wlcore: use wl12xx_platform_data pointer from wlcore_pdev_data
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 [N_CPU] = { { [0] = 1UL } },
97 #endif /* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109 unsigned long dirty_balance_reserve __read_mostly;
110
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113
114 #ifdef CONFIG_PM_SLEEP
115 /*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
123
124 static gfp_t saved_gfp_mask;
125
126 void pm_restore_gfp_mask(void)
127 {
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
133 }
134
135 void pm_restrict_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
141 }
142
143 bool pm_suspended_storage(void)
144 {
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154
155 static void __free_pages_ok(struct page *page, unsigned int order);
156
157 /*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
167 */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 32,
177 #endif
178 32,
179 };
180
181 EXPORT_SYMBOL(totalram_pages);
182
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 "DMA32",
189 #endif
190 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 "HighMem",
193 #endif
194 "Movable",
195 };
196
197 int min_free_kbytes = 1024;
198
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221
222 int page_group_by_mobility_disabled __read_mostly;
223
224 /*
225 * NOTE:
226 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
227 * Instead, use {un}set_pageblock_isolate.
228 */
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237 }
238
239 bool oom_killer_disabled __read_mostly;
240
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
247
248 do {
249 seq = zone_span_seqbegin(zone);
250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 ret = 1;
252 else if (pfn < zone->zone_start_pfn)
253 ret = 1;
254 } while (zone_span_seqretry(zone, seq));
255
256 return ret;
257 }
258
259 static int page_is_consistent(struct zone *zone, struct page *page)
260 {
261 if (!pfn_valid_within(page_to_pfn(page)))
262 return 0;
263 if (zone != page_zone(page))
264 return 0;
265
266 return 1;
267 }
268 /*
269 * Temporary debugging check for pages not lying within a given zone.
270 */
271 static int bad_range(struct zone *zone, struct page *page)
272 {
273 if (page_outside_zone_boundaries(zone, page))
274 return 1;
275 if (!page_is_consistent(zone, page))
276 return 1;
277
278 return 0;
279 }
280 #else
281 static inline int bad_range(struct zone *zone, struct page *page)
282 {
283 return 0;
284 }
285 #endif
286
287 static void bad_page(struct page *page)
288 {
289 static unsigned long resume;
290 static unsigned long nr_shown;
291 static unsigned long nr_unshown;
292
293 /* Don't complain about poisoned pages */
294 if (PageHWPoison(page)) {
295 reset_page_mapcount(page); /* remove PageBuddy */
296 return;
297 }
298
299 /*
300 * Allow a burst of 60 reports, then keep quiet for that minute;
301 * or allow a steady drip of one report per second.
302 */
303 if (nr_shown == 60) {
304 if (time_before(jiffies, resume)) {
305 nr_unshown++;
306 goto out;
307 }
308 if (nr_unshown) {
309 printk(KERN_ALERT
310 "BUG: Bad page state: %lu messages suppressed\n",
311 nr_unshown);
312 nr_unshown = 0;
313 }
314 nr_shown = 0;
315 }
316 if (nr_shown++ == 0)
317 resume = jiffies + 60 * HZ;
318
319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
320 current->comm, page_to_pfn(page));
321 dump_page(page);
322
323 print_modules();
324 dump_stack();
325 out:
326 /* Leave bad fields for debug, except PageBuddy could make trouble */
327 reset_page_mapcount(page); /* remove PageBuddy */
328 add_taint(TAINT_BAD_PAGE);
329 }
330
331 /*
332 * Higher-order pages are called "compound pages". They are structured thusly:
333 *
334 * The first PAGE_SIZE page is called the "head page".
335 *
336 * The remaining PAGE_SIZE pages are called "tail pages".
337 *
338 * All pages have PG_compound set. All tail pages have their ->first_page
339 * pointing at the head page.
340 *
341 * The first tail page's ->lru.next holds the address of the compound page's
342 * put_page() function. Its ->lru.prev holds the order of allocation.
343 * This usage means that zero-order pages may not be compound.
344 */
345
346 static void free_compound_page(struct page *page)
347 {
348 __free_pages_ok(page, compound_order(page));
349 }
350
351 void prep_compound_page(struct page *page, unsigned long order)
352 {
353 int i;
354 int nr_pages = 1 << order;
355
356 set_compound_page_dtor(page, free_compound_page);
357 set_compound_order(page, order);
358 __SetPageHead(page);
359 for (i = 1; i < nr_pages; i++) {
360 struct page *p = page + i;
361 __SetPageTail(p);
362 set_page_count(p, 0);
363 p->first_page = page;
364 }
365 }
366
367 /* update __split_huge_page_refcount if you change this function */
368 static int destroy_compound_page(struct page *page, unsigned long order)
369 {
370 int i;
371 int nr_pages = 1 << order;
372 int bad = 0;
373
374 if (unlikely(compound_order(page) != order)) {
375 bad_page(page);
376 bad++;
377 }
378
379 __ClearPageHead(page);
380
381 for (i = 1; i < nr_pages; i++) {
382 struct page *p = page + i;
383
384 if (unlikely(!PageTail(p) || (p->first_page != page))) {
385 bad_page(page);
386 bad++;
387 }
388 __ClearPageTail(p);
389 }
390
391 return bad;
392 }
393
394 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
395 {
396 int i;
397
398 /*
399 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
400 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 */
402 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
403 for (i = 0; i < (1 << order); i++)
404 clear_highpage(page + i);
405 }
406
407 #ifdef CONFIG_DEBUG_PAGEALLOC
408 unsigned int _debug_guardpage_minorder;
409
410 static int __init debug_guardpage_minorder_setup(char *buf)
411 {
412 unsigned long res;
413
414 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
415 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
416 return 0;
417 }
418 _debug_guardpage_minorder = res;
419 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
420 return 0;
421 }
422 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
423
424 static inline void set_page_guard_flag(struct page *page)
425 {
426 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428
429 static inline void clear_page_guard_flag(struct page *page)
430 {
431 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 }
433 #else
434 static inline void set_page_guard_flag(struct page *page) { }
435 static inline void clear_page_guard_flag(struct page *page) { }
436 #endif
437
438 static inline void set_page_order(struct page *page, int order)
439 {
440 set_page_private(page, order);
441 __SetPageBuddy(page);
442 }
443
444 static inline void rmv_page_order(struct page *page)
445 {
446 __ClearPageBuddy(page);
447 set_page_private(page, 0);
448 }
449
450 /*
451 * Locate the struct page for both the matching buddy in our
452 * pair (buddy1) and the combined O(n+1) page they form (page).
453 *
454 * 1) Any buddy B1 will have an order O twin B2 which satisfies
455 * the following equation:
456 * B2 = B1 ^ (1 << O)
457 * For example, if the starting buddy (buddy2) is #8 its order
458 * 1 buddy is #10:
459 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
460 *
461 * 2) Any buddy B will have an order O+1 parent P which
462 * satisfies the following equation:
463 * P = B & ~(1 << O)
464 *
465 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
466 */
467 static inline unsigned long
468 __find_buddy_index(unsigned long page_idx, unsigned int order)
469 {
470 return page_idx ^ (1 << order);
471 }
472
473 /*
474 * This function checks whether a page is free && is the buddy
475 * we can do coalesce a page and its buddy if
476 * (a) the buddy is not in a hole &&
477 * (b) the buddy is in the buddy system &&
478 * (c) a page and its buddy have the same order &&
479 * (d) a page and its buddy are in the same zone.
480 *
481 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
482 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
483 *
484 * For recording page's order, we use page_private(page).
485 */
486 static inline int page_is_buddy(struct page *page, struct page *buddy,
487 int order)
488 {
489 if (!pfn_valid_within(page_to_pfn(buddy)))
490 return 0;
491
492 if (page_zone_id(page) != page_zone_id(buddy))
493 return 0;
494
495 if (page_is_guard(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
498 }
499
500 if (PageBuddy(buddy) && page_order(buddy) == order) {
501 VM_BUG_ON(page_count(buddy) != 0);
502 return 1;
503 }
504 return 0;
505 }
506
507 /*
508 * Freeing function for a buddy system allocator.
509 *
510 * The concept of a buddy system is to maintain direct-mapped table
511 * (containing bit values) for memory blocks of various "orders".
512 * The bottom level table contains the map for the smallest allocatable
513 * units of memory (here, pages), and each level above it describes
514 * pairs of units from the levels below, hence, "buddies".
515 * At a high level, all that happens here is marking the table entry
516 * at the bottom level available, and propagating the changes upward
517 * as necessary, plus some accounting needed to play nicely with other
518 * parts of the VM system.
519 * At each level, we keep a list of pages, which are heads of continuous
520 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
521 * order is recorded in page_private(page) field.
522 * So when we are allocating or freeing one, we can derive the state of the
523 * other. That is, if we allocate a small block, and both were
524 * free, the remainder of the region must be split into blocks.
525 * If a block is freed, and its buddy is also free, then this
526 * triggers coalescing into a block of larger size.
527 *
528 * -- nyc
529 */
530
531 static inline void __free_one_page(struct page *page,
532 struct zone *zone, unsigned int order,
533 int migratetype)
534 {
535 unsigned long page_idx;
536 unsigned long combined_idx;
537 unsigned long uninitialized_var(buddy_idx);
538 struct page *buddy;
539
540 if (unlikely(PageCompound(page)))
541 if (unlikely(destroy_compound_page(page, order)))
542 return;
543
544 VM_BUG_ON(migratetype == -1);
545
546 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
547
548 VM_BUG_ON(page_idx & ((1 << order) - 1));
549 VM_BUG_ON(bad_range(zone, page));
550
551 while (order < MAX_ORDER-1) {
552 buddy_idx = __find_buddy_index(page_idx, order);
553 buddy = page + (buddy_idx - page_idx);
554 if (!page_is_buddy(page, buddy, order))
555 break;
556 /*
557 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
558 * merge with it and move up one order.
559 */
560 if (page_is_guard(buddy)) {
561 clear_page_guard_flag(buddy);
562 set_page_private(page, 0);
563 __mod_zone_freepage_state(zone, 1 << order,
564 migratetype);
565 } else {
566 list_del(&buddy->lru);
567 zone->free_area[order].nr_free--;
568 rmv_page_order(buddy);
569 }
570 combined_idx = buddy_idx & page_idx;
571 page = page + (combined_idx - page_idx);
572 page_idx = combined_idx;
573 order++;
574 }
575 set_page_order(page, order);
576
577 /*
578 * If this is not the largest possible page, check if the buddy
579 * of the next-highest order is free. If it is, it's possible
580 * that pages are being freed that will coalesce soon. In case,
581 * that is happening, add the free page to the tail of the list
582 * so it's less likely to be used soon and more likely to be merged
583 * as a higher order page
584 */
585 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
586 struct page *higher_page, *higher_buddy;
587 combined_idx = buddy_idx & page_idx;
588 higher_page = page + (combined_idx - page_idx);
589 buddy_idx = __find_buddy_index(combined_idx, order + 1);
590 higher_buddy = higher_page + (buddy_idx - combined_idx);
591 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
592 list_add_tail(&page->lru,
593 &zone->free_area[order].free_list[migratetype]);
594 goto out;
595 }
596 }
597
598 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
599 out:
600 zone->free_area[order].nr_free++;
601 }
602
603 static inline int free_pages_check(struct page *page)
604 {
605 if (unlikely(page_mapcount(page) |
606 (page->mapping != NULL) |
607 (atomic_read(&page->_count) != 0) |
608 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
609 (mem_cgroup_bad_page_check(page)))) {
610 bad_page(page);
611 return 1;
612 }
613 reset_page_last_nid(page);
614 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
615 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
616 return 0;
617 }
618
619 /*
620 * Frees a number of pages from the PCP lists
621 * Assumes all pages on list are in same zone, and of same order.
622 * count is the number of pages to free.
623 *
624 * If the zone was previously in an "all pages pinned" state then look to
625 * see if this freeing clears that state.
626 *
627 * And clear the zone's pages_scanned counter, to hold off the "all pages are
628 * pinned" detection logic.
629 */
630 static void free_pcppages_bulk(struct zone *zone, int count,
631 struct per_cpu_pages *pcp)
632 {
633 int migratetype = 0;
634 int batch_free = 0;
635 int to_free = count;
636
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
640
641 while (to_free) {
642 struct page *page;
643 struct list_head *list;
644
645 /*
646 * Remove pages from lists in a round-robin fashion. A
647 * batch_free count is maintained that is incremented when an
648 * empty list is encountered. This is so more pages are freed
649 * off fuller lists instead of spinning excessively around empty
650 * lists
651 */
652 do {
653 batch_free++;
654 if (++migratetype == MIGRATE_PCPTYPES)
655 migratetype = 0;
656 list = &pcp->lists[migratetype];
657 } while (list_empty(list));
658
659 /* This is the only non-empty list. Free them all. */
660 if (batch_free == MIGRATE_PCPTYPES)
661 batch_free = to_free;
662
663 do {
664 int mt; /* migratetype of the to-be-freed page */
665
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
669 mt = get_freepage_migratetype(page);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, mt);
672 trace_mm_page_pcpu_drain(page, 0, mt);
673 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
674 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
675 if (is_migrate_cma(mt))
676 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
677 }
678 } while (--to_free && --batch_free && !list_empty(list));
679 }
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 if (unlikely(migratetype != MIGRATE_ISOLATE))
692 __mod_zone_freepage_state(zone, 1 << order, migratetype);
693 spin_unlock(&zone->lock);
694 }
695
696 static bool free_pages_prepare(struct page *page, unsigned int order)
697 {
698 int i;
699 int bad = 0;
700
701 trace_mm_page_free(page, order);
702 kmemcheck_free_shadow(page, order);
703
704 if (PageAnon(page))
705 page->mapping = NULL;
706 for (i = 0; i < (1 << order); i++)
707 bad += free_pages_check(page + i);
708 if (bad)
709 return false;
710
711 if (!PageHighMem(page)) {
712 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
713 debug_check_no_obj_freed(page_address(page),
714 PAGE_SIZE << order);
715 }
716 arch_free_page(page, order);
717 kernel_map_pages(page, 1 << order, 0);
718
719 return true;
720 }
721
722 static void __free_pages_ok(struct page *page, unsigned int order)
723 {
724 unsigned long flags;
725 int migratetype;
726
727 if (!free_pages_prepare(page, order))
728 return;
729
730 local_irq_save(flags);
731 __count_vm_events(PGFREE, 1 << order);
732 migratetype = get_pageblock_migratetype(page);
733 set_freepage_migratetype(page, migratetype);
734 free_one_page(page_zone(page), page, order, migratetype);
735 local_irq_restore(flags);
736 }
737
738 /*
739 * Read access to zone->managed_pages is safe because it's unsigned long,
740 * but we still need to serialize writers. Currently all callers of
741 * __free_pages_bootmem() except put_page_bootmem() should only be used
742 * at boot time. So for shorter boot time, we shift the burden to
743 * put_page_bootmem() to serialize writers.
744 */
745 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
746 {
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
749
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
758 }
759
760 page_zone(page)->managed_pages += 1 << order;
761 set_page_refcounted(page);
762 __free_pages(page, order);
763 }
764
765 #ifdef CONFIG_CMA
766 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
767 void __init init_cma_reserved_pageblock(struct page *page)
768 {
769 unsigned i = pageblock_nr_pages;
770 struct page *p = page;
771
772 do {
773 __ClearPageReserved(p);
774 set_page_count(p, 0);
775 } while (++p, --i);
776
777 set_page_refcounted(page);
778 set_pageblock_migratetype(page, MIGRATE_CMA);
779 __free_pages(page, pageblock_order);
780 totalram_pages += pageblock_nr_pages;
781 }
782 #endif
783
784 /*
785 * The order of subdivision here is critical for the IO subsystem.
786 * Please do not alter this order without good reasons and regression
787 * testing. Specifically, as large blocks of memory are subdivided,
788 * the order in which smaller blocks are delivered depends on the order
789 * they're subdivided in this function. This is the primary factor
790 * influencing the order in which pages are delivered to the IO
791 * subsystem according to empirical testing, and this is also justified
792 * by considering the behavior of a buddy system containing a single
793 * large block of memory acted on by a series of small allocations.
794 * This behavior is a critical factor in sglist merging's success.
795 *
796 * -- nyc
797 */
798 static inline void expand(struct zone *zone, struct page *page,
799 int low, int high, struct free_area *area,
800 int migratetype)
801 {
802 unsigned long size = 1 << high;
803
804 while (high > low) {
805 area--;
806 high--;
807 size >>= 1;
808 VM_BUG_ON(bad_range(zone, &page[size]));
809
810 #ifdef CONFIG_DEBUG_PAGEALLOC
811 if (high < debug_guardpage_minorder()) {
812 /*
813 * Mark as guard pages (or page), that will allow to
814 * merge back to allocator when buddy will be freed.
815 * Corresponding page table entries will not be touched,
816 * pages will stay not present in virtual address space
817 */
818 INIT_LIST_HEAD(&page[size].lru);
819 set_page_guard_flag(&page[size]);
820 set_page_private(&page[size], high);
821 /* Guard pages are not available for any usage */
822 __mod_zone_freepage_state(zone, -(1 << high),
823 migratetype);
824 continue;
825 }
826 #endif
827 list_add(&page[size].lru, &area->free_list[migratetype]);
828 area->nr_free++;
829 set_page_order(&page[size], high);
830 }
831 }
832
833 /*
834 * This page is about to be returned from the page allocator
835 */
836 static inline int check_new_page(struct page *page)
837 {
838 if (unlikely(page_mapcount(page) |
839 (page->mapping != NULL) |
840 (atomic_read(&page->_count) != 0) |
841 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
842 (mem_cgroup_bad_page_check(page)))) {
843 bad_page(page);
844 return 1;
845 }
846 return 0;
847 }
848
849 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
850 {
851 int i;
852
853 for (i = 0; i < (1 << order); i++) {
854 struct page *p = page + i;
855 if (unlikely(check_new_page(p)))
856 return 1;
857 }
858
859 set_page_private(page, 0);
860 set_page_refcounted(page);
861
862 arch_alloc_page(page, order);
863 kernel_map_pages(page, 1 << order, 1);
864
865 if (gfp_flags & __GFP_ZERO)
866 prep_zero_page(page, order, gfp_flags);
867
868 if (order && (gfp_flags & __GFP_COMP))
869 prep_compound_page(page, order);
870
871 return 0;
872 }
873
874 /*
875 * Go through the free lists for the given migratetype and remove
876 * the smallest available page from the freelists
877 */
878 static inline
879 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
880 int migratetype)
881 {
882 unsigned int current_order;
883 struct free_area * area;
884 struct page *page;
885
886 /* Find a page of the appropriate size in the preferred list */
887 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
888 area = &(zone->free_area[current_order]);
889 if (list_empty(&area->free_list[migratetype]))
890 continue;
891
892 page = list_entry(area->free_list[migratetype].next,
893 struct page, lru);
894 list_del(&page->lru);
895 rmv_page_order(page);
896 area->nr_free--;
897 expand(zone, page, order, current_order, area, migratetype);
898 return page;
899 }
900
901 return NULL;
902 }
903
904
905 /*
906 * This array describes the order lists are fallen back to when
907 * the free lists for the desirable migrate type are depleted
908 */
909 static int fallbacks[MIGRATE_TYPES][4] = {
910 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912 #ifdef CONFIG_CMA
913 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
914 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
915 #else
916 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
917 #endif
918 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
919 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
920 };
921
922 /*
923 * Move the free pages in a range to the free lists of the requested type.
924 * Note that start_page and end_pages are not aligned on a pageblock
925 * boundary. If alignment is required, use move_freepages_block()
926 */
927 int move_freepages(struct zone *zone,
928 struct page *start_page, struct page *end_page,
929 int migratetype)
930 {
931 struct page *page;
932 unsigned long order;
933 int pages_moved = 0;
934
935 #ifndef CONFIG_HOLES_IN_ZONE
936 /*
937 * page_zone is not safe to call in this context when
938 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
939 * anyway as we check zone boundaries in move_freepages_block().
940 * Remove at a later date when no bug reports exist related to
941 * grouping pages by mobility
942 */
943 BUG_ON(page_zone(start_page) != page_zone(end_page));
944 #endif
945
946 for (page = start_page; page <= end_page;) {
947 /* Make sure we are not inadvertently changing nodes */
948 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949
950 if (!pfn_valid_within(page_to_pfn(page))) {
951 page++;
952 continue;
953 }
954
955 if (!PageBuddy(page)) {
956 page++;
957 continue;
958 }
959
960 order = page_order(page);
961 list_move(&page->lru,
962 &zone->free_area[order].free_list[migratetype]);
963 set_freepage_migratetype(page, migratetype);
964 page += 1 << order;
965 pages_moved += 1 << order;
966 }
967
968 return pages_moved;
969 }
970
971 int move_freepages_block(struct zone *zone, struct page *page,
972 int migratetype)
973 {
974 unsigned long start_pfn, end_pfn;
975 struct page *start_page, *end_page;
976
977 start_pfn = page_to_pfn(page);
978 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
979 start_page = pfn_to_page(start_pfn);
980 end_page = start_page + pageblock_nr_pages - 1;
981 end_pfn = start_pfn + pageblock_nr_pages - 1;
982
983 /* Do not cross zone boundaries */
984 if (start_pfn < zone->zone_start_pfn)
985 start_page = page;
986 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
987 return 0;
988
989 return move_freepages(zone, start_page, end_page, migratetype);
990 }
991
992 static void change_pageblock_range(struct page *pageblock_page,
993 int start_order, int migratetype)
994 {
995 int nr_pageblocks = 1 << (start_order - pageblock_order);
996
997 while (nr_pageblocks--) {
998 set_pageblock_migratetype(pageblock_page, migratetype);
999 pageblock_page += pageblock_nr_pages;
1000 }
1001 }
1002
1003 /* Remove an element from the buddy allocator from the fallback list */
1004 static inline struct page *
1005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1006 {
1007 struct free_area * area;
1008 int current_order;
1009 struct page *page;
1010 int migratetype, i;
1011
1012 /* Find the largest possible block of pages in the other list */
1013 for (current_order = MAX_ORDER-1; current_order >= order;
1014 --current_order) {
1015 for (i = 0;; i++) {
1016 migratetype = fallbacks[start_migratetype][i];
1017
1018 /* MIGRATE_RESERVE handled later if necessary */
1019 if (migratetype == MIGRATE_RESERVE)
1020 break;
1021
1022 area = &(zone->free_area[current_order]);
1023 if (list_empty(&area->free_list[migratetype]))
1024 continue;
1025
1026 page = list_entry(area->free_list[migratetype].next,
1027 struct page, lru);
1028 area->nr_free--;
1029
1030 /*
1031 * If breaking a large block of pages, move all free
1032 * pages to the preferred allocation list. If falling
1033 * back for a reclaimable kernel allocation, be more
1034 * aggressive about taking ownership of free pages
1035 *
1036 * On the other hand, never change migration
1037 * type of MIGRATE_CMA pageblocks nor move CMA
1038 * pages on different free lists. We don't
1039 * want unmovable pages to be allocated from
1040 * MIGRATE_CMA areas.
