Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
59
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
64
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
66 /*
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
71 */
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
75
76 /*
77 * Array of node states.
78 */
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
89 };
90 EXPORT_SYMBOL(node_states);
91
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
96
97 #ifdef CONFIG_PM_SLEEP
98 /*
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
105 */
106 void set_gfp_allowed_mask(gfp_t mask)
107 {
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
110 }
111
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
113 {
114 gfp_t ret = gfp_allowed_mask;
115
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
119 }
120 #endif /* CONFIG_PM_SLEEP */
121
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
125
126 static void __free_pages_ok(struct page *page, unsigned int order);
127
128 /*
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
135 *
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
138 */
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
147 32,
148 #endif
149 32,
150 };
151
152 EXPORT_SYMBOL(totalram_pages);
153
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 "DMA32",
160 #endif
161 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 "HighMem",
164 #endif
165 "Movable",
166 };
167
168 int min_free_kbytes = 1024;
169
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
173
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
175 /*
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
181 */
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
194
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __initdata required_kernelcore;
200 static unsigned long __initdata required_movablecore;
201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
202
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
207
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
214
215 int page_group_by_mobility_disabled __read_mostly;
216
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
218 {
219
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
222
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
225 }
226
227 bool oom_killer_disabled __read_mostly;
228
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
231 {
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
235
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
243
244 return ret;
245 }
246
247 static int page_is_consistent(struct zone *zone, struct page *page)
248 {
249 if (!pfn_valid_within(page_to_pfn(page)))
250 return 0;
251 if (zone != page_zone(page))
252 return 0;
253
254 return 1;
255 }
256 /*
257 * Temporary debugging check for pages not lying within a given zone.
258 */
259 static int bad_range(struct zone *zone, struct page *page)
260 {
261 if (page_outside_zone_boundaries(zone, page))
262 return 1;
263 if (!page_is_consistent(zone, page))
264 return 1;
265
266 return 0;
267 }
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
270 {
271 return 0;
272 }
273 #endif
274
275 static void bad_page(struct page *page)
276 {
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
280
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
285 }
286
287 /*
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
290 */
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
295 }
296 if (nr_unshown) {
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
299 nr_unshown);
300 nr_unshown = 0;
301 }
302 nr_shown = 0;
303 }
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
306
307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
308 current->comm, page_to_pfn(page));
309 dump_page(page);
310
311 dump_stack();
312 out:
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
315 add_taint(TAINT_BAD_PAGE);
316 }
317
318 /*
319 * Higher-order pages are called "compound pages". They are structured thusly:
320 *
321 * The first PAGE_SIZE page is called the "head page".
322 *
323 * The remaining PAGE_SIZE pages are called "tail pages".
324 *
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
327 *
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
331 */
332
333 static void free_compound_page(struct page *page)
334 {
335 __free_pages_ok(page, compound_order(page));
336 }
337
338 void prep_compound_page(struct page *page, unsigned long order)
339 {
340 int i;
341 int nr_pages = 1 << order;
342
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
348
349 __SetPageTail(p);
350 p->first_page = page;
351 }
352 }
353
354 static int destroy_compound_page(struct page *page, unsigned long order)
355 {
356 int i;
357 int nr_pages = 1 << order;
358 int bad = 0;
359
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
362 bad_page(page);
363 bad++;
364 }
365
366 __ClearPageHead(page);
367
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
370
371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 bad_page(page);
373 bad++;
374 }
375 __ClearPageTail(p);
376 }
377
378 return bad;
379 }
380
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
382 {
383 int i;
384
385 /*
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
388 */
389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
392 }
393
394 static inline void set_page_order(struct page *page, int order)
395 {
396 set_page_private(page, order);
397 __SetPageBuddy(page);
398 }
399
400 static inline void rmv_page_order(struct page *page)
401 {
402 __ClearPageBuddy(page);
403 set_page_private(page, 0);
404 }
405
406 /*
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
409 *
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
416 *
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
420 *
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
422 */
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
425 {
426 unsigned long buddy_idx = page_idx ^ (1 << order);
427
428 return page + (buddy_idx - page_idx);
429 }
430
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
433 {
434 return (page_idx & ~(1 << order));
435 }
436
437 /*
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
444 *
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
447 *
448 * For recording page's order, we use page_private(page).
449 */
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
452 {
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
455
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
458
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
462 }
463 return 0;
464 }
465
466 /*
467 * Freeing function for a buddy system allocator.
468 *
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
486 *
487 * -- wli
488 */
489
490 static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
493 {
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 struct page *buddy;
497
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
501
502 VM_BUG_ON(migratetype == -1);
503
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
508
509 while (order < MAX_ORDER-1) {
510 buddy = __page_find_buddy(page, page_idx, order);
511 if (!page_is_buddy(page, buddy, order))
512 break;
513
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy->lru);
516 zone->free_area[order].nr_free--;
517 rmv_page_order(buddy);
518 combined_idx = __find_combined_index(page_idx, order);
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
522 }
523 set_page_order(page, order);
524
525 /*
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
532 */
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
542 }
543 }
544
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 zone->free_area[order].nr_free++;
548 }
549
550 /*
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
554 */
555 static inline void free_page_mlock(struct page *page)
556 {
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
559 }
560
561 static inline int free_pages_check(struct page *page)
562 {
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
565 (atomic_read(&page->_count) != 0) |
566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 bad_page(page);
568 return 1;
569 }
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
573 }
574
575 /*
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
579 *
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
582 *
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
585 */
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
588 {
589 int migratetype = 0;
590 int batch_free = 0;
591
592 spin_lock(&zone->lock);
593 zone->all_unreclaimable = 0;
594 zone->pages_scanned = 0;
595
596 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
597 while (count) {
598 struct page *page;
599 struct list_head *list;
600
601 /*
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
607 */
608 do {
609 batch_free++;
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
614
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 } while (--count && --batch_free && !list_empty(list));
623 }
624 spin_unlock(&zone->lock);
625 }
626
627 static void free_one_page(struct zone *zone, struct page *page, int order,
628 int migratetype)
629 {
630 spin_lock(&zone->lock);
631 zone->all_unreclaimable = 0;
632 zone->pages_scanned = 0;
633
634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
635 __free_one_page(page, zone, order, migratetype);
636 spin_unlock(&zone->lock);
637 }
638
639 static bool free_pages_prepare(struct page *page, unsigned int order)
640 {
641 int i;
642 int bad = 0;
643
644 trace_mm_page_free_direct(page, order);
645 kmemcheck_free_shadow(page, order);
646
647 for (i = 0; i < (1 << order); i++) {
648 struct page *pg = page + i;
649
650 if (PageAnon(pg))
651 pg->mapping = NULL;
652 bad += free_pages_check(pg);
653 }
654 if (bad)
655 return false;
656
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
664
665 return true;
666 }
667
668 static void __free_pages_ok(struct page *page, unsigned int order)
669 {
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
683 }
684
685 /*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689 {
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
697
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
708 set_page_refcounted(page);
709 __free_pages(page, order);
710 }
711 }
712
713
714 /*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
728 static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
731 {
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
743 }
744
745 /*
746 * This page is about to be returned from the page allocator
747 */
748 static inline int check_new_page(struct page *page)
749 {
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
756 }
757 return 0;
758 }
759
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761 {
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
769
770 set_page_private(page, 0);
771 set_page_refcounted(page);
772
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
782 return 0;
783 }
784
785 /*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
792 {
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813 }
814
815
816 /*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
825 };
826
827 /*
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
831 */
832 static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
835 {
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
839
840 #ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
850
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
871 }
872
873 return pages_moved;
874 }
875
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
878 {
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895 }
896
897 static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899 {
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906 }
907
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911 {
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
926
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
940 */
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
954 migratetype = start_migratetype;
955 }
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
960
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
971 return page;
972 }
973 }
974
975 return NULL;
976 }
977
978 /*
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
984 {
985 struct page *page;
986
987 retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
989
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
992
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1006 }
1007
1008 /*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1016 {
1017 int i;
1018
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1040 }
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1044 }
1045
1046 #ifdef CONFIG_NUMA
1047 /*
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1054 */
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056 {
1057 unsigned long flags;
1058 int to_drain;
1059
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1068 }
1069 #endif
1070
1071 /*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078 static void drain_pages(unsigned int cpu)
1079 {
1080 unsigned long flags;
1081 struct zone *zone;
1082
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1086
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1089
1090 pcp = &pset->pcp;
1091 free_pcppages_bulk(zone, pcp->count, pcp);
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1094 }
1095 }
1096
1097 /*
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099 */
1100 void drain_local_pages(void *arg)
1101 {
1102 drain_pages(smp_processor_id());
1103 }
1104
1105 /*
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107 */
1108 void drain_all_pages(void)
1109 {
1110 on_each_cpu(drain_local_pages, NULL, 1);
1111 }
1112
1113 #ifdef CONFIG_HIBERNATION
1114
1115 void mark_free_pages(struct zone *zone)
1116 {
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
1119 int order, t;
1120 struct list_head *curr;
1121
1122 if (!zone->spanned_pages)
1123 return;
1124
1125 spin_lock_irqsave(&zone->lock, flags);
1126
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1131
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
1134 }
1135
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 unsigned long i;
1139
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
1142 swsusp_set_page_free(pfn_to_page(pfn + i));
1143 }
1144 }
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147 #endif /* CONFIG_PM */
1148
1149 /*
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1152 */
1153 void free_hot_cold_page(struct page *page, int cold)
1154 {
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
1158 int migratetype;
1159 int wasMlocked = __TestClearPageMlocked(page);
1160
1161 if (!free_pages_prepare(page, 0))
1162 return;
1163
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1166 local_irq_save(flags);
1167 if (unlikely(wasMlocked))
1168 free_page_mlock(page);
1169 __count_vm_event(PGFREE);
1170
1171 /*
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1177 */
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1182 }
1183 migratetype = MIGRATE_MOVABLE;
1184 }
1185
1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 if (cold)
1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 else
1190 list_add(&page->lru, &pcp->lists[migratetype]);
1191 pcp->count++;
1192 if (pcp->count >= pcp->high) {
1193 free_pcppages_bulk(zone, pcp->batch, pcp);
1194 pcp->count -= pcp->batch;
1195 }
1196
1197 out:
1198 local_irq_restore(flags);
1199 }
1200
1201 /*
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1205 *
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1208 */
1209 void split_page(struct page *page, unsigned int order)
1210 {
1211 int i;
1212
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
1215
1216 #ifdef CONFIG_KMEMCHECK
1217 /*
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1220 */
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1224
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
1227 }
1228
1229 /*
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1235 *
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1238 */
1239 int split_free_page(struct page *page)
1240 {
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1244
1245 BUG_ON(!PageBuddy(page));
1246
1247 zone = page_zone(page);
1248 order = page_order(page);
1249
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1254
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1264
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 }
1270
1271 return 1 << order;
1272 }
1273
1274 /*
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1278 */
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1283 {
1284 unsigned long flags;
1285 struct page *page;
1286 int cold = !!(gfp_flags & __GFP_COLD);
1287
1288 again:
1289 if (likely(order == 0)) {
1290 struct per_cpu_pages *pcp;
1291 struct list_head *list;
1292
1293 local_irq_save(flags);
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
1296 if (list_empty(list)) {
1297 pcp->count += rmqueue_bulk(zone, 0,
1298 pcp->batch, list,
1299 migratetype, cold);
1300 if (unlikely(list_empty(list)))
1301 goto failed;
1302 }
1303
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1308
1309 list_del(&page->lru);
1310 pcp->count--;
1311 } else {
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 /*
1314 * __GFP_NOFAIL is not to be used in new code.
1315 *
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1318 *
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1321 * __GFP_NOFAIL.
1322 */
1323 WARN_ON_ONCE(order > 1);
1324 }
1325 spin_lock_irqsave(&zone->lock, flags);
1326 page = __rmqueue(zone, order, migratetype);
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1331 }
1332
1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 zone_statistics(preferred_zone, zone);
1335 local_irq_restore(flags);
1336
1337 VM_BUG_ON(bad_range(zone, page));
1338 if (prep_new_page(page, order, gfp_flags))
1339 goto again;
1340 return page;
1341
1342 failed:
1343 local_irq_restore(flags);
1344 return NULL;
1345 }
1346
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1352
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1355
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1359
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1361
1362 static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1364
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
1367 u32 min_order;
1368
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
1373 struct dentry *min_order_file;
1374
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376
1377 } fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
1381 .min_order = 1,
1382 };
1383
1384 static int __init setup_fail_page_alloc(char *str)
1385 {
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1387 }
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1389
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391 {
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1400
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1402 }
1403
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405
1406 static int __init fail_page_alloc_debugfs(void)
1407 {
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1411
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1417
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1421
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
1428
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 debugfs_remove(fail_page_alloc.min_order_file);
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 }
1438
1439 return err;
1440 }
1441
1442 late_initcall(fail_page_alloc_debugfs);
1443
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1447
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449 {
1450 return 0;
1451 }
1452
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455 /*
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1458 */
1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags)
1461 {
1462 /* free_pages my go negative - that's OK */
1463 long min = mark;
1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1465 int o;
1466
1467 if (alloc_flags & ALLOC_HIGH)
1468 min -= min / 2;
1469 if (alloc_flags & ALLOC_HARDER)
1470 min -= min / 4;
1471
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return 0;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1477
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1480
1481 if (free_pages <= min)
1482 return 0;
1483 }
1484 return 1;
1485 }
1486
1487 #ifdef CONFIG_NUMA
1488 /*
1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full. See further
1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1493 * that have to skip over a lot of full or unallowed zones.
1494 *
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1498 *
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1501 *
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1504 *
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1509 */
1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1511 {
1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1513 nodemask_t *allowednodes; /* zonelist_cache approximation */
1514
1515 zlc = zonelist->zlcache_ptr;
1516 if (!zlc)
1517 return NULL;
1518
1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521 zlc->last_full_zap = jiffies;
1522 }
1523
1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525 &cpuset_current_mems_allowed :
1526 &node_states[N_HIGH_MEMORY];
1527 return allowednodes;
1528 }
1529
1530 /*
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 * 1) Check that the zone isn't thought to be full (doesn't have its
1534 * bit set in the zonelist_cache fullzones BITMAP).
1535 * 2) Check that the zones node (obtained from the zonelist_cache
1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1539 *
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1546 *
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1551 */
1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1553 nodemask_t *allowednodes)
1554 {
1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1556 int i; /* index of *z in zonelist zones */
1557 int n; /* node that zone *z is on */
1558
1559 zlc = zonelist->zlcache_ptr;
1560 if (!zlc)
1561 return 1;
1562
1563 i = z - zonelist->_zonerefs;
1564 n = zlc->z_to_n[i];
1565
1566 /* This zone is worth trying if it is allowed but not full */
1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1568 }
1569
1570 /*
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1574 */
1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1576 {
1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1578 int i; /* index of *z in zonelist zones */
1579
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return;
1583
1584 i = z - zonelist->_zonerefs;
1585
1586 set_bit(i, zlc->fullzones);
1587 }
1588
1589 #else /* CONFIG_NUMA */
1590
1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592 {
1593 return NULL;
1594 }
1595
1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1597 nodemask_t *allowednodes)
1598 {
1599 return 1;
1600 }
1601
1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1603 {
1604 }
1605 #endif /* CONFIG_NUMA */
1606
1607 /*
1608 * get_page_from_freelist goes through the zonelist trying to allocate
1609 * a page.
1610 */
1611 static struct page *
1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1614 struct zone *preferred_zone, int migratetype)
1615 {
1616 struct zoneref *z;
1617 struct page *page = NULL;
1618 int classzone_idx;
1619 struct zone *zone;
1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621 int zlc_active = 0; /* set if using zonelist_cache */
1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1623
1624 classzone_idx = zone_idx(preferred_zone);
1625 zonelist_scan:
1626 /*
1627 * Scan zonelist, looking for a zone with enough free.
1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1629 */
1630 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631 high_zoneidx, nodemask) {
1632 if (NUMA_BUILD && zlc_active &&
1633 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1634 continue;
1635 if ((alloc_flags & ALLOC_CPUSET) &&
1636 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1637 goto try_next_zone;
1638
1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1641 unsigned long mark;
1642 int ret;
1643
1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1645 if (zone_watermark_ok(zone, order, mark,
1646 classzone_idx, alloc_flags))
1647 goto try_this_zone;
1648
1649 if (zone_reclaim_mode == 0)
1650 goto this_zone_full;
1651
1652 ret = zone_reclaim(zone, gfp_mask, order);
1653 switch (ret) {
1654 case ZONE_RECLAIM_NOSCAN:
1655 /* did not scan */
1656 goto try_next_zone;
1657 case ZONE_RECLAIM_FULL:
1658 /* scanned but unreclaimable */
1659 goto this_zone_full;
1660 default:
1661 /* did we reclaim enough */
1662 if (!zone_watermark_ok(zone, order, mark,
1663 classzone_idx, alloc_flags))
1664 goto this_zone_full;
1665 }
1666 }
1667
1668 try_this_zone:
1669 page = buffered_rmqueue(preferred_zone, zone, order,
1670 gfp_mask, migratetype);
1671 if (page)
1672 break;
1673 this_zone_full:
1674 if (NUMA_BUILD)
1675 zlc_mark_zone_full(zonelist, z);
1676 try_next_zone:
1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1678 /*
1679 * we do zlc_setup after the first zone is tried but only
1680 * if there are multiple nodes make it worthwhile
1681 */
1682 allowednodes = zlc_setup(zonelist, alloc_flags);
1683 zlc_active = 1;
1684 did_zlc_setup = 1;
1685 }
1686 }
1687
1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689 /* Disable zlc cache for second zonelist scan */
1690 zlc_active = 0;
1691 goto zonelist_scan;
1692 }
1693 return page;
1694 }
1695
1696 static inline int
1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698 unsigned long pages_reclaimed)
1699 {
1700 /* Do not loop if specifically requested */
1701 if (gfp_mask & __GFP_NORETRY)
1702 return 0;
1703
1704 /*
1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 * means __GFP_NOFAIL, but that may not be true in other
1707 * implementations.
