
1137 * list and the list head then moves forward. From the callers
1138 * perspective, the linked list is ordered by page number in
1139 * some conditions. This is useful for IO devices that can
1140 * merge IO requests if the physical pages are ordered
1141 * properly.
1142 */
1143 if (likely(cold == 0))
1144 list_add(&page->lru, list);
1145 else
1146 list_add_tail(&page->lru, list);
1147 if (IS_ENABLED(CONFIG_CMA)) {
1148 mt = get_pageblock_migratetype(page);
1149 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1150 mt = migratetype;
1151 }
1152 set_freepage_migratetype(page, mt);
1153 list = &page->lru;
1154 if (is_migrate_cma(mt))
1155 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1156 -(1 << order));
1157 }
1158 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1159 spin_unlock(&zone->lock);
1160 return i;
1161 }
1162
1163 #ifdef CONFIG_NUMA
1164 /*
1165 * Called from the vmstat counter updater to drain pagesets of this
1166 * currently executing processor on remote nodes after they have
1167 * expired.
1168 *
1169 * Note that this function must be called with the thread pinned to
1170 * a single processor.
1171 */
1172 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1173 {
1174 unsigned long flags;
1175 int to_drain;
1176
1177 local_irq_save(flags);
1178 if (pcp->count >= pcp->batch)
1179 to_drain = pcp->batch;
1180 else
1181 to_drain = pcp->count;
1182 if (to_drain > 0) {
1183 free_pcppages_bulk(zone, to_drain, pcp);
1184 pcp->count -= to_drain;
1185 }
1186 local_irq_restore(flags);
1187 }
1188 #endif
1189
1190 /*
1191 * Drain pages of the indicated processor.
1192 *
1193 * The processor must either be the current processor and the
1194 * thread pinned to the current processor or a processor that
1195 * is not online.
1196 */
1197 static void drain_pages(unsigned int cpu)
1198 {
1199 unsigned long flags;
1200 struct zone *zone;
1201
1202 for_each_populated_zone(zone) {
1203 struct per_cpu_pageset *pset;
1204 struct per_cpu_pages *pcp;
1205
1206 local_irq_save(flags);
1207 pset = per_cpu_ptr(zone->pageset, cpu);
1208
1209 pcp = &pset->pcp;
1210 if (pcp->count) {
1211 free_pcppages_bulk(zone, pcp->count, pcp);
1212 pcp->count = 0;
1213 }
1214 local_irq_restore(flags);
1215 }
1216 }
1217
1218 /*
1219 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1220 */
1221 void drain_local_pages(void *arg)
1222 {
1223 drain_pages(smp_processor_id());
1224 }
1225
1226 /*
1227 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1228 *
1229 * Note that this code is protected against sending an IPI to an offline
1230 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1231 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1232 * nothing keeps CPUs from showing up after we populated the cpumask and
1233 * before the call to on_each_cpu_mask().
1234 */
1235 void drain_all_pages(void)
1236 {
1237 int cpu;
1238 struct per_cpu_pageset *pcp;
1239 struct zone *zone;
1240
1241 /*
1242 * Allocate in the BSS so we wont require allocation in
1243 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1244 */
1245 static cpumask_t cpus_with_pcps;
1246
1247 /*
1248 * We don't care about racing with CPU hotplug event
1249 * as offline notification will cause the notified
1250 * cpu to drain that CPU pcps and on_each_cpu_mask
1251 * disables preemption as part of its processing
1252 */
1253 for_each_online_cpu(cpu) {
1254 bool has_pcps = false;
1255 for_each_populated_zone(zone) {
1256 pcp = per_cpu_ptr(zone->pageset, cpu);
1257 if (pcp->pcp.count) {
1258 has_pcps = true;
1259 break;
1260 }
1261 }
1262 if (has_pcps)
1263 cpumask_set_cpu(cpu, &cpus_with_pcps);
1264 else
1265 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1266 }
1267 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1268 }
1269
1270 #ifdef CONFIG_HIBERNATION
1271
1272 void mark_free_pages(struct zone *zone)
1273 {
1274 unsigned long pfn, max_zone_pfn;
1275 unsigned long flags;
1276 int order, t;
1277 struct list_head *curr;
1278
1279 if (!zone->spanned_pages)
1280 return;
1281
1282 spin_lock_irqsave(&zone->lock, flags);
1283
1284 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1285 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1286 if (pfn_valid(pfn)) {
1287 struct page *page = pfn_to_page(pfn);
1288
1289 if (!swsusp_page_is_forbidden(page))
1290 swsusp_unset_page_free(page);
1291 }
1292
1293 for_each_migratetype_order(order, t) {
1294 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1295 unsigned long i;
1296
1297 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1298 for (i = 0; i < (1UL << order); i++)
1299 swsusp_set_page_free(pfn_to_page(pfn + i));
1300 }
1301 }
1302 spin_unlock_irqrestore(&zone->lock, flags);
1303 }
1304 #endif /* CONFIG_PM */
1305
1306 /*
1307 * Free a 0-order page
1308 * cold == 1 ? free a cold page : free a hot page
1309 */
1310 void free_hot_cold_page(struct page *page, int cold)
1311 {
1312 struct zone *zone = page_zone(page);
1313 struct per_cpu_pages *pcp;
1314 unsigned long flags;
1315 int migratetype;
1316
1317 if (!free_pages_prepare(page, 0))
1318 return;
1319
1320 migratetype = get_pageblock_migratetype(page);
1321 set_freepage_migratetype(page, migratetype);
1322 local_irq_save(flags);
1323 __count_vm_event(PGFREE);
1324
1325 /*
1326 * We only track unmovable, reclaimable and movable on pcp lists.
1327 * Free ISOLATE pages back to the allocator because they are being
1328 * offlined but treat RESERVE as movable pages so we can get those
1329 * areas back if necessary. Otherwise, we may have to free
1330 * excessively into the page allocator
1331 */
1332 if (migratetype >= MIGRATE_PCPTYPES) {
1333 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1334 free_one_page(zone, page, 0, migratetype);
1335 goto out;
1336 }
1337 migratetype = MIGRATE_MOVABLE;
1338 }
1339
1340 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1341 if (cold)
1342 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1343 else
1344 list_add(&page->lru, &pcp->lists[migratetype]);
1345 pcp->count++;
1346 if (pcp->count >= pcp->high) {
1347 free_pcppages_bulk(zone, pcp->batch, pcp);
1348 pcp->count -= pcp->batch;
1349 }
1350
1351 out:
1352 local_irq_restore(flags);
1353 }
1354
1355 /*
1356 * Free a list of 0-order pages
1357 */
1358 void free_hot_cold_page_list(struct list_head *list, int cold)
1359 {
1360 struct page *page, *next;
1361
1362 list_for_each_entry_safe(page, next, list, lru) {
1363 trace_mm_page_free_batched(page, cold);
1364 free_hot_cold_page(page, cold);
1365 }
1366 }
1367
1368 /*
1369 * split_page takes a non-compound higher-order page, and splits it into
1370 * n (1<<order) sub-pages: page[0..n]
1371 * Each sub-page must be freed individually.
1372 *
1373 * Note: this is probably too low level an operation for use in drivers.
1374 * Please consult with lkml before using this in your driver.
1375 */
1376 void split_page(struct page *page, unsigned int order)
1377 {
1378 int i;
1379
1380 VM_BUG_ON(PageCompound(page));
1381 VM_BUG_ON(!page_count(page));
1382
1383 #ifdef CONFIG_KMEMCHECK
1384 /*
1385 * Split shadow pages too, because free(page[0]) would
1386 * otherwise free the whole shadow.
1387 */
1388 if (kmemcheck_page_is_tracked(page))
1389 split_page(virt_to_page(page[0].shadow), order);
1390 #endif
1391
1392 for (i = 1; i < (1 << order); i++)
1393 set_page_refcounted(page + i);
1394 }
1395
1396 static int __isolate_free_page(struct page *page, unsigned int order)
1397 {
1398 unsigned long watermark;
1399 struct zone *zone;
1400 int mt;
1401
1402 BUG_ON(!PageBuddy(page));
1403
1404 zone = page_zone(page);
1405 mt = get_pageblock_migratetype(page);
1406
1407 if (mt != MIGRATE_ISOLATE) {
1408 /* Obey watermarks as if the page was being allocated */
1409 watermark = low_wmark_pages(zone) + (1 << order);
1410 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1411 return 0;
1412
1413 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1414 }
1415
1416 /* Remove page from free list */
1417 list_del(&page->lru);
1418 zone->free_area[order].nr_free--;
1419 rmv_page_order(page);
1420
1421 /* Set the pageblock if the isolated page is at least a pageblock */
1422 if (order >= pageblock_order - 1) {
1423 struct page *endpage = page + (1 << order) - 1;
1424 for (; page < endpage; page += pageblock_nr_pages) {
1425 int mt = get_pageblock_migratetype(page);
1426 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1427 set_pageblock_migratetype(page,
1428 MIGRATE_MOVABLE);
1429 }
1430 }
1431
1432 return 1UL << order;
1433 }
1434
1435 /*
1436 * Similar to split_page except the page is already free. As this is only
1437 * being used for migration, the migratetype of the block also changes.
1438 * As this is called with interrupts disabled, the caller is responsible
1439 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1440 * are enabled.
1441 *
1442 * Note: this is probably too low level an operation for use in drivers.
1443 * Please consult with lkml before using this in your driver.
1444 */
1445 int split_free_page(struct page *page)
1446 {
1447 unsigned int order;
1448 int nr_pages;
1449
1450 order = page_order(page);
1451
1452 nr_pages = __isolate_free_page(page, order);
1453 if (!nr_pages)
1454 return 0;
1455
1456 /* Split into individual pages */
1457 set_page_refcounted(page);
1458 split_page(page, order);
1459 return nr_pages;
1460 }
1461
1462 /*
1463 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1464 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1465 * or two.
1466 */
1467 static inline
1468 struct page *buffered_rmqueue(struct zone *preferred_zone,
1469 struct zone *zone, int order, gfp_t gfp_flags,
1470 int migratetype)
1471 {
1472 unsigned long flags;
1473 struct page *page;
1474 int cold = !!(gfp_flags & __GFP_COLD);
1475
1476 again:
1477 if (likely(order == 0)) {
1478 struct per_cpu_pages *pcp;
1479 struct list_head *list;
1480
1481 local_irq_save(flags);
1482 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1483 list = &pcp->lists[migratetype];
1484 if (list_empty(list)) {
1485 pcp->count += rmqueue_bulk(zone, 0,
1486 pcp->batch, list,
1487 migratetype, cold);
1488 if (unlikely(list_empty(list)))
1489 goto failed;
1490 }
1491
1492 if (cold)
1493 page = list_entry(list->prev, struct page, lru);
1494 else
1495 page = list_entry(list->next, struct page, lru);
1496
1497 list_del(&page->lru);
1498 pcp->count--;
1499 } else {
1500 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1501 /*
1502 * __GFP_NOFAIL is not to be used in new code.
1503 *
1504 * All __GFP_NOFAIL callers should be fixed so that they
1505 * properly detect and handle allocation failures.
1506 *
1507 * We most definitely don't want callers attempting to
1508 * allocate greater than order-1 page units with
1509 * __GFP_NOFAIL.
1510 */
1511 WARN_ON_ONCE(order > 1);
1512 }
1513 spin_lock_irqsave(&zone->lock, flags);
1514 page = __rmqueue(zone, order, migratetype);
1515 spin_unlock(&zone->lock);
1516 if (!page)
1517 goto failed;
1518 __mod_zone_freepage_state(zone, -(1 << order),
1519 get_pageblock_migratetype(page));
1520 }
1521
1522 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1523 zone_statistics(preferred_zone, zone, gfp_flags);
1524 local_irq_restore(flags);
1525
1526 VM_BUG_ON(bad_range(zone, page));
1527 if (prep_new_page(page, order, gfp_flags))
1528 goto again;
1529 return page;
1530
1531 failed:
1532 local_irq_restore(flags);
1533 return NULL;
1534 }
1535
1536 #ifdef CONFIG_FAIL_PAGE_ALLOC
1537
1538 static struct {
1539 struct fault_attr attr;
1540
1541 u32 ignore_gfp_highmem;
1542 u32 ignore_gfp_wait;
1543 u32 min_order;
1544 } fail_page_alloc = {
1545 .attr = FAULT_ATTR_INITIALIZER,
1546 .ignore_gfp_wait = 1,
1547 .ignore_gfp_highmem = 1,
1548 .min_order = 1,
1549 };
1550
1551 static int __init setup_fail_page_alloc(char *str)
1552 {
1553 return setup_fault_attr(&fail_page_alloc.attr, str);
1554 }
1555 __setup("fail_page_alloc=", setup_fail_page_alloc);
1556
1557 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1558 {
1559 if (order < fail_page_alloc.min_order)
1560 return false;
1561 if (gfp_mask & __GFP_NOFAIL)
1562 return false;
1563 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1564 return false;
1565 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1566 return false;
1567
1568 return should_fail(&fail_page_alloc.attr, 1 << order);
1569 }
1570
1571 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1572
1573 static int __init fail_page_alloc_debugfs(void)
1574 {
1575 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1576 struct dentry *dir;
1577
1578 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1579 &fail_page_alloc.attr);
1580 if (IS_ERR(dir))
1581 return PTR_ERR(dir);
1582
1583 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1584 &fail_page_alloc.ignore_gfp_wait))
1585 goto fail;
1586 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1587 &fail_page_alloc.ignore_gfp_highmem))
1588 goto fail;
1589 if (!debugfs_create_u32("min-order", mode, dir,
1590 &fail_page_alloc.min_order))
1591 goto fail;
1592
1593 return 0;
1594 fail:
1595 debugfs_remove_recursive(dir);
1596
1597 return -ENOMEM;
1598 }
1599
1600 late_initcall(fail_page_alloc_debugfs);
1601
1602 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1603
1604 #else /* CONFIG_FAIL_PAGE_ALLOC */
1605
1606 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1607 {
1608 return false;
1609 }
1610
1611 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1612
1613 /*
1614 * Return true if free pages are above 'mark'. This takes into account the order
1615 * of the allocation.
1616 */
1617 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1618 int classzone_idx, int alloc_flags, long free_pages)
1619 {
1620 /* free_pages my go negative - that's OK */
1621 long min = mark;
1622 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1623 int o;
1624
1625 free_pages -= (1 << order) - 1;
1626 if (alloc_flags & ALLOC_HIGH)
1627 min -= min / 2;
1628 if (alloc_flags & ALLOC_HARDER)
1629 min -= min / 4;
1630 #ifdef CONFIG_CMA
1631 /* If allocation can't use CMA areas don't use free CMA pages */
1632 if (!(alloc_flags & ALLOC_CMA))
1633 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1634 #endif
1635 if (free_pages <= min + lowmem_reserve)
1636 return false;
1637 for (o = 0; o < order; o++) {
1638 /* At the next order, this order's pages become unavailable */
1639 free_pages -= z->free_area[o].nr_free << o;
1640
1641 /* Require fewer higher order pages to be free */
1642 min >>= 1;
1643
1644 if (free_pages <= min)
1645 return false;
1646 }
1647 return true;
1648 }
1649
1650 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1651 int classzone_idx, int alloc_flags)
1652 {
1653 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1654 zone_page_state(z, NR_FREE_PAGES));
1655 }
1656
1657 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1658 int classzone_idx, int alloc_flags)
1659 {
1660 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1661
1662 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1663 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1664
1665 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 free_pages);
1667 }
1668
1669 #ifdef CONFIG_NUMA
1670 /*
1671 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1672 * skip over zones that are not allowed by the cpuset, or that have
1673 * been recently (in last second) found to be nearly full. See further
1674 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1675 * that have to skip over a lot of full or unallowed zones.
1676 *
1677 * If the zonelist cache is present in the passed in zonelist, then
1678 * returns a pointer to the allowed node mask (either the current
1679 * tasks mems_allowed, or node_states[N_MEMORY].)
1680 *
1681 * If the zonelist cache is not available for this zonelist, does
1682 * nothing and returns NULL.
1683 *
1684 * If the fullzones BITMAP in the zonelist cache is stale (more than
1685 * a second since last zap'd) then we zap it out (clear its bits.)
1686 *
1687 * We hold off even calling zlc_setup, until after we've checked the
1688 * first zone in the zonelist, on the theory that most allocations will
1689 * be satisfied from that first zone, so best to examine that zone as
1690 * quickly as we can.
1691 */
1692 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1693 {
1694 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1695 nodemask_t *allowednodes; /* zonelist_cache approximation */
1696
1697 zlc = zonelist->zlcache_ptr;
1698 if (!zlc)
1699 return NULL;
1700
1701 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1702 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1703 zlc->last_full_zap = jiffies;
1704 }
1705
1706 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1707 &cpuset_current_mems_allowed :
1708 &node_states[N_MEMORY];
1709 return allowednodes;
1710 }
1711
1712 /*
1713 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1714 * if it is worth looking at further for free memory:
1715 * 1) Check that the zone isn't thought to be full (doesn't have its
1716 * bit set in the zonelist_cache fullzones BITMAP).
1717 * 2) Check that the zones node (obtained from the zonelist_cache
1718 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1719 * Return true (non-zero) if zone is worth looking at further, or
1720 * else return false (zero) if it is not.
1721 *
1722 * This check -ignores- the distinction between various watermarks,
1723 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1724 * found to be full for any variation of these watermarks, it will
1725 * be considered full for up to one second by all requests, unless
1726 * we are so low on memory on all allowed nodes that we are forced
1727 * into the second scan of the zonelist.
1728 *
1729 * In the second scan we ignore this zonelist cache and exactly
1730 * apply the watermarks to all zones, even it is slower to do so.
1731 * We are low on memory in the second scan, and should leave no stone
1732 * unturned looking for a free page.
1733 */
1734 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1735 nodemask_t *allowednodes)
1736 {
1737 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1738 int i; /* index of *z in zonelist zones */
1739 int n; /* node that zone *z is on */
1740
1741 zlc = zonelist->zlcache_ptr;
1742 if (!zlc)
1743 return 1;
1744
1745 i = z - zonelist->_zonerefs;
1746 n = zlc->z_to_n[i];
1747
1748 /* This zone is worth trying if it is allowed but not full */
1749 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1750 }
1751
1752 /*
1753 * Given 'z' scanning a zonelist, set the corresponding bit in
1754 * zlc->fullzones, so that subsequent attempts to allocate a page
1755 * from that zone don't waste time re-examining it.
1756 */
1757 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1758 {
1759 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1760 int i; /* index of *z in zonelist zones */
1761
1762 zlc = zonelist->zlcache_ptr;
1763 if (!zlc)
1764 return;
1765
1766 i = z - zonelist->_zonerefs;
1767
1768 set_bit(i, zlc->fullzones);
1769 }
1770
1771 /*
1772 * clear all zones full, called after direct reclaim makes progress so that
1773 * a zone that was recently full is not skipped over for up to a second
1774 */
1775 static void zlc_clear_zones_full(struct zonelist *zonelist)
1776 {
1777 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1778
1779 zlc = zonelist->zlcache_ptr;
1780 if (!zlc)
1781 return;
1782
1783 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1784 }
1785
1786 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1787 {
1788 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1789 }
1790
1791 static void __paginginit init_zone_allows_reclaim(int nid)
1792 {
1793 int i;
1794
1795 for_each_online_node(i)
1796 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1797 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1798 else
1799 zone_reclaim_mode = 1;
1800 }
1801
1802 #else /* CONFIG_NUMA */
1803
1804 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1805 {
1806 return NULL;
1807 }
1808
1809 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1810 nodemask_t *allowednodes)
1811 {
1812 return 1;
1813 }
1814
1815 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1816 {
1817 }
1818
1819 static void zlc_clear_zones_full(struct zonelist *zonelist)
1820 {
1821 }
1822
1823 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1824 {
1825 return true;
1826 }
1827
1828 static inline void init_zone_allows_reclaim(int nid)
1829 {
1830 }
1831 #endif /* CONFIG_NUMA */
1832
1833 /*
1834 * get_page_from_freelist goes through the zonelist trying to allocate
1835 * a page.