1041 */
1042 if (!is_migrate_cma(migratetype) &&
1043 (unlikely(current_order >= pageblock_order / 2) ||
1044 start_migratetype == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled)) {
1046 int pages;
1047 pages = move_freepages_block(zone, page,
1048 start_migratetype);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled)
1053 set_pageblock_migratetype(page,
1054 start_migratetype);
1055
1056 migratetype = start_migratetype;
1057 }
1058
1059 /* Remove the page from the freelists */
1060 list_del(&page->lru);
1061 rmv_page_order(page);
1062
1063 /* Take ownership for orders >= pageblock_order */
1064 if (current_order >= pageblock_order &&
1065 !is_migrate_cma(migratetype))
1066 change_pageblock_range(page, current_order,
1067 start_migratetype);
1068
1069 expand(zone, page, order, current_order, area,
1070 is_migrate_cma(migratetype)
1071 ? migratetype : start_migratetype);
1072
1073 trace_mm_page_alloc_extfrag(page, order, current_order,
1074 start_migratetype, migratetype);
1075
1076 return page;
1077 }
1078 }
1079
1080 return NULL;
1081 }
1082
1083 /*
1084 * Do the hard work of removing an element from the buddy allocator.
1085 * Call me with the zone->lock already held.
1086 */
1087 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 int migratetype)
1089 {
1090 struct page *page;
1091
1092 retry_reserve:
1093 page = __rmqueue_smallest(zone, order, migratetype);
1094
1095 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1096 page = __rmqueue_fallback(zone, order, migratetype);
1097
1098 /*
1099 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1100 * is used because __rmqueue_smallest is an inline function
1101 * and we want just one call site
1102 */
1103 if (!page) {
1104 migratetype = MIGRATE_RESERVE;
1105 goto retry_reserve;
1106 }
1107 }
1108
1109 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1110 return page;
1111 }
1112
1113 /*
1114 * Obtain a specified number of elements from the buddy allocator, all under
1115 * a single hold of the lock, for efficiency. Add them to the supplied list.
1116 * Returns the number of new pages which were placed at *list.
1117 */
1118 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1119 unsigned long count, struct list_head *list,
1120 int migratetype, int cold)
1121 {
1122 int mt = migratetype, i;
1123
1124 spin_lock(&zone->lock);
1125 for (i = 0; i < count; ++i) {
1126 struct page *page = __rmqueue(zone, order, migratetype);
1127 if (unlikely(page == NULL))
1128 break;
1129
1130 /*
1131 * Split buddy pages returned by expand() are received here
1132 * in physical page order. The page is added to the callers and
1133 * list and the list head then moves forward. From the callers
1134 * perspective, the linked list is ordered by page number in
1135 * some conditions. This is useful for IO devices that can
1136 * merge IO requests if the physical pages are ordered
1137 * properly.
1138 */
1139 if (likely(cold == 0))
1140 list_add(&page->lru, list);
1141 else
1142 list_add_tail(&page->lru, list);
1143 if (IS_ENABLED(CONFIG_CMA)) {
1144 mt = get_pageblock_migratetype(page);
1145 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1146 mt = migratetype;
1147 }
1148 set_freepage_migratetype(page, mt);
1149 list = &page->lru;
1150 if (is_migrate_cma(mt))
1151 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1152 -(1 << order));
1153 }
1154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1155 spin_unlock(&zone->lock);
1156 return i;
1157 }
1158
1159 #ifdef CONFIG_NUMA
1160 /*
1161 * Called from the vmstat counter updater to drain pagesets of this
1162 * currently executing processor on remote nodes after they have
1163 * expired.
1164 *
1165 * Note that this function must be called with the thread pinned to
1166 * a single processor.
1167 */
1168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1169 {
1170 unsigned long flags;
1171 int to_drain;
1172
1173 local_irq_save(flags);
1174 if (pcp->count >= pcp->batch)
1175 to_drain = pcp->batch;
1176 else
1177 to_drain = pcp->count;
1178 if (to_drain > 0) {
1179 free_pcppages_bulk(zone, to_drain, pcp);
1180 pcp->count -= to_drain;
1181 }
1182 local_irq_restore(flags);
1183 }
1184 #endif
1185
1186 /*
1187 * Drain pages of the indicated processor.
1188 *
1189 * The processor must either be the current processor and the
1190 * thread pinned to the current processor or a processor that
1191 * is not online.
1192 */
1193 static void drain_pages(unsigned int cpu)
1194 {
1195 unsigned long flags;
1196 struct zone *zone;
1197
1198 for_each_populated_zone(zone) {
1199 struct per_cpu_pageset *pset;
1200 struct per_cpu_pages *pcp;
1201
1202 local_irq_save(flags);
1203 pset = per_cpu_ptr(zone->pageset, cpu);
1204
1205 pcp = &pset->pcp;
1206 if (pcp->count) {
1207 free_pcppages_bulk(zone, pcp->count, pcp);
1208 pcp->count = 0;
1209 }
1210 local_irq_restore(flags);
1211 }
1212 }
1213
1214 /*
1215 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216 */
1217 void drain_local_pages(void *arg)
1218 {
1219 drain_pages(smp_processor_id());
1220 }
1221
1222 /*
1223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224 *
1225 * Note that this code is protected against sending an IPI to an offline
1226 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1227 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1228 * nothing keeps CPUs from showing up after we populated the cpumask and
1229 * before the call to on_each_cpu_mask().
1230 */
1231 void drain_all_pages(void)
1232 {
1233 int cpu;
1234 struct per_cpu_pageset *pcp;
1235 struct zone *zone;
1236
1237 /*
1238 * Allocate in the BSS so we wont require allocation in
1239 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 */
1241 static cpumask_t cpus_with_pcps;
1242
1243 /*
1244 * We don't care about racing with CPU hotplug event
1245 * as offline notification will cause the notified
1246 * cpu to drain that CPU pcps and on_each_cpu_mask
1247 * disables preemption as part of its processing
1248 */
1249 for_each_online_cpu(cpu) {
1250 bool has_pcps = false;
1251 for_each_populated_zone(zone) {
1252 pcp = per_cpu_ptr(zone->pageset, cpu);
1253 if (pcp->pcp.count) {
1254 has_pcps = true;
1255 break;
1256 }
1257 }
1258 if (has_pcps)
1259 cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 else
1261 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 }
1263 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1264 }
1265
1266 #ifdef CONFIG_HIBERNATION
1267
1268 void mark_free_pages(struct zone *zone)
1269 {
1270 unsigned long pfn, max_zone_pfn;
1271 unsigned long flags;
1272 int order, t;
1273 struct list_head *curr;
1274
1275 if (!zone->spanned_pages)
1276 return;
1277
1278 spin_lock_irqsave(&zone->lock, flags);
1279
1280 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1281 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1282 if (pfn_valid(pfn)) {
1283 struct page *page = pfn_to_page(pfn);
1284
1285 if (!swsusp_page_is_forbidden(page))
1286 swsusp_unset_page_free(page);
1287 }
1288
1289 for_each_migratetype_order(order, t) {
1290 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1291 unsigned long i;
1292
1293 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1294 for (i = 0; i < (1UL << order); i++)
1295 swsusp_set_page_free(pfn_to_page(pfn + i));
1296 }
1297 }
1298 spin_unlock_irqrestore(&zone->lock, flags);
1299 }
1300 #endif /* CONFIG_PM */
1301
1302 /*
1303 * Free a 0-order page
1304 * cold == 1 ? free a cold page : free a hot page
1305 */
1306 void free_hot_cold_page(struct page *page, int cold)
1307 {
1308 struct zone *zone = page_zone(page);
1309 struct per_cpu_pages *pcp;
1310 unsigned long flags;
1311 int migratetype;
1312
1313 if (!free_pages_prepare(page, 0))
1314 return;
1315
1316 migratetype = get_pageblock_migratetype(page);
1317 set_freepage_migratetype(page, migratetype);
1318 local_irq_save(flags);
1319 __count_vm_event(PGFREE);
1320
1321 /*
1322 * We only track unmovable, reclaimable and movable on pcp lists.
1323 * Free ISOLATE pages back to the allocator because they are being
1324 * offlined but treat RESERVE as movable pages so we can get those
1325 * areas back if necessary. Otherwise, we may have to free
1326 * excessively into the page allocator
1327 */
1328 if (migratetype >= MIGRATE_PCPTYPES) {
1329 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1330 free_one_page(zone, page, 0, migratetype);
1331 goto out;
1332 }
1333 migratetype = MIGRATE_MOVABLE;
1334 }
1335
1336 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1337 if (cold)
1338 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1339 else
1340 list_add(&page->lru, &pcp->lists[migratetype]);
1341 pcp->count++;
1342 if (pcp->count >= pcp->high) {
1343 free_pcppages_bulk(zone, pcp->batch, pcp);
1344 pcp->count -= pcp->batch;
1345 }
1346
1347 out:
1348 local_irq_restore(flags);
1349 }
1350
1351 /*
1352 * Free a list of 0-order pages
1353 */
1354 void free_hot_cold_page_list(struct list_head *list, int cold)
1355 {
1356 struct page *page, *next;
1357
1358 list_for_each_entry_safe(page, next, list, lru) {
1359 trace_mm_page_free_batched(page, cold);
1360 free_hot_cold_page(page, cold);
1361 }
1362 }
1363
1364 /*
1365 * split_page takes a non-compound higher-order page, and splits it into
1366 * n (1<<order) sub-pages: page[0..n]
1367 * Each sub-page must be freed individually.
1368 *
1369 * Note: this is probably too low level an operation for use in drivers.
1370 * Please consult with lkml before using this in your driver.
1371 */
1372 void split_page(struct page *page, unsigned int order)
1373 {
1374 int i;
1375
1376 VM_BUG_ON(PageCompound(page));
1377 VM_BUG_ON(!page_count(page));
1378
1379 #ifdef CONFIG_KMEMCHECK
1380 /*
1381 * Split shadow pages too, because free(page[0]) would
1382 * otherwise free the whole shadow.
1383 */
1384 if (kmemcheck_page_is_tracked(page))
1385 split_page(virt_to_page(page[0].shadow), order);
1386 #endif
1387
1388 for (i = 1; i < (1 << order); i++)
1389 set_page_refcounted(page + i);
1390 }
1391
1392 /*
1393 * Similar to the split_page family of functions except that the page
1394 * required at the given order and being isolated now to prevent races
1395 * with parallel allocators
1396 */
1397 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1398 {
1399 unsigned int order;
1400 unsigned long watermark;
1401 struct zone *zone;
1402 int mt;
1403
1404 BUG_ON(!PageBuddy(page));
1405
1406 zone = page_zone(page);
1407 order = page_order(page);
1408 mt = get_pageblock_migratetype(page);
1409
1410 if (mt != MIGRATE_ISOLATE) {
1411 /* Obey watermarks as if the page was being allocated */
1412 watermark = low_wmark_pages(zone) + (1 << order);
1413 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1414 return 0;
1415
1416 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1417 }
1418
1419 /* Remove page from free list */
1420 list_del(&page->lru);
1421 zone->free_area[order].nr_free--;
1422 rmv_page_order(page);
1423
1424 if (alloc_order != order)
1425 expand(zone, page, alloc_order, order,
1426 &zone->free_area[order], migratetype);
1427
1428 /* Set the pageblock if the captured page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
1437 }
1438
1439 return 1UL << alloc_order;
1440 }
1441
1442 /*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452 int split_free_page(struct page *page)
1453 {
1454 unsigned int order;
1455 int nr_pages;
1456
1457 BUG_ON(!PageBuddy(page));
1458 order = page_order(page);
1459
1460 nr_pages = capture_free_page(page, order, 0);
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
1468 }
1469
1470 /*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
1475 static inline
1476 struct page *buffered_rmqueue(struct zone *preferred_zone,
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1479 {
1480 unsigned long flags;
1481 struct page *page;
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
1484 again:
1485 if (likely(order == 0)) {
1486 struct per_cpu_pages *pcp;
1487 struct list_head *list;
1488
1489 local_irq_save(flags);
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
1492 if (list_empty(list)) {
1493 pcp->count += rmqueue_bulk(zone, 0,
1494 pcp->batch, list,
1495 migratetype, cold);
1496 if (unlikely(list_empty(list)))
1497 goto failed;
1498 }
1499
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
1505 list_del(&page->lru);
1506 pcp->count--;
1507 } else {
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
1516 * allocate greater than order-1 page units with
1517 * __GFP_NOFAIL.
1518 */
1519 WARN_ON_ONCE(order > 1);
1520 }
1521 spin_lock_irqsave(&zone->lock, flags);
1522 page = __rmqueue(zone, order, migratetype);
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1528 }
1529
1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1531 zone_statistics(preferred_zone, zone, gfp_flags);
1532 local_irq_restore(flags);
1533
1534 VM_BUG_ON(bad_range(zone, page));
1535 if (prep_new_page(page, order, gfp_flags))
1536 goto again;
1537 return page;
1538
1539 failed:
1540 local_irq_restore(flags);
1541 return NULL;
1542 }
1543
1544 #ifdef CONFIG_FAIL_PAGE_ALLOC
1545
1546 static struct {
1547 struct fault_attr attr;
1548
1549 u32 ignore_gfp_highmem;
1550 u32 ignore_gfp_wait;
1551 u32 min_order;
1552 } fail_page_alloc = {
1553 .attr = FAULT_ATTR_INITIALIZER,
1554 .ignore_gfp_wait = 1,
1555 .ignore_gfp_highmem = 1,
1556 .min_order = 1,
1557 };
1558
1559 static int __init setup_fail_page_alloc(char *str)
1560 {
1561 return setup_fault_attr(&fail_page_alloc.attr, str);
1562 }
1563 __setup("fail_page_alloc=", setup_fail_page_alloc);
1564
1565 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1566 {
1567 if (order < fail_page_alloc.min_order)
1568 return false;
1569 if (gfp_mask & __GFP_NOFAIL)
1570 return false;
1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1572 return false;
1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1574 return false;
1575
1576 return should_fail(&fail_page_alloc.attr, 1 << order);
1577 }
1578
1579 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580
1581 static int __init fail_page_alloc_debugfs(void)
1582 {
1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1584 struct dentry *dir;
1585
1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 &fail_page_alloc.attr);
1588 if (IS_ERR(dir))
1589 return PTR_ERR(dir);
1590
1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 &fail_page_alloc.ignore_gfp_wait))
1593 goto fail;
1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 &fail_page_alloc.ignore_gfp_highmem))
1596 goto fail;
1597 if (!debugfs_create_u32("min-order", mode, dir,
1598 &fail_page_alloc.min_order))
1599 goto fail;
1600
1601 return 0;
1602 fail:
1603 debugfs_remove_recursive(dir);
1604
1605 return -ENOMEM;
1606 }
1607
1608 late_initcall(fail_page_alloc_debugfs);
1609
1610 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611
1612 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613
1614 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1615 {
1616 return false;
1617 }
1618
1619 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1620
1621 /*
1622 * Return true if free pages are above 'mark'. This takes into account the order
1623 * of the allocation.
1624 */
1625 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 int classzone_idx, int alloc_flags, long free_pages)
1627 {
1628 /* free_pages my go negative - that's OK */
1629 long min = mark;
1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1631 int o;
1632
1633 free_pages -= (1 << order) - 1;
1634 if (alloc_flags & ALLOC_HIGH)
1635 min -= min / 2;
1636 if (alloc_flags & ALLOC_HARDER)
1637 min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1643 if (free_pages <= min + lowmem_reserve)
1644 return false;
1645 for (o = 0; o < order; o++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages -= z->free_area[o].nr_free << o;
1648
1649 /* Require fewer higher order pages to be free */
1650 min >>= 1;
1651
1652 if (free_pages <= min)
1653 return false;
1654 }
1655 return true;
1656 }
1657
1658 #ifdef CONFIG_MEMORY_ISOLATION
1659 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660 {
1661 if (unlikely(zone->nr_pageblock_isolate))
1662 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1663 return 0;
1664 }
1665 #else
1666 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1667 {
1668 return 0;
1669 }
1670 #endif
1671
1672 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674 {
1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 zone_page_state(z, NR_FREE_PAGES));
1677 }
1678
1679 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1680 int classzone_idx, int alloc_flags)
1681 {
1682 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1683
1684 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1685 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1686
1687 /*
1688 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1689 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1690 * sleep although it could do so. But this is more desirable for memory
1691 * hotplug than sleeping which can cause a livelock in the direct
1692 * reclaim path.
1693 */
1694 free_pages -= nr_zone_isolate_freepages(z);
1695 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1696 free_pages);
1697 }
1698
1699 #ifdef CONFIG_NUMA
1700 /*
1701 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1702 * skip over zones that are not allowed by the cpuset, or that have
1703 * been recently (in last second) found to be nearly full. See further
1704 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1705 * that have to skip over a lot of full or unallowed zones.
1706 *
1707 * If the zonelist cache is present in the passed in zonelist, then
1708 * returns a pointer to the allowed node mask (either the current
1709 * tasks mems_allowed, or node_states[N_MEMORY].)
1710 *
1711 * If the zonelist cache is not available for this zonelist, does
1712 * nothing and returns NULL.
1713 *
1714 * If the fullzones BITMAP in the zonelist cache is stale (more than
1715 * a second since last zap'd) then we zap it out (clear its bits.)
1716 *
1717 * We hold off even calling zlc_setup, until after we've checked the
1718 * first zone in the zonelist, on the theory that most allocations will
1719 * be satisfied from that first zone, so best to examine that zone as
1720 * quickly as we can.
1721 */
1722 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1723 {
1724 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1725 nodemask_t *allowednodes; /* zonelist_cache approximation */
1726
1727 zlc = zonelist->zlcache_ptr;
1728 if (!zlc)
1729 return NULL;
1730
1731 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1733 zlc->last_full_zap = jiffies;
1734 }
1735
1736 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1737 &cpuset_current_mems_allowed :
1738 &node_states[N_MEMORY];
1739 return allowednodes;
1740 }
1741
1742 /*
1743 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1744 * if it is worth looking at further for free memory:
1745 * 1) Check that the zone isn't thought to be full (doesn't have its
1746 * bit set in the zonelist_cache fullzones BITMAP).
1747 * 2) Check that the zones node (obtained from the zonelist_cache
1748 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1749 * Return true (non-zero) if zone is worth looking at further, or
1750 * else return false (zero) if it is not.
1751 *
1752 * This check -ignores- the distinction between various watermarks,
1753 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1754 * found to be full for any variation of these watermarks, it will
1755 * be considered full for up to one second by all requests, unless
1756 * we are so low on memory on all allowed nodes that we are forced
1757 * into the second scan of the zonelist.
1758 *
1759 * In the second scan we ignore this zonelist cache and exactly
1760 * apply the watermarks to all zones, even it is slower to do so.
1761 * We are low on memory in the second scan, and should leave no stone
1762 * unturned looking for a free page.
1763 */
1764 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1765 nodemask_t *allowednodes)
1766 {
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 int i; /* index of *z in zonelist zones */
1769 int n; /* node that zone *z is on */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return 1;
1774
1775 i = z - zonelist->_zonerefs;
1776 n = zlc->z_to_n[i];
1777
1778 /* This zone is worth trying if it is allowed but not full */
1779 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1780 }
1781
1782 /*
1783 * Given 'z' scanning a zonelist, set the corresponding bit in
1784 * zlc->fullzones, so that subsequent attempts to allocate a page
1785 * from that zone don't waste time re-examining it.
1786 */
1787 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1788 {
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790 int i; /* index of *z in zonelist zones */
1791
1792 zlc = zonelist->zlcache_ptr;
1793 if (!zlc)
1794 return;
1795
1796 i = z - zonelist->_zonerefs;
1797
1798 set_bit(i, zlc->fullzones);
1799 }
1800
1801 /*
1802 * clear all zones full, called after direct reclaim makes progress so that
1803 * a zone that was recently full is not skipped over for up to a second
1804 */
1805 static void zlc_clear_zones_full(struct zonelist *zonelist)
1806 {
1807 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1808
1809 zlc = zonelist->zlcache_ptr;
1810 if (!zlc)
1811 return;
1812
1813 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1814 }
1815
1816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1817 {
1818 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1819 }
1820
1821 static void __paginginit init_zone_allows_reclaim(int nid)
1822 {
1823 int i;
1824
1825 for_each_online_node(i)
1826 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1827 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1828 else
1829 zone_reclaim_mode = 1;
1830 }
1831
1832 #else /* CONFIG_NUMA */
1833
1834 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1835 {
1836 return NULL;
1837 }
1838
1839 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1840 nodemask_t *allowednodes)
1841 {
1842 return 1;
1843 }
1844
1845 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1846 {
1847 }
1848
1849 static void zlc_clear_zones_full(struct zonelist *zonelist)
1850 {
1851 }
1852
1853 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1854 {
1855 return true;
1856 }
1857
1858 static inline void init_zone_allows_reclaim(int nid)
1859 {
1860 }
1861 #endif /* CONFIG_NUMA */
1862
1863 /*
1864 * get_page_from_freelist goes through the zonelist trying to allocate
1865 * a page.
1866 */
1867 static struct page *
1868 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1869 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1870 struct zone *preferred_zone, int migratetype)
1871 {
1872 struct zoneref *z;
1873 struct page *page = NULL;
1874 int classzone_idx;
1875 struct zone *zone;
1876 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1877 int zlc_active = 0; /* set if using zonelist_cache */
1878 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1879
1880 classzone_idx = zone_idx(preferred_zone);
1881 zonelist_scan:
1882 /*
1883 * Scan zonelist, looking for a zone with enough free.
1884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1885 */
1886 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1887 high_zoneidx, nodemask) {
1888 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1889 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1890 continue;
1891 if ((alloc_flags & ALLOC_CPUSET) &&
1892 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1893 continue;
1894 /*
1895 * When allocating a page cache page for writing, we
1896 * want to get it from a zone that is within its dirty
1897 * limit, such that no single zone holds more than its
1898 * proportional share of globally allowed dirty pages.
1899 * The dirty limits take into account the zone's
1900 * lowmem reserves and high watermark so that kswapd
1901 * should be able to balance it without having to
1902 * write pages from its LRU list.
1903 *
1904 * This may look like it could increase pressure on
1905 * lower zones by failing allocations in higher zones
1906 * before they are full. But the pages that do spill
1907 * over are limited as the lower zones are protected
1908 * by this very same mechanism. It should not become
1909 * a practical burden to them.
1910 *
1911 * XXX: For now, allow allocations to potentially
1912 * exceed the per-zone dirty limit in the slowpath
1913 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1914 * which is important when on a NUMA setup the allowed
1915 * zones are together not big enough to reach the
1916 * global limit. The proper fix for these situations
1917 * will require awareness of zones in the
1918 * dirty-throttling and the flusher threads.
1919 */
1920 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1921 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1922 goto this_zone_full;
1923
1924 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1925 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1926 unsigned long mark;
1927 int ret;
1928
1929 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1930 if (zone_watermark_ok(zone, order, mark,
1931 classzone_idx, alloc_flags))
1932 goto try_this_zone;
1933
1934 if (IS_ENABLED(CONFIG_NUMA) &&
1935 !did_zlc_setup && nr_online_nodes > 1) {
1936 /*
1937 * we do zlc_setup if there are multiple nodes
1938 * and before considering the first zone allowed
1939 * by the cpuset.
1940 */
1941 allowednodes = zlc_setup(zonelist, alloc_flags);
1942 zlc_active = 1;
1943 did_zlc_setup = 1;
1944 }
1945
1946 if (zone_reclaim_mode == 0 ||
1947 !zone_allows_reclaim(preferred_zone, zone))
1948 goto this_zone_full;
1949
1950 /*
1951 * As we may have just activated ZLC, check if the first
1952 * eligible zone has failed zone_reclaim recently.
1953 */
1954 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1955 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1956 continue;
1957
1958 ret = zone_reclaim(zone, gfp_mask, order);
1959 switch (ret) {
1960 case ZONE_RECLAIM_NOSCAN:
1961 /* did not scan */
1962 continue;
1963 case ZONE_RECLAIM_FULL:
1964 /* scanned but unreclaimable */
1965 continue;
1966 default:
1967 /* did we reclaim enough */
1968 if (!zone_watermark_ok(zone, order, mark,
1969 classzone_idx, alloc_flags))
1970 goto this_zone_full;
1971 }
1972 }
1973
1974 try_this_zone:
1975 page = buffered_rmqueue(preferred_zone, zone, order,
1976 gfp_mask, migratetype);
1977 if (page)
1978 break;
1979 this_zone_full:
1980 if (IS_ENABLED(CONFIG_NUMA))
1981 zlc_mark_zone_full(zonelist, z);
1982 }
1983
1984 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1985 /* Disable zlc cache for second zonelist scan */
1986 zlc_active = 0;
1987 goto zonelist_scan;
1988 }
1989
1990 if (page)
1991 /*
1992 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1993 * necessary to allocate the page. The expectation is
1994 * that the caller is taking steps that will free more
1995 * memory. The caller should avoid the page being used
1996 * for !PFMEMALLOC purposes.
1997 */
1998 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1999
2000 return page;
2001 }
2002
2003 /*
2004 * Large machines with many possible nodes should not always dump per-node
2005 * meminfo in irq context.
2006 */
2007 static inline bool should_suppress_show_mem(void)
2008 {
2009 bool ret = false;
2010
2011 #if NODES_SHIFT > 8
2012 ret = in_interrupt();
2013 #endif
2014 return ret;
2015 }
2016
2017 static DEFINE_RATELIMIT_STATE(nopage_rs,
2018 DEFAULT_RATELIMIT_INTERVAL,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2022 {
2023 unsigned int filter = SHOW_MEM_FILTER_NODES;
2024
2025 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2026 debug_guardpage_minorder() > 0)
2027 return;
2028
2029 /*
2030 * This documents exceptions given to allocations in certain
2031 * contexts that are allowed to allocate outside current's set
2032 * of allowed nodes.
2033 */
2034 if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 if (test_thread_flag(TIF_MEMDIE) ||
2036 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2037 filter &= ~SHOW_MEM_FILTER_NODES;
2038 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2039 filter &= ~SHOW_MEM_FILTER_NODES;
2040
2041 if (fmt) {
2042 struct va_format vaf;
2043 va_list args;
2044
2045 va_start(args, fmt);
2046
2047 vaf.fmt = fmt;
2048 vaf.va = &args;
2049
2050 pr_warn("%pV", &vaf);
2051
2052 va_end(args);
2053 }
2054
2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 current->comm, order, gfp_mask);
2057
2058 dump_stack();
2059 if (!should_suppress_show_mem())
2060 show_mem(filter);
2061 }
2062
2063 static inline int
2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2065 unsigned long did_some_progress,
2066 unsigned long pages_reclaimed)
2067 {
2068 /* Do not loop if specifically requested */
2069 if (gfp_mask & __GFP_NORETRY)
2070 return 0;
2071
2072 /* Always retry if specifically requested */
2073 if (gfp_mask & __GFP_NOFAIL)
2074 return 1;
2075
2076 /*
2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 * making forward progress without invoking OOM. Suspend also disables
2079 * storage devices so kswapd will not help. Bail if we are suspending.
2080 */
2081 if (!did_some_progress && pm_suspended_storage())
2082 return 0;
2083
2084 /*
2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 * means __GFP_NOFAIL, but that may not be true in other
2087 * implementations.
2088 */
2089 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2090 return 1;
2091
2092 /*
2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 * specified, then we retry until we no longer reclaim any pages
2095 * (above), or we've reclaimed an order of pages at least as
2096 * large as the allocation's order. In both cases, if the
2097 * allocation still fails, we stop retrying.
2098 */
2099 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2100 return 1;
2101
2102 return 0;
2103 }
2104
2105 static inline struct page *
2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2107 struct zonelist *zonelist, enum zone_type high_zoneidx,
2108 nodemask_t *nodemask, struct zone *preferred_zone,
2109 int migratetype)
2110 {
2111 struct page *page;
2112
2113 /* Acquire the OOM killer lock for the zones in zonelist */
2114 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2115 schedule_timeout_uninterruptible(1);
2116 return NULL;
2117 }
2118
2119 /*
2120 * Go through the zonelist yet one more time, keep very high watermark
2121 * here, this is only to catch a parallel oom killing, we must fail if
2122 * we're still under heavy pressure.
2123 */
2124 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2125 order, zonelist, high_zoneidx,
2126 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2127 preferred_zone, migratetype);
2128 if (page)
2129 goto out;
2130
2131 if (!(gfp_mask & __GFP_NOFAIL)) {
2132 /* The OOM killer will not help higher order allocs */
2133 if (order > PAGE_ALLOC_COSTLY_ORDER)
2134 goto out;
2135 /* The OOM killer does not needlessly kill tasks for lowmem */
2136 if (high_zoneidx < ZONE_NORMAL)
2137 goto out;
2138 /*
2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 * The caller should handle page allocation failure by itself if
2142 * it specifies __GFP_THISNODE.
2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2144 */
2145 if (gfp_mask & __GFP_THISNODE)
2146 goto out;
2147 }
2148 /* Exhausted what can be done so it's blamo time */
2149 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2150
2151 out:
2152 clear_zonelist_oom(zonelist, gfp_mask);
2153 return page;
2154 }
2155
2156 #ifdef CONFIG_COMPACTION
2157 /* Try memory compaction for high-order allocations before reclaim */
2158 static struct page *
2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2160 struct zonelist *zonelist, enum zone_type high_zoneidx,
2161 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2162 int migratetype, bool sync_migration,
2163 bool *contended_compaction, bool *deferred_compaction,
2164 unsigned long *did_some_progress)
2165 {
2166 struct page *page = NULL;
2167
2168 if (!order)
2169 return NULL;
2170
2171 if (compaction_deferred(preferred_zone, order)) {
2172 *deferred_compaction = true;
2173 return NULL;
2174 }
2175
2176 current->flags |= PF_MEMALLOC;
2177 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2178 nodemask, sync_migration,
2179 contended_compaction, &page);
2180 current->flags &= ~PF_MEMALLOC;
2181
2182 /* If compaction captured a page, prep and use it */
2183 if (page) {
2184 prep_new_page(page, order, gfp_mask);
2185 goto got_page;
2186 }
2187
2188 if (*did_some_progress != COMPACT_SKIPPED) {
2189 /* Page migration frees to the PCP lists but we want merging */
2190 drain_pages(get_cpu());
2191 put_cpu();
2192
2193 page = get_page_from_freelist(gfp_mask, nodemask,
2194 order, zonelist, high_zoneidx,
2195 alloc_flags & ~ALLOC_NO_WATERMARKS,
2196 preferred_zone, migratetype);
2197 if (page) {
2198 got_page:
2199 preferred_zone->compact_blockskip_flush = false;
2200 preferred_zone->compact_considered = 0;
2201 preferred_zone->compact_defer_shift = 0;
2202 if (order >= preferred_zone->compact_order_failed)
2203 preferred_zone->compact_order_failed = order + 1;
2204 count_vm_event(COMPACTSUCCESS);
2205 return page;
2206 }
2207
2208 /*
2209 * It's bad if compaction run occurs and fails.
2210 * The most likely reason is that pages exist,
2211 * but not enough to satisfy watermarks.
2212 */
2213 count_vm_event(COMPACTFAIL);
2214
2215 /*
2216 * As async compaction considers a subset of pageblocks, only
2217 * defer if the failure was a sync compaction failure.
2218 */
2219 if (sync_migration)
2220 defer_compaction(preferred_zone, order);
2221
2222 cond_resched();
2223 }
2224
2225 return NULL;
2226 }
2227 #else
2228 static inline struct page *
2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 int migratetype, bool sync_migration,
2233 bool *contended_compaction, bool *deferred_compaction,
2234 unsigned long *did_some_progress)
2235 {
2236 return NULL;
2237 }
2238 #endif /* CONFIG_COMPACTION */
2239
2240 /* Perform direct synchronous page reclaim */
2241 static int
2242 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2243 nodemask_t *nodemask)
2244 {
2245 struct reclaim_state reclaim_state;
2246 int progress;
2247
2248 cond_resched();
2249
2250 /* We now go into synchronous reclaim */
2251 cpuset_memory_pressure_bump();
2252 current->flags |= PF_MEMALLOC;
2253 lockdep_set_current_reclaim_state(gfp_mask);
2254 reclaim_state.reclaimed_slab = 0;
2255 current->reclaim_state = &reclaim_state;
2256
2257 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2258
2259 current->reclaim_state = NULL;
2260 lockdep_clear_current_reclaim_state();
2261 current->flags &= ~PF_MEMALLOC;
2262
2263 cond_resched();
2264
2265 return progress;
2266 }
2267
2268 /* The really slow allocator path where we enter direct reclaim */
2269 static inline struct page *
2270 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2273 int migratetype, unsigned long *did_some_progress)
2274 {
2275 struct page *page = NULL;
2276 bool drained = false;
2277
2278 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2279 nodemask);
2280 if (unlikely(!(*did_some_progress)))
2281 return NULL;
2282
2283 /* After successful reclaim, reconsider all zones for allocation */
2284 if (IS_ENABLED(CONFIG_NUMA))
2285 zlc_clear_zones_full(zonelist);
2286
2287 retry:
2288 page = get_page_from_freelist(gfp_mask, nodemask, order,
2289 zonelist, high_zoneidx,
2290 alloc_flags & ~ALLOC_NO_WATERMARKS,
2291 preferred_zone, migratetype);
2292
2293 /*
2294 * If an allocation failed after direct reclaim, it could be because
2295 * pages are pinned on the per-cpu lists. Drain them and try again
2296 */
2297 if (!page && !drained) {
2298 drain_all_pages();
2299 drained = true;
2300 goto retry;
2301 }
2302
2303 return page;
2304 }
2305
2306 /*
2307 * This is called in the allocator slow-path if the allocation request is of
2308 * sufficient urgency to ignore watermarks and take other desperate measures
2309 */
2310 static inline struct page *
2311 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2312 struct zonelist *zonelist, enum zone_type high_zoneidx,
2313 nodemask_t *nodemask, struct zone *preferred_zone,
2314 int migratetype)
2315 {
2316 struct page *page;
2317
2318 do {
2319 page = get_page_from_freelist(gfp_mask, nodemask, order,
2320 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2321 preferred_zone, migratetype);
2322
2323 if (!page && gfp_mask & __GFP_NOFAIL)
2324 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2325 } while (!page && (gfp_mask & __GFP_NOFAIL));
2326
2327 return page;
2328 }
2329
2330 static inline
2331 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2332 enum zone_type high_zoneidx,
2333 enum zone_type classzone_idx)
2334 {
2335 struct zoneref *z;
2336 struct zone *zone;
2337
2338 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2339 wakeup_kswapd(zone, order, classzone_idx);
2340 }
2341
2342 static inline int
2343 gfp_to_alloc_flags(gfp_t gfp_mask)
2344 {
2345 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2346 const gfp_t wait = gfp_mask & __GFP_WAIT;
2347
2348 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2349 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2350
2351 /*
2352 * The caller may dip into page reserves a bit more if the caller
2353 * cannot run direct reclaim, or if the caller has realtime scheduling
2354 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2355 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2356 */
2357 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2358
2359 if (!wait) {
2360 /*
2361 * Not worth trying to allocate harder for
2362 * __GFP_NOMEMALLOC even if it can't schedule.
2363 */
2364 if (!(gfp_mask & __GFP_NOMEMALLOC))
2365 alloc_flags |= ALLOC_HARDER;
2366 /*
2367 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2368 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2369 */
2370 alloc_flags &= ~ALLOC_CPUSET;
2371 } else if (unlikely(rt_task(current)) && !in_interrupt())
2372 alloc_flags |= ALLOC_HARDER;
2373
2374 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2375 if (gfp_mask & __GFP_MEMALLOC)
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
2377 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2378 alloc_flags |= ALLOC_NO_WATERMARKS;
2379 else if (!in_interrupt() &&
2380 ((current->flags & PF_MEMALLOC) ||
2381 unlikely(test_thread_flag(TIF_MEMDIE))))
2382 alloc_flags |= ALLOC_NO_WATERMARKS;
2383 }
2384 #ifdef CONFIG_CMA
2385 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2386 alloc_flags |= ALLOC_CMA;
2387 #endif
2388 return alloc_flags;
2389 }
2390
2391 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2392 {
2393 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2394 }
2395
2396 static inline struct page *
2397 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2398 struct zonelist *zonelist, enum zone_type high_zoneidx,
2399 nodemask_t *nodemask, struct zone *preferred_zone,
2400 int migratetype)
2401 {
2402 const gfp_t wait = gfp_mask & __GFP_WAIT;
2403 struct page *page = NULL;
2404 int alloc_flags;
2405 unsigned long pages_reclaimed = 0;
2406 unsigned long did_some_progress;
2407 bool sync_migration = false;
2408 bool deferred_compaction = false;
2409 bool contended_compaction = false;
2410
2411 /*
2412 * In the slowpath, we sanity check order to avoid ever trying to
2413 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2414 * be using allocators in order of preference for an area that is
2415 * too large.
2416 */
2417 if (order >= MAX_ORDER) {
2418 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2419 return NULL;
2420 }
2421
2422 /*
2423 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2424 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2425 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2426 * using a larger set of nodes after it has established that the
2427 * allowed per node queues are empty and that nodes are
2428 * over allocated.
2429 */
2430 if (IS_ENABLED(CONFIG_NUMA) &&
2431 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2432 goto nopage;
2433
2434 restart:
2435 if (!(gfp_mask & __GFP_NO_KSWAPD))
2436 wake_all_kswapd(order, zonelist, high_zoneidx,
2437 zone_idx(preferred_zone));
2438
2439 /*
2440 * OK, we're below the kswapd watermark and have kicked background
2441 * reclaim. Now things get more complex, so set up alloc_flags according
2442 * to how we want to proceed.
2443 */
2444 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2445
2446 /*
2447 * Find the true preferred zone if the allocation is unconstrained by
2448 * cpusets.
2449 */
2450 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2451 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2452 &preferred_zone);
2453
2454 rebalance:
2455 /* This is the last chance, in general, before the goto nopage. */
2456 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2457 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2458 preferred_zone, migratetype);
2459 if (page)
2460 goto got_pg;
2461
2462 /* Allocate without watermarks if the context allows */
2463 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2464 /*
2465 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2466 * the allocation is high priority and these type of
2467 * allocations are system rather than user orientated
2468 */
2469 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2470
2471 page = __alloc_pages_high_priority(gfp_mask, order,
2472 zonelist, high_zoneidx, nodemask,
2473 preferred_zone, migratetype);
2474 if (page) {
2475 goto got_pg;
2476 }
2477 }
2478
2479 /* Atomic allocations - we can't balance anything */
2480 if (!wait)
2481 goto nopage;
2482
2483 /* Avoid recursion of direct reclaim */
2484 if (current->flags & PF_MEMALLOC)
2485 goto nopage;
2486
2487 /* Avoid allocations with no watermarks from looping endlessly */
2488 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2489 goto nopage;
2490
2491 /*
2492 * Try direct compaction. The first pass is asynchronous. Subsequent
2493 * attempts after direct reclaim are synchronous
2494 */
2495 page = __alloc_pages_direct_compact(gfp_mask, order,
2496 zonelist, high_zoneidx,
2497 nodemask,
2498 alloc_flags, preferred_zone,
2499 migratetype, sync_migration,
2500 &contended_compaction,
2501 &deferred_compaction,
2502 &did_some_progress);
2503 if (page)
2504 goto got_pg;
2505 sync_migration = true;
2506
2507 /*
2508 * If compaction is deferred for high-order allocations, it is because
2509 * sync compaction recently failed. In this is the case and the caller
2510 * requested a movable allocation that does not heavily disrupt the
2511 * system then fail the allocation instead of entering direct reclaim.
2512 */
2513 if ((deferred_compaction || contended_compaction) &&
2514 (gfp_mask & __GFP_NO_KSWAPD))
2515 goto nopage;
2516
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
2521 alloc_flags, preferred_zone,
2522 migratetype, &did_some_progress);
2523 if (page)
2524 goto got_pg;
2525
2526 /*
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
2529 */
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2532 if (oom_killer_disabled)
2533 goto nopage;
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask, preferred_zone,
2541 migratetype);
2542 if (page)
2543 goto got_pg;
2544
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
2562
2563 goto restart;
2564 }
2565 }
2566
2567 /* Check if we should retry the allocation */
2568 pages_reclaimed += did_some_progress;
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
2571 /* Wait for some write requests to complete then retry */
2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2573 goto rebalance;
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, sync_migration,
2585 &contended_compaction,
2586 &deferred_compaction,
2587 &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590 }
2591
2592 nopage:
2593 warn_alloc_failed(gfp_mask, order, NULL);
2594 return page;
2595 got_pg:
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2598
2599 return page;
2600 }
2601
2602 /*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605 struct page *
2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608 {
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2610 struct zone *preferred_zone;
2611 struct page *page = NULL;
2612 int migratetype = allocflags_to_migratetype(gfp_mask);
2613 unsigned int cpuset_mems_cookie;
2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2615 struct mem_cgroup *memcg = NULL;
2616
2617 gfp_mask &= gfp_allowed_mask;
2618
2619 lockdep_trace_alloc(gfp_mask);
2620
2621 might_sleep_if(gfp_mask & __GFP_WAIT);
2622
2623 if (should_fail_alloc_page(gfp_mask, order))
2624 return NULL;
2625
2626 /*
2627 * Check the zones suitable for the gfp_mask contain at least one
2628 * valid zone. It's possible to have an empty zonelist as a result
2629 * of GFP_THISNODE and a memoryless node
2630 */
2631 if (unlikely(!zonelist->_zonerefs->zone))
2632 return NULL;
2633
2634 /*
2635 * Will only have any effect when __GFP_KMEMCG is set. This is
2636 * verified in the (always inline) callee
2637 */
2638 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2639 return NULL;
2640
2641 retry_cpuset:
2642 cpuset_mems_cookie = get_mems_allowed();
2643
2644 /* The preferred zone is used for statistics later */
2645 first_zones_zonelist(zonelist, high_zoneidx,
2646 nodemask ? : &cpuset_current_mems_allowed,
2647 &preferred_zone);
2648 if (!preferred_zone)
2649 goto out;
2650
2651 #ifdef CONFIG_CMA
2652 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2653 alloc_flags |= ALLOC_CMA;
2654 #endif
2655 /* First allocation attempt */
2656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2657 zonelist, high_zoneidx, alloc_flags,
2658 preferred_zone, migratetype);
2659 if (unlikely(!page))
2660 page = __alloc_pages_slowpath(gfp_mask, order,
2661 zonelist, high_zoneidx, nodemask,
2662 preferred_zone, migratetype);
2663
2664 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2665
2666 out:
2667 /*
2668 * When updating a task's mems_allowed, it is possible to race with
2669 * parallel threads in such a way that an allocation can fail while
2670 * the mask is being updated. If a page allocation is about to fail,
2671 * check if the cpuset changed during allocation and if so, retry.
2672 */
2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2674 goto retry_cpuset;
2675
2676 memcg_kmem_commit_charge(page, memcg, order);
2677
2678 return page;
2679 }
2680 EXPORT_SYMBOL(__alloc_pages_nodemask);
2681
2682 /*
2683 * Common helper functions.
2684 */
2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2686 {
2687 struct page *page;
2688
2689 /*
2690 * __get_free_pages() returns a 32-bit address, which cannot represent
2691 * a highmem page
2692 */
2693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2694
2695 page = alloc_pages(gfp_mask, order);
2696 if (!page)
2697 return 0;
2698 return (unsigned long) page_address(page);
2699 }
2700 EXPORT_SYMBOL(__get_free_pages);
2701
2702 unsigned long get_zeroed_page(gfp_t gfp_mask)
2703 {
2704 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2705 }
2706 EXPORT_SYMBOL(get_zeroed_page);
2707
2708 void __free_pages(struct page *page, unsigned int order)
2709 {
2710 if (put_page_testzero(page)) {
2711 if (order == 0)
2712 free_hot_cold_page(page, 0);
2713 else
2714 __free_pages_ok(page, order);
2715 }
2716 }
2717
2718 EXPORT_SYMBOL(__free_pages);
2719
2720 void free_pages(unsigned long addr, unsigned int order)
2721 {
2722 if (addr != 0) {
2723 VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 __free_pages(virt_to_page((void *)addr), order);
2725 }
2726 }
2727
2728 EXPORT_SYMBOL(free_pages);
2729
2730 /*
2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732 * pages allocated with __GFP_KMEMCG.
2733 *
2734 * Those pages are accounted to a particular memcg, embedded in the
2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736 * for that information only to find out that it is NULL for users who have no
2737 * interest in that whatsoever, we provide these functions.
2738 *
2739 * The caller knows better which flags it relies on.
2740 */
2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2742 {
2743 memcg_kmem_uncharge_pages(page, order);
2744 __free_pages(page, order);
2745 }
2746
2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2748 {
2749 if (addr != 0) {
2750 VM_BUG_ON(!virt_addr_valid((void *)addr));
2751 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2752 }
2753 }
2754
2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2756 {
2757 if (addr) {
2758 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2759 unsigned long used = addr + PAGE_ALIGN(size);
2760
2761 split_page(virt_to_page((void *)addr), order);
2762 while (used < alloc_end) {
2763 free_page(used);
2764 used += PAGE_SIZE;
2765 }
2766 }
2767 return (void *)addr;
2768 }
2769
2770 /**
2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2774 *
2775 * This function is similar to alloc_pages(), except that it allocates the
2776 * minimum number of pages to satisfy the request. alloc_pages() can only
2777 * allocate memory in power-of-two pages.
2778 *
2779 * This function is also limited by MAX_ORDER.
2780 *
2781 * Memory allocated by this function must be released by free_pages_exact().
2782 */
2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2784 {
2785 unsigned int order = get_order(size);
2786 unsigned long addr;
2787
2788 addr = __get_free_pages(gfp_mask, order);
2789 return make_alloc_exact(addr, order, size);
2790 }
2791 EXPORT_SYMBOL(alloc_pages_exact);
2792
2793 /**
2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2795 * pages on a node.
2796 * @nid: the preferred node ID where memory should be allocated
2797 * @size: the number of bytes to allocate
2798 * @gfp_mask: GFP flags for the allocation
2799 *
2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2801 * back.
2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2803 * but is not exact.
2804 */
2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2806 {
2807 unsigned order = get_order(size);
2808 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2809 if (!p)
2810 return NULL;
2811 return make_alloc_exact((unsigned long)page_address(p), order, size);
2812 }
2813 EXPORT_SYMBOL(alloc_pages_exact_nid);
2814
2815 /**
2816 * free_pages_exact - release memory allocated via alloc_pages_exact()
2817 * @virt: the value returned by alloc_pages_exact.
2818 * @size: size of allocation, same value as passed to alloc_pages_exact().
2819 *
2820 * Release the memory allocated by a previous call to alloc_pages_exact.
2821 */
2822 void free_pages_exact(void *virt, size_t size)
2823 {
2824 unsigned long addr = (unsigned long)virt;
2825 unsigned long end = addr + PAGE_ALIGN(size);
2826
2827 while (addr < end) {
2828 free_page(addr);
2829 addr += PAGE_SIZE;
2830 }
2831 }
2832 EXPORT_SYMBOL(free_pages_exact);
2833
2834 static unsigned int nr_free_zone_pages(int offset)
2835 {
2836 struct zoneref *z;
2837 struct zone *zone;
2838
2839 /* Just pick one node, since fallback list is circular */
2840 unsigned int sum = 0;
2841
2842 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2843
2844 for_each_zone_zonelist(zone, z, zonelist, offset) {
2845 unsigned long size = zone->present_pages;
2846 unsigned long high = high_wmark_pages(zone);
2847 if (size > high)
2848 sum += size - high;
2849 }
2850
2851 return sum;
2852 }
2853
2854 /*
2855 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2856 */
2857 unsigned int nr_free_buffer_pages(void)
2858 {
2859 return nr_free_zone_pages(gfp_zone(GFP_USER));
2860 }
2861 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2862
2863 /*
2864 * Amount of free RAM allocatable within all zones
2865 */
2866 unsigned int nr_free_pagecache_pages(void)
2867 {
2868 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2869 }
2870
2871 static inline void show_node(struct zone *zone)
2872 {
2873 if (IS_ENABLED(CONFIG_NUMA))
2874 printk("Node %d ", zone_to_nid(zone));
2875 }
2876
2877 void si_meminfo(struct sysinfo *val)
2878 {
2879 val->totalram = totalram_pages;
2880 val->sharedram = 0;
2881 val->freeram = global_page_state(NR_FREE_PAGES);
2882 val->bufferram = nr_blockdev_pages();
2883 val->totalhigh = totalhigh_pages;
2884 val->freehigh = nr_free_highpages();
2885 val->mem_unit = PAGE_SIZE;
2886 }
2887
2888 EXPORT_SYMBOL(si_meminfo);
2889
2890 #ifdef CONFIG_NUMA
2891 void si_meminfo_node(struct sysinfo *val, int nid)
2892 {
2893 pg_data_t *pgdat = NODE_DATA(nid);
2894
2895 val->totalram = pgdat->node_present_pages;
2896 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2897 #ifdef CONFIG_HIGHMEM
2898 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2899 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2900 NR_FREE_PAGES);
2901 #else
2902 val->totalhigh = 0;
2903 val->freehigh = 0;
2904 #endif
2905 val->mem_unit = PAGE_SIZE;
2906 }
2907 #endif
2908
2909 /*
2910 * Determine whether the node should be displayed or not, depending on whether
2911 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2912 */
2913 bool skip_free_areas_node(unsigned int flags, int nid)
2914 {
2915 bool ret = false;
2916 unsigned int cpuset_mems_cookie;
2917
2918 if (!(flags & SHOW_MEM_FILTER_NODES))
2919 goto out;
2920
2921 do {
2922 cpuset_mems_cookie = get_mems_allowed();
2923 ret = !node_isset(nid, cpuset_current_mems_allowed);
2924 } while (!put_mems_allowed(cpuset_mems_cookie));
2925 out:
2926 return ret;
2927 }
2928
2929 #define K(x) ((x) << (PAGE_SHIFT-10))
2930
2931 static void show_migration_types(unsigned char type)
2932 {
2933 static const char types[MIGRATE_TYPES] = {
2934 [MIGRATE_UNMOVABLE] = 'U',
2935 [MIGRATE_RECLAIMABLE] = 'E',
2936 [MIGRATE_MOVABLE] = 'M',
2937 [MIGRATE_RESERVE] = 'R',
2938 #ifdef CONFIG_CMA
2939 [MIGRATE_CMA] = 'C',
2940 #endif
2941 [MIGRATE_ISOLATE] = 'I',
2942 };
2943 char tmp[MIGRATE_TYPES + 1];
2944 char *p = tmp;
2945 int i;
2946
2947 for (i = 0; i < MIGRATE_TYPES; i++) {
2948 if (type & (1 << i))
2949 *p++ = types[i];
2950 }
2951
2952 *p = '\0';
2953 printk("(%s) ", tmp);
2954 }
2955
2956 /*
2957 * Show free area list (used inside shift_scroll-lock stuff)
2958 * We also calculate the percentage fragmentation. We do this by counting the
2959 * memory on each free list with the exception of the first item on the list.
2960 * Suppresses nodes that are not allowed by current's cpuset if
2961 * SHOW_MEM_FILTER_NODES is passed.
2962 */
2963 void show_free_areas(unsigned int filter)
2964 {
2965 int cpu;
2966 struct zone *zone;
2967
2968 for_each_populated_zone(zone) {
2969 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2970 continue;
2971 show_node(zone);
2972 printk("%s per-cpu:\n", zone->name);
2973
2974 for_each_online_cpu(cpu) {
2975 struct per_cpu_pageset *pageset;
2976
2977 pageset = per_cpu_ptr(zone->pageset, cpu);
2978
2979 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2980 cpu, pageset->pcp.high,
2981 pageset->pcp.batch, pageset->pcp.count);
2982 }
2983 }
2984
2985 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2986 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2987 " unevictable:%lu"
2988 " dirty:%lu writeback:%lu unstable:%lu\n"
2989 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2990 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2991 " free_cma:%lu\n",
2992 global_page_state(NR_ACTIVE_ANON),
2993 global_page_state(NR_INACTIVE_ANON),
2994 global_page_state(NR_ISOLATED_ANON),
2995 global_page_state(NR_ACTIVE_FILE),
2996 global_page_state(NR_INACTIVE_FILE),
2997 global_page_state(NR_ISOLATED_FILE),
2998 global_page_state(NR_UNEVICTABLE),
2999 global_page_state(NR_FILE_DIRTY),
3000 global_page_state(NR_WRITEBACK),
3001 global_page_state(NR_UNSTABLE_NFS),
3002 global_page_state(NR_FREE_PAGES),
3003 global_page_state(NR_SLAB_RECLAIMABLE),
3004 global_page_state(NR_SLAB_UNRECLAIMABLE),
3005 global_page_state(NR_FILE_MAPPED),
3006 global_page_state(NR_SHMEM),
3007 global_page_state(NR_PAGETABLE),
3008 global_page_state(NR_BOUNCE),
3009 global_page_state(NR_FREE_CMA_PAGES));
3010
3011 for_each_populated_zone(zone) {
3012 int i;
3013
3014 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3015 continue;
3016 show_node(zone);
3017 printk("%s"
3018 " free:%lukB"
3019 " min:%lukB"
3020 " low:%lukB"
3021 " high:%lukB"
3022 " active_anon:%lukB"
3023 " inactive_anon:%lukB"
3024 " active_file:%lukB"
3025 " inactive_file:%lukB"
3026 " unevictable:%lukB"
3027 " isolated(anon):%lukB"
3028 " isolated(file):%lukB"
3029 " present:%lukB"
3030 " managed:%lukB"
3031 " mlocked:%lukB"
3032 " dirty:%lukB"
3033 " writeback:%lukB"
3034 " mapped:%lukB"
3035 " shmem:%lukB"
3036 " slab_reclaimable:%lukB"
3037 " slab_unreclaimable:%lukB"
3038 " kernel_stack:%lukB"
3039 " pagetables:%lukB"
3040 " unstable:%lukB"
3041 " bounce:%lukB"
3042 " free_cma:%lukB"
3043 " writeback_tmp:%lukB"
3044 " pages_scanned:%lu"
3045 " all_unreclaimable? %s"
3046 "\n",
3047 zone->name,
3048 K(zone_page_state(zone, NR_FREE_PAGES)),
3049 K(min_wmark_pages(zone)),
3050 K(low_wmark_pages(zone)),
3051 K(high_wmark_pages(zone)),
3052 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3053 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3054 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3055 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3056 K(zone_page_state(zone, NR_UNEVICTABLE)),
3057 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3058 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3059 K(zone->present_pages),
3060 K(zone->managed_pages),
3061 K(zone_page_state(zone, NR_MLOCK)),
3062 K(zone_page_state(zone, NR_FILE_DIRTY)),
3063 K(zone_page_state(zone, NR_WRITEBACK)),
3064 K(zone_page_state(zone, NR_FILE_MAPPED)),
3065 K(zone_page_state(zone, NR_SHMEM)),
3066 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3067 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3068 zone_page_state(zone, NR_KERNEL_STACK) *
3069 THREAD_SIZE / 1024,
3070 K(zone_page_state(zone, NR_PAGETABLE)),
3071 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3072 K(zone_page_state(zone, NR_BOUNCE)),
3073 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3074 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3075 zone->pages_scanned,
3076 (zone->all_unreclaimable ? "yes" : "no")
3077 );
3078 printk("lowmem_reserve[]:");
3079 for (i = 0; i < MAX_NR_ZONES; i++)
3080 printk(" %lu", zone->lowmem_reserve[i]);
3081 printk("\n");
3082 }
3083
3084 for_each_populated_zone(zone) {
3085 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3086 unsigned char types[MAX_ORDER];
3087
3088 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3089 continue;
3090 show_node(zone);
3091 printk("%s: ", zone->name);
3092
3093 spin_lock_irqsave(&zone->lock, flags);
3094 for (order = 0; order < MAX_ORDER; order++) {
3095 struct free_area *area = &zone->free_area[order];
3096 int type;
3097
3098 nr[order] = area->nr_free;
3099 total += nr[order] << order;
3100
3101 types[order] = 0;
3102 for (type = 0; type < MIGRATE_TYPES; type++) {
3103 if (!list_empty(&area->free_list[type]))
3104 types[order] |= 1 << type;
3105 }
3106 }
3107 spin_unlock_irqrestore(&zone->lock, flags);
3108 for (order = 0; order < MAX_ORDER; order++) {
3109 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3110 if (nr[order])
3111 show_migration_types(types[order]);
3112 }
3113 printk("= %lukB\n", K(total));
3114 }
3115
3116 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3117
3118 show_swap_cache_info();
3119 }
3120
3121 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3122 {
3123 zoneref->zone = zone;
3124 zoneref->zone_idx = zone_idx(zone);
3125 }
3126
3127 /*
3128 * Builds allocation fallback zone lists.
3129 *
3130 * Add all populated zones of a node to the zonelist.
3131 */
3132 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3133 int nr_zones, enum zone_type zone_type)
3134 {
3135 struct zone *zone;
3136
3137 BUG_ON(zone_type >= MAX_NR_ZONES);
3138 zone_type++;
3139
3140 do {
3141 zone_type--;
3142 zone = pgdat->node_zones + zone_type;
3143 if (populated_zone(zone)) {
3144 zoneref_set_zone(zone,
3145 &zonelist->_zonerefs[nr_zones++]);
3146 check_highest_zone(zone_type);
3147 }
3148
3149 } while (zone_type);
3150 return nr_zones;
3151 }
3152
3153
3154 /*
3155 * zonelist_order:
3156 * 0 = automatic detection of better ordering.
3157 * 1 = order by ([node] distance, -zonetype)
3158 * 2 = order by (-zonetype, [node] distance)
3159 *
3160 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3161 * the same zonelist. So only NUMA can configure this param.
3162 */
3163 #define ZONELIST_ORDER_DEFAULT 0
3164 #define ZONELIST_ORDER_NODE 1
3165 #define ZONELIST_ORDER_ZONE 2
3166
3167 /* zonelist order in the kernel.
3168 * set_zonelist_order() will set this to NODE or ZONE.
3169 */
3170 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3171 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3172
3173
3174 #ifdef CONFIG_NUMA
3175 /* The value user specified ....changed by config */
3176 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177 /* string for sysctl */
3178 #define NUMA_ZONELIST_ORDER_LEN 16
3179 char numa_zonelist_order[16] = "default";
3180
3181 /*
3182 * interface for configure zonelist ordering.
3183 * command line option "numa_zonelist_order"
3184 * = "[dD]efault - default, automatic configuration.
3185 * = "[nN]ode - order by node locality, then by zone within node
3186 * = "[zZ]one - order by zone, then by locality within zone
3187 */
3188
3189 static int __parse_numa_zonelist_order(char *s)
3190 {
3191 if (*s == 'd' || *s == 'D') {
3192 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193 } else if (*s == 'n' || *s == 'N') {
3194 user_zonelist_order = ZONELIST_ORDER_NODE;
3195 } else if (*s == 'z' || *s == 'Z') {
3196 user_zonelist_order = ZONELIST_ORDER_ZONE;
3197 } else {
3198 printk(KERN_WARNING
3199 "Ignoring invalid numa_zonelist_order value: "
3200 "%s\n", s);
3201 return -EINVAL;
3202 }
3203 return 0;
3204 }
3205
3206 static __init int setup_numa_zonelist_order(char *s)
3207 {
3208 int ret;
3209
3210 if (!s)
3211 return 0;
3212
3213 ret = __parse_numa_zonelist_order(s);
3214 if (ret == 0)
3215 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3216
3217 return ret;
3218 }
3219 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3220
3221 /*
3222 * sysctl handler for numa_zonelist_order
3223 */
3224 int numa_zonelist_order_handler(ctl_table *table, int write,
3225 void __user *buffer, size_t *length,
3226 loff_t *ppos)
3227 {
3228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3229 int ret;
3230 static DEFINE_MUTEX(zl_order_mutex);
3231
3232 mutex_lock(&zl_order_mutex);
3233 if (write)
3234 strcpy(saved_string, (char*)table->data);
3235 ret = proc_dostring(table, write, buffer, length, ppos);
3236 if (ret)
3237 goto out;
3238 if (write) {
3239 int oldval = user_zonelist_order;
3240 if (__parse_numa_zonelist_order((char*)table->data)) {
3241 /*
3242 * bogus value. restore saved string
3243 */
3244 strncpy((char*)table->data, saved_string,
3245 NUMA_ZONELIST_ORDER_LEN);
3246 user_zonelist_order = oldval;
3247 } else if (oldval != user_zonelist_order) {
3248 mutex_lock(&zonelists_mutex);
3249 build_all_zonelists(NULL, NULL);
3250 mutex_unlock(&zonelists_mutex);
3251 }
3252 }
3253 out:
3254 mutex_unlock(&zl_order_mutex);
3255 return ret;
3256 }
3257
3258
3259 #define MAX_NODE_LOAD (nr_online_nodes)
3260 static int node_load[MAX_NUMNODES];
3261
3262 /**
3263 * find_next_best_node - find the next node that should appear in a given node's fallback list
3264 * @node: node whose fallback list we're appending
3265 * @used_node_mask: nodemask_t of already used nodes
3266 *
3267 * We use a number of factors to determine which is the next node that should
3268 * appear on a given node's fallback list. The node should not have appeared
3269 * already in @node's fallback list, and it should be the next closest node
3270 * according to the distance array (which contains arbitrary distance values
3271 * from each node to each node in the system), and should also prefer nodes
3272 * with no CPUs, since presumably they'll have very little allocation pressure
3273 * on them otherwise.
3274 * It returns -1 if no node is found.
3275 */
3276 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3277 {
3278 int n, val;
3279 int min_val = INT_MAX;
3280 int best_node = -1;
3281 const struct cpumask *tmp = cpumask_of_node(0);
3282
3283 /* Use the local node if we haven't already */
3284 if (!node_isset(node, *used_node_mask)) {
3285 node_set(node, *used_node_mask);
3286 return node;
3287 }
3288
3289 for_each_node_state(n, N_MEMORY) {
3290
3291 /* Don't want a node to appear more than once */
3292 if (node_isset(n, *used_node_mask))
3293 continue;
3294
3295 /* Use the distance array to find the distance */
3296 val = node_distance(node, n);
3297
3298 /* Penalize nodes under us ("prefer the next node") */
3299 val += (n < node);
3300
3301 /* Give preference to headless and unused nodes */
3302 tmp = cpumask_of_node(n);
3303 if (!cpumask_empty(tmp))
3304 val += PENALTY_FOR_NODE_WITH_CPUS;
3305
3306 /* Slight preference for less loaded node */
3307 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3308 val += node_load[n];
3309
3310 if (val < min_val) {
3311 min_val = val;
3312 best_node = n;
3313 }
3314 }
3315
3316 if (best_node >= 0)
3317 node_set(best_node, *used_node_mask);
3318
3319 return best_node;
3320 }
3321
3322
3323 /*
3324 * Build zonelists ordered by node and zones within node.
3325 * This results in maximum locality--normal zone overflows into local
3326 * DMA zone, if any--but risks exhausting DMA zone.
3327 */
3328 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3329 {
3330 int j;
3331 struct zonelist *zonelist;
3332
3333 zonelist = &pgdat->node_zonelists[0];
3334 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3335 ;
3336 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3337 MAX_NR_ZONES - 1);
3338 zonelist->_zonerefs[j].zone = NULL;
3339 zonelist->_zonerefs[j].zone_idx = 0;
3340 }
3341
3342 /*
3343 * Build gfp_thisnode zonelists
3344 */
3345 static void build_thisnode_zonelists(pg_data_t *pgdat)
3346 {
3347 int j;
3348 struct zonelist *zonelist;
3349
3350 zonelist = &pgdat->node_zonelists[1];
3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3352 zonelist->_zonerefs[j].zone = NULL;
3353 zonelist->_zonerefs[j].zone_idx = 0;
3354 }
3355
3356 /*
3357 * Build zonelists ordered by zone and nodes within zones.
3358 * This results in conserving DMA zone[s] until all Normal memory is
3359 * exhausted, but results in overflowing to remote node while memory
3360 * may still exist in local DMA zone.
3361 */
3362 static int node_order[MAX_NUMNODES];
3363
3364 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3365 {
3366 int pos, j, node;
3367 int zone_type; /* needs to be signed */
3368 struct zone *z;
3369 struct zonelist *zonelist;
3370
3371 zonelist = &pgdat->node_zonelists[0];
3372 pos = 0;
3373 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3374 for (j = 0; j < nr_nodes; j++) {
3375 node = node_order[j];
3376 z = &NODE_DATA(node)->node_zones[zone_type];
3377 if (populated_zone(z)) {
3378 zoneref_set_zone(z,
3379 &zonelist->_zonerefs[pos++]);
3380 check_highest_zone(zone_type);
3381 }
3382 }
3383 }
3384 zonelist->_zonerefs[pos].zone = NULL;
3385 zonelist->_zonerefs[pos].zone_idx = 0;
3386 }
3387
3388 static int default_zonelist_order(void)
3389 {
3390 int nid, zone_type;
3391 unsigned long low_kmem_size,total_size;
3392 struct zone *z;
3393 int average_size;
3394 /*
3395 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3396 * If they are really small and used heavily, the system can fall
3397 * into OOM very easily.
3398 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3399 */
3400 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3401 low_kmem_size = 0;
3402 total_size = 0;
3403 for_each_online_node(nid) {
3404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3405 z = &NODE_DATA(nid)->node_zones[zone_type];
3406 if (populated_zone(z)) {
3407 if (zone_type < ZONE_NORMAL)
3408 low_kmem_size += z->present_pages;
3409 total_size += z->present_pages;
3410 } else if (zone_type == ZONE_NORMAL) {
3411 /*
3412 * If any node has only lowmem, then node order
3413 * is preferred to allow kernel allocations
3414 * locally; otherwise, they can easily infringe
3415 * on other nodes when there is an abundance of
3416 * lowmem available to allocate from.
3417 */
3418 return ZONELIST_ORDER_NODE;
3419 }
3420 }
3421 }
3422 if (!low_kmem_size || /* there are no DMA area. */
3423 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3424 return ZONELIST_ORDER_NODE;
3425 /*
3426 * look into each node's config.
3427 * If there is a node whose DMA/DMA32 memory is very big area on
3428 * local memory, NODE_ORDER may be suitable.
3429 */
3430 average_size = total_size /
3431 (nodes_weight(node_states[N_MEMORY]) + 1);
3432 for_each_online_node(nid) {
3433 low_kmem_size = 0;
3434 total_size = 0;
3435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3436 z = &NODE_DATA(nid)->node_zones[zone_type];
3437 if (populated_zone(z)) {
3438 if (zone_type < ZONE_NORMAL)
3439 low_kmem_size += z->present_pages;
3440 total_size += z->present_pages;
3441 }
3442 }
3443 if (low_kmem_size &&
3444 total_size > average_size && /* ignore small node */
3445 low_kmem_size > total_size * 70/100)
3446 return ZONELIST_ORDER_NODE;
3447 }
3448 return ZONELIST_ORDER_ZONE;
3449 }
3450
3451 static void set_zonelist_order(void)
3452 {
3453 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3454 current_zonelist_order = default_zonelist_order();
3455 else
3456 current_zonelist_order = user_zonelist_order;
3457 }
3458
3459 static void build_zonelists(pg_data_t *pgdat)
3460 {
3461 int j, node, load;
3462 enum zone_type i;
3463 nodemask_t used_mask;
3464 int local_node, prev_node;
3465 struct zonelist *zonelist;
3466 int order = current_zonelist_order;
3467
3468 /* initialize zonelists */
3469 for (i = 0; i < MAX_ZONELISTS; i++) {
3470 zonelist = pgdat->node_zonelists + i;
3471 zonelist->_zonerefs[0].zone = NULL;
3472 zonelist->_zonerefs[0].zone_idx = 0;
3473 }
3474
3475 /* NUMA-aware ordering of nodes */
3476 local_node = pgdat->node_id;
3477 load = nr_online_nodes;
3478 prev_node = local_node;
3479 nodes_clear(used_mask);
3480
3481 memset(node_order, 0, sizeof(node_order));
3482 j = 0;
3483
3484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3485 /*
3486 * We don't want to pressure a particular node.
3487 * So adding penalty to the first node in same
3488 * distance group to make it round-robin.
3489 */
3490 if (node_distance(local_node, node) !=
3491 node_distance(local_node, prev_node))
3492 node_load[node] = load;
3493
3494 prev_node = node;
3495 load--;
3496 if (order == ZONELIST_ORDER_NODE)
3497 build_zonelists_in_node_order(pgdat, node);
3498 else
3499 node_order[j++] = node; /* remember order */
3500 }
3501
3502 if (order == ZONELIST_ORDER_ZONE) {
3503 /* calculate node order -- i.e., DMA last! */
3504 build_zonelists_in_zone_order(pgdat, j);
3505 }
3506
3507 build_thisnode_zonelists(pgdat);
3508 }
3509
3510 /* Construct the zonelist performance cache - see further mmzone.h */
3511 static void build_zonelist_cache(pg_data_t *pgdat)
3512 {
3513 struct zonelist *zonelist;
3514 struct zonelist_cache *zlc;
3515 struct zoneref *z;
3516
3517 zonelist = &pgdat->node_zonelists[0];
3518 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3519 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3520 for (z = zonelist->_zonerefs; z->zone; z++)
3521 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3522 }
3523
3524 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3525 /*
3526 * Return node id of node used for "local" allocations.
3527 * I.e., first node id of first zone in arg node's generic zonelist.
3528 * Used for initializing percpu 'numa_mem', which is used primarily
3529 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3530 */
3531 int local_memory_node(int node)
3532 {
3533 struct zone *zone;
3534
3535 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3536 gfp_zone(GFP_KERNEL),
3537 NULL,
3538 &zone);
3539 return zone->node;
3540 }
3541 #endif
3542
3543 #else /* CONFIG_NUMA */
3544
3545 static void set_zonelist_order(void)
3546 {
3547 current_zonelist_order = ZONELIST_ORDER_ZONE;
3548 }
3549
3550 static void build_zonelists(pg_data_t *pgdat)
3551 {
3552 int node, local_node;
3553 enum zone_type j;
3554 struct zonelist *zonelist;
3555
3556 local_node = pgdat->node_id;
3557
3558 zonelist = &pgdat->node_zonelists[0];
3559 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3560
3561 /*
3562 * Now we build the zonelist so that it contains the zones
3563 * of all the other nodes.
3564 * We don't want to pressure a particular node, so when
3565 * building the zones for node N, we make sure that the
3566 * zones coming right after the local ones are those from
3567 * node N+1 (modulo N)
3568 */
3569 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3570 if (!node_online(node))
3571 continue;
3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3573 MAX_NR_ZONES - 1);
3574 }
3575 for (node = 0; node < local_node; node++) {
3576 if (!node_online(node))
3577 continue;
3578 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3579 MAX_NR_ZONES - 1);
3580 }
3581
3582 zonelist->_zonerefs[j].zone = NULL;
3583 zonelist->_zonerefs[j].zone_idx = 0;
3584 }
3585
3586 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3587 static void build_zonelist_cache(pg_data_t *pgdat)
3588 {
3589 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3590 }
3591
3592 #endif /* CONFIG_NUMA */
3593
3594 /*
3595 * Boot pageset table. One per cpu which is going to be used for all
3596 * zones and all nodes. The parameters will be set in such a way
3597 * that an item put on a list will immediately be handed over to
3598 * the buddy list. This is safe since pageset manipulation is done
3599 * with interrupts disabled.
3600 *
3601 * The boot_pagesets must be kept even after bootup is complete for
3602 * unused processors and/or zones. They do play a role for bootstrapping
3603 * hotplugged processors.
3604 *
3605 * zoneinfo_show() and maybe other functions do
3606 * not check if the processor is online before following the pageset pointer.
3607 * Other parts of the kernel may not check if the zone is available.
3608 */
3609 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3610 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3611 static void setup_zone_pageset(struct zone *zone);
3612
3613 /*
3614 * Global mutex to protect against size modification of zonelists
3615 * as well as to serialize pageset setup for the new populated zone.
3616 */
3617 DEFINE_MUTEX(zonelists_mutex);
3618
3619 /* return values int ....just for stop_machine() */
3620 static int __build_all_zonelists(void *data)
3621 {
3622 int nid;
3623 int cpu;
3624 pg_data_t *self = data;
3625
3626 #ifdef CONFIG_NUMA
3627 memset(node_load, 0, sizeof(node_load));
3628 #endif
3629
3630 if (self && !node_online(self->node_id)) {
3631 build_zonelists(self);
3632 build_zonelist_cache(self);
3633 }
3634
3635 for_each_online_node(nid) {
3636 pg_data_t *pgdat = NODE_DATA(nid);
3637
3638 build_zonelists(pgdat);
3639 build_zonelist_cache(pgdat);
3640 }
3641
3642 /*
3643 * Initialize the boot_pagesets that are going to be used
3644 * for bootstrapping processors. The real pagesets for
3645 * each zone will be allocated later when the per cpu
3646 * allocator is available.
3647 *
3648 * boot_pagesets are used also for bootstrapping offline
3649 * cpus if the system is already booted because the pagesets
3650 * are needed to initialize allocators on a specific cpu too.
3651 * F.e. the percpu allocator needs the page allocator which
3652 * needs the percpu allocator in order to allocate its pagesets
3653 * (a chicken-egg dilemma).
3654 */
3655 for_each_possible_cpu(cpu) {
3656 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3657
3658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3659 /*
3660 * We now know the "local memory node" for each node--
3661 * i.e., the node of the first zone in the generic zonelist.
3662 * Set up numa_mem percpu variable for on-line cpus. During
3663 * boot, only the boot cpu should be on-line; we'll init the
3664 * secondary cpus' numa_mem as they come on-line. During
3665 * node/memory hotplug, we'll fixup all on-line cpus.
3666 */
3667 if (cpu_online(cpu))
3668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3669 #endif
3670 }
3671
3672 return 0;
3673 }
3674
3675 /*
3676 * Called with zonelists_mutex held always
3677 * unless system_state == SYSTEM_BOOTING.
3678 */
3679 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3680 {
3681 set_zonelist_order();
3682
3683 if (system_state == SYSTEM_BOOTING) {
3684 __build_all_zonelists(NULL);
3685 mminit_verify_zonelist();
3686 cpuset_init_current_mems_allowed();
3687 } else {
3688 /* we have to stop all cpus to guarantee there is no user
3689 of zonelist */
3690 #ifdef CONFIG_MEMORY_HOTPLUG
3691 if (zone)
3692 setup_zone_pageset(zone);
3693 #endif
3694 stop_machine(__build_all_zonelists, pgdat, NULL);
3695 /* cpuset refresh routine should be here */
3696 }
3697 vm_total_pages = nr_free_pagecache_pages();
3698 /*
3699 * Disable grouping by mobility if the number of pages in the
3700 * system is too low to allow the mechanism to work. It would be
3701 * more accurate, but expensive to check per-zone. This check is
3702 * made on memory-hotadd so a system can start with mobility
3703 * disabled and enable it later
3704 */
3705 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3706 page_group_by_mobility_disabled = 1;
3707 else
3708 page_group_by_mobility_disabled = 0;
3709
3710 printk("Built %i zonelists in %s order, mobility grouping %s. "
3711 "Total pages: %ld\n",
3712 nr_online_nodes,
3713 zonelist_order_name[current_zonelist_order],
3714 page_group_by_mobility_disabled ? "off" : "on",
3715 vm_total_pages);
3716 #ifdef CONFIG_NUMA
3717 printk("Policy zone: %s\n", zone_names[policy_zone]);
3718 #endif
3719 }
3720
3721 /*
3722 * Helper functions to size the waitqueue hash table.
3723 * Essentially these want to choose hash table sizes sufficiently
3724 * large so that collisions trying to wait on pages are rare.
3725 * But in fact, the number of active page waitqueues on typical
3726 * systems is ridiculously low, less than 200. So this is even
3727 * conservative, even though it seems large.
3728 *
3729 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3730 * waitqueues, i.e. the size of the waitq table given the number of pages.
3731 */
3732 #define PAGES_PER_WAITQUEUE 256
3733
3734 #ifndef CONFIG_MEMORY_HOTPLUG
3735 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3736 {
3737 unsigned long size = 1;
3738
3739 pages /= PAGES_PER_WAITQUEUE;
3740
3741 while (size < pages)
3742 size <<= 1;
3743
3744 /*
3745 * Once we have dozens or even hundreds of threads sleeping
3746 * on IO we've got bigger problems than wait queue collision.
3747 * Limit the size of the wait table to a reasonable size.
3748 */
3749 size = min(size, 4096UL);
3750
3751 return max(size, 4UL);
3752 }
3753 #else
3754 /*
3755 * A zone's size might be changed by hot-add, so it is not possible to determine
3756 * a suitable size for its wait_table. So we use the maximum size now.
3757 *
3758 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3759 *
3760 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3761 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3762 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3763 *
3764 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3765 * or more by the traditional way. (See above). It equals:
3766 *
3767 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3768 * ia64(16K page size) : = ( 8G + 4M)byte.
3769 * powerpc (64K page size) : = (32G +16M)byte.
3770 */
3771 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3772 {
3773 return 4096UL;
3774 }
3775 #endif
3776
3777 /*
3778 * This is an integer logarithm so that shifts can be used later
3779 * to extract the more random high bits from the multiplicative
3780 * hash function before the remainder is taken.
3781 */
3782 static inline unsigned long wait_table_bits(unsigned long size)
3783 {
3784 return ffz(~size);
3785 }
3786
3787 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3788
3789 /*
3790 * Check if a pageblock contains reserved pages
3791 */
3792 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3793 {
3794 unsigned long pfn;
3795
3796 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3797 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3798 return 1;
3799 }
3800 return 0;
3801 }
3802
3803 /*
3804 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3805 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3806 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3807 * higher will lead to a bigger reserve which will get freed as contiguous
3808 * blocks as reclaim kicks in
3809 */
3810 static void setup_zone_migrate_reserve(struct zone *zone)
3811 {
3812 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3813 struct page *page;
3814 unsigned long block_migratetype;
3815 int reserve;
3816
3817 /*
3818 * Get the start pfn, end pfn and the number of blocks to reserve
3819 * We have to be careful to be aligned to pageblock_nr_pages to
3820 * make sure that we always check pfn_valid for the first page in
3821 * the block.
3822 */
3823 start_pfn = zone->zone_start_pfn;
3824 end_pfn = start_pfn + zone->spanned_pages;
3825 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3826 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3827 pageblock_order;
3828
3829 /*
3830 * Reserve blocks are generally in place to help high-order atomic
3831 * allocations that are short-lived. A min_free_kbytes value that
3832 * would result in more than 2 reserve blocks for atomic allocations
3833 * is assumed to be in place to help anti-fragmentation for the
3834 * future allocation of hugepages at runtime.
3835 */
3836 reserve = min(2, reserve);
3837
3838 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3839 if (!pfn_valid(pfn))
3840 continue;
3841 page = pfn_to_page(pfn);
3842
3843 /* Watch out for overlapping nodes */
3844 if (page_to_nid(page) != zone_to_nid(zone))
3845 continue;
3846
3847 block_migratetype = get_pageblock_migratetype(page);
3848
3849 /* Only test what is necessary when the reserves are not met */
3850 if (reserve > 0) {
3851 /*
3852 * Blocks with reserved pages will never free, skip
3853 * them.
3854 */
3855 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3856 if (pageblock_is_reserved(pfn, block_end_pfn))
3857 continue;
3858
3859 /* If this block is reserved, account for it */
3860 if (block_migratetype == MIGRATE_RESERVE) {
3861 reserve--;
3862 continue;
3863 }
3864
3865 /* Suitable for reserving if this block is movable */
3866 if (block_migratetype == MIGRATE_MOVABLE) {
3867 set_pageblock_migratetype(page,
3868 MIGRATE_RESERVE);
3869 move_freepages_block(zone, page,
3870 MIGRATE_RESERVE);
3871 reserve--;
3872 continue;
3873 }
3874 }
3875
3876 /*
3877 * If the reserve is met and this is a previous reserved block,
3878 * take it back
3879 */
3880 if (block_migratetype == MIGRATE_RESERVE) {
3881 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3882 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3883 }
3884 }
3885 }
3886
3887 /*
3888 * Initially all pages are reserved - free ones are freed
3889 * up by free_all_bootmem() once the early boot process is
3890 * done. Non-atomic initialization, single-pass.
3891 */
3892 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3893 unsigned long start_pfn, enum memmap_context context)
3894 {
3895 struct page *page;
3896 unsigned long end_pfn = start_pfn + size;
3897 unsigned long pfn;
3898 struct zone *z;
3899
3900 if (highest_memmap_pfn < end_pfn - 1)
3901 highest_memmap_pfn = end_pfn - 1;
3902
3903 z = &NODE_DATA(nid)->node_zones[zone];
3904 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3905 /*
3906 * There can be holes in boot-time mem_map[]s
3907 * handed to this function. They do not
3908 * exist on hotplugged memory.
3909 */
3910 if (context == MEMMAP_EARLY) {
3911 if (!early_pfn_valid(pfn))
3912 continue;
3913 if (!early_pfn_in_nid(pfn, nid))
3914 continue;
3915 }
3916 page = pfn_to_page(pfn);
3917 set_page_links(page, zone, nid, pfn);
3918 mminit_verify_page_links(page, zone, nid, pfn);
3919 init_page_count(page);
3920 reset_page_mapcount(page);
3921 reset_page_last_nid(page);
3922 SetPageReserved(page);
3923 /*
3924 * Mark the block movable so that blocks are reserved for
3925 * movable at startup. This will force kernel allocations
3926 * to reserve their blocks rather than leaking throughout
3927 * the address space during boot when many long-lived
3928 * kernel allocations are made. Later some blocks near
3929 * the start are marked MIGRATE_RESERVE by
3930 * setup_zone_migrate_reserve()
3931 *
3932 * bitmap is created for zone's valid pfn range. but memmap
3933 * can be created for invalid pages (for alignment)
3934 * check here not to call set_pageblock_migratetype() against
3935 * pfn out of zone.
3936 */
3937 if ((z->zone_start_pfn <= pfn)
3938 && (pfn < z->zone_start_pfn + z->spanned_pages)
3939 && !(pfn & (pageblock_nr_pages - 1)))
3940 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3941
3942 INIT_LIST_HEAD(&page->lru);
3943 #ifdef WANT_PAGE_VIRTUAL
3944 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3945 if (!is_highmem_idx(zone))
3946 set_page_address(page, __va(pfn << PAGE_SHIFT));
3947 #endif
3948 }
3949 }
3950
3951 static void __meminit zone_init_free_lists(struct zone *zone)
3952 {
3953 int order, t;
3954 for_each_migratetype_order(order, t) {
3955 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3956 zone->free_area[order].nr_free = 0;
3957 }
3958 }
3959
3960 #ifndef __HAVE_ARCH_MEMMAP_INIT
3961 #define memmap_init(size, nid, zone, start_pfn) \
3962 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3963 #endif
3964
3965 static int __meminit zone_batchsize(struct zone *zone)
3966 {
3967 #ifdef CONFIG_MMU
3968 int batch;
3969
3970 /*
3971 * The per-cpu-pages pools are set to around 1000th of the
3972 * size of the zone. But no more than 1/2 of a meg.
3973 *
3974 * OK, so we don't know how big the cache is. So guess.
3975 */
3976 batch = zone->present_pages / 1024;
3977 if (batch * PAGE_SIZE > 512 * 1024)
3978 batch = (512 * 1024) / PAGE_SIZE;
3979 batch /= 4; /* We effectively *= 4 below */
3980 if (batch < 1)
3981 batch = 1;
3982
3983 /*
3984 * Clamp the batch to a 2^n - 1 value. Having a power
3985 * of 2 value was found to be more likely to have
3986 * suboptimal cache aliasing properties in some cases.
3987 *
3988 * For example if 2 tasks are alternately allocating
3989 * batches of pages, one task can end up with a lot
3990 * of pages of one half of the possible page colors
3991 * and the other with pages of the other colors.
3992 */
3993 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3994
3995 return batch;
3996
3997 #else
3998 /* The deferral and batching of frees should be suppressed under NOMMU
3999 * conditions.
4000 *
4001 * The problem is that NOMMU needs to be able to allocate large chunks
4002 * of contiguous memory as there's no hardware page translation to
4003 * assemble apparent contiguous memory from discontiguous pages.
4004 *
4005 * Queueing large contiguous runs of pages for batching, however,
4006 * causes the pages to actually be freed in smaller chunks. As there
4007 * can be a significant delay between the individual batches being
4008 * recycled, this leads to the once large chunks of space being
4009 * fragmented and becoming unavailable for high-order allocations.
4010 */
4011 return 0;
4012 #endif
4013 }
4014
4015 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4016 {
4017 struct per_cpu_pages *pcp;
4018 int migratetype;
4019
4020 memset(p, 0, sizeof(*p));
4021
4022 pcp = &p->pcp;
4023 pcp->count = 0;
4024 pcp->high = 6 * batch;
4025 pcp->batch = max(1UL, 1 * batch);
4026 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4027 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4028 }
4029
4030 /*
4031 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4032 * to the value high for the pageset p.
4033 */
4034
4035 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4036 unsigned long high)
4037 {
4038 struct per_cpu_pages *pcp;
4039
4040 pcp = &p->pcp;
4041 pcp->high = high;
4042 pcp->batch = max(1UL, high/4);
4043 if ((high/4) > (PAGE_SHIFT * 8))
4044 pcp->batch = PAGE_SHIFT * 8;
4045 }
4046
4047 static void __meminit setup_zone_pageset(struct zone *zone)
4048 {
4049 int cpu;
4050
4051 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4052
4053 for_each_possible_cpu(cpu) {
4054 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4055
4056 setup_pageset(pcp, zone_batchsize(zone));
4057
4058 if (percpu_pagelist_fraction)
4059 setup_pagelist_highmark(pcp,
4060 (zone->present_pages /
4061 percpu_pagelist_fraction));
4062 }
4063 }
4064
4065 /*
4066 * Allocate per cpu pagesets and initialize them.
4067 * Before this call only boot pagesets were available.
4068 */
4069 void __init setup_per_cpu_pageset(void)
4070 {
4071 struct zone *zone;
4072
4073 for_each_populated_zone(zone)
4074 setup_zone_pageset(zone);
4075 }
4076
4077 static noinline __init_refok
4078 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4079 {
4080 int i;
4081 struct pglist_data *pgdat = zone->zone_pgdat;
4082 size_t alloc_size;
4083
4084 /*
4085 * The per-page waitqueue mechanism uses hashed waitqueues
4086 * per zone.
4087 */
4088 zone->wait_table_hash_nr_entries =
4089 wait_table_hash_nr_entries(zone_size_pages);
4090 zone->wait_table_bits =
4091 wait_table_bits(zone->wait_table_hash_nr_entries);
4092 alloc_size = zone->wait_table_hash_nr_entries
4093 * sizeof(wait_queue_head_t);
4094
4095 if (!slab_is_available()) {
4096 zone->wait_table = (wait_queue_head_t *)
4097 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4098 } else {
4099 /*
4100 * This case means that a zone whose size was 0 gets new memory
4101 * via memory hot-add.
4102 * But it may be the case that a new node was hot-added. In
4103 * this case vmalloc() will not be able to use this new node's
4104 * memory - this wait_table must be initialized to use this new
4105 * node itself as well.
4106 * To use this new node's memory, further consideration will be
4107 * necessary.
4108 */
4109 zone->wait_table = vmalloc(alloc_size);
4110 }
4111 if (!zone->wait_table)
4112 return -ENOMEM;
4113
4114 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4115 init_waitqueue_head(zone->wait_table + i);
4116
4117 return 0;
4118 }
4119
4120 static __meminit void zone_pcp_init(struct zone *zone)
4121 {
4122 /*
4123 * per cpu subsystem is not up at this point. The following code
4124 * relies on the ability of the linker to provide the
4125 * offset of a (static) per cpu variable into the per cpu area.
4126 */
4127 zone->pageset = &boot_pageset;
4128
4129 if (zone->present_pages)
4130 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4131 zone->name, zone->present_pages,
4132 zone_batchsize(zone));
4133 }
4134
4135 int __meminit init_currently_empty_zone(struct zone *zone,
4136 unsigned long zone_start_pfn,
4137 unsigned long size,
4138 enum memmap_context context)
4139 {
4140 struct pglist_data *pgdat = zone->zone_pgdat;
4141 int ret;
4142 ret = zone_wait_table_init(zone, size);
4143 if (ret)
4144 return ret;
4145 pgdat->nr_zones = zone_idx(zone) + 1;
4146
4147 zone->zone_start_pfn = zone_start_pfn;
4148
4149 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4150 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4151 pgdat->node_id,
4152 (unsigned long)zone_idx(zone),
4153 zone_start_pfn, (zone_start_pfn + size));
4154
4155 zone_init_free_lists(zone);
4156
4157 return 0;
4158 }
4159
4160 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4161 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4162 /*
4163 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4164 * Architectures may implement their own version but if add_active_range()
4165 * was used and there are no special requirements, this is a convenient
4166 * alternative
4167 */
4168 int __meminit __early_pfn_to_nid(unsigned long pfn)
4169 {
4170 unsigned long start_pfn, end_pfn;
4171 int i, nid;
4172
4173 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4174 if (start_pfn <= pfn && pfn < end_pfn)
4175 return nid;
4176 /* This is a memory hole */
4177 return -1;
4178 }
4179 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4180
4181 int __meminit early_pfn_to_nid(unsigned long pfn)
4182 {
4183 int nid;
4184
4185 nid = __early_pfn_to_nid(pfn);
4186 if (nid >= 0)
4187 return nid;
4188 /* just returns 0 */
4189 return 0;
4190 }
4191
4192 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4193 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4194 {
4195 int nid;
4196
4197 nid = __early_pfn_to_nid(pfn);
4198 if (nid >= 0 && nid != node)
4199 return false;
4200 return true;
4201 }
4202 #endif
4203
4204 /**
4205 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4206 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4207 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4208 *
4209 * If an architecture guarantees that all ranges registered with
4210 * add_active_ranges() contain no holes and may be freed, this
4211 * this function may be used instead of calling free_bootmem() manually.
4212 */
4213 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4214 {
4215 unsigned long start_pfn, end_pfn;
4216 int i, this_nid;
4217
4218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4219 start_pfn = min(start_pfn, max_low_pfn);
4220 end_pfn = min(end_pfn, max_low_pfn);
4221
4222 if (start_pfn < end_pfn)
4223 free_bootmem_node(NODE_DATA(this_nid),
4224 PFN_PHYS(start_pfn),
4225 (end_pfn - start_pfn) << PAGE_SHIFT);
4226 }
4227 }
4228
4229 /**
4230 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4231 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4232 *
4233 * If an architecture guarantees that all ranges registered with
4234 * add_active_ranges() contain no holes and may be freed, this
4235 * function may be used instead of calling memory_present() manually.
4236 */
4237 void __init sparse_memory_present_with_active_regions(int nid)
4238 {
4239 unsigned long start_pfn, end_pfn;
4240 int i, this_nid;
4241
4242 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4243 memory_present(this_nid, start_pfn, end_pfn);
4244 }
4245
4246 /**
4247 * get_pfn_range_for_nid - Return the start and end page frames for a node
4248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4251 *
4252 * It returns the start and end page frame of a node based on information
4253 * provided by an arch calling add_active_range(). If called for a node
4254 * with no available memory, a warning is printed and the start and end
4255 * PFNs will be 0.
4256 */
4257 void __meminit get_pfn_range_for_nid(unsigned int nid,
4258 unsigned long *start_pfn, unsigned long *end_pfn)
4259 {
4260 unsigned long this_start_pfn, this_end_pfn;
4261 int i;
4262
4263 *start_pfn = -1UL;
4264 *end_pfn = 0;
4265
4266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4267 *start_pfn = min(*start_pfn, this_start_pfn);
4268 *end_pfn = max(*end_pfn, this_end_pfn);
4269 }
4270
4271 if (*start_pfn == -1UL)
4272 *start_pfn = 0;
4273 }
4274
4275 /*
4276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4277 * assumption is made that zones within a node are ordered in monotonic
4278 * increasing memory addresses so that the "highest" populated zone is used
4279 */
4280 static void __init find_usable_zone_for_movable(void)
4281 {
4282 int zone_index;
4283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4284 if (zone_index == ZONE_MOVABLE)
4285 continue;
4286
4287 if (arch_zone_highest_possible_pfn[zone_index] >
4288 arch_zone_lowest_possible_pfn[zone_index])
4289 break;
4290 }
4291
4292 VM_BUG_ON(zone_index == -1);
4293 movable_zone = zone_index;
4294 }
4295
4296 /*
4297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4298 * because it is sized independent of architecture. Unlike the other zones,
4299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4300 * in each node depending on the size of each node and how evenly kernelcore
4301 * is distributed. This helper function adjusts the zone ranges
4302 * provided by the architecture for a given node by using the end of the
4303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4304 * zones within a node are in order of monotonic increases memory addresses
4305 */
4306 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4307 unsigned long zone_type,
4308 unsigned long node_start_pfn,
4309 unsigned long node_end_pfn,
4310 unsigned long *zone_start_pfn,
4311 unsigned long *zone_end_pfn)
4312 {
4313 /* Only adjust if ZONE_MOVABLE is on this node */
4314 if (zone_movable_pfn[nid]) {
4315 /* Size ZONE_MOVABLE */
4316 if (zone_type == ZONE_MOVABLE) {
4317 *zone_start_pfn = zone_movable_pfn[nid];
4318 *zone_end_pfn = min(node_end_pfn,
4319 arch_zone_highest_possible_pfn[movable_zone]);
4320
4321 /* Adjust for ZONE_MOVABLE starting within this range */
4322 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4323 *zone_end_pfn > zone_movable_pfn[nid]) {
4324 *zone_end_pfn = zone_movable_pfn[nid];
4325
4326 /* Check if this whole range is within ZONE_MOVABLE */
4327 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4328 *zone_start_pfn = *zone_end_pfn;
4329 }
4330 }
4331
4332 /*
4333 * Return the number of pages a zone spans in a node, including holes
4334 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4335 */
4336 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4337 unsigned long zone_type,
4338 unsigned long *ignored)
4339 {
4340 unsigned long node_start_pfn, node_end_pfn;
4341 unsigned long zone_start_pfn, zone_end_pfn;
4342
4343 /* Get the start and end of the node and zone */
4344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4345 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4346 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4347 adjust_zone_range_for_zone_movable(nid, zone_type,
4348 node_start_pfn, node_end_pfn,
4349 &zone_start_pfn, &zone_end_pfn);
4350
4351 /* Check that this node has pages within the zone's required range */
4352 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4353 return 0;
4354
4355 /* Move the zone boundaries inside the node if necessary */
4356 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4357 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4358
4359 /* Return the spanned pages */
4360 return zone_end_pfn - zone_start_pfn;
4361 }
4362
4363 /*
4364 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4365 * then all holes in the requested range will be accounted for.
4366 */
4367 unsigned long __meminit __absent_pages_in_range(int nid,
4368 unsigned long range_start_pfn,
4369 unsigned long range_end_pfn)
4370 {
4371 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4372 unsigned long start_pfn, end_pfn;
4373 int i;
4374
4375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4376 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4377 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4378 nr_absent -= end_pfn - start_pfn;
4379 }
4380 return nr_absent;
4381 }
4382
4383 /**
4384 * absent_pages_in_range - Return number of page frames in holes within a range
4385 * @start_pfn: The start PFN to start searching for holes
4386 * @end_pfn: The end PFN to stop searching for holes
4387 *
4388 * It returns the number of pages frames in memory holes within a range.
4389 */
4390 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4391 unsigned long end_pfn)
4392 {
4393 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4394 }
4395
4396 /* Return the number of page frames in holes in a zone on a node */
4397 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4398 unsigned long zone_type,
4399 unsigned long *ignored)
4400 {
4401 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4402 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4403 unsigned long node_start_pfn, node_end_pfn;
4404 unsigned long zone_start_pfn, zone_end_pfn;
4405
4406 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4407 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4408 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4409
4410 adjust_zone_range_for_zone_movable(nid, zone_type,
4411 node_start_pfn, node_end_pfn,
4412 &zone_start_pfn, &zone_end_pfn);
4413 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4414 }
4415
4416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4417 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4418 unsigned long zone_type,
4419 unsigned long *zones_size)
4420 {
4421 return zones_size[zone_type];
4422 }
4423
4424 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4425 unsigned long zone_type,
4426 unsigned long *zholes_size)
4427 {
4428 if (!zholes_size)
4429 return 0;
4430
4431 return zholes_size[zone_type];
4432 }
4433
4434 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4435
4436 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4437 unsigned long *zones_size, unsigned long *zholes_size)
4438 {
4439 unsigned long realtotalpages, totalpages = 0;
4440 enum zone_type i;
4441
4442 for (i = 0; i < MAX_NR_ZONES; i++)
4443 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4444 zones_size);
4445 pgdat->node_spanned_pages = totalpages;
4446
4447 realtotalpages = totalpages;
4448 for (i = 0; i < MAX_NR_ZONES; i++)
4449 realtotalpages -=
4450 zone_absent_pages_in_node(pgdat->node_id, i,
4451 zholes_size);
4452 pgdat->node_present_pages = realtotalpages;
4453 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4454 realtotalpages);
4455 }
4456
4457 #ifndef CONFIG_SPARSEMEM
4458 /*
4459 * Calculate the size of the zone->blockflags rounded to an unsigned long
4460 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4461 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4462 * round what is now in bits to nearest long in bits, then return it in
4463 * bytes.
4464 */
4465 static unsigned long __init usemap_size(unsigned long zonesize)
4466 {
4467 unsigned long usemapsize;
4468
4469 usemapsize = roundup(zonesize, pageblock_nr_pages);
4470 usemapsize = usemapsize >> pageblock_order;
4471 usemapsize *= NR_PAGEBLOCK_BITS;
4472 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4473
4474 return usemapsize / 8;
4475 }
4476
4477 static void __init setup_usemap(struct pglist_data *pgdat,
4478 struct zone *zone, unsigned long zonesize)
4479 {
4480 unsigned long usemapsize = usemap_size(zonesize);
4481 zone->pageblock_flags = NULL;
4482 if (usemapsize)
4483 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4484 usemapsize);
4485 }
4486 #else
4487 static inline void setup_usemap(struct pglist_data *pgdat,
4488 struct zone *zone, unsigned long zonesize) {}
4489 #endif /* CONFIG_SPARSEMEM */
4490
4491 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4492
4493 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4494 void __init set_pageblock_order(void)
4495 {
4496 unsigned int order;
4497
4498 /* Check that pageblock_nr_pages has not already been setup */
4499 if (pageblock_order)
4500 return;
4501
4502 if (HPAGE_SHIFT > PAGE_SHIFT)
4503 order = HUGETLB_PAGE_ORDER;
4504 else
4505 order = MAX_ORDER - 1;
4506
4507 /*
4508 * Assume the largest contiguous order of interest is a huge page.
4509 * This value may be variable depending on boot parameters on IA64 and
4510 * powerpc.
4511 */
4512 pageblock_order = order;
4513 }
4514 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4515
4516 /*
4517 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4518 * is unused as pageblock_order is set at compile-time. See
4519 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4520 * the kernel config
4521 */
4522 void __init set_pageblock_order(void)
4523 {
4524 }
4525
4526 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4527
4528 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4529 unsigned long present_pages)
4530 {
4531 unsigned long pages = spanned_pages;
4532
4533 /*
4534 * Provide a more accurate estimation if there are holes within
4535 * the zone and SPARSEMEM is in use. If there are holes within the
4536 * zone, each populated memory region may cost us one or two extra
4537 * memmap pages due to alignment because memmap pages for each
4538 * populated regions may not naturally algined on page boundary.
4539 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4540 */
4541 if (spanned_pages > present_pages + (present_pages >> 4) &&
4542 IS_ENABLED(CONFIG_SPARSEMEM))
4543 pages = present_pages;
4544
4545 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4546 }
4547
4548 /*
4549 * Set up the zone data structures:
4550 * - mark all pages reserved
4551 * - mark all memory queues empty
4552 * - clear the memory bitmaps
4553 *
4554 * NOTE: pgdat should get zeroed by caller.
4555 */
4556 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4557 unsigned long *zones_size, unsigned long *zholes_size)
4558 {
4559 enum zone_type j;
4560 int nid = pgdat->node_id;
4561 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4562 int ret;
4563
4564 pgdat_resize_init(pgdat);
4565 #ifdef CONFIG_NUMA_BALANCING
4566 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4567 pgdat->numabalancing_migrate_nr_pages = 0;
4568 pgdat->numabalancing_migrate_next_window = jiffies;
4569 #endif
4570 init_waitqueue_head(&pgdat->kswapd_wait);
4571 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4572 pgdat_page_cgroup_init(pgdat);
4573
4574 for (j = 0; j < MAX_NR_ZONES; j++) {
4575 struct zone *zone = pgdat->node_zones + j;
4576 unsigned long size, realsize, freesize, memmap_pages;
4577
4578 size = zone_spanned_pages_in_node(nid, j, zones_size);
4579 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4580 zholes_size);
4581
4582 /*
4583 * Adjust freesize so that it accounts for how much memory
4584 * is used by this zone for memmap. This affects the watermark
4585 * and per-cpu initialisations
4586 */
4587 memmap_pages = calc_memmap_size(size, realsize);
4588 if (freesize >= memmap_pages) {
4589 freesize -= memmap_pages;
4590 if (memmap_pages)
4591 printk(KERN_DEBUG
4592 " %s zone: %lu pages used for memmap\n",
4593 zone_names[j], memmap_pages);
4594 } else
4595 printk(KERN_WARNING
4596 " %s zone: %lu pages exceeds freesize %lu\n",
4597 zone_names[j], memmap_pages, freesize);
4598
4599 /* Account for reserved pages */
4600 if (j == 0 && freesize > dma_reserve) {
4601 freesize -= dma_reserve;
4602 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4603 zone_names[0], dma_reserve);
4604 }
4605
4606 if (!is_highmem_idx(j))
4607 nr_kernel_pages += freesize;
4608 /* Charge for highmem memmap if there are enough kernel pages */
4609 else if (nr_kernel_pages > memmap_pages * 2)
4610 nr_kernel_pages -= memmap_pages;
4611 nr_all_pages += freesize;
4612
4613 zone->spanned_pages = size;
4614 zone->present_pages = freesize;
4615 /*
4616 * Set an approximate value for lowmem here, it will be adjusted
4617 * when the bootmem allocator frees pages into the buddy system.
4618 * And all highmem pages will be managed by the buddy system.
4619 */
4620 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4621 #ifdef CONFIG_NUMA
4622 zone->node = nid;
4623 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4624 / 100;
4625 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4626 #endif
4627 zone->name = zone_names[j];
4628 spin_lock_init(&zone->lock);
4629 spin_lock_init(&zone->lru_lock);
4630 zone_seqlock_init(zone);
4631 zone->zone_pgdat = pgdat;
4632
4633 zone_pcp_init(zone);
4634 lruvec_init(&zone->lruvec);
4635 if (!size)
4636 continue;
4637
4638 set_pageblock_order();
4639 setup_usemap(pgdat, zone, size);
4640 ret = init_currently_empty_zone(zone, zone_start_pfn,
4641 size, MEMMAP_EARLY);
4642 BUG_ON(ret);
4643 memmap_init(size, nid, j, zone_start_pfn);
4644 zone_start_pfn += size;
4645 }
4646 }
4647
4648 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4649 {
4650 /* Skip empty nodes */
4651 if (!pgdat->node_spanned_pages)
4652 return;
4653
4654 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4655 /* ia64 gets its own node_mem_map, before this, without bootmem */
4656 if (!pgdat->node_mem_map) {
4657 unsigned long size, start, end;
4658 struct page *map;
4659
4660 /*
4661 * The zone's endpoints aren't required to be MAX_ORDER
4662 * aligned but the node_mem_map endpoints must be in order
4663 * for the buddy allocator to function correctly.
4664 */
4665 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4666 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4667 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4668 size = (end - start) * sizeof(struct page);
4669 map = alloc_remap(pgdat->node_id, size);
4670 if (!map)
4671 map = alloc_bootmem_node_nopanic(pgdat, size);
4672 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4673 }
4674 #ifndef CONFIG_NEED_MULTIPLE_NODES
4675 /*
4676 * With no DISCONTIG, the global mem_map is just set as node 0's
4677 */
4678 if (pgdat == NODE_DATA(0)) {
4679 mem_map = NODE_DATA(0)->node_mem_map;
4680 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4681 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4682 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4683 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4684 }
4685 #endif
4686 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4687 }
4688
4689 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4690 unsigned long node_start_pfn, unsigned long *zholes_size)
4691 {
4692 pg_data_t *pgdat = NODE_DATA(nid);
4693
4694 /* pg_data_t should be reset to zero when it's allocated */
4695 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4696
4697 pgdat->node_id = nid;
4698 pgdat->node_start_pfn = node_start_pfn;
4699 init_zone_allows_reclaim(nid);
4700 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4701
4702 alloc_node_mem_map(pgdat);
4703 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4704 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4705 nid, (unsigned long)pgdat,
4706 (unsigned long)pgdat->node_mem_map);
4707 #endif
4708
4709 free_area_init_core(pgdat, zones_size, zholes_size);
4710 }
4711
4712 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4713
4714 #if MAX_NUMNODES > 1
4715 /*
4716 * Figure out the number of possible node ids.
4717 */
4718 static void __init setup_nr_node_ids(void)
4719 {
4720 unsigned int node;
4721 unsigned int highest = 0;
4722
4723 for_each_node_mask(node, node_possible_map)
4724 highest = node;
4725 nr_node_ids = highest + 1;
4726 }
4727 #else
4728 static inline void setup_nr_node_ids(void)
4729 {
4730 }
4731 #endif
4732
4733 /**
4734 * node_map_pfn_alignment - determine the maximum internode alignment
4735 *
4736 * This function should be called after node map is populated and sorted.
4737 * It calculates the maximum power of two alignment which can distinguish
4738 * all the nodes.
4739 *
4740 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4741 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4742 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4743 * shifted, 1GiB is enough and this function will indicate so.
4744 *
4745 * This is used to test whether pfn -> nid mapping of the chosen memory
4746 * model has fine enough granularity to avoid incorrect mapping for the
4747 * populated node map.
4748 *
4749 * Returns the determined alignment in pfn's. 0 if there is no alignment
4750 * requirement (single node).
4751 */
4752 unsigned long __init node_map_pfn_alignment(void)
4753 {
4754 unsigned long accl_mask = 0, last_end = 0;
4755 unsigned long start, end, mask;
4756 int last_nid = -1;
4757 int i, nid;
4758
4759 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4760 if (!start || last_nid < 0 || last_nid == nid) {
4761 last_nid = nid;
4762 last_end = end;
4763 continue;
4764 }
4765
4766 /*
4767 * Start with a mask granular enough to pin-point to the
4768 * start pfn and tick off bits one-by-one until it becomes
4769 * too coarse to separate the current node from the last.
4770 */
4771 mask = ~((1 << __ffs(start)) - 1);
4772 while (mask && last_end <= (start & (mask << 1)))
4773 mask <<= 1;
4774
4775 /* accumulate all internode masks */
4776 accl_mask |= mask;
4777 }
4778
4779 /* convert mask to number of pages */
4780 return ~accl_mask + 1;
4781 }
4782
4783 /* Find the lowest pfn for a node */
4784 static unsigned long __init find_min_pfn_for_node(int nid)
4785 {
4786 unsigned long min_pfn = ULONG_MAX;
4787 unsigned long start_pfn;
4788 int i;
4789
4790 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4791 min_pfn = min(min_pfn, start_pfn);
4792
4793 if (min_pfn == ULONG_MAX) {
4794 printk(KERN_WARNING
4795 "Could not find start_pfn for node %d\n", nid);
4796 return 0;
4797 }
4798
4799 return min_pfn;
4800 }
4801
4802 /**
4803 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4804 *
4805 * It returns the minimum PFN based on information provided via
4806 * add_active_range().
4807 */
4808 unsigned long __init find_min_pfn_with_active_regions(void)
4809 {
4810 return find_min_pfn_for_node(MAX_NUMNODES);
4811 }
4812
4813 /*
4814 * early_calculate_totalpages()
4815 * Sum pages in active regions for movable zone.
4816 * Populate N_MEMORY for calculating usable_nodes.
4817 */
4818 static unsigned long __init early_calculate_totalpages(void)
4819 {
4820 unsigned long totalpages = 0;
4821 unsigned long start_pfn, end_pfn;
4822 int i, nid;
4823
4824 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4825 unsigned long pages = end_pfn - start_pfn;
4826
4827 totalpages += pages;
4828 if (pages)
4829 node_set_state(nid, N_MEMORY);
4830 }
4831 return totalpages;
4832 }
4833
4834 /*
4835 * Find the PFN the Movable zone begins in each node. Kernel memory
4836 * is spread evenly between nodes as long as the nodes have enough
4837 * memory. When they don't, some nodes will have more kernelcore than
4838 * others
4839 */
4840 static void __init find_zone_movable_pfns_for_nodes(void)
4841 {
4842 int i, nid;
4843 unsigned long usable_startpfn;
4844 unsigned long kernelcore_node, kernelcore_remaining;
4845 /* save the state before borrow the nodemask */
4846 nodemask_t saved_node_state = node_states[N_MEMORY];
4847 unsigned long totalpages = early_calculate_totalpages();
4848 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4849
4850 /*
4851 * If movablecore was specified, calculate what size of
4852 * kernelcore that corresponds so that memory usable for
4853 * any allocation type is evenly spread. If both kernelcore
4854 * and movablecore are specified, then the value of kernelcore
4855 * will be used for required_kernelcore if it's greater than
4856 * what movablecore would have allowed.
4857 */
4858 if (required_movablecore) {
4859 unsigned long corepages;
4860
4861 /*
4862 * Round-up so that ZONE_MOVABLE is at least as large as what
4863 * was requested by the user
4864 */
4865 required_movablecore =
4866 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4867 corepages = totalpages - required_movablecore;
4868
4869 required_kernelcore = max(required_kernelcore, corepages);
4870 }
4871
4872 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4873 if (!required_kernelcore)
4874 goto out;
4875
4876 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4877 find_usable_zone_for_movable();
4878 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4879
4880 restart:
4881 /* Spread kernelcore memory as evenly as possible throughout nodes */
4882 kernelcore_node = required_kernelcore / usable_nodes;
4883 for_each_node_state(nid, N_MEMORY) {
4884 unsigned long start_pfn, end_pfn;
4885
4886 /*
4887 * Recalculate kernelcore_node if the division per node
4888 * now exceeds what is necessary to satisfy the requested
4889 * amount of memory for the kernel
4890 */
4891 if (required_kernelcore < kernelcore_node)
4892 kernelcore_node = required_kernelcore / usable_nodes;
4893
4894 /*
4895 * As the map is walked, we track how much memory is usable
4896 * by the kernel using kernelcore_remaining. When it is
4897 * 0, the rest of the node is usable by ZONE_MOVABLE
4898 */
4899 kernelcore_remaining = kernelcore_node;
4900
4901 /* Go through each range of PFNs within this node */
4902 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4903 unsigned long size_pages;
4904
4905 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4906 if (start_pfn >= end_pfn)
4907 continue;
4908
4909 /* Account for what is only usable for kernelcore */
4910 if (start_pfn < usable_startpfn) {
4911 unsigned long kernel_pages;
4912 kernel_pages = min(end_pfn, usable_startpfn)
4913 - start_pfn;
4914
4915 kernelcore_remaining -= min(kernel_pages,
4916 kernelcore_remaining);
4917 required_kernelcore -= min(kernel_pages,
4918 required_kernelcore);
4919
4920 /* Continue if range is now fully accounted */
4921 if (end_pfn <= usable_startpfn) {
4922
4923 /*
4924 * Push zone_movable_pfn to the end so
4925 * that if we have to rebalance
4926 * kernelcore across nodes, we will
4927 * not double account here
4928 */
4929 zone_movable_pfn[nid] = end_pfn;
4930 continue;
4931 }
4932 start_pfn = usable_startpfn;
4933 }
4934
4935 /*
4936 * The usable PFN range for ZONE_MOVABLE is from
4937 * start_pfn->end_pfn. Calculate size_pages as the
4938 * number of pages used as kernelcore
4939 */
4940 size_pages = end_pfn - start_pfn;
4941 if (size_pages > kernelcore_remaining)
4942 size_pages = kernelcore_remaining;
4943 zone_movable_pfn[nid] = start_pfn + size_pages;
4944
4945 /*
4946 * Some kernelcore has been met, update counts and
4947 * break if the kernelcore for this node has been
4948 * satisified
4949 */
4950 required_kernelcore -= min(required_kernelcore,
4951 size_pages);
4952 kernelcore_remaining -= size_pages;
4953 if (!kernelcore_remaining)
4954 break;
4955 }
4956 }
4957
4958 /*
4959 * If there is still required_kernelcore, we do another pass with one
4960 * less node in the count. This will push zone_movable_pfn[nid] further
4961 * along on the nodes that still have memory until kernelcore is
4962 * satisified
4963 */
4964 usable_nodes--;
4965 if (usable_nodes && required_kernelcore > usable_nodes)
4966 goto restart;
4967
4968 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4969 for (nid = 0; nid < MAX_NUMNODES; nid++)
4970 zone_movable_pfn[nid] =
4971 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4972
4973 out:
4974 /* restore the node_state */
4975 node_states[N_MEMORY] = saved_node_state;
4976 }
4977
4978 /* Any regular or high memory on that node ? */
4979 static void check_for_memory(pg_data_t *pgdat, int nid)
4980 {
4981 enum zone_type zone_type;
4982
4983 if (N_MEMORY == N_NORMAL_MEMORY)
4984 return;
4985
4986 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4987 struct zone *zone = &pgdat->node_zones[zone_type];
4988 if (zone->present_pages) {
4989 node_set_state(nid, N_HIGH_MEMORY);
4990 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4991 zone_type <= ZONE_NORMAL)
4992 node_set_state(nid, N_NORMAL_MEMORY);
4993 break;
4994 }
4995 }
4996 }
4997
4998 /**
4999 * free_area_init_nodes - Initialise all pg_data_t and zone data
5000 * @max_zone_pfn: an array of max PFNs for each zone
5001 *
5002 * This will call free_area_init_node() for each active node in the system.
5003 * Using the page ranges provided by add_active_range(), the size of each
5004 * zone in each node and their holes is calculated. If the maximum PFN
5005 * between two adjacent zones match, it is assumed that the zone is empty.
5006 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5007 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5008 * starts where the previous one ended. For example, ZONE_DMA32 starts
5009 * at arch_max_dma_pfn.
5010 */
5011 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5012 {
5013 unsigned long start_pfn, end_pfn;
5014 int i, nid;
5015
5016 /* Record where the zone boundaries are */
5017 memset(arch_zone_lowest_possible_pfn, 0,
5018 sizeof(arch_zone_lowest_possible_pfn));
5019 memset(arch_zone_highest_possible_pfn, 0,
5020 sizeof(arch_zone_highest_possible_pfn));
5021 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5022 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5023 for (i = 1; i < MAX_NR_ZONES; i++) {
5024 if (i == ZONE_MOVABLE)
5025 continue;
5026 arch_zone_lowest_possible_pfn[i] =
5027 arch_zone_highest_possible_pfn[i-1];
5028 arch_zone_highest_possible_pfn[i] =
5029 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5030 }
5031 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5032 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5033
5034 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5035 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5036 find_zone_movable_pfns_for_nodes();
5037
5038 /* Print out the zone ranges */
5039 printk("Zone ranges:\n");
5040 for (i = 0; i < MAX_NR_ZONES; i++) {
5041 if (i == ZONE_MOVABLE)
5042 continue;
5043 printk(KERN_CONT " %-8s ", zone_names[i]);
5044 if (arch_zone_lowest_possible_pfn[i] ==
5045 arch_zone_highest_possible_pfn[i])
5046 printk(KERN_CONT "empty\n");
5047 else
5048 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5049 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5050 (arch_zone_highest_possible_pfn[i]
5051 << PAGE_SHIFT) - 1);
5052 }
5053
5054 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5055 printk("Movable zone start for each node\n");
5056 for (i = 0; i < MAX_NUMNODES; i++) {
5057 if (zone_movable_pfn[i])
5058 printk(" Node %d: %#010lx\n", i,
5059 zone_movable_pfn[i] << PAGE_SHIFT);
5060 }
5061
5062 /* Print out the early node map */
5063 printk("Early memory node ranges\n");
5064 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5065 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5066 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5067
5068 /* Initialise every node */
5069 mminit_verify_pageflags_layout();
5070 setup_nr_node_ids();
5071 for_each_online_node(nid) {
5072 pg_data_t *pgdat = NODE_DATA(nid);
5073 free_area_init_node(nid, NULL,
5074 find_min_pfn_for_node(nid), NULL);
5075
5076 /* Any memory on that node */
5077 if (pgdat->node_present_pages)
5078 node_set_state(nid, N_MEMORY);
5079 check_for_memory(pgdat, nid);
5080 }
5081 }
5082
5083 static int __init cmdline_parse_core(char *p, unsigned long *core)
5084 {
5085 unsigned long long coremem;
5086 if (!p)
5087 return -EINVAL;
5088
5089 coremem = memparse(p, &p);
5090 *core = coremem >> PAGE_SHIFT;
5091
5092 /* Paranoid check that UL is enough for the coremem value */
5093 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5094
5095 return 0;
5096 }
5097
5098 /*
5099 * kernelcore=size sets the amount of memory for use for allocations that
5100 * cannot be reclaimed or migrated.
5101 */
5102 static int __init cmdline_parse_kernelcore(char *p)
5103 {
5104 return cmdline_parse_core(p, &required_kernelcore);
5105 }
5106
5107 /*
5108 * movablecore=size sets the amount of memory for use for allocations that
5109 * can be reclaimed or migrated.
5110 */
5111 static int __init cmdline_parse_movablecore(char *p)
5112 {
5113 return cmdline_parse_core(p, &required_movablecore);
5114 }
5115
5116 early_param("kernelcore", cmdline_parse_kernelcore);
5117 early_param("movablecore", cmdline_parse_movablecore);
5118
5119 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5120
5121 /**
5122 * set_dma_reserve - set the specified number of pages reserved in the first zone
5123 * @new_dma_reserve: The number of pages to mark reserved
5124 *
5125 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5126 * In the DMA zone, a significant percentage may be consumed by kernel image
5127 * and other unfreeable allocations which can skew the watermarks badly. This
5128 * function may optionally be used to account for unfreeable pages in the
5129 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5130 * smaller per-cpu batchsize.
5131 */
5132 void __init set_dma_reserve(unsigned long new_dma_reserve)
5133 {
5134 dma_reserve = new_dma_reserve;
5135 }
5136
5137 void __init free_area_init(unsigned long *zones_size)
5138 {
5139 free_area_init_node(0, zones_size,
5140 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5141 }
5142
5143 static int page_alloc_cpu_notify(struct notifier_block *self,
5144 unsigned long action, void *hcpu)
5145 {
5146 int cpu = (unsigned long)hcpu;
5147
5148 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5149 lru_add_drain_cpu(cpu);
5150 drain_pages(cpu);
5151
5152 /*
5153 * Spill the event counters of the dead processor
5154 * into the current processors event counters.
5155 * This artificially elevates the count of the current
5156 * processor.
5157 */
5158 vm_events_fold_cpu(cpu);
5159
5160 /*
5161 * Zero the differential counters of the dead processor
5162 * so that the vm statistics are consistent.
5163 *
5164 * This is only okay since the processor is dead and cannot
5165 * race with what we are doing.
5166 */
5167 refresh_cpu_vm_stats(cpu);
5168 }
5169 return NOTIFY_OK;
5170 }
5171
5172 void __init page_alloc_init(void)
5173 {
5174 hotcpu_notifier(page_alloc_cpu_notify, 0);
5175 }
5176
5177 /*
5178 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5179 * or min_free_kbytes changes.
5180 */
5181 static void calculate_totalreserve_pages(void)
5182 {
5183 struct pglist_data *pgdat;
5184 unsigned long reserve_pages = 0;
5185 enum zone_type i, j;
5186
5187 for_each_online_pgdat(pgdat) {
5188 for (i = 0; i < MAX_NR_ZONES; i++) {
5189 struct zone *zone = pgdat->node_zones + i;
5190 unsigned long max = 0;
5191
5192 /* Find valid and maximum lowmem_reserve in the zone */
5193 for (j = i; j < MAX_NR_ZONES; j++) {
5194 if (zone->lowmem_reserve[j] > max)
5195 max = zone->lowmem_reserve[j];
5196 }
5197
5198 /* we treat the high watermark as reserved pages. */
5199 max += high_wmark_pages(zone);
5200
5201 if (max > zone->present_pages)
5202 max = zone->present_pages;
5203 reserve_pages += max;
5204 /*
5205 * Lowmem reserves are not available to
5206 * GFP_HIGHUSER page cache allocations and
5207 * kswapd tries to balance zones to their high
5208 * watermark. As a result, neither should be
5209 * regarded as dirtyable memory, to prevent a
5210 * situation where reclaim has to clean pages
5211 * in order to balance the zones.
5212 */
5213 zone->dirty_balance_reserve = max;
5214 }
5215 }
5216 dirty_balance_reserve = reserve_pages;
5217 totalreserve_pages = reserve_pages;
5218 }
5219
5220 /*
5221 * setup_per_zone_lowmem_reserve - called whenever
5222 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5223 * has a correct pages reserved value, so an adequate number of
5224 * pages are left in the zone after a successful __alloc_pages().
5225 */
5226 static void setup_per_zone_lowmem_reserve(void)
5227 {
5228 struct pglist_data *pgdat;
5229 enum zone_type j, idx;
5230
5231 for_each_online_pgdat(pgdat) {
5232 for (j = 0; j < MAX_NR_ZONES; j++) {
5233 struct zone *zone = pgdat->node_zones + j;
5234 unsigned long present_pages = zone->present_pages;
5235
5236 zone->lowmem_reserve[j] = 0;
5237
5238 idx = j;
5239 while (idx) {
5240 struct zone *lower_zone;
5241
5242 idx--;
5243
5244 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5245 sysctl_lowmem_reserve_ratio[idx] = 1;
5246
5247 lower_zone = pgdat->node_zones + idx;
5248 lower_zone->lowmem_reserve[j] = present_pages /
5249 sysctl_lowmem_reserve_ratio[idx];
5250 present_pages += lower_zone->present_pages;
5251 }
5252 }
5253 }
5254
5255 /* update totalreserve_pages */
5256 calculate_totalreserve_pages();
5257 }
5258
5259 static void __setup_per_zone_wmarks(void)
5260 {
5261 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5262 unsigned long lowmem_pages = 0;
5263 struct zone *zone;
5264 unsigned long flags;
5265
5266 /* Calculate total number of !ZONE_HIGHMEM pages */
5267 for_each_zone(zone) {
5268 if (!is_highmem(zone))
5269 lowmem_pages += zone->present_pages;
5270 }
5271
5272 for_each_zone(zone) {
5273 u64 tmp;
5274
5275 spin_lock_irqsave(&zone->lock, flags);
5276 tmp = (u64)pages_min * zone->present_pages;
5277 do_div(tmp, lowmem_pages);
5278 if (is_highmem(zone)) {
5279 /*
5280 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5281 * need highmem pages, so cap pages_min to a small
5282 * value here.
5283 *
5284 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5285 * deltas controls asynch page reclaim, and so should
5286 * not be capped for highmem.
5287 */
5288 int min_pages;
5289
5290 min_pages = zone->present_pages / 1024;
5291 if (min_pages < SWAP_CLUSTER_MAX)
5292 min_pages = SWAP_CLUSTER_MAX;
5293 if (min_pages > 128)
5294 min_pages = 128;
5295 zone->watermark[WMARK_MIN] = min_pages;
5296 } else {
5297 /*
5298 * If it's a lowmem zone, reserve a number of pages
5299 * proportionate to the zone's size.
5300 */
5301 zone->watermark[WMARK_MIN] = tmp;
5302 }
5303
5304 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5305 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5306
5307 setup_zone_migrate_reserve(zone);
5308 spin_unlock_irqrestore(&zone->lock, flags);
5309 }
5310
5311 /* update totalreserve_pages */
5312 calculate_totalreserve_pages();
5313 }
5314
5315 /**
5316 * setup_per_zone_wmarks - called when min_free_kbytes changes
5317 * or when memory is hot-{added|removed}
5318 *
5319 * Ensures that the watermark[min,low,high] values for each zone are set
5320 * correctly with respect to min_free_kbytes.
5321 */
5322 void setup_per_zone_wmarks(void)
5323 {
5324 mutex_lock(&zonelists_mutex);
5325 __setup_per_zone_wmarks();
5326 mutex_unlock(&zonelists_mutex);
5327 }
5328
5329 /*
5330 * The inactive anon list should be small enough that the VM never has to
5331 * do too much work, but large enough that each inactive page has a chance
5332 * to be referenced again before it is swapped out.
5333 *
5334 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5335 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5336 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5337 * the anonymous pages are kept on the inactive list.
5338 *
5339 * total target max
5340 * memory ratio inactive anon
5341 * -------------------------------------
5342 * 10MB 1 5MB
5343 * 100MB 1 50MB
5344 * 1GB 3 250MB
5345 * 10GB 10 0.9GB
5346 * 100GB 31 3GB
5347 * 1TB 101 10GB
5348 * 10TB 320 32GB
5349 */
5350 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5351 {
5352 unsigned int gb, ratio;
5353
5354 /* Zone size in gigabytes */
5355 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5356 if (gb)
5357 ratio = int_sqrt(10 * gb);
5358 else
5359 ratio = 1;
5360
5361 zone->inactive_ratio = ratio;
5362 }
5363
5364 static void __meminit setup_per_zone_inactive_ratio(void)
5365 {
5366 struct zone *zone;
5367
5368 for_each_zone(zone)
5369 calculate_zone_inactive_ratio(zone);
5370 }
5371
5372 /*
5373 * Initialise min_free_kbytes.
5374 *
5375 * For small machines we want it small (128k min). For large machines
5376 * we want it large (64MB max). But it is not linear, because network
5377 * bandwidth does not increase linearly with machine size. We use
5378 *
5379 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5380 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5381 *
5382 * which yields
5383 *
5384 * 16MB: 512k
5385 * 32MB: 724k
5386 * 64MB: 1024k
5387 * 128MB: 1448k
5388 * 256MB: 2048k
5389 * 512MB: 2896k
5390 * 1024MB: 4096k
5391 * 2048MB: 5792k
5392 * 4096MB: 8192k
5393 * 8192MB: 11584k
5394 * 16384MB: 16384k
5395 */
5396 int __meminit init_per_zone_wmark_min(void)
5397 {
5398 unsigned long lowmem_kbytes;
5399
5400 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5401
5402 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5403 if (min_free_kbytes < 128)
5404 min_free_kbytes = 128;
5405 if (min_free_kbytes > 65536)
5406 min_free_kbytes = 65536;
5407 setup_per_zone_wmarks();
5408 refresh_zone_stat_thresholds();
5409 setup_per_zone_lowmem_reserve();
5410 setup_per_zone_inactive_ratio();
5411 return 0;
5412 }
5413 module_init(init_per_zone_wmark_min)
5414
5415 /*
5416 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5417 * that we can call two helper functions whenever min_free_kbytes
5418 * changes.
5419 */
5420 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5421 void __user *buffer, size_t *length, loff_t *ppos)
5422 {
5423 proc_dointvec(table, write, buffer, length, ppos);
5424 if (write)
5425 setup_per_zone_wmarks();
5426 return 0;
5427 }
5428
5429 #ifdef CONFIG_NUMA
5430 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5431 void __user *buffer, size_t *length, loff_t *ppos)
5432 {
5433 struct zone *zone;
5434 int rc;
5435
5436 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5437 if (rc)
5438 return rc;
5439
5440 for_each_zone(zone)
5441 zone->min_unmapped_pages = (zone->present_pages *
5442 sysctl_min_unmapped_ratio) / 100;
5443 return 0;
5444 }
5445
5446 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5447 void __user *buffer, size_t *length, loff_t *ppos)
5448 {
5449 struct zone *zone;
5450 int rc;
5451
5452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5453 if (rc)
5454 return rc;
5455
5456 for_each_zone(zone)
5457 zone->min_slab_pages = (zone->present_pages *
5458 sysctl_min_slab_ratio) / 100;
5459 return 0;
5460 }
5461 #endif
5462
5463 /*
5464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5466 * whenever sysctl_lowmem_reserve_ratio changes.
5467 *
5468 * The reserve ratio obviously has absolutely no relation with the
5469 * minimum watermarks. The lowmem reserve ratio can only make sense
5470 * if in function of the boot time zone sizes.
5471 */
5472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5473 void __user *buffer, size_t *length, loff_t *ppos)
5474 {
5475 proc_dointvec_minmax(table, write, buffer, length, ppos);
5476 setup_per_zone_lowmem_reserve();
5477 return 0;
5478 }
5479
5480 /*
5481 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5482 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5483 * can have before it gets flushed back to buddy allocator.
5484 */
5485
5486 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5487 void __user *buffer, size_t *length, loff_t *ppos)
5488 {
5489 struct zone *zone;
5490 unsigned int cpu;
5491 int ret;
5492
5493 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5494 if (!write || (ret < 0))
5495 return ret;
5496 for_each_populated_zone(zone) {
5497 for_each_possible_cpu(cpu) {
5498 unsigned long high;
5499 high = zone->present_pages / percpu_pagelist_fraction;
5500 setup_pagelist_highmark(
5501 per_cpu_ptr(zone->pageset, cpu), high);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 int hashdist = HASHDIST_DEFAULT;
5508
5509 #ifdef CONFIG_NUMA
5510 static int __init set_hashdist(char *str)
5511 {
5512 if (!str)
5513 return 0;
5514 hashdist = simple_strtoul(str, &str, 0);
5515 return 1;
5516 }
5517 __setup("hashdist=", set_hashdist);
5518 #endif
5519
5520 /*
5521 * allocate a large system hash table from bootmem
5522 * - it is assumed that the hash table must contain an exact power-of-2
5523 * quantity of entries
5524 * - limit is the number of hash buckets, not the total allocation size
5525 */
5526 void *__init alloc_large_system_hash(const char *tablename,
5527 unsigned long bucketsize,
5528 unsigned long numentries,
5529 int scale,
5530 int flags,
5531 unsigned int *_hash_shift,
5532 unsigned int *_hash_mask,
5533 unsigned long low_limit,
5534 unsigned long high_limit)
5535 {
5536 unsigned long long max = high_limit;
5537 unsigned long log2qty, size;
5538 void *table = NULL;
5539
5540 /* allow the kernel cmdline to have a say */
5541 if (!numentries) {
5542 /* round applicable memory size up to nearest megabyte */
5543 numentries = nr_kernel_pages;
5544 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5545 numentries >>= 20 - PAGE_SHIFT;
5546 numentries <<= 20 - PAGE_SHIFT;
5547
5548 /* limit to 1 bucket per 2^scale bytes of low memory */
5549 if (scale > PAGE_SHIFT)
5550 numentries >>= (scale - PAGE_SHIFT);
5551 else
5552 numentries <<= (PAGE_SHIFT - scale);
5553
5554 /* Make sure we've got at least a 0-order allocation.. */
5555 if (unlikely(flags & HASH_SMALL)) {
5556 /* Makes no sense without HASH_EARLY */
5557 WARN_ON(!(flags & HASH_EARLY));
5558 if (!(numentries >> *_hash_shift)) {
5559 numentries = 1UL << *_hash_shift;
5560 BUG_ON(!numentries);
5561 }
5562 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5563 numentries = PAGE_SIZE / bucketsize;
5564 }
5565 numentries = roundup_pow_of_two(numentries);
5566
5567 /* limit allocation size to 1/16 total memory by default */
5568 if (max == 0) {
5569 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5570 do_div(max, bucketsize);
5571 }
5572 max = min(max, 0x80000000ULL);
5573
5574 if (numentries < low_limit)
5575 numentries = low_limit;
5576 if (numentries > max)
5577 numentries = max;
5578
5579 log2qty = ilog2(numentries);
5580
5581 do {
5582 size = bucketsize << log2qty;
5583 if (flags & HASH_EARLY)
5584 table = alloc_bootmem_nopanic(size);
5585 else if (hashdist)
5586 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5587 else {
5588 /*
5589 * If bucketsize is not a power-of-two, we may free
5590 * some pages at the end of hash table which
5591 * alloc_pages_exact() automatically does
5592 */
5593 if (get_order(size) < MAX_ORDER) {
5594 table = alloc_pages_exact(size, GFP_ATOMIC);
5595 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5596 }
5597 }
5598 } while (!table && size > PAGE_SIZE && --log2qty);
5599
5600 if (!table)
5601 panic("Failed to allocate %s hash table\n", tablename);
5602
5603 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5604 tablename,
5605 (1UL << log2qty),
5606 ilog2(size) - PAGE_SHIFT,
5607 size);
5608
5609 if (_hash_shift)
5610 *_hash_shift = log2qty;
5611 if (_hash_mask)
5612 *_hash_mask = (1 << log2qty) - 1;
5613
5614 return table;
5615 }
5616
5617 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5618 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5619 unsigned long pfn)
5620 {
5621 #ifdef CONFIG_SPARSEMEM
5622 return __pfn_to_section(pfn)->pageblock_flags;
5623 #else
5624 return zone->pageblock_flags;
5625 #endif /* CONFIG_SPARSEMEM */
5626 }
5627
5628 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5629 {
5630 #ifdef CONFIG_SPARSEMEM
5631 pfn &= (PAGES_PER_SECTION-1);
5632 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5633 #else
5634 pfn = pfn - zone->zone_start_pfn;
5635 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5636 #endif /* CONFIG_SPARSEMEM */
5637 }
5638
5639 /**
5640 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5641 * @page: The page within the block of interest
5642 * @start_bitidx: The first bit of interest to retrieve
5643 * @end_bitidx: The last bit of interest
5644 * returns pageblock_bits flags
5645 */
5646 unsigned long get_pageblock_flags_group(struct page *page,
5647 int start_bitidx, int end_bitidx)
5648 {
5649 struct zone *zone;
5650 unsigned long *bitmap;
5651 unsigned long pfn, bitidx;
5652 unsigned long flags = 0;
5653 unsigned long value = 1;
5654
5655 zone = page_zone(page);
5656 pfn = page_to_pfn(page);
5657 bitmap = get_pageblock_bitmap(zone, pfn);
5658 bitidx = pfn_to_bitidx(zone, pfn);
5659
5660 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5661 if (test_bit(bitidx + start_bitidx, bitmap))
5662 flags |= value;
5663
5664 return flags;
5665 }
5666
5667 /**
5668 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5669 * @page: The page within the block of interest
5670 * @start_bitidx: The first bit of interest
5671 * @end_bitidx: The last bit of interest
5672 * @flags: The flags to set
5673 */
5674 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5675 int start_bitidx, int end_bitidx)
5676 {
5677 struct zone *zone;
5678 unsigned long *bitmap;
5679 unsigned long pfn, bitidx;
5680 unsigned long value = 1;
5681
5682 zone = page_zone(page);
5683 pfn = page_to_pfn(page);
5684 bitmap = get_pageblock_bitmap(zone, pfn);
5685 bitidx = pfn_to_bitidx(zone, pfn);
5686 VM_BUG_ON(pfn < zone->zone_start_pfn);
5687 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5688
5689 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5690 if (flags & value)
5691 __set_bit(bitidx + start_bitidx, bitmap);
5692 else
5693 __clear_bit(bitidx + start_bitidx, bitmap);
5694 }
5695
5696 /*
5697 * This function checks whether pageblock includes unmovable pages or not.
5698 * If @count is not zero, it is okay to include less @count unmovable pages
5699 *
5700 * PageLRU check wihtout isolation or lru_lock could race so that
5701 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5702 * expect this function should be exact.
5703 */
5704 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5705 bool skip_hwpoisoned_pages)
5706 {
5707 unsigned long pfn, iter, found;
5708 int mt;
5709
5710 /*
5711 * For avoiding noise data, lru_add_drain_all() should be called
5712 * If ZONE_MOVABLE, the zone never contains unmovable pages
5713 */
5714 if (zone_idx(zone) == ZONE_MOVABLE)
5715 return false;
5716 mt = get_pageblock_migratetype(page);
5717 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5718 return false;
5719
5720 pfn = page_to_pfn(page);
5721 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5722 unsigned long check = pfn + iter;
5723
5724 if (!pfn_valid_within(check))
5725 continue;
5726
5727 page = pfn_to_page(check);
5728 /*
5729 * We can't use page_count without pin a page
5730 * because another CPU can free compound page.
5731 * This check already skips compound tails of THP
5732 * because their page->_count is zero at all time.
5733 */
5734 if (!atomic_read(&page->_count)) {
5735 if (PageBuddy(page))
5736 iter += (1 << page_order(page)) - 1;
5737 continue;
5738 }
5739
5740 /*
5741 * The HWPoisoned page may be not in buddy system, and
5742 * page_count() is not 0.
5743 */
5744 if (skip_hwpoisoned_pages && PageHWPoison(page))
5745 continue;
5746
5747 if (!PageLRU(page))
5748 found++;
5749 /*
5750 * If there are RECLAIMABLE pages, we need to check it.
5751 * But now, memory offline itself doesn't call shrink_slab()
5752 * and it still to be fixed.
5753 */
5754 /*
5755 * If the page is not RAM, page_count()should be 0.
5756 * we don't need more check. This is an _used_ not-movable page.
5757 *
5758 * The problematic thing here is PG_reserved pages. PG_reserved
5759 * is set to both of a memory hole page and a _used_ kernel
5760 * page at boot.
5761 */
5762 if (found > count)
5763 return true;
5764 }
5765 return false;
5766 }
5767
5768 bool is_pageblock_removable_nolock(struct page *page)
5769 {
5770 struct zone *zone;
5771 unsigned long pfn;
5772
5773 /*
5774 * We have to be careful here because we are iterating over memory
5775 * sections which are not zone aware so we might end up outside of
5776 * the zone but still within the section.
5777 * We have to take care about the node as well. If the node is offline
5778 * its NODE_DATA will be NULL - see page_zone.
5779 */
5780 if (!node_online(page_to_nid(page)))
5781 return false;
5782
5783 zone = page_zone(page);
5784 pfn = page_to_pfn(page);
5785 if (zone->zone_start_pfn > pfn ||
5786 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5787 return false;
5788
5789 return !has_unmovable_pages(zone, page, 0, true);
5790 }
5791
5792 #ifdef CONFIG_CMA
5793
5794 static unsigned long pfn_max_align_down(unsigned long pfn)
5795 {
5796 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5797 pageblock_nr_pages) - 1);
5798 }
5799
5800 static unsigned long pfn_max_align_up(unsigned long pfn)
5801 {
5802 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5803 pageblock_nr_pages));
5804 }
5805
5806 /* [start, end) must belong to a single zone. */
5807 static int __alloc_contig_migrate_range(struct compact_control *cc,
5808 unsigned long start, unsigned long end)
5809 {
5810 /* This function is based on compact_zone() from compaction.c. */
5811 unsigned long nr_reclaimed;
5812 unsigned long pfn = start;
5813 unsigned int tries = 0;
5814 int ret = 0;
5815
5816 migrate_prep();
5817
5818 while (pfn < end || !list_empty(&cc->migratepages)) {
5819 if (fatal_signal_pending(current)) {
5820 ret = -EINTR;
5821 break;
5822 }
5823
5824 if (list_empty(&cc->migratepages)) {
5825 cc->nr_migratepages = 0;
5826 pfn = isolate_migratepages_range(cc->zone, cc,
5827 pfn, end, true);
5828 if (!pfn) {
5829 ret = -EINTR;
5830 break;
5831 }
5832 tries = 0;
5833 } else if (++tries == 5) {
5834 ret = ret < 0 ? ret : -EBUSY;
5835 break;
5836 }
5837
5838 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5839 &cc->migratepages);
5840 cc->nr_migratepages -= nr_reclaimed;
5841
5842 ret = migrate_pages(&cc->migratepages,
5843 alloc_migrate_target,
5844 0, false, MIGRATE_SYNC,
5845 MR_CMA);
5846 }
5847
5848 putback_movable_pages(&cc->migratepages);
5849 return ret > 0 ? 0 : ret;
5850 }
5851
5852 /**
5853 * alloc_contig_range() -- tries to allocate given range of pages
5854 * @start: start PFN to allocate
5855 * @end: one-past-the-last PFN to allocate
5856 * @migratetype: migratetype of the underlaying pageblocks (either
5857 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5858 * in range must have the same migratetype and it must
5859 * be either of the two.
5860 *
5861 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5862 * aligned, however it's the caller's responsibility to guarantee that
5863 * we are the only thread that changes migrate type of pageblocks the
5864 * pages fall in.
5865 *
5866 * The PFN range must belong to a single zone.
5867 *
5868 * Returns zero on success or negative error code. On success all
5869 * pages which PFN is in [start, end) are allocated for the caller and
5870 * need to be freed with free_contig_range().
5871 */
5872 int alloc_contig_range(unsigned long start, unsigned long end,
5873 unsigned migratetype)
5874 {
5875 unsigned long outer_start, outer_end;
5876 int ret = 0, order;
5877
5878 struct compact_control cc = {
5879 .nr_migratepages = 0,
5880 .order = -1,
5881 .zone = page_zone(pfn_to_page(start)),
5882 .sync = true,
5883 .ignore_skip_hint = true,
5884 };
5885 INIT_LIST_HEAD(&cc.migratepages);
5886
5887 /*
5888 * What we do here is we mark all pageblocks in range as
5889 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5890 * have different sizes, and due to the way page allocator
5891 * work, we align the range to biggest of the two pages so
5892 * that page allocator won't try to merge buddies from
5893 * different pageblocks and change MIGRATE_ISOLATE to some
5894 * other migration type.
5895 *
5896 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5897 * migrate the pages from an unaligned range (ie. pages that
5898 * we are interested in). This will put all the pages in
5899 * range back to page allocator as MIGRATE_ISOLATE.
5900 *
5901 * When this is done, we take the pages in range from page
5902 * allocator removing them from the buddy system. This way
5903 * page allocator will never consider using them.
5904 *
5905 * This lets us mark the pageblocks back as
5906 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5907 * aligned range but not in the unaligned, original range are
5908 * put back to page allocator so that buddy can use them.
5909 */
5910
5911 ret = start_isolate_page_range(pfn_max_align_down(start),
5912 pfn_max_align_up(end), migratetype,
5913 false);
5914 if (ret)
5915 return ret;
5916
5917 ret = __alloc_contig_migrate_range(&cc, start, end);
5918 if (ret)
5919 goto done;
5920
5921 /*
5922 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5923 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5924 * more, all pages in [start, end) are free in page allocator.
5925 * What we are going to do is to allocate all pages from
5926 * [start, end) (that is remove them from page allocator).
5927 *
5928 * The only problem is that pages at the beginning and at the
5929 * end of interesting range may be not aligned with pages that
5930 * page allocator holds, ie. they can be part of higher order
5931 * pages. Because of this, we reserve the bigger range and
5932 * once this is done free the pages we are not interested in.
5933 *
5934 * We don't have to hold zone->lock here because the pages are
5935 * isolated thus they won't get removed from buddy.
5936 */
5937
5938 lru_add_drain_all();
5939 drain_all_pages();
5940
5941 order = 0;
5942 outer_start = start;
5943 while (!PageBuddy(pfn_to_page(outer_start))) {
5944 if (++order >= MAX_ORDER) {
5945 ret = -EBUSY;
5946 goto done;
5947 }
5948 outer_start &= ~0UL << order;
5949 }
5950
5951 /* Make sure the range is really isolated. */
5952 if (test_pages_isolated(outer_start, end, false)) {
5953 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5954 outer_start, end);
5955 ret = -EBUSY;
5956 goto done;
5957 }
5958
5959
5960 /* Grab isolated pages from freelists. */
5961 outer_end = isolate_freepages_range(&cc, outer_start, end);
5962 if (!outer_end) {
5963 ret = -EBUSY;
5964 goto done;
5965 }
5966
5967 /* Free head and tail (if any) */
5968 if (start != outer_start)
5969 free_contig_range(outer_start, start - outer_start);
5970 if (end != outer_end)
5971 free_contig_range(end, outer_end - end);
5972
5973 done:
5974 undo_isolate_page_range(pfn_max_align_down(start),
5975 pfn_max_align_up(end), migratetype);
5976 return ret;
5977 }
5978
5979 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5980 {
5981 unsigned int count = 0;
5982
5983 for (; nr_pages--; pfn++) {
5984 struct page *page = pfn_to_page(pfn);
5985
5986 count += page_count(page) != 1;
5987 __free_page(page);
5988 }
5989 WARN(count != 0, "%d pages are still in use!\n", count);
5990 }
5991 #endif
5992
5993 #ifdef CONFIG_MEMORY_HOTPLUG
5994 static int __meminit __zone_pcp_update(void *data)
5995 {
5996 struct zone *zone = data;
5997 int cpu;
5998 unsigned long batch = zone_batchsize(zone), flags;
5999
6000 for_each_possible_cpu(cpu) {
6001 struct per_cpu_pageset *pset;
6002 struct per_cpu_pages *pcp;
6003
6004 pset = per_cpu_ptr(zone->pageset, cpu);
6005 pcp = &pset->pcp;
6006
6007 local_irq_save(flags);
6008 if (pcp->count > 0)
6009 free_pcppages_bulk(zone, pcp->count, pcp);
6010 drain_zonestat(zone, pset);
6011 setup_pageset(pset, batch);
6012 local_irq_restore(flags);
6013 }
6014 return 0;
6015 }
6016
6017 void __meminit zone_pcp_update(struct zone *zone)
6018 {
6019 stop_machine(__zone_pcp_update, zone, NULL);
6020 }
6021 #endif
6022
6023 void zone_pcp_reset(struct zone *zone)
6024 {
6025 unsigned long flags;
6026 int cpu;
6027 struct per_cpu_pageset *pset;
6028
6029 /* avoid races with drain_pages() */
6030 local_irq_save(flags);
6031 if (zone->pageset != &boot_pageset) {
6032 for_each_online_cpu(cpu) {
6033 pset = per_cpu_ptr(zone->pageset, cpu);
6034 drain_zonestat(zone, pset);
6035 }
6036 free_percpu(zone->pageset);
6037 zone->pageset = &boot_pageset;
6038 }
6039 local_irq_restore(flags);
6040 }
6041
6042 #ifdef CONFIG_MEMORY_HOTREMOVE
6043 /*
6044 * All pages in the range must be isolated before calling this.
6045 */
6046 void
6047 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6048 {
6049 struct page *page;
6050 struct zone *zone;
6051 int order, i;
6052 unsigned long pfn;
6053 unsigned long flags;
6054 /* find the first valid pfn */
6055 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6056 if (pfn_valid(pfn))
6057 break;
6058 if (pfn == end_pfn)
6059 return;
6060 zone = page_zone(pfn_to_page(pfn));
6061 spin_lock_irqsave(&zone->lock, flags);
6062 pfn = start_pfn;
6063 while (pfn < end_pfn) {
6064 if (!pfn_valid(pfn)) {
6065 pfn++;
6066 continue;
6067 }
6068 page = pfn_to_page(pfn);
6069 /*
6070 * The HWPoisoned page may be not in buddy system, and
6071 * page_count() is not 0.
6072 */
6073 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6074 pfn++;
6075 SetPageReserved(page);
6076 continue;
6077 }
6078
6079 BUG_ON(page_count(page));
6080 BUG_ON(!PageBuddy(page));
6081 order = page_order(page);
6082 #ifdef CONFIG_DEBUG_VM
6083 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6084 pfn, 1 << order, end_pfn);
6085 #endif
6086 list_del(&page->lru);
6087 rmv_page_order(page);
6088 zone->free_area[order].nr_free--;
6089 for (i = 0; i < (1 << order); i++)
6090 SetPageReserved((page+i));
6091 pfn += (1 << order);
6092 }
6093 spin_unlock_irqrestore(&zone->lock, flags);
6094 }
6095 #endif
6096
6097 #ifdef CONFIG_MEMORY_FAILURE
6098 bool is_free_buddy_page(struct page *page)
6099 {
6100 struct zone *zone = page_zone(page);
6101 unsigned long pfn = page_to_pfn(page);
6102 unsigned long flags;
6103 int order;
6104
6105 spin_lock_irqsave(&zone->lock, flags);
6106 for (order = 0; order < MAX_ORDER; order++) {
6107 struct page *page_head = page - (pfn & ((1 << order) - 1));
6108
6109 if (PageBuddy(page_head) && page_order(page_head) >= order)
6110 break;
6111 }
6112 spin_unlock_irqrestore(&zone->lock, flags);
6113
6114 return order < MAX_ORDER;
6115 }
6116 #endif
6117
6118 static const struct trace_print_flags pageflag_names[] = {
6119 {1UL << PG_locked, "locked" },
6120 {1UL << PG_error, "error" },
6121 {1UL << PG_referenced, "referenced" },
6122 {1UL << PG_uptodate, "uptodate" },
6123 {1UL << PG_dirty, "dirty" },
6124 {1UL << PG_lru, "lru" },
6125 {1UL << PG_active, "active" },
6126 {1UL << PG_slab, "slab" },
6127 {1UL << PG_owner_priv_1, "owner_priv_1" },
6128 {1UL << PG_arch_1, "arch_1" },
6129 {1UL << PG_reserved, "reserved" },
6130 {1UL << PG_private, "private" },
6131 {1UL << PG_private_2, "private_2" },
6132 {1UL << PG_writeback, "writeback" },
6133 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6134 {1UL << PG_head, "head" },
6135 {1UL << PG_tail, "tail" },
6136 #else
6137 {1UL << PG_compound, "compound" },
6138 #endif
6139 {1UL << PG_swapcache, "swapcache" },
6140 {1UL << PG_mappedtodisk, "mappedtodisk" },
6141 {1UL << PG_reclaim, "reclaim" },
6142 {1UL << PG_swapbacked, "swapbacked" },
6143 {1UL << PG_unevictable, "unevictable" },
6144 #ifdef CONFIG_MMU
6145 {1UL << PG_mlocked, "mlocked" },
6146 #endif
6147 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6148 {1UL << PG_uncached, "uncached" },
6149 #endif
6150 #ifdef CONFIG_MEMORY_FAILURE
6151 {1UL << PG_hwpoison, "hwpoison" },
6152 #endif
6153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6154 {1UL << PG_compound_lock, "compound_lock" },
6155 #endif
6156 };
6157
6158 static void dump_page_flags(unsigned long flags)
6159 {
6160 const char *delim = "";
6161 unsigned long mask;
6162 int i;
6163
6164 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6165
6166 printk(KERN_ALERT "page flags: %#lx(", flags);
6167
6168 /* remove zone id */
6169 flags &= (1UL << NR_PAGEFLAGS) - 1;
6170
6171 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6172
6173 mask = pageflag_names[i].mask;
6174 if ((flags & mask) != mask)
6175 continue;
6176
6177 flags &= ~mask;
6178 printk("%s%s", delim, pageflag_names[i].name);
6179 delim = "|";
6180 }
6181
6182 /* check for left over flags */
6183 if (flags)
6184 printk("%s%#lx", delim, flags);
6185
6186 printk(")\n");
6187 }
6188
6189 void dump_page(struct page *page)
6190 {
6191 printk(KERN_ALERT
6192 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6193 page, atomic_read(&page->_count), page_mapcount(page),
6194 page->mapping, page->index);
6195 dump_page_flags(page->flags);
6196 mem_cgroup_print_bad_page(page);
6197 }