1708 */
1709 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710 return 1;
1711
1712 /*
1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 * specified, then we retry until we no longer reclaim any pages
1715 * (above), or we've reclaimed an order of pages at least as
1716 * large as the allocation's order. In both cases, if the
1717 * allocation still fails, we stop retrying.
1718 */
1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720 return 1;
1721
1722 /*
1723 * Don't let big-order allocations loop unless the caller
1724 * explicitly requests that.
1725 */
1726 if (gfp_mask & __GFP_NOFAIL)
1727 return 1;
1728
1729 return 0;
1730 }
1731
1732 static inline struct page *
1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734 struct zonelist *zonelist, enum zone_type high_zoneidx,
1735 nodemask_t *nodemask, struct zone *preferred_zone,
1736 int migratetype)
1737 {
1738 struct page *page;
1739
1740 /* Acquire the OOM killer lock for the zones in zonelist */
1741 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1742 schedule_timeout_uninterruptible(1);
1743 return NULL;
1744 }
1745
1746 /*
1747 * Go through the zonelist yet one more time, keep very high watermark
1748 * here, this is only to catch a parallel oom killing, we must fail if
1749 * we're still under heavy pressure.
1750 */
1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752 order, zonelist, high_zoneidx,
1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1754 preferred_zone, migratetype);
1755 if (page)
1756 goto out;
1757
1758 if (!(gfp_mask & __GFP_NOFAIL)) {
1759 /* The OOM killer will not help higher order allocs */
1760 if (order > PAGE_ALLOC_COSTLY_ORDER)
1761 goto out;
1762 /*
1763 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765 * The caller should handle page allocation failure by itself if
1766 * it specifies __GFP_THISNODE.
1767 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1768 */
1769 if (gfp_mask & __GFP_THISNODE)
1770 goto out;
1771 }
1772 /* Exhausted what can be done so it's blamo time */
1773 out_of_memory(zonelist, gfp_mask, order, nodemask);
1774
1775 out:
1776 clear_zonelist_oom(zonelist, gfp_mask);
1777 return page;
1778 }
1779
1780 #ifdef CONFIG_COMPACTION
1781 /* Try memory compaction for high-order allocations before reclaim */
1782 static struct page *
1783 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1784 struct zonelist *zonelist, enum zone_type high_zoneidx,
1785 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1786 int migratetype, unsigned long *did_some_progress)
1787 {
1788 struct page *page;
1789
1790 if (!order || compaction_deferred(preferred_zone))
1791 return NULL;
1792
1793 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1794 nodemask);
1795 if (*did_some_progress != COMPACT_SKIPPED) {
1796
1797 /* Page migration frees to the PCP lists but we want merging */
1798 drain_pages(get_cpu());
1799 put_cpu();
1800
1801 page = get_page_from_freelist(gfp_mask, nodemask,
1802 order, zonelist, high_zoneidx,
1803 alloc_flags, preferred_zone,
1804 migratetype);
1805 if (page) {
1806 preferred_zone->compact_considered = 0;
1807 preferred_zone->compact_defer_shift = 0;
1808 count_vm_event(COMPACTSUCCESS);
1809 return page;
1810 }
1811
1812 /*
1813 * It's bad if compaction run occurs and fails.
1814 * The most likely reason is that pages exist,
1815 * but not enough to satisfy watermarks.
1816 */
1817 count_vm_event(COMPACTFAIL);
1818 defer_compaction(preferred_zone);
1819
1820 cond_resched();
1821 }
1822
1823 return NULL;
1824 }
1825 #else
1826 static inline struct page *
1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828 struct zonelist *zonelist, enum zone_type high_zoneidx,
1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830 int migratetype, unsigned long *did_some_progress)
1831 {
1832 return NULL;
1833 }
1834 #endif /* CONFIG_COMPACTION */
1835
1836 /* The really slow allocator path where we enter direct reclaim */
1837 static inline struct page *
1838 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1839 struct zonelist *zonelist, enum zone_type high_zoneidx,
1840 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1841 int migratetype, unsigned long *did_some_progress)
1842 {
1843 struct page *page = NULL;
1844 struct reclaim_state reclaim_state;
1845 struct task_struct *p = current;
1846
1847 cond_resched();
1848
1849 /* We now go into synchronous reclaim */
1850 cpuset_memory_pressure_bump();
1851 p->flags |= PF_MEMALLOC;
1852 lockdep_set_current_reclaim_state(gfp_mask);
1853 reclaim_state.reclaimed_slab = 0;
1854 p->reclaim_state = &reclaim_state;
1855
1856 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1857
1858 p->reclaim_state = NULL;
1859 lockdep_clear_current_reclaim_state();
1860 p->flags &= ~PF_MEMALLOC;
1861
1862 cond_resched();
1863
1864 if (order != 0)
1865 drain_all_pages();
1866
1867 if (likely(*did_some_progress))
1868 page = get_page_from_freelist(gfp_mask, nodemask, order,
1869 zonelist, high_zoneidx,
1870 alloc_flags, preferred_zone,
1871 migratetype);
1872 return page;
1873 }
1874
1875 /*
1876 * This is called in the allocator slow-path if the allocation request is of
1877 * sufficient urgency to ignore watermarks and take other desperate measures
1878 */
1879 static inline struct page *
1880 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1881 struct zonelist *zonelist, enum zone_type high_zoneidx,
1882 nodemask_t *nodemask, struct zone *preferred_zone,
1883 int migratetype)
1884 {
1885 struct page *page;
1886
1887 do {
1888 page = get_page_from_freelist(gfp_mask, nodemask, order,
1889 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1890 preferred_zone, migratetype);
1891
1892 if (!page && gfp_mask & __GFP_NOFAIL)
1893 congestion_wait(BLK_RW_ASYNC, HZ/50);
1894 } while (!page && (gfp_mask & __GFP_NOFAIL));
1895
1896 return page;
1897 }
1898
1899 static inline
1900 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1901 enum zone_type high_zoneidx)
1902 {
1903 struct zoneref *z;
1904 struct zone *zone;
1905
1906 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1907 wakeup_kswapd(zone, order);
1908 }
1909
1910 static inline int
1911 gfp_to_alloc_flags(gfp_t gfp_mask)
1912 {
1913 struct task_struct *p = current;
1914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1915 const gfp_t wait = gfp_mask & __GFP_WAIT;
1916
1917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1919
1920 /*
1921 * The caller may dip into page reserves a bit more if the caller
1922 * cannot run direct reclaim, or if the caller has realtime scheduling
1923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1924 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1925 */
1926 alloc_flags |= (gfp_mask & __GFP_HIGH);
1927
1928 if (!wait) {
1929 alloc_flags |= ALLOC_HARDER;
1930 /*
1931 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1933 */
1934 alloc_flags &= ~ALLOC_CPUSET;
1935 } else if (unlikely(rt_task(p)) && !in_interrupt())
1936 alloc_flags |= ALLOC_HARDER;
1937
1938 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1939 if (!in_interrupt() &&
1940 ((p->flags & PF_MEMALLOC) ||
1941 unlikely(test_thread_flag(TIF_MEMDIE))))
1942 alloc_flags |= ALLOC_NO_WATERMARKS;
1943 }
1944
1945 return alloc_flags;
1946 }
1947
1948 static inline struct page *
1949 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1950 struct zonelist *zonelist, enum zone_type high_zoneidx,
1951 nodemask_t *nodemask, struct zone *preferred_zone,
1952 int migratetype)
1953 {
1954 const gfp_t wait = gfp_mask & __GFP_WAIT;
1955 struct page *page = NULL;
1956 int alloc_flags;
1957 unsigned long pages_reclaimed = 0;
1958 unsigned long did_some_progress;
1959 struct task_struct *p = current;
1960
1961 /*
1962 * In the slowpath, we sanity check order to avoid ever trying to
1963 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964 * be using allocators in order of preference for an area that is
1965 * too large.
1966 */
1967 if (order >= MAX_ORDER) {
1968 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1969 return NULL;
1970 }
1971
1972 /*
1973 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976 * using a larger set of nodes after it has established that the
1977 * allowed per node queues are empty and that nodes are
1978 * over allocated.
1979 */
1980 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1981 goto nopage;
1982
1983 restart:
1984 wake_all_kswapd(order, zonelist, high_zoneidx);
1985
1986 /*
1987 * OK, we're below the kswapd watermark and have kicked background
1988 * reclaim. Now things get more complex, so set up alloc_flags according
1989 * to how we want to proceed.
1990 */
1991 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1992
1993 /* This is the last chance, in general, before the goto nopage. */
1994 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1995 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1996 preferred_zone, migratetype);
1997 if (page)
1998 goto got_pg;
1999
2000 rebalance:
2001 /* Allocate without watermarks if the context allows */
2002 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2003 page = __alloc_pages_high_priority(gfp_mask, order,
2004 zonelist, high_zoneidx, nodemask,
2005 preferred_zone, migratetype);
2006 if (page)
2007 goto got_pg;
2008 }
2009
2010 /* Atomic allocations - we can't balance anything */
2011 if (!wait)
2012 goto nopage;
2013
2014 /* Avoid recursion of direct reclaim */
2015 if (p->flags & PF_MEMALLOC)
2016 goto nopage;
2017
2018 /* Avoid allocations with no watermarks from looping endlessly */
2019 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2020 goto nopage;
2021
2022 /* Try direct compaction */
2023 page = __alloc_pages_direct_compact(gfp_mask, order,
2024 zonelist, high_zoneidx,
2025 nodemask,
2026 alloc_flags, preferred_zone,
2027 migratetype, &did_some_progress);
2028 if (page)
2029 goto got_pg;
2030
2031 /* Try direct reclaim and then allocating */
2032 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2033 zonelist, high_zoneidx,
2034 nodemask,
2035 alloc_flags, preferred_zone,
2036 migratetype, &did_some_progress);
2037 if (page)
2038 goto got_pg;
2039
2040 /*
2041 * If we failed to make any progress reclaiming, then we are
2042 * running out of options and have to consider going OOM
2043 */
2044 if (!did_some_progress) {
2045 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2046 if (oom_killer_disabled)
2047 goto nopage;
2048 page = __alloc_pages_may_oom(gfp_mask, order,
2049 zonelist, high_zoneidx,
2050 nodemask, preferred_zone,
2051 migratetype);
2052 if (page)
2053 goto got_pg;
2054
2055 /*
2056 * The OOM killer does not trigger for high-order
2057 * ~__GFP_NOFAIL allocations so if no progress is being
2058 * made, there are no other options and retrying is
2059 * unlikely to help.
2060 */
2061 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2062 !(gfp_mask & __GFP_NOFAIL))
2063 goto nopage;
2064
2065 goto restart;
2066 }
2067 }
2068
2069 /* Check if we should retry the allocation */
2070 pages_reclaimed += did_some_progress;
2071 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2072 /* Wait for some write requests to complete then retry */
2073 congestion_wait(BLK_RW_ASYNC, HZ/50);
2074 goto rebalance;
2075 }
2076
2077 nopage:
2078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2079 printk(KERN_WARNING "%s: page allocation failure."
2080 " order:%d, mode:0x%x\n",
2081 p->comm, order, gfp_mask);
2082 dump_stack();
2083 show_mem();
2084 }
2085 return page;
2086 got_pg:
2087 if (kmemcheck_enabled)
2088 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2089 return page;
2090
2091 }
2092
2093 /*
2094 * This is the 'heart' of the zoned buddy allocator.
2095 */
2096 struct page *
2097 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2098 struct zonelist *zonelist, nodemask_t *nodemask)
2099 {
2100 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2101 struct zone *preferred_zone;
2102 struct page *page;
2103 int migratetype = allocflags_to_migratetype(gfp_mask);
2104
2105 gfp_mask &= gfp_allowed_mask;
2106
2107 lockdep_trace_alloc(gfp_mask);
2108
2109 might_sleep_if(gfp_mask & __GFP_WAIT);
2110
2111 if (should_fail_alloc_page(gfp_mask, order))
2112 return NULL;
2113
2114 /*
2115 * Check the zones suitable for the gfp_mask contain at least one
2116 * valid zone. It's possible to have an empty zonelist as a result
2117 * of GFP_THISNODE and a memoryless node
2118 */
2119 if (unlikely(!zonelist->_zonerefs->zone))
2120 return NULL;
2121
2122 get_mems_allowed();
2123 /* The preferred zone is used for statistics later */
2124 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2125 if (!preferred_zone) {
2126 put_mems_allowed();
2127 return NULL;
2128 }
2129
2130 /* First allocation attempt */
2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2132 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2133 preferred_zone, migratetype);
2134 if (unlikely(!page))
2135 page = __alloc_pages_slowpath(gfp_mask, order,
2136 zonelist, high_zoneidx, nodemask,
2137 preferred_zone, migratetype);
2138 put_mems_allowed();
2139
2140 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2141 return page;
2142 }
2143 EXPORT_SYMBOL(__alloc_pages_nodemask);
2144
2145 /*
2146 * Common helper functions.
2147 */
2148 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2149 {
2150 struct page *page;
2151
2152 /*
2153 * __get_free_pages() returns a 32-bit address, which cannot represent
2154 * a highmem page
2155 */
2156 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2157
2158 page = alloc_pages(gfp_mask, order);
2159 if (!page)
2160 return 0;
2161 return (unsigned long) page_address(page);
2162 }
2163 EXPORT_SYMBOL(__get_free_pages);
2164
2165 unsigned long get_zeroed_page(gfp_t gfp_mask)
2166 {
2167 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2168 }
2169 EXPORT_SYMBOL(get_zeroed_page);
2170
2171 void __pagevec_free(struct pagevec *pvec)
2172 {
2173 int i = pagevec_count(pvec);
2174
2175 while (--i >= 0) {
2176 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2177 free_hot_cold_page(pvec->pages[i], pvec->cold);
2178 }
2179 }
2180
2181 void __free_pages(struct page *page, unsigned int order)
2182 {
2183 if (put_page_testzero(page)) {
2184 if (order == 0)
2185 free_hot_cold_page(page, 0);
2186 else
2187 __free_pages_ok(page, order);
2188 }
2189 }
2190
2191 EXPORT_SYMBOL(__free_pages);
2192
2193 void free_pages(unsigned long addr, unsigned int order)
2194 {
2195 if (addr != 0) {
2196 VM_BUG_ON(!virt_addr_valid((void *)addr));
2197 __free_pages(virt_to_page((void *)addr), order);
2198 }
2199 }
2200
2201 EXPORT_SYMBOL(free_pages);
2202
2203 /**
2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205 * @size: the number of bytes to allocate
2206 * @gfp_mask: GFP flags for the allocation
2207 *
2208 * This function is similar to alloc_pages(), except that it allocates the
2209 * minimum number of pages to satisfy the request. alloc_pages() can only
2210 * allocate memory in power-of-two pages.
2211 *
2212 * This function is also limited by MAX_ORDER.
2213 *
2214 * Memory allocated by this function must be released by free_pages_exact().
2215 */
2216 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2217 {
2218 unsigned int order = get_order(size);
2219 unsigned long addr;
2220
2221 addr = __get_free_pages(gfp_mask, order);
2222 if (addr) {
2223 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2224 unsigned long used = addr + PAGE_ALIGN(size);
2225
2226 split_page(virt_to_page((void *)addr), order);
2227 while (used < alloc_end) {
2228 free_page(used);
2229 used += PAGE_SIZE;
2230 }
2231 }
2232
2233 return (void *)addr;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_exact);
2236
2237 /**
2238 * free_pages_exact - release memory allocated via alloc_pages_exact()
2239 * @virt: the value returned by alloc_pages_exact.
2240 * @size: size of allocation, same value as passed to alloc_pages_exact().
2241 *
2242 * Release the memory allocated by a previous call to alloc_pages_exact.
2243 */
2244 void free_pages_exact(void *virt, size_t size)
2245 {
2246 unsigned long addr = (unsigned long)virt;
2247 unsigned long end = addr + PAGE_ALIGN(size);
2248
2249 while (addr < end) {
2250 free_page(addr);
2251 addr += PAGE_SIZE;
2252 }
2253 }
2254 EXPORT_SYMBOL(free_pages_exact);
2255
2256 static unsigned int nr_free_zone_pages(int offset)
2257 {
2258 struct zoneref *z;
2259 struct zone *zone;
2260
2261 /* Just pick one node, since fallback list is circular */
2262 unsigned int sum = 0;
2263
2264 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2265
2266 for_each_zone_zonelist(zone, z, zonelist, offset) {
2267 unsigned long size = zone->present_pages;
2268 unsigned long high = high_wmark_pages(zone);
2269 if (size > high)
2270 sum += size - high;
2271 }
2272
2273 return sum;
2274 }
2275
2276 /*
2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2278 */
2279 unsigned int nr_free_buffer_pages(void)
2280 {
2281 return nr_free_zone_pages(gfp_zone(GFP_USER));
2282 }
2283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2284
2285 /*
2286 * Amount of free RAM allocatable within all zones
2287 */
2288 unsigned int nr_free_pagecache_pages(void)
2289 {
2290 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2291 }
2292
2293 static inline void show_node(struct zone *zone)
2294 {
2295 if (NUMA_BUILD)
2296 printk("Node %d ", zone_to_nid(zone));
2297 }
2298
2299 void si_meminfo(struct sysinfo *val)
2300 {
2301 val->totalram = totalram_pages;
2302 val->sharedram = 0;
2303 val->freeram = global_page_state(NR_FREE_PAGES);
2304 val->bufferram = nr_blockdev_pages();
2305 val->totalhigh = totalhigh_pages;
2306 val->freehigh = nr_free_highpages();
2307 val->mem_unit = PAGE_SIZE;
2308 }
2309
2310 EXPORT_SYMBOL(si_meminfo);
2311
2312 #ifdef CONFIG_NUMA
2313 void si_meminfo_node(struct sysinfo *val, int nid)
2314 {
2315 pg_data_t *pgdat = NODE_DATA(nid);
2316
2317 val->totalram = pgdat->node_present_pages;
2318 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2319 #ifdef CONFIG_HIGHMEM
2320 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2321 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2322 NR_FREE_PAGES);
2323 #else
2324 val->totalhigh = 0;
2325 val->freehigh = 0;
2326 #endif
2327 val->mem_unit = PAGE_SIZE;
2328 }
2329 #endif
2330
2331 #define K(x) ((x) << (PAGE_SHIFT-10))
2332
2333 /*
2334 * Show free area list (used inside shift_scroll-lock stuff)
2335 * We also calculate the percentage fragmentation. We do this by counting the
2336 * memory on each free list with the exception of the first item on the list.
2337 */
2338 void show_free_areas(void)
2339 {
2340 int cpu;
2341 struct zone *zone;
2342
2343 for_each_populated_zone(zone) {
2344 show_node(zone);
2345 printk("%s per-cpu:\n", zone->name);
2346
2347 for_each_online_cpu(cpu) {
2348 struct per_cpu_pageset *pageset;
2349
2350 pageset = per_cpu_ptr(zone->pageset, cpu);
2351
2352 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353 cpu, pageset->pcp.high,
2354 pageset->pcp.batch, pageset->pcp.count);
2355 }
2356 }
2357
2358 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2360 " unevictable:%lu"
2361 " dirty:%lu writeback:%lu unstable:%lu\n"
2362 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2364 global_page_state(NR_ACTIVE_ANON),
2365 global_page_state(NR_INACTIVE_ANON),
2366 global_page_state(NR_ISOLATED_ANON),
2367 global_page_state(NR_ACTIVE_FILE),
2368 global_page_state(NR_INACTIVE_FILE),
2369 global_page_state(NR_ISOLATED_FILE),
2370 global_page_state(NR_UNEVICTABLE),
2371 global_page_state(NR_FILE_DIRTY),
2372 global_page_state(NR_WRITEBACK),
2373 global_page_state(NR_UNSTABLE_NFS),
2374 global_page_state(NR_FREE_PAGES),
2375 global_page_state(NR_SLAB_RECLAIMABLE),
2376 global_page_state(NR_SLAB_UNRECLAIMABLE),
2377 global_page_state(NR_FILE_MAPPED),
2378 global_page_state(NR_SHMEM),
2379 global_page_state(NR_PAGETABLE),
2380 global_page_state(NR_BOUNCE));
2381
2382 for_each_populated_zone(zone) {
2383 int i;
2384
2385 show_node(zone);
2386 printk("%s"
2387 " free:%lukB"
2388 " min:%lukB"
2389 " low:%lukB"
2390 " high:%lukB"
2391 " active_anon:%lukB"
2392 " inactive_anon:%lukB"
2393 " active_file:%lukB"
2394 " inactive_file:%lukB"
2395 " unevictable:%lukB"
2396 " isolated(anon):%lukB"
2397 " isolated(file):%lukB"
2398 " present:%lukB"
2399 " mlocked:%lukB"
2400 " dirty:%lukB"
2401 " writeback:%lukB"
2402 " mapped:%lukB"
2403 " shmem:%lukB"
2404 " slab_reclaimable:%lukB"
2405 " slab_unreclaimable:%lukB"
2406 " kernel_stack:%lukB"
2407 " pagetables:%lukB"
2408 " unstable:%lukB"
2409 " bounce:%lukB"
2410 " writeback_tmp:%lukB"
2411 " pages_scanned:%lu"
2412 " all_unreclaimable? %s"
2413 "\n",
2414 zone->name,
2415 K(zone_page_state(zone, NR_FREE_PAGES)),
2416 K(min_wmark_pages(zone)),
2417 K(low_wmark_pages(zone)),
2418 K(high_wmark_pages(zone)),
2419 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2420 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2421 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2422 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2423 K(zone_page_state(zone, NR_UNEVICTABLE)),
2424 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2425 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2426 K(zone->present_pages),
2427 K(zone_page_state(zone, NR_MLOCK)),
2428 K(zone_page_state(zone, NR_FILE_DIRTY)),
2429 K(zone_page_state(zone, NR_WRITEBACK)),
2430 K(zone_page_state(zone, NR_FILE_MAPPED)),
2431 K(zone_page_state(zone, NR_SHMEM)),
2432 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2433 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2434 zone_page_state(zone, NR_KERNEL_STACK) *
2435 THREAD_SIZE / 1024,
2436 K(zone_page_state(zone, NR_PAGETABLE)),
2437 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2438 K(zone_page_state(zone, NR_BOUNCE)),
2439 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2440 zone->pages_scanned,
2441 (zone->all_unreclaimable ? "yes" : "no")
2442 );
2443 printk("lowmem_reserve[]:");
2444 for (i = 0; i < MAX_NR_ZONES; i++)
2445 printk(" %lu", zone->lowmem_reserve[i]);
2446 printk("\n");
2447 }
2448
2449 for_each_populated_zone(zone) {
2450 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2451
2452 show_node(zone);
2453 printk("%s: ", zone->name);
2454
2455 spin_lock_irqsave(&zone->lock, flags);
2456 for (order = 0; order < MAX_ORDER; order++) {
2457 nr[order] = zone->free_area[order].nr_free;
2458 total += nr[order] << order;
2459 }
2460 spin_unlock_irqrestore(&zone->lock, flags);
2461 for (order = 0; order < MAX_ORDER; order++)
2462 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2463 printk("= %lukB\n", K(total));
2464 }
2465
2466 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2467
2468 show_swap_cache_info();
2469 }
2470
2471 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2472 {
2473 zoneref->zone = zone;
2474 zoneref->zone_idx = zone_idx(zone);
2475 }
2476
2477 /*
2478 * Builds allocation fallback zone lists.
2479 *
2480 * Add all populated zones of a node to the zonelist.
2481 */
2482 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2483 int nr_zones, enum zone_type zone_type)
2484 {
2485 struct zone *zone;
2486
2487 BUG_ON(zone_type >= MAX_NR_ZONES);
2488 zone_type++;
2489
2490 do {
2491 zone_type--;
2492 zone = pgdat->node_zones + zone_type;
2493 if (populated_zone(zone)) {
2494 zoneref_set_zone(zone,
2495 &zonelist->_zonerefs[nr_zones++]);
2496 check_highest_zone(zone_type);
2497 }
2498
2499 } while (zone_type);
2500 return nr_zones;
2501 }
2502
2503
2504 /*
2505 * zonelist_order:
2506 * 0 = automatic detection of better ordering.
2507 * 1 = order by ([node] distance, -zonetype)
2508 * 2 = order by (-zonetype, [node] distance)
2509 *
2510 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511 * the same zonelist. So only NUMA can configure this param.
2512 */
2513 #define ZONELIST_ORDER_DEFAULT 0
2514 #define ZONELIST_ORDER_NODE 1
2515 #define ZONELIST_ORDER_ZONE 2
2516
2517 /* zonelist order in the kernel.
2518 * set_zonelist_order() will set this to NODE or ZONE.
2519 */
2520 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2521 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2522
2523
2524 #ifdef CONFIG_NUMA
2525 /* The value user specified ....changed by config */
2526 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527 /* string for sysctl */
2528 #define NUMA_ZONELIST_ORDER_LEN 16
2529 char numa_zonelist_order[16] = "default";
2530
2531 /*
2532 * interface for configure zonelist ordering.
2533 * command line option "numa_zonelist_order"
2534 * = "[dD]efault - default, automatic configuration.
2535 * = "[nN]ode - order by node locality, then by zone within node
2536 * = "[zZ]one - order by zone, then by locality within zone
2537 */
2538
2539 static int __parse_numa_zonelist_order(char *s)
2540 {
2541 if (*s == 'd' || *s == 'D') {
2542 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2543 } else if (*s == 'n' || *s == 'N') {
2544 user_zonelist_order = ZONELIST_ORDER_NODE;
2545 } else if (*s == 'z' || *s == 'Z') {
2546 user_zonelist_order = ZONELIST_ORDER_ZONE;
2547 } else {
2548 printk(KERN_WARNING
2549 "Ignoring invalid numa_zonelist_order value: "
2550 "%s\n", s);
2551 return -EINVAL;
2552 }
2553 return 0;
2554 }
2555
2556 static __init int setup_numa_zonelist_order(char *s)
2557 {
2558 if (s)
2559 return __parse_numa_zonelist_order(s);
2560 return 0;
2561 }
2562 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2563
2564 /*
2565 * sysctl handler for numa_zonelist_order
2566 */
2567 int numa_zonelist_order_handler(ctl_table *table, int write,
2568 void __user *buffer, size_t *length,
2569 loff_t *ppos)
2570 {
2571 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2572 int ret;
2573 static DEFINE_MUTEX(zl_order_mutex);
2574
2575 mutex_lock(&zl_order_mutex);
2576 if (write)
2577 strcpy(saved_string, (char*)table->data);
2578 ret = proc_dostring(table, write, buffer, length, ppos);
2579 if (ret)
2580 goto out;
2581 if (write) {
2582 int oldval = user_zonelist_order;
2583 if (__parse_numa_zonelist_order((char*)table->data)) {
2584 /*
2585 * bogus value. restore saved string
2586 */
2587 strncpy((char*)table->data, saved_string,
2588 NUMA_ZONELIST_ORDER_LEN);
2589 user_zonelist_order = oldval;
2590 } else if (oldval != user_zonelist_order) {
2591 mutex_lock(&zonelists_mutex);
2592 build_all_zonelists(NULL);
2593 mutex_unlock(&zonelists_mutex);
2594 }
2595 }
2596 out:
2597 mutex_unlock(&zl_order_mutex);
2598 return ret;
2599 }
2600
2601
2602 #define MAX_NODE_LOAD (nr_online_nodes)
2603 static int node_load[MAX_NUMNODES];
2604
2605 /**
2606 * find_next_best_node - find the next node that should appear in a given node's fallback list
2607 * @node: node whose fallback list we're appending
2608 * @used_node_mask: nodemask_t of already used nodes
2609 *
2610 * We use a number of factors to determine which is the next node that should
2611 * appear on a given node's fallback list. The node should not have appeared
2612 * already in @node's fallback list, and it should be the next closest node
2613 * according to the distance array (which contains arbitrary distance values
2614 * from each node to each node in the system), and should also prefer nodes
2615 * with no CPUs, since presumably they'll have very little allocation pressure
2616 * on them otherwise.
2617 * It returns -1 if no node is found.
2618 */
2619 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2620 {
2621 int n, val;
2622 int min_val = INT_MAX;
2623 int best_node = -1;
2624 const struct cpumask *tmp = cpumask_of_node(0);
2625
2626 /* Use the local node if we haven't already */
2627 if (!node_isset(node, *used_node_mask)) {
2628 node_set(node, *used_node_mask);
2629 return node;
2630 }
2631
2632 for_each_node_state(n, N_HIGH_MEMORY) {
2633
2634 /* Don't want a node to appear more than once */
2635 if (node_isset(n, *used_node_mask))
2636 continue;
2637
2638 /* Use the distance array to find the distance */
2639 val = node_distance(node, n);
2640
2641 /* Penalize nodes under us ("prefer the next node") */
2642 val += (n < node);
2643
2644 /* Give preference to headless and unused nodes */
2645 tmp = cpumask_of_node(n);
2646 if (!cpumask_empty(tmp))
2647 val += PENALTY_FOR_NODE_WITH_CPUS;
2648
2649 /* Slight preference for less loaded node */
2650 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2651 val += node_load[n];
2652
2653 if (val < min_val) {
2654 min_val = val;
2655 best_node = n;
2656 }
2657 }
2658
2659 if (best_node >= 0)
2660 node_set(best_node, *used_node_mask);
2661
2662 return best_node;
2663 }
2664
2665
2666 /*
2667 * Build zonelists ordered by node and zones within node.
2668 * This results in maximum locality--normal zone overflows into local
2669 * DMA zone, if any--but risks exhausting DMA zone.
2670 */
2671 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2672 {
2673 int j;
2674 struct zonelist *zonelist;
2675
2676 zonelist = &pgdat->node_zonelists[0];
2677 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2678 ;
2679 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2680 MAX_NR_ZONES - 1);
2681 zonelist->_zonerefs[j].zone = NULL;
2682 zonelist->_zonerefs[j].zone_idx = 0;
2683 }
2684
2685 /*
2686 * Build gfp_thisnode zonelists
2687 */
2688 static void build_thisnode_zonelists(pg_data_t *pgdat)
2689 {
2690 int j;
2691 struct zonelist *zonelist;
2692
2693 zonelist = &pgdat->node_zonelists[1];
2694 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2695 zonelist->_zonerefs[j].zone = NULL;
2696 zonelist->_zonerefs[j].zone_idx = 0;
2697 }
2698
2699 /*
2700 * Build zonelists ordered by zone and nodes within zones.
2701 * This results in conserving DMA zone[s] until all Normal memory is
2702 * exhausted, but results in overflowing to remote node while memory
2703 * may still exist in local DMA zone.
2704 */
2705 static int node_order[MAX_NUMNODES];
2706
2707 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2708 {
2709 int pos, j, node;
2710 int zone_type; /* needs to be signed */
2711 struct zone *z;
2712 struct zonelist *zonelist;
2713
2714 zonelist = &pgdat->node_zonelists[0];
2715 pos = 0;
2716 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2717 for (j = 0; j < nr_nodes; j++) {
2718 node = node_order[j];
2719 z = &NODE_DATA(node)->node_zones[zone_type];
2720 if (populated_zone(z)) {
2721 zoneref_set_zone(z,
2722 &zonelist->_zonerefs[pos++]);
2723 check_highest_zone(zone_type);
2724 }
2725 }
2726 }
2727 zonelist->_zonerefs[pos].zone = NULL;
2728 zonelist->_zonerefs[pos].zone_idx = 0;
2729 }
2730
2731 static int default_zonelist_order(void)
2732 {
2733 int nid, zone_type;
2734 unsigned long low_kmem_size,total_size;
2735 struct zone *z;
2736 int average_size;
2737 /*
2738 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2739 * If they are really small and used heavily, the system can fall
2740 * into OOM very easily.
2741 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2742 */
2743 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2744 low_kmem_size = 0;
2745 total_size = 0;
2746 for_each_online_node(nid) {
2747 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2748 z = &NODE_DATA(nid)->node_zones[zone_type];
2749 if (populated_zone(z)) {
2750 if (zone_type < ZONE_NORMAL)
2751 low_kmem_size += z->present_pages;
2752 total_size += z->present_pages;
2753 } else if (zone_type == ZONE_NORMAL) {
2754 /*
2755 * If any node has only lowmem, then node order
2756 * is preferred to allow kernel allocations
2757 * locally; otherwise, they can easily infringe
2758 * on other nodes when there is an abundance of
2759 * lowmem available to allocate from.
2760 */
2761 return ZONELIST_ORDER_NODE;
2762 }
2763 }
2764 }
2765 if (!low_kmem_size || /* there are no DMA area. */
2766 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2767 return ZONELIST_ORDER_NODE;
2768 /*
2769 * look into each node's config.
2770 * If there is a node whose DMA/DMA32 memory is very big area on
2771 * local memory, NODE_ORDER may be suitable.
2772 */
2773 average_size = total_size /
2774 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2775 for_each_online_node(nid) {
2776 low_kmem_size = 0;
2777 total_size = 0;
2778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2779 z = &NODE_DATA(nid)->node_zones[zone_type];
2780 if (populated_zone(z)) {
2781 if (zone_type < ZONE_NORMAL)
2782 low_kmem_size += z->present_pages;
2783 total_size += z->present_pages;
2784 }
2785 }
2786 if (low_kmem_size &&
2787 total_size > average_size && /* ignore small node */
2788 low_kmem_size > total_size * 70/100)
2789 return ZONELIST_ORDER_NODE;
2790 }
2791 return ZONELIST_ORDER_ZONE;
2792 }
2793
2794 static void set_zonelist_order(void)
2795 {
2796 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2797 current_zonelist_order = default_zonelist_order();
2798 else
2799 current_zonelist_order = user_zonelist_order;
2800 }
2801
2802 static void build_zonelists(pg_data_t *pgdat)
2803 {
2804 int j, node, load;
2805 enum zone_type i;
2806 nodemask_t used_mask;
2807 int local_node, prev_node;
2808 struct zonelist *zonelist;
2809 int order = current_zonelist_order;
2810
2811 /* initialize zonelists */
2812 for (i = 0; i < MAX_ZONELISTS; i++) {
2813 zonelist = pgdat->node_zonelists + i;
2814 zonelist->_zonerefs[0].zone = NULL;
2815 zonelist->_zonerefs[0].zone_idx = 0;
2816 }
2817
2818 /* NUMA-aware ordering of nodes */
2819 local_node = pgdat->node_id;
2820 load = nr_online_nodes;
2821 prev_node = local_node;
2822 nodes_clear(used_mask);
2823
2824 memset(node_order, 0, sizeof(node_order));
2825 j = 0;
2826
2827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2828 int distance = node_distance(local_node, node);
2829
2830 /*
2831 * If another node is sufficiently far away then it is better
2832 * to reclaim pages in a zone before going off node.
2833 */
2834 if (distance > RECLAIM_DISTANCE)
2835 zone_reclaim_mode = 1;
2836
2837 /*
2838 * We don't want to pressure a particular node.
2839 * So adding penalty to the first node in same
2840 * distance group to make it round-robin.
2841 */
2842 if (distance != node_distance(local_node, prev_node))
2843 node_load[node] = load;
2844
2845 prev_node = node;
2846 load--;
2847 if (order == ZONELIST_ORDER_NODE)
2848 build_zonelists_in_node_order(pgdat, node);
2849 else
2850 node_order[j++] = node; /* remember order */
2851 }
2852
2853 if (order == ZONELIST_ORDER_ZONE) {
2854 /* calculate node order -- i.e., DMA last! */
2855 build_zonelists_in_zone_order(pgdat, j);
2856 }
2857
2858 build_thisnode_zonelists(pgdat);
2859 }
2860
2861 /* Construct the zonelist performance cache - see further mmzone.h */
2862 static void build_zonelist_cache(pg_data_t *pgdat)
2863 {
2864 struct zonelist *zonelist;
2865 struct zonelist_cache *zlc;
2866 struct zoneref *z;
2867
2868 zonelist = &pgdat->node_zonelists[0];
2869 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2870 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2871 for (z = zonelist->_zonerefs; z->zone; z++)
2872 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2873 }
2874
2875 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2876 /*
2877 * Return node id of node used for "local" allocations.
2878 * I.e., first node id of first zone in arg node's generic zonelist.
2879 * Used for initializing percpu 'numa_mem', which is used primarily
2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2881 */
2882 int local_memory_node(int node)
2883 {
2884 struct zone *zone;
2885
2886 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2887 gfp_zone(GFP_KERNEL),
2888 NULL,
2889 &zone);
2890 return zone->node;
2891 }
2892 #endif
2893
2894 #else /* CONFIG_NUMA */
2895
2896 static void set_zonelist_order(void)
2897 {
2898 current_zonelist_order = ZONELIST_ORDER_ZONE;
2899 }
2900
2901 static void build_zonelists(pg_data_t *pgdat)
2902 {
2903 int node, local_node;
2904 enum zone_type j;
2905 struct zonelist *zonelist;
2906
2907 local_node = pgdat->node_id;
2908
2909 zonelist = &pgdat->node_zonelists[0];
2910 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2911
2912 /*
2913 * Now we build the zonelist so that it contains the zones
2914 * of all the other nodes.
2915 * We don't want to pressure a particular node, so when
2916 * building the zones for node N, we make sure that the
2917 * zones coming right after the local ones are those from
2918 * node N+1 (modulo N)
2919 */
2920 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2921 if (!node_online(node))
2922 continue;
2923 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2924 MAX_NR_ZONES - 1);
2925 }
2926 for (node = 0; node < local_node; node++) {
2927 if (!node_online(node))
2928 continue;
2929 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2930 MAX_NR_ZONES - 1);
2931 }
2932
2933 zonelist->_zonerefs[j].zone = NULL;
2934 zonelist->_zonerefs[j].zone_idx = 0;
2935 }
2936
2937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2938 static void build_zonelist_cache(pg_data_t *pgdat)
2939 {
2940 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2941 }
2942
2943 #endif /* CONFIG_NUMA */
2944
2945 /*
2946 * Boot pageset table. One per cpu which is going to be used for all
2947 * zones and all nodes. The parameters will be set in such a way
2948 * that an item put on a list will immediately be handed over to
2949 * the buddy list. This is safe since pageset manipulation is done
2950 * with interrupts disabled.
2951 *
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2955 *
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2959 */
2960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2962 static void setup_zone_pageset(struct zone *zone);
2963
2964 /*
2965 * Global mutex to protect against size modification of zonelists
2966 * as well as to serialize pageset setup for the new populated zone.
2967 */
2968 DEFINE_MUTEX(zonelists_mutex);
2969
2970 /* return values int ....just for stop_machine() */
2971 static __init_refok int __build_all_zonelists(void *data)
2972 {
2973 int nid;
2974 int cpu;
2975
2976 #ifdef CONFIG_NUMA
2977 memset(node_load, 0, sizeof(node_load));
2978 #endif
2979 for_each_online_node(nid) {
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981
2982 build_zonelists(pgdat);
2983 build_zonelist_cache(pgdat);
2984 }
2985
2986 #ifdef CONFIG_MEMORY_HOTPLUG
2987 /* Setup real pagesets for the new zone */
2988 if (data) {
2989 struct zone *zone = data;
2990 setup_zone_pageset(zone);
2991 }
2992 #endif
2993
2994 /*
2995 * Initialize the boot_pagesets that are going to be used
2996 * for bootstrapping processors. The real pagesets for
2997 * each zone will be allocated later when the per cpu
2998 * allocator is available.
2999 *
3000 * boot_pagesets are used also for bootstrapping offline
3001 * cpus if the system is already booted because the pagesets
3002 * are needed to initialize allocators on a specific cpu too.
3003 * F.e. the percpu allocator needs the page allocator which
3004 * needs the percpu allocator in order to allocate its pagesets
3005 * (a chicken-egg dilemma).
3006 */
3007 for_each_possible_cpu(cpu) {
3008 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3009
3010 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3011 /*
3012 * We now know the "local memory node" for each node--
3013 * i.e., the node of the first zone in the generic zonelist.
3014 * Set up numa_mem percpu variable for on-line cpus. During
3015 * boot, only the boot cpu should be on-line; we'll init the
3016 * secondary cpus' numa_mem as they come on-line. During
3017 * node/memory hotplug, we'll fixup all on-line cpus.
3018 */
3019 if (cpu_online(cpu))
3020 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3021 #endif
3022 }
3023
3024 return 0;
3025 }
3026
3027 /*
3028 * Called with zonelists_mutex held always
3029 * unless system_state == SYSTEM_BOOTING.
3030 */
3031 void build_all_zonelists(void *data)
3032 {
3033 set_zonelist_order();
3034
3035 if (system_state == SYSTEM_BOOTING) {
3036 __build_all_zonelists(NULL);
3037 mminit_verify_zonelist();
3038 cpuset_init_current_mems_allowed();
3039 } else {
3040 /* we have to stop all cpus to guarantee there is no user
3041 of zonelist */
3042 stop_machine(__build_all_zonelists, data, NULL);
3043 /* cpuset refresh routine should be here */
3044 }
3045 vm_total_pages = nr_free_pagecache_pages();
3046 /*
3047 * Disable grouping by mobility if the number of pages in the
3048 * system is too low to allow the mechanism to work. It would be
3049 * more accurate, but expensive to check per-zone. This check is
3050 * made on memory-hotadd so a system can start with mobility
3051 * disabled and enable it later
3052 */
3053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3054 page_group_by_mobility_disabled = 1;
3055 else
3056 page_group_by_mobility_disabled = 0;
3057
3058 printk("Built %i zonelists in %s order, mobility grouping %s. "
3059 "Total pages: %ld\n",
3060 nr_online_nodes,
3061 zonelist_order_name[current_zonelist_order],
3062 page_group_by_mobility_disabled ? "off" : "on",
3063 vm_total_pages);
3064 #ifdef CONFIG_NUMA
3065 printk("Policy zone: %s\n", zone_names[policy_zone]);
3066 #endif
3067 }
3068
3069 /*
3070 * Helper functions to size the waitqueue hash table.
3071 * Essentially these want to choose hash table sizes sufficiently
3072 * large so that collisions trying to wait on pages are rare.
3073 * But in fact, the number of active page waitqueues on typical
3074 * systems is ridiculously low, less than 200. So this is even
3075 * conservative, even though it seems large.
3076 *
3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078 * waitqueues, i.e. the size of the waitq table given the number of pages.
3079 */
3080 #define PAGES_PER_WAITQUEUE 256
3081
3082 #ifndef CONFIG_MEMORY_HOTPLUG
3083 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3084 {
3085 unsigned long size = 1;
3086
3087 pages /= PAGES_PER_WAITQUEUE;
3088
3089 while (size < pages)
3090 size <<= 1;
3091
3092 /*
3093 * Once we have dozens or even hundreds of threads sleeping
3094 * on IO we've got bigger problems than wait queue collision.
3095 * Limit the size of the wait table to a reasonable size.
3096 */
3097 size = min(size, 4096UL);
3098
3099 return max(size, 4UL);
3100 }
3101 #else
3102 /*
3103 * A zone's size might be changed by hot-add, so it is not possible to determine
3104 * a suitable size for its wait_table. So we use the maximum size now.
3105 *
3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3107 *
3108 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3111 *
3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113 * or more by the traditional way. (See above). It equals:
3114 *
3115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3116 * ia64(16K page size) : = ( 8G + 4M)byte.
3117 * powerpc (64K page size) : = (32G +16M)byte.
3118 */
3119 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3120 {
3121 return 4096UL;
3122 }
3123 #endif
3124
3125 /*
3126 * This is an integer logarithm so that shifts can be used later
3127 * to extract the more random high bits from the multiplicative
3128 * hash function before the remainder is taken.
3129 */
3130 static inline unsigned long wait_table_bits(unsigned long size)
3131 {
3132 return ffz(~size);
3133 }
3134
3135 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3136
3137 /*
3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3141 * higher will lead to a bigger reserve which will get freed as contiguous
3142 * blocks as reclaim kicks in
3143 */
3144 static void setup_zone_migrate_reserve(struct zone *zone)
3145 {
3146 unsigned long start_pfn, pfn, end_pfn;
3147 struct page *page;
3148 unsigned long block_migratetype;
3149 int reserve;
3150
3151 /* Get the start pfn, end pfn and the number of blocks to reserve */
3152 start_pfn = zone->zone_start_pfn;
3153 end_pfn = start_pfn + zone->spanned_pages;
3154 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3155 pageblock_order;
3156
3157 /*
3158 * Reserve blocks are generally in place to help high-order atomic
3159 * allocations that are short-lived. A min_free_kbytes value that
3160 * would result in more than 2 reserve blocks for atomic allocations
3161 * is assumed to be in place to help anti-fragmentation for the
3162 * future allocation of hugepages at runtime.
3163 */
3164 reserve = min(2, reserve);
3165
3166 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3167 if (!pfn_valid(pfn))
3168 continue;
3169 page = pfn_to_page(pfn);
3170
3171 /* Watch out for overlapping nodes */
3172 if (page_to_nid(page) != zone_to_nid(zone))
3173 continue;
3174
3175 /* Blocks with reserved pages will never free, skip them. */
3176 if (PageReserved(page))
3177 continue;
3178
3179 block_migratetype = get_pageblock_migratetype(page);
3180
3181 /* If this block is reserved, account for it */
3182 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3183 reserve--;
3184 continue;
3185 }
3186
3187 /* Suitable for reserving if this block is movable */
3188 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3189 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3190 move_freepages_block(zone, page, MIGRATE_RESERVE);
3191 reserve--;
3192 continue;
3193 }
3194
3195 /*
3196 * If the reserve is met and this is a previous reserved block,
3197 * take it back
3198 */
3199 if (block_migratetype == MIGRATE_RESERVE) {
3200 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3201 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3202 }
3203 }
3204 }
3205
3206 /*
3207 * Initially all pages are reserved - free ones are freed
3208 * up by free_all_bootmem() once the early boot process is
3209 * done. Non-atomic initialization, single-pass.
3210 */
3211 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3212 unsigned long start_pfn, enum memmap_context context)
3213 {
3214 struct page *page;
3215 unsigned long end_pfn = start_pfn + size;
3216 unsigned long pfn;
3217 struct zone *z;
3218
3219 if (highest_memmap_pfn < end_pfn - 1)
3220 highest_memmap_pfn = end_pfn - 1;
3221
3222 z = &NODE_DATA(nid)->node_zones[zone];
3223 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3224 /*
3225 * There can be holes in boot-time mem_map[]s
3226 * handed to this function. They do not
3227 * exist on hotplugged memory.
3228 */
3229 if (context == MEMMAP_EARLY) {
3230 if (!early_pfn_valid(pfn))
3231 continue;
3232 if (!early_pfn_in_nid(pfn, nid))
3233 continue;
3234 }
3235 page = pfn_to_page(pfn);
3236 set_page_links(page, zone, nid, pfn);
3237 mminit_verify_page_links(page, zone, nid, pfn);
3238 init_page_count(page);
3239 reset_page_mapcount(page);
3240 SetPageReserved(page);
3241 /*
3242 * Mark the block movable so that blocks are reserved for
3243 * movable at startup. This will force kernel allocations
3244 * to reserve their blocks rather than leaking throughout
3245 * the address space during boot when many long-lived
3246 * kernel allocations are made. Later some blocks near
3247 * the start are marked MIGRATE_RESERVE by
3248 * setup_zone_migrate_reserve()
3249 *
3250 * bitmap is created for zone's valid pfn range. but memmap
3251 * can be created for invalid pages (for alignment)
3252 * check here not to call set_pageblock_migratetype() against
3253 * pfn out of zone.
3254 */
3255 if ((z->zone_start_pfn <= pfn)
3256 && (pfn < z->zone_start_pfn + z->spanned_pages)
3257 && !(pfn & (pageblock_nr_pages - 1)))
3258 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3259
3260 INIT_LIST_HEAD(&page->lru);
3261 #ifdef WANT_PAGE_VIRTUAL
3262 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263 if (!is_highmem_idx(zone))
3264 set_page_address(page, __va(pfn << PAGE_SHIFT));
3265 #endif
3266 }
3267 }
3268
3269 static void __meminit zone_init_free_lists(struct zone *zone)
3270 {
3271 int order, t;
3272 for_each_migratetype_order(order, t) {
3273 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3274 zone->free_area[order].nr_free = 0;
3275 }
3276 }
3277
3278 #ifndef __HAVE_ARCH_MEMMAP_INIT
3279 #define memmap_init(size, nid, zone, start_pfn) \
3280 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3281 #endif
3282
3283 static int zone_batchsize(struct zone *zone)
3284 {
3285 #ifdef CONFIG_MMU
3286 int batch;
3287
3288 /*
3289 * The per-cpu-pages pools are set to around 1000th of the
3290 * size of the zone. But no more than 1/2 of a meg.
3291 *
3292 * OK, so we don't know how big the cache is. So guess.
3293 */
3294 batch = zone->present_pages / 1024;
3295 if (batch * PAGE_SIZE > 512 * 1024)
3296 batch = (512 * 1024) / PAGE_SIZE;
3297 batch /= 4; /* We effectively *= 4 below */
3298 if (batch < 1)
3299 batch = 1;
3300
3301 /*
3302 * Clamp the batch to a 2^n - 1 value. Having a power
3303 * of 2 value was found to be more likely to have
3304 * suboptimal cache aliasing properties in some cases.
3305 *
3306 * For example if 2 tasks are alternately allocating
3307 * batches of pages, one task can end up with a lot
3308 * of pages of one half of the possible page colors
3309 * and the other with pages of the other colors.
3310 */
3311 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3312
3313 return batch;
3314
3315 #else
3316 /* The deferral and batching of frees should be suppressed under NOMMU
3317 * conditions.
3318 *
3319 * The problem is that NOMMU needs to be able to allocate large chunks
3320 * of contiguous memory as there's no hardware page translation to
3321 * assemble apparent contiguous memory from discontiguous pages.
3322 *
3323 * Queueing large contiguous runs of pages for batching, however,
3324 * causes the pages to actually be freed in smaller chunks. As there
3325 * can be a significant delay between the individual batches being
3326 * recycled, this leads to the once large chunks of space being
3327 * fragmented and becoming unavailable for high-order allocations.
3328 */
3329 return 0;
3330 #endif
3331 }
3332
3333 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3334 {
3335 struct per_cpu_pages *pcp;
3336 int migratetype;
3337
3338 memset(p, 0, sizeof(*p));
3339
3340 pcp = &p->pcp;
3341 pcp->count = 0;
3342 pcp->high = 6 * batch;
3343 pcp->batch = max(1UL, 1 * batch);
3344 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3345 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3346 }
3347
3348 /*
3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350 * to the value high for the pageset p.
3351 */
3352
3353 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3354 unsigned long high)
3355 {
3356 struct per_cpu_pages *pcp;
3357
3358 pcp = &p->pcp;
3359 pcp->high = high;
3360 pcp->batch = max(1UL, high/4);
3361 if ((high/4) > (PAGE_SHIFT * 8))
3362 pcp->batch = PAGE_SHIFT * 8;
3363 }
3364
3365 static __meminit void setup_zone_pageset(struct zone *zone)
3366 {
3367 int cpu;
3368
3369 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3370
3371 for_each_possible_cpu(cpu) {
3372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3373
3374 setup_pageset(pcp, zone_batchsize(zone));
3375
3376 if (percpu_pagelist_fraction)
3377 setup_pagelist_highmark(pcp,
3378 (zone->present_pages /
3379 percpu_pagelist_fraction));
3380 }
3381 }
3382
3383 /*
3384 * Allocate per cpu pagesets and initialize them.
3385 * Before this call only boot pagesets were available.
3386 */
3387 void __init setup_per_cpu_pageset(void)
3388 {
3389 struct zone *zone;
3390
3391 for_each_populated_zone(zone)
3392 setup_zone_pageset(zone);
3393 }
3394
3395 static noinline __init_refok
3396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3397 {
3398 int i;
3399 struct pglist_data *pgdat = zone->zone_pgdat;
3400 size_t alloc_size;
3401
3402 /*
3403 * The per-page waitqueue mechanism uses hashed waitqueues
3404 * per zone.
3405 */
3406 zone->wait_table_hash_nr_entries =
3407 wait_table_hash_nr_entries(zone_size_pages);
3408 zone->wait_table_bits =
3409 wait_table_bits(zone->wait_table_hash_nr_entries);
3410 alloc_size = zone->wait_table_hash_nr_entries
3411 * sizeof(wait_queue_head_t);
3412
3413 if (!slab_is_available()) {
3414 zone->wait_table = (wait_queue_head_t *)
3415 alloc_bootmem_node(pgdat, alloc_size);
3416 } else {
3417 /*
3418 * This case means that a zone whose size was 0 gets new memory
3419 * via memory hot-add.
3420 * But it may be the case that a new node was hot-added. In
3421 * this case vmalloc() will not be able to use this new node's
3422 * memory - this wait_table must be initialized to use this new
3423 * node itself as well.
3424 * To use this new node's memory, further consideration will be
3425 * necessary.
3426 */
3427 zone->wait_table = vmalloc(alloc_size);
3428 }
3429 if (!zone->wait_table)
3430 return -ENOMEM;
3431
3432 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3433 init_waitqueue_head(zone->wait_table + i);
3434
3435 return 0;
3436 }
3437
3438 static int __zone_pcp_update(void *data)
3439 {
3440 struct zone *zone = data;
3441 int cpu;
3442 unsigned long batch = zone_batchsize(zone), flags;
3443
3444 for_each_possible_cpu(cpu) {
3445 struct per_cpu_pageset *pset;
3446 struct per_cpu_pages *pcp;
3447
3448 pset = per_cpu_ptr(zone->pageset, cpu);
3449 pcp = &pset->pcp;
3450
3451 local_irq_save(flags);
3452 free_pcppages_bulk(zone, pcp->count, pcp);
3453 setup_pageset(pset, batch);
3454 local_irq_restore(flags);
3455 }
3456 return 0;
3457 }
3458
3459 void zone_pcp_update(struct zone *zone)
3460 {
3461 stop_machine(__zone_pcp_update, zone, NULL);
3462 }
3463
3464 static __meminit void zone_pcp_init(struct zone *zone)
3465 {
3466 /*
3467 * per cpu subsystem is not up at this point. The following code
3468 * relies on the ability of the linker to provide the
3469 * offset of a (static) per cpu variable into the per cpu area.
3470 */
3471 zone->pageset = &boot_pageset;
3472
3473 if (zone->present_pages)
3474 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3475 zone->name, zone->present_pages,
3476 zone_batchsize(zone));
3477 }
3478
3479 __meminit int init_currently_empty_zone(struct zone *zone,
3480 unsigned long zone_start_pfn,
3481 unsigned long size,
3482 enum memmap_context context)
3483 {
3484 struct pglist_data *pgdat = zone->zone_pgdat;
3485 int ret;
3486 ret = zone_wait_table_init(zone, size);
3487 if (ret)
3488 return ret;
3489 pgdat->nr_zones = zone_idx(zone) + 1;
3490
3491 zone->zone_start_pfn = zone_start_pfn;
3492
3493 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3494 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3495 pgdat->node_id,
3496 (unsigned long)zone_idx(zone),
3497 zone_start_pfn, (zone_start_pfn + size));
3498
3499 zone_init_free_lists(zone);
3500
3501 return 0;
3502 }
3503
3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3505 /*
3506 * Basic iterator support. Return the first range of PFNs for a node
3507 * Note: nid == MAX_NUMNODES returns first region regardless of node
3508 */
3509 static int __meminit first_active_region_index_in_nid(int nid)
3510 {
3511 int i;
3512
3513 for (i = 0; i < nr_nodemap_entries; i++)
3514 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3515 return i;
3516
3517 return -1;
3518 }
3519
3520 /*
3521 * Basic iterator support. Return the next active range of PFNs for a node
3522 * Note: nid == MAX_NUMNODES returns next region regardless of node
3523 */
3524 static int __meminit next_active_region_index_in_nid(int index, int nid)
3525 {
3526 for (index = index + 1; index < nr_nodemap_entries; index++)
3527 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3528 return index;
3529
3530 return -1;
3531 }
3532
3533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3534 /*
3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536 * Architectures may implement their own version but if add_active_range()
3537 * was used and there are no special requirements, this is a convenient
3538 * alternative
3539 */
3540 int __meminit __early_pfn_to_nid(unsigned long pfn)
3541 {
3542 int i;
3543
3544 for (i = 0; i < nr_nodemap_entries; i++) {
3545 unsigned long start_pfn = early_node_map[i].start_pfn;
3546 unsigned long end_pfn = early_node_map[i].end_pfn;
3547
3548 if (start_pfn <= pfn && pfn < end_pfn)
3549 return early_node_map[i].nid;
3550 }
3551 /* This is a memory hole */
3552 return -1;
3553 }
3554 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3555
3556 int __meminit early_pfn_to_nid(unsigned long pfn)
3557 {
3558 int nid;
3559
3560 nid = __early_pfn_to_nid(pfn);
3561 if (nid >= 0)
3562 return nid;
3563 /* just returns 0 */
3564 return 0;
3565 }
3566
3567 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3569 {
3570 int nid;
3571
3572 nid = __early_pfn_to_nid(pfn);
3573 if (nid >= 0 && nid != node)
3574 return false;
3575 return true;
3576 }
3577 #endif
3578
3579 /* Basic iterator support to walk early_node_map[] */
3580 #define for_each_active_range_index_in_nid(i, nid) \
3581 for (i = first_active_region_index_in_nid(nid); i != -1; \
3582 i = next_active_region_index_in_nid(i, nid))
3583
3584 /**
3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3588 *
3589 * If an architecture guarantees that all ranges registered with
3590 * add_active_ranges() contain no holes and may be freed, this
3591 * this function may be used instead of calling free_bootmem() manually.
3592 */
3593 void __init free_bootmem_with_active_regions(int nid,
3594 unsigned long max_low_pfn)
3595 {
3596 int i;
3597
3598 for_each_active_range_index_in_nid(i, nid) {
3599 unsigned long size_pages = 0;
3600 unsigned long end_pfn = early_node_map[i].end_pfn;
3601
3602 if (early_node_map[i].start_pfn >= max_low_pfn)
3603 continue;
3604
3605 if (end_pfn > max_low_pfn)
3606 end_pfn = max_low_pfn;
3607
3608 size_pages = end_pfn - early_node_map[i].start_pfn;
3609 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3610 PFN_PHYS(early_node_map[i].start_pfn),
3611 size_pages << PAGE_SHIFT);
3612 }
3613 }
3614
3615 int __init add_from_early_node_map(struct range *range, int az,
3616 int nr_range, int nid)
3617 {
3618 int i;
3619 u64 start, end;
3620
3621 /* need to go over early_node_map to find out good range for node */
3622 for_each_active_range_index_in_nid(i, nid) {
3623 start = early_node_map[i].start_pfn;
3624 end = early_node_map[i].end_pfn;
3625 nr_range = add_range(range, az, nr_range, start, end);
3626 }
3627 return nr_range;
3628 }
3629
3630 #ifdef CONFIG_NO_BOOTMEM
3631 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3632 u64 goal, u64 limit)
3633 {
3634 int i;
3635 void *ptr;
3636
3637 /* need to go over early_node_map to find out good range for node */
3638 for_each_active_range_index_in_nid(i, nid) {
3639 u64 addr;
3640 u64 ei_start, ei_last;
3641
3642 ei_last = early_node_map[i].end_pfn;
3643 ei_last <<= PAGE_SHIFT;
3644 ei_start = early_node_map[i].start_pfn;
3645 ei_start <<= PAGE_SHIFT;
3646 addr = find_early_area(ei_start, ei_last,
3647 goal, limit, size, align);
3648
3649 if (addr == -1ULL)
3650 continue;
3651
3652 #if 0
3653 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3654 nid,
3655 ei_start, ei_last, goal, limit, size,
3656 align, addr);
3657 #endif
3658
3659 ptr = phys_to_virt(addr);
3660 memset(ptr, 0, size);
3661 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3662 return ptr;
3663 }
3664
3665 return NULL;
3666 }
3667 #endif
3668
3669
3670 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3671 {
3672 int i;
3673 int ret;
3674
3675 for_each_active_range_index_in_nid(i, nid) {
3676 ret = work_fn(early_node_map[i].start_pfn,
3677 early_node_map[i].end_pfn, data);
3678 if (ret)
3679 break;
3680 }
3681 }
3682 /**
3683 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3684 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3685 *
3686 * If an architecture guarantees that all ranges registered with
3687 * add_active_ranges() contain no holes and may be freed, this
3688 * function may be used instead of calling memory_present() manually.
3689 */
3690 void __init sparse_memory_present_with_active_regions(int nid)
3691 {
3692 int i;
3693
3694 for_each_active_range_index_in_nid(i, nid)
3695 memory_present(early_node_map[i].nid,
3696 early_node_map[i].start_pfn,
3697 early_node_map[i].end_pfn);
3698 }
3699
3700 /**
3701 * get_pfn_range_for_nid - Return the start and end page frames for a node
3702 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3703 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3704 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3705 *
3706 * It returns the start and end page frame of a node based on information
3707 * provided by an arch calling add_active_range(). If called for a node
3708 * with no available memory, a warning is printed and the start and end
3709 * PFNs will be 0.
3710 */
3711 void __meminit get_pfn_range_for_nid(unsigned int nid,
3712 unsigned long *start_pfn, unsigned long *end_pfn)
3713 {
3714 int i;
3715 *start_pfn = -1UL;
3716 *end_pfn = 0;
3717
3718 for_each_active_range_index_in_nid(i, nid) {
3719 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3720 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3721 }
3722
3723 if (*start_pfn == -1UL)
3724 *start_pfn = 0;
3725 }
3726
3727 /*
3728 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3729 * assumption is made that zones within a node are ordered in monotonic
3730 * increasing memory addresses so that the "highest" populated zone is used
3731 */
3732 static void __init find_usable_zone_for_movable(void)
3733 {
3734 int zone_index;
3735 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3736 if (zone_index == ZONE_MOVABLE)
3737 continue;
3738
3739 if (arch_zone_highest_possible_pfn[zone_index] >
3740 arch_zone_lowest_possible_pfn[zone_index])
3741 break;
3742 }
3743
3744 VM_BUG_ON(zone_index == -1);
3745 movable_zone = zone_index;
3746 }
3747
3748 /*
3749 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3750 * because it is sized independant of architecture. Unlike the other zones,
3751 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3752 * in each node depending on the size of each node and how evenly kernelcore
3753 * is distributed. This helper function adjusts the zone ranges
3754 * provided by the architecture for a given node by using the end of the
3755 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3756 * zones within a node are in order of monotonic increases memory addresses
3757 */
3758 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3759 unsigned long zone_type,
3760 unsigned long node_start_pfn,
3761 unsigned long node_end_pfn,
3762 unsigned long *zone_start_pfn,
3763 unsigned long *zone_end_pfn)
3764 {
3765 /* Only adjust if ZONE_MOVABLE is on this node */
3766 if (zone_movable_pfn[nid]) {
3767 /* Size ZONE_MOVABLE */
3768 if (zone_type == ZONE_MOVABLE) {
3769 *zone_start_pfn = zone_movable_pfn[nid];
3770 *zone_end_pfn = min(node_end_pfn,
3771 arch_zone_highest_possible_pfn[movable_zone]);
3772
3773 /* Adjust for ZONE_MOVABLE starting within this range */
3774 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3775 *zone_end_pfn > zone_movable_pfn[nid]) {
3776 *zone_end_pfn = zone_movable_pfn[nid];
3777
3778 /* Check if this whole range is within ZONE_MOVABLE */
3779 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3780 *zone_start_pfn = *zone_end_pfn;
3781 }
3782 }
3783
3784 /*
3785 * Return the number of pages a zone spans in a node, including holes
3786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3787 */
3788 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3789 unsigned long zone_type,
3790 unsigned long *ignored)
3791 {
3792 unsigned long node_start_pfn, node_end_pfn;
3793 unsigned long zone_start_pfn, zone_end_pfn;
3794
3795 /* Get the start and end of the node and zone */
3796 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3797 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3798 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3799 adjust_zone_range_for_zone_movable(nid, zone_type,
3800 node_start_pfn, node_end_pfn,
3801 &zone_start_pfn, &zone_end_pfn);
3802
3803 /* Check that this node has pages within the zone's required range */
3804 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3805 return 0;
3806
3807 /* Move the zone boundaries inside the node if necessary */
3808 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3809 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3810
3811 /* Return the spanned pages */
3812 return zone_end_pfn - zone_start_pfn;
3813 }
3814
3815 /*
3816 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3817 * then all holes in the requested range will be accounted for.
3818 */
3819 unsigned long __meminit __absent_pages_in_range(int nid,
3820 unsigned long range_start_pfn,
3821 unsigned long range_end_pfn)
3822 {
3823 int i = 0;
3824 unsigned long prev_end_pfn = 0, hole_pages = 0;
3825 unsigned long start_pfn;
3826
3827 /* Find the end_pfn of the first active range of pfns in the node */
3828 i = first_active_region_index_in_nid(nid);
3829 if (i == -1)
3830 return 0;
3831
3832 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3833
3834 /* Account for ranges before physical memory on this node */
3835 if (early_node_map[i].start_pfn > range_start_pfn)
3836 hole_pages = prev_end_pfn - range_start_pfn;
3837
3838 /* Find all holes for the zone within the node */
3839 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3840
3841 /* No need to continue if prev_end_pfn is outside the zone */
3842 if (prev_end_pfn >= range_end_pfn)
3843 break;
3844
3845 /* Make sure the end of the zone is not within the hole */
3846 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3847 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3848
3849 /* Update the hole size cound and move on */
3850 if (start_pfn > range_start_pfn) {
3851 BUG_ON(prev_end_pfn > start_pfn);
3852 hole_pages += start_pfn - prev_end_pfn;
3853 }
3854 prev_end_pfn = early_node_map[i].end_pfn;
3855 }
3856
3857 /* Account for ranges past physical memory on this node */
3858 if (range_end_pfn > prev_end_pfn)
3859 hole_pages += range_end_pfn -
3860 max(range_start_pfn, prev_end_pfn);
3861
3862 return hole_pages;
3863 }
3864
3865 /**
3866 * absent_pages_in_range - Return number of page frames in holes within a range
3867 * @start_pfn: The start PFN to start searching for holes
3868 * @end_pfn: The end PFN to stop searching for holes
3869 *
3870 * It returns the number of pages frames in memory holes within a range.
3871 */
3872 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3873 unsigned long end_pfn)
3874 {
3875 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3876 }
3877
3878 /* Return the number of page frames in holes in a zone on a node */
3879 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3880 unsigned long zone_type,
3881 unsigned long *ignored)
3882 {
3883 unsigned long node_start_pfn, node_end_pfn;
3884 unsigned long zone_start_pfn, zone_end_pfn;
3885
3886 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3887 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3888 node_start_pfn);
3889 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3890 node_end_pfn);
3891
3892 adjust_zone_range_for_zone_movable(nid, zone_type,
3893 node_start_pfn, node_end_pfn,
3894 &zone_start_pfn, &zone_end_pfn);
3895 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3896 }
3897
3898 #else
3899 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3900 unsigned long zone_type,
3901 unsigned long *zones_size)
3902 {
3903 return zones_size[zone_type];
3904 }
3905
3906 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3907 unsigned long zone_type,
3908 unsigned long *zholes_size)
3909 {
3910 if (!zholes_size)
3911 return 0;
3912
3913 return zholes_size[zone_type];
3914 }
3915
3916 #endif
3917
3918 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3919 unsigned long *zones_size, unsigned long *zholes_size)
3920 {
3921 unsigned long realtotalpages, totalpages = 0;
3922 enum zone_type i;
3923
3924 for (i = 0; i < MAX_NR_ZONES; i++)
3925 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3926 zones_size);
3927 pgdat->node_spanned_pages = totalpages;
3928
3929 realtotalpages = totalpages;
3930 for (i = 0; i < MAX_NR_ZONES; i++)
3931 realtotalpages -=
3932 zone_absent_pages_in_node(pgdat->node_id, i,
3933 zholes_size);
3934 pgdat->node_present_pages = realtotalpages;
3935 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3936 realtotalpages);
3937 }
3938
3939 #ifndef CONFIG_SPARSEMEM
3940 /*
3941 * Calculate the size of the zone->blockflags rounded to an unsigned long
3942 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3943 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3944 * round what is now in bits to nearest long in bits, then return it in
3945 * bytes.
3946 */
3947 static unsigned long __init usemap_size(unsigned long zonesize)
3948 {
3949 unsigned long usemapsize;
3950
3951 usemapsize = roundup(zonesize, pageblock_nr_pages);
3952 usemapsize = usemapsize >> pageblock_order;
3953 usemapsize *= NR_PAGEBLOCK_BITS;
3954 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3955
3956 return usemapsize / 8;
3957 }
3958
3959 static void __init setup_usemap(struct pglist_data *pgdat,
3960 struct zone *zone, unsigned long zonesize)
3961 {
3962 unsigned long usemapsize = usemap_size(zonesize);
3963 zone->pageblock_flags = NULL;
3964 if (usemapsize)
3965 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3966 }
3967 #else
3968 static void inline setup_usemap(struct pglist_data *pgdat,
3969 struct zone *zone, unsigned long zonesize) {}
3970 #endif /* CONFIG_SPARSEMEM */
3971
3972 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3973
3974 /* Return a sensible default order for the pageblock size. */
3975 static inline int pageblock_default_order(void)
3976 {
3977 if (HPAGE_SHIFT > PAGE_SHIFT)
3978 return HUGETLB_PAGE_ORDER;
3979
3980 return MAX_ORDER-1;
3981 }
3982
3983 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3984 static inline void __init set_pageblock_order(unsigned int order)
3985 {
3986 /* Check that pageblock_nr_pages has not already been setup */
3987 if (pageblock_order)
3988 return;
3989
3990 /*
3991 * Assume the largest contiguous order of interest is a huge page.
3992 * This value may be variable depending on boot parameters on IA64
3993 */
3994 pageblock_order = order;
3995 }
3996 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3997
3998 /*
3999 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4000 * and pageblock_default_order() are unused as pageblock_order is set
4001 * at compile-time. See include/linux/pageblock-flags.h for the values of
4002 * pageblock_order based on the kernel config
4003 */
4004 static inline int pageblock_default_order(unsigned int order)
4005 {
4006 return MAX_ORDER-1;
4007 }
4008 #define set_pageblock_order(x) do {} while (0)
4009
4010 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4011
4012 /*
4013 * Set up the zone data structures:
4014 * - mark all pages reserved
4015 * - mark all memory queues empty
4016 * - clear the memory bitmaps
4017 */
4018 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4019 unsigned long *zones_size, unsigned long *zholes_size)
4020 {
4021 enum zone_type j;
4022 int nid = pgdat->node_id;
4023 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4024 int ret;
4025
4026 pgdat_resize_init(pgdat);
4027 pgdat->nr_zones = 0;
4028 init_waitqueue_head(&pgdat->kswapd_wait);
4029 pgdat->kswapd_max_order = 0;
4030 pgdat_page_cgroup_init(pgdat);
4031
4032 for (j = 0; j < MAX_NR_ZONES; j++) {
4033 struct zone *zone = pgdat->node_zones + j;
4034 unsigned long size, realsize, memmap_pages;
4035 enum lru_list l;
4036
4037 size = zone_spanned_pages_in_node(nid, j, zones_size);
4038 realsize = size - zone_absent_pages_in_node(nid, j,
4039 zholes_size);
4040
4041 /*
4042 * Adjust realsize so that it accounts for how much memory
4043 * is used by this zone for memmap. This affects the watermark
4044 * and per-cpu initialisations
4045 */
4046 memmap_pages =
4047 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4048 if (realsize >= memmap_pages) {
4049 realsize -= memmap_pages;
4050 if (memmap_pages)
4051 printk(KERN_DEBUG
4052 " %s zone: %lu pages used for memmap\n",
4053 zone_names[j], memmap_pages);
4054 } else
4055 printk(KERN_WARNING
4056 " %s zone: %lu pages exceeds realsize %lu\n",
4057 zone_names[j], memmap_pages, realsize);
4058
4059 /* Account for reserved pages */
4060 if (j == 0 && realsize > dma_reserve) {
4061 realsize -= dma_reserve;
4062 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4063 zone_names[0], dma_reserve);
4064 }
4065
4066 if (!is_highmem_idx(j))
4067 nr_kernel_pages += realsize;
4068 nr_all_pages += realsize;
4069
4070 zone->spanned_pages = size;
4071 zone->present_pages = realsize;
4072 #ifdef CONFIG_NUMA
4073 zone->node = nid;
4074 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4075 / 100;
4076 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4077 #endif
4078 zone->name = zone_names[j];
4079 spin_lock_init(&zone->lock);
4080 spin_lock_init(&zone->lru_lock);
4081 zone_seqlock_init(zone);
4082 zone->zone_pgdat = pgdat;
4083
4084 zone->prev_priority = DEF_PRIORITY;
4085
4086 zone_pcp_init(zone);
4087 for_each_lru(l) {
4088 INIT_LIST_HEAD(&zone->lru[l].list);
4089 zone->reclaim_stat.nr_saved_scan[l] = 0;
4090 }
4091 zone->reclaim_stat.recent_rotated[0] = 0;
4092 zone->reclaim_stat.recent_rotated[1] = 0;
4093 zone->reclaim_stat.recent_scanned[0] = 0;
4094 zone->reclaim_stat.recent_scanned[1] = 0;
4095 zap_zone_vm_stats(zone);
4096 zone->flags = 0;
4097 if (!size)
4098 continue;
4099
4100 set_pageblock_order(pageblock_default_order());
4101 setup_usemap(pgdat, zone, size);
4102 ret = init_currently_empty_zone(zone, zone_start_pfn,
4103 size, MEMMAP_EARLY);
4104 BUG_ON(ret);
4105 memmap_init(size, nid, j, zone_start_pfn);
4106 zone_start_pfn += size;
4107 }
4108 }
4109
4110 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4111 {
4112 /* Skip empty nodes */
4113 if (!pgdat->node_spanned_pages)
4114 return;
4115
4116 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4117 /* ia64 gets its own node_mem_map, before this, without bootmem */
4118 if (!pgdat->node_mem_map) {
4119 unsigned long size, start, end;
4120 struct page *map;
4121
4122 /*
4123 * The zone's endpoints aren't required to be MAX_ORDER
4124 * aligned but the node_mem_map endpoints must be in order
4125 * for the buddy allocator to function correctly.
4126 */
4127 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4128 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4129 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4130 size = (end - start) * sizeof(struct page);
4131 map = alloc_remap(pgdat->node_id, size);
4132 if (!map)
4133 map = alloc_bootmem_node(pgdat, size);
4134 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4135 }
4136 #ifndef CONFIG_NEED_MULTIPLE_NODES
4137 /*
4138 * With no DISCONTIG, the global mem_map is just set as node 0's
4139 */
4140 if (pgdat == NODE_DATA(0)) {
4141 mem_map = NODE_DATA(0)->node_mem_map;
4142 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4143 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4144 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4145 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4146 }
4147 #endif
4148 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4149 }
4150
4151 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4152 unsigned long node_start_pfn, unsigned long *zholes_size)
4153 {
4154 pg_data_t *pgdat = NODE_DATA(nid);
4155
4156 pgdat->node_id = nid;
4157 pgdat->node_start_pfn = node_start_pfn;
4158 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4159
4160 alloc_node_mem_map(pgdat);
4161 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4162 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4163 nid, (unsigned long)pgdat,
4164 (unsigned long)pgdat->node_mem_map);
4165 #endif
4166
4167 free_area_init_core(pgdat, zones_size, zholes_size);
4168 }
4169
4170 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4171
4172 #if MAX_NUMNODES > 1
4173 /*
4174 * Figure out the number of possible node ids.
4175 */
4176 static void __init setup_nr_node_ids(void)
4177 {
4178 unsigned int node;
4179 unsigned int highest = 0;
4180
4181 for_each_node_mask(node, node_possible_map)
4182 highest = node;
4183 nr_node_ids = highest + 1;
4184 }
4185 #else
4186 static inline void setup_nr_node_ids(void)
4187 {
4188 }
4189 #endif
4190
4191 /**
4192 * add_active_range - Register a range of PFNs backed by physical memory
4193 * @nid: The node ID the range resides on
4194 * @start_pfn: The start PFN of the available physical memory
4195 * @end_pfn: The end PFN of the available physical memory
4196 *
4197 * These ranges are stored in an early_node_map[] and later used by
4198 * free_area_init_nodes() to calculate zone sizes and holes. If the
4199 * range spans a memory hole, it is up to the architecture to ensure
4200 * the memory is not freed by the bootmem allocator. If possible
4201 * the range being registered will be merged with existing ranges.
4202 */
4203 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4204 unsigned long end_pfn)
4205 {
4206 int i;
4207
4208 mminit_dprintk(MMINIT_TRACE, "memory_register",
4209 "Entering add_active_range(%d, %#lx, %#lx) "
4210 "%d entries of %d used\n",
4211 nid, start_pfn, end_pfn,
4212 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4213
4214 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4215
4216 /* Merge with existing active regions if possible */
4217 for (i = 0; i < nr_nodemap_entries; i++) {
4218 if (early_node_map[i].nid != nid)
4219 continue;
4220
4221 /* Skip if an existing region covers this new one */
4222 if (start_pfn >= early_node_map[i].start_pfn &&
4223 end_pfn <= early_node_map[i].end_pfn)
4224 return;
4225
4226 /* Merge forward if suitable */
4227 if (start_pfn <= early_node_map[i].end_pfn &&
4228 end_pfn > early_node_map[i].end_pfn) {
4229 early_node_map[i].end_pfn = end_pfn;
4230 return;
4231 }
4232
4233 /* Merge backward if suitable */
4234 if (start_pfn < early_node_map[i].start_pfn &&
4235 end_pfn >= early_node_map[i].start_pfn) {
4236 early_node_map[i].start_pfn = start_pfn;
4237 return;
4238 }
4239 }
4240
4241 /* Check that early_node_map is large enough */
4242 if (i >= MAX_ACTIVE_REGIONS) {
4243 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4244 MAX_ACTIVE_REGIONS);
4245 return;
4246 }
4247
4248 early_node_map[i].nid = nid;
4249 early_node_map[i].start_pfn = start_pfn;
4250 early_node_map[i].end_pfn = end_pfn;
4251 nr_nodemap_entries = i + 1;
4252 }
4253
4254 /**
4255 * remove_active_range - Shrink an existing registered range of PFNs
4256 * @nid: The node id the range is on that should be shrunk
4257 * @start_pfn: The new PFN of the range
4258 * @end_pfn: The new PFN of the range
4259 *
4260 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4261 * The map is kept near the end physical page range that has already been
4262 * registered. This function allows an arch to shrink an existing registered
4263 * range.
4264 */
4265 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4266 unsigned long end_pfn)
4267 {
4268 int i, j;
4269 int removed = 0;
4270
4271 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4272 nid, start_pfn, end_pfn);
4273
4274 /* Find the old active region end and shrink */
4275 for_each_active_range_index_in_nid(i, nid) {
4276 if (early_node_map[i].start_pfn >= start_pfn &&
4277 early_node_map[i].end_pfn <= end_pfn) {
4278 /* clear it */
4279 early_node_map[i].start_pfn = 0;
4280 early_node_map[i].end_pfn = 0;
4281 removed = 1;
4282 continue;
4283 }
4284 if (early_node_map[i].start_pfn < start_pfn &&
4285 early_node_map[i].end_pfn > start_pfn) {
4286 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4287 early_node_map[i].end_pfn = start_pfn;
4288 if (temp_end_pfn > end_pfn)
4289 add_active_range(nid, end_pfn, temp_end_pfn);
4290 continue;
4291 }
4292 if (early_node_map[i].start_pfn >= start_pfn &&
4293 early_node_map[i].end_pfn > end_pfn &&
4294 early_node_map[i].start_pfn < end_pfn) {
4295 early_node_map[i].start_pfn = end_pfn;
4296 continue;
4297 }
4298 }
4299
4300 if (!removed)
4301 return;
4302
4303 /* remove the blank ones */
4304 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4305 if (early_node_map[i].nid != nid)
4306 continue;
4307 if (early_node_map[i].end_pfn)
4308 continue;
4309 /* we found it, get rid of it */
4310 for (j = i; j < nr_nodemap_entries - 1; j++)
4311 memcpy(&early_node_map[j], &early_node_map[j+1],
4312 sizeof(early_node_map[j]));
4313 j = nr_nodemap_entries - 1;
4314 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4315 nr_nodemap_entries--;
4316 }
4317 }
4318
4319 /**
4320 * remove_all_active_ranges - Remove all currently registered regions
4321 *
4322 * During discovery, it may be found that a table like SRAT is invalid
4323 * and an alternative discovery method must be used. This function removes
4324 * all currently registered regions.
4325 */
4326 void __init remove_all_active_ranges(void)
4327 {
4328 memset(early_node_map, 0, sizeof(early_node_map));
4329 nr_nodemap_entries = 0;
4330 }
4331
4332 /* Compare two active node_active_regions */
4333 static int __init cmp_node_active_region(const void *a, const void *b)
4334 {
4335 struct node_active_region *arange = (struct node_active_region *)a;
4336 struct node_active_region *brange = (struct node_active_region *)b;
4337
4338 /* Done this way to avoid overflows */
4339 if (arange->start_pfn > brange->start_pfn)
4340 return 1;
4341 if (arange->start_pfn < brange->start_pfn)
4342 return -1;
4343
4344 return 0;
4345 }
4346
4347 /* sort the node_map by start_pfn */
4348 void __init sort_node_map(void)
4349 {
4350 sort(early_node_map, (size_t)nr_nodemap_entries,
4351 sizeof(struct node_active_region),
4352 cmp_node_active_region, NULL);
4353 }
4354
4355 /* Find the lowest pfn for a node */
4356 static unsigned long __init find_min_pfn_for_node(int nid)
4357 {
4358 int i;
4359 unsigned long min_pfn = ULONG_MAX;
4360
4361 /* Assuming a sorted map, the first range found has the starting pfn */
4362 for_each_active_range_index_in_nid(i, nid)
4363 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4364
4365 if (min_pfn == ULONG_MAX) {
4366 printk(KERN_WARNING
4367 "Could not find start_pfn for node %d\n", nid);
4368 return 0;
4369 }
4370
4371 return min_pfn;
4372 }
4373
4374 /**
4375 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4376 *
4377 * It returns the minimum PFN based on information provided via
4378 * add_active_range().
4379 */
4380 unsigned long __init find_min_pfn_with_active_regions(void)
4381 {
4382 return find_min_pfn_for_node(MAX_NUMNODES);
4383 }
4384
4385 /*
4386 * early_calculate_totalpages()
4387 * Sum pages in active regions for movable zone.
4388 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4389 */
4390 static unsigned long __init early_calculate_totalpages(void)
4391 {
4392 int i;
4393 unsigned long totalpages = 0;
4394
4395 for (i = 0; i < nr_nodemap_entries; i++) {
4396 unsigned long pages = early_node_map[i].end_pfn -
4397 early_node_map[i].start_pfn;
4398 totalpages += pages;
4399 if (pages)
4400 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4401 }
4402 return totalpages;
4403 }
4404
4405 /*
4406 * Find the PFN the Movable zone begins in each node. Kernel memory
4407 * is spread evenly between nodes as long as the nodes have enough
4408 * memory. When they don't, some nodes will have more kernelcore than
4409 * others
4410 */
4411 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4412 {
4413 int i, nid;
4414 unsigned long usable_startpfn;
4415 unsigned long kernelcore_node, kernelcore_remaining;
4416 /* save the state before borrow the nodemask */
4417 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4418 unsigned long totalpages = early_calculate_totalpages();
4419 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4420
4421 /*
4422 * If movablecore was specified, calculate what size of
4423 * kernelcore that corresponds so that memory usable for
4424 * any allocation type is evenly spread. If both kernelcore
4425 * and movablecore are specified, then the value of kernelcore
4426 * will be used for required_kernelcore if it's greater than
4427 * what movablecore would have allowed.
4428 */
4429 if (required_movablecore) {
4430 unsigned long corepages;
4431
4432 /*
4433 * Round-up so that ZONE_MOVABLE is at least as large as what
4434 * was requested by the user
4435 */
4436 required_movablecore =
4437 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4438 corepages = totalpages - required_movablecore;
4439
4440 required_kernelcore = max(required_kernelcore, corepages);
4441 }
4442
4443 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4444 if (!required_kernelcore)
4445 goto out;
4446
4447 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4448 find_usable_zone_for_movable();
4449 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4450
4451 restart:
4452 /* Spread kernelcore memory as evenly as possible throughout nodes */
4453 kernelcore_node = required_kernelcore / usable_nodes;
4454 for_each_node_state(nid, N_HIGH_MEMORY) {
4455 /*
4456 * Recalculate kernelcore_node if the division per node
4457 * now exceeds what is necessary to satisfy the requested
4458 * amount of memory for the kernel
4459 */
4460 if (required_kernelcore < kernelcore_node)
4461 kernelcore_node = required_kernelcore / usable_nodes;
4462
4463 /*
4464 * As the map is walked, we track how much memory is usable
4465 * by the kernel using kernelcore_remaining. When it is
4466 * 0, the rest of the node is usable by ZONE_MOVABLE
4467 */
4468 kernelcore_remaining = kernelcore_node;
4469
4470 /* Go through each range of PFNs within this node */
4471 for_each_active_range_index_in_nid(i, nid) {
4472 unsigned long start_pfn, end_pfn;
4473 unsigned long size_pages;
4474
4475 start_pfn = max(early_node_map[i].start_pfn,
4476 zone_movable_pfn[nid]);
4477 end_pfn = early_node_map[i].end_pfn;
4478 if (start_pfn >= end_pfn)
4479 continue;
4480
4481 /* Account for what is only usable for kernelcore */
4482 if (start_pfn < usable_startpfn) {
4483 unsigned long kernel_pages;
4484 kernel_pages = min(end_pfn, usable_startpfn)
4485 - start_pfn;
4486
4487 kernelcore_remaining -= min(kernel_pages,
4488 kernelcore_remaining);
4489 required_kernelcore -= min(kernel_pages,
4490 required_kernelcore);
4491
4492 /* Continue if range is now fully accounted */
4493 if (end_pfn <= usable_startpfn) {
4494
4495 /*
4496 * Push zone_movable_pfn to the end so
4497 * that if we have to rebalance
4498 * kernelcore across nodes, we will
4499 * not double account here
4500 */
4501 zone_movable_pfn[nid] = end_pfn;
4502 continue;
4503 }
4504 start_pfn = usable_startpfn;
4505 }
4506
4507 /*
4508 * The usable PFN range for ZONE_MOVABLE is from
4509 * start_pfn->end_pfn. Calculate size_pages as the
4510 * number of pages used as kernelcore
4511 */
4512 size_pages = end_pfn - start_pfn;
4513 if (size_pages > kernelcore_remaining)
4514 size_pages = kernelcore_remaining;
4515 zone_movable_pfn[nid] = start_pfn + size_pages;
4516
4517 /*
4518 * Some kernelcore has been met, update counts and
4519 * break if the kernelcore for this node has been
4520 * satisified
4521 */
4522 required_kernelcore -= min(required_kernelcore,
4523 size_pages);
4524 kernelcore_remaining -= size_pages;
4525 if (!kernelcore_remaining)
4526 break;
4527 }
4528 }
4529
4530 /*
4531 * If there is still required_kernelcore, we do another pass with one
4532 * less node in the count. This will push zone_movable_pfn[nid] further
4533 * along on the nodes that still have memory until kernelcore is
4534 * satisified
4535 */
4536 usable_nodes--;
4537 if (usable_nodes && required_kernelcore > usable_nodes)
4538 goto restart;
4539
4540 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4541 for (nid = 0; nid < MAX_NUMNODES; nid++)
4542 zone_movable_pfn[nid] =
4543 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4544
4545 out:
4546 /* restore the node_state */
4547 node_states[N_HIGH_MEMORY] = saved_node_state;
4548 }
4549
4550 /* Any regular memory on that node ? */
4551 static void check_for_regular_memory(pg_data_t *pgdat)
4552 {
4553 #ifdef CONFIG_HIGHMEM
4554 enum zone_type zone_type;
4555
4556 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4557 struct zone *zone = &pgdat->node_zones[zone_type];
4558 if (zone->present_pages)
4559 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4560 }
4561 #endif
4562 }
4563
4564 /**
4565 * free_area_init_nodes - Initialise all pg_data_t and zone data
4566 * @max_zone_pfn: an array of max PFNs for each zone
4567 *
4568 * This will call free_area_init_node() for each active node in the system.
4569 * Using the page ranges provided by add_active_range(), the size of each
4570 * zone in each node and their holes is calculated. If the maximum PFN
4571 * between two adjacent zones match, it is assumed that the zone is empty.
4572 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4573 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4574 * starts where the previous one ended. For example, ZONE_DMA32 starts
4575 * at arch_max_dma_pfn.
4576 */
4577 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4578 {
4579 unsigned long nid;
4580 int i;
4581
4582 /* Sort early_node_map as initialisation assumes it is sorted */
4583 sort_node_map();
4584
4585 /* Record where the zone boundaries are */
4586 memset(arch_zone_lowest_possible_pfn, 0,
4587 sizeof(arch_zone_lowest_possible_pfn));
4588 memset(arch_zone_highest_possible_pfn, 0,
4589 sizeof(arch_zone_highest_possible_pfn));
4590 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4591 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4592 for (i = 1; i < MAX_NR_ZONES; i++) {
4593 if (i == ZONE_MOVABLE)
4594 continue;
4595 arch_zone_lowest_possible_pfn[i] =
4596 arch_zone_highest_possible_pfn[i-1];
4597 arch_zone_highest_possible_pfn[i] =
4598 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4599 }
4600 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4601 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4602
4603 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4604 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4605 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4606
4607 /* Print out the zone ranges */
4608 printk("Zone PFN ranges:\n");
4609 for (i = 0; i < MAX_NR_ZONES; i++) {
4610 if (i == ZONE_MOVABLE)
4611 continue;
4612 printk(" %-8s ", zone_names[i]);
4613 if (arch_zone_lowest_possible_pfn[i] ==
4614 arch_zone_highest_possible_pfn[i])
4615 printk("empty\n");
4616 else
4617 printk("%0#10lx -> %0#10lx\n",
4618 arch_zone_lowest_possible_pfn[i],
4619 arch_zone_highest_possible_pfn[i]);
4620 }
4621
4622 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4623 printk("Movable zone start PFN for each node\n");
4624 for (i = 0; i < MAX_NUMNODES; i++) {
4625 if (zone_movable_pfn[i])
4626 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4627 }
4628
4629 /* Print out the early_node_map[] */
4630 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4631 for (i = 0; i < nr_nodemap_entries; i++)
4632 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4633 early_node_map[i].start_pfn,
4634 early_node_map[i].end_pfn);
4635
4636 /* Initialise every node */
4637 mminit_verify_pageflags_layout();
4638 setup_nr_node_ids();
4639 for_each_online_node(nid) {
4640 pg_data_t *pgdat = NODE_DATA(nid);
4641 free_area_init_node(nid, NULL,
4642 find_min_pfn_for_node(nid), NULL);
4643
4644 /* Any memory on that node */
4645 if (pgdat->node_present_pages)
4646 node_set_state(nid, N_HIGH_MEMORY);
4647 check_for_regular_memory(pgdat);
4648 }
4649 }
4650
4651 static int __init cmdline_parse_core(char *p, unsigned long *core)
4652 {
4653 unsigned long long coremem;
4654 if (!p)
4655 return -EINVAL;
4656
4657 coremem = memparse(p, &p);
4658 *core = coremem >> PAGE_SHIFT;
4659
4660 /* Paranoid check that UL is enough for the coremem value */
4661 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4662
4663 return 0;
4664 }
4665
4666 /*
4667 * kernelcore=size sets the amount of memory for use for allocations that
4668 * cannot be reclaimed or migrated.
4669 */
4670 static int __init cmdline_parse_kernelcore(char *p)
4671 {
4672 return cmdline_parse_core(p, &required_kernelcore);
4673 }
4674
4675 /*
4676 * movablecore=size sets the amount of memory for use for allocations that
4677 * can be reclaimed or migrated.
4678 */
4679 static int __init cmdline_parse_movablecore(char *p)
4680 {
4681 return cmdline_parse_core(p, &required_movablecore);
4682 }
4683
4684 early_param("kernelcore", cmdline_parse_kernelcore);
4685 early_param("movablecore", cmdline_parse_movablecore);
4686
4687 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4688
4689 /**
4690 * set_dma_reserve - set the specified number of pages reserved in the first zone
4691 * @new_dma_reserve: The number of pages to mark reserved
4692 *
4693 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4694 * In the DMA zone, a significant percentage may be consumed by kernel image
4695 * and other unfreeable allocations which can skew the watermarks badly. This
4696 * function may optionally be used to account for unfreeable pages in the
4697 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4698 * smaller per-cpu batchsize.
4699 */
4700 void __init set_dma_reserve(unsigned long new_dma_reserve)
4701 {
4702 dma_reserve = new_dma_reserve;
4703 }
4704
4705 #ifndef CONFIG_NEED_MULTIPLE_NODES
4706 struct pglist_data __refdata contig_page_data = {
4707 #ifndef CONFIG_NO_BOOTMEM
4708 .bdata = &bootmem_node_data[0]
4709 #endif
4710 };
4711 EXPORT_SYMBOL(contig_page_data);
4712 #endif
4713
4714 void __init free_area_init(unsigned long *zones_size)
4715 {
4716 free_area_init_node(0, zones_size,
4717 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4718 }
4719
4720 static int page_alloc_cpu_notify(struct notifier_block *self,
4721 unsigned long action, void *hcpu)
4722 {
4723 int cpu = (unsigned long)hcpu;
4724
4725 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4726 drain_pages(cpu);
4727
4728 /*
4729 * Spill the event counters of the dead processor
4730 * into the current processors event counters.
4731 * This artificially elevates the count of the current
4732 * processor.
4733 */
4734 vm_events_fold_cpu(cpu);
4735
4736 /*
4737 * Zero the differential counters of the dead processor
4738 * so that the vm statistics are consistent.
4739 *
4740 * This is only okay since the processor is dead and cannot
4741 * race with what we are doing.
4742 */
4743 refresh_cpu_vm_stats(cpu);
4744 }
4745 return NOTIFY_OK;
4746 }
4747
4748 void __init page_alloc_init(void)
4749 {
4750 hotcpu_notifier(page_alloc_cpu_notify, 0);
4751 }
4752
4753 /*
4754 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4755 * or min_free_kbytes changes.
4756 */
4757 static void calculate_totalreserve_pages(void)
4758 {
4759 struct pglist_data *pgdat;
4760 unsigned long reserve_pages = 0;
4761 enum zone_type i, j;
4762
4763 for_each_online_pgdat(pgdat) {
4764 for (i = 0; i < MAX_NR_ZONES; i++) {
4765 struct zone *zone = pgdat->node_zones + i;
4766 unsigned long max = 0;
4767
4768 /* Find valid and maximum lowmem_reserve in the zone */
4769 for (j = i; j < MAX_NR_ZONES; j++) {
4770 if (zone->lowmem_reserve[j] > max)
4771 max = zone->lowmem_reserve[j];
4772 }
4773
4774 /* we treat the high watermark as reserved pages. */
4775 max += high_wmark_pages(zone);
4776
4777 if (max > zone->present_pages)
4778 max = zone->present_pages;
4779 reserve_pages += max;
4780 }
4781 }
4782 totalreserve_pages = reserve_pages;
4783 }
4784
4785 /*
4786 * setup_per_zone_lowmem_reserve - called whenever
4787 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4788 * has a correct pages reserved value, so an adequate number of
4789 * pages are left in the zone after a successful __alloc_pages().
4790 */
4791 static void setup_per_zone_lowmem_reserve(void)
4792 {
4793 struct pglist_data *pgdat;
4794 enum zone_type j, idx;
4795
4796 for_each_online_pgdat(pgdat) {
4797 for (j = 0; j < MAX_NR_ZONES; j++) {
4798 struct zone *zone = pgdat->node_zones + j;
4799 unsigned long present_pages = zone->present_pages;
4800
4801 zone->lowmem_reserve[j] = 0;
4802
4803 idx = j;
4804 while (idx) {
4805 struct zone *lower_zone;
4806
4807 idx--;
4808
4809 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4810 sysctl_lowmem_reserve_ratio[idx] = 1;
4811
4812 lower_zone = pgdat->node_zones + idx;
4813 lower_zone->lowmem_reserve[j] = present_pages /
4814 sysctl_lowmem_reserve_ratio[idx];
4815 present_pages += lower_zone->present_pages;
4816 }
4817 }
4818 }
4819
4820 /* update totalreserve_pages */
4821 calculate_totalreserve_pages();
4822 }
4823
4824 /**
4825 * setup_per_zone_wmarks - called when min_free_kbytes changes
4826 * or when memory is hot-{added|removed}
4827 *
4828 * Ensures that the watermark[min,low,high] values for each zone are set
4829 * correctly with respect to min_free_kbytes.
4830 */
4831 void setup_per_zone_wmarks(void)
4832 {
4833 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4834 unsigned long lowmem_pages = 0;
4835 struct zone *zone;
4836 unsigned long flags;
4837
4838 /* Calculate total number of !ZONE_HIGHMEM pages */
4839 for_each_zone(zone) {
4840 if (!is_highmem(zone))
4841 lowmem_pages += zone->present_pages;
4842 }
4843
4844 for_each_zone(zone) {
4845 u64 tmp;
4846
4847 spin_lock_irqsave(&zone->lock, flags);
4848 tmp = (u64)pages_min * zone->present_pages;
4849 do_div(tmp, lowmem_pages);
4850 if (is_highmem(zone)) {
4851 /*
4852 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4853 * need highmem pages, so cap pages_min to a small
4854 * value here.
4855 *
4856 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4857 * deltas controls asynch page reclaim, and so should
4858 * not be capped for highmem.
4859 */
4860 int min_pages;
4861
4862 min_pages = zone->present_pages / 1024;
4863 if (min_pages < SWAP_CLUSTER_MAX)
4864 min_pages = SWAP_CLUSTER_MAX;
4865 if (min_pages > 128)
4866 min_pages = 128;
4867 zone->watermark[WMARK_MIN] = min_pages;
4868 } else {
4869 /*
4870 * If it's a lowmem zone, reserve a number of pages
4871 * proportionate to the zone's size.
4872 */
4873 zone->watermark[WMARK_MIN] = tmp;
4874 }
4875
4876 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4877 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4878 setup_zone_migrate_reserve(zone);
4879 spin_unlock_irqrestore(&zone->lock, flags);
4880 }
4881
4882 /* update totalreserve_pages */
4883 calculate_totalreserve_pages();
4884 }
4885
4886 /*
4887 * The inactive anon list should be small enough that the VM never has to
4888 * do too much work, but large enough that each inactive page has a chance
4889 * to be referenced again before it is swapped out.
4890 *
4891 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4892 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4893 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4894 * the anonymous pages are kept on the inactive list.
4895 *
4896 * total target max
4897 * memory ratio inactive anon
4898 * -------------------------------------
4899 * 10MB 1 5MB
4900 * 100MB 1 50MB
4901 * 1GB 3 250MB
4902 * 10GB 10 0.9GB
4903 * 100GB 31 3GB
4904 * 1TB 101 10GB
4905 * 10TB 320 32GB
4906 */
4907 void calculate_zone_inactive_ratio(struct zone *zone)
4908 {
4909 unsigned int gb, ratio;
4910
4911 /* Zone size in gigabytes */
4912 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4913 if (gb)
4914 ratio = int_sqrt(10 * gb);
4915 else
4916 ratio = 1;
4917
4918 zone->inactive_ratio = ratio;
4919 }
4920
4921 static void __init setup_per_zone_inactive_ratio(void)
4922 {
4923 struct zone *zone;
4924
4925 for_each_zone(zone)
4926 calculate_zone_inactive_ratio(zone);
4927 }
4928
4929 /*
4930 * Initialise min_free_kbytes.
4931 *
4932 * For small machines we want it small (128k min). For large machines
4933 * we want it large (64MB max). But it is not linear, because network
4934 * bandwidth does not increase linearly with machine size. We use
4935 *
4936 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4937 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4938 *
4939 * which yields
4940 *
4941 * 16MB: 512k
4942 * 32MB: 724k
4943 * 64MB: 1024k
4944 * 128MB: 1448k
4945 * 256MB: 2048k
4946 * 512MB: 2896k
4947 * 1024MB: 4096k
4948 * 2048MB: 5792k
4949 * 4096MB: 8192k
4950 * 8192MB: 11584k
4951 * 16384MB: 16384k
4952 */
4953 static int __init init_per_zone_wmark_min(void)
4954 {
4955 unsigned long lowmem_kbytes;
4956
4957 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4958
4959 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4960 if (min_free_kbytes < 128)
4961 min_free_kbytes = 128;
4962 if (min_free_kbytes > 65536)
4963 min_free_kbytes = 65536;
4964 setup_per_zone_wmarks();
4965 setup_per_zone_lowmem_reserve();
4966 setup_per_zone_inactive_ratio();
4967 return 0;
4968 }
4969 module_init(init_per_zone_wmark_min)
4970
4971 /*
4972 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4973 * that we can call two helper functions whenever min_free_kbytes
4974 * changes.
4975 */
4976 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4977 void __user *buffer, size_t *length, loff_t *ppos)
4978 {
4979 proc_dointvec(table, write, buffer, length, ppos);
4980 if (write)
4981 setup_per_zone_wmarks();
4982 return 0;
4983 }
4984
4985 #ifdef CONFIG_NUMA
4986 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4987 void __user *buffer, size_t *length, loff_t *ppos)
4988 {
4989 struct zone *zone;
4990 int rc;
4991
4992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4993 if (rc)
4994 return rc;
4995
4996 for_each_zone(zone)
4997 zone->min_unmapped_pages = (zone->present_pages *
4998 sysctl_min_unmapped_ratio) / 100;
4999 return 0;
5000 }
5001
5002 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5003 void __user *buffer, size_t *length, loff_t *ppos)
5004 {
5005 struct zone *zone;
5006 int rc;
5007
5008 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5009 if (rc)
5010 return rc;
5011
5012 for_each_zone(zone)
5013 zone->min_slab_pages = (zone->present_pages *
5014 sysctl_min_slab_ratio) / 100;
5015 return 0;
5016 }
5017 #endif
5018
5019 /*
5020 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5021 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5022 * whenever sysctl_lowmem_reserve_ratio changes.
5023 *
5024 * The reserve ratio obviously has absolutely no relation with the
5025 * minimum watermarks. The lowmem reserve ratio can only make sense
5026 * if in function of the boot time zone sizes.
5027 */
5028 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5029 void __user *buffer, size_t *length, loff_t *ppos)
5030 {
5031 proc_dointvec_minmax(table, write, buffer, length, ppos);
5032 setup_per_zone_lowmem_reserve();
5033 return 0;
5034 }
5035
5036 /*
5037 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5038 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5039 * can have before it gets flushed back to buddy allocator.
5040 */
5041
5042 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5043 void __user *buffer, size_t *length, loff_t *ppos)
5044 {
5045 struct zone *zone;
5046 unsigned int cpu;
5047 int ret;
5048
5049 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5050 if (!write || (ret == -EINVAL))
5051 return ret;
5052 for_each_populated_zone(zone) {
5053 for_each_possible_cpu(cpu) {
5054 unsigned long high;
5055 high = zone->present_pages / percpu_pagelist_fraction;
5056 setup_pagelist_highmark(
5057 per_cpu_ptr(zone->pageset, cpu), high);
5058 }
5059 }
5060 return 0;
5061 }
5062
5063 int hashdist = HASHDIST_DEFAULT;
5064
5065 #ifdef CONFIG_NUMA
5066 static int __init set_hashdist(char *str)
5067 {
5068 if (!str)
5069 return 0;
5070 hashdist = simple_strtoul(str, &str, 0);
5071 return 1;
5072 }
5073 __setup("hashdist=", set_hashdist);
5074 #endif
5075
5076 /*
5077 * allocate a large system hash table from bootmem
5078 * - it is assumed that the hash table must contain an exact power-of-2
5079 * quantity of entries
5080 * - limit is the number of hash buckets, not the total allocation size
5081 */
5082 void *__init alloc_large_system_hash(const char *tablename,
5083 unsigned long bucketsize,
5084 unsigned long numentries,
5085 int scale,
5086 int flags,
5087 unsigned int *_hash_shift,
5088 unsigned int *_hash_mask,
5089 unsigned long limit)
5090 {
5091 unsigned long long max = limit;
5092 unsigned long log2qty, size;
5093 void *table = NULL;
5094
5095 /* allow the kernel cmdline to have a say */
5096 if (!numentries) {
5097 /* round applicable memory size up to nearest megabyte */
5098 numentries = nr_kernel_pages;
5099 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5100 numentries >>= 20 - PAGE_SHIFT;
5101 numentries <<= 20 - PAGE_SHIFT;
5102
5103 /* limit to 1 bucket per 2^scale bytes of low memory */
5104 if (scale > PAGE_SHIFT)
5105 numentries >>= (scale - PAGE_SHIFT);
5106 else
5107 numentries <<= (PAGE_SHIFT - scale);
5108
5109 /* Make sure we've got at least a 0-order allocation.. */
5110 if (unlikely(flags & HASH_SMALL)) {
5111 /* Makes no sense without HASH_EARLY */
5112 WARN_ON(!(flags & HASH_EARLY));
5113 if (!(numentries >> *_hash_shift)) {
5114 numentries = 1UL << *_hash_shift;
5115 BUG_ON(!numentries);
5116 }
5117 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5118 numentries = PAGE_SIZE / bucketsize;
5119 }
5120 numentries = roundup_pow_of_two(numentries);
5121
5122 /* limit allocation size to 1/16 total memory by default */
5123 if (max == 0) {
5124 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5125 do_div(max, bucketsize);
5126 }
5127
5128 if (numentries > max)
5129 numentries = max;
5130
5131 log2qty = ilog2(numentries);
5132
5133 do {
5134 size = bucketsize << log2qty;
5135 if (flags & HASH_EARLY)
5136 table = alloc_bootmem_nopanic(size);
5137 else if (hashdist)
5138 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5139 else {
5140 /*
5141 * If bucketsize is not a power-of-two, we may free
5142 * some pages at the end of hash table which
5143 * alloc_pages_exact() automatically does
5144 */
5145 if (get_order(size) < MAX_ORDER) {
5146 table = alloc_pages_exact(size, GFP_ATOMIC);
5147 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5148 }
5149 }
5150 } while (!table && size > PAGE_SIZE && --log2qty);
5151
5152 if (!table)
5153 panic("Failed to allocate %s hash table\n", tablename);
5154
5155 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5156 tablename,
5157 (1U << log2qty),
5158 ilog2(size) - PAGE_SHIFT,
5159 size);
5160
5161 if (_hash_shift)
5162 *_hash_shift = log2qty;
5163 if (_hash_mask)
5164 *_hash_mask = (1 << log2qty) - 1;
5165
5166 return table;
5167 }
5168
5169 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5170 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5171 unsigned long pfn)
5172 {
5173 #ifdef CONFIG_SPARSEMEM
5174 return __pfn_to_section(pfn)->pageblock_flags;
5175 #else
5176 return zone->pageblock_flags;
5177 #endif /* CONFIG_SPARSEMEM */
5178 }
5179
5180 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5181 {
5182 #ifdef CONFIG_SPARSEMEM
5183 pfn &= (PAGES_PER_SECTION-1);
5184 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5185 #else
5186 pfn = pfn - zone->zone_start_pfn;
5187 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5188 #endif /* CONFIG_SPARSEMEM */
5189 }
5190
5191 /**
5192 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5193 * @page: The page within the block of interest
5194 * @start_bitidx: The first bit of interest to retrieve
5195 * @end_bitidx: The last bit of interest
5196 * returns pageblock_bits flags
5197 */
5198 unsigned long get_pageblock_flags_group(struct page *page,
5199 int start_bitidx, int end_bitidx)
5200 {
5201 struct zone *zone;
5202 unsigned long *bitmap;
5203 unsigned long pfn, bitidx;
5204 unsigned long flags = 0;
5205 unsigned long value = 1;
5206
5207 zone = page_zone(page);
5208 pfn = page_to_pfn(page);
5209 bitmap = get_pageblock_bitmap(zone, pfn);
5210 bitidx = pfn_to_bitidx(zone, pfn);
5211
5212 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5213 if (test_bit(bitidx + start_bitidx, bitmap))
5214 flags |= value;
5215
5216 return flags;
5217 }
5218
5219 /**
5220 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5221 * @page: The page within the block of interest
5222 * @start_bitidx: The first bit of interest
5223 * @end_bitidx: The last bit of interest
5224 * @flags: The flags to set
5225 */
5226 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5227 int start_bitidx, int end_bitidx)
5228 {
5229 struct zone *zone;
5230 unsigned long *bitmap;
5231 unsigned long pfn, bitidx;
5232 unsigned long value = 1;
5233
5234 zone = page_zone(page);
5235 pfn = page_to_pfn(page);
5236 bitmap = get_pageblock_bitmap(zone, pfn);
5237 bitidx = pfn_to_bitidx(zone, pfn);
5238 VM_BUG_ON(pfn < zone->zone_start_pfn);
5239 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5240
5241 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5242 if (flags & value)
5243 __set_bit(bitidx + start_bitidx, bitmap);
5244 else
5245 __clear_bit(bitidx + start_bitidx, bitmap);
5246 }
5247
5248 /*
5249 * This is designed as sub function...plz see page_isolation.c also.
5250 * set/clear page block's type to be ISOLATE.
5251 * page allocater never alloc memory from ISOLATE block.
5252 */
5253
5254 int set_migratetype_isolate(struct page *page)
5255 {
5256 struct zone *zone;
5257 struct page *curr_page;
5258 unsigned long flags, pfn, iter;
5259 unsigned long immobile = 0;
5260 struct memory_isolate_notify arg;
5261 int notifier_ret;
5262 int ret = -EBUSY;
5263 int zone_idx;
5264
5265 zone = page_zone(page);
5266 zone_idx = zone_idx(zone);
5267
5268 spin_lock_irqsave(&zone->lock, flags);
5269 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5270 zone_idx == ZONE_MOVABLE) {
5271 ret = 0;
5272 goto out;
5273 }
5274
5275 pfn = page_to_pfn(page);
5276 arg.start_pfn = pfn;
5277 arg.nr_pages = pageblock_nr_pages;
5278 arg.pages_found = 0;
5279
5280 /*
5281 * It may be possible to isolate a pageblock even if the
5282 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5283 * notifier chain is used by balloon drivers to return the
5284 * number of pages in a range that are held by the balloon
5285 * driver to shrink memory. If all the pages are accounted for
5286 * by balloons, are free, or on the LRU, isolation can continue.
5287 * Later, for example, when memory hotplug notifier runs, these
5288 * pages reported as "can be isolated" should be isolated(freed)
5289 * by the balloon driver through the memory notifier chain.
5290 */
5291 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5292 notifier_ret = notifier_to_errno(notifier_ret);
5293 if (notifier_ret || !arg.pages_found)
5294 goto out;
5295
5296 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5297 if (!pfn_valid_within(pfn))
5298 continue;
5299
5300 curr_page = pfn_to_page(iter);
5301 if (!page_count(curr_page) || PageLRU(curr_page))
5302 continue;
5303
5304 immobile++;
5305 }
5306
5307 if (arg.pages_found == immobile)
5308 ret = 0;
5309
5310 out:
5311 if (!ret) {
5312 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5313 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5314 }
5315
5316 spin_unlock_irqrestore(&zone->lock, flags);
5317 if (!ret)
5318 drain_all_pages();
5319 return ret;
5320 }
5321
5322 void unset_migratetype_isolate(struct page *page)
5323 {
5324 struct zone *zone;
5325 unsigned long flags;
5326 zone = page_zone(page);
5327 spin_lock_irqsave(&zone->lock, flags);
5328 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5329 goto out;
5330 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5331 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5332 out:
5333 spin_unlock_irqrestore(&zone->lock, flags);
5334 }
5335
5336 #ifdef CONFIG_MEMORY_HOTREMOVE
5337 /*
5338 * All pages in the range must be isolated before calling this.
5339 */
5340 void
5341 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5342 {
5343 struct page *page;
5344 struct zone *zone;
5345 int order, i;
5346 unsigned long pfn;
5347 unsigned long flags;
5348 /* find the first valid pfn */
5349 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5350 if (pfn_valid(pfn))
5351 break;
5352 if (pfn == end_pfn)
5353 return;
5354 zone = page_zone(pfn_to_page(pfn));
5355 spin_lock_irqsave(&zone->lock, flags);
5356 pfn = start_pfn;
5357 while (pfn < end_pfn) {
5358 if (!pfn_valid(pfn)) {
5359 pfn++;
5360 continue;
5361 }
5362 page = pfn_to_page(pfn);
5363 BUG_ON(page_count(page));
5364 BUG_ON(!PageBuddy(page));
5365 order = page_order(page);
5366 #ifdef CONFIG_DEBUG_VM
5367 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5368 pfn, 1 << order, end_pfn);
5369 #endif
5370 list_del(&page->lru);
5371 rmv_page_order(page);
5372 zone->free_area[order].nr_free--;
5373 __mod_zone_page_state(zone, NR_FREE_PAGES,
5374 - (1UL << order));
5375 for (i = 0; i < (1 << order); i++)
5376 SetPageReserved((page+i));
5377 pfn += (1 << order);
5378 }
5379 spin_unlock_irqrestore(&zone->lock, flags);
5380 }
5381 #endif
5382
5383 #ifdef CONFIG_MEMORY_FAILURE
5384 bool is_free_buddy_page(struct page *page)
5385 {
5386 struct zone *zone = page_zone(page);
5387 unsigned long pfn = page_to_pfn(page);
5388 unsigned long flags;
5389 int order;
5390
5391 spin_lock_irqsave(&zone->lock, flags);
5392 for (order = 0; order < MAX_ORDER; order++) {
5393 struct page *page_head = page - (pfn & ((1 << order) - 1));
5394
5395 if (PageBuddy(page_head) && page_order(page_head) >= order)
5396 break;
5397 }
5398 spin_unlock_irqrestore(&zone->lock, flags);
5399
5400 return order < MAX_ORDER;
5401 }
5402 #endif
5403
5404 static struct trace_print_flags pageflag_names[] = {
5405 {1UL << PG_locked, "locked" },
5406 {1UL << PG_error, "error" },
5407 {1UL << PG_referenced, "referenced" },
5408 {1UL << PG_uptodate, "uptodate" },
5409 {1UL << PG_dirty, "dirty" },
5410 {1UL << PG_lru, "lru" },
5411 {1UL << PG_active, "active" },
5412 {1UL << PG_slab, "slab" },
5413 {1UL << PG_owner_priv_1, "owner_priv_1" },
5414 {1UL << PG_arch_1, "arch_1" },
5415 {1UL << PG_reserved, "reserved" },
5416 {1UL << PG_private, "private" },
5417 {1UL << PG_private_2, "private_2" },
5418 {1UL << PG_writeback, "writeback" },
5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5420 {1UL << PG_head, "head" },
5421 {1UL << PG_tail, "tail" },
5422 #else
5423 {1UL << PG_compound, "compound" },
5424 #endif
5425 {1UL << PG_swapcache, "swapcache" },
5426 {1UL << PG_mappedtodisk, "mappedtodisk" },
5427 {1UL << PG_reclaim, "reclaim" },
5428 {1UL << PG_buddy, "buddy" },
5429 {1UL << PG_swapbacked, "swapbacked" },
5430 {1UL << PG_unevictable, "unevictable" },
5431 #ifdef CONFIG_MMU
5432 {1UL << PG_mlocked, "mlocked" },
5433 #endif
5434 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5435 {1UL << PG_uncached, "uncached" },
5436 #endif
5437 #ifdef CONFIG_MEMORY_FAILURE
5438 {1UL << PG_hwpoison, "hwpoison" },
5439 #endif
5440 {-1UL, NULL },
5441 };
5442
5443 static void dump_page_flags(unsigned long flags)
5444 {
5445 const char *delim = "";
5446 unsigned long mask;
5447 int i;
5448
5449 printk(KERN_ALERT "page flags: %#lx(", flags);
5450
5451 /* remove zone id */
5452 flags &= (1UL << NR_PAGEFLAGS) - 1;
5453
5454 for (i = 0; pageflag_names[i].name && flags; i++) {
5455
5456 mask = pageflag_names[i].mask;
5457 if ((flags & mask) != mask)
5458 continue;
5459
5460 flags &= ~mask;
5461 printk("%s%s", delim, pageflag_names[i].name);
5462 delim = "|";
5463 }
5464
5465 /* check for left over flags */
5466 if (flags)
5467 printk("%s%#lx", delim, flags);
5468
5469 printk(")\n");
5470 }
5471
5472 void dump_page(struct page *page)
5473 {
5474 printk(KERN_ALERT
5475 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5476 page, page_count(page), page_mapcount(page),
5477 page->mapping, page->index);
5478 dump_page_flags(page->flags);
5479 }