1836 */
1837 static struct page *
1838 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1839 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1840 struct zone *preferred_zone, int migratetype)
1841 {
1842 struct zoneref *z;
1843 struct page *page = NULL;
1844 int classzone_idx;
1845 struct zone *zone;
1846 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1847 int zlc_active = 0; /* set if using zonelist_cache */
1848 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1849
1850 classzone_idx = zone_idx(preferred_zone);
1851 zonelist_scan:
1852 /*
1853 * Scan zonelist, looking for a zone with enough free.
1854 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1855 */
1856 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1857 high_zoneidx, nodemask) {
1858 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1859 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1860 continue;
1861 if ((alloc_flags & ALLOC_CPUSET) &&
1862 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1863 continue;
1864 /*
1865 * When allocating a page cache page for writing, we
1866 * want to get it from a zone that is within its dirty
1867 * limit, such that no single zone holds more than its
1868 * proportional share of globally allowed dirty pages.
1869 * The dirty limits take into account the zone's
1870 * lowmem reserves and high watermark so that kswapd
1871 * should be able to balance it without having to
1872 * write pages from its LRU list.
1873 *
1874 * This may look like it could increase pressure on
1875 * lower zones by failing allocations in higher zones
1876 * before they are full. But the pages that do spill
1877 * over are limited as the lower zones are protected
1878 * by this very same mechanism. It should not become
1879 * a practical burden to them.
1880 *
1881 * XXX: For now, allow allocations to potentially
1882 * exceed the per-zone dirty limit in the slowpath
1883 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1884 * which is important when on a NUMA setup the allowed
1885 * zones are together not big enough to reach the
1886 * global limit. The proper fix for these situations
1887 * will require awareness of zones in the
1888 * dirty-throttling and the flusher threads.
1889 */
1890 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1891 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1892 goto this_zone_full;
1893
1894 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1895 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1896 unsigned long mark;
1897 int ret;
1898
1899 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1900 if (zone_watermark_ok(zone, order, mark,
1901 classzone_idx, alloc_flags))
1902 goto try_this_zone;
1903
1904 if (IS_ENABLED(CONFIG_NUMA) &&
1905 !did_zlc_setup && nr_online_nodes > 1) {
1906 /*
1907 * we do zlc_setup if there are multiple nodes
1908 * and before considering the first zone allowed
1909 * by the cpuset.
1910 */
1911 allowednodes = zlc_setup(zonelist, alloc_flags);
1912 zlc_active = 1;
1913 did_zlc_setup = 1;
1914 }
1915
1916 if (zone_reclaim_mode == 0 ||
1917 !zone_allows_reclaim(preferred_zone, zone))
1918 goto this_zone_full;
1919
1920 /*
1921 * As we may have just activated ZLC, check if the first
1922 * eligible zone has failed zone_reclaim recently.
1923 */
1924 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1925 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1926 continue;
1927
1928 ret = zone_reclaim(zone, gfp_mask, order);
1929 switch (ret) {
1930 case ZONE_RECLAIM_NOSCAN:
1931 /* did not scan */
1932 continue;
1933 case ZONE_RECLAIM_FULL:
1934 /* scanned but unreclaimable */
1935 continue;
1936 default:
1937 /* did we reclaim enough */
1938 if (!zone_watermark_ok(zone, order, mark,
1939 classzone_idx, alloc_flags))
1940 goto this_zone_full;
1941 }
1942 }
1943
1944 try_this_zone:
1945 page = buffered_rmqueue(preferred_zone, zone, order,
1946 gfp_mask, migratetype);
1947 if (page)
1948 break;
1949 this_zone_full:
1950 if (IS_ENABLED(CONFIG_NUMA))
1951 zlc_mark_zone_full(zonelist, z);
1952 }
1953
1954 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1955 /* Disable zlc cache for second zonelist scan */
1956 zlc_active = 0;
1957 goto zonelist_scan;
1958 }
1959
1960 if (page)
1961 /*
1962 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1963 * necessary to allocate the page. The expectation is
1964 * that the caller is taking steps that will free more
1965 * memory. The caller should avoid the page being used
1966 * for !PFMEMALLOC purposes.
1967 */
1968 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1969
1970 return page;
1971 }
1972
1973 /*
1974 * Large machines with many possible nodes should not always dump per-node
1975 * meminfo in irq context.
1976 */
1977 static inline bool should_suppress_show_mem(void)
1978 {
1979 bool ret = false;
1980
1981 #if NODES_SHIFT > 8
1982 ret = in_interrupt();
1983 #endif
1984 return ret;
1985 }
1986
1987 static DEFINE_RATELIMIT_STATE(nopage_rs,
1988 DEFAULT_RATELIMIT_INTERVAL,
1989 DEFAULT_RATELIMIT_BURST);
1990
1991 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1992 {
1993 unsigned int filter = SHOW_MEM_FILTER_NODES;
1994
1995 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1996 debug_guardpage_minorder() > 0)
1997 return;
1998
1999 /*
2000 * This documents exceptions given to allocations in certain
2001 * contexts that are allowed to allocate outside current's set
2002 * of allowed nodes.
2003 */
2004 if (!(gfp_mask & __GFP_NOMEMALLOC))
2005 if (test_thread_flag(TIF_MEMDIE) ||
2006 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2007 filter &= ~SHOW_MEM_FILTER_NODES;
2008 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2009 filter &= ~SHOW_MEM_FILTER_NODES;
2010
2011 if (fmt) {
2012 struct va_format vaf;
2013 va_list args;
2014
2015 va_start(args, fmt);
2016
2017 vaf.fmt = fmt;
2018 vaf.va = &args;
2019
2020 pr_warn("%pV", &vaf);
2021
2022 va_end(args);
2023 }
2024
2025 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2026 current->comm, order, gfp_mask);
2027
2028 dump_stack();
2029 if (!should_suppress_show_mem())
2030 show_mem(filter);
2031 }
2032
2033 static inline int
2034 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2035 unsigned long did_some_progress,
2036 unsigned long pages_reclaimed)
2037 {
2038 /* Do not loop if specifically requested */
2039 if (gfp_mask & __GFP_NORETRY)
2040 return 0;
2041
2042 /* Always retry if specifically requested */
2043 if (gfp_mask & __GFP_NOFAIL)
2044 return 1;
2045
2046 /*
2047 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2048 * making forward progress without invoking OOM. Suspend also disables
2049 * storage devices so kswapd will not help. Bail if we are suspending.
2050 */
2051 if (!did_some_progress && pm_suspended_storage())
2052 return 0;
2053
2054 /*
2055 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2056 * means __GFP_NOFAIL, but that may not be true in other
2057 * implementations.
2058 */
2059 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2060 return 1;
2061
2062 /*
2063 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2064 * specified, then we retry until we no longer reclaim any pages
2065 * (above), or we've reclaimed an order of pages at least as
2066 * large as the allocation's order. In both cases, if the
2067 * allocation still fails, we stop retrying.
2068 */
2069 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2070 return 1;
2071
2072 return 0;
2073 }
2074
2075 static inline struct page *
2076 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2077 struct zonelist *zonelist, enum zone_type high_zoneidx,
2078 nodemask_t *nodemask, struct zone *preferred_zone,
2079 int migratetype)
2080 {
2081 struct page *page;
2082
2083 /* Acquire the OOM killer lock for the zones in zonelist */
2084 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2085 schedule_timeout_uninterruptible(1);
2086 return NULL;
2087 }
2088
2089 /*
2090 * Go through the zonelist yet one more time, keep very high watermark
2091 * here, this is only to catch a parallel oom killing, we must fail if
2092 * we're still under heavy pressure.
2093 */
2094 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2095 order, zonelist, high_zoneidx,
2096 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2097 preferred_zone, migratetype);
2098 if (page)
2099 goto out;
2100
2101 if (!(gfp_mask & __GFP_NOFAIL)) {
2102 /* The OOM killer will not help higher order allocs */
2103 if (order > PAGE_ALLOC_COSTLY_ORDER)
2104 goto out;
2105 /* The OOM killer does not needlessly kill tasks for lowmem */
2106 if (high_zoneidx < ZONE_NORMAL)
2107 goto out;
2108 /*
2109 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2110 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2111 * The caller should handle page allocation failure by itself if
2112 * it specifies __GFP_THISNODE.
2113 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2114 */
2115 if (gfp_mask & __GFP_THISNODE)
2116 goto out;
2117 }
2118 /* Exhausted what can be done so it's blamo time */
2119 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2120
2121 out:
2122 clear_zonelist_oom(zonelist, gfp_mask);
2123 return page;
2124 }
2125
2126 #ifdef CONFIG_COMPACTION
2127 /* Try memory compaction for high-order allocations before reclaim */
2128 static struct page *
2129 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2130 struct zonelist *zonelist, enum zone_type high_zoneidx,
2131 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2132 int migratetype, bool sync_migration,
2133 bool *contended_compaction, bool *deferred_compaction,
2134 unsigned long *did_some_progress)
2135 {
2136 if (!order)
2137 return NULL;
2138
2139 if (compaction_deferred(preferred_zone, order)) {
2140 *deferred_compaction = true;
2141 return NULL;
2142 }
2143
2144 current->flags |= PF_MEMALLOC;
2145 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2146 nodemask, sync_migration,
2147 contended_compaction);
2148 current->flags &= ~PF_MEMALLOC;
2149
2150 if (*did_some_progress != COMPACT_SKIPPED) {
2151 struct page *page;
2152
2153 /* Page migration frees to the PCP lists but we want merging */
2154 drain_pages(get_cpu());
2155 put_cpu();
2156
2157 page = get_page_from_freelist(gfp_mask, nodemask,
2158 order, zonelist, high_zoneidx,
2159 alloc_flags & ~ALLOC_NO_WATERMARKS,
2160 preferred_zone, migratetype);
2161 if (page) {
2162 preferred_zone->compact_blockskip_flush = false;
2163 preferred_zone->compact_considered = 0;
2164 preferred_zone->compact_defer_shift = 0;
2165 if (order >= preferred_zone->compact_order_failed)
2166 preferred_zone->compact_order_failed = order + 1;
2167 count_vm_event(COMPACTSUCCESS);
2168 return page;
2169 }
2170
2171 /*
2172 * It's bad if compaction run occurs and fails.
2173 * The most likely reason is that pages exist,
2174 * but not enough to satisfy watermarks.
2175 */
2176 count_vm_event(COMPACTFAIL);
2177
2178 /*
2179 * As async compaction considers a subset of pageblocks, only
2180 * defer if the failure was a sync compaction failure.
2181 */
2182 if (sync_migration)
2183 defer_compaction(preferred_zone, order);
2184
2185 cond_resched();
2186 }
2187
2188 return NULL;
2189 }
2190 #else
2191 static inline struct page *
2192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2193 struct zonelist *zonelist, enum zone_type high_zoneidx,
2194 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2195 int migratetype, bool sync_migration,
2196 bool *contended_compaction, bool *deferred_compaction,
2197 unsigned long *did_some_progress)
2198 {
2199 return NULL;
2200 }
2201 #endif /* CONFIG_COMPACTION */
2202
2203 /* Perform direct synchronous page reclaim */
2204 static int
2205 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2206 nodemask_t *nodemask)
2207 {
2208 struct reclaim_state reclaim_state;
2209 int progress;
2210
2211 cond_resched();
2212
2213 /* We now go into synchronous reclaim */
2214 cpuset_memory_pressure_bump();
2215 current->flags |= PF_MEMALLOC;
2216 lockdep_set_current_reclaim_state(gfp_mask);
2217 reclaim_state.reclaimed_slab = 0;
2218 current->reclaim_state = &reclaim_state;
2219
2220 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2221
2222 current->reclaim_state = NULL;
2223 lockdep_clear_current_reclaim_state();
2224 current->flags &= ~PF_MEMALLOC;
2225
2226 cond_resched();
2227
2228 return progress;
2229 }
2230
2231 /* The really slow allocator path where we enter direct reclaim */
2232 static inline struct page *
2233 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2234 struct zonelist *zonelist, enum zone_type high_zoneidx,
2235 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2236 int migratetype, unsigned long *did_some_progress)
2237 {
2238 struct page *page = NULL;
2239 bool drained = false;
2240
2241 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2242 nodemask);
2243 if (unlikely(!(*did_some_progress)))
2244 return NULL;
2245
2246 /* After successful reclaim, reconsider all zones for allocation */
2247 if (IS_ENABLED(CONFIG_NUMA))
2248 zlc_clear_zones_full(zonelist);
2249
2250 retry:
2251 page = get_page_from_freelist(gfp_mask, nodemask, order,
2252 zonelist, high_zoneidx,
2253 alloc_flags & ~ALLOC_NO_WATERMARKS,
2254 preferred_zone, migratetype);
2255
2256 /*
2257 * If an allocation failed after direct reclaim, it could be because
2258 * pages are pinned on the per-cpu lists. Drain them and try again
2259 */
2260 if (!page && !drained) {
2261 drain_all_pages();
2262 drained = true;
2263 goto retry;
2264 }
2265
2266 return page;
2267 }
2268
2269 /*
2270 * This is called in the allocator slow-path if the allocation request is of
2271 * sufficient urgency to ignore watermarks and take other desperate measures
2272 */
2273 static inline struct page *
2274 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2275 struct zonelist *zonelist, enum zone_type high_zoneidx,
2276 nodemask_t *nodemask, struct zone *preferred_zone,
2277 int migratetype)
2278 {
2279 struct page *page;
2280
2281 do {
2282 page = get_page_from_freelist(gfp_mask, nodemask, order,
2283 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2284 preferred_zone, migratetype);
2285
2286 if (!page && gfp_mask & __GFP_NOFAIL)
2287 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2288 } while (!page && (gfp_mask & __GFP_NOFAIL));
2289
2290 return page;
2291 }
2292
2293 static inline
2294 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2295 enum zone_type high_zoneidx,
2296 enum zone_type classzone_idx)
2297 {
2298 struct zoneref *z;
2299 struct zone *zone;
2300
2301 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2302 wakeup_kswapd(zone, order, classzone_idx);
2303 }
2304
2305 static inline int
2306 gfp_to_alloc_flags(gfp_t gfp_mask)
2307 {
2308 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2309 const gfp_t wait = gfp_mask & __GFP_WAIT;
2310
2311 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2312 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2313
2314 /*
2315 * The caller may dip into page reserves a bit more if the caller
2316 * cannot run direct reclaim, or if the caller has realtime scheduling
2317 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2318 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2319 */
2320 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2321
2322 if (!wait) {
2323 /*
2324 * Not worth trying to allocate harder for
2325 * __GFP_NOMEMALLOC even if it can't schedule.
2326 */
2327 if (!(gfp_mask & __GFP_NOMEMALLOC))
2328 alloc_flags |= ALLOC_HARDER;
2329 /*
2330 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2331 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2332 */
2333 alloc_flags &= ~ALLOC_CPUSET;
2334 } else if (unlikely(rt_task(current)) && !in_interrupt())
2335 alloc_flags |= ALLOC_HARDER;
2336
2337 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2338 if (gfp_mask & __GFP_MEMALLOC)
2339 alloc_flags |= ALLOC_NO_WATERMARKS;
2340 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2341 alloc_flags |= ALLOC_NO_WATERMARKS;
2342 else if (!in_interrupt() &&
2343 ((current->flags & PF_MEMALLOC) ||
2344 unlikely(test_thread_flag(TIF_MEMDIE))))
2345 alloc_flags |= ALLOC_NO_WATERMARKS;
2346 }
2347 #ifdef CONFIG_CMA
2348 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2349 alloc_flags |= ALLOC_CMA;
2350 #endif
2351 return alloc_flags;
2352 }
2353
2354 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2355 {
2356 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2357 }
2358
2359 static inline struct page *
2360 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2361 struct zonelist *zonelist, enum zone_type high_zoneidx,
2362 nodemask_t *nodemask, struct zone *preferred_zone,
2363 int migratetype)
2364 {
2365 const gfp_t wait = gfp_mask & __GFP_WAIT;
2366 struct page *page = NULL;
2367 int alloc_flags;
2368 unsigned long pages_reclaimed = 0;
2369 unsigned long did_some_progress;
2370 bool sync_migration = false;
2371 bool deferred_compaction = false;
2372 bool contended_compaction = false;
2373
2374 /*
2375 * In the slowpath, we sanity check order to avoid ever trying to
2376 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2377 * be using allocators in order of preference for an area that is
2378 * too large.
2379 */
2380 if (order >= MAX_ORDER) {
2381 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2382 return NULL;
2383 }
2384
2385 /*
2386 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2387 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2388 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2389 * using a larger set of nodes after it has established that the
2390 * allowed per node queues are empty and that nodes are
2391 * over allocated.
2392 */
2393 if (IS_ENABLED(CONFIG_NUMA) &&
2394 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2395 goto nopage;
2396
2397 restart:
2398 if (!(gfp_mask & __GFP_NO_KSWAPD))
2399 wake_all_kswapd(order, zonelist, high_zoneidx,
2400 zone_idx(preferred_zone));
2401
2402 /*
2403 * OK, we're below the kswapd watermark and have kicked background
2404 * reclaim. Now things get more complex, so set up alloc_flags according
2405 * to how we want to proceed.
2406 */
2407 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2408
2409 /*
2410 * Find the true preferred zone if the allocation is unconstrained by
2411 * cpusets.
2412 */
2413 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2414 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2415 &preferred_zone);
2416
2417 rebalance:
2418 /* This is the last chance, in general, before the goto nopage. */
2419 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2420 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2421 preferred_zone, migratetype);
2422 if (page)
2423 goto got_pg;
2424
2425 /* Allocate without watermarks if the context allows */
2426 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2427 /*
2428 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2429 * the allocation is high priority and these type of
2430 * allocations are system rather than user orientated
2431 */
2432 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2433
2434 page = __alloc_pages_high_priority(gfp_mask, order,
2435 zonelist, high_zoneidx, nodemask,
2436 preferred_zone, migratetype);
2437 if (page) {
2438 goto got_pg;
2439 }
2440 }
2441
2442 /* Atomic allocations - we can't balance anything */
2443 if (!wait)
2444 goto nopage;
2445
2446 /* Avoid recursion of direct reclaim */
2447 if (current->flags & PF_MEMALLOC)
2448 goto nopage;
2449
2450 /* Avoid allocations with no watermarks from looping endlessly */
2451 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2452 goto nopage;
2453
2454 /*
2455 * Try direct compaction. The first pass is asynchronous. Subsequent
2456 * attempts after direct reclaim are synchronous
2457 */
2458 page = __alloc_pages_direct_compact(gfp_mask, order,
2459 zonelist, high_zoneidx,
2460 nodemask,
2461 alloc_flags, preferred_zone,
2462 migratetype, sync_migration,
2463 &contended_compaction,
2464 &deferred_compaction,
2465 &did_some_progress);
2466 if (page)
2467 goto got_pg;
2468 sync_migration = true;
2469
2470 /*
2471 * If compaction is deferred for high-order allocations, it is because
2472 * sync compaction recently failed. In this is the case and the caller
2473 * requested a movable allocation that does not heavily disrupt the
2474 * system then fail the allocation instead of entering direct reclaim.
2475 */
2476 if ((deferred_compaction || contended_compaction) &&
2477 (gfp_mask & __GFP_NO_KSWAPD))
2478 goto nopage;
2479
2480 /* Try direct reclaim and then allocating */
2481 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2482 zonelist, high_zoneidx,
2483 nodemask,
2484 alloc_flags, preferred_zone,
2485 migratetype, &did_some_progress);
2486 if (page)
2487 goto got_pg;
2488
2489 /*
2490 * If we failed to make any progress reclaiming, then we are
2491 * running out of options and have to consider going OOM
2492 */
2493 if (!did_some_progress) {
2494 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2495 if (oom_killer_disabled)
2496 goto nopage;
2497 /* Coredumps can quickly deplete all memory reserves */
2498 if ((current->flags & PF_DUMPCORE) &&
2499 !(gfp_mask & __GFP_NOFAIL))
2500 goto nopage;
2501 page = __alloc_pages_may_oom(gfp_mask, order,
2502 zonelist, high_zoneidx,
2503 nodemask, preferred_zone,
2504 migratetype);
2505 if (page)
2506 goto got_pg;
2507
2508 if (!(gfp_mask & __GFP_NOFAIL)) {
2509 /*
2510 * The oom killer is not called for high-order
2511 * allocations that may fail, so if no progress
2512 * is being made, there are no other options and
2513 * retrying is unlikely to help.
2514 */
2515 if (order > PAGE_ALLOC_COSTLY_ORDER)
2516 goto nopage;
2517 /*
2518 * The oom killer is not called for lowmem
2519 * allocations to prevent needlessly killing
2520 * innocent tasks.
2521 */
2522 if (high_zoneidx < ZONE_NORMAL)
2523 goto nopage;
2524 }
2525
2526 goto restart;
2527 }
2528 }
2529
2530 /* Check if we should retry the allocation */
2531 pages_reclaimed += did_some_progress;
2532 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2533 pages_reclaimed)) {
2534 /* Wait for some write requests to complete then retry */
2535 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2536 goto rebalance;
2537 } else {
2538 /*
2539 * High-order allocations do not necessarily loop after
2540 * direct reclaim and reclaim/compaction depends on compaction
2541 * being called after reclaim so call directly if necessary
2542 */
2543 page = __alloc_pages_direct_compact(gfp_mask, order,
2544 zonelist, high_zoneidx,
2545 nodemask,
2546 alloc_flags, preferred_zone,
2547 migratetype, sync_migration,
2548 &contended_compaction,
2549 &deferred_compaction,
2550 &did_some_progress);
2551 if (page)
2552 goto got_pg;
2553 }
2554
2555 nopage:
2556 warn_alloc_failed(gfp_mask, order, NULL);
2557 return page;
2558 got_pg:
2559 if (kmemcheck_enabled)
2560 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2561
2562 return page;
2563 }
2564
2565 /*
2566 * This is the 'heart' of the zoned buddy allocator.
2567 */
2568 struct page *
2569 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2570 struct zonelist *zonelist, nodemask_t *nodemask)
2571 {
2572 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2573 struct zone *preferred_zone;
2574 struct page *page = NULL;
2575 int migratetype = allocflags_to_migratetype(gfp_mask);
2576 unsigned int cpuset_mems_cookie;
2577 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2578 struct mem_cgroup *memcg = NULL;
2579
2580 gfp_mask &= gfp_allowed_mask;
2581
2582 lockdep_trace_alloc(gfp_mask);
2583
2584 might_sleep_if(gfp_mask & __GFP_WAIT);
2585
2586 if (should_fail_alloc_page(gfp_mask, order))
2587 return NULL;
2588
2589 /*
2590 * Check the zones suitable for the gfp_mask contain at least one
2591 * valid zone. It's possible to have an empty zonelist as a result
2592 * of GFP_THISNODE and a memoryless node
2593 */
2594 if (unlikely(!zonelist->_zonerefs->zone))
2595 return NULL;
2596
2597 /*
2598 * Will only have any effect when __GFP_KMEMCG is set. This is
2599 * verified in the (always inline) callee
2600 */
2601 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2602 return NULL;
2603
2604 retry_cpuset:
2605 cpuset_mems_cookie = get_mems_allowed();
2606
2607 /* The preferred zone is used for statistics later */
2608 first_zones_zonelist(zonelist, high_zoneidx,
2609 nodemask ? : &cpuset_current_mems_allowed,
2610 &preferred_zone);
2611 if (!preferred_zone)
2612 goto out;
2613
2614 #ifdef CONFIG_CMA
2615 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2616 alloc_flags |= ALLOC_CMA;
2617 #endif
2618 /* First allocation attempt */
2619 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2620 zonelist, high_zoneidx, alloc_flags,
2621 preferred_zone, migratetype);
2622 if (unlikely(!page))
2623 page = __alloc_pages_slowpath(gfp_mask, order,
2624 zonelist, high_zoneidx, nodemask,
2625 preferred_zone, migratetype);
2626
2627 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2628
2629 out:
2630 /*
2631 * When updating a task's mems_allowed, it is possible to race with
2632 * parallel threads in such a way that an allocation can fail while
2633 * the mask is being updated. If a page allocation is about to fail,
2634 * check if the cpuset changed during allocation and if so, retry.
2635 */
2636 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2637 goto retry_cpuset;
2638
2639 memcg_kmem_commit_charge(page, memcg, order);
2640
2641 return page;
2642 }
2643 EXPORT_SYMBOL(__alloc_pages_nodemask);
2644
2645 /*
2646 * Common helper functions.
2647 */
2648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2649 {
2650 struct page *page;
2651
2652 /*
2653 * __get_free_pages() returns a 32-bit address, which cannot represent
2654 * a highmem page
2655 */
2656 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2657
2658 page = alloc_pages(gfp_mask, order);
2659 if (!page)
2660 return 0;
2661 return (unsigned long) page_address(page);
2662 }
2663 EXPORT_SYMBOL(__get_free_pages);
2664
2665 unsigned long get_zeroed_page(gfp_t gfp_mask)
2666 {
2667 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2668 }
2669 EXPORT_SYMBOL(get_zeroed_page);
2670
2671 void __free_pages(struct page *page, unsigned int order)
2672 {
2673 if (put_page_testzero(page)) {
2674 if (order == 0)
2675 free_hot_cold_page(page, 0);
2676 else
2677 __free_pages_ok(page, order);
2678 }
2679 }
2680
2681 EXPORT_SYMBOL(__free_pages);
2682
2683 void free_pages(unsigned long addr, unsigned int order)
2684 {
2685 if (addr != 0) {
2686 VM_BUG_ON(!virt_addr_valid((void *)addr));
2687 __free_pages(virt_to_page((void *)addr), order);
2688 }
2689 }
2690
2691 EXPORT_SYMBOL(free_pages);
2692
2693 /*
2694 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2695 * pages allocated with __GFP_KMEMCG.
2696 *
2697 * Those pages are accounted to a particular memcg, embedded in the
2698 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2699 * for that information only to find out that it is NULL for users who have no
2700 * interest in that whatsoever, we provide these functions.
2701 *
2702 * The caller knows better which flags it relies on.
2703 */
2704 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2705 {
2706 memcg_kmem_uncharge_pages(page, order);
2707 __free_pages(page, order);
2708 }
2709
2710 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2711 {
2712 if (addr != 0) {
2713 VM_BUG_ON(!virt_addr_valid((void *)addr));
2714 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2715 }
2716 }
2717
2718 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2719 {
2720 if (addr) {
2721 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2722 unsigned long used = addr + PAGE_ALIGN(size);
2723
2724 split_page(virt_to_page((void *)addr), order);
2725 while (used < alloc_end) {
2726 free_page(used);
2727 used += PAGE_SIZE;
2728 }
2729 }
2730 return (void *)addr;
2731 }
2732
2733 /**
2734 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2735 * @size: the number of bytes to allocate
2736 * @gfp_mask: GFP flags for the allocation
2737 *
2738 * This function is similar to alloc_pages(), except that it allocates the
2739 * minimum number of pages to satisfy the request. alloc_pages() can only
2740 * allocate memory in power-of-two pages.
2741 *
2742 * This function is also limited by MAX_ORDER.
2743 *
2744 * Memory allocated by this function must be released by free_pages_exact().
2745 */
2746 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2747 {
2748 unsigned int order = get_order(size);
2749 unsigned long addr;
2750
2751 addr = __get_free_pages(gfp_mask, order);
2752 return make_alloc_exact(addr, order, size);
2753 }
2754 EXPORT_SYMBOL(alloc_pages_exact);
2755
2756 /**
2757 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2758 * pages on a node.
2759 * @nid: the preferred node ID where memory should be allocated
2760 * @size: the number of bytes to allocate
2761 * @gfp_mask: GFP flags for the allocation
2762 *
2763 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2764 * back.
2765 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2766 * but is not exact.
2767 */
2768 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2769 {
2770 unsigned order = get_order(size);
2771 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2772 if (!p)
2773 return NULL;
2774 return make_alloc_exact((unsigned long)page_address(p), order, size);
2775 }
2776 EXPORT_SYMBOL(alloc_pages_exact_nid);
2777
2778 /**
2779 * free_pages_exact - release memory allocated via alloc_pages_exact()
2780 * @virt: the value returned by alloc_pages_exact.
2781 * @size: size of allocation, same value as passed to alloc_pages_exact().
2782 *
2783 * Release the memory allocated by a previous call to alloc_pages_exact.
2784 */
2785 void free_pages_exact(void *virt, size_t size)
2786 {
2787 unsigned long addr = (unsigned long)virt;
2788 unsigned long end = addr + PAGE_ALIGN(size);
2789
2790 while (addr < end) {
2791 free_page(addr);
2792 addr += PAGE_SIZE;
2793 }
2794 }
2795 EXPORT_SYMBOL(free_pages_exact);
2796
2797 static unsigned int nr_free_zone_pages(int offset)
2798 {
2799 struct zoneref *z;
2800 struct zone *zone;
2801
2802 /* Just pick one node, since fallback list is circular */
2803 unsigned int sum = 0;
2804
2805 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2806
2807 for_each_zone_zonelist(zone, z, zonelist, offset) {
2808 unsigned long size = zone->present_pages;
2809 unsigned long high = high_wmark_pages(zone);
2810 if (size > high)
2811 sum += size - high;
2812 }
2813
2814 return sum;
2815 }
2816
2817 /*
2818 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2819 */
2820 unsigned int nr_free_buffer_pages(void)
2821 {
2822 return nr_free_zone_pages(gfp_zone(GFP_USER));
2823 }
2824 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2825
2826 /*
2827 * Amount of free RAM allocatable within all zones
2828 */
2829 unsigned int nr_free_pagecache_pages(void)
2830 {
2831 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2832 }
2833
2834 static inline void show_node(struct zone *zone)
2835 {
2836 if (IS_ENABLED(CONFIG_NUMA))
2837 printk("Node %d ", zone_to_nid(zone));
2838 }
2839
2840 void si_meminfo(struct sysinfo *val)
2841 {
2842 val->totalram = totalram_pages;
2843 val->sharedram = 0;
2844 val->freeram = global_page_state(NR_FREE_PAGES);
2845 val->bufferram = nr_blockdev_pages();
2846 val->totalhigh = totalhigh_pages;
2847 val->freehigh = nr_free_highpages();
2848 val->mem_unit = PAGE_SIZE;
2849 }
2850
2851 EXPORT_SYMBOL(si_meminfo);
2852
2853 #ifdef CONFIG_NUMA
2854 void si_meminfo_node(struct sysinfo *val, int nid)
2855 {
2856 pg_data_t *pgdat = NODE_DATA(nid);
2857
2858 val->totalram = pgdat->node_present_pages;
2859 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2860 #ifdef CONFIG_HIGHMEM
2861 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2862 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2863 NR_FREE_PAGES);
2864 #else
2865 val->totalhigh = 0;
2866 val->freehigh = 0;
2867 #endif
2868 val->mem_unit = PAGE_SIZE;
2869 }
2870 #endif
2871
2872 /*
2873 * Determine whether the node should be displayed or not, depending on whether
2874 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2875 */
2876 bool skip_free_areas_node(unsigned int flags, int nid)
2877 {
2878 bool ret = false;
2879 unsigned int cpuset_mems_cookie;
2880
2881 if (!(flags & SHOW_MEM_FILTER_NODES))
2882 goto out;
2883
2884 do {
2885 cpuset_mems_cookie = get_mems_allowed();
2886 ret = !node_isset(nid, cpuset_current_mems_allowed);
2887 } while (!put_mems_allowed(cpuset_mems_cookie));
2888 out:
2889 return ret;
2890 }
2891
2892 #define K(x) ((x) << (PAGE_SHIFT-10))
2893
2894 static void show_migration_types(unsigned char type)
2895 {
2896 static const char types[MIGRATE_TYPES] = {
2897 [MIGRATE_UNMOVABLE] = 'U',
2898 [MIGRATE_RECLAIMABLE] = 'E',
2899 [MIGRATE_MOVABLE] = 'M',
2900 [MIGRATE_RESERVE] = 'R',
2901 #ifdef CONFIG_CMA
2902 [MIGRATE_CMA] = 'C',
2903 #endif
2904 [MIGRATE_ISOLATE] = 'I',
2905 };
2906 char tmp[MIGRATE_TYPES + 1];
2907 char *p = tmp;
2908 int i;
2909
2910 for (i = 0; i < MIGRATE_TYPES; i++) {
2911 if (type & (1 << i))
2912 *p++ = types[i];
2913 }
2914
2915 *p = '\0';
2916 printk("(%s) ", tmp);
2917 }
2918
2919 /*
2920 * Show free area list (used inside shift_scroll-lock stuff)
2921 * We also calculate the percentage fragmentation. We do this by counting the
2922 * memory on each free list with the exception of the first item on the list.
2923 * Suppresses nodes that are not allowed by current's cpuset if
2924 * SHOW_MEM_FILTER_NODES is passed.
2925 */
2926 void show_free_areas(unsigned int filter)
2927 {
2928 int cpu;
2929 struct zone *zone;
2930
2931 for_each_populated_zone(zone) {
2932 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2933 continue;
2934 show_node(zone);
2935 printk("%s per-cpu:\n", zone->name);
2936
2937 for_each_online_cpu(cpu) {
2938 struct per_cpu_pageset *pageset;
2939
2940 pageset = per_cpu_ptr(zone->pageset, cpu);
2941
2942 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2943 cpu, pageset->pcp.high,
2944 pageset->pcp.batch, pageset->pcp.count);
2945 }
2946 }
2947
2948 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2949 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2950 " unevictable:%lu"
2951 " dirty:%lu writeback:%lu unstable:%lu\n"
2952 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2953 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2954 " free_cma:%lu\n",
2955 global_page_state(NR_ACTIVE_ANON),
2956 global_page_state(NR_INACTIVE_ANON),
2957 global_page_state(NR_ISOLATED_ANON),
2958 global_page_state(NR_ACTIVE_FILE),
2959 global_page_state(NR_INACTIVE_FILE),
2960 global_page_state(NR_ISOLATED_FILE),
2961 global_page_state(NR_UNEVICTABLE),
2962 global_page_state(NR_FILE_DIRTY),
2963 global_page_state(NR_WRITEBACK),
2964 global_page_state(NR_UNSTABLE_NFS),
2965 global_page_state(NR_FREE_PAGES),
2966 global_page_state(NR_SLAB_RECLAIMABLE),
2967 global_page_state(NR_SLAB_UNRECLAIMABLE),
2968 global_page_state(NR_FILE_MAPPED),
2969 global_page_state(NR_SHMEM),
2970 global_page_state(NR_PAGETABLE),
2971 global_page_state(NR_BOUNCE),
2972 global_page_state(NR_FREE_CMA_PAGES));
2973
2974 for_each_populated_zone(zone) {
2975 int i;
2976
2977 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2978 continue;
2979 show_node(zone);
2980 printk("%s"
2981 " free:%lukB"
2982 " min:%lukB"
2983 " low:%lukB"
2984 " high:%lukB"
2985 " active_anon:%lukB"
2986 " inactive_anon:%lukB"
2987 " active_file:%lukB"
2988 " inactive_file:%lukB"
2989 " unevictable:%lukB"
2990 " isolated(anon):%lukB"
2991 " isolated(file):%lukB"
2992 " present:%lukB"
2993 " managed:%lukB"
2994 " mlocked:%lukB"
2995 " dirty:%lukB"
2996 " writeback:%lukB"
2997 " mapped:%lukB"
2998 " shmem:%lukB"
2999 " slab_reclaimable:%lukB"
3000 " slab_unreclaimable:%lukB"
3001 " kernel_stack:%lukB"
3002 " pagetables:%lukB"
3003 " unstable:%lukB"
3004 " bounce:%lukB"
3005 " free_cma:%lukB"
3006 " writeback_tmp:%lukB"
3007 " pages_scanned:%lu"
3008 " all_unreclaimable? %s"
3009 "\n",
3010 zone->name,
3011 K(zone_page_state(zone, NR_FREE_PAGES)),
3012 K(min_wmark_pages(zone)),
3013 K(low_wmark_pages(zone)),
3014 K(high_wmark_pages(zone)),
3015 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3016 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3017 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3018 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3019 K(zone_page_state(zone, NR_UNEVICTABLE)),
3020 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3021 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3022 K(zone->present_pages),
3023 K(zone->managed_pages),
3024 K(zone_page_state(zone, NR_MLOCK)),
3025 K(zone_page_state(zone, NR_FILE_DIRTY)),
3026 K(zone_page_state(zone, NR_WRITEBACK)),
3027 K(zone_page_state(zone, NR_FILE_MAPPED)),
3028 K(zone_page_state(zone, NR_SHMEM)),
3029 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3030 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3031 zone_page_state(zone, NR_KERNEL_STACK) *
3032 THREAD_SIZE / 1024,
3033 K(zone_page_state(zone, NR_PAGETABLE)),
3034 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3035 K(zone_page_state(zone, NR_BOUNCE)),
3036 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3037 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3038 zone->pages_scanned,
3039 (zone->all_unreclaimable ? "yes" : "no")
3040 );
3041 printk("lowmem_reserve[]:");
3042 for (i = 0; i < MAX_NR_ZONES; i++)
3043 printk(" %lu", zone->lowmem_reserve[i]);
3044 printk("\n");
3045 }
3046
3047 for_each_populated_zone(zone) {
3048 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3049 unsigned char types[MAX_ORDER];
3050
3051 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3052 continue;
3053 show_node(zone);
3054 printk("%s: ", zone->name);
3055
3056 spin_lock_irqsave(&zone->lock, flags);
3057 for (order = 0; order < MAX_ORDER; order++) {
3058 struct free_area *area = &zone->free_area[order];
3059 int type;
3060
3061 nr[order] = area->nr_free;
3062 total += nr[order] << order;
3063
3064 types[order] = 0;
3065 for (type = 0; type < MIGRATE_TYPES; type++) {
3066 if (!list_empty(&area->free_list[type]))
3067 types[order] |= 1 << type;
3068 }
3069 }
3070 spin_unlock_irqrestore(&zone->lock, flags);
3071 for (order = 0; order < MAX_ORDER; order++) {
3072 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3073 if (nr[order])
3074 show_migration_types(types[order]);
3075 }
3076 printk("= %lukB\n", K(total));
3077 }
3078
3079 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3080
3081 show_swap_cache_info();
3082 }
3083
3084 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3085 {
3086 zoneref->zone = zone;
3087 zoneref->zone_idx = zone_idx(zone);
3088 }
3089
3090 /*
3091 * Builds allocation fallback zone lists.
3092 *
3093 * Add all populated zones of a node to the zonelist.
3094 */
3095 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3096 int nr_zones, enum zone_type zone_type)
3097 {
3098 struct zone *zone;
3099
3100 BUG_ON(zone_type >= MAX_NR_ZONES);
3101 zone_type++;
3102
3103 do {
3104 zone_type--;
3105 zone = pgdat->node_zones + zone_type;
3106 if (populated_zone(zone)) {
3107 zoneref_set_zone(zone,
3108 &zonelist->_zonerefs[nr_zones++]);
3109 check_highest_zone(zone_type);
3110 }
3111
3112 } while (zone_type);
3113 return nr_zones;
3114 }
3115
3116
3117 /*
3118 * zonelist_order:
3119 * 0 = automatic detection of better ordering.
3120 * 1 = order by ([node] distance, -zonetype)
3121 * 2 = order by (-zonetype, [node] distance)
3122 *
3123 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3124 * the same zonelist. So only NUMA can configure this param.
3125 */
3126 #define ZONELIST_ORDER_DEFAULT 0
3127 #define ZONELIST_ORDER_NODE 1
3128 #define ZONELIST_ORDER_ZONE 2
3129
3130 /* zonelist order in the kernel.
3131 * set_zonelist_order() will set this to NODE or ZONE.
3132 */
3133 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3134 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3135
3136
3137 #ifdef CONFIG_NUMA
3138 /* The value user specified ....changed by config */
3139 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3140 /* string for sysctl */
3141 #define NUMA_ZONELIST_ORDER_LEN 16
3142 char numa_zonelist_order[16] = "default";
3143
3144 /*
3145 * interface for configure zonelist ordering.
3146 * command line option "numa_zonelist_order"
3147 * = "[dD]efault - default, automatic configuration.
3148 * = "[nN]ode - order by node locality, then by zone within node
3149 * = "[zZ]one - order by zone, then by locality within zone
3150 */
3151
3152 static int __parse_numa_zonelist_order(char *s)
3153 {
3154 if (*s == 'd' || *s == 'D') {
3155 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3156 } else if (*s == 'n' || *s == 'N') {
3157 user_zonelist_order = ZONELIST_ORDER_NODE;
3158 } else if (*s == 'z' || *s == 'Z') {
3159 user_zonelist_order = ZONELIST_ORDER_ZONE;
3160 } else {
3161 printk(KERN_WARNING
3162 "Ignoring invalid numa_zonelist_order value: "
3163 "%s\n", s);
3164 return -EINVAL;
3165 }
3166 return 0;
3167 }
3168
3169 static __init int setup_numa_zonelist_order(char *s)
3170 {
3171 int ret;
3172
3173 if (!s)
3174 return 0;
3175
3176 ret = __parse_numa_zonelist_order(s);
3177 if (ret == 0)
3178 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3179
3180 return ret;
3181 }
3182 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3183
3184 /*
3185 * sysctl handler for numa_zonelist_order
3186 */
3187 int numa_zonelist_order_handler(ctl_table *table, int write,
3188 void __user *buffer, size_t *length,
3189 loff_t *ppos)
3190 {
3191 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3192 int ret;
3193 static DEFINE_MUTEX(zl_order_mutex);
3194
3195 mutex_lock(&zl_order_mutex);
3196 if (write)
3197 strcpy(saved_string, (char*)table->data);
3198 ret = proc_dostring(table, write, buffer, length, ppos);
3199 if (ret)
3200 goto out;
3201 if (write) {
3202 int oldval = user_zonelist_order;
3203 if (__parse_numa_zonelist_order((char*)table->data)) {
3204 /*
3205 * bogus value. restore saved string
3206 */
3207 strncpy((char*)table->data, saved_string,
3208 NUMA_ZONELIST_ORDER_LEN);
3209 user_zonelist_order = oldval;
3210 } else if (oldval != user_zonelist_order) {
3211 mutex_lock(&zonelists_mutex);
3212 build_all_zonelists(NULL, NULL);
3213 mutex_unlock(&zonelists_mutex);
3214 }
3215 }
3216 out:
3217 mutex_unlock(&zl_order_mutex);
3218 return ret;
3219 }
3220
3221
3222 #define MAX_NODE_LOAD (nr_online_nodes)
3223 static int node_load[MAX_NUMNODES];
3224
3225 /**
3226 * find_next_best_node - find the next node that should appear in a given node's fallback list
3227 * @node: node whose fallback list we're appending
3228 * @used_node_mask: nodemask_t of already used nodes
3229 *
3230 * We use a number of factors to determine which is the next node that should
3231 * appear on a given node's fallback list. The node should not have appeared
3232 * already in @node's fallback list, and it should be the next closest node
3233 * according to the distance array (which contains arbitrary distance values
3234 * from each node to each node in the system), and should also prefer nodes
3235 * with no CPUs, since presumably they'll have very little allocation pressure
3236 * on them otherwise.
3237 * It returns -1 if no node is found.
3238 */
3239 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3240 {
3241 int n, val;
3242 int min_val = INT_MAX;
3243 int best_node = -1;
3244 const struct cpumask *tmp = cpumask_of_node(0);
3245
3246 /* Use the local node if we haven't already */
3247 if (!node_isset(node, *used_node_mask)) {
3248 node_set(node, *used_node_mask);
3249 return node;
3250 }
3251
3252 for_each_node_state(n, N_MEMORY) {
3253
3254 /* Don't want a node to appear more than once */
3255 if (node_isset(n, *used_node_mask))
3256 continue;
3257
3258 /* Use the distance array to find the distance */
3259 val = node_distance(node, n);
3260
3261 /* Penalize nodes under us ("prefer the next node") */
3262 val += (n < node);
3263
3264 /* Give preference to headless and unused nodes */
3265 tmp = cpumask_of_node(n);
3266 if (!cpumask_empty(tmp))
3267 val += PENALTY_FOR_NODE_WITH_CPUS;
3268
3269 /* Slight preference for less loaded node */
3270 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3271 val += node_load[n];
3272
3273 if (val < min_val) {
3274 min_val = val;
3275 best_node = n;
3276 }
3277 }
3278
3279 if (best_node >= 0)
3280 node_set(best_node, *used_node_mask);
3281
3282 return best_node;
3283 }
3284
3285
3286 /*
3287 * Build zonelists ordered by node and zones within node.
3288 * This results in maximum locality--normal zone overflows into local
3289 * DMA zone, if any--but risks exhausting DMA zone.
3290 */
3291 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3292 {
3293 int j;
3294 struct zonelist *zonelist;
3295
3296 zonelist = &pgdat->node_zonelists[0];
3297 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3298 ;
3299 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3300 MAX_NR_ZONES - 1);
3301 zonelist->_zonerefs[j].zone = NULL;
3302 zonelist->_zonerefs[j].zone_idx = 0;
3303 }
3304
3305 /*
3306 * Build gfp_thisnode zonelists
3307 */
3308 static void build_thisnode_zonelists(pg_data_t *pgdat)
3309 {
3310 int j;
3311 struct zonelist *zonelist;
3312
3313 zonelist = &pgdat->node_zonelists[1];
3314 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3315 zonelist->_zonerefs[j].zone = NULL;
3316 zonelist->_zonerefs[j].zone_idx = 0;
3317 }
3318
3319 /*
3320 * Build zonelists ordered by zone and nodes within zones.
3321 * This results in conserving DMA zone[s] until all Normal memory is
3322 * exhausted, but results in overflowing to remote node while memory
3323 * may still exist in local DMA zone.
3324 */
3325 static int node_order[MAX_NUMNODES];
3326
3327 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3328 {
3329 int pos, j, node;
3330 int zone_type; /* needs to be signed */
3331 struct zone *z;
3332 struct zonelist *zonelist;
3333
3334 zonelist = &pgdat->node_zonelists[0];
3335 pos = 0;
3336 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3337 for (j = 0; j < nr_nodes; j++) {
3338 node = node_order[j];
3339 z = &NODE_DATA(node)->node_zones[zone_type];
3340 if (populated_zone(z)) {
3341 zoneref_set_zone(z,
3342 &zonelist->_zonerefs[pos++]);
3343 check_highest_zone(zone_type);
3344 }
3345 }
3346 }
3347 zonelist->_zonerefs[pos].zone = NULL;
3348 zonelist->_zonerefs[pos].zone_idx = 0;
3349 }
3350
3351 static int default_zonelist_order(void)
3352 {
3353 int nid, zone_type;
3354 unsigned long low_kmem_size,total_size;
3355 struct zone *z;
3356 int average_size;
3357 /*
3358 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3359 * If they are really small and used heavily, the system can fall
3360 * into OOM very easily.
3361 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3362 */
3363 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3364 low_kmem_size = 0;
3365 total_size = 0;
3366 for_each_online_node(nid) {
3367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3368 z = &NODE_DATA(nid)->node_zones[zone_type];
3369 if (populated_zone(z)) {
3370 if (zone_type < ZONE_NORMAL)
3371 low_kmem_size += z->present_pages;
3372 total_size += z->present_pages;
3373 } else if (zone_type == ZONE_NORMAL) {
3374 /*
3375 * If any node has only lowmem, then node order
3376 * is preferred to allow kernel allocations
3377 * locally; otherwise, they can easily infringe
3378 * on other nodes when there is an abundance of
3379 * lowmem available to allocate from.
3380 */
3381 return ZONELIST_ORDER_NODE;
3382 }
3383 }
3384 }
3385 if (!low_kmem_size || /* there are no DMA area. */
3386 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3387 return ZONELIST_ORDER_NODE;
3388 /*
3389 * look into each node's config.
3390 * If there is a node whose DMA/DMA32 memory is very big area on
3391 * local memory, NODE_ORDER may be suitable.
3392 */
3393 average_size = total_size /
3394 (nodes_weight(node_states[N_MEMORY]) + 1);
3395 for_each_online_node(nid) {
3396 low_kmem_size = 0;
3397 total_size = 0;
3398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3399 z = &NODE_DATA(nid)->node_zones[zone_type];
3400 if (populated_zone(z)) {
3401 if (zone_type < ZONE_NORMAL)
3402 low_kmem_size += z->present_pages;
3403 total_size += z->present_pages;
3404 }
3405 }
3406 if (low_kmem_size &&
3407 total_size > average_size && /* ignore small node */
3408 low_kmem_size > total_size * 70/100)
3409 return ZONELIST_ORDER_NODE;
3410 }
3411 return ZONELIST_ORDER_ZONE;
3412 }
3413
3414 static void set_zonelist_order(void)
3415 {
3416 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3417 current_zonelist_order = default_zonelist_order();
3418 else
3419 current_zonelist_order = user_zonelist_order;
3420 }
3421
3422 static void build_zonelists(pg_data_t *pgdat)
3423 {
3424 int j, node, load;
3425 enum zone_type i;
3426 nodemask_t used_mask;
3427 int local_node, prev_node;
3428 struct zonelist *zonelist;
3429 int order = current_zonelist_order;
3430
3431 /* initialize zonelists */
3432 for (i = 0; i < MAX_ZONELISTS; i++) {
3433 zonelist = pgdat->node_zonelists + i;
3434 zonelist->_zonerefs[0].zone = NULL;
3435 zonelist->_zonerefs[0].zone_idx = 0;
3436 }
3437
3438 /* NUMA-aware ordering of nodes */
3439 local_node = pgdat->node_id;
3440 load = nr_online_nodes;
3441 prev_node = local_node;
3442 nodes_clear(used_mask);
3443
3444 memset(node_order, 0, sizeof(node_order));
3445 j = 0;
3446
3447 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3448 /*
3449 * We don't want to pressure a particular node.
3450 * So adding penalty to the first node in same
3451 * distance group to make it round-robin.
3452 */
3453 if (node_distance(local_node, node) !=
3454 node_distance(local_node, prev_node))
3455 node_load[node] = load;
3456
3457 prev_node = node;
3458 load--;
3459 if (order == ZONELIST_ORDER_NODE)
3460 build_zonelists_in_node_order(pgdat, node);
3461 else
3462 node_order[j++] = node; /* remember order */
3463 }
3464
3465 if (order == ZONELIST_ORDER_ZONE) {
3466 /* calculate node order -- i.e., DMA last! */
3467 build_zonelists_in_zone_order(pgdat, j);
3468 }
3469
3470 build_thisnode_zonelists(pgdat);
3471 }
3472
3473 /* Construct the zonelist performance cache - see further mmzone.h */
3474 static void build_zonelist_cache(pg_data_t *pgdat)
3475 {
3476 struct zonelist *zonelist;
3477 struct zonelist_cache *zlc;
3478 struct zoneref *z;
3479
3480 zonelist = &pgdat->node_zonelists[0];
3481 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3482 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3483 for (z = zonelist->_zonerefs; z->zone; z++)
3484 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3485 }
3486
3487 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3488 /*
3489 * Return node id of node used for "local" allocations.
3490 * I.e., first node id of first zone in arg node's generic zonelist.
3491 * Used for initializing percpu 'numa_mem', which is used primarily
3492 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3493 */
3494 int local_memory_node(int node)
3495 {
3496 struct zone *zone;
3497
3498 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3499 gfp_zone(GFP_KERNEL),
3500 NULL,
3501 &zone);
3502 return zone->node;
3503 }
3504 #endif
3505
3506 #else /* CONFIG_NUMA */
3507
3508 static void set_zonelist_order(void)
3509 {
3510 current_zonelist_order = ZONELIST_ORDER_ZONE;
3511 }
3512
3513 static void build_zonelists(pg_data_t *pgdat)
3514 {
3515 int node, local_node;
3516 enum zone_type j;
3517 struct zonelist *zonelist;
3518
3519 local_node = pgdat->node_id;
3520
3521 zonelist = &pgdat->node_zonelists[0];
3522 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3523
3524 /*
3525 * Now we build the zonelist so that it contains the zones
3526 * of all the other nodes.
3527 * We don't want to pressure a particular node, so when
3528 * building the zones for node N, we make sure that the
3529 * zones coming right after the local ones are those from
3530 * node N+1 (modulo N)
3531 */
3532 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3533 if (!node_online(node))
3534 continue;
3535 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3536 MAX_NR_ZONES - 1);
3537 }
3538 for (node = 0; node < local_node; node++) {
3539 if (!node_online(node))
3540 continue;
3541 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3542 MAX_NR_ZONES - 1);
3543 }
3544
3545 zonelist->_zonerefs[j].zone = NULL;
3546 zonelist->_zonerefs[j].zone_idx = 0;
3547 }
3548
3549 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3550 static void build_zonelist_cache(pg_data_t *pgdat)
3551 {
3552 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3553 }
3554
3555 #endif /* CONFIG_NUMA */
3556
3557 /*
3558 * Boot pageset table. One per cpu which is going to be used for all
3559 * zones and all nodes. The parameters will be set in such a way
3560 * that an item put on a list will immediately be handed over to
3561 * the buddy list. This is safe since pageset manipulation is done
3562 * with interrupts disabled.
3563 *
3564 * The boot_pagesets must be kept even after bootup is complete for
3565 * unused processors and/or zones. They do play a role for bootstrapping
3566 * hotplugged processors.
3567 *
3568 * zoneinfo_show() and maybe other functions do
3569 * not check if the processor is online before following the pageset pointer.
3570 * Other parts of the kernel may not check if the zone is available.
3571 */
3572 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3573 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3574 static void setup_zone_pageset(struct zone *zone);
3575
3576 /*
3577 * Global mutex to protect against size modification of zonelists
3578 * as well as to serialize pageset setup for the new populated zone.
3579 */
3580 DEFINE_MUTEX(zonelists_mutex);
3581
3582 /* return values int ....just for stop_machine() */
3583 static int __build_all_zonelists(void *data)
3584 {
3585 int nid;
3586 int cpu;
3587 pg_data_t *self = data;
3588
3589 #ifdef CONFIG_NUMA
3590 memset(node_load, 0, sizeof(node_load));
3591 #endif
3592
3593 if (self && !node_online(self->node_id)) {
3594 build_zonelists(self);
3595 build_zonelist_cache(self);
3596 }
3597
3598 for_each_online_node(nid) {
3599 pg_data_t *pgdat = NODE_DATA(nid);
3600
3601 build_zonelists(pgdat);
3602 build_zonelist_cache(pgdat);
3603 }
3604
3605 /*
3606 * Initialize the boot_pagesets that are going to be used
3607 * for bootstrapping processors. The real pagesets for
3608 * each zone will be allocated later when the per cpu
3609 * allocator is available.
3610 *
3611 * boot_pagesets are used also for bootstrapping offline
3612 * cpus if the system is already booted because the pagesets
3613 * are needed to initialize allocators on a specific cpu too.
3614 * F.e. the percpu allocator needs the page allocator which
3615 * needs the percpu allocator in order to allocate its pagesets
3616 * (a chicken-egg dilemma).
3617 */
3618 for_each_possible_cpu(cpu) {
3619 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3620
3621 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3622 /*
3623 * We now know the "local memory node" for each node--
3624 * i.e., the node of the first zone in the generic zonelist.
3625 * Set up numa_mem percpu variable for on-line cpus. During
3626 * boot, only the boot cpu should be on-line; we'll init the
3627 * secondary cpus' numa_mem as they come on-line. During
3628 * node/memory hotplug, we'll fixup all on-line cpus.
3629 */
3630 if (cpu_online(cpu))
3631 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3632 #endif
3633 }
3634
3635 return 0;
3636 }
3637
3638 /*
3639 * Called with zonelists_mutex held always
3640 * unless system_state == SYSTEM_BOOTING.
3641 */
3642 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3643 {
3644 set_zonelist_order();
3645
3646 if (system_state == SYSTEM_BOOTING) {
3647 __build_all_zonelists(NULL);
3648 mminit_verify_zonelist();
3649 cpuset_init_current_mems_allowed();
3650 } else {
3651 /* we have to stop all cpus to guarantee there is no user
3652 of zonelist */
3653 #ifdef CONFIG_MEMORY_HOTPLUG
3654 if (zone)
3655 setup_zone_pageset(zone);
3656 #endif
3657 stop_machine(__build_all_zonelists, pgdat, NULL);
3658 /* cpuset refresh routine should be here */
3659 }
3660 vm_total_pages = nr_free_pagecache_pages();
3661 /*
3662 * Disable grouping by mobility if the number of pages in the
3663 * system is too low to allow the mechanism to work. It would be
3664 * more accurate, but expensive to check per-zone. This check is
3665 * made on memory-hotadd so a system can start with mobility
3666 * disabled and enable it later
3667 */
3668 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3669 page_group_by_mobility_disabled = 1;
3670 else
3671 page_group_by_mobility_disabled = 0;
3672
3673 printk("Built %i zonelists in %s order, mobility grouping %s. "
3674 "Total pages: %ld\n",
3675 nr_online_nodes,
3676 zonelist_order_name[current_zonelist_order],
3677 page_group_by_mobility_disabled ? "off" : "on",
3678 vm_total_pages);
3679 #ifdef CONFIG_NUMA
3680 printk("Policy zone: %s\n", zone_names[policy_zone]);
3681 #endif
3682 }
3683
3684 /*
3685 * Helper functions to size the waitqueue hash table.
3686 * Essentially these want to choose hash table sizes sufficiently
3687 * large so that collisions trying to wait on pages are rare.
3688 * But in fact, the number of active page waitqueues on typical
3689 * systems is ridiculously low, less than 200. So this is even
3690 * conservative, even though it seems large.
3691 *
3692 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3693 * waitqueues, i.e. the size of the waitq table given the number of pages.
3694 */
3695 #define PAGES_PER_WAITQUEUE 256
3696
3697 #ifndef CONFIG_MEMORY_HOTPLUG
3698 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3699 {
3700 unsigned long size = 1;
3701
3702 pages /= PAGES_PER_WAITQUEUE;
3703
3704 while (size < pages)
3705 size <<= 1;
3706
3707 /*
3708 * Once we have dozens or even hundreds of threads sleeping
3709 * on IO we've got bigger problems than wait queue collision.
3710 * Limit the size of the wait table to a reasonable size.
3711 */
3712 size = min(size, 4096UL);
3713
3714 return max(size, 4UL);
3715 }
3716 #else
3717 /*
3718 * A zone's size might be changed by hot-add, so it is not possible to determine
3719 * a suitable size for its wait_table. So we use the maximum size now.
3720 *
3721 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3722 *
3723 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3724 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3725 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3726 *
3727 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3728 * or more by the traditional way. (See above). It equals:
3729 *
3730 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3731 * ia64(16K page size) : = ( 8G + 4M)byte.
3732 * powerpc (64K page size) : = (32G +16M)byte.
3733 */
3734 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3735 {
3736 return 4096UL;
3737 }
3738 #endif
3739
3740 /*
3741 * This is an integer logarithm so that shifts can be used later
3742 * to extract the more random high bits from the multiplicative
3743 * hash function before the remainder is taken.
3744 */
3745 static inline unsigned long wait_table_bits(unsigned long size)
3746 {
3747 return ffz(~size);
3748 }
3749
3750 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3751
3752 /*
3753 * Check if a pageblock contains reserved pages
3754 */
3755 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3756 {
3757 unsigned long pfn;
3758
3759 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3760 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3761 return 1;
3762 }
3763 return 0;
3764 }
3765
3766 /*
3767 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3768 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3769 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3770 * higher will lead to a bigger reserve which will get freed as contiguous
3771 * blocks as reclaim kicks in
3772 */
3773 static void setup_zone_migrate_reserve(struct zone *zone)
3774 {
3775 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3776 struct page *page;
3777 unsigned long block_migratetype;
3778 int reserve;
3779
3780 /*
3781 * Get the start pfn, end pfn and the number of blocks to reserve
3782 * We have to be careful to be aligned to pageblock_nr_pages to
3783 * make sure that we always check pfn_valid for the first page in
3784 * the block.
3785 */
3786 start_pfn = zone->zone_start_pfn;
3787 end_pfn = start_pfn + zone->spanned_pages;
3788 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3789 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3790 pageblock_order;
3791
3792 /*
3793 * Reserve blocks are generally in place to help high-order atomic
3794 * allocations that are short-lived. A min_free_kbytes value that
3795 * would result in more than 2 reserve blocks for atomic allocations
3796 * is assumed to be in place to help anti-fragmentation for the
3797 * future allocation of hugepages at runtime.
3798 */
3799 reserve = min(2, reserve);
3800
3801 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3802 if (!pfn_valid(pfn))
3803 continue;
3804 page = pfn_to_page(pfn);
3805
3806 /* Watch out for overlapping nodes */
3807 if (page_to_nid(page) != zone_to_nid(zone))
3808 continue;
3809
3810 block_migratetype = get_pageblock_migratetype(page);
3811
3812 /* Only test what is necessary when the reserves are not met */
3813 if (reserve > 0) {
3814 /*
3815 * Blocks with reserved pages will never free, skip
3816 * them.
3817 */
3818 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3819 if (pageblock_is_reserved(pfn, block_end_pfn))
3820 continue;
3821
3822 /* If this block is reserved, account for it */
3823 if (block_migratetype == MIGRATE_RESERVE) {
3824 reserve--;
3825 continue;
3826 }
3827
3828 /* Suitable for reserving if this block is movable */
3829 if (block_migratetype == MIGRATE_MOVABLE) {
3830 set_pageblock_migratetype(page,
3831 MIGRATE_RESERVE);
3832 move_freepages_block(zone, page,
3833 MIGRATE_RESERVE);
3834 reserve--;
3835 continue;
3836 }
3837 }
3838
3839 /*
3840 * If the reserve is met and this is a previous reserved block,
3841 * take it back
3842 */
3843 if (block_migratetype == MIGRATE_RESERVE) {
3844 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3845 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3846 }
3847 }
3848 }
3849
3850 /*
3851 * Initially all pages are reserved - free ones are freed
3852 * up by free_all_bootmem() once the early boot process is
3853 * done. Non-atomic initialization, single-pass.
3854 */
3855 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3856 unsigned long start_pfn, enum memmap_context context)
3857 {
3858 struct page *page;
3859 unsigned long end_pfn = start_pfn + size;
3860 unsigned long pfn;
3861 struct zone *z;
3862
3863 if (highest_memmap_pfn < end_pfn - 1)
3864 highest_memmap_pfn = end_pfn - 1;
3865
3866 z = &NODE_DATA(nid)->node_zones[zone];
3867 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3868 /*
3869 * There can be holes in boot-time mem_map[]s
3870 * handed to this function. They do not
3871 * exist on hotplugged memory.
3872 */
3873 if (context == MEMMAP_EARLY) {
3874 if (!early_pfn_valid(pfn))
3875 continue;
3876 if (!early_pfn_in_nid(pfn, nid))
3877 continue;
3878 }
3879 page = pfn_to_page(pfn);
3880 set_page_links(page, zone, nid, pfn);
3881 mminit_verify_page_links(page, zone, nid, pfn);
3882 init_page_count(page);
3883 reset_page_mapcount(page);
3884 reset_page_last_nid(page);
3885 SetPageReserved(page);
3886 /*
3887 * Mark the block movable so that blocks are reserved for
3888 * movable at startup. This will force kernel allocations
3889 * to reserve their blocks rather than leaking throughout
3890 * the address space during boot when many long-lived
3891 * kernel allocations are made. Later some blocks near
3892 * the start are marked MIGRATE_RESERVE by
3893 * setup_zone_migrate_reserve()
3894 *
3895 * bitmap is created for zone's valid pfn range. but memmap
3896 * can be created for invalid pages (for alignment)
3897 * check here not to call set_pageblock_migratetype() against
3898 * pfn out of zone.
3899 */
3900 if ((z->zone_start_pfn <= pfn)
3901 && (pfn < z->zone_start_pfn + z->spanned_pages)
3902 && !(pfn & (pageblock_nr_pages - 1)))
3903 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3904
3905 INIT_LIST_HEAD(&page->lru);
3906 #ifdef WANT_PAGE_VIRTUAL
3907 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3908 if (!is_highmem_idx(zone))
3909 set_page_address(page, __va(pfn << PAGE_SHIFT));
3910 #endif
3911 }
3912 }
3913
3914 static void __meminit zone_init_free_lists(struct zone *zone)
3915 {
3916 int order, t;
3917 for_each_migratetype_order(order, t) {
3918 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3919 zone->free_area[order].nr_free = 0;
3920 }
3921 }
3922
3923 #ifndef __HAVE_ARCH_MEMMAP_INIT
3924 #define memmap_init(size, nid, zone, start_pfn) \
3925 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3926 #endif
3927
3928 static int __meminit zone_batchsize(struct zone *zone)
3929 {
3930 #ifdef CONFIG_MMU
3931 int batch;
3932
3933 /*
3934 * The per-cpu-pages pools are set to around 1000th of the
3935 * size of the zone. But no more than 1/2 of a meg.
3936 *
3937 * OK, so we don't know how big the cache is. So guess.
3938 */
3939 batch = zone->present_pages / 1024;
3940 if (batch * PAGE_SIZE > 512 * 1024)
3941 batch = (512 * 1024) / PAGE_SIZE;
3942 batch /= 4; /* We effectively *= 4 below */
3943 if (batch < 1)
3944 batch = 1;
3945
3946 /*
3947 * Clamp the batch to a 2^n - 1 value. Having a power
3948 * of 2 value was found to be more likely to have
3949 * suboptimal cache aliasing properties in some cases.
3950 *
3951 * For example if 2 tasks are alternately allocating
3952 * batches of pages, one task can end up with a lot
3953 * of pages of one half of the possible page colors
3954 * and the other with pages of the other colors.
3955 */
3956 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3957
3958 return batch;
3959
3960 #else
3961 /* The deferral and batching of frees should be suppressed under NOMMU
3962 * conditions.
3963 *
3964 * The problem is that NOMMU needs to be able to allocate large chunks
3965 * of contiguous memory as there's no hardware page translation to
3966 * assemble apparent contiguous memory from discontiguous pages.
3967 *
3968 * Queueing large contiguous runs of pages for batching, however,
3969 * causes the pages to actually be freed in smaller chunks. As there
3970 * can be a significant delay between the individual batches being
3971 * recycled, this leads to the once large chunks of space being
3972 * fragmented and becoming unavailable for high-order allocations.
3973 */
3974 return 0;
3975 #endif
3976 }
3977
3978 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3979 {
3980 struct per_cpu_pages *pcp;
3981 int migratetype;
3982
3983 memset(p, 0, sizeof(*p));
3984
3985 pcp = &p->pcp;
3986 pcp->count = 0;
3987 pcp->high = 6 * batch;
3988 pcp->batch = max(1UL, 1 * batch);
3989 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3990 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3991 }
3992
3993 /*
3994 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3995 * to the value high for the pageset p.
3996 */
3997
3998 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3999 unsigned long high)
4000 {
4001 struct per_cpu_pages *pcp;
4002
4003 pcp = &p->pcp;
4004 pcp->high = high;
4005 pcp->batch = max(1UL, high/4);
4006 if ((high/4) > (PAGE_SHIFT * 8))
4007 pcp->batch = PAGE_SHIFT * 8;
4008 }
4009
4010 static void __meminit setup_zone_pageset(struct zone *zone)
4011 {
4012 int cpu;
4013
4014 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4015
4016 for_each_possible_cpu(cpu) {
4017 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4018
4019 setup_pageset(pcp, zone_batchsize(zone));
4020
4021 if (percpu_pagelist_fraction)
4022 setup_pagelist_highmark(pcp,
4023 (zone->present_pages /
4024 percpu_pagelist_fraction));
4025 }
4026 }
4027
4028 /*
4029 * Allocate per cpu pagesets and initialize them.
4030 * Before this call only boot pagesets were available.
4031 */
4032 void __init setup_per_cpu_pageset(void)
4033 {
4034 struct zone *zone;
4035
4036 for_each_populated_zone(zone)
4037 setup_zone_pageset(zone);
4038 }
4039
4040 static noinline __init_refok
4041 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4042 {
4043 int i;
4044 struct pglist_data *pgdat = zone->zone_pgdat;
4045 size_t alloc_size;
4046
4047 /*
4048 * The per-page waitqueue mechanism uses hashed waitqueues
4049 * per zone.
4050 */
4051 zone->wait_table_hash_nr_entries =
4052 wait_table_hash_nr_entries(zone_size_pages);
4053 zone->wait_table_bits =
4054 wait_table_bits(zone->wait_table_hash_nr_entries);
4055 alloc_size = zone->wait_table_hash_nr_entries
4056 * sizeof(wait_queue_head_t);
4057
4058 if (!slab_is_available()) {
4059 zone->wait_table = (wait_queue_head_t *)
4060 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4061 } else {
4062 /*
4063 * This case means that a zone whose size was 0 gets new memory
4064 * via memory hot-add.
4065 * But it may be the case that a new node was hot-added. In
4066 * this case vmalloc() will not be able to use this new node's
4067 * memory - this wait_table must be initialized to use this new
4068 * node itself as well.
4069 * To use this new node's memory, further consideration will be
4070 * necessary.
4071 */
4072 zone->wait_table = vmalloc(alloc_size);
4073 }
4074 if (!zone->wait_table)
4075 return -ENOMEM;
4076
4077 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4078 init_waitqueue_head(zone->wait_table + i);
4079
4080 return 0;
4081 }
4082
4083 static __meminit void zone_pcp_init(struct zone *zone)
4084 {
4085 /*
4086 * per cpu subsystem is not up at this point. The following code
4087 * relies on the ability of the linker to provide the
4088 * offset of a (static) per cpu variable into the per cpu area.
4089 */
4090 zone->pageset = &boot_pageset;
4091
4092 if (zone->present_pages)
4093 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4094 zone->name, zone->present_pages,
4095 zone_batchsize(zone));
4096 }
4097
4098 int __meminit init_currently_empty_zone(struct zone *zone,
4099 unsigned long zone_start_pfn,
4100 unsigned long size,
4101 enum memmap_context context)
4102 {
4103 struct pglist_data *pgdat = zone->zone_pgdat;
4104 int ret;
4105 ret = zone_wait_table_init(zone, size);
4106 if (ret)
4107 return ret;
4108 pgdat->nr_zones = zone_idx(zone) + 1;
4109
4110 zone->zone_start_pfn = zone_start_pfn;
4111
4112 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4113 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4114 pgdat->node_id,
4115 (unsigned long)zone_idx(zone),
4116 zone_start_pfn, (zone_start_pfn + size));
4117
4118 zone_init_free_lists(zone);
4119
4120 return 0;
4121 }
4122
4123 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4124 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4125 /*
4126 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4127 * Architectures may implement their own version but if add_active_range()
4128 * was used and there are no special requirements, this is a convenient
4129 * alternative
4130 */
4131 int __meminit __early_pfn_to_nid(unsigned long pfn)
4132 {
4133 unsigned long start_pfn, end_pfn;
4134 int i, nid;
4135
4136 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4137 if (start_pfn <= pfn && pfn < end_pfn)
4138 return nid;
4139 /* This is a memory hole */
4140 return -1;
4141 }
4142 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4143
4144 int __meminit early_pfn_to_nid(unsigned long pfn)
4145 {
4146 int nid;
4147
4148 nid = __early_pfn_to_nid(pfn);
4149 if (nid >= 0)
4150 return nid;
4151 /* just returns 0 */
4152 return 0;
4153 }
4154
4155 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4156 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4157 {
4158 int nid;
4159
4160 nid = __early_pfn_to_nid(pfn);
4161 if (nid >= 0 && nid != node)
4162 return false;
4163 return true;
4164 }
4165 #endif
4166
4167 /**
4168 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4169 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4170 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4171 *
4172 * If an architecture guarantees that all ranges registered with
4173 * add_active_ranges() contain no holes and may be freed, this
4174 * this function may be used instead of calling free_bootmem() manually.
4175 */
4176 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4177 {
4178 unsigned long start_pfn, end_pfn;
4179 int i, this_nid;
4180
4181 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4182 start_pfn = min(start_pfn, max_low_pfn);
4183 end_pfn = min(end_pfn, max_low_pfn);
4184
4185 if (start_pfn < end_pfn)
4186 free_bootmem_node(NODE_DATA(this_nid),
4187 PFN_PHYS(start_pfn),
4188 (end_pfn - start_pfn) << PAGE_SHIFT);
4189 }
4190 }
4191
4192 /**
4193 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4194 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4195 *
4196 * If an architecture guarantees that all ranges registered with
4197 * add_active_ranges() contain no holes and may be freed, this
4198 * function may be used instead of calling memory_present() manually.
4199 */
4200 void __init sparse_memory_present_with_active_regions(int nid)
4201 {
4202 unsigned long start_pfn, end_pfn;
4203 int i, this_nid;
4204
4205 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4206 memory_present(this_nid, start_pfn, end_pfn);
4207 }
4208
4209 /**
4210 * get_pfn_range_for_nid - Return the start and end page frames for a node
4211 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4212 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4213 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4214 *
4215 * It returns the start and end page frame of a node based on information
4216 * provided by an arch calling add_active_range(). If called for a node
4217 * with no available memory, a warning is printed and the start and end
4218 * PFNs will be 0.
4219 */
4220 void __meminit get_pfn_range_for_nid(unsigned int nid,
4221 unsigned long *start_pfn, unsigned long *end_pfn)
4222 {
4223 unsigned long this_start_pfn, this_end_pfn;
4224 int i;
4225
4226 *start_pfn = -1UL;
4227 *end_pfn = 0;
4228
4229 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4230 *start_pfn = min(*start_pfn, this_start_pfn);
4231 *end_pfn = max(*end_pfn, this_end_pfn);
4232 }
4233
4234 if (*start_pfn == -1UL)
4235 *start_pfn = 0;
4236 }
4237
4238 /*
4239 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4240 * assumption is made that zones within a node are ordered in monotonic
4241 * increasing memory addresses so that the "highest" populated zone is used
4242 */
4243 static void __init find_usable_zone_for_movable(void)
4244 {
4245 int zone_index;
4246 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4247 if (zone_index == ZONE_MOVABLE)
4248 continue;
4249
4250 if (arch_zone_highest_possible_pfn[zone_index] >
4251 arch_zone_lowest_possible_pfn[zone_index])
4252 break;
4253 }
4254
4255 VM_BUG_ON(zone_index == -1);
4256 movable_zone = zone_index;
4257 }
4258
4259 /*
4260 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4261 * because it is sized independent of architecture. Unlike the other zones,
4262 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4263 * in each node depending on the size of each node and how evenly kernelcore
4264 * is distributed. This helper function adjusts the zone ranges
4265 * provided by the architecture for a given node by using the end of the
4266 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4267 * zones within a node are in order of monotonic increases memory addresses
4268 */
4269 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4270 unsigned long zone_type,
4271 unsigned long node_start_pfn,
4272 unsigned long node_end_pfn,
4273 unsigned long *zone_start_pfn,
4274 unsigned long *zone_end_pfn)
4275 {
4276 /* Only adjust if ZONE_MOVABLE is on this node */
4277 if (zone_movable_pfn[nid]) {
4278 /* Size ZONE_MOVABLE */
4279 if (zone_type == ZONE_MOVABLE) {
4280 *zone_start_pfn = zone_movable_pfn[nid];
4281 *zone_end_pfn = min(node_end_pfn,
4282 arch_zone_highest_possible_pfn[movable_zone]);
4283
4284 /* Adjust for ZONE_MOVABLE starting within this range */
4285 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4286 *zone_end_pfn > zone_movable_pfn[nid]) {
4287 *zone_end_pfn = zone_movable_pfn[nid];
4288
4289 /* Check if this whole range is within ZONE_MOVABLE */
4290 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4291 *zone_start_pfn = *zone_end_pfn;
4292 }
4293 }
4294
4295 /*
4296 * Return the number of pages a zone spans in a node, including holes
4297 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4298 */
4299 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4300 unsigned long zone_type,
4301 unsigned long *ignored)
4302 {
4303 unsigned long node_start_pfn, node_end_pfn;
4304 unsigned long zone_start_pfn, zone_end_pfn;
4305
4306 /* Get the start and end of the node and zone */
4307 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4308 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4309 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4310 adjust_zone_range_for_zone_movable(nid, zone_type,
4311 node_start_pfn, node_end_pfn,
4312 &zone_start_pfn, &zone_end_pfn);
4313
4314 /* Check that this node has pages within the zone's required range */
4315 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4316 return 0;
4317
4318 /* Move the zone boundaries inside the node if necessary */
4319 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4320 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4321
4322 /* Return the spanned pages */
4323 return zone_end_pfn - zone_start_pfn;
4324 }
4325
4326 /*
4327 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4328 * then all holes in the requested range will be accounted for.
4329 */
4330 unsigned long __meminit __absent_pages_in_range(int nid,
4331 unsigned long range_start_pfn,
4332 unsigned long range_end_pfn)
4333 {
4334 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4335 unsigned long start_pfn, end_pfn;
4336 int i;
4337
4338 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4339 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4340 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4341 nr_absent -= end_pfn - start_pfn;
4342 }
4343 return nr_absent;
4344 }
4345
4346 /**
4347 * absent_pages_in_range - Return number of page frames in holes within a range
4348 * @start_pfn: The start PFN to start searching for holes
4349 * @end_pfn: The end PFN to stop searching for holes
4350 *
4351 * It returns the number of pages frames in memory holes within a range.
4352 */
4353 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4354 unsigned long end_pfn)
4355 {
4356 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4357 }
4358
4359 /* Return the number of page frames in holes in a zone on a node */
4360 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4361 unsigned long zone_type,
4362 unsigned long *ignored)
4363 {
4364 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4365 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4366 unsigned long node_start_pfn, node_end_pfn;
4367 unsigned long zone_start_pfn, zone_end_pfn;
4368
4369 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4370 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4371 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4372
4373 adjust_zone_range_for_zone_movable(nid, zone_type,
4374 node_start_pfn, node_end_pfn,
4375 &zone_start_pfn, &zone_end_pfn);
4376 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4377 }
4378
4379 /**
4380 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4381 *
4382 * zone_movable_limit is initialized as 0. This function will try to get
4383 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4384 * assigne them to zone_movable_limit.
4385 * zone_movable_limit[nid] == 0 means no limit for the node.
4386 *
4387 * Note: Each range is represented as [start_pfn, end_pfn)
4388 */
4389 static void __meminit sanitize_zone_movable_limit(void)
4390 {
4391 int map_pos = 0, i, nid;
4392 unsigned long start_pfn, end_pfn;
4393
4394 if (!movablemem_map.nr_map)
4395 return;
4396
4397 /* Iterate all ranges from minimum to maximum */
4398 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4399 /*
4400 * If we have found lowest pfn of ZONE_MOVABLE of the node
4401 * specified by user, just go on to check next range.
4402 */
4403 if (zone_movable_limit[nid])
4404 continue;
4405
4406 #ifdef CONFIG_ZONE_DMA
4407 /* Skip DMA memory. */
4408 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4409 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4410 #endif
4411
4412 #ifdef CONFIG_ZONE_DMA32
4413 /* Skip DMA32 memory. */
4414 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4415 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4416 #endif
4417
4418 #ifdef CONFIG_HIGHMEM
4419 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4420 if (zone_movable_is_highmem() &&
4421 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4422 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4423 #endif
4424
4425 if (start_pfn >= end_pfn)
4426 continue;
4427
4428 while (map_pos < movablemem_map.nr_map) {
4429 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4430 break;
4431
4432 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4433 map_pos++;
4434 continue;
4435 }
4436
4437 /*
4438 * The start_pfn of ZONE_MOVABLE is either the minimum
4439 * pfn specified by movablemem_map, or 0, which means
4440 * the node has no ZONE_MOVABLE.
4441 */
4442 zone_movable_limit[nid] = max(start_pfn,
4443 movablemem_map.map[map_pos].start_pfn);
4444
4445 break;
4446 }
4447 }
4448 }
4449
4450 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4451 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4452 unsigned long zone_type,
4453 unsigned long *zones_size)
4454 {
4455 return zones_size[zone_type];
4456 }
4457
4458 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4459 unsigned long zone_type,
4460 unsigned long *zholes_size)
4461 {
4462 if (!zholes_size)
4463 return 0;
4464
4465 return zholes_size[zone_type];
4466 }
4467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4468
4469 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4470 unsigned long *zones_size, unsigned long *zholes_size)
4471 {
4472 unsigned long realtotalpages, totalpages = 0;
4473 enum zone_type i;
4474
4475 for (i = 0; i < MAX_NR_ZONES; i++)
4476 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4477 zones_size);
4478 pgdat->node_spanned_pages = totalpages;
4479
4480 realtotalpages = totalpages;
4481 for (i = 0; i < MAX_NR_ZONES; i++)
4482 realtotalpages -=
4483 zone_absent_pages_in_node(pgdat->node_id, i,
4484 zholes_size);
4485 pgdat->node_present_pages = realtotalpages;
4486 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4487 realtotalpages);
4488 }
4489
4490 #ifndef CONFIG_SPARSEMEM
4491 /*
4492 * Calculate the size of the zone->blockflags rounded to an unsigned long
4493 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4494 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4495 * round what is now in bits to nearest long in bits, then return it in
4496 * bytes.
4497 */
4498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4499 {
4500 unsigned long usemapsize;
4501
4502 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4503 usemapsize = roundup(zonesize, pageblock_nr_pages);
4504 usemapsize = usemapsize >> pageblock_order;
4505 usemapsize *= NR_PAGEBLOCK_BITS;
4506 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4507
4508 return usemapsize / 8;
4509 }
4510
4511 static void __init setup_usemap(struct pglist_data *pgdat,
4512 struct zone *zone,
4513 unsigned long zone_start_pfn,
4514 unsigned long zonesize)
4515 {
4516 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4517 zone->pageblock_flags = NULL;
4518 if (usemapsize)
4519 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4520 usemapsize);
4521 }
4522 #else
4523 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4524 unsigned long zone_start_pfn, unsigned long zonesize) {}
4525 #endif /* CONFIG_SPARSEMEM */
4526
4527 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4528
4529 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4530 void __init set_pageblock_order(void)
4531 {
4532 unsigned int order;
4533
4534 /* Check that pageblock_nr_pages has not already been setup */
4535 if (pageblock_order)
4536 return;
4537
4538 if (HPAGE_SHIFT > PAGE_SHIFT)
4539 order = HUGETLB_PAGE_ORDER;
4540 else
4541 order = MAX_ORDER - 1;
4542
4543 /*
4544 * Assume the largest contiguous order of interest is a huge page.
4545 * This value may be variable depending on boot parameters on IA64 and
4546 * powerpc.
4547 */
4548 pageblock_order = order;
4549 }
4550 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4551
4552 /*
4553 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4554 * is unused as pageblock_order is set at compile-time. See
4555 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4556 * the kernel config
4557 */
4558 void __init set_pageblock_order(void)
4559 {
4560 }
4561
4562 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4563
4564 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4565 unsigned long present_pages)
4566 {
4567 unsigned long pages = spanned_pages;
4568
4569 /*
4570 * Provide a more accurate estimation if there are holes within
4571 * the zone and SPARSEMEM is in use. If there are holes within the
4572 * zone, each populated memory region may cost us one or two extra
4573 * memmap pages due to alignment because memmap pages for each
4574 * populated regions may not naturally algined on page boundary.
4575 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4576 */
4577 if (spanned_pages > present_pages + (present_pages >> 4) &&
4578 IS_ENABLED(CONFIG_SPARSEMEM))
4579 pages = present_pages;
4580
4581 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4582 }
4583
4584 /*
4585 * Set up the zone data structures:
4586 * - mark all pages reserved
4587 * - mark all memory queues empty
4588 * - clear the memory bitmaps
4589 *
4590 * NOTE: pgdat should get zeroed by caller.
4591 */
4592 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4593 unsigned long *zones_size, unsigned long *zholes_size)
4594 {
4595 enum zone_type j;
4596 int nid = pgdat->node_id;
4597 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4598 int ret;
4599
4600 pgdat_resize_init(pgdat);
4601 #ifdef CONFIG_NUMA_BALANCING
4602 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4603 pgdat->numabalancing_migrate_nr_pages = 0;
4604 pgdat->numabalancing_migrate_next_window = jiffies;
4605 #endif
4606 init_waitqueue_head(&pgdat->kswapd_wait);
4607 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4608 pgdat_page_cgroup_init(pgdat);
4609
4610 for (j = 0; j < MAX_NR_ZONES; j++) {
4611 struct zone *zone = pgdat->node_zones + j;
4612 unsigned long size, realsize, freesize, memmap_pages;
4613
4614 size = zone_spanned_pages_in_node(nid, j, zones_size);
4615 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4616 zholes_size);
4617
4618 /*
4619 * Adjust freesize so that it accounts for how much memory
4620 * is used by this zone for memmap. This affects the watermark
4621 * and per-cpu initialisations
4622 */
4623 memmap_pages = calc_memmap_size(size, realsize);
4624 if (freesize >= memmap_pages) {
4625 freesize -= memmap_pages;
4626 if (memmap_pages)
4627 printk(KERN_DEBUG
4628 " %s zone: %lu pages used for memmap\n",
4629 zone_names[j], memmap_pages);
4630 } else
4631 printk(KERN_WARNING
4632 " %s zone: %lu pages exceeds freesize %lu\n",
4633 zone_names[j], memmap_pages, freesize);
4634
4635 /* Account for reserved pages */
4636 if (j == 0 && freesize > dma_reserve) {
4637 freesize -= dma_reserve;
4638 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4639 zone_names[0], dma_reserve);
4640 }
4641
4642 if (!is_highmem_idx(j))
4643 nr_kernel_pages += freesize;
4644 /* Charge for highmem memmap if there are enough kernel pages */
4645 else if (nr_kernel_pages > memmap_pages * 2)
4646 nr_kernel_pages -= memmap_pages;
4647 nr_all_pages += freesize;
4648
4649 zone->spanned_pages = size;
4650 zone->present_pages = freesize;
4651 /*
4652 * Set an approximate value for lowmem here, it will be adjusted
4653 * when the bootmem allocator frees pages into the buddy system.
4654 * And all highmem pages will be managed by the buddy system.
4655 */
4656 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4657 #ifdef CONFIG_NUMA
4658 zone->node = nid;
4659 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4660 / 100;
4661 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4662 #endif
4663 zone->name = zone_names[j];
4664 spin_lock_init(&zone->lock);
4665 spin_lock_init(&zone->lru_lock);
4666 zone_seqlock_init(zone);
4667 zone->zone_pgdat = pgdat;
4668
4669 zone_pcp_init(zone);
4670 lruvec_init(&zone->lruvec);
4671 if (!size)
4672 continue;
4673
4674 set_pageblock_order();
4675 setup_usemap(pgdat, zone, zone_start_pfn, size);
4676 ret = init_currently_empty_zone(zone, zone_start_pfn,
4677 size, MEMMAP_EARLY);
4678 BUG_ON(ret);
4679 memmap_init(size, nid, j, zone_start_pfn);
4680 zone_start_pfn += size;
4681 }
4682 }
4683
4684 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4685 {
4686 /* Skip empty nodes */
4687 if (!pgdat->node_spanned_pages)
4688 return;
4689
4690 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4691 /* ia64 gets its own node_mem_map, before this, without bootmem */
4692 if (!pgdat->node_mem_map) {
4693 unsigned long size, start, end;
4694 struct page *map;
4695
4696 /*
4697 * The zone's endpoints aren't required to be MAX_ORDER
4698 * aligned but the node_mem_map endpoints must be in order
4699 * for the buddy allocator to function correctly.
4700 */
4701 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4702 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4703 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4704 size = (end - start) * sizeof(struct page);
4705 map = alloc_remap(pgdat->node_id, size);
4706 if (!map)
4707 map = alloc_bootmem_node_nopanic(pgdat, size);
4708 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4709 }
4710 #ifndef CONFIG_NEED_MULTIPLE_NODES
4711 /*
4712 * With no DISCONTIG, the global mem_map is just set as node 0's
4713 */
4714 if (pgdat == NODE_DATA(0)) {
4715 mem_map = NODE_DATA(0)->node_mem_map;
4716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4717 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4718 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4720 }
4721 #endif
4722 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4723 }
4724
4725 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4726 unsigned long node_start_pfn, unsigned long *zholes_size)
4727 {
4728 pg_data_t *pgdat = NODE_DATA(nid);
4729
4730 /* pg_data_t should be reset to zero when it's allocated */
4731 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4732
4733 pgdat->node_id = nid;
4734 pgdat->node_start_pfn = node_start_pfn;
4735 init_zone_allows_reclaim(nid);
4736 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4737
4738 alloc_node_mem_map(pgdat);
4739 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4740 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4741 nid, (unsigned long)pgdat,
4742 (unsigned long)pgdat->node_mem_map);
4743 #endif
4744
4745 free_area_init_core(pgdat, zones_size, zholes_size);
4746 }
4747
4748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4749
4750 #if MAX_NUMNODES > 1
4751 /*
4752 * Figure out the number of possible node ids.
4753 */
4754 static void __init setup_nr_node_ids(void)
4755 {
4756 unsigned int node;
4757 unsigned int highest = 0;
4758
4759 for_each_node_mask(node, node_possible_map)
4760 highest = node;
4761 nr_node_ids = highest + 1;
4762 }
4763 #else
4764 static inline void setup_nr_node_ids(void)
4765 {
4766 }
4767 #endif
4768
4769 /**
4770 * node_map_pfn_alignment - determine the maximum internode alignment
4771 *
4772 * This function should be called after node map is populated and sorted.
4773 * It calculates the maximum power of two alignment which can distinguish
4774 * all the nodes.
4775 *
4776 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4777 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4778 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4779 * shifted, 1GiB is enough and this function will indicate so.
4780 *
4781 * This is used to test whether pfn -> nid mapping of the chosen memory
4782 * model has fine enough granularity to avoid incorrect mapping for the
4783 * populated node map.
4784 *
4785 * Returns the determined alignment in pfn's. 0 if there is no alignment
4786 * requirement (single node).
4787 */
4788 unsigned long __init node_map_pfn_alignment(void)
4789 {
4790 unsigned long accl_mask = 0, last_end = 0;
4791 unsigned long start, end, mask;
4792 int last_nid = -1;
4793 int i, nid;
4794
4795 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4796 if (!start || last_nid < 0 || last_nid == nid) {
4797 last_nid = nid;
4798 last_end = end;
4799 continue;
4800 }
4801
4802 /*
4803 * Start with a mask granular enough to pin-point to the
4804 * start pfn and tick off bits one-by-one until it becomes
4805 * too coarse to separate the current node from the last.
4806 */
4807 mask = ~((1 << __ffs(start)) - 1);
4808 while (mask && last_end <= (start & (mask << 1)))
4809 mask <<= 1;
4810
4811 /* accumulate all internode masks */
4812 accl_mask |= mask;
4813 }
4814
4815 /* convert mask to number of pages */
4816 return ~accl_mask + 1;
4817 }
4818
4819 /* Find the lowest pfn for a node */
4820 static unsigned long __init find_min_pfn_for_node(int nid)
4821 {
4822 unsigned long min_pfn = ULONG_MAX;
4823 unsigned long start_pfn;
4824 int i;
4825
4826 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4827 min_pfn = min(min_pfn, start_pfn);
4828
4829 if (min_pfn == ULONG_MAX) {
4830 printk(KERN_WARNING
4831 "Could not find start_pfn for node %d\n", nid);
4832 return 0;
4833 }
4834
4835 return min_pfn;
4836 }
4837
4838 /**
4839 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4840 *
4841 * It returns the minimum PFN based on information provided via
4842 * add_active_range().
4843 */
4844 unsigned long __init find_min_pfn_with_active_regions(void)
4845 {
4846 return find_min_pfn_for_node(MAX_NUMNODES);
4847 }
4848
4849 /*
4850 * early_calculate_totalpages()
4851 * Sum pages in active regions for movable zone.
4852 * Populate N_MEMORY for calculating usable_nodes.
4853 */
4854 static unsigned long __init early_calculate_totalpages(void)
4855 {
4856 unsigned long totalpages = 0;
4857 unsigned long start_pfn, end_pfn;
4858 int i, nid;
4859
4860 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4861 unsigned long pages = end_pfn - start_pfn;
4862
4863 totalpages += pages;
4864 if (pages)
4865 node_set_state(nid, N_MEMORY);
4866 }
4867 return totalpages;
4868 }
4869
4870 /*
4871 * Find the PFN the Movable zone begins in each node. Kernel memory
4872 * is spread evenly between nodes as long as the nodes have enough
4873 * memory. When they don't, some nodes will have more kernelcore than
4874 * others
4875 */
4876 static void __init find_zone_movable_pfns_for_nodes(void)
4877 {
4878 int i, nid;
4879 unsigned long usable_startpfn;
4880 unsigned long kernelcore_node, kernelcore_remaining;
4881 /* save the state before borrow the nodemask */
4882 nodemask_t saved_node_state = node_states[N_MEMORY];
4883 unsigned long totalpages = early_calculate_totalpages();
4884 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4885
4886 /*
4887 * If movablecore was specified, calculate what size of
4888 * kernelcore that corresponds so that memory usable for
4889 * any allocation type is evenly spread. If both kernelcore
4890 * and movablecore are specified, then the value of kernelcore
4891 * will be used for required_kernelcore if it's greater than
4892 * what movablecore would have allowed.
4893 */
4894 if (required_movablecore) {
4895 unsigned long corepages;
4896
4897 /*
4898 * Round-up so that ZONE_MOVABLE is at least as large as what
4899 * was requested by the user
4900 */
4901 required_movablecore =
4902 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4903 corepages = totalpages - required_movablecore;
4904
4905 required_kernelcore = max(required_kernelcore, corepages);
4906 }
4907
4908 /*
4909 * If neither kernelcore/movablecore nor movablemem_map is specified,
4910 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4911 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4912 */
4913 if (!required_kernelcore) {
4914 if (movablemem_map.nr_map)
4915 memcpy(zone_movable_pfn, zone_movable_limit,
4916 sizeof(zone_movable_pfn));
4917 goto out;
4918 }
4919
4920 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4921 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4922
4923 restart:
4924 /* Spread kernelcore memory as evenly as possible throughout nodes */
4925 kernelcore_node = required_kernelcore / usable_nodes;
4926 for_each_node_state(nid, N_MEMORY) {
4927 unsigned long start_pfn, end_pfn;
4928
4929 /*
4930 * Recalculate kernelcore_node if the division per node
4931 * now exceeds what is necessary to satisfy the requested
4932 * amount of memory for the kernel
4933 */
4934 if (required_kernelcore < kernelcore_node)
4935 kernelcore_node = required_kernelcore / usable_nodes;
4936
4937 /*
4938 * As the map is walked, we track how much memory is usable
4939 * by the kernel using kernelcore_remaining. When it is
4940 * 0, the rest of the node is usable by ZONE_MOVABLE
4941 */
4942 kernelcore_remaining = kernelcore_node;
4943
4944 /* Go through each range of PFNs within this node */
4945 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4946 unsigned long size_pages;
4947
4948 /*
4949 * Find more memory for kernelcore in
4950 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4951 */
4952 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4953 if (start_pfn >= end_pfn)
4954 continue;
4955
4956 if (zone_movable_limit[nid]) {
4957 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4958 /* No range left for kernelcore in this node */
4959 if (start_pfn >= end_pfn) {
4960 zone_movable_pfn[nid] =
4961 zone_movable_limit[nid];
4962 break;
4963 }
4964 }
4965
4966 /* Account for what is only usable for kernelcore */
4967 if (start_pfn < usable_startpfn) {
4968 unsigned long kernel_pages;
4969 kernel_pages = min(end_pfn, usable_startpfn)
4970 - start_pfn;
4971
4972 kernelcore_remaining -= min(kernel_pages,
4973 kernelcore_remaining);
4974 required_kernelcore -= min(kernel_pages,
4975 required_kernelcore);
4976
4977 /* Continue if range is now fully accounted */
4978 if (end_pfn <= usable_startpfn) {
4979
4980 /*
4981 * Push zone_movable_pfn to the end so
4982 * that if we have to rebalance
4983 * kernelcore across nodes, we will
4984 * not double account here
4985 */
4986 zone_movable_pfn[nid] = end_pfn;
4987 continue;
4988 }
4989 start_pfn = usable_startpfn;
4990 }
4991
4992 /*
4993 * The usable PFN range for ZONE_MOVABLE is from
4994 * start_pfn->end_pfn. Calculate size_pages as the
4995 * number of pages used as kernelcore
4996 */
4997 size_pages = end_pfn - start_pfn;
4998 if (size_pages > kernelcore_remaining)
4999 size_pages = kernelcore_remaining;
5000 zone_movable_pfn[nid] = start_pfn + size_pages;
5001
5002 /*
5003 * Some kernelcore has been met, update counts and
5004 * break if the kernelcore for this node has been
5005 * satisified
5006 */
5007 required_kernelcore -= min(required_kernelcore,
5008 size_pages);
5009 kernelcore_remaining -= size_pages;
5010 if (!kernelcore_remaining)
5011 break;
5012 }
5013 }
5014
5015 /*
5016 * If there is still required_kernelcore, we do another pass with one
5017 * less node in the count. This will push zone_movable_pfn[nid] further
5018 * along on the nodes that still have memory until kernelcore is
5019 * satisified
5020 */
5021 usable_nodes--;
5022 if (usable_nodes && required_kernelcore > usable_nodes)
5023 goto restart;
5024
5025 out:
5026 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5027 for (nid = 0; nid < MAX_NUMNODES; nid++)
5028 zone_movable_pfn[nid] =
5029 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5030
5031 /* restore the node_state */
5032 node_states[N_MEMORY] = saved_node_state;
5033 }
5034
5035 /* Any regular or high memory on that node ? */
5036 static void check_for_memory(pg_data_t *pgdat, int nid)
5037 {
5038 enum zone_type zone_type;
5039
5040 if (N_MEMORY == N_NORMAL_MEMORY)
5041 return;
5042
5043 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5044 struct zone *zone = &pgdat->node_zones[zone_type];
5045 if (zone->present_pages) {
5046 node_set_state(nid, N_HIGH_MEMORY);
5047 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5048 zone_type <= ZONE_NORMAL)
5049 node_set_state(nid, N_NORMAL_MEMORY);
5050 break;
5051 }
5052 }
5053 }
5054
5055 /**
5056 * free_area_init_nodes - Initialise all pg_data_t and zone data
5057 * @max_zone_pfn: an array of max PFNs for each zone
5058 *
5059 * This will call free_area_init_node() for each active node in the system.
5060 * Using the page ranges provided by add_active_range(), the size of each
5061 * zone in each node and their holes is calculated. If the maximum PFN
5062 * between two adjacent zones match, it is assumed that the zone is empty.
5063 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5064 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5065 * starts where the previous one ended. For example, ZONE_DMA32 starts
5066 * at arch_max_dma_pfn.
5067 */
5068 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5069 {
5070 unsigned long start_pfn, end_pfn;
5071 int i, nid;
5072
5073 /* Record where the zone boundaries are */
5074 memset(arch_zone_lowest_possible_pfn, 0,
5075 sizeof(arch_zone_lowest_possible_pfn));
5076 memset(arch_zone_highest_possible_pfn, 0,
5077 sizeof(arch_zone_highest_possible_pfn));
5078 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5079 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5080 for (i = 1; i < MAX_NR_ZONES; i++) {
5081 if (i == ZONE_MOVABLE)
5082 continue;
5083 arch_zone_lowest_possible_pfn[i] =
5084 arch_zone_highest_possible_pfn[i-1];
5085 arch_zone_highest_possible_pfn[i] =
5086 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5087 }
5088 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5089 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5090
5091 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5092 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5093 find_usable_zone_for_movable();
5094 sanitize_zone_movable_limit();
5095 find_zone_movable_pfns_for_nodes();
5096
5097 /* Print out the zone ranges */
5098 printk("Zone ranges:\n");
5099 for (i = 0; i < MAX_NR_ZONES; i++) {
5100 if (i == ZONE_MOVABLE)
5101 continue;
5102 printk(KERN_CONT " %-8s ", zone_names[i]);
5103 if (arch_zone_lowest_possible_pfn[i] ==
5104 arch_zone_highest_possible_pfn[i])
5105 printk(KERN_CONT "empty\n");
5106 else
5107 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5108 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5109 (arch_zone_highest_possible_pfn[i]
5110 << PAGE_SHIFT) - 1);
5111 }
5112
5113 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5114 printk("Movable zone start for each node\n");
5115 for (i = 0; i < MAX_NUMNODES; i++) {
5116 if (zone_movable_pfn[i])
5117 printk(" Node %d: %#010lx\n", i,
5118 zone_movable_pfn[i] << PAGE_SHIFT);
5119 }
5120
5121 /* Print out the early node map */
5122 printk("Early memory node ranges\n");
5123 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5124 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5125 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5126
5127 /* Initialise every node */
5128 mminit_verify_pageflags_layout();
5129 setup_nr_node_ids();
5130 for_each_online_node(nid) {
5131 pg_data_t *pgdat = NODE_DATA(nid);
5132 free_area_init_node(nid, NULL,
5133 find_min_pfn_for_node(nid), NULL);
5134
5135 /* Any memory on that node */
5136 if (pgdat->node_present_pages)
5137 node_set_state(nid, N_MEMORY);
5138 check_for_memory(pgdat, nid);
5139 }
5140 }
5141
5142 static int __init cmdline_parse_core(char *p, unsigned long *core)
5143 {
5144 unsigned long long coremem;
5145 if (!p)
5146 return -EINVAL;
5147
5148 coremem = memparse(p, &p);
5149 *core = coremem >> PAGE_SHIFT;
5150
5151 /* Paranoid check that UL is enough for the coremem value */
5152 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5153
5154 return 0;
5155 }
5156
5157 /*
5158 * kernelcore=size sets the amount of memory for use for allocations that
5159 * cannot be reclaimed or migrated.
5160 */
5161 static int __init cmdline_parse_kernelcore(char *p)
5162 {
5163 return cmdline_parse_core(p, &required_kernelcore);
5164 }
5165
5166 /*
5167 * movablecore=size sets the amount of memory for use for allocations that
5168 * can be reclaimed or migrated.
5169 */
5170 static int __init cmdline_parse_movablecore(char *p)
5171 {
5172 return cmdline_parse_core(p, &required_movablecore);
5173 }
5174
5175 early_param("kernelcore", cmdline_parse_kernelcore);
5176 early_param("movablecore", cmdline_parse_movablecore);
5177
5178 /**
5179 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5180 * @start_pfn: start pfn of the range to be checked
5181 * @end_pfn: end pfn of the range to be checked (exclusive)
5182 *
5183 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5184 * the movablemem_map.map[] array.
5185 *
5186 * Return: index of the first overlapped element in movablemem_map.map[]
5187 * or -1 if they don't overlap each other.
5188 */
5189 int __init movablemem_map_overlap(unsigned long start_pfn,
5190 unsigned long end_pfn)
5191 {
5192 int overlap;
5193
5194 if (!movablemem_map.nr_map)
5195 return -1;
5196
5197 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5198 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5199 break;
5200
5201 if (overlap == movablemem_map.nr_map ||
5202 end_pfn <= movablemem_map.map[overlap].start_pfn)
5203 return -1;
5204
5205 return overlap;
5206 }
5207
5208 /**
5209 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5210 * @start_pfn: start pfn of the range
5211 * @end_pfn: end pfn of the range
5212 *
5213 * This function will also merge the overlapped ranges, and sort the array
5214 * by start_pfn in monotonic increasing order.
5215 */
5216 void __init insert_movablemem_map(unsigned long start_pfn,
5217 unsigned long end_pfn)
5218 {
5219 int pos, overlap;
5220
5221 /*
5222 * pos will be at the 1st overlapped range, or the position
5223 * where the element should be inserted.
5224 */
5225 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5226 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5227 break;
5228
5229 /* If there is no overlapped range, just insert the element. */
5230 if (pos == movablemem_map.nr_map ||
5231 end_pfn < movablemem_map.map[pos].start_pfn) {
5232 /*
5233 * If pos is not the end of array, we need to move all
5234 * the rest elements backward.
5235 */
5236 if (pos < movablemem_map.nr_map)
5237 memmove(&movablemem_map.map[pos+1],
5238 &movablemem_map.map[pos],
5239 sizeof(struct movablemem_entry) *
5240 (movablemem_map.nr_map - pos));
5241 movablemem_map.map[pos].start_pfn = start_pfn;
5242 movablemem_map.map[pos].end_pfn = end_pfn;
5243 movablemem_map.nr_map++;
5244 return;
5245 }
5246
5247 /* overlap will be at the last overlapped range */
5248 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5249 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5250 break;
5251
5252 /*
5253 * If there are more ranges overlapped, we need to merge them,
5254 * and move the rest elements forward.
5255 */
5256 overlap--;
5257 movablemem_map.map[pos].start_pfn = min(start_pfn,
5258 movablemem_map.map[pos].start_pfn);
5259 movablemem_map.map[pos].end_pfn = max(end_pfn,
5260 movablemem_map.map[overlap].end_pfn);
5261
5262 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5263 memmove(&movablemem_map.map[pos+1],
5264 &movablemem_map.map[overlap+1],
5265 sizeof(struct movablemem_entry) *
5266 (movablemem_map.nr_map - overlap - 1));
5267
5268 movablemem_map.nr_map -= overlap - pos;
5269 }
5270
5271 /**
5272 * movablemem_map_add_region - Add a memory range into movablemem_map.
5273 * @start: physical start address of range
5274 * @end: physical end address of range
5275 *
5276 * This function transform the physical address into pfn, and then add the
5277 * range into movablemem_map by calling insert_movablemem_map().
5278 */
5279 static void __init movablemem_map_add_region(u64 start, u64 size)
5280 {
5281 unsigned long start_pfn, end_pfn;
5282
5283 /* In case size == 0 or start + size overflows */
5284 if (start + size <= start)
5285 return;
5286
5287 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5288 pr_err("movablemem_map: too many entries;"
5289 " ignoring [mem %#010llx-%#010llx]\n",
5290 (unsigned long long) start,
5291 (unsigned long long) (start + size - 1));
5292 return;
5293 }
5294
5295 start_pfn = PFN_DOWN(start);
5296 end_pfn = PFN_UP(start + size);
5297 insert_movablemem_map(start_pfn, end_pfn);
5298 }
5299
5300 /*
5301 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5302 * @p: The boot option of the following format:
5303 * movablemem_map=nn[KMG]@ss[KMG]
5304 *
5305 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5306 *
5307 * Return: 0 on success or -EINVAL on failure.
5308 */
5309 static int __init cmdline_parse_movablemem_map(char *p)
5310 {
5311 char *oldp;
5312 u64 start_at, mem_size;
5313
5314 if (!p)
5315 goto err;
5316
5317 oldp = p;
5318 mem_size = memparse(p, &p);
5319 if (p == oldp)
5320 goto err;
5321
5322 if (*p == '@') {
5323 oldp = ++p;
5324 start_at = memparse(p, &p);
5325 if (p == oldp || *p != '\0')
5326 goto err;
5327
5328 movablemem_map_add_region(start_at, mem_size);
5329 return 0;
5330 }
5331 err:
5332 return -EINVAL;
5333 }
5334 early_param("movablemem_map", cmdline_parse_movablemem_map);
5335
5336 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5337
5338 /**
5339 * set_dma_reserve - set the specified number of pages reserved in the first zone
5340 * @new_dma_reserve: The number of pages to mark reserved
5341 *
5342 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5343 * In the DMA zone, a significant percentage may be consumed by kernel image
5344 * and other unfreeable allocations which can skew the watermarks badly. This
5345 * function may optionally be used to account for unfreeable pages in the
5346 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5347 * smaller per-cpu batchsize.
5348 */
5349 void __init set_dma_reserve(unsigned long new_dma_reserve)
5350 {
5351 dma_reserve = new_dma_reserve;
5352 }
5353
5354 void __init free_area_init(unsigned long *zones_size)
5355 {
5356 free_area_init_node(0, zones_size,
5357 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5358 }
5359
5360 static int page_alloc_cpu_notify(struct notifier_block *self,
5361 unsigned long action, void *hcpu)
5362 {
5363 int cpu = (unsigned long)hcpu;
5364
5365 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5366 lru_add_drain_cpu(cpu);
5367 drain_pages(cpu);
5368
5369 /*
5370 * Spill the event counters of the dead processor
5371 * into the current processors event counters.
5372 * This artificially elevates the count of the current
5373 * processor.
5374 */
5375 vm_events_fold_cpu(cpu);
5376
5377 /*
5378 * Zero the differential counters of the dead processor
5379 * so that the vm statistics are consistent.
5380 *
5381 * This is only okay since the processor is dead and cannot
5382 * race with what we are doing.
5383 */
5384 refresh_cpu_vm_stats(cpu);
5385 }
5386 return NOTIFY_OK;
5387 }
5388
5389 void __init page_alloc_init(void)
5390 {
5391 hotcpu_notifier(page_alloc_cpu_notify, 0);
5392 }
5393
5394 /*
5395 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5396 * or min_free_kbytes changes.
5397 */
5398 static void calculate_totalreserve_pages(void)
5399 {
5400 struct pglist_data *pgdat;
5401 unsigned long reserve_pages = 0;
5402 enum zone_type i, j;
5403
5404 for_each_online_pgdat(pgdat) {
5405 for (i = 0; i < MAX_NR_ZONES; i++) {
5406 struct zone *zone = pgdat->node_zones + i;
5407 unsigned long max = 0;
5408
5409 /* Find valid and maximum lowmem_reserve in the zone */
5410 for (j = i; j < MAX_NR_ZONES; j++) {
5411 if (zone->lowmem_reserve[j] > max)
5412 max = zone->lowmem_reserve[j];
5413 }
5414
5415 /* we treat the high watermark as reserved pages. */
5416 max += high_wmark_pages(zone);
5417
5418 if (max > zone->present_pages)
5419 max = zone->present_pages;
5420 reserve_pages += max;
5421 /*
5422 * Lowmem reserves are not available to
5423 * GFP_HIGHUSER page cache allocations and
5424 * kswapd tries to balance zones to their high
5425 * watermark. As a result, neither should be
5426 * regarded as dirtyable memory, to prevent a
5427 * situation where reclaim has to clean pages
5428 * in order to balance the zones.
5429 */
5430 zone->dirty_balance_reserve = max;
5431 }
5432 }
5433 dirty_balance_reserve = reserve_pages;
5434 totalreserve_pages = reserve_pages;
5435 }
5436
5437 /*
5438 * setup_per_zone_lowmem_reserve - called whenever
5439 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5440 * has a correct pages reserved value, so an adequate number of
5441 * pages are left in the zone after a successful __alloc_pages().
5442 */
5443 static void setup_per_zone_lowmem_reserve(void)
5444 {
5445 struct pglist_data *pgdat;
5446 enum zone_type j, idx;
5447
5448 for_each_online_pgdat(pgdat) {
5449 for (j = 0; j < MAX_NR_ZONES; j++) {
5450 struct zone *zone = pgdat->node_zones + j;
5451 unsigned long present_pages = zone->present_pages;
5452
5453 zone->lowmem_reserve[j] = 0;
5454
5455 idx = j;
5456 while (idx) {
5457 struct zone *lower_zone;
5458
5459 idx--;
5460
5461 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5462 sysctl_lowmem_reserve_ratio[idx] = 1;
5463
5464 lower_zone = pgdat->node_zones + idx;
5465 lower_zone->lowmem_reserve[j] = present_pages /
5466 sysctl_lowmem_reserve_ratio[idx];
5467 present_pages += lower_zone->present_pages;
5468 }
5469 }
5470 }
5471
5472 /* update totalreserve_pages */
5473 calculate_totalreserve_pages();
5474 }
5475
5476 static void __setup_per_zone_wmarks(void)
5477 {
5478 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5479 unsigned long lowmem_pages = 0;
5480 struct zone *zone;
5481 unsigned long flags;
5482
5483 /* Calculate total number of !ZONE_HIGHMEM pages */
5484 for_each_zone(zone) {
5485 if (!is_highmem(zone))
5486 lowmem_pages += zone->present_pages;
5487 }
5488
5489 for_each_zone(zone) {
5490 u64 tmp;
5491
5492 spin_lock_irqsave(&zone->lock, flags);
5493 tmp = (u64)pages_min * zone->present_pages;
5494 do_div(tmp, lowmem_pages);
5495 if (is_highmem(zone)) {
5496 /*
5497 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5498 * need highmem pages, so cap pages_min to a small
5499 * value here.
5500 *
5501 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5502 * deltas controls asynch page reclaim, and so should
5503 * not be capped for highmem.
5504 */
5505 unsigned long min_pages;
5506
5507 min_pages = zone->present_pages / 1024;
5508 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5509 zone->watermark[WMARK_MIN] = min_pages;
5510 } else {
5511 /*
5512 * If it's a lowmem zone, reserve a number of pages
5513 * proportionate to the zone's size.
5514 */
5515 zone->watermark[WMARK_MIN] = tmp;
5516 }
5517
5518 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5519 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5520
5521 setup_zone_migrate_reserve(zone);
5522 spin_unlock_irqrestore(&zone->lock, flags);
5523 }
5524
5525 /* update totalreserve_pages */
5526 calculate_totalreserve_pages();
5527 }
5528
5529 /**
5530 * setup_per_zone_wmarks - called when min_free_kbytes changes
5531 * or when memory is hot-{added|removed}
5532 *
5533 * Ensures that the watermark[min,low,high] values for each zone are set
5534 * correctly with respect to min_free_kbytes.
5535 */
5536 void setup_per_zone_wmarks(void)
5537 {
5538 mutex_lock(&zonelists_mutex);
5539 __setup_per_zone_wmarks();
5540 mutex_unlock(&zonelists_mutex);
5541 }
5542
5543 /*
5544 * The inactive anon list should be small enough that the VM never has to
5545 * do too much work, but large enough that each inactive page has a chance
5546 * to be referenced again before it is swapped out.
5547 *
5548 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5549 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5550 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5551 * the anonymous pages are kept on the inactive list.
5552 *
5553 * total target max
5554 * memory ratio inactive anon
5555 * -------------------------------------
5556 * 10MB 1 5MB
5557 * 100MB 1 50MB
5558 * 1GB 3 250MB
5559 * 10GB 10 0.9GB
5560 * 100GB 31 3GB
5561 * 1TB 101 10GB
5562 * 10TB 320 32GB
5563 */
5564 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5565 {
5566 unsigned int gb, ratio;
5567
5568 /* Zone size in gigabytes */
5569 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5570 if (gb)
5571 ratio = int_sqrt(10 * gb);
5572 else
5573 ratio = 1;
5574
5575 zone->inactive_ratio = ratio;
5576 }
5577
5578 static void __meminit setup_per_zone_inactive_ratio(void)
5579 {
5580 struct zone *zone;
5581
5582 for_each_zone(zone)
5583 calculate_zone_inactive_ratio(zone);
5584 }
5585
5586 /*
5587 * Initialise min_free_kbytes.
5588 *
5589 * For small machines we want it small (128k min). For large machines
5590 * we want it large (64MB max). But it is not linear, because network
5591 * bandwidth does not increase linearly with machine size. We use
5592 *
5593 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5594 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5595 *
5596 * which yields
5597 *
5598 * 16MB: 512k
5599 * 32MB: 724k
5600 * 64MB: 1024k
5601 * 128MB: 1448k
5602 * 256MB: 2048k
5603 * 512MB: 2896k
5604 * 1024MB: 4096k
5605 * 2048MB: 5792k
5606 * 4096MB: 8192k
5607 * 8192MB: 11584k
5608 * 16384MB: 16384k
5609 */
5610 int __meminit init_per_zone_wmark_min(void)
5611 {
5612 unsigned long lowmem_kbytes;
5613
5614 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5615
5616 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5617 if (min_free_kbytes < 128)
5618 min_free_kbytes = 128;
5619 if (min_free_kbytes > 65536)
5620 min_free_kbytes = 65536;
5621 setup_per_zone_wmarks();
5622 refresh_zone_stat_thresholds();
5623 setup_per_zone_lowmem_reserve();
5624 setup_per_zone_inactive_ratio();
5625 return 0;
5626 }
5627 module_init(init_per_zone_wmark_min)
5628
5629 /*
5630 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5631 * that we can call two helper functions whenever min_free_kbytes
5632 * changes.
5633 */
5634 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5635 void __user *buffer, size_t *length, loff_t *ppos)
5636 {
5637 proc_dointvec(table, write, buffer, length, ppos);
5638 if (write)
5639 setup_per_zone_wmarks();
5640 return 0;
5641 }
5642
5643 #ifdef CONFIG_NUMA
5644 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5645 void __user *buffer, size_t *length, loff_t *ppos)
5646 {
5647 struct zone *zone;
5648 int rc;
5649
5650 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5651 if (rc)
5652 return rc;
5653
5654 for_each_zone(zone)
5655 zone->min_unmapped_pages = (zone->present_pages *
5656 sysctl_min_unmapped_ratio) / 100;
5657 return 0;
5658 }
5659
5660 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5661 void __user *buffer, size_t *length, loff_t *ppos)
5662 {
5663 struct zone *zone;
5664 int rc;
5665
5666 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5667 if (rc)
5668 return rc;
5669
5670 for_each_zone(zone)
5671 zone->min_slab_pages = (zone->present_pages *
5672 sysctl_min_slab_ratio) / 100;
5673 return 0;
5674 }
5675 #endif
5676
5677 /*
5678 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5679 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5680 * whenever sysctl_lowmem_reserve_ratio changes.
5681 *
5682 * The reserve ratio obviously has absolutely no relation with the
5683 * minimum watermarks. The lowmem reserve ratio can only make sense
5684 * if in function of the boot time zone sizes.
5685 */
5686 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5687 void __user *buffer, size_t *length, loff_t *ppos)
5688 {
5689 proc_dointvec_minmax(table, write, buffer, length, ppos);
5690 setup_per_zone_lowmem_reserve();
5691 return 0;
5692 }
5693
5694 /*
5695 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5696 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5697 * can have before it gets flushed back to buddy allocator.
5698 */
5699
5700 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5701 void __user *buffer, size_t *length, loff_t *ppos)
5702 {
5703 struct zone *zone;
5704 unsigned int cpu;
5705 int ret;
5706
5707 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5708 if (!write || (ret < 0))
5709 return ret;
5710 for_each_populated_zone(zone) {
5711 for_each_possible_cpu(cpu) {
5712 unsigned long high;
5713 high = zone->present_pages / percpu_pagelist_fraction;
5714 setup_pagelist_highmark(
5715 per_cpu_ptr(zone->pageset, cpu), high);
5716 }
5717 }
5718 return 0;
5719 }
5720
5721 int hashdist = HASHDIST_DEFAULT;
5722
5723 #ifdef CONFIG_NUMA
5724 static int __init set_hashdist(char *str)
5725 {
5726 if (!str)
5727 return 0;
5728 hashdist = simple_strtoul(str, &str, 0);
5729 return 1;
5730 }
5731 __setup("hashdist=", set_hashdist);
5732 #endif
5733
5734 /*
5735 * allocate a large system hash table from bootmem
5736 * - it is assumed that the hash table must contain an exact power-of-2
5737 * quantity of entries
5738 * - limit is the number of hash buckets, not the total allocation size
5739 */
5740 void *__init alloc_large_system_hash(const char *tablename,
5741 unsigned long bucketsize,
5742 unsigned long numentries,
5743 int scale,
5744 int flags,
5745 unsigned int *_hash_shift,
5746 unsigned int *_hash_mask,
5747 unsigned long low_limit,
5748 unsigned long high_limit)
5749 {
5750 unsigned long long max = high_limit;
5751 unsigned long log2qty, size;
5752 void *table = NULL;
5753
5754 /* allow the kernel cmdline to have a say */
5755 if (!numentries) {
5756 /* round applicable memory size up to nearest megabyte */
5757 numentries = nr_kernel_pages;
5758 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5759 numentries >>= 20 - PAGE_SHIFT;
5760 numentries <<= 20 - PAGE_SHIFT;
5761
5762 /* limit to 1 bucket per 2^scale bytes of low memory */
5763 if (scale > PAGE_SHIFT)
5764 numentries >>= (scale - PAGE_SHIFT);
5765 else
5766 numentries <<= (PAGE_SHIFT - scale);
5767
5768 /* Make sure we've got at least a 0-order allocation.. */
5769 if (unlikely(flags & HASH_SMALL)) {
5770 /* Makes no sense without HASH_EARLY */
5771 WARN_ON(!(flags & HASH_EARLY));
5772 if (!(numentries >> *_hash_shift)) {
5773 numentries = 1UL << *_hash_shift;
5774 BUG_ON(!numentries);
5775 }
5776 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5777 numentries = PAGE_SIZE / bucketsize;
5778 }
5779 numentries = roundup_pow_of_two(numentries);
5780
5781 /* limit allocation size to 1/16 total memory by default */
5782 if (max == 0) {
5783 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5784 do_div(max, bucketsize);
5785 }
5786 max = min(max, 0x80000000ULL);
5787
5788 if (numentries < low_limit)
5789 numentries = low_limit;
5790 if (numentries > max)
5791 numentries = max;
5792
5793 log2qty = ilog2(numentries);
5794
5795 do {
5796 size = bucketsize << log2qty;
5797 if (flags & HASH_EARLY)
5798 table = alloc_bootmem_nopanic(size);
5799 else if (hashdist)
5800 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5801 else {
5802 /*
5803 * If bucketsize is not a power-of-two, we may free
5804 * some pages at the end of hash table which
5805 * alloc_pages_exact() automatically does
5806 */
5807 if (get_order(size) < MAX_ORDER) {
5808 table = alloc_pages_exact(size, GFP_ATOMIC);
5809 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5810 }
5811 }
5812 } while (!table && size > PAGE_SIZE && --log2qty);
5813
5814 if (!table)
5815 panic("Failed to allocate %s hash table\n", tablename);
5816
5817 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5818 tablename,
5819 (1UL << log2qty),
5820 ilog2(size) - PAGE_SHIFT,
5821 size);
5822
5823 if (_hash_shift)
5824 *_hash_shift = log2qty;
5825 if (_hash_mask)
5826 *_hash_mask = (1 << log2qty) - 1;
5827
5828 return table;
5829 }
5830
5831 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5832 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5833 unsigned long pfn)
5834 {
5835 #ifdef CONFIG_SPARSEMEM
5836 return __pfn_to_section(pfn)->pageblock_flags;
5837 #else
5838 return zone->pageblock_flags;
5839 #endif /* CONFIG_SPARSEMEM */
5840 }
5841
5842 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5843 {
5844 #ifdef CONFIG_SPARSEMEM
5845 pfn &= (PAGES_PER_SECTION-1);
5846 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5847 #else
5848 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5849 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5850 #endif /* CONFIG_SPARSEMEM */
5851 }
5852
5853 /**
5854 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5855 * @page: The page within the block of interest
5856 * @start_bitidx: The first bit of interest to retrieve
5857 * @end_bitidx: The last bit of interest
5858 * returns pageblock_bits flags
5859 */
5860 unsigned long get_pageblock_flags_group(struct page *page,
5861 int start_bitidx, int end_bitidx)
5862 {
5863 struct zone *zone;
5864 unsigned long *bitmap;
5865 unsigned long pfn, bitidx;
5866 unsigned long flags = 0;
5867 unsigned long value = 1;
5868
5869 zone = page_zone(page);
5870 pfn = page_to_pfn(page);
5871 bitmap = get_pageblock_bitmap(zone, pfn);
5872 bitidx = pfn_to_bitidx(zone, pfn);
5873
5874 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5875 if (test_bit(bitidx + start_bitidx, bitmap))
5876 flags |= value;
5877
5878 return flags;
5879 }
5880
5881 /**
5882 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5883 * @page: The page within the block of interest
5884 * @start_bitidx: The first bit of interest
5885 * @end_bitidx: The last bit of interest
5886 * @flags: The flags to set
5887 */
5888 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5889 int start_bitidx, int end_bitidx)
5890 {
5891 struct zone *zone;
5892 unsigned long *bitmap;
5893 unsigned long pfn, bitidx;
5894 unsigned long value = 1;
5895
5896 zone = page_zone(page);
5897 pfn = page_to_pfn(page);
5898 bitmap = get_pageblock_bitmap(zone, pfn);
5899 bitidx = pfn_to_bitidx(zone, pfn);
5900 VM_BUG_ON(pfn < zone->zone_start_pfn);
5901 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5902
5903 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5904 if (flags & value)
5905 __set_bit(bitidx + start_bitidx, bitmap);
5906 else
5907 __clear_bit(bitidx + start_bitidx, bitmap);
5908 }
5909
5910 /*
5911 * This function checks whether pageblock includes unmovable pages or not.
5912 * If @count is not zero, it is okay to include less @count unmovable pages
5913 *
5914 * PageLRU check wihtout isolation or lru_lock could race so that
5915 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5916 * expect this function should be exact.
5917 */
5918 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5919 bool skip_hwpoisoned_pages)
5920 {
5921 unsigned long pfn, iter, found;
5922 int mt;
5923
5924 /*
5925 * For avoiding noise data, lru_add_drain_all() should be called
5926 * If ZONE_MOVABLE, the zone never contains unmovable pages
5927 */
5928 if (zone_idx(zone) == ZONE_MOVABLE)
5929 return false;
5930 mt = get_pageblock_migratetype(page);
5931 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5932 return false;
5933
5934 pfn = page_to_pfn(page);
5935 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5936 unsigned long check = pfn + iter;
5937
5938 if (!pfn_valid_within(check))
5939 continue;
5940
5941 page = pfn_to_page(check);
5942 /*
5943 * We can't use page_count without pin a page
5944 * because another CPU can free compound page.
5945 * This check already skips compound tails of THP
5946 * because their page->_count is zero at all time.
5947 */
5948 if (!atomic_read(&page->_count)) {
5949 if (PageBuddy(page))
5950 iter += (1 << page_order(page)) - 1;
5951 continue;
5952 }
5953
5954 /*
5955 * The HWPoisoned page may be not in buddy system, and
5956 * page_count() is not 0.
5957 */
5958 if (skip_hwpoisoned_pages && PageHWPoison(page))
5959 continue;
5960
5961 if (!PageLRU(page))
5962 found++;
5963 /*
5964 * If there are RECLAIMABLE pages, we need to check it.
5965 * But now, memory offline itself doesn't call shrink_slab()
5966 * and it still to be fixed.
5967 */
5968 /*
5969 * If the page is not RAM, page_count()should be 0.
5970 * we don't need more check. This is an _used_ not-movable page.
5971 *
5972 * The problematic thing here is PG_reserved pages. PG_reserved
5973 * is set to both of a memory hole page and a _used_ kernel
5974 * page at boot.
5975 */
5976 if (found > count)
5977 return true;
5978 }
5979 return false;
5980 }
5981
5982 bool is_pageblock_removable_nolock(struct page *page)
5983 {
5984 struct zone *zone;
5985 unsigned long pfn;
5986
5987 /*
5988 * We have to be careful here because we are iterating over memory
5989 * sections which are not zone aware so we might end up outside of
5990 * the zone but still within the section.
5991 * We have to take care about the node as well. If the node is offline
5992 * its NODE_DATA will be NULL - see page_zone.
5993 */
5994 if (!node_online(page_to_nid(page)))
5995 return false;
5996
5997 zone = page_zone(page);
5998 pfn = page_to_pfn(page);
5999 if (zone->zone_start_pfn > pfn ||
6000 zone->zone_start_pfn + zone->spanned_pages <= pfn)
6001 return false;
6002
6003 return !has_unmovable_pages(zone, page, 0, true);
6004 }
6005
6006 #ifdef CONFIG_CMA
6007
6008 static unsigned long pfn_max_align_down(unsigned long pfn)
6009 {
6010 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6011 pageblock_nr_pages) - 1);
6012 }
6013
6014 static unsigned long pfn_max_align_up(unsigned long pfn)
6015 {
6016 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6017 pageblock_nr_pages));
6018 }
6019
6020 /* [start, end) must belong to a single zone. */
6021 static int __alloc_contig_migrate_range(struct compact_control *cc,
6022 unsigned long start, unsigned long end)
6023 {
6024 /* This function is based on compact_zone() from compaction.c. */
6025 unsigned long nr_reclaimed;
6026 unsigned long pfn = start;
6027 unsigned int tries = 0;
6028 int ret = 0;
6029
6030 migrate_prep();
6031
6032 while (pfn < end || !list_empty(&cc->migratepages)) {
6033 if (fatal_signal_pending(current)) {
6034 ret = -EINTR;
6035 break;
6036 }
6037
6038 if (list_empty(&cc->migratepages)) {
6039 cc->nr_migratepages = 0;
6040 pfn = isolate_migratepages_range(cc->zone, cc,
6041 pfn, end, true);
6042 if (!pfn) {
6043 ret = -EINTR;
6044 break;
6045 }
6046 tries = 0;
6047 } else if (++tries == 5) {
6048 ret = ret < 0 ? ret : -EBUSY;
6049 break;
6050 }
6051
6052 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6053 &cc->migratepages);
6054 cc->nr_migratepages -= nr_reclaimed;
6055
6056 ret = migrate_pages(&cc->migratepages,
6057 alloc_migrate_target,
6058 0, false, MIGRATE_SYNC,
6059 MR_CMA);
6060 }
6061 if (ret < 0) {
6062 putback_movable_pages(&cc->migratepages);
6063 return ret;
6064 }
6065 return 0;
6066 }
6067
6068 /**
6069 * alloc_contig_range() -- tries to allocate given range of pages
6070 * @start: start PFN to allocate
6071 * @end: one-past-the-last PFN to allocate
6072 * @migratetype: migratetype of the underlaying pageblocks (either
6073 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6074 * in range must have the same migratetype and it must
6075 * be either of the two.
6076 *
6077 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6078 * aligned, however it's the caller's responsibility to guarantee that
6079 * we are the only thread that changes migrate type of pageblocks the
6080 * pages fall in.
6081 *
6082 * The PFN range must belong to a single zone.
6083 *
6084 * Returns zero on success or negative error code. On success all
6085 * pages which PFN is in [start, end) are allocated for the caller and
6086 * need to be freed with free_contig_range().
6087 */
6088 int alloc_contig_range(unsigned long start, unsigned long end,
6089 unsigned migratetype)
6090 {
6091 unsigned long outer_start, outer_end;
6092 int ret = 0, order;
6093
6094 struct compact_control cc = {
6095 .nr_migratepages = 0,
6096 .order = -1,
6097 .zone = page_zone(pfn_to_page(start)),
6098 .sync = true,
6099 .ignore_skip_hint = true,
6100 };
6101 INIT_LIST_HEAD(&cc.migratepages);
6102
6103 /*
6104 * What we do here is we mark all pageblocks in range as
6105 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6106 * have different sizes, and due to the way page allocator
6107 * work, we align the range to biggest of the two pages so
6108 * that page allocator won't try to merge buddies from
6109 * different pageblocks and change MIGRATE_ISOLATE to some
6110 * other migration type.
6111 *
6112 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6113 * migrate the pages from an unaligned range (ie. pages that
6114 * we are interested in). This will put all the pages in
6115 * range back to page allocator as MIGRATE_ISOLATE.
6116 *
6117 * When this is done, we take the pages in range from page
6118 * allocator removing them from the buddy system. This way
6119 * page allocator will never consider using them.
6120 *
6121 * This lets us mark the pageblocks back as
6122 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6123 * aligned range but not in the unaligned, original range are
6124 * put back to page allocator so that buddy can use them.
6125 */
6126
6127 ret = start_isolate_page_range(pfn_max_align_down(start),
6128 pfn_max_align_up(end), migratetype,
6129 false);
6130 if (ret)
6131 return ret;
6132
6133 ret = __alloc_contig_migrate_range(&cc, start, end);
6134 if (ret)
6135 goto done;
6136
6137 /*
6138 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6139 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6140 * more, all pages in [start, end) are free in page allocator.
6141 * What we are going to do is to allocate all pages from
6142 * [start, end) (that is remove them from page allocator).
6143 *
6144 * The only problem is that pages at the beginning and at the
6145 * end of interesting range may be not aligned with pages that
6146 * page allocator holds, ie. they can be part of higher order
6147 * pages. Because of this, we reserve the bigger range and
6148 * once this is done free the pages we are not interested in.
6149 *
6150 * We don't have to hold zone->lock here because the pages are
6151 * isolated thus they won't get removed from buddy.
6152 */
6153
6154 lru_add_drain_all();
6155 drain_all_pages();
6156
6157 order = 0;
6158 outer_start = start;
6159 while (!PageBuddy(pfn_to_page(outer_start))) {
6160 if (++order >= MAX_ORDER) {
6161 ret = -EBUSY;
6162 goto done;
6163 }
6164 outer_start &= ~0UL << order;
6165 }
6166
6167 /* Make sure the range is really isolated. */
6168 if (test_pages_isolated(outer_start, end, false)) {
6169 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6170 outer_start, end);
6171 ret = -EBUSY;
6172 goto done;
6173 }
6174
6175
6176 /* Grab isolated pages from freelists. */
6177 outer_end = isolate_freepages_range(&cc, outer_start, end);
6178 if (!outer_end) {
6179 ret = -EBUSY;
6180 goto done;
6181 }
6182
6183 /* Free head and tail (if any) */
6184 if (start != outer_start)
6185 free_contig_range(outer_start, start - outer_start);
6186 if (end != outer_end)
6187 free_contig_range(end, outer_end - end);
6188
6189 done:
6190 undo_isolate_page_range(pfn_max_align_down(start),
6191 pfn_max_align_up(end), migratetype);
6192 return ret;
6193 }
6194
6195 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6196 {
6197 unsigned int count = 0;
6198
6199 for (; nr_pages--; pfn++) {
6200 struct page *page = pfn_to_page(pfn);
6201
6202 count += page_count(page) != 1;
6203 __free_page(page);
6204 }
6205 WARN(count != 0, "%d pages are still in use!\n", count);
6206 }
6207 #endif
6208
6209 #ifdef CONFIG_MEMORY_HOTPLUG
6210 static int __meminit __zone_pcp_update(void *data)
6211 {
6212 struct zone *zone = data;
6213 int cpu;
6214 unsigned long batch = zone_batchsize(zone), flags;
6215
6216 for_each_possible_cpu(cpu) {
6217 struct per_cpu_pageset *pset;
6218 struct per_cpu_pages *pcp;
6219
6220 pset = per_cpu_ptr(zone->pageset, cpu);
6221 pcp = &pset->pcp;
6222
6223 local_irq_save(flags);
6224 if (pcp->count > 0)
6225 free_pcppages_bulk(zone, pcp->count, pcp);
6226 drain_zonestat(zone, pset);
6227 setup_pageset(pset, batch);
6228 local_irq_restore(flags);
6229 }
6230 return 0;
6231 }
6232
6233 void __meminit zone_pcp_update(struct zone *zone)
6234 {
6235 stop_machine(__zone_pcp_update, zone, NULL);
6236 }
6237 #endif
6238
6239 void zone_pcp_reset(struct zone *zone)
6240 {
6241 unsigned long flags;
6242 int cpu;
6243 struct per_cpu_pageset *pset;
6244
6245 /* avoid races with drain_pages() */
6246 local_irq_save(flags);
6247 if (zone->pageset != &boot_pageset) {
6248 for_each_online_cpu(cpu) {
6249 pset = per_cpu_ptr(zone->pageset, cpu);
6250 drain_zonestat(zone, pset);
6251 }
6252 free_percpu(zone->pageset);
6253 zone->pageset = &boot_pageset;
6254 }
6255 local_irq_restore(flags);
6256 }
6257
6258 #ifdef CONFIG_MEMORY_HOTREMOVE
6259 /*
6260 * All pages in the range must be isolated before calling this.
6261 */
6262 void
6263 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6264 {
6265 struct page *page;
6266 struct zone *zone;
6267 int order, i;
6268 unsigned long pfn;
6269 unsigned long flags;
6270 /* find the first valid pfn */
6271 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6272 if (pfn_valid(pfn))
6273 break;
6274 if (pfn == end_pfn)
6275 return;
6276 zone = page_zone(pfn_to_page(pfn));
6277 spin_lock_irqsave(&zone->lock, flags);
6278 pfn = start_pfn;
6279 while (pfn < end_pfn) {
6280 if (!pfn_valid(pfn)) {
6281 pfn++;
6282 continue;
6283 }
6284 page = pfn_to_page(pfn);
6285 /*
6286 * The HWPoisoned page may be not in buddy system, and
6287 * page_count() is not 0.
6288 */
6289 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6290 pfn++;
6291 SetPageReserved(page);
6292 continue;
6293 }
6294
6295 BUG_ON(page_count(page));
6296 BUG_ON(!PageBuddy(page));
6297 order = page_order(page);
6298 #ifdef CONFIG_DEBUG_VM
6299 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6300 pfn, 1 << order, end_pfn);
6301 #endif
6302 list_del(&page->lru);
6303 rmv_page_order(page);
6304 zone->free_area[order].nr_free--;
6305 for (i = 0; i < (1 << order); i++)
6306 SetPageReserved((page+i));
6307 pfn += (1 << order);
6308 }
6309 spin_unlock_irqrestore(&zone->lock, flags);
6310 }
6311 #endif
6312
6313 #ifdef CONFIG_MEMORY_FAILURE
6314 bool is_free_buddy_page(struct page *page)
6315 {
6316 struct zone *zone = page_zone(page);
6317 unsigned long pfn = page_to_pfn(page);
6318 unsigned long flags;
6319 int order;
6320
6321 spin_lock_irqsave(&zone->lock, flags);
6322 for (order = 0; order < MAX_ORDER; order++) {
6323 struct page *page_head = page - (pfn & ((1 << order) - 1));
6324
6325 if (PageBuddy(page_head) && page_order(page_head) >= order)
6326 break;
6327 }
6328 spin_unlock_irqrestore(&zone->lock, flags);
6329
6330 return order < MAX_ORDER;
6331 }
6332 #endif
6333
6334 static const struct trace_print_flags pageflag_names[] = {
6335 {1UL << PG_locked, "locked" },
6336 {1UL << PG_error, "error" },
6337 {1UL << PG_referenced, "referenced" },
6338 {1UL << PG_uptodate, "uptodate" },
6339 {1UL << PG_dirty, "dirty" },
6340 {1UL << PG_lru, "lru" },
6341 {1UL << PG_active, "active" },
6342 {1UL << PG_slab, "slab" },
6343 {1UL << PG_owner_priv_1, "owner_priv_1" },
6344 {1UL << PG_arch_1, "arch_1" },
6345 {1UL << PG_reserved, "reserved" },
6346 {1UL << PG_private, "private" },
6347 {1UL << PG_private_2, "private_2" },
6348 {1UL << PG_writeback, "writeback" },
6349 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6350 {1UL << PG_head, "head" },
6351 {1UL << PG_tail, "tail" },
6352 #else
6353 {1UL << PG_compound, "compound" },
6354 #endif
6355 {1UL << PG_swapcache, "swapcache" },
6356 {1UL << PG_mappedtodisk, "mappedtodisk" },
6357 {1UL << PG_reclaim, "reclaim" },
6358 {1UL << PG_swapbacked, "swapbacked" },
6359 {1UL << PG_unevictable, "unevictable" },
6360 #ifdef CONFIG_MMU
6361 {1UL << PG_mlocked, "mlocked" },
6362 #endif
6363 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6364 {1UL << PG_uncached, "uncached" },
6365 #endif
6366 #ifdef CONFIG_MEMORY_FAILURE
6367 {1UL << PG_hwpoison, "hwpoison" },
6368 #endif
6369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6370 {1UL << PG_compound_lock, "compound_lock" },
6371 #endif
6372 };
6373
6374 static void dump_page_flags(unsigned long flags)
6375 {
6376 const char *delim = "";
6377 unsigned long mask;
6378 int i;
6379
6380 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6381
6382 printk(KERN_ALERT "page flags: %#lx(", flags);
6383
6384 /* remove zone id */
6385 flags &= (1UL << NR_PAGEFLAGS) - 1;
6386
6387 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6388
6389 mask = pageflag_names[i].mask;
6390 if ((flags & mask) != mask)
6391 continue;
6392
6393 flags &= ~mask;
6394 printk("%s%s", delim, pageflag_names[i].name);
6395 delim = "|";
6396 }
6397
6398 /* check for left over flags */
6399 if (flags)
6400 printk("%s%#lx", delim, flags);
6401
6402 printk(")\n");
6403 }
6404
6405 void dump_page(struct page *page)
6406 {
6407 printk(KERN_ALERT
6408 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6409 page, atomic_read(&page->_count), page_mapcount(page),
6410 page->mapping, page->index);
6411 dump_page_flags(page->flags);
6412 mem_cgroup_print_bad_page(page);
6413 }