locking: Remove atomicy checks from {READ,WRITE}_ONCE
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node);
70 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #endif
72
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 /*
75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78 * defined in <linux/topology.h>.
79 */
80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
82 #endif
83
84 /*
85 * Array of node states.
86 */
87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
88 [N_POSSIBLE] = NODE_MASK_ALL,
89 [N_ONLINE] = { { [0] = 1UL } },
90 #ifndef CONFIG_NUMA
91 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
92 #ifdef CONFIG_HIGHMEM
93 [N_HIGH_MEMORY] = { { [0] = 1UL } },
94 #endif
95 #ifdef CONFIG_MOVABLE_NODE
96 [N_MEMORY] = { { [0] = 1UL } },
97 #endif
98 [N_CPU] = { { [0] = 1UL } },
99 #endif /* NUMA */
100 };
101 EXPORT_SYMBOL(node_states);
102
103 unsigned long totalram_pages __read_mostly;
104 unsigned long totalreserve_pages __read_mostly;
105 /*
106 * When calculating the number of globally allowed dirty pages, there
107 * is a certain number of per-zone reserves that should not be
108 * considered dirtyable memory. This is the sum of those reserves
109 * over all existing zones that contribute dirtyable memory.
110 */
111 unsigned long dirty_balance_reserve __read_mostly;
112
113 static unsigned int boot_mode = 0;
114 static int __init setup_bootmode(char *str)
115 {
116 printk("%s: boot_mode is %u\n", __func__, boot_mode);
117 if (get_option(&str, &boot_mode)) {
118 printk("%s: boot_mode is %u\n", __func__, boot_mode);
119 return 0;
120 }
121
122 return -EINVAL;
123 }
124 early_param("bootmode", setup_bootmode);
125
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129 #ifdef CONFIG_PM_SLEEP
130 /*
131 * The following functions are used by the suspend/hibernate code to temporarily
132 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133 * while devices are suspended. To avoid races with the suspend/hibernate code,
134 * they should always be called with pm_mutex held (gfp_allowed_mask also should
135 * only be modified with pm_mutex held, unless the suspend/hibernate code is
136 * guaranteed not to run in parallel with that modification).
137 */
138
139 static gfp_t saved_gfp_mask;
140
141 void pm_restore_gfp_mask(void)
142 {
143 WARN_ON(!mutex_is_locked(&pm_mutex));
144 if (saved_gfp_mask) {
145 gfp_allowed_mask = saved_gfp_mask;
146 saved_gfp_mask = 0;
147 }
148 }
149
150 void pm_restrict_gfp_mask(void)
151 {
152 WARN_ON(!mutex_is_locked(&pm_mutex));
153 WARN_ON(saved_gfp_mask);
154 saved_gfp_mask = gfp_allowed_mask;
155 gfp_allowed_mask &= ~GFP_IOFS;
156 }
157
158 bool pm_suspended_storage(void)
159 {
160 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
161 return false;
162 return true;
163 }
164 #endif /* CONFIG_PM_SLEEP */
165
166 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167 int pageblock_order __read_mostly;
168 #endif
169
170 static void __free_pages_ok(struct page *page, unsigned int order);
171
172 /*
173 * results with 256, 32 in the lowmem_reserve sysctl:
174 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175 * 1G machine -> (16M dma, 784M normal, 224M high)
176 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
179 *
180 * TBD: should special case ZONE_DMA32 machines here - in those we normally
181 * don't need any ZONE_NORMAL reservation
182 */
183 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
184 #ifdef CONFIG_ZONE_DMA
185 256,
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 256,
189 #endif
190 #ifdef CONFIG_HIGHMEM
191 32,
192 #endif
193 32,
194 };
195
196 EXPORT_SYMBOL(totalram_pages);
197
198 static char * const zone_names[MAX_NR_ZONES] = {
199 #ifdef CONFIG_ZONE_DMA
200 "DMA",
201 #endif
202 #ifdef CONFIG_ZONE_DMA32
203 "DMA32",
204 #endif
205 "Normal",
206 #ifdef CONFIG_HIGHMEM
207 "HighMem",
208 #endif
209 "Movable",
210 };
211
212 /*
213 * Try to keep at least this much lowmem free. Do not allow normal
214 * allocations below this point, only high priority ones. Automatically
215 * tuned according to the amount of memory in the system.
216 */
217 int min_free_kbytes = 1024;
218 int min_free_order_shift = 1;
219
220 /*
221 * Extra memory for the system to try freeing. Used to temporarily
222 * free memory, to make space for new workloads. Anyone can allocate
223 * down to the min watermarks controlled by min_free_kbytes above.
224 */
225 int extra_free_kbytes = 0;
226
227 static unsigned long __meminitdata nr_kernel_pages;
228 static unsigned long __meminitdata nr_all_pages;
229 static unsigned long __meminitdata dma_reserve;
230
231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
232 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
233 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
234 static unsigned long __initdata required_kernelcore;
235 static unsigned long __initdata required_movablecore;
236 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
237
238 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
239 int movable_zone;
240 EXPORT_SYMBOL(movable_zone);
241 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
242
243 #if MAX_NUMNODES > 1
244 int nr_node_ids __read_mostly = MAX_NUMNODES;
245 int nr_online_nodes __read_mostly = 1;
246 EXPORT_SYMBOL(nr_node_ids);
247 EXPORT_SYMBOL(nr_online_nodes);
248 #endif
249
250 int page_group_by_mobility_disabled __read_mostly;
251
252 void set_pageblock_migratetype(struct page *page, int migratetype)
253 {
254
255 if (unlikely(page_group_by_mobility_disabled))
256 migratetype = MIGRATE_UNMOVABLE;
257
258 set_pageblock_flags_group(page, (unsigned long)migratetype,
259 PB_migrate, PB_migrate_end);
260 }
261
262 bool oom_killer_disabled __read_mostly;
263
264 #ifdef CONFIG_DEBUG_VM
265 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
266 {
267 int ret = 0;
268 unsigned seq;
269 unsigned long pfn = page_to_pfn(page);
270 unsigned long sp, start_pfn;
271
272 do {
273 seq = zone_span_seqbegin(zone);
274 start_pfn = zone->zone_start_pfn;
275 sp = zone->spanned_pages;
276 if (!zone_spans_pfn(zone, pfn))
277 ret = 1;
278 } while (zone_span_seqretry(zone, seq));
279
280 if (ret)
281 pr_err("page %lu outside zone [ %lu - %lu ]\n",
282 pfn, start_pfn, start_pfn + sp);
283
284 return ret;
285 }
286
287 static int page_is_consistent(struct zone *zone, struct page *page)
288 {
289 if (!pfn_valid_within(page_to_pfn(page)))
290 return 0;
291 if (zone != page_zone(page))
292 return 0;
293
294 return 1;
295 }
296 /*
297 * Temporary debugging check for pages not lying within a given zone.
298 */
299 static int bad_range(struct zone *zone, struct page *page)
300 {
301 if (page_outside_zone_boundaries(zone, page))
302 return 1;
303 if (!page_is_consistent(zone, page))
304 return 1;
305
306 return 0;
307 }
308 #else
309 static inline int bad_range(struct zone *zone, struct page *page)
310 {
311 return 0;
312 }
313 #endif
314
315 static void bad_page(struct page *page)
316 {
317 static unsigned long resume;
318 static unsigned long nr_shown;
319 static unsigned long nr_unshown;
320
321 /* Don't complain about poisoned pages */
322 if (PageHWPoison(page)) {
323 page_mapcount_reset(page); /* remove PageBuddy */
324 return;
325 }
326
327 /*
328 * Allow a burst of 60 reports, then keep quiet for that minute;
329 * or allow a steady drip of one report per second.
330 */
331 if (nr_shown == 60) {
332 if (time_before(jiffies, resume)) {
333 nr_unshown++;
334 goto out;
335 }
336 if (nr_unshown) {
337 printk(KERN_ALERT
338 "BUG: Bad page state: %lu messages suppressed\n",
339 nr_unshown);
340 nr_unshown = 0;
341 }
342 nr_shown = 0;
343 }
344 if (nr_shown++ == 0)
345 resume = jiffies + 60 * HZ;
346
347 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
348 current->comm, page_to_pfn(page));
349 dump_page(page);
350
351 print_modules();
352 dump_stack();
353 out:
354 /* Leave bad fields for debug, except PageBuddy could make trouble */
355 page_mapcount_reset(page); /* remove PageBuddy */
356 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
357 }
358
359 /*
360 * Higher-order pages are called "compound pages". They are structured thusly:
361 *
362 * The first PAGE_SIZE page is called the "head page".
363 *
364 * The remaining PAGE_SIZE pages are called "tail pages".
365 *
366 * All pages have PG_compound set. All tail pages have their ->first_page
367 * pointing at the head page.
368 *
369 * The first tail page's ->lru.next holds the address of the compound page's
370 * put_page() function. Its ->lru.prev holds the order of allocation.
371 * This usage means that zero-order pages may not be compound.
372 */
373
374 static void free_compound_page(struct page *page)
375 {
376 __free_pages_ok(page, compound_order(page));
377 }
378
379 void prep_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383
384 set_compound_page_dtor(page, free_compound_page);
385 set_compound_order(page, order);
386 __SetPageHead(page);
387 for (i = 1; i < nr_pages; i++) {
388 struct page *p = page + i;
389 set_page_count(p, 0);
390 p->first_page = page;
391 /* Make sure p->first_page is always valid for PageTail() */
392 smp_wmb();
393 __SetPageTail(p);
394 }
395 }
396
397 /* update __split_huge_page_refcount if you change this function */
398 static int destroy_compound_page(struct page *page, unsigned long order)
399 {
400 int i;
401 int nr_pages = 1 << order;
402 int bad = 0;
403
404 if (unlikely(compound_order(page) != order)) {
405 bad_page(page);
406 bad++;
407 }
408
409 __ClearPageHead(page);
410
411 for (i = 1; i < nr_pages; i++) {
412 struct page *p = page + i;
413
414 if (unlikely(!PageTail(p) || (p->first_page != page))) {
415 bad_page(page);
416 bad++;
417 }
418 __ClearPageTail(p);
419 }
420
421 return bad;
422 }
423
424 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
425 {
426 int i;
427
428 /*
429 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
430 * and __GFP_HIGHMEM from hard or soft interrupt context.
431 */
432 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
433 for (i = 0; i < (1 << order); i++)
434 clear_highpage(page + i);
435 }
436
437 #ifdef CONFIG_DEBUG_PAGEALLOC
438 unsigned int _debug_guardpage_minorder;
439
440 static int __init debug_guardpage_minorder_setup(char *buf)
441 {
442 unsigned long res;
443
444 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
445 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
446 return 0;
447 }
448 _debug_guardpage_minorder = res;
449 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
450 return 0;
451 }
452 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
453
454 static inline void set_page_guard_flag(struct page *page)
455 {
456 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
457 }
458
459 static inline void clear_page_guard_flag(struct page *page)
460 {
461 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
462 }
463 #else
464 static inline void set_page_guard_flag(struct page *page) { }
465 static inline void clear_page_guard_flag(struct page *page) { }
466 #endif
467
468 static inline void set_page_order(struct page *page, int order)
469 {
470 set_page_private(page, order);
471 __SetPageBuddy(page);
472 }
473
474 static inline void rmv_page_order(struct page *page)
475 {
476 __ClearPageBuddy(page);
477 set_page_private(page, 0);
478 }
479
480 /*
481 * Locate the struct page for both the matching buddy in our
482 * pair (buddy1) and the combined O(n+1) page they form (page).
483 *
484 * 1) Any buddy B1 will have an order O twin B2 which satisfies
485 * the following equation:
486 * B2 = B1 ^ (1 << O)
487 * For example, if the starting buddy (buddy2) is #8 its order
488 * 1 buddy is #10:
489 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
490 *
491 * 2) Any buddy B will have an order O+1 parent P which
492 * satisfies the following equation:
493 * P = B & ~(1 << O)
494 *
495 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
496 */
497 static inline unsigned long
498 __find_buddy_index(unsigned long page_idx, unsigned int order)
499 {
500 return page_idx ^ (1 << order);
501 }
502
503 /*
504 * This function checks whether a page is free && is the buddy
505 * we can do coalesce a page and its buddy if
506 * (a) the buddy is not in a hole &&
507 * (b) the buddy is in the buddy system &&
508 * (c) a page and its buddy have the same order &&
509 * (d) a page and its buddy are in the same zone.
510 *
511 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
512 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
513 *
514 * For recording page's order, we use page_private(page).
515 */
516 static inline int page_is_buddy(struct page *page, struct page *buddy,
517 int order)
518 {
519 if (!pfn_valid_within(page_to_pfn(buddy)))
520 return 0;
521
522 if (page_zone_id(page) != page_zone_id(buddy))
523 return 0;
524
525 if (page_is_guard(buddy) && page_order(buddy) == order) {
526 VM_BUG_ON(page_count(buddy) != 0);
527 return 1;
528 }
529
530 if (PageBuddy(buddy) && page_order(buddy) == order) {
531 VM_BUG_ON(page_count(buddy) != 0);
532 return 1;
533 }
534 return 0;
535 }
536
537 /*
538 * Freeing function for a buddy system allocator.
539 *
540 * The concept of a buddy system is to maintain direct-mapped table
541 * (containing bit values) for memory blocks of various "orders".
542 * The bottom level table contains the map for the smallest allocatable
543 * units of memory (here, pages), and each level above it describes
544 * pairs of units from the levels below, hence, "buddies".
545 * At a high level, all that happens here is marking the table entry
546 * at the bottom level available, and propagating the changes upward
547 * as necessary, plus some accounting needed to play nicely with other
548 * parts of the VM system.
549 * At each level, we keep a list of pages, which are heads of continuous
550 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
551 * order is recorded in page_private(page) field.
552 * So when we are allocating or freeing one, we can derive the state of the
553 * other. That is, if we allocate a small block, and both were
554 * free, the remainder of the region must be split into blocks.
555 * If a block is freed, and its buddy is also free, then this
556 * triggers coalescing into a block of larger size.
557 *
558 * -- nyc
559 */
560
561 static inline void __free_one_page(struct page *page,
562 struct zone *zone, unsigned int order,
563 int migratetype)
564 {
565 unsigned long page_idx;
566 unsigned long combined_idx;
567 unsigned long uninitialized_var(buddy_idx);
568 struct page *buddy;
569
570 VM_BUG_ON(!zone_is_initialized(zone));
571
572 if (unlikely(PageCompound(page)))
573 if (unlikely(destroy_compound_page(page, order)))
574 return;
575
576 VM_BUG_ON(migratetype == -1);
577
578 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
579
580 VM_BUG_ON(page_idx & ((1 << order) - 1));
581 VM_BUG_ON(bad_range(zone, page));
582
583 while (order < MAX_ORDER-1) {
584 buddy_idx = __find_buddy_index(page_idx, order);
585 buddy = page + (buddy_idx - page_idx);
586 if (!page_is_buddy(page, buddy, order))
587 break;
588 /*
589 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
590 * merge with it and move up one order.
591 */
592 if (page_is_guard(buddy)) {
593 clear_page_guard_flag(buddy);
594 set_page_private(page, 0);
595 __mod_zone_freepage_state(zone, 1 << order,
596 migratetype);
597 } else {
598 list_del(&buddy->lru);
599 zone->free_area[order].nr_free--;
600 rmv_page_order(buddy);
601 }
602 combined_idx = buddy_idx & page_idx;
603 page = page + (combined_idx - page_idx);
604 page_idx = combined_idx;
605 order++;
606 }
607 set_page_order(page, order);
608
609 /*
610 * If this is not the largest possible page, check if the buddy
611 * of the next-highest order is free. If it is, it's possible
612 * that pages are being freed that will coalesce soon. In case,
613 * that is happening, add the free page to the tail of the list
614 * so it's less likely to be used soon and more likely to be merged
615 * as a higher order page
616 */
617 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
618 struct page *higher_page, *higher_buddy;
619 combined_idx = buddy_idx & page_idx;
620 higher_page = page + (combined_idx - page_idx);
621 buddy_idx = __find_buddy_index(combined_idx, order + 1);
622 higher_buddy = higher_page + (buddy_idx - combined_idx);
623 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
624 list_add_tail(&page->lru,
625 &zone->free_area[order].free_list[migratetype]);
626 goto out;
627 }
628 }
629
630 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
631 out:
632 zone->free_area[order].nr_free++;
633 }
634
635 static inline int free_pages_check(struct page *page)
636 {
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (atomic_read(&page->_count) != 0) |
640 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
641 (mem_cgroup_bad_page_check(page)))) {
642 bad_page(page);
643 return 1;
644 }
645 page_nid_reset_last(page);
646 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
647 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
648 return 0;
649 }
650
651 /*
652 * Frees a number of pages from the PCP lists
653 * Assumes all pages on list are in same zone, and of same order.
654 * count is the number of pages to free.
655 *
656 * If the zone was previously in an "all pages pinned" state then look to
657 * see if this freeing clears that state.
658 *
659 * And clear the zone's pages_scanned counter, to hold off the "all pages are
660 * pinned" detection logic.
661 */
662 static void free_pcppages_bulk(struct zone *zone, int count,
663 struct per_cpu_pages *pcp)
664 {
665 int migratetype = 0;
666 int batch_free = 0;
667 int to_free = count;
668
669 spin_lock(&zone->lock);
670 zone->all_unreclaimable = 0;
671 zone->pages_scanned = 0;
672
673 while (to_free) {
674 struct page *page;
675 struct list_head *list;
676
677 /*
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
682 * lists
683 */
684 do {
685 batch_free++;
686 if (++migratetype == MIGRATE_PCPTYPES)
687 migratetype = 0;
688 list = &pcp->lists[migratetype];
689 } while (list_empty(list));
690
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free == MIGRATE_PCPTYPES)
693 batch_free = to_free;
694
695 do {
696 int mt; /* migratetype of the to-be-freed page */
697
698 page = list_entry(list->prev, struct page, lru);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page->lru);
701 mt = get_freepage_migratetype(page);
702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
703 __free_one_page(page, zone, 0, mt);
704 trace_mm_page_pcpu_drain(page, 0, mt);
705 if (likely(!is_migrate_isolate_page(page))) {
706 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 if (is_migrate_cma(mt))
708 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 }
710 } while (--to_free && --batch_free && !list_empty(list));
711 }
712 spin_unlock(&zone->lock);
713 }
714
715 static void free_one_page(struct zone *zone, struct page *page, int order,
716 int migratetype)
717 {
718 spin_lock(&zone->lock);
719 zone->all_unreclaimable = 0;
720 zone->pages_scanned = 0;
721
722 __free_one_page(page, zone, order, migratetype);
723 if (unlikely(!is_migrate_isolate(migratetype)))
724 __mod_zone_freepage_state(zone, 1 << order, migratetype);
725 spin_unlock(&zone->lock);
726 }
727
728 static bool free_pages_prepare(struct page *page, unsigned int order)
729 {
730 int i;
731 int bad = 0;
732
733 trace_mm_page_free(page, order);
734 kmemcheck_free_shadow(page, order);
735
736 if (PageAnon(page))
737 page->mapping = NULL;
738 for (i = 0; i < (1 << order); i++)
739 bad += free_pages_check(page + i);
740 if (bad)
741 return false;
742
743 if (!PageHighMem(page)) {
744 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
745 debug_check_no_obj_freed(page_address(page),
746 PAGE_SIZE << order);
747 }
748 arch_free_page(page, order);
749 kernel_map_pages(page, 1 << order, 0);
750
751 return true;
752 }
753
754 static void __free_pages_ok(struct page *page, unsigned int order)
755 {
756 unsigned long flags;
757 int migratetype;
758
759 if (!free_pages_prepare(page, order))
760 return;
761
762 local_irq_save(flags);
763 __count_vm_events(PGFREE, 1 << order);
764 migratetype = get_pageblock_migratetype(page);
765 set_freepage_migratetype(page, migratetype);
766 free_one_page(page_zone(page), page, order, migratetype);
767 local_irq_restore(flags);
768 }
769
770 /*
771 * Read access to zone->managed_pages is safe because it's unsigned long,
772 * but we still need to serialize writers. Currently all callers of
773 * __free_pages_bootmem() except put_page_bootmem() should only be used
774 * at boot time. So for shorter boot time, we shift the burden to
775 * put_page_bootmem() to serialize writers.
776 */
777 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
778 {
779 unsigned int nr_pages = 1 << order;
780 unsigned int loop;
781
782 prefetchw(page);
783 for (loop = 0; loop < nr_pages; loop++) {
784 struct page *p = &page[loop];
785
786 if (loop + 1 < nr_pages)
787 prefetchw(p + 1);
788 __ClearPageReserved(p);
789 set_page_count(p, 0);
790 }
791
792 page_zone(page)->managed_pages += 1 << order;
793 set_page_refcounted(page);
794 __free_pages(page, order);
795 }
796
797 #ifdef CONFIG_CMA
798 bool is_cma_pageblock(struct page *page)
799 {
800 return get_pageblock_migratetype(page) == MIGRATE_CMA;
801 }
802
803 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
804 void __init init_cma_reserved_pageblock(struct page *page)
805 {
806 unsigned i = pageblock_nr_pages;
807 struct page *p = page;
808
809 do {
810 __ClearPageReserved(p);
811 set_page_count(p, 0);
812 } while (++p, --i);
813
814 set_page_refcounted(page);
815 set_pageblock_migratetype(page, MIGRATE_CMA);
816 __free_pages(page, pageblock_order);
817 totalram_pages += pageblock_nr_pages;
818 #ifdef CONFIG_HIGHMEM
819 if (PageHighMem(page))
820 totalhigh_pages += pageblock_nr_pages;
821 #endif
822 }
823 #endif
824
825 /*
826 * The order of subdivision here is critical for the IO subsystem.
827 * Please do not alter this order without good reasons and regression
828 * testing. Specifically, as large blocks of memory are subdivided,
829 * the order in which smaller blocks are delivered depends on the order
830 * they're subdivided in this function. This is the primary factor
831 * influencing the order in which pages are delivered to the IO
832 * subsystem according to empirical testing, and this is also justified
833 * by considering the behavior of a buddy system containing a single
834 * large block of memory acted on by a series of small allocations.
835 * This behavior is a critical factor in sglist merging's success.
836 *
837 * -- nyc
838 */
839 static inline void expand(struct zone *zone, struct page *page,
840 int low, int high, struct free_area *area,
841 int migratetype)
842 {
843 unsigned long size = 1 << high;
844
845 while (high > low) {
846 area--;
847 high--;
848 size >>= 1;
849 VM_BUG_ON(bad_range(zone, &page[size]));
850
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 if (high < debug_guardpage_minorder()) {
853 /*
854 * Mark as guard pages (or page), that will allow to
855 * merge back to allocator when buddy will be freed.
856 * Corresponding page table entries will not be touched,
857 * pages will stay not present in virtual address space
858 */
859 INIT_LIST_HEAD(&page[size].lru);
860 set_page_guard_flag(&page[size]);
861 set_page_private(&page[size], high);
862 /* Guard pages are not available for any usage */
863 __mod_zone_freepage_state(zone, -(1 << high),
864 migratetype);
865 continue;
866 }
867 #endif
868 list_add(&page[size].lru, &area->free_list[migratetype]);
869 area->nr_free++;
870 set_page_order(&page[size], high);
871 }
872 }
873
874 /*
875 * This page is about to be returned from the page allocator
876 */
877 static inline int check_new_page(struct page *page)
878 {
879 if (unlikely(page_mapcount(page) |
880 (page->mapping != NULL) |
881 (atomic_read(&page->_count) != 0) |
882 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
883 (mem_cgroup_bad_page_check(page)))) {
884 bad_page(page);
885 return 1;
886 }
887 return 0;
888 }
889
890 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
891 {
892 int i;
893
894 for (i = 0; i < (1 << order); i++) {
895 struct page *p = page + i;
896 if (unlikely(check_new_page(p)))
897 return 1;
898 }
899
900 set_page_private(page, 0);
901 set_page_refcounted(page);
902
903 arch_alloc_page(page, order);
904 kernel_map_pages(page, 1 << order, 1);
905
906 if (gfp_flags & __GFP_ZERO)
907 prep_zero_page(page, order, gfp_flags);
908
909 if (order && (gfp_flags & __GFP_COMP))
910 prep_compound_page(page, order);
911
912 return 0;
913 }
914
915 /*
916 * Go through the free lists for the given migratetype and remove
917 * the smallest available page from the freelists
918 */
919 static inline
920 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
921 int migratetype)
922 {
923 unsigned int current_order;
924 struct free_area * area;
925 struct page *page;
926
927 /* Find a page of the appropriate size in the preferred list */
928 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
929 area = &(zone->free_area[current_order]);
930 if (list_empty(&area->free_list[migratetype]))
931 continue;
932
933 page = list_entry(area->free_list[migratetype].next,
934 struct page, lru);
935 list_del(&page->lru);
936 rmv_page_order(page);
937 area->nr_free--;
938 expand(zone, page, order, current_order, area, migratetype);
939 return page;
940 }
941
942 return NULL;
943 }
944
945
946 /*
947 * This array describes the order lists are fallen back to when
948 * the free lists for the desirable migrate type are depleted
949 */
950 static int fallbacks[MIGRATE_TYPES][4] = {
951 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
952 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
953 #ifdef CONFIG_CMA
954 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
955 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
956 #else
957 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
958 #endif
959 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
960 #ifdef CONFIG_MEMORY_ISOLATION
961 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
962 #endif
963 };
964
965 int *get_migratetype_fallbacks(int mtype)
966 {
967 return fallbacks[mtype];
968 }
969
970 /*
971 * Move the free pages in a range to the free lists of the requested type.
972 * Note that start_page and end_pages are not aligned on a pageblock
973 * boundary. If alignment is required, use move_freepages_block()
974 */
975 int move_freepages(struct zone *zone,
976 struct page *start_page, struct page *end_page,
977 int migratetype)
978 {
979 struct page *page;
980 unsigned long order;
981 int pages_moved = 0;
982
983 #ifndef CONFIG_HOLES_IN_ZONE
984 /*
985 * page_zone is not safe to call in this context when
986 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
987 * anyway as we check zone boundaries in move_freepages_block().
988 * Remove at a later date when no bug reports exist related to
989 * grouping pages by mobility
990 */
991 BUG_ON(page_zone(start_page) != page_zone(end_page));
992 #endif
993
994 for (page = start_page; page <= end_page;) {
995 /* Make sure we are not inadvertently changing nodes */
996 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
997
998 if (!pfn_valid_within(page_to_pfn(page))) {
999 page++;
1000 continue;
1001 }
1002
1003 if (!PageBuddy(page)) {
1004 page++;
1005 continue;
1006 }
1007
1008 order = page_order(page);
1009 list_move(&page->lru,
1010 &zone->free_area[order].free_list[migratetype]);
1011 set_freepage_migratetype(page, migratetype);
1012 page += 1 << order;
1013 pages_moved += 1 << order;
1014 }
1015
1016 return pages_moved;
1017 }
1018
1019 int move_freepages_block(struct zone *zone, struct page *page,
1020 int migratetype)
1021 {
1022 unsigned long start_pfn, end_pfn;
1023 struct page *start_page, *end_page;
1024
1025 start_pfn = page_to_pfn(page);
1026 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1027 start_page = pfn_to_page(start_pfn);
1028 end_page = start_page + pageblock_nr_pages - 1;
1029 end_pfn = start_pfn + pageblock_nr_pages - 1;
1030
1031 /* Do not cross zone boundaries */
1032 if (!zone_spans_pfn(zone, start_pfn))
1033 start_page = page;
1034 if (!zone_spans_pfn(zone, end_pfn))
1035 return 0;
1036
1037 return move_freepages(zone, start_page, end_page, migratetype);
1038 }
1039
1040 static void change_pageblock_range(struct page *pageblock_page,
1041 int start_order, int migratetype)
1042 {
1043 int nr_pageblocks = 1 << (start_order - pageblock_order);
1044
1045 while (nr_pageblocks--) {
1046 set_pageblock_migratetype(pageblock_page, migratetype);
1047 pageblock_page += pageblock_nr_pages;
1048 }
1049 }
1050
1051 /* Remove an element from the buddy allocator from the fallback list */
1052 static inline struct page *
1053 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1054 {
1055 struct free_area * area;
1056 int current_order;
1057 struct page *page;
1058 int migratetype, i;
1059
1060 /* Find the largest possible block of pages in the other list */
1061 for (current_order = MAX_ORDER-1; current_order >= order;
1062 --current_order) {
1063 for (i = 0;; i++) {
1064 migratetype = fallbacks[start_migratetype][i];
1065
1066 /* MIGRATE_RESERVE handled later if necessary */
1067 if (migratetype == MIGRATE_RESERVE)
1068 break;
1069
1070 area = &(zone->free_area[current_order]);
1071 if (list_empty(&area->free_list[migratetype]))
1072 continue;
1073
1074 page = list_entry(area->free_list[migratetype].next,
1075 struct page, lru);
1076 area->nr_free--;
1077
1078 /*
1079 * If breaking a large block of pages, move all free
1080 * pages to the preferred allocation list. If falling
1081 * back for a reclaimable kernel allocation, be more
1082 * aggressive about taking ownership of free pages
1083 *
1084 * On the other hand, never change migration
1085 * type of MIGRATE_CMA pageblocks nor move CMA
1086 * pages on different free lists. We don't
1087 * want unmovable pages to be allocated from
1088 * MIGRATE_CMA areas.
1089 */
1090 if (!is_migrate_cma(migratetype) &&
1091 (unlikely(current_order >= pageblock_order / 2) ||
1092 start_migratetype == MIGRATE_RECLAIMABLE ||
1093 start_migratetype == MIGRATE_UNMOVABLE ||
1094 start_migratetype == MIGRATE_MOVABLE ||
1095 page_group_by_mobility_disabled)) {
1096 int pages;
1097 pages = move_freepages_block(zone, page,
1098 start_migratetype);
1099
1100 /* Claim the whole block if over half of it is free */
1101 if (pages >= (1 << (pageblock_order-1)) ||
1102 start_migratetype == MIGRATE_MOVABLE ||
1103 page_group_by_mobility_disabled)
1104 set_pageblock_migratetype(page,
1105 start_migratetype);
1106
1107 migratetype = start_migratetype;
1108 }
1109
1110 /* Remove the page from the freelists */
1111 list_del(&page->lru);
1112 rmv_page_order(page);
1113
1114 /* Take ownership for orders >= pageblock_order */
1115 if (current_order >= pageblock_order &&
1116 !is_migrate_cma(migratetype))
1117 change_pageblock_range(page, current_order,
1118 start_migratetype);
1119
1120 expand(zone, page, order, current_order, area,
1121 is_migrate_cma(migratetype)
1122 ? migratetype : start_migratetype);
1123
1124 trace_mm_page_alloc_extfrag(page, order, current_order,
1125 start_migratetype, migratetype);
1126
1127 return page;
1128 }
1129 }
1130
1131 return NULL;
1132 }
1133
1134 /*
1135 * Do the hard work of removing an element from the buddy allocator.
1136 * Call me with the zone->lock already held.
1137 */
1138 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1139 int migratetype)
1140 {
1141 struct page *page;
1142
1143 retry_reserve:
1144 page = __rmqueue_smallest(zone, order, migratetype);
1145
1146 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1147 page = __rmqueue_fallback(zone, order, migratetype);
1148
1149 /*
1150 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1151 * is used because __rmqueue_smallest is an inline function
1152 * and we want just one call site
1153 */
1154 if (!page) {
1155 migratetype = MIGRATE_RESERVE;
1156 goto retry_reserve;
1157 }
1158 }
1159
1160 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1161 return page;
1162 }
1163
1164 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
1165 int migratetype)
1166 {
1167 struct page *page = 0;
1168 #ifdef CONFIG_CMA
1169 if (migratetype == MIGRATE_MOVABLE && !zone->cma_alloc) {
1170 page = __rmqueue_smallest(zone, order, MIGRATE_CMA);
1171 if (!page)
1172 page = __rmqueue_smallest(zone, order, migratetype);
1173 } else
1174 #endif
1175 retry_reserve :
1176 page = __rmqueue_smallest(zone, order, migratetype);
1177
1178
1179 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1180 page = __rmqueue_fallback(zone, order, migratetype);
1181
1182 /*
1183 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1184 * is used because __rmqueue_smallest is an inline function
1185 * and we want just one call site
1186 */
1187 if (!page) {
1188 migratetype = MIGRATE_RESERVE;
1189 goto retry_reserve;
1190 }
1191 }
1192
1193 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1194 return page;
1195 }
1196
1197 /*
1198 * Obtain a specified number of elements from the buddy allocator, all under
1199 * a single hold of the lock, for efficiency. Add them to the supplied list.
1200 * Returns the number of new pages which were placed at *list.
1201 */
1202 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1203 unsigned long count, struct list_head *list,
1204 int migratetype, int cold, int cma)
1205 {
1206 int mt = migratetype, i;
1207
1208 spin_lock(&zone->lock);
1209 for (i = 0; i < count; ++i) {
1210 struct page *page;
1211 if (cma)
1212 page = __rmqueue_cma(zone, order, migratetype);
1213 else
1214 page = __rmqueue(zone, order, migratetype);
1215 if (unlikely(page == NULL))
1216 break;
1217
1218 /*
1219 * Split buddy pages returned by expand() are received here
1220 * in physical page order. The page is added to the callers and
1221 * list and the list head then moves forward. From the callers
1222 * perspective, the linked list is ordered by page number in
1223 * some conditions. This is useful for IO devices that can
1224 * merge IO requests if the physical pages are ordered
1225 * properly.
1226 */
1227 if (likely(cold == 0))
1228 list_add(&page->lru, list);
1229 else
1230 list_add_tail(&page->lru, list);
1231 if (IS_ENABLED(CONFIG_CMA)) {
1232 mt = get_pageblock_migratetype(page);
1233 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1234 mt = migratetype;
1235 }
1236 set_freepage_migratetype(page, mt);
1237 list = &page->lru;
1238 if (is_migrate_cma(mt))
1239 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1240 -(1 << order));
1241 }
1242 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1243 spin_unlock(&zone->lock);
1244 return i;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 /*
1249 * Called from the vmstat counter updater to drain pagesets of this
1250 * currently executing processor on remote nodes after they have
1251 * expired.
1252 *
1253 * Note that this function must be called with the thread pinned to
1254 * a single processor.
1255 */
1256 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1257 {
1258 unsigned long flags;
1259 int to_drain;
1260
1261 local_irq_save(flags);
1262 if (pcp->count >= pcp->batch)
1263 to_drain = pcp->batch;
1264 else
1265 to_drain = pcp->count;
1266 if (to_drain > 0) {
1267 free_pcppages_bulk(zone, to_drain, pcp);
1268 pcp->count -= to_drain;
1269 }
1270 local_irq_restore(flags);
1271 }
1272 #endif
1273
1274 /*
1275 * Drain pages of the indicated processor.
1276 *
1277 * The processor must either be the current processor and the
1278 * thread pinned to the current processor or a processor that
1279 * is not online.
1280 */
1281 static void drain_pages(unsigned int cpu)
1282 {
1283 unsigned long flags;
1284 struct zone *zone;
1285
1286 for_each_populated_zone(zone) {
1287 struct per_cpu_pageset *pset;
1288 struct per_cpu_pages *pcp;
1289
1290 local_irq_save(flags);
1291 pset = per_cpu_ptr(zone->pageset, cpu);
1292
1293 pcp = &pset->pcp;
1294 if (pcp->count) {
1295 free_pcppages_bulk(zone, pcp->count, pcp);
1296 pcp->count = 0;
1297 }
1298 local_irq_restore(flags);
1299 }
1300 }
1301
1302 /*
1303 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1304 */
1305 void drain_local_pages(void *arg)
1306 {
1307 drain_pages(smp_processor_id());
1308 }
1309
1310 /*
1311 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1312 *
1313 * Note that this code is protected against sending an IPI to an offline
1314 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1315 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1316 * nothing keeps CPUs from showing up after we populated the cpumask and
1317 * before the call to on_each_cpu_mask().
1318 */
1319 void drain_all_pages(void)
1320 {
1321 int cpu;
1322 struct per_cpu_pageset *pcp;
1323 struct zone *zone;
1324
1325 /*
1326 * Allocate in the BSS so we wont require allocation in
1327 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1328 */
1329 static cpumask_t cpus_with_pcps;
1330
1331 /*
1332 * We don't care about racing with CPU hotplug event
1333 * as offline notification will cause the notified
1334 * cpu to drain that CPU pcps and on_each_cpu_mask
1335 * disables preemption as part of its processing
1336 */
1337 for_each_online_cpu(cpu) {
1338 bool has_pcps = false;
1339 for_each_populated_zone(zone) {
1340 pcp = per_cpu_ptr(zone->pageset, cpu);
1341 if (pcp->pcp.count) {
1342 has_pcps = true;
1343 break;
1344 }
1345 }
1346 if (has_pcps)
1347 cpumask_set_cpu(cpu, &cpus_with_pcps);
1348 else
1349 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1350 }
1351 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1352 }
1353
1354 #ifdef CONFIG_HIBERNATION
1355
1356 void mark_free_pages(struct zone *zone)
1357 {
1358 unsigned long pfn, max_zone_pfn;
1359 unsigned long flags;
1360 int order, t;
1361 struct list_head *curr;
1362
1363 if (!zone->spanned_pages)
1364 return;
1365
1366 spin_lock_irqsave(&zone->lock, flags);
1367
1368 max_zone_pfn = zone_end_pfn(zone);
1369 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1370 if (pfn_valid(pfn)) {
1371 struct page *page = pfn_to_page(pfn);
1372
1373 if (!swsusp_page_is_forbidden(page))
1374 swsusp_unset_page_free(page);
1375 }
1376
1377 for_each_migratetype_order(order, t) {
1378 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1379 unsigned long i;
1380
1381 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1382 for (i = 0; i < (1UL << order); i++)
1383 swsusp_set_page_free(pfn_to_page(pfn + i));
1384 }
1385 }
1386 spin_unlock_irqrestore(&zone->lock, flags);
1387 }
1388 #endif /* CONFIG_PM */
1389
1390 /*
1391 * Free a 0-order page
1392 * cold == 1 ? free a cold page : free a hot page
1393 */
1394 void free_hot_cold_page(struct page *page, int cold)
1395 {
1396 struct zone *zone = page_zone(page);
1397 struct per_cpu_pages *pcp;
1398 unsigned long flags;
1399 int migratetype;
1400
1401 if (!free_pages_prepare(page, 0))
1402 return;
1403
1404 migratetype = get_pageblock_migratetype(page);
1405 set_freepage_migratetype(page, migratetype);
1406 local_irq_save(flags);
1407 __count_vm_event(PGFREE);
1408
1409 /*
1410 * We only track unmovable, reclaimable and movable on pcp lists.
1411 * Free ISOLATE pages back to the allocator because they are being
1412 * offlined but treat RESERVE as movable pages so we can get those
1413 * areas back if necessary. Otherwise, we may have to free
1414 * excessively into the page allocator
1415 */
1416 if (migratetype >= MIGRATE_PCPTYPES) {
1417 if (unlikely(is_migrate_isolate(migratetype))) {
1418 free_one_page(zone, page, 0, migratetype);
1419 goto out;
1420 }
1421 migratetype = MIGRATE_MOVABLE;
1422 }
1423
1424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1425 if (cold)
1426 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1427 else
1428 list_add(&page->lru, &pcp->lists[migratetype]);
1429 pcp->count++;
1430 if (pcp->count >= pcp->high) {
1431 free_pcppages_bulk(zone, pcp->batch, pcp);
1432 pcp->count -= pcp->batch;
1433 }
1434
1435 out:
1436 local_irq_restore(flags);
1437 }
1438
1439 /*
1440 * Free a list of 0-order pages
1441 */
1442 void free_hot_cold_page_list(struct list_head *list, int cold)
1443 {
1444 struct page *page, *next;
1445
1446 list_for_each_entry_safe(page, next, list, lru) {
1447 trace_mm_page_free_batched(page, cold);
1448 free_hot_cold_page(page, cold);
1449 }
1450 }
1451
1452 /*
1453 * split_page takes a non-compound higher-order page, and splits it into
1454 * n (1<<order) sub-pages: page[0..n]
1455 * Each sub-page must be freed individually.
1456 *
1457 * Note: this is probably too low level an operation for use in drivers.
1458 * Please consult with lkml before using this in your driver.
1459 */
1460 void split_page(struct page *page, unsigned int order)
1461 {
1462 int i;
1463
1464 VM_BUG_ON(PageCompound(page));
1465 VM_BUG_ON(!page_count(page));
1466
1467 #ifdef CONFIG_KMEMCHECK
1468 /*
1469 * Split shadow pages too, because free(page[0]) would
1470 * otherwise free the whole shadow.
1471 */
1472 if (kmemcheck_page_is_tracked(page))
1473 split_page(virt_to_page(page[0].shadow), order);
1474 #endif
1475
1476 for (i = 1; i < (1 << order); i++)
1477 set_page_refcounted(page + i);
1478 }
1479 EXPORT_SYMBOL_GPL(split_page);
1480
1481 static int __isolate_free_page(struct page *page, unsigned int order)
1482 {
1483 unsigned long watermark;
1484 struct zone *zone;
1485 int mt;
1486
1487 BUG_ON(!PageBuddy(page));
1488
1489 zone = page_zone(page);
1490 mt = get_pageblock_migratetype(page);
1491
1492 if (!is_migrate_isolate(mt)) {
1493 /* Obey watermarks as if the page was being allocated */
1494 watermark = low_wmark_pages(zone) + (1 << order);
1495 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1496 return 0;
1497
1498 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1499 }
1500
1501 /* Remove page from free list */
1502 list_del(&page->lru);
1503 zone->free_area[order].nr_free--;
1504 rmv_page_order(page);
1505
1506 /* Set the pageblock if the isolated page is at least a pageblock */
1507 if (order >= pageblock_order - 1) {
1508 struct page *endpage = page + (1 << order) - 1;
1509 for (; page < endpage; page += pageblock_nr_pages) {
1510 int mt = get_pageblock_migratetype(page);
1511 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1512 set_pageblock_migratetype(page,
1513 MIGRATE_MOVABLE);
1514 }
1515 }
1516
1517 return 1UL << order;
1518 }
1519
1520 /*
1521 * Similar to split_page except the page is already free. As this is only
1522 * being used for migration, the migratetype of the block also changes.
1523 * As this is called with interrupts disabled, the caller is responsible
1524 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1525 * are enabled.
1526 *
1527 * Note: this is probably too low level an operation for use in drivers.
1528 * Please consult with lkml before using this in your driver.
1529 */
1530 int split_free_page(struct page *page)
1531 {
1532 unsigned int order;
1533 int nr_pages;
1534
1535 order = page_order(page);
1536
1537 nr_pages = __isolate_free_page(page, order);
1538 if (!nr_pages)
1539 return 0;
1540
1541 /* Split into individual pages */
1542 set_page_refcounted(page);
1543 split_page(page, order);
1544 return nr_pages;
1545 }
1546
1547 /*
1548 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1549 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1550 * or two.
1551 */
1552 static inline
1553 struct page *buffered_rmqueue(struct zone *preferred_zone,
1554 struct zone *zone, int order, gfp_t gfp_flags,
1555 int migratetype)
1556 {
1557 unsigned long flags;
1558 struct page *page;
1559 int cold = !!(gfp_flags & __GFP_COLD);
1560
1561 again:
1562 if (likely(order == 0)) {
1563 struct per_cpu_pages *pcp;
1564 struct list_head *list;
1565
1566 local_irq_save(flags);
1567 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1568 list = &pcp->lists[migratetype];
1569 if (list_empty(list)) {
1570 pcp->count += rmqueue_bulk(zone, 0,
1571 pcp->batch, list,
1572 migratetype, cold,
1573 gfp_flags & __GFP_CMA);
1574 if (unlikely(list_empty(list)))
1575 goto failed;
1576 }
1577
1578 if (cold)
1579 page = list_entry(list->prev, struct page, lru);
1580 else
1581 page = list_entry(list->next, struct page, lru);
1582
1583 list_del(&page->lru);
1584 pcp->count--;
1585 } else {
1586 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1587 /*
1588 * __GFP_NOFAIL is not to be used in new code.
1589 *
1590 * All __GFP_NOFAIL callers should be fixed so that they
1591 * properly detect and handle allocation failures.
1592 *
1593 * We most definitely don't want callers attempting to
1594 * allocate greater than order-1 page units with
1595 * __GFP_NOFAIL.
1596 */
1597 WARN_ON_ONCE(order > 1);
1598 }
1599 spin_lock_irqsave(&zone->lock, flags);
1600 if (gfp_flags & __GFP_CMA)
1601 page = __rmqueue_cma(zone, order, migratetype);
1602 else
1603 page = __rmqueue(zone, order, migratetype);
1604 spin_unlock(&zone->lock);
1605 if (!page)
1606 goto failed;
1607 __mod_zone_freepage_state(zone, -(1 << order),
1608 get_pageblock_migratetype(page));
1609 }
1610
1611 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1612 zone_statistics(preferred_zone, zone, gfp_flags);
1613 local_irq_restore(flags);
1614
1615 VM_BUG_ON(bad_range(zone, page));
1616 if (prep_new_page(page, order, gfp_flags))
1617 goto again;
1618 return page;
1619
1620 failed:
1621 local_irq_restore(flags);
1622 return NULL;
1623 }
1624
1625 #ifdef CONFIG_FAIL_PAGE_ALLOC
1626
1627 static struct {
1628 struct fault_attr attr;
1629
1630 u32 ignore_gfp_highmem;
1631 u32 ignore_gfp_wait;
1632 u32 min_order;
1633 } fail_page_alloc = {
1634 .attr = FAULT_ATTR_INITIALIZER,
1635 .ignore_gfp_wait = 1,
1636 .ignore_gfp_highmem = 1,
1637 .min_order = 1,
1638 };
1639
1640 static int __init setup_fail_page_alloc(char *str)
1641 {
1642 return setup_fault_attr(&fail_page_alloc.attr, str);
1643 }
1644 __setup("fail_page_alloc=", setup_fail_page_alloc);
1645
1646 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1647 {
1648 if (order < fail_page_alloc.min_order)
1649 return false;
1650 if (gfp_mask & __GFP_NOFAIL)
1651 return false;
1652 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1653 return false;
1654 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1655 return false;
1656
1657 return should_fail(&fail_page_alloc.attr, 1 << order);
1658 }
1659
1660 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1661
1662 static int __init fail_page_alloc_debugfs(void)
1663 {
1664 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1665 struct dentry *dir;
1666
1667 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1668 &fail_page_alloc.attr);
1669 if (IS_ERR(dir))
1670 return PTR_ERR(dir);
1671
1672 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1673 &fail_page_alloc.ignore_gfp_wait))
1674 goto fail;
1675 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1676 &fail_page_alloc.ignore_gfp_highmem))
1677 goto fail;
1678 if (!debugfs_create_u32("min-order", mode, dir,
1679 &fail_page_alloc.min_order))
1680 goto fail;
1681
1682 return 0;
1683 fail:
1684 debugfs_remove_recursive(dir);
1685
1686 return -ENOMEM;
1687 }
1688
1689 late_initcall(fail_page_alloc_debugfs);
1690
1691 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1692
1693 #else /* CONFIG_FAIL_PAGE_ALLOC */
1694
1695 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1696 {
1697 return false;
1698 }
1699
1700 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1701
1702 /*
1703 * Return true if free pages are above 'mark'. This takes into account the order
1704 * of the allocation.
1705 */
1706 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1707 int classzone_idx, int alloc_flags, long free_pages)
1708 {
1709 /* free_pages my go negative - that's OK */
1710 long min = mark;
1711 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1712 int o;
1713 long free_cma = 0;
1714
1715 free_pages -= (1 << order) - 1;
1716 if (alloc_flags & ALLOC_HIGH)
1717 min -= min / 2;
1718 if (alloc_flags & ALLOC_HARDER)
1719 min -= min / 4;
1720 #ifdef CONFIG_CMA
1721 /* If allocation can't use CMA areas don't use free CMA pages */
1722 if (!(alloc_flags & ALLOC_CMA))
1723 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1724 #endif
1725
1726 if (free_pages - free_cma <= min + lowmem_reserve)
1727 return false;
1728 for (o = 0; o < order; o++) {
1729 /* At the next order, this order's pages become unavailable */
1730 free_pages -= z->free_area[o].nr_free << o;
1731
1732 /* Require fewer higher order pages to be free */
1733 min >>= min_free_order_shift;
1734
1735 if (free_pages <= min)
1736 return false;
1737 }
1738 return true;
1739 }
1740
1741 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1742 int classzone_idx, int alloc_flags)
1743 {
1744 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1745 zone_page_state(z, NR_FREE_PAGES));
1746 }
1747
1748 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1749 int classzone_idx, int alloc_flags)
1750 {
1751 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1752
1753 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1754 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1755
1756 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1757 free_pages);
1758 }
1759
1760 #ifdef CONFIG_NUMA
1761 /*
1762 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1763 * skip over zones that are not allowed by the cpuset, or that have
1764 * been recently (in last second) found to be nearly full. See further
1765 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1766 * that have to skip over a lot of full or unallowed zones.
1767 *
1768 * If the zonelist cache is present in the passed in zonelist, then
1769 * returns a pointer to the allowed node mask (either the current
1770 * tasks mems_allowed, or node_states[N_MEMORY].)
1771 *
1772 * If the zonelist cache is not available for this zonelist, does
1773 * nothing and returns NULL.
1774 *
1775 * If the fullzones BITMAP in the zonelist cache is stale (more than
1776 * a second since last zap'd) then we zap it out (clear its bits.)
1777 *
1778 * We hold off even calling zlc_setup, until after we've checked the
1779 * first zone in the zonelist, on the theory that most allocations will
1780 * be satisfied from that first zone, so best to examine that zone as
1781 * quickly as we can.
1782 */
1783 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1784 {
1785 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1786 nodemask_t *allowednodes; /* zonelist_cache approximation */
1787
1788 zlc = zonelist->zlcache_ptr;
1789 if (!zlc)
1790 return NULL;
1791
1792 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1793 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1794 zlc->last_full_zap = jiffies;
1795 }
1796
1797 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1798 &cpuset_current_mems_allowed :
1799 &node_states[N_MEMORY];
1800 return allowednodes;
1801 }
1802
1803 /*
1804 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1805 * if it is worth looking at further for free memory:
1806 * 1) Check that the zone isn't thought to be full (doesn't have its
1807 * bit set in the zonelist_cache fullzones BITMAP).
1808 * 2) Check that the zones node (obtained from the zonelist_cache
1809 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1810 * Return true (non-zero) if zone is worth looking at further, or
1811 * else return false (zero) if it is not.
1812 *
1813 * This check -ignores- the distinction between various watermarks,
1814 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1815 * found to be full for any variation of these watermarks, it will
1816 * be considered full for up to one second by all requests, unless
1817 * we are so low on memory on all allowed nodes that we are forced
1818 * into the second scan of the zonelist.
1819 *
1820 * In the second scan we ignore this zonelist cache and exactly
1821 * apply the watermarks to all zones, even it is slower to do so.
1822 * We are low on memory in the second scan, and should leave no stone
1823 * unturned looking for a free page.
1824 */
1825 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1826 nodemask_t *allowednodes)
1827 {
1828 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1829 int i; /* index of *z in zonelist zones */
1830 int n; /* node that zone *z is on */
1831
1832 zlc = zonelist->zlcache_ptr;
1833 if (!zlc)
1834 return 1;
1835
1836 i = z - zonelist->_zonerefs;
1837 n = zlc->z_to_n[i];
1838
1839 /* This zone is worth trying if it is allowed but not full */
1840 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1841 }
1842
1843 /*
1844 * Given 'z' scanning a zonelist, set the corresponding bit in
1845 * zlc->fullzones, so that subsequent attempts to allocate a page
1846 * from that zone don't waste time re-examining it.
1847 */
1848 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1849 {
1850 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1851 int i; /* index of *z in zonelist zones */
1852
1853 zlc = zonelist->zlcache_ptr;
1854 if (!zlc)
1855 return;
1856
1857 i = z - zonelist->_zonerefs;
1858
1859 set_bit(i, zlc->fullzones);
1860 }
1861
1862 /*
1863 * clear all zones full, called after direct reclaim makes progress so that
1864 * a zone that was recently full is not skipped over for up to a second
1865 */
1866 static void zlc_clear_zones_full(struct zonelist *zonelist)
1867 {
1868 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1869
1870 zlc = zonelist->zlcache_ptr;
1871 if (!zlc)
1872 return;
1873
1874 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1875 }
1876
1877 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1878 {
1879 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1880 }
1881
1882 static void __paginginit init_zone_allows_reclaim(int nid)
1883 {
1884 int i;
1885
1886 for_each_online_node(i)
1887 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1888 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1889 else
1890 zone_reclaim_mode = 1;
1891 }
1892
1893 #else /* CONFIG_NUMA */
1894
1895 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1896 {
1897 return NULL;
1898 }
1899
1900 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1901 nodemask_t *allowednodes)
1902 {
1903 return 1;
1904 }
1905
1906 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1907 {
1908 }
1909
1910 static void zlc_clear_zones_full(struct zonelist *zonelist)
1911 {
1912 }
1913
1914 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1915 {
1916 return true;
1917 }
1918
1919 static inline void init_zone_allows_reclaim(int nid)
1920 {
1921 }
1922 #endif /* CONFIG_NUMA */
1923
1924 /*
1925 * get_page_from_freelist goes through the zonelist trying to allocate
1926 * a page.
1927 */
1928 static struct page *
1929 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1930 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1931 struct zone *preferred_zone, int migratetype)
1932 {
1933 struct zoneref *z;
1934 struct page *page = NULL;
1935 int classzone_idx;
1936 struct zone *zone;
1937 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1938 int zlc_active = 0; /* set if using zonelist_cache */
1939 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1940
1941 classzone_idx = zone_idx(preferred_zone);
1942 zonelist_scan:
1943 /*
1944 * Scan zonelist, looking for a zone with enough free.
1945 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1946 */
1947 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1948 high_zoneidx, nodemask) {
1949 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1950 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1951 continue;
1952 if ((alloc_flags & ALLOC_CPUSET) &&
1953 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1954 continue;
1955 /*
1956 * When allocating a page cache page for writing, we
1957 * want to get it from a zone that is within its dirty
1958 * limit, such that no single zone holds more than its
1959 * proportional share of globally allowed dirty pages.
1960 * The dirty limits take into account the zone's
1961 * lowmem reserves and high watermark so that kswapd
1962 * should be able to balance it without having to
1963 * write pages from its LRU list.
1964 *
1965 * This may look like it could increase pressure on
1966 * lower zones by failing allocations in higher zones
1967 * before they are full. But the pages that do spill
1968 * over are limited as the lower zones are protected
1969 * by this very same mechanism. It should not become
1970 * a practical burden to them.
1971 *
1972 * XXX: For now, allow allocations to potentially
1973 * exceed the per-zone dirty limit in the slowpath
1974 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1975 * which is important when on a NUMA setup the allowed
1976 * zones are together not big enough to reach the
1977 * global limit. The proper fix for these situations
1978 * will require awareness of zones in the
1979 * dirty-throttling and the flusher threads.
1980 */
1981 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1982 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1983 goto this_zone_full;
1984
1985 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1986 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1987 unsigned long mark;
1988 int ret;
1989
1990 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1991 if (zone_watermark_ok(zone, order, mark,
1992 classzone_idx, alloc_flags))
1993 goto try_this_zone;
1994
1995 if (IS_ENABLED(CONFIG_NUMA) &&
1996 !did_zlc_setup && nr_online_nodes > 1) {
1997 /*
1998 * we do zlc_setup if there are multiple nodes
1999 * and before considering the first zone allowed
2000 * by the cpuset.
2001 */
2002 allowednodes = zlc_setup(zonelist, alloc_flags);
2003 zlc_active = 1;
2004 did_zlc_setup = 1;
2005 }
2006
2007 if (zone_reclaim_mode == 0 ||
2008 !zone_allows_reclaim(preferred_zone, zone))
2009 goto this_zone_full;
2010
2011 /*
2012 * As we may have just activated ZLC, check if the first
2013 * eligible zone has failed zone_reclaim recently.
2014 */
2015 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2016 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2017 continue;
2018
2019 ret = zone_reclaim(zone, gfp_mask, order);
2020 switch (ret) {
2021 case ZONE_RECLAIM_NOSCAN:
2022 /* did not scan */
2023 continue;
2024 case ZONE_RECLAIM_FULL:
2025 /* scanned but unreclaimable */
2026 continue;
2027 default:
2028 /* did we reclaim enough */
2029 if (zone_watermark_ok(zone, order, mark,
2030 classzone_idx, alloc_flags))
2031 goto try_this_zone;
2032
2033 /*
2034 * Failed to reclaim enough to meet watermark.
2035 * Only mark the zone full if checking the min
2036 * watermark or if we failed to reclaim just
2037 * 1<<order pages or else the page allocator
2038 * fastpath will prematurely mark zones full
2039 * when the watermark is between the low and
2040 * min watermarks.
2041 */
2042 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2043 ret == ZONE_RECLAIM_SOME)
2044 goto this_zone_full;
2045
2046 continue;
2047 }
2048 }
2049
2050 try_this_zone:
2051 page = buffered_rmqueue(preferred_zone, zone, order,
2052 gfp_mask, migratetype);
2053 if (page)
2054 break;
2055 this_zone_full:
2056 if (IS_ENABLED(CONFIG_NUMA))
2057 zlc_mark_zone_full(zonelist, z);
2058 }
2059
2060 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2061 /* Disable zlc cache for second zonelist scan */
2062 zlc_active = 0;
2063 goto zonelist_scan;
2064 }
2065
2066 if (page)
2067 /*
2068 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2069 * necessary to allocate the page. The expectation is
2070 * that the caller is taking steps that will free more
2071 * memory. The caller should avoid the page being used
2072 * for !PFMEMALLOC purposes.
2073 */
2074 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2075
2076 return page;
2077 }
2078
2079 /*
2080 * Large machines with many possible nodes should not always dump per-node
2081 * meminfo in irq context.
2082 */
2083 static inline bool should_suppress_show_mem(void)
2084 {
2085 bool ret = false;
2086
2087 #if NODES_SHIFT > 8
2088 ret = in_interrupt();
2089 #endif
2090 return ret;
2091 }
2092
2093 static DEFINE_RATELIMIT_STATE(nopage_rs,
2094 DEFAULT_RATELIMIT_INTERVAL,
2095 DEFAULT_RATELIMIT_BURST);
2096
2097 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2098 {
2099 unsigned int filter = SHOW_MEM_FILTER_NODES;
2100
2101 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2102 debug_guardpage_minorder() > 0)
2103 return;
2104
2105 /*
2106 * Walking all memory to count page types is very expensive and should
2107 * be inhibited in non-blockable contexts.
2108 */
2109 if (!(gfp_mask & __GFP_WAIT))
2110 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2111
2112 /*
2113 * This documents exceptions given to allocations in certain
2114 * contexts that are allowed to allocate outside current's set
2115 * of allowed nodes.
2116 */
2117 if (!(gfp_mask & __GFP_NOMEMALLOC))
2118 if (test_thread_flag(TIF_MEMDIE) ||
2119 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2120 filter &= ~SHOW_MEM_FILTER_NODES;
2121 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2122 filter &= ~SHOW_MEM_FILTER_NODES;
2123
2124 if (fmt) {
2125 struct va_format vaf;
2126 va_list args;
2127
2128 va_start(args, fmt);
2129
2130 vaf.fmt = fmt;
2131 vaf.va = &args;
2132
2133 pr_warn("%pV", &vaf);
2134
2135 va_end(args);
2136 }
2137
2138 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2139 current->comm, order, gfp_mask);
2140
2141 dump_stack();
2142 if (!should_suppress_show_mem())
2143 show_mem(filter);
2144 }
2145
2146 static inline int
2147 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2148 unsigned long did_some_progress,
2149 unsigned long pages_reclaimed)
2150 {
2151 /* Do not loop if specifically requested */
2152 if (gfp_mask & __GFP_NORETRY)
2153 return 0;
2154
2155 /* Always retry if specifically requested */
2156 if (gfp_mask & __GFP_NOFAIL)
2157 return 1;
2158
2159 /*
2160 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2161 * making forward progress without invoking OOM. Suspend also disables
2162 * storage devices so kswapd will not help. Bail if we are suspending.
2163 */
2164 if (!did_some_progress && pm_suspended_storage())
2165 return 0;
2166
2167 /*
2168 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2169 * means __GFP_NOFAIL, but that may not be true in other
2170 * implementations.
2171 */
2172 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2173 return 1;
2174
2175 /*
2176 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2177 * specified, then we retry until we no longer reclaim any pages
2178 * (above), or we've reclaimed an order of pages at least as
2179 * large as the allocation's order. In both cases, if the
2180 * allocation still fails, we stop retrying.
2181 */
2182 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2183 return 1;
2184
2185 return 0;
2186 }
2187
2188 static inline struct page *
2189 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2190 struct zonelist *zonelist, enum zone_type high_zoneidx,
2191 nodemask_t *nodemask, struct zone *preferred_zone,
2192 int migratetype)
2193 {
2194 struct page *page;
2195
2196 /* Acquire the OOM killer lock for the zones in zonelist */
2197 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2198 schedule_timeout_uninterruptible(1);
2199 return NULL;
2200 }
2201
2202 /*
2203 * PM-freezer should be notified that there might be an OOM killer on
2204 * its way to kill and wake somebody up. This is too early and we might
2205 * end up not killing anything but false positives are acceptable.
2206 * See freeze_processes.
2207 */
2208 note_oom_kill();
2209
2210 /*
2211 * Go through the zonelist yet one more time, keep very high watermark
2212 * here, this is only to catch a parallel oom killing, we must fail if
2213 * we're still under heavy pressure.
2214 */
2215 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2216 order, zonelist, high_zoneidx,
2217 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2218 preferred_zone, migratetype);
2219 if (page)
2220 goto out;
2221
2222 if (!(gfp_mask & __GFP_NOFAIL)) {
2223 /* The OOM killer will not help higher order allocs */
2224 if (order > PAGE_ALLOC_COSTLY_ORDER)
2225 goto out;
2226 /* The OOM killer does not needlessly kill tasks for lowmem */
2227 if (high_zoneidx < ZONE_NORMAL)
2228 goto out;
2229 /*
2230 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2231 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2232 * The caller should handle page allocation failure by itself if
2233 * it specifies __GFP_THISNODE.
2234 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2235 */
2236 if (gfp_mask & __GFP_THISNODE)
2237 goto out;
2238 }
2239 /* Exhausted what can be done so it's blamo time */
2240 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2241
2242 out:
2243 clear_zonelist_oom(zonelist, gfp_mask);
2244 return page;
2245 }
2246
2247 #ifdef CONFIG_COMPACTION
2248 /* Try memory compaction for high-order allocations before reclaim */
2249 static struct page *
2250 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2251 struct zonelist *zonelist, enum zone_type high_zoneidx,
2252 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2253 int migratetype, bool sync_migration,
2254 bool *contended_compaction, bool *deferred_compaction,
2255 unsigned long *did_some_progress)
2256 {
2257 if (!order)
2258 return NULL;
2259
2260 if (compaction_deferred(preferred_zone, order)) {
2261 *deferred_compaction = true;
2262 return NULL;
2263 }
2264
2265 current->flags |= PF_MEMALLOC;
2266 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2267 nodemask, sync_migration,
2268 contended_compaction);
2269 current->flags &= ~PF_MEMALLOC;
2270
2271 if (*did_some_progress != COMPACT_SKIPPED) {
2272 struct page *page;
2273
2274 /* Page migration frees to the PCP lists but we want merging */
2275 drain_pages(get_cpu());
2276 put_cpu();
2277
2278 page = get_page_from_freelist(gfp_mask, nodemask,
2279 order, zonelist, high_zoneidx,
2280 alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 preferred_zone, migratetype);
2282 if (page) {
2283 preferred_zone->compact_blockskip_flush = false;
2284 preferred_zone->compact_considered = 0;
2285 preferred_zone->compact_defer_shift = 0;
2286 if (order >= preferred_zone->compact_order_failed)
2287 preferred_zone->compact_order_failed = order + 1;
2288 count_vm_event(COMPACTSUCCESS);
2289 return page;
2290 }
2291
2292 /*
2293 * It's bad if compaction run occurs and fails.
2294 * The most likely reason is that pages exist,
2295 * but not enough to satisfy watermarks.
2296 */
2297 count_vm_event(COMPACTFAIL);
2298
2299 /*
2300 * As async compaction considers a subset of pageblocks, only
2301 * defer if the failure was a sync compaction failure.
2302 */
2303 if (sync_migration)
2304 defer_compaction(preferred_zone, order);
2305
2306 cond_resched();
2307 }
2308
2309 return NULL;
2310 }
2311 #else
2312 static inline struct page *
2313 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2314 struct zonelist *zonelist, enum zone_type high_zoneidx,
2315 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2316 int migratetype, bool sync_migration,
2317 bool *contended_compaction, bool *deferred_compaction,
2318 unsigned long *did_some_progress)
2319 {
2320 return NULL;
2321 }
2322 #endif /* CONFIG_COMPACTION */
2323
2324 /* Perform direct synchronous page reclaim */
2325 static int
2326 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2327 nodemask_t *nodemask)
2328 {
2329 struct reclaim_state reclaim_state;
2330 int progress;
2331
2332 cond_resched();
2333
2334 /* We now go into synchronous reclaim */
2335 cpuset_memory_pressure_bump();
2336 current->flags |= PF_MEMALLOC;
2337 lockdep_set_current_reclaim_state(gfp_mask);
2338 reclaim_state.reclaimed_slab = 0;
2339 current->reclaim_state = &reclaim_state;
2340
2341 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2342
2343 current->reclaim_state = NULL;
2344 lockdep_clear_current_reclaim_state();
2345 current->flags &= ~PF_MEMALLOC;
2346
2347 cond_resched();
2348
2349 return progress;
2350 }
2351
2352 /* The really slow allocator path where we enter direct reclaim */
2353 static inline struct page *
2354 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2355 struct zonelist *zonelist, enum zone_type high_zoneidx,
2356 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2357 int migratetype, unsigned long *did_some_progress)
2358 {
2359 struct page *page = NULL;
2360 bool drained = false;
2361
2362 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2363 nodemask);
2364 if (unlikely(!(*did_some_progress)))
2365 return NULL;
2366
2367 /* After successful reclaim, reconsider all zones for allocation */
2368 if (IS_ENABLED(CONFIG_NUMA))
2369 zlc_clear_zones_full(zonelist);
2370
2371 retry:
2372 page = get_page_from_freelist(gfp_mask, nodemask, order,
2373 zonelist, high_zoneidx,
2374 alloc_flags & ~ALLOC_NO_WATERMARKS,
2375 preferred_zone, migratetype);
2376
2377 /*
2378 * If an allocation failed after direct reclaim, it could be because
2379 * pages are pinned on the per-cpu lists. Drain them and try again
2380 */
2381 if (!page && !drained) {
2382 drain_all_pages();
2383 drained = true;
2384 goto retry;
2385 }
2386
2387 return page;
2388 }
2389
2390 /*
2391 * This is called in the allocator slow-path if the allocation request is of
2392 * sufficient urgency to ignore watermarks and take other desperate measures
2393 */
2394 static inline struct page *
2395 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2396 struct zonelist *zonelist, enum zone_type high_zoneidx,
2397 nodemask_t *nodemask, struct zone *preferred_zone,
2398 int migratetype)
2399 {
2400 struct page *page;
2401
2402 do {
2403 page = get_page_from_freelist(gfp_mask, nodemask, order,
2404 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2405 preferred_zone, migratetype);
2406
2407 if (!page && gfp_mask & __GFP_NOFAIL)
2408 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2409 } while (!page && (gfp_mask & __GFP_NOFAIL));
2410
2411 return page;
2412 }
2413
2414 static inline
2415 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2416 enum zone_type high_zoneidx,
2417 enum zone_type classzone_idx)
2418 {
2419 struct zoneref *z;
2420 struct zone *zone;
2421
2422 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2423 wakeup_kswapd(zone, order, classzone_idx);
2424 }
2425
2426 static inline int
2427 gfp_to_alloc_flags(gfp_t gfp_mask)
2428 {
2429 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2430 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2431
2432 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2433 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2434
2435 /*
2436 * The caller may dip into page reserves a bit more if the caller
2437 * cannot run direct reclaim, or if the caller has realtime scheduling
2438 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2439 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2440 */
2441 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2442
2443 if (atomic) {
2444 /*
2445 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2446 * if it can't schedule.
2447 */
2448 if (!(gfp_mask & __GFP_NOMEMALLOC))
2449 alloc_flags |= ALLOC_HARDER;
2450 /*
2451 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2452 * comment for __cpuset_node_allowed_softwall().
2453 */
2454 alloc_flags &= ~ALLOC_CPUSET;
2455 } else if (unlikely(rt_task(current)) && !in_interrupt())
2456 alloc_flags |= ALLOC_HARDER;
2457
2458 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2459 if (gfp_mask & __GFP_MEMALLOC)
2460 alloc_flags |= ALLOC_NO_WATERMARKS;
2461 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2462 alloc_flags |= ALLOC_NO_WATERMARKS;
2463 else if (!in_interrupt() &&
2464 ((current->flags & PF_MEMALLOC) ||
2465 unlikely(test_thread_flag(TIF_MEMDIE))))
2466 alloc_flags |= ALLOC_NO_WATERMARKS;
2467 }
2468 #ifdef CONFIG_CMA
2469 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2470 alloc_flags |= ALLOC_CMA;
2471 #endif
2472 return alloc_flags;
2473 }
2474
2475 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2476 {
2477 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2478 }
2479
2480 static inline struct page *
2481 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2482 struct zonelist *zonelist, enum zone_type high_zoneidx,
2483 nodemask_t *nodemask, struct zone *preferred_zone,
2484 int migratetype)
2485 {
2486 const gfp_t wait = gfp_mask & __GFP_WAIT;
2487 struct page *page = NULL;
2488 int alloc_flags;
2489 unsigned long pages_reclaimed = 0;
2490 unsigned long did_some_progress;
2491 bool sync_migration = false;
2492 bool deferred_compaction = false;
2493 bool contended_compaction = false;
2494 #ifdef CONFIG_SEC_OOM_KILLER
2495 unsigned long oom_invoke_timeout = jiffies + HZ/4;
2496 #endif
2497
2498 /*
2499 * In the slowpath, we sanity check order to avoid ever trying to
2500 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2501 * be using allocators in order of preference for an area that is
2502 * too large.
2503 */
2504 if (order >= MAX_ORDER) {
2505 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2506 return NULL;
2507 }
2508
2509 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
2510 set_tsk_thread_flag(current, TIF_MEMALLOC);
2511 #endif
2512
2513 /*
2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 * using a larger set of nodes after it has established that the
2518 * allowed per node queues are empty and that nodes are
2519 * over allocated.
2520 */
2521 if (IS_ENABLED(CONFIG_NUMA) &&
2522 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2523 goto nopage;
2524
2525 restart:
2526 if (!(gfp_mask & __GFP_NO_KSWAPD))
2527 wake_all_kswapd(order, zonelist, high_zoneidx,
2528 zone_idx(preferred_zone));
2529
2530 /*
2531 * OK, we're below the kswapd watermark and have kicked background
2532 * reclaim. Now things get more complex, so set up alloc_flags according
2533 * to how we want to proceed.
2534 */
2535 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2536
2537 /*
2538 * Find the true preferred zone if the allocation is unconstrained by
2539 * cpusets.
2540 */
2541 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2542 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2543 &preferred_zone);
2544
2545 rebalance:
2546 /* This is the last chance, in general, before the goto nopage. */
2547 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2548 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2549 preferred_zone, migratetype);
2550 if (page)
2551 goto got_pg;
2552
2553 /* Allocate without watermarks if the context allows */
2554 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2555 /*
2556 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2557 * the allocation is high priority and these type of
2558 * allocations are system rather than user orientated
2559 */
2560 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2561
2562 page = __alloc_pages_high_priority(gfp_mask, order,
2563 zonelist, high_zoneidx, nodemask,
2564 preferred_zone, migratetype);
2565 if (page) {
2566 goto got_pg;
2567 }
2568 }
2569
2570 /* Atomic allocations - we can't balance anything */
2571 if (!wait)
2572 goto nopage;
2573
2574 /* Avoid recursion of direct reclaim */
2575 if (current->flags & PF_MEMALLOC)
2576 goto nopage;
2577
2578 /* Avoid allocations with no watermarks from looping endlessly */
2579 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2580 goto nopage;
2581
2582 /*
2583 * Try direct compaction. The first pass is asynchronous. Subsequent
2584 * attempts after direct reclaim are synchronous
2585 */
2586 page = __alloc_pages_direct_compact(gfp_mask, order,
2587 zonelist, high_zoneidx,
2588 nodemask,
2589 alloc_flags, preferred_zone,
2590 migratetype, sync_migration,
2591 &contended_compaction,
2592 &deferred_compaction,
2593 &did_some_progress);
2594 if (page)
2595 goto got_pg;
2596 sync_migration = true;
2597
2598 /*
2599 * If compaction is deferred for high-order allocations, it is because
2600 * sync compaction recently failed. In this is the case and the caller
2601 * requested a movable allocation that does not heavily disrupt the
2602 * system then fail the allocation instead of entering direct reclaim.
2603 */
2604 if ((deferred_compaction || contended_compaction) &&
2605 (gfp_mask & __GFP_NO_KSWAPD))
2606 goto nopage;
2607
2608 /* Try direct reclaim and then allocating */
2609 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2610 zonelist, high_zoneidx,
2611 nodemask,
2612 alloc_flags, preferred_zone,
2613 migratetype, &did_some_progress);
2614 if (page)
2615 goto got_pg;
2616
2617 /*
2618 * If we failed to make any progress reclaiming, then we are
2619 * running out of options and have to consider going OOM
2620 * If we are looping more than 250 ms, go to OOM
2621 */
2622
2623 #ifdef CONFIG_SEC_OOM_KILLER
2624 #define SHOULD_CONSIDER_OOM (!did_some_progress || time_after(jiffies, oom_invoke_timeout)) && (boot_mode != 2)
2625 #else
2626 #define SHOULD_CONSIDER_OOM !did_some_progress && (boot_mode != 2)
2627 #endif
2628
2629 if (SHOULD_CONSIDER_OOM) {
2630 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2631 if (oom_killer_disabled)
2632 goto nopage;
2633 /* Coredumps can quickly deplete all memory reserves */
2634 if ((current->flags & PF_DUMPCORE) &&
2635 !(gfp_mask & __GFP_NOFAIL))
2636 goto nopage;
2637
2638 #ifdef CONFIG_SEC_OOM_KILLER
2639 if (did_some_progress)
2640 pr_info("time's up : calling "
2641 "__alloc_pages_may_oom(o:%u, gfp:0x%x)\n",
2642 order, gfp_mask);
2643 #endif
2644 page = __alloc_pages_may_oom(gfp_mask, order,
2645 zonelist, high_zoneidx,
2646 nodemask, preferred_zone,
2647 migratetype);
2648 if (page)
2649 goto got_pg;
2650
2651 if (!(gfp_mask & __GFP_NOFAIL)) {
2652 /*
2653 * The oom killer is not called for high-order
2654 * allocations that may fail, so if no progress
2655 * is being made, there are no other options and
2656 * retrying is unlikely to help.
2657 */
2658 if (order > PAGE_ALLOC_COSTLY_ORDER)
2659 goto nopage;
2660 /*
2661 * The oom killer is not called for lowmem
2662 * allocations to prevent needlessly killing
2663 * innocent tasks.
2664 */
2665 if (high_zoneidx < ZONE_NORMAL)
2666 goto nopage;
2667 }
2668
2669 #ifdef CONFIG_SEC_OOM_KILLER
2670 oom_invoke_timeout = jiffies + HZ/4;
2671 #endif
2672 goto restart;
2673 }
2674 }
2675
2676 /* Check if we should retry the allocation */
2677 pages_reclaimed += did_some_progress;
2678 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2679 pages_reclaimed)) {
2680 /* Wait for some write requests to complete then retry */
2681 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2682 goto rebalance;
2683 } else {
2684 /*
2685 * High-order allocations do not necessarily loop after
2686 * direct reclaim and reclaim/compaction depends on compaction
2687 * being called after reclaim so call directly if necessary
2688 */
2689 page = __alloc_pages_direct_compact(gfp_mask, order,
2690 zonelist, high_zoneidx,
2691 nodemask,
2692 alloc_flags, preferred_zone,
2693 migratetype, sync_migration,
2694 &contended_compaction,
2695 &deferred_compaction,
2696 &did_some_progress);
2697 if (page)
2698 goto got_pg;
2699 }
2700
2701 nopage:
2702 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
2703 clear_tsk_thread_flag(current, TIF_MEMALLOC);
2704 #endif
2705 warn_alloc_failed(gfp_mask, order, NULL);
2706 return page;
2707 got_pg:
2708 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
2709 clear_tsk_thread_flag(current, TIF_MEMALLOC);
2710 #endif
2711 if (kmemcheck_enabled)
2712 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2713
2714 return page;
2715 }
2716
2717 /*
2718 * This is the 'heart' of the zoned buddy allocator.
2719 */
2720 struct page *
2721 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2722 struct zonelist *zonelist, nodemask_t *nodemask)
2723 {
2724 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2725 struct zone *preferred_zone;
2726 struct page *page = NULL;
2727 int migratetype = allocflags_to_migratetype(gfp_mask);
2728 unsigned int cpuset_mems_cookie;
2729 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2730 struct mem_cgroup *memcg = NULL;
2731
2732 gfp_mask &= gfp_allowed_mask;
2733
2734 lockdep_trace_alloc(gfp_mask);
2735
2736 might_sleep_if(gfp_mask & __GFP_WAIT);
2737
2738 if (should_fail_alloc_page(gfp_mask, order))
2739 return NULL;
2740
2741 /*
2742 * Check the zones suitable for the gfp_mask contain at least one
2743 * valid zone. It's possible to have an empty zonelist as a result
2744 * of GFP_THISNODE and a memoryless node
2745 */
2746 if (unlikely(!zonelist->_zonerefs->zone))
2747 return NULL;
2748
2749 /*
2750 * Will only have any effect when __GFP_KMEMCG is set. This is
2751 * verified in the (always inline) callee
2752 */
2753 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2754 return NULL;
2755
2756 retry_cpuset:
2757 cpuset_mems_cookie = get_mems_allowed();
2758
2759 /* The preferred zone is used for statistics later */
2760 first_zones_zonelist(zonelist, high_zoneidx,
2761 nodemask ? : &cpuset_current_mems_allowed,
2762 &preferred_zone);
2763 if (!preferred_zone)
2764 goto out;
2765
2766 #ifdef CONFIG_CMA
2767 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2768 alloc_flags |= ALLOC_CMA;
2769 #endif
2770 /* First allocation attempt */
2771 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2772 zonelist, high_zoneidx, alloc_flags,
2773 preferred_zone, migratetype);
2774 if (unlikely(!page)) {
2775 /*
2776 * Runtime PM, block IO and its error handling path
2777 * can deadlock because I/O on the device might not
2778 * complete.
2779 */
2780 gfp_mask = memalloc_noio_flags(gfp_mask);
2781 page = __alloc_pages_slowpath(gfp_mask, order,
2782 zonelist, high_zoneidx, nodemask,
2783 preferred_zone, migratetype);
2784 }
2785
2786 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2787
2788 out:
2789 /*
2790 * When updating a task's mems_allowed, it is possible to race with
2791 * parallel threads in such a way that an allocation can fail while
2792 * the mask is being updated. If a page allocation is about to fail,
2793 * check if the cpuset changed during allocation and if so, retry.
2794 */
2795 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2796 goto retry_cpuset;
2797
2798 memcg_kmem_commit_charge(page, memcg, order);
2799
2800 return page;
2801 }
2802 EXPORT_SYMBOL(__alloc_pages_nodemask);
2803
2804 /*
2805 * Common helper functions.
2806 */
2807 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2808 {
2809 struct page *page;
2810
2811 /*
2812 * __get_free_pages() returns a 32-bit address, which cannot represent
2813 * a highmem page
2814 */
2815 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2816
2817 page = alloc_pages(gfp_mask, order);
2818 if (!page)
2819 return 0;
2820 return (unsigned long) page_address(page);
2821 }
2822 EXPORT_SYMBOL(__get_free_pages);
2823
2824 unsigned long get_zeroed_page(gfp_t gfp_mask)
2825 {
2826 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2827 }
2828 EXPORT_SYMBOL(get_zeroed_page);
2829
2830 void __free_pages(struct page *page, unsigned int order)
2831 {
2832 if (put_page_testzero(page)) {
2833 if (order == 0)
2834 free_hot_cold_page(page, 0);
2835 else
2836 __free_pages_ok(page, order);
2837 }
2838 }
2839
2840 EXPORT_SYMBOL(__free_pages);
2841
2842 void free_pages(unsigned long addr, unsigned int order)
2843 {
2844 if (addr != 0) {
2845 VM_BUG_ON(!virt_addr_valid((void *)addr));
2846 __free_pages(virt_to_page((void *)addr), order);
2847 }
2848 }
2849
2850 EXPORT_SYMBOL(free_pages);
2851
2852 /*
2853 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2854 * pages allocated with __GFP_KMEMCG.
2855 *
2856 * Those pages are accounted to a particular memcg, embedded in the
2857 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2858 * for that information only to find out that it is NULL for users who have no
2859 * interest in that whatsoever, we provide these functions.
2860 *
2861 * The caller knows better which flags it relies on.
2862 */
2863 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2864 {
2865 memcg_kmem_uncharge_pages(page, order);
2866 __free_pages(page, order);
2867 }
2868
2869 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2870 {
2871 if (addr != 0) {
2872 VM_BUG_ON(!virt_addr_valid((void *)addr));
2873 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2874 }
2875 }
2876
2877 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2878 {
2879 if (addr) {
2880 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2881 unsigned long used = addr + PAGE_ALIGN(size);
2882
2883 split_page(virt_to_page((void *)addr), order);
2884 while (used < alloc_end) {
2885 free_page(used);
2886 used += PAGE_SIZE;
2887 }
2888 }
2889 return (void *)addr;
2890 }
2891
2892 /**
2893 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2894 * @size: the number of bytes to allocate
2895 * @gfp_mask: GFP flags for the allocation
2896 *
2897 * This function is similar to alloc_pages(), except that it allocates the
2898 * minimum number of pages to satisfy the request. alloc_pages() can only
2899 * allocate memory in power-of-two pages.
2900 *
2901 * This function is also limited by MAX_ORDER.
2902 *
2903 * Memory allocated by this function must be released by free_pages_exact().
2904 */
2905 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2906 {
2907 unsigned int order = get_order(size);
2908 unsigned long addr;
2909
2910 addr = __get_free_pages(gfp_mask, order);
2911 return make_alloc_exact(addr, order, size);
2912 }
2913 EXPORT_SYMBOL(alloc_pages_exact);
2914
2915 /**
2916 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2917 * pages on a node.
2918 * @nid: the preferred node ID where memory should be allocated
2919 * @size: the number of bytes to allocate
2920 * @gfp_mask: GFP flags for the allocation
2921 *
2922 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2923 * back.
2924 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2925 * but is not exact.
2926 */
2927 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2928 {
2929 unsigned order = get_order(size);
2930 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2931 if (!p)
2932 return NULL;
2933 return make_alloc_exact((unsigned long)page_address(p), order, size);
2934 }
2935 EXPORT_SYMBOL(alloc_pages_exact_nid);
2936
2937 /**
2938 * free_pages_exact - release memory allocated via alloc_pages_exact()
2939 * @virt: the value returned by alloc_pages_exact.
2940 * @size: size of allocation, same value as passed to alloc_pages_exact().
2941 *
2942 * Release the memory allocated by a previous call to alloc_pages_exact.
2943 */
2944 void free_pages_exact(void *virt, size_t size)
2945 {
2946 unsigned long addr = (unsigned long)virt;
2947 unsigned long end = addr + PAGE_ALIGN(size);
2948
2949 while (addr < end) {
2950 free_page(addr);
2951 addr += PAGE_SIZE;
2952 }
2953 }
2954 EXPORT_SYMBOL(free_pages_exact);
2955
2956 /**
2957 * nr_free_zone_pages - count number of pages beyond high watermark
2958 * @offset: The zone index of the highest zone
2959 *
2960 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2961 * high watermark within all zones at or below a given zone index. For each
2962 * zone, the number of pages is calculated as:
2963 * present_pages - high_pages
2964 */
2965 static unsigned long nr_free_zone_pages(int offset)
2966 {
2967 struct zoneref *z;
2968 struct zone *zone;
2969
2970 /* Just pick one node, since fallback list is circular */
2971 unsigned long sum = 0;
2972
2973 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2974
2975 for_each_zone_zonelist(zone, z, zonelist, offset) {
2976 unsigned long size = zone->managed_pages;
2977 unsigned long high = high_wmark_pages(zone);
2978 if (size > high)
2979 sum += size - high;
2980 }
2981
2982 return sum;
2983 }
2984
2985 /**
2986 * nr_free_buffer_pages - count number of pages beyond high watermark
2987 *
2988 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2989 * watermark within ZONE_DMA and ZONE_NORMAL.
2990 */
2991 unsigned long nr_free_buffer_pages(void)
2992 {
2993 return nr_free_zone_pages(gfp_zone(GFP_USER));
2994 }
2995 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2996
2997 /**
2998 * nr_free_pagecache_pages - count number of pages beyond high watermark
2999 *
3000 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3001 * high watermark within all zones.
3002 */
3003 unsigned long nr_free_pagecache_pages(void)
3004 {
3005 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3006 }
3007
3008 static inline void show_node(struct zone *zone)
3009 {
3010 if (IS_ENABLED(CONFIG_NUMA))
3011 printk("Node %d ", zone_to_nid(zone));
3012 }
3013
3014 void si_meminfo(struct sysinfo *val)
3015 {
3016 val->totalram = totalram_pages;
3017 val->sharedram = 0;
3018 val->freeram = global_page_state(NR_FREE_PAGES);
3019 val->bufferram = nr_blockdev_pages();
3020 val->totalhigh = totalhigh_pages;
3021 val->freehigh = nr_free_highpages();
3022 val->mem_unit = PAGE_SIZE;
3023 }
3024
3025 EXPORT_SYMBOL(si_meminfo);
3026
3027 #ifdef CONFIG_NUMA
3028 void si_meminfo_node(struct sysinfo *val, int nid)
3029 {
3030 pg_data_t *pgdat = NODE_DATA(nid);
3031
3032 val->totalram = pgdat->node_present_pages;
3033 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3034 #ifdef CONFIG_HIGHMEM
3035 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3036 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3037 NR_FREE_PAGES);
3038 #else
3039 val->totalhigh = 0;
3040 val->freehigh = 0;
3041 #endif
3042 val->mem_unit = PAGE_SIZE;
3043 }
3044 #endif
3045
3046 /*
3047 * Determine whether the node should be displayed or not, depending on whether
3048 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3049 */
3050 bool skip_free_areas_node(unsigned int flags, int nid)
3051 {
3052 bool ret = false;
3053 unsigned int cpuset_mems_cookie;
3054
3055 if (!(flags & SHOW_MEM_FILTER_NODES))
3056 goto out;
3057
3058 do {
3059 cpuset_mems_cookie = get_mems_allowed();
3060 ret = !node_isset(nid, cpuset_current_mems_allowed);
3061 } while (!put_mems_allowed(cpuset_mems_cookie));
3062 out:
3063 return ret;
3064 }
3065
3066 #define K(x) ((x) << (PAGE_SHIFT-10))
3067
3068 static void show_migration_types(unsigned char type)
3069 {
3070 static const char types[MIGRATE_TYPES] = {
3071 [MIGRATE_UNMOVABLE] = 'U',
3072 [MIGRATE_RECLAIMABLE] = 'E',
3073 [MIGRATE_MOVABLE] = 'M',
3074 [MIGRATE_RESERVE] = 'R',
3075 #ifdef CONFIG_CMA
3076 [MIGRATE_CMA] = 'C',
3077 #endif
3078 #ifdef CONFIG_MEMORY_ISOLATION
3079 [MIGRATE_ISOLATE] = 'I',
3080 #endif
3081 };
3082 char tmp[MIGRATE_TYPES + 1];
3083 char *p = tmp;
3084 int i;
3085
3086 for (i = 0; i < MIGRATE_TYPES; i++) {
3087 if (type & (1 << i))
3088 *p++ = types[i];
3089 }
3090
3091 *p = '\0';
3092 printk("(%s) ", tmp);
3093 }
3094
3095 /*
3096 * Show free area list (used inside shift_scroll-lock stuff)
3097 * We also calculate the percentage fragmentation. We do this by counting the
3098 * memory on each free list with the exception of the first item on the list.
3099 * Suppresses nodes that are not allowed by current's cpuset if
3100 * SHOW_MEM_FILTER_NODES is passed.
3101 */
3102 void show_free_areas(unsigned int filter)
3103 {
3104 int cpu;
3105 struct zone *zone;
3106
3107 for_each_populated_zone(zone) {
3108 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3109 continue;
3110 show_node(zone);
3111 printk("%s per-cpu:\n", zone->name);
3112
3113 for_each_online_cpu(cpu) {
3114 struct per_cpu_pageset *pageset;
3115
3116 pageset = per_cpu_ptr(zone->pageset, cpu);
3117
3118 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3119 cpu, pageset->pcp.high,
3120 pageset->pcp.batch, pageset->pcp.count);
3121 }
3122 }
3123
3124 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3125 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3126 " unevictable:%lu"
3127 " dirty:%lu writeback:%lu unstable:%lu\n"
3128 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3129 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3130 " free_cma:%lu\n",
3131 global_page_state(NR_ACTIVE_ANON),
3132 global_page_state(NR_INACTIVE_ANON),
3133 global_page_state(NR_ISOLATED_ANON),
3134 global_page_state(NR_ACTIVE_FILE),
3135 global_page_state(NR_INACTIVE_FILE),
3136 global_page_state(NR_ISOLATED_FILE),
3137 global_page_state(NR_UNEVICTABLE),
3138 global_page_state(NR_FILE_DIRTY),
3139 global_page_state(NR_WRITEBACK),
3140 global_page_state(NR_UNSTABLE_NFS),
3141 global_page_state(NR_FREE_PAGES),
3142 global_page_state(NR_SLAB_RECLAIMABLE),
3143 global_page_state(NR_SLAB_UNRECLAIMABLE),
3144 global_page_state(NR_FILE_MAPPED),
3145 global_page_state(NR_SHMEM),
3146 global_page_state(NR_PAGETABLE),
3147 global_page_state(NR_BOUNCE),
3148 global_page_state(NR_FREE_CMA_PAGES));
3149
3150 for_each_populated_zone(zone) {
3151 int i;
3152
3153 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3154 continue;
3155 show_node(zone);
3156 printk("%s"
3157 " free:%lukB"
3158 " min:%lukB"
3159 " low:%lukB"
3160 " high:%lukB"
3161 " active_anon:%lukB"
3162 " inactive_anon:%lukB"
3163 " active_file:%lukB"
3164 " inactive_file:%lukB"
3165 " unevictable:%lukB"
3166 " isolated(anon):%lukB"
3167 " isolated(file):%lukB"
3168 " present:%lukB"
3169 " managed:%lukB"
3170 " mlocked:%lukB"
3171 " dirty:%lukB"
3172 " writeback:%lukB"
3173 " mapped:%lukB"
3174 " shmem:%lukB"
3175 " slab_reclaimable:%lukB"
3176 " slab_unreclaimable:%lukB"
3177 " kernel_stack:%lukB"
3178 " pagetables:%lukB"
3179 " unstable:%lukB"
3180 " bounce:%lukB"
3181 " free_cma:%lukB"
3182 " writeback_tmp:%lukB"
3183 " pages_scanned:%lu"
3184 " all_unreclaimable? %s"
3185 "\n",
3186 zone->name,
3187 K(zone_page_state(zone, NR_FREE_PAGES)),
3188 K(min_wmark_pages(zone)),
3189 K(low_wmark_pages(zone)),
3190 K(high_wmark_pages(zone)),
3191 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3192 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3193 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3194 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3195 K(zone_page_state(zone, NR_UNEVICTABLE)),
3196 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3197 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3198 K(zone->present_pages),
3199 K(zone->managed_pages),
3200 K(zone_page_state(zone, NR_MLOCK)),
3201 K(zone_page_state(zone, NR_FILE_DIRTY)),
3202 K(zone_page_state(zone, NR_WRITEBACK)),
3203 K(zone_page_state(zone, NR_FILE_MAPPED)),
3204 K(zone_page_state(zone, NR_SHMEM)),
3205 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3206 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3207 zone_page_state(zone, NR_KERNEL_STACK) *
3208 THREAD_SIZE / 1024,
3209 K(zone_page_state(zone, NR_PAGETABLE)),
3210 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3211 K(zone_page_state(zone, NR_BOUNCE)),
3212 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3213 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3214 zone->pages_scanned,
3215 (zone->all_unreclaimable ? "yes" : "no")
3216 );
3217 printk("lowmem_reserve[]:");
3218 for (i = 0; i < MAX_NR_ZONES; i++)
3219 printk(" %lu", zone->lowmem_reserve[i]);
3220 printk("\n");
3221 }
3222
3223 for_each_populated_zone(zone) {
3224 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3225 unsigned char types[MAX_ORDER];
3226
3227 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3228 continue;
3229 show_node(zone);
3230 printk("%s: ", zone->name);
3231
3232 spin_lock_irqsave(&zone->lock, flags);
3233 for (order = 0; order < MAX_ORDER; order++) {
3234 struct free_area *area = &zone->free_area[order];
3235 int type;
3236
3237 nr[order] = area->nr_free;
3238 total += nr[order] << order;
3239
3240 types[order] = 0;
3241 for (type = 0; type < MIGRATE_TYPES; type++) {
3242 if (!list_empty(&area->free_list[type]))
3243 types[order] |= 1 << type;
3244 }
3245 }
3246 spin_unlock_irqrestore(&zone->lock, flags);
3247 for (order = 0; order < MAX_ORDER; order++) {
3248 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3249 if (nr[order])
3250 show_migration_types(types[order]);
3251 }
3252 printk("= %lukB\n", K(total));
3253 }
3254
3255 hugetlb_show_meminfo();
3256
3257 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3258
3259 show_swap_cache_info();
3260 }
3261
3262 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3263 {
3264 zoneref->zone = zone;
3265 zoneref->zone_idx = zone_idx(zone);
3266 }
3267
3268 /*
3269 * Builds allocation fallback zone lists.
3270 *
3271 * Add all populated zones of a node to the zonelist.
3272 */
3273 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3274 int nr_zones, enum zone_type zone_type)
3275 {
3276 struct zone *zone;
3277
3278 BUG_ON(zone_type >= MAX_NR_ZONES);
3279 zone_type++;
3280
3281 do {
3282 zone_type--;
3283 zone = pgdat->node_zones + zone_type;
3284 if (populated_zone(zone)) {
3285 zoneref_set_zone(zone,
3286 &zonelist->_zonerefs[nr_zones++]);
3287 check_highest_zone(zone_type);
3288 }
3289
3290 } while (zone_type);
3291 return nr_zones;
3292 }
3293
3294
3295 /*
3296 * zonelist_order:
3297 * 0 = automatic detection of better ordering.
3298 * 1 = order by ([node] distance, -zonetype)
3299 * 2 = order by (-zonetype, [node] distance)
3300 *
3301 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3302 * the same zonelist. So only NUMA can configure this param.
3303 */
3304 #define ZONELIST_ORDER_DEFAULT 0
3305 #define ZONELIST_ORDER_NODE 1
3306 #define ZONELIST_ORDER_ZONE 2
3307
3308 /* zonelist order in the kernel.
3309 * set_zonelist_order() will set this to NODE or ZONE.
3310 */
3311 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3312 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3313
3314
3315 #ifdef CONFIG_NUMA
3316 /* The value user specified ....changed by config */
3317 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3318 /* string for sysctl */
3319 #define NUMA_ZONELIST_ORDER_LEN 16
3320 char numa_zonelist_order[16] = "default";
3321
3322 /*
3323 * interface for configure zonelist ordering.
3324 * command line option "numa_zonelist_order"
3325 * = "[dD]efault - default, automatic configuration.
3326 * = "[nN]ode - order by node locality, then by zone within node
3327 * = "[zZ]one - order by zone, then by locality within zone
3328 */
3329
3330 static int __parse_numa_zonelist_order(char *s)
3331 {
3332 if (*s == 'd' || *s == 'D') {
3333 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3334 } else if (*s == 'n' || *s == 'N') {
3335 user_zonelist_order = ZONELIST_ORDER_NODE;
3336 } else if (*s == 'z' || *s == 'Z') {
3337 user_zonelist_order = ZONELIST_ORDER_ZONE;
3338 } else {
3339 printk(KERN_WARNING
3340 "Ignoring invalid numa_zonelist_order value: "
3341 "%s\n", s);
3342 return -EINVAL;
3343 }
3344 return 0;
3345 }
3346
3347 static __init int setup_numa_zonelist_order(char *s)
3348 {
3349 int ret;
3350
3351 if (!s)
3352 return 0;
3353
3354 ret = __parse_numa_zonelist_order(s);
3355 if (ret == 0)
3356 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3357
3358 return ret;
3359 }
3360 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3361
3362 /*
3363 * sysctl handler for numa_zonelist_order
3364 */
3365 int numa_zonelist_order_handler(ctl_table *table, int write,
3366 void __user *buffer, size_t *length,
3367 loff_t *ppos)
3368 {
3369 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3370 int ret;
3371 static DEFINE_MUTEX(zl_order_mutex);
3372
3373 mutex_lock(&zl_order_mutex);
3374 if (write)
3375 strcpy(saved_string, (char*)table->data);
3376 ret = proc_dostring(table, write, buffer, length, ppos);
3377 if (ret)
3378 goto out;
3379 if (write) {
3380 int oldval = user_zonelist_order;
3381 if (__parse_numa_zonelist_order((char*)table->data)) {
3382 /*
3383 * bogus value. restore saved string
3384 */
3385 strncpy((char*)table->data, saved_string,
3386 NUMA_ZONELIST_ORDER_LEN);
3387 user_zonelist_order = oldval;
3388 } else if (oldval != user_zonelist_order) {
3389 mutex_lock(&zonelists_mutex);
3390 build_all_zonelists(NULL, NULL);
3391 mutex_unlock(&zonelists_mutex);
3392 }
3393 }
3394 out:
3395 mutex_unlock(&zl_order_mutex);
3396 return ret;
3397 }
3398
3399
3400 #define MAX_NODE_LOAD (nr_online_nodes)
3401 static int node_load[MAX_NUMNODES];
3402
3403 /**
3404 * find_next_best_node - find the next node that should appear in a given node's fallback list
3405 * @node: node whose fallback list we're appending
3406 * @used_node_mask: nodemask_t of already used nodes
3407 *
3408 * We use a number of factors to determine which is the next node that should
3409 * appear on a given node's fallback list. The node should not have appeared
3410 * already in @node's fallback list, and it should be the next closest node
3411 * according to the distance array (which contains arbitrary distance values
3412 * from each node to each node in the system), and should also prefer nodes
3413 * with no CPUs, since presumably they'll have very little allocation pressure
3414 * on them otherwise.
3415 * It returns -1 if no node is found.
3416 */
3417 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3418 {
3419 int n, val;
3420 int min_val = INT_MAX;
3421 int best_node = NUMA_NO_NODE;
3422 const struct cpumask *tmp = cpumask_of_node(0);
3423
3424 /* Use the local node if we haven't already */
3425 if (!node_isset(node, *used_node_mask)) {
3426 node_set(node, *used_node_mask);
3427 return node;
3428 }
3429
3430 for_each_node_state(n, N_MEMORY) {
3431
3432 /* Don't want a node to appear more than once */
3433 if (node_isset(n, *used_node_mask))
3434 continue;
3435
3436 /* Use the distance array to find the distance */
3437 val = node_distance(node, n);
3438
3439 /* Penalize nodes under us ("prefer the next node") */
3440 val += (n < node);
3441
3442 /* Give preference to headless and unused nodes */
3443 tmp = cpumask_of_node(n);
3444 if (!cpumask_empty(tmp))
3445 val += PENALTY_FOR_NODE_WITH_CPUS;
3446
3447 /* Slight preference for less loaded node */
3448 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3449 val += node_load[n];
3450
3451 if (val < min_val) {
3452 min_val = val;
3453 best_node = n;
3454 }
3455 }
3456
3457 if (best_node >= 0)
3458 node_set(best_node, *used_node_mask);
3459
3460 return best_node;
3461 }
3462
3463
3464 /*
3465 * Build zonelists ordered by node and zones within node.
3466 * This results in maximum locality--normal zone overflows into local
3467 * DMA zone, if any--but risks exhausting DMA zone.
3468 */
3469 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3470 {
3471 int j;
3472 struct zonelist *zonelist;
3473
3474 zonelist = &pgdat->node_zonelists[0];
3475 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3476 ;
3477 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3478 MAX_NR_ZONES - 1);
3479 zonelist->_zonerefs[j].zone = NULL;
3480 zonelist->_zonerefs[j].zone_idx = 0;
3481 }
3482
3483 /*
3484 * Build gfp_thisnode zonelists
3485 */
3486 static void build_thisnode_zonelists(pg_data_t *pgdat)
3487 {
3488 int j;
3489 struct zonelist *zonelist;
3490
3491 zonelist = &pgdat->node_zonelists[1];
3492 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3493 zonelist->_zonerefs[j].zone = NULL;
3494 zonelist->_zonerefs[j].zone_idx = 0;
3495 }
3496
3497 /*
3498 * Build zonelists ordered by zone and nodes within zones.
3499 * This results in conserving DMA zone[s] until all Normal memory is
3500 * exhausted, but results in overflowing to remote node while memory
3501 * may still exist in local DMA zone.
3502 */
3503 static int node_order[MAX_NUMNODES];
3504
3505 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3506 {
3507 int pos, j, node;
3508 int zone_type; /* needs to be signed */
3509 struct zone *z;
3510 struct zonelist *zonelist;
3511
3512 zonelist = &pgdat->node_zonelists[0];
3513 pos = 0;
3514 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3515 for (j = 0; j < nr_nodes; j++) {
3516 node = node_order[j];
3517 z = &NODE_DATA(node)->node_zones[zone_type];
3518 if (populated_zone(z)) {
3519 zoneref_set_zone(z,
3520 &zonelist->_zonerefs[pos++]);
3521 check_highest_zone(zone_type);
3522 }
3523 }
3524 }
3525 zonelist->_zonerefs[pos].zone = NULL;
3526 zonelist->_zonerefs[pos].zone_idx = 0;
3527 }
3528
3529 static int default_zonelist_order(void)
3530 {
3531 int nid, zone_type;
3532 unsigned long low_kmem_size,total_size;
3533 struct zone *z;
3534 int average_size;
3535 /*
3536 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3537 * If they are really small and used heavily, the system can fall
3538 * into OOM very easily.
3539 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3540 */
3541 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3542 low_kmem_size = 0;
3543 total_size = 0;
3544 for_each_online_node(nid) {
3545 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3546 z = &NODE_DATA(nid)->node_zones[zone_type];
3547 if (populated_zone(z)) {
3548 if (zone_type < ZONE_NORMAL)
3549 low_kmem_size += z->present_pages;
3550 total_size += z->present_pages;
3551 } else if (zone_type == ZONE_NORMAL) {
3552 /*
3553 * If any node has only lowmem, then node order
3554 * is preferred to allow kernel allocations
3555 * locally; otherwise, they can easily infringe
3556 * on other nodes when there is an abundance of
3557 * lowmem available to allocate from.
3558 */
3559 return ZONELIST_ORDER_NODE;
3560 }
3561 }
3562 }
3563 if (!low_kmem_size || /* there are no DMA area. */
3564 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3565 return ZONELIST_ORDER_NODE;
3566 /*
3567 * look into each node's config.
3568 * If there is a node whose DMA/DMA32 memory is very big area on
3569 * local memory, NODE_ORDER may be suitable.
3570 */
3571 average_size = total_size /
3572 (nodes_weight(node_states[N_MEMORY]) + 1);
3573 for_each_online_node(nid) {
3574 low_kmem_size = 0;
3575 total_size = 0;
3576 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3577 z = &NODE_DATA(nid)->node_zones[zone_type];
3578 if (populated_zone(z)) {
3579 if (zone_type < ZONE_NORMAL)
3580 low_kmem_size += z->present_pages;
3581 total_size += z->present_pages;
3582 }
3583 }
3584 if (low_kmem_size &&
3585 total_size > average_size && /* ignore small node */
3586 low_kmem_size > total_size * 70/100)
3587 return ZONELIST_ORDER_NODE;
3588 }
3589 return ZONELIST_ORDER_ZONE;
3590 }
3591
3592 static void set_zonelist_order(void)
3593 {
3594 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3595 current_zonelist_order = default_zonelist_order();
3596 else
3597 current_zonelist_order = user_zonelist_order;
3598 }
3599
3600 static void build_zonelists(pg_data_t *pgdat)
3601 {
3602 int j, node, load;
3603 enum zone_type i;
3604 nodemask_t used_mask;
3605 int local_node, prev_node;
3606 struct zonelist *zonelist;
3607 int order = current_zonelist_order;
3608
3609 /* initialize zonelists */
3610 for (i = 0; i < MAX_ZONELISTS; i++) {
3611 zonelist = pgdat->node_zonelists + i;
3612 zonelist->_zonerefs[0].zone = NULL;
3613 zonelist->_zonerefs[0].zone_idx = 0;
3614 }
3615
3616 /* NUMA-aware ordering of nodes */
3617 local_node = pgdat->node_id;
3618 load = nr_online_nodes;
3619 prev_node = local_node;
3620 nodes_clear(used_mask);
3621
3622 memset(node_order, 0, sizeof(node_order));
3623 j = 0;
3624
3625 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3626 /*
3627 * We don't want to pressure a particular node.
3628 * So adding penalty to the first node in same
3629 * distance group to make it round-robin.
3630 */
3631 if (node_distance(local_node, node) !=
3632 node_distance(local_node, prev_node))
3633 node_load[node] = load;
3634
3635 prev_node = node;
3636 load--;
3637 if (order == ZONELIST_ORDER_NODE)
3638 build_zonelists_in_node_order(pgdat, node);
3639 else
3640 node_order[j++] = node; /* remember order */
3641 }
3642
3643 if (order == ZONELIST_ORDER_ZONE) {
3644 /* calculate node order -- i.e., DMA last! */
3645 build_zonelists_in_zone_order(pgdat, j);
3646 }
3647
3648 build_thisnode_zonelists(pgdat);
3649 }
3650
3651 /* Construct the zonelist performance cache - see further mmzone.h */
3652 static void build_zonelist_cache(pg_data_t *pgdat)
3653 {
3654 struct zonelist *zonelist;
3655 struct zonelist_cache *zlc;
3656 struct zoneref *z;
3657
3658 zonelist = &pgdat->node_zonelists[0];
3659 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3660 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3661 for (z = zonelist->_zonerefs; z->zone; z++)
3662 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3663 }
3664
3665 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3666 /*
3667 * Return node id of node used for "local" allocations.
3668 * I.e., first node id of first zone in arg node's generic zonelist.
3669 * Used for initializing percpu 'numa_mem', which is used primarily
3670 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3671 */
3672 int local_memory_node(int node)
3673 {
3674 struct zone *zone;
3675
3676 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3677 gfp_zone(GFP_KERNEL),
3678 NULL,
3679 &zone);
3680 return zone->node;
3681 }
3682 #endif
3683
3684 #else /* CONFIG_NUMA */
3685
3686 static void set_zonelist_order(void)
3687 {
3688 current_zonelist_order = ZONELIST_ORDER_ZONE;
3689 }
3690
3691 static void build_zonelists(pg_data_t *pgdat)
3692 {
3693 int node, local_node;
3694 enum zone_type j;
3695 struct zonelist *zonelist;
3696
3697 local_node = pgdat->node_id;
3698
3699 zonelist = &pgdat->node_zonelists[0];
3700 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3701
3702 /*
3703 * Now we build the zonelist so that it contains the zones
3704 * of all the other nodes.
3705 * We don't want to pressure a particular node, so when
3706 * building the zones for node N, we make sure that the
3707 * zones coming right after the local ones are those from
3708 * node N+1 (modulo N)
3709 */
3710 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3711 if (!node_online(node))
3712 continue;
3713 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3714 MAX_NR_ZONES - 1);
3715 }
3716 for (node = 0; node < local_node; node++) {
3717 if (!node_online(node))
3718 continue;
3719 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3720 MAX_NR_ZONES - 1);
3721 }
3722
3723 zonelist->_zonerefs[j].zone = NULL;
3724 zonelist->_zonerefs[j].zone_idx = 0;
3725 }
3726
3727 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3728 static void build_zonelist_cache(pg_data_t *pgdat)
3729 {
3730 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3731 }
3732
3733 #endif /* CONFIG_NUMA */
3734
3735 /*
3736 * Boot pageset table. One per cpu which is going to be used for all
3737 * zones and all nodes. The parameters will be set in such a way
3738 * that an item put on a list will immediately be handed over to
3739 * the buddy list. This is safe since pageset manipulation is done
3740 * with interrupts disabled.
3741 *
3742 * The boot_pagesets must be kept even after bootup is complete for
3743 * unused processors and/or zones. They do play a role for bootstrapping
3744 * hotplugged processors.
3745 *
3746 * zoneinfo_show() and maybe other functions do
3747 * not check if the processor is online before following the pageset pointer.
3748 * Other parts of the kernel may not check if the zone is available.
3749 */
3750 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3751 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3752 static void setup_zone_pageset(struct zone *zone);
3753
3754 /*
3755 * Global mutex to protect against size modification of zonelists
3756 * as well as to serialize pageset setup for the new populated zone.
3757 */
3758 DEFINE_MUTEX(zonelists_mutex);
3759
3760 /* return values int ....just for stop_machine() */
3761 static int __build_all_zonelists(void *data)
3762 {
3763 int nid;
3764 int cpu;
3765 pg_data_t *self = data;
3766
3767 #ifdef CONFIG_NUMA
3768 memset(node_load, 0, sizeof(node_load));
3769 #endif
3770
3771 if (self && !node_online(self->node_id)) {
3772 build_zonelists(self);
3773 build_zonelist_cache(self);
3774 }
3775
3776 for_each_online_node(nid) {
3777 pg_data_t *pgdat = NODE_DATA(nid);
3778
3779 build_zonelists(pgdat);
3780 build_zonelist_cache(pgdat);
3781 }
3782
3783 /*
3784 * Initialize the boot_pagesets that are going to be used
3785 * for bootstrapping processors. The real pagesets for
3786 * each zone will be allocated later when the per cpu
3787 * allocator is available.
3788 *
3789 * boot_pagesets are used also for bootstrapping offline
3790 * cpus if the system is already booted because the pagesets
3791 * are needed to initialize allocators on a specific cpu too.
3792 * F.e. the percpu allocator needs the page allocator which
3793 * needs the percpu allocator in order to allocate its pagesets
3794 * (a chicken-egg dilemma).
3795 */
3796 for_each_possible_cpu(cpu) {
3797 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3798
3799 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3800 /*
3801 * We now know the "local memory node" for each node--
3802 * i.e., the node of the first zone in the generic zonelist.
3803 * Set up numa_mem percpu variable for on-line cpus. During
3804 * boot, only the boot cpu should be on-line; we'll init the
3805 * secondary cpus' numa_mem as they come on-line. During
3806 * node/memory hotplug, we'll fixup all on-line cpus.
3807 */
3808 if (cpu_online(cpu))
3809 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3810 #endif
3811 }
3812
3813 return 0;
3814 }
3815
3816 /*
3817 * Called with zonelists_mutex held always
3818 * unless system_state == SYSTEM_BOOTING.
3819 */
3820 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3821 {
3822 set_zonelist_order();
3823
3824 if (system_state == SYSTEM_BOOTING) {
3825 __build_all_zonelists(NULL);
3826 mminit_verify_zonelist();
3827 cpuset_init_current_mems_allowed();
3828 } else {
3829 /* we have to stop all cpus to guarantee there is no user
3830 of zonelist */
3831 #ifdef CONFIG_MEMORY_HOTPLUG
3832 if (zone)
3833 setup_zone_pageset(zone);
3834 #endif
3835 stop_machine(__build_all_zonelists, pgdat, NULL);
3836 /* cpuset refresh routine should be here */
3837 }
3838 vm_total_pages = nr_free_pagecache_pages();
3839 /*
3840 * Disable grouping by mobility if the number of pages in the
3841 * system is too low to allow the mechanism to work. It would be
3842 * more accurate, but expensive to check per-zone. This check is
3843 * made on memory-hotadd so a system can start with mobility
3844 * disabled and enable it later
3845 */
3846 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3847 page_group_by_mobility_disabled = 1;
3848 else
3849 page_group_by_mobility_disabled = 0;
3850
3851 printk("Built %i zonelists in %s order, mobility grouping %s. "
3852 "Total pages: %ld\n",
3853 nr_online_nodes,
3854 zonelist_order_name[current_zonelist_order],
3855 page_group_by_mobility_disabled ? "off" : "on",
3856 vm_total_pages);
3857 #ifdef CONFIG_NUMA
3858 printk("Policy zone: %s\n", zone_names[policy_zone]);
3859 #endif
3860 }
3861
3862 /*
3863 * Helper functions to size the waitqueue hash table.
3864 * Essentially these want to choose hash table sizes sufficiently
3865 * large so that collisions trying to wait on pages are rare.
3866 * But in fact, the number of active page waitqueues on typical
3867 * systems is ridiculously low, less than 200. So this is even
3868 * conservative, even though it seems large.
3869 *
3870 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3871 * waitqueues, i.e. the size of the waitq table given the number of pages.
3872 */
3873 #define PAGES_PER_WAITQUEUE 256
3874
3875 #ifndef CONFIG_MEMORY_HOTPLUG
3876 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3877 {
3878 unsigned long size = 1;
3879
3880 pages /= PAGES_PER_WAITQUEUE;
3881
3882 while (size < pages)
3883 size <<= 1;
3884
3885 /*
3886 * Once we have dozens or even hundreds of threads sleeping
3887 * on IO we've got bigger problems than wait queue collision.
3888 * Limit the size of the wait table to a reasonable size.
3889 */
3890 size = min(size, 4096UL);
3891
3892 return max(size, 4UL);
3893 }
3894 #else
3895 /*
3896 * A zone's size might be changed by hot-add, so it is not possible to determine
3897 * a suitable size for its wait_table. So we use the maximum size now.
3898 *
3899 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3900 *
3901 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3902 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3903 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3904 *
3905 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3906 * or more by the traditional way. (See above). It equals:
3907 *
3908 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3909 * ia64(16K page size) : = ( 8G + 4M)byte.
3910 * powerpc (64K page size) : = (32G +16M)byte.
3911 */
3912 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3913 {
3914 return 4096UL;
3915 }
3916 #endif
3917
3918 /*
3919 * This is an integer logarithm so that shifts can be used later
3920 * to extract the more random high bits from the multiplicative
3921 * hash function before the remainder is taken.
3922 */
3923 static inline unsigned long wait_table_bits(unsigned long size)
3924 {
3925 return ffz(~size);
3926 }
3927
3928 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3929
3930 /*
3931 * Check if a pageblock contains reserved pages
3932 */
3933 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3934 {
3935 unsigned long pfn;
3936
3937 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3938 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3939 return 1;
3940 }
3941 return 0;
3942 }
3943
3944 /*
3945 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3946 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3947 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3948 * higher will lead to a bigger reserve which will get freed as contiguous
3949 * blocks as reclaim kicks in
3950 */
3951 static void setup_zone_migrate_reserve(struct zone *zone)
3952 {
3953 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3954 struct page *page;
3955 unsigned long block_migratetype;
3956 int reserve;
3957
3958 /*
3959 * Get the start pfn, end pfn and the number of blocks to reserve
3960 * We have to be careful to be aligned to pageblock_nr_pages to
3961 * make sure that we always check pfn_valid for the first page in
3962 * the block.
3963 */
3964 start_pfn = zone->zone_start_pfn;
3965 end_pfn = zone_end_pfn(zone);
3966 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3967 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3968 pageblock_order;
3969
3970 /*
3971 * Reserve blocks are generally in place to help high-order atomic
3972 * allocations that are short-lived. A min_free_kbytes value that
3973 * would result in more than 2 reserve blocks for atomic allocations
3974 * is assumed to be in place to help anti-fragmentation for the
3975 * future allocation of hugepages at runtime.
3976 */
3977 reserve = min(2, reserve);
3978
3979 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3980 if (!pfn_valid(pfn))
3981 continue;
3982 page = pfn_to_page(pfn);
3983
3984 /* Watch out for overlapping nodes */
3985 if (page_to_nid(page) != zone_to_nid(zone))
3986 continue;
3987
3988 block_migratetype = get_pageblock_migratetype(page);
3989
3990 /* Only test what is necessary when the reserves are not met */
3991 if (reserve > 0) {
3992 /*
3993 * Blocks with reserved pages will never free, skip
3994 * them.
3995 */
3996 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3997 if (pageblock_is_reserved(pfn, block_end_pfn))
3998 continue;
3999
4000 /* If this block is reserved, account for it */
4001 if (block_migratetype == MIGRATE_RESERVE) {
4002 reserve--;
4003 continue;
4004 }
4005
4006 /* Suitable for reserving if this block is movable */
4007 if (block_migratetype == MIGRATE_MOVABLE) {
4008 set_pageblock_migratetype(page,
4009 MIGRATE_RESERVE);
4010 move_freepages_block(zone, page,
4011 MIGRATE_RESERVE);
4012 reserve--;
4013 continue;
4014 }
4015 }
4016
4017 /*
4018 * If the reserve is met and this is a previous reserved block,
4019 * take it back
4020 */
4021 if (block_migratetype == MIGRATE_RESERVE) {
4022 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4023 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4024 }
4025 }
4026 }
4027
4028 /*
4029 * Initially all pages are reserved - free ones are freed
4030 * up by free_all_bootmem() once the early boot process is
4031 * done. Non-atomic initialization, single-pass.
4032 */
4033 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4034 unsigned long start_pfn, enum memmap_context context)
4035 {
4036 struct page *page;
4037 unsigned long end_pfn = start_pfn + size;
4038 unsigned long pfn;
4039 struct zone *z;
4040
4041 if (highest_memmap_pfn < end_pfn - 1)
4042 highest_memmap_pfn = end_pfn - 1;
4043
4044 z = &NODE_DATA(nid)->node_zones[zone];
4045 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4046 /*
4047 * There can be holes in boot-time mem_map[]s
4048 * handed to this function. They do not
4049 * exist on hotplugged memory.
4050 */
4051 if (context == MEMMAP_EARLY) {
4052 if (!early_pfn_valid(pfn))
4053 continue;
4054 if (!early_pfn_in_nid(pfn, nid))
4055 continue;
4056 }
4057 page = pfn_to_page(pfn);
4058 set_page_links(page, zone, nid, pfn);
4059 mminit_verify_page_links(page, zone, nid, pfn);
4060 init_page_count(page);
4061 page_mapcount_reset(page);
4062 page_nid_reset_last(page);
4063 SetPageReserved(page);
4064 /*
4065 * Mark the block movable so that blocks are reserved for
4066 * movable at startup. This will force kernel allocations
4067 * to reserve their blocks rather than leaking throughout
4068 * the address space during boot when many long-lived
4069 * kernel allocations are made. Later some blocks near
4070 * the start are marked MIGRATE_RESERVE by
4071 * setup_zone_migrate_reserve()
4072 *
4073 * bitmap is created for zone's valid pfn range. but memmap
4074 * can be created for invalid pages (for alignment)
4075 * check here not to call set_pageblock_migratetype() against
4076 * pfn out of zone.
4077 */
4078 if ((z->zone_start_pfn <= pfn)
4079 && (pfn < zone_end_pfn(z))
4080 && !(pfn & (pageblock_nr_pages - 1)))
4081 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4082
4083 INIT_LIST_HEAD(&page->lru);
4084 #ifdef WANT_PAGE_VIRTUAL
4085 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4086 if (!is_highmem_idx(zone))
4087 set_page_address(page, __va(pfn << PAGE_SHIFT));
4088 #endif
4089 }
4090 }
4091
4092 static void __meminit zone_init_free_lists(struct zone *zone)
4093 {
4094 int order, t;
4095 for_each_migratetype_order(order, t) {
4096 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4097 zone->free_area[order].nr_free = 0;
4098 }
4099 }
4100
4101 #ifndef __HAVE_ARCH_MEMMAP_INIT
4102 #define memmap_init(size, nid, zone, start_pfn) \
4103 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4104 #endif
4105
4106 static int __meminit zone_batchsize(struct zone *zone)
4107 {
4108 #ifdef CONFIG_MMU
4109 int batch;
4110
4111 /*
4112 * The per-cpu-pages pools are set to around 1000th of the
4113 * size of the zone. But no more than 1/2 of a meg.
4114 *
4115 * OK, so we don't know how big the cache is. So guess.
4116 */
4117 batch = zone->managed_pages / 1024;
4118 if (batch * PAGE_SIZE > 512 * 1024)
4119 batch = (512 * 1024) / PAGE_SIZE;
4120 batch /= 4; /* We effectively *= 4 below */
4121 if (batch < 1)
4122 batch = 1;
4123
4124 /*
4125 * Clamp the batch to a 2^n - 1 value. Having a power
4126 * of 2 value was found to be more likely to have
4127 * suboptimal cache aliasing properties in some cases.
4128 *
4129 * For example if 2 tasks are alternately allocating
4130 * batches of pages, one task can end up with a lot
4131 * of pages of one half of the possible page colors
4132 * and the other with pages of the other colors.
4133 */
4134 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4135
4136 return batch;
4137
4138 #else
4139 /* The deferral and batching of frees should be suppressed under NOMMU
4140 * conditions.
4141 *
4142 * The problem is that NOMMU needs to be able to allocate large chunks
4143 * of contiguous memory as there's no hardware page translation to
4144 * assemble apparent contiguous memory from discontiguous pages.
4145 *
4146 * Queueing large contiguous runs of pages for batching, however,
4147 * causes the pages to actually be freed in smaller chunks. As there
4148 * can be a significant delay between the individual batches being
4149 * recycled, this leads to the once large chunks of space being
4150 * fragmented and becoming unavailable for high-order allocations.
4151 */
4152 return 0;
4153 #endif
4154 }
4155
4156 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4157 {
4158 struct per_cpu_pages *pcp;
4159 int migratetype;
4160
4161 memset(p, 0, sizeof(*p));
4162
4163 pcp = &p->pcp;
4164 pcp->count = 0;
4165 pcp->high = 6 * batch;
4166 pcp->batch = max(1UL, 1 * batch);
4167 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4168 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4169 }
4170
4171 /*
4172 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4173 * to the value high for the pageset p.
4174 */
4175
4176 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4177 unsigned long high)
4178 {
4179 struct per_cpu_pages *pcp;
4180
4181 pcp = &p->pcp;
4182 pcp->high = high;
4183 pcp->batch = max(1UL, high/4);
4184 if ((high/4) > (PAGE_SHIFT * 8))
4185 pcp->batch = PAGE_SHIFT * 8;
4186 }
4187
4188 static void __meminit setup_zone_pageset(struct zone *zone)
4189 {
4190 int cpu;
4191
4192 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4193
4194 for_each_possible_cpu(cpu) {
4195 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4196
4197 setup_pageset(pcp, zone_batchsize(zone));
4198
4199 if (percpu_pagelist_fraction)
4200 setup_pagelist_highmark(pcp,
4201 (zone->managed_pages /
4202 percpu_pagelist_fraction));
4203 }
4204 }
4205
4206 /*
4207 * Allocate per cpu pagesets and initialize them.
4208 * Before this call only boot pagesets were available.
4209 */
4210 void __init setup_per_cpu_pageset(void)
4211 {
4212 struct zone *zone;
4213
4214 for_each_populated_zone(zone)
4215 setup_zone_pageset(zone);
4216 }
4217
4218 static noinline __init_refok
4219 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4220 {
4221 int i;
4222 struct pglist_data *pgdat = zone->zone_pgdat;
4223 size_t alloc_size;
4224
4225 /*
4226 * The per-page waitqueue mechanism uses hashed waitqueues
4227 * per zone.
4228 */
4229 zone->wait_table_hash_nr_entries =
4230 wait_table_hash_nr_entries(zone_size_pages);
4231 zone->wait_table_bits =
4232 wait_table_bits(zone->wait_table_hash_nr_entries);
4233 alloc_size = zone->wait_table_hash_nr_entries
4234 * sizeof(wait_queue_head_t);
4235
4236 if (!slab_is_available()) {
4237 zone->wait_table = (wait_queue_head_t *)
4238 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4239 } else {
4240 /*
4241 * This case means that a zone whose size was 0 gets new memory
4242 * via memory hot-add.
4243 * But it may be the case that a new node was hot-added. In
4244 * this case vmalloc() will not be able to use this new node's
4245 * memory - this wait_table must be initialized to use this new
4246 * node itself as well.
4247 * To use this new node's memory, further consideration will be
4248 * necessary.
4249 */
4250 zone->wait_table = vmalloc(alloc_size);
4251 }
4252 if (!zone->wait_table)
4253 return -ENOMEM;
4254
4255 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4256 init_waitqueue_head(zone->wait_table + i);
4257
4258 return 0;
4259 }
4260
4261 static __meminit void zone_pcp_init(struct zone *zone)
4262 {
4263 /*
4264 * per cpu subsystem is not up at this point. The following code
4265 * relies on the ability of the linker to provide the
4266 * offset of a (static) per cpu variable into the per cpu area.
4267 */
4268 zone->pageset = &boot_pageset;
4269
4270 if (zone->present_pages)
4271 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4272 zone->name, zone->present_pages,
4273 zone_batchsize(zone));
4274 }
4275
4276 int __meminit init_currently_empty_zone(struct zone *zone,
4277 unsigned long zone_start_pfn,
4278 unsigned long size,
4279 enum memmap_context context)
4280 {
4281 struct pglist_data *pgdat = zone->zone_pgdat;
4282 int ret;
4283 ret = zone_wait_table_init(zone, size);
4284 if (ret)
4285 return ret;
4286 pgdat->nr_zones = zone_idx(zone) + 1;
4287
4288 zone->zone_start_pfn = zone_start_pfn;
4289
4290 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4291 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4292 pgdat->node_id,
4293 (unsigned long)zone_idx(zone),
4294 zone_start_pfn, (zone_start_pfn + size));
4295
4296 zone_init_free_lists(zone);
4297
4298 return 0;
4299 }
4300
4301 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4302 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4303 /*
4304 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4305 * Architectures may implement their own version but if add_active_range()
4306 * was used and there are no special requirements, this is a convenient
4307 * alternative
4308 */
4309 int __meminit __early_pfn_to_nid(unsigned long pfn)
4310 {
4311 unsigned long start_pfn, end_pfn;
4312 int i, nid;
4313 /*
4314 * NOTE: The following SMP-unsafe globals are only used early in boot
4315 * when the kernel is running single-threaded.
4316 */
4317 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4318 static int __meminitdata last_nid;
4319
4320 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4321 return last_nid;
4322
4323 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4324 if (start_pfn <= pfn && pfn < end_pfn) {
4325 last_start_pfn = start_pfn;
4326 last_end_pfn = end_pfn;
4327 last_nid = nid;
4328 return nid;
4329 }
4330 /* This is a memory hole */
4331 return -1;
4332 }
4333 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4334
4335 int __meminit early_pfn_to_nid(unsigned long pfn)
4336 {
4337 int nid;
4338
4339 nid = __early_pfn_to_nid(pfn);
4340 if (nid >= 0)
4341 return nid;
4342 /* just returns 0 */
4343 return 0;
4344 }
4345
4346 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4347 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4348 {
4349 int nid;
4350
4351 nid = __early_pfn_to_nid(pfn);
4352 if (nid >= 0 && nid != node)
4353 return false;
4354 return true;
4355 }
4356 #endif
4357
4358 /**
4359 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4360 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4361 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4362 *
4363 * If an architecture guarantees that all ranges registered with
4364 * add_active_ranges() contain no holes and may be freed, this
4365 * this function may be used instead of calling free_bootmem() manually.
4366 */
4367 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4368 {
4369 unsigned long start_pfn, end_pfn;
4370 int i, this_nid;
4371
4372 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4373 start_pfn = min(start_pfn, max_low_pfn);
4374 end_pfn = min(end_pfn, max_low_pfn);
4375
4376 if (start_pfn < end_pfn)
4377 free_bootmem_node(NODE_DATA(this_nid),
4378 PFN_PHYS(start_pfn),
4379 (end_pfn - start_pfn) << PAGE_SHIFT);
4380 }
4381 }
4382
4383 /**
4384 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4385 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4386 *
4387 * If an architecture guarantees that all ranges registered with
4388 * add_active_ranges() contain no holes and may be freed, this
4389 * function may be used instead of calling memory_present() manually.
4390 */
4391 void __init sparse_memory_present_with_active_regions(int nid)
4392 {
4393 unsigned long start_pfn, end_pfn;
4394 int i, this_nid;
4395
4396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4397 memory_present(this_nid, start_pfn, end_pfn);
4398 }
4399
4400 /**
4401 * get_pfn_range_for_nid - Return the start and end page frames for a node
4402 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4403 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4404 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4405 *
4406 * It returns the start and end page frame of a node based on information
4407 * provided by an arch calling add_active_range(). If called for a node
4408 * with no available memory, a warning is printed and the start and end
4409 * PFNs will be 0.
4410 */
4411 void __meminit get_pfn_range_for_nid(unsigned int nid,
4412 unsigned long *start_pfn, unsigned long *end_pfn)
4413 {
4414 unsigned long this_start_pfn, this_end_pfn;
4415 int i;
4416
4417 *start_pfn = -1UL;
4418 *end_pfn = 0;
4419
4420 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4421 *start_pfn = min(*start_pfn, this_start_pfn);
4422 *end_pfn = max(*end_pfn, this_end_pfn);
4423 }
4424
4425 if (*start_pfn == -1UL)
4426 *start_pfn = 0;
4427 }
4428
4429 /*
4430 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4431 * assumption is made that zones within a node are ordered in monotonic
4432 * increasing memory addresses so that the "highest" populated zone is used
4433 */
4434 static void __init find_usable_zone_for_movable(void)
4435 {
4436 int zone_index;
4437 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4438 if (zone_index == ZONE_MOVABLE)
4439 continue;
4440
4441 if (arch_zone_highest_possible_pfn[zone_index] >
4442 arch_zone_lowest_possible_pfn[zone_index])
4443 break;
4444 }
4445
4446 VM_BUG_ON(zone_index == -1);
4447 movable_zone = zone_index;
4448 }
4449
4450 /*
4451 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4452 * because it is sized independent of architecture. Unlike the other zones,
4453 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4454 * in each node depending on the size of each node and how evenly kernelcore
4455 * is distributed. This helper function adjusts the zone ranges
4456 * provided by the architecture for a given node by using the end of the
4457 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4458 * zones within a node are in order of monotonic increases memory addresses
4459 */
4460 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4461 unsigned long zone_type,
4462 unsigned long node_start_pfn,
4463 unsigned long node_end_pfn,
4464 unsigned long *zone_start_pfn,
4465 unsigned long *zone_end_pfn)
4466 {
4467 /* Only adjust if ZONE_MOVABLE is on this node */
4468 if (zone_movable_pfn[nid]) {
4469 /* Size ZONE_MOVABLE */
4470 if (zone_type == ZONE_MOVABLE) {
4471 *zone_start_pfn = zone_movable_pfn[nid];
4472 *zone_end_pfn = min(node_end_pfn,
4473 arch_zone_highest_possible_pfn[movable_zone]);
4474
4475 /* Adjust for ZONE_MOVABLE starting within this range */
4476 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4477 *zone_end_pfn > zone_movable_pfn[nid]) {
4478 *zone_end_pfn = zone_movable_pfn[nid];
4479
4480 /* Check if this whole range is within ZONE_MOVABLE */
4481 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4482 *zone_start_pfn = *zone_end_pfn;
4483 }
4484 }
4485
4486 /*
4487 * Return the number of pages a zone spans in a node, including holes
4488 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4489 */
4490 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4491 unsigned long zone_type,
4492 unsigned long *ignored)
4493 {
4494 unsigned long node_start_pfn, node_end_pfn;
4495 unsigned long zone_start_pfn, zone_end_pfn;
4496
4497 /* Get the start and end of the node and zone */
4498 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4499 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4500 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4501 adjust_zone_range_for_zone_movable(nid, zone_type,
4502 node_start_pfn, node_end_pfn,
4503 &zone_start_pfn, &zone_end_pfn);
4504
4505 /* Check that this node has pages within the zone's required range */
4506 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4507 return 0;
4508
4509 /* Move the zone boundaries inside the node if necessary */
4510 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4511 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4512
4513 /* Return the spanned pages */
4514 return zone_end_pfn - zone_start_pfn;
4515 }
4516
4517 /*
4518 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4519 * then all holes in the requested range will be accounted for.
4520 */
4521 unsigned long __meminit __absent_pages_in_range(int nid,
4522 unsigned long range_start_pfn,
4523 unsigned long range_end_pfn)
4524 {
4525 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4526 unsigned long start_pfn, end_pfn;
4527 int i;
4528
4529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4530 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4531 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4532 nr_absent -= end_pfn - start_pfn;
4533 }
4534 return nr_absent;
4535 }
4536
4537 /**
4538 * absent_pages_in_range - Return number of page frames in holes within a range
4539 * @start_pfn: The start PFN to start searching for holes
4540 * @end_pfn: The end PFN to stop searching for holes
4541 *
4542 * It returns the number of pages frames in memory holes within a range.
4543 */
4544 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4545 unsigned long end_pfn)
4546 {
4547 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4548 }
4549
4550 /* Return the number of page frames in holes in a zone on a node */
4551 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4552 unsigned long zone_type,
4553 unsigned long *ignored)
4554 {
4555 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4556 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4557 unsigned long node_start_pfn, node_end_pfn;
4558 unsigned long zone_start_pfn, zone_end_pfn;
4559
4560 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4561 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4562 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4563
4564 adjust_zone_range_for_zone_movable(nid, zone_type,
4565 node_start_pfn, node_end_pfn,
4566 &zone_start_pfn, &zone_end_pfn);
4567 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4568 }
4569
4570 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4571 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4572 unsigned long zone_type,
4573 unsigned long *zones_size)
4574 {
4575 return zones_size[zone_type];
4576 }
4577
4578 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4579 unsigned long zone_type,
4580 unsigned long *zholes_size)
4581 {
4582 if (!zholes_size)
4583 return 0;
4584
4585 return zholes_size[zone_type];
4586 }
4587
4588 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4589
4590 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4591 unsigned long *zones_size, unsigned long *zholes_size)
4592 {
4593 unsigned long realtotalpages, totalpages = 0;
4594 enum zone_type i;
4595
4596 for (i = 0; i < MAX_NR_ZONES; i++)
4597 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4598 zones_size);
4599 pgdat->node_spanned_pages = totalpages;
4600
4601 realtotalpages = totalpages;
4602 for (i = 0; i < MAX_NR_ZONES; i++)
4603 realtotalpages -=
4604 zone_absent_pages_in_node(pgdat->node_id, i,
4605 zholes_size);
4606 pgdat->node_present_pages = realtotalpages;
4607 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4608 realtotalpages);
4609 }
4610
4611 #ifndef CONFIG_SPARSEMEM
4612 /*
4613 * Calculate the size of the zone->blockflags rounded to an unsigned long
4614 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4615 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4616 * round what is now in bits to nearest long in bits, then return it in
4617 * bytes.
4618 */
4619 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4620 {
4621 unsigned long usemapsize;
4622
4623 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4624 usemapsize = roundup(zonesize, pageblock_nr_pages);
4625 usemapsize = usemapsize >> pageblock_order;
4626 usemapsize *= NR_PAGEBLOCK_BITS;
4627 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4628
4629 return usemapsize / 8;
4630 }
4631
4632 static void __init setup_usemap(struct pglist_data *pgdat,
4633 struct zone *zone,
4634 unsigned long zone_start_pfn,
4635 unsigned long zonesize)
4636 {
4637 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4638 zone->pageblock_flags = NULL;
4639 if (usemapsize)
4640 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4641 usemapsize);
4642 }
4643 #else
4644 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4645 unsigned long zone_start_pfn, unsigned long zonesize) {}
4646 #endif /* CONFIG_SPARSEMEM */
4647
4648 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4649
4650 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4651 void __paginginit set_pageblock_order(void)
4652 {
4653 unsigned int order;
4654
4655 /* Check that pageblock_nr_pages has not already been setup */
4656 if (pageblock_order)
4657 return;
4658
4659 if (HPAGE_SHIFT > PAGE_SHIFT)
4660 order = HUGETLB_PAGE_ORDER;
4661 else
4662 order = MAX_ORDER - 1;
4663
4664 /*
4665 * Assume the largest contiguous order of interest is a huge page.
4666 * This value may be variable depending on boot parameters on IA64 and
4667 * powerpc.
4668 */
4669 pageblock_order = order;
4670 }
4671 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4672
4673 /*
4674 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4675 * is unused as pageblock_order is set at compile-time. See
4676 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4677 * the kernel config
4678 */
4679 void __paginginit set_pageblock_order(void)
4680 {
4681 }
4682
4683 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4684
4685 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4686 unsigned long present_pages)
4687 {
4688 unsigned long pages = spanned_pages;
4689
4690 /*
4691 * Provide a more accurate estimation if there are holes within
4692 * the zone and SPARSEMEM is in use. If there are holes within the
4693 * zone, each populated memory region may cost us one or two extra
4694 * memmap pages due to alignment because memmap pages for each
4695 * populated regions may not naturally algined on page boundary.
4696 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4697 */
4698 if (spanned_pages > present_pages + (present_pages >> 4) &&
4699 IS_ENABLED(CONFIG_SPARSEMEM))
4700 pages = present_pages;
4701
4702 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4703 }
4704
4705 /*
4706 * Set up the zone data structures:
4707 * - mark all pages reserved
4708 * - mark all memory queues empty
4709 * - clear the memory bitmaps
4710 *
4711 * NOTE: pgdat should get zeroed by caller.
4712 */
4713 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4714 unsigned long *zones_size, unsigned long *zholes_size)
4715 {
4716 enum zone_type j;
4717 int nid = pgdat->node_id;
4718 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4719 int ret;
4720
4721 pgdat_resize_init(pgdat);
4722 #ifdef CONFIG_NUMA_BALANCING
4723 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4724 pgdat->numabalancing_migrate_nr_pages = 0;
4725 pgdat->numabalancing_migrate_next_window = jiffies;
4726 #endif
4727 init_waitqueue_head(&pgdat->kswapd_wait);
4728 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4729 pgdat_page_cgroup_init(pgdat);
4730
4731 for (j = 0; j < MAX_NR_ZONES; j++) {
4732 struct zone *zone = pgdat->node_zones + j;
4733 unsigned long size, realsize, freesize, memmap_pages;
4734
4735 size = zone_spanned_pages_in_node(nid, j, zones_size);
4736 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4737 zholes_size);
4738
4739 /*
4740 * Adjust freesize so that it accounts for how much memory
4741 * is used by this zone for memmap. This affects the watermark
4742 * and per-cpu initialisations
4743 */
4744 memmap_pages = calc_memmap_size(size, realsize);
4745 if (freesize >= memmap_pages) {
4746 freesize -= memmap_pages;
4747 if (memmap_pages)
4748 printk(KERN_DEBUG
4749 " %s zone: %lu pages used for memmap\n",
4750 zone_names[j], memmap_pages);
4751 } else
4752 printk(KERN_WARNING
4753 " %s zone: %lu pages exceeds freesize %lu\n",
4754 zone_names[j], memmap_pages, freesize);
4755
4756 /* Account for reserved pages */
4757 if (j == 0 && freesize > dma_reserve) {
4758 freesize -= dma_reserve;
4759 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4760 zone_names[0], dma_reserve);
4761 }
4762
4763 if (!is_highmem_idx(j))
4764 nr_kernel_pages += freesize;
4765 /* Charge for highmem memmap if there are enough kernel pages */
4766 else if (nr_kernel_pages > memmap_pages * 2)
4767 nr_kernel_pages -= memmap_pages;
4768 nr_all_pages += freesize;
4769
4770 zone->spanned_pages = size;
4771 zone->present_pages = realsize;
4772 /*
4773 * Set an approximate value for lowmem here, it will be adjusted
4774 * when the bootmem allocator frees pages into the buddy system.
4775 * And all highmem pages will be managed by the buddy system.
4776 */
4777 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4778 #ifdef CONFIG_NUMA
4779 zone->node = nid;
4780 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4781 / 100;
4782 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4783 #endif
4784 zone->name = zone_names[j];
4785 spin_lock_init(&zone->lock);
4786 spin_lock_init(&zone->lru_lock);
4787 zone_seqlock_init(zone);
4788 zone->zone_pgdat = pgdat;
4789
4790 zone_pcp_init(zone);
4791 lruvec_init(&zone->lruvec);
4792 if (!size)
4793 continue;
4794
4795 set_pageblock_order();
4796 setup_usemap(pgdat, zone, zone_start_pfn, size);
4797 ret = init_currently_empty_zone(zone, zone_start_pfn,
4798 size, MEMMAP_EARLY);
4799 BUG_ON(ret);
4800 memmap_init(size, nid, j, zone_start_pfn);
4801 zone_start_pfn += size;
4802 }
4803 }
4804
4805 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4806 {
4807 /* Skip empty nodes */
4808 if (!pgdat->node_spanned_pages)
4809 return;
4810
4811 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4812 /* ia64 gets its own node_mem_map, before this, without bootmem */
4813 if (!pgdat->node_mem_map) {
4814 unsigned long size, start, end;
4815 struct page *map;
4816
4817 /*
4818 * The zone's endpoints aren't required to be MAX_ORDER
4819 * aligned but the node_mem_map endpoints must be in order
4820 * for the buddy allocator to function correctly.
4821 */
4822 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4823 end = pgdat_end_pfn(pgdat);
4824 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4825 size = (end - start) * sizeof(struct page);
4826 map = alloc_remap(pgdat->node_id, size);
4827 if (!map)
4828 map = alloc_bootmem_node_nopanic(pgdat, size);
4829 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4830 }
4831 #ifndef CONFIG_NEED_MULTIPLE_NODES
4832 /*
4833 * With no DISCONTIG, the global mem_map is just set as node 0's
4834 */
4835 if (pgdat == NODE_DATA(0)) {
4836 mem_map = NODE_DATA(0)->node_mem_map;
4837 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4838 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4839 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4840 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4841 }
4842 #endif
4843 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4844 }
4845
4846 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4847 unsigned long node_start_pfn, unsigned long *zholes_size)
4848 {
4849 pg_data_t *pgdat = NODE_DATA(nid);
4850
4851 /* pg_data_t should be reset to zero when it's allocated */
4852 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4853
4854 pgdat->node_id = nid;
4855 pgdat->node_start_pfn = node_start_pfn;
4856 init_zone_allows_reclaim(nid);
4857 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4858
4859 alloc_node_mem_map(pgdat);
4860 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4861 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4862 nid, (unsigned long)pgdat,
4863 (unsigned long)pgdat->node_mem_map);
4864 #endif
4865
4866 free_area_init_core(pgdat, zones_size, zholes_size);
4867 }
4868
4869 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4870
4871 #if MAX_NUMNODES > 1
4872 /*
4873 * Figure out the number of possible node ids.
4874 */
4875 void __init setup_nr_node_ids(void)
4876 {
4877 unsigned int node;
4878 unsigned int highest = 0;
4879
4880 for_each_node_mask(node, node_possible_map)
4881 highest = node;
4882 nr_node_ids = highest + 1;
4883 }
4884 #endif
4885
4886 /**
4887 * node_map_pfn_alignment - determine the maximum internode alignment
4888 *
4889 * This function should be called after node map is populated and sorted.
4890 * It calculates the maximum power of two alignment which can distinguish
4891 * all the nodes.
4892 *
4893 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4894 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4895 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4896 * shifted, 1GiB is enough and this function will indicate so.
4897 *
4898 * This is used to test whether pfn -> nid mapping of the chosen memory
4899 * model has fine enough granularity to avoid incorrect mapping for the
4900 * populated node map.
4901 *
4902 * Returns the determined alignment in pfn's. 0 if there is no alignment
4903 * requirement (single node).
4904 */
4905 unsigned long __init node_map_pfn_alignment(void)
4906 {
4907 unsigned long accl_mask = 0, last_end = 0;
4908 unsigned long start, end, mask;
4909 int last_nid = -1;
4910 int i, nid;
4911
4912 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4913 if (!start || last_nid < 0 || last_nid == nid) {
4914 last_nid = nid;
4915 last_end = end;
4916 continue;
4917 }
4918
4919 /*
4920 * Start with a mask granular enough to pin-point to the
4921 * start pfn and tick off bits one-by-one until it becomes
4922 * too coarse to separate the current node from the last.
4923 */
4924 mask = ~((1 << __ffs(start)) - 1);
4925 while (mask && last_end <= (start & (mask << 1)))
4926 mask <<= 1;
4927
4928 /* accumulate all internode masks */
4929 accl_mask |= mask;
4930 }
4931
4932 /* convert mask to number of pages */
4933 return ~accl_mask + 1;
4934 }
4935
4936 /* Find the lowest pfn for a node */
4937 static unsigned long __init find_min_pfn_for_node(int nid)
4938 {
4939 unsigned long min_pfn = ULONG_MAX;
4940 unsigned long start_pfn;
4941 int i;
4942
4943 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4944 min_pfn = min(min_pfn, start_pfn);
4945
4946 if (min_pfn == ULONG_MAX) {
4947 printk(KERN_WARNING
4948 "Could not find start_pfn for node %d\n", nid);
4949 return 0;
4950 }
4951
4952 return min_pfn;
4953 }
4954
4955 /**
4956 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4957 *
4958 * It returns the minimum PFN based on information provided via
4959 * add_active_range().
4960 */
4961 unsigned long __init find_min_pfn_with_active_regions(void)
4962 {
4963 return find_min_pfn_for_node(MAX_NUMNODES);
4964 }
4965
4966 /*
4967 * early_calculate_totalpages()
4968 * Sum pages in active regions for movable zone.
4969 * Populate N_MEMORY for calculating usable_nodes.
4970 */
4971 static unsigned long __init early_calculate_totalpages(void)
4972 {
4973 unsigned long totalpages = 0;
4974 unsigned long start_pfn, end_pfn;
4975 int i, nid;
4976
4977 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4978 unsigned long pages = end_pfn - start_pfn;
4979
4980 totalpages += pages;
4981 if (pages)
4982 node_set_state(nid, N_MEMORY);
4983 }
4984 return totalpages;
4985 }
4986
4987 /*
4988 * Find the PFN the Movable zone begins in each node. Kernel memory
4989 * is spread evenly between nodes as long as the nodes have enough
4990 * memory. When they don't, some nodes will have more kernelcore than
4991 * others
4992 */
4993 static void __init find_zone_movable_pfns_for_nodes(void)
4994 {
4995 int i, nid;
4996 unsigned long usable_startpfn;
4997 unsigned long kernelcore_node, kernelcore_remaining;
4998 /* save the state before borrow the nodemask */
4999 nodemask_t saved_node_state = node_states[N_MEMORY];
5000 unsigned long totalpages = early_calculate_totalpages();
5001 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5002
5003 /*
5004 * If movablecore was specified, calculate what size of
5005 * kernelcore that corresponds so that memory usable for
5006 * any allocation type is evenly spread. If both kernelcore
5007 * and movablecore are specified, then the value of kernelcore
5008 * will be used for required_kernelcore if it's greater than
5009 * what movablecore would have allowed.
5010 */
5011 if (required_movablecore) {
5012 unsigned long corepages;
5013
5014 /*
5015 * Round-up so that ZONE_MOVABLE is at least as large as what
5016 * was requested by the user
5017 */
5018 required_movablecore =
5019 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5020 corepages = totalpages - required_movablecore;
5021
5022 required_kernelcore = max(required_kernelcore, corepages);
5023 }
5024
5025 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5026 if (!required_kernelcore)
5027 goto out;
5028
5029 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5030 find_usable_zone_for_movable();
5031 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5032
5033 restart:
5034 /* Spread kernelcore memory as evenly as possible throughout nodes */
5035 kernelcore_node = required_kernelcore / usable_nodes;
5036 for_each_node_state(nid, N_MEMORY) {
5037 unsigned long start_pfn, end_pfn;
5038
5039 /*
5040 * Recalculate kernelcore_node if the division per node
5041 * now exceeds what is necessary to satisfy the requested
5042 * amount of memory for the kernel
5043 */
5044 if (required_kernelcore < kernelcore_node)
5045 kernelcore_node = required_kernelcore / usable_nodes;
5046
5047 /*
5048 * As the map is walked, we track how much memory is usable
5049 * by the kernel using kernelcore_remaining. When it is
5050 * 0, the rest of the node is usable by ZONE_MOVABLE
5051 */
5052 kernelcore_remaining = kernelcore_node;
5053
5054 /* Go through each range of PFNs within this node */
5055 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5056 unsigned long size_pages;
5057
5058 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5059 if (start_pfn >= end_pfn)
5060 continue;
5061
5062 /* Account for what is only usable for kernelcore */
5063 if (start_pfn < usable_startpfn) {
5064 unsigned long kernel_pages;
5065 kernel_pages = min(end_pfn, usable_startpfn)
5066 - start_pfn;
5067
5068 kernelcore_remaining -= min(kernel_pages,
5069 kernelcore_remaining);
5070 required_kernelcore -= min(kernel_pages,
5071 required_kernelcore);
5072
5073 /* Continue if range is now fully accounted */
5074 if (end_pfn <= usable_startpfn) {
5075
5076 /*
5077 * Push zone_movable_pfn to the end so
5078 * that if we have to rebalance
5079 * kernelcore across nodes, we will
5080 * not double account here
5081 */
5082 zone_movable_pfn[nid] = end_pfn;
5083 continue;
5084 }
5085 start_pfn = usable_startpfn;
5086 }
5087
5088 /*
5089 * The usable PFN range for ZONE_MOVABLE is from
5090 * start_pfn->end_pfn. Calculate size_pages as the
5091 * number of pages used as kernelcore
5092 */
5093 size_pages = end_pfn - start_pfn;
5094 if (size_pages > kernelcore_remaining)
5095 size_pages = kernelcore_remaining;
5096 zone_movable_pfn[nid] = start_pfn + size_pages;
5097
5098 /*
5099 * Some kernelcore has been met, update counts and
5100 * break if the kernelcore for this node has been
5101 * satisified
5102 */
5103 required_kernelcore -= min(required_kernelcore,
5104 size_pages);
5105 kernelcore_remaining -= size_pages;
5106 if (!kernelcore_remaining)
5107 break;
5108 }
5109 }
5110
5111 /*
5112 * If there is still required_kernelcore, we do another pass with one
5113 * less node in the count. This will push zone_movable_pfn[nid] further
5114 * along on the nodes that still have memory until kernelcore is
5115 * satisified
5116 */
5117 usable_nodes--;
5118 if (usable_nodes && required_kernelcore > usable_nodes)
5119 goto restart;
5120
5121 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5122 for (nid = 0; nid < MAX_NUMNODES; nid++)
5123 zone_movable_pfn[nid] =
5124 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5125
5126 out:
5127 /* restore the node_state */
5128 node_states[N_MEMORY] = saved_node_state;
5129 }
5130
5131 /* Any regular or high memory on that node ? */
5132 static void check_for_memory(pg_data_t *pgdat, int nid)
5133 {
5134 enum zone_type zone_type;
5135
5136 if (N_MEMORY == N_NORMAL_MEMORY)
5137 return;
5138
5139 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5140 struct zone *zone = &pgdat->node_zones[zone_type];
5141 if (zone->present_pages) {
5142 node_set_state(nid, N_HIGH_MEMORY);
5143 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5144 zone_type <= ZONE_NORMAL)
5145 node_set_state(nid, N_NORMAL_MEMORY);
5146 break;
5147 }
5148 }
5149 }
5150
5151 /**
5152 * free_area_init_nodes - Initialise all pg_data_t and zone data
5153 * @max_zone_pfn: an array of max PFNs for each zone
5154 *
5155 * This will call free_area_init_node() for each active node in the system.
5156 * Using the page ranges provided by add_active_range(), the size of each
5157 * zone in each node and their holes is calculated. If the maximum PFN
5158 * between two adjacent zones match, it is assumed that the zone is empty.
5159 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5160 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5161 * starts where the previous one ended. For example, ZONE_DMA32 starts
5162 * at arch_max_dma_pfn.
5163 */
5164 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5165 {
5166 unsigned long start_pfn, end_pfn;
5167 int i, nid;
5168
5169 /* Record where the zone boundaries are */
5170 memset(arch_zone_lowest_possible_pfn, 0,
5171 sizeof(arch_zone_lowest_possible_pfn));
5172 memset(arch_zone_highest_possible_pfn, 0,
5173 sizeof(arch_zone_highest_possible_pfn));
5174
5175 start_pfn = find_min_pfn_with_active_regions();
5176
5177 for (i = 0; i < MAX_NR_ZONES; i++) {
5178 if (i == ZONE_MOVABLE)
5179 continue;
5180
5181 end_pfn = max(max_zone_pfn[i], start_pfn);
5182 arch_zone_lowest_possible_pfn[i] = start_pfn;
5183 arch_zone_highest_possible_pfn[i] = end_pfn;
5184
5185 start_pfn = end_pfn;
5186 }
5187 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5188 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5189
5190 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5191 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5192 find_zone_movable_pfns_for_nodes();
5193
5194 /* Print out the zone ranges */
5195 printk("Zone ranges:\n");
5196 for (i = 0; i < MAX_NR_ZONES; i++) {
5197 if (i == ZONE_MOVABLE)
5198 continue;
5199 printk(KERN_CONT " %-8s ", zone_names[i]);
5200 if (arch_zone_lowest_possible_pfn[i] ==
5201 arch_zone_highest_possible_pfn[i])
5202 printk(KERN_CONT "empty\n");
5203 else
5204 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5205 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5206 (arch_zone_highest_possible_pfn[i]
5207 << PAGE_SHIFT) - 1);
5208 }
5209
5210 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5211 printk("Movable zone start for each node\n");
5212 for (i = 0; i < MAX_NUMNODES; i++) {
5213 if (zone_movable_pfn[i])
5214 printk(" Node %d: %#010lx\n", i,
5215 zone_movable_pfn[i] << PAGE_SHIFT);
5216 }
5217
5218 /* Print out the early node map */
5219 printk("Early memory node ranges\n");
5220 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5221 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5222 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5223
5224 /* Initialise every node */
5225 mminit_verify_pageflags_layout();
5226 setup_nr_node_ids();
5227 for_each_online_node(nid) {
5228 pg_data_t *pgdat = NODE_DATA(nid);
5229 free_area_init_node(nid, NULL,
5230 find_min_pfn_for_node(nid), NULL);
5231
5232 /* Any memory on that node */
5233 if (pgdat->node_present_pages)
5234 node_set_state(nid, N_MEMORY);
5235 check_for_memory(pgdat, nid);
5236 }
5237 }
5238
5239 static int __init cmdline_parse_core(char *p, unsigned long *core)
5240 {
5241 unsigned long long coremem;
5242 if (!p)
5243 return -EINVAL;
5244
5245 coremem = memparse(p, &p);
5246 *core = coremem >> PAGE_SHIFT;
5247
5248 /* Paranoid check that UL is enough for the coremem value */
5249 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5250
5251 return 0;
5252 }
5253
5254 /*
5255 * kernelcore=size sets the amount of memory for use for allocations that
5256 * cannot be reclaimed or migrated.
5257 */
5258 static int __init cmdline_parse_kernelcore(char *p)
5259 {
5260 return cmdline_parse_core(p, &required_kernelcore);
5261 }
5262
5263 /*
5264 * movablecore=size sets the amount of memory for use for allocations that
5265 * can be reclaimed or migrated.
5266 */
5267 static int __init cmdline_parse_movablecore(char *p)
5268 {
5269 return cmdline_parse_core(p, &required_movablecore);
5270 }
5271
5272 early_param("kernelcore", cmdline_parse_kernelcore);
5273 early_param("movablecore", cmdline_parse_movablecore);
5274
5275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5276
5277 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5278 int poison, char *s)
5279 {
5280 unsigned long pages, pos;
5281
5282 pos = start = PAGE_ALIGN(start);
5283 end &= PAGE_MASK;
5284 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5285 if (poison)
5286 memset((void *)pos, poison, PAGE_SIZE);
5287 free_reserved_page(virt_to_page((void *)pos));
5288 }
5289
5290 if (pages && s)
5291 pr_info("Freeing %s memory: %ldK\n",
5292 s, pages << (PAGE_SHIFT - 10));
5293
5294 return pages;
5295 }
5296
5297 #ifdef CONFIG_HIGHMEM
5298 void free_highmem_page(struct page *page)
5299 {
5300 __free_reserved_page(page);
5301 totalram_pages++;
5302 totalhigh_pages++;
5303 }
5304 #endif
5305
5306 /**
5307 * set_dma_reserve - set the specified number of pages reserved in the first zone
5308 * @new_dma_reserve: The number of pages to mark reserved
5309 *
5310 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5311 * In the DMA zone, a significant percentage may be consumed by kernel image
5312 * and other unfreeable allocations which can skew the watermarks badly. This
5313 * function may optionally be used to account for unfreeable pages in the
5314 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5315 * smaller per-cpu batchsize.
5316 */
5317 void __init set_dma_reserve(unsigned long new_dma_reserve)
5318 {
5319 dma_reserve = new_dma_reserve;
5320 }
5321
5322 void __init free_area_init(unsigned long *zones_size)
5323 {
5324 free_area_init_node(0, zones_size,
5325 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5326 }
5327
5328 static int page_alloc_cpu_notify(struct notifier_block *self,
5329 unsigned long action, void *hcpu)
5330 {
5331 int cpu = (unsigned long)hcpu;
5332
5333 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5334 lru_add_drain_cpu(cpu);
5335 drain_pages(cpu);
5336
5337 /*
5338 * Spill the event counters of the dead processor
5339 * into the current processors event counters.
5340 * This artificially elevates the count of the current
5341 * processor.
5342 */
5343 vm_events_fold_cpu(cpu);
5344
5345 /*
5346 * Zero the differential counters of the dead processor
5347 * so that the vm statistics are consistent.
5348 *
5349 * This is only okay since the processor is dead and cannot
5350 * race with what we are doing.
5351 */
5352 refresh_cpu_vm_stats(cpu);
5353 }
5354 return NOTIFY_OK;
5355 }
5356
5357 void __init page_alloc_init(void)
5358 {
5359 hotcpu_notifier(page_alloc_cpu_notify, 0);
5360 }
5361
5362 /*
5363 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5364 * or min_free_kbytes changes.
5365 */
5366 static void calculate_totalreserve_pages(void)
5367 {
5368 struct pglist_data *pgdat;
5369 unsigned long reserve_pages = 0;
5370 enum zone_type i, j;
5371
5372 for_each_online_pgdat(pgdat) {
5373 for (i = 0; i < MAX_NR_ZONES; i++) {
5374 struct zone *zone = pgdat->node_zones + i;
5375 unsigned long max = 0;
5376
5377 /* Find valid and maximum lowmem_reserve in the zone */
5378 for (j = i; j < MAX_NR_ZONES; j++) {
5379 if (zone->lowmem_reserve[j] > max)
5380 max = zone->lowmem_reserve[j];
5381 }
5382
5383 /* we treat the high watermark as reserved pages. */
5384 max += high_wmark_pages(zone);
5385
5386 if (max > zone->managed_pages)
5387 max = zone->managed_pages;
5388 reserve_pages += max;
5389 /*
5390 * Lowmem reserves are not available to
5391 * GFP_HIGHUSER page cache allocations and
5392 * kswapd tries to balance zones to their high
5393 * watermark. As a result, neither should be
5394 * regarded as dirtyable memory, to prevent a
5395 * situation where reclaim has to clean pages
5396 * in order to balance the zones.
5397 */
5398 zone->dirty_balance_reserve = max;
5399 }
5400 }
5401 dirty_balance_reserve = reserve_pages;
5402 totalreserve_pages = reserve_pages;
5403 }
5404
5405 /*
5406 * setup_per_zone_lowmem_reserve - called whenever
5407 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5408 * has a correct pages reserved value, so an adequate number of
5409 * pages are left in the zone after a successful __alloc_pages().
5410 */
5411 static void setup_per_zone_lowmem_reserve(void)
5412 {
5413 struct pglist_data *pgdat;
5414 enum zone_type j, idx;
5415
5416 for_each_online_pgdat(pgdat) {
5417 for (j = 0; j < MAX_NR_ZONES; j++) {
5418 struct zone *zone = pgdat->node_zones + j;
5419 unsigned long managed_pages = zone->managed_pages;
5420
5421 zone->lowmem_reserve[j] = 0;
5422
5423 idx = j;
5424 while (idx) {
5425 struct zone *lower_zone;
5426
5427 idx--;
5428
5429 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5430 sysctl_lowmem_reserve_ratio[idx] = 1;
5431
5432 lower_zone = pgdat->node_zones + idx;
5433 lower_zone->lowmem_reserve[j] = managed_pages /
5434 sysctl_lowmem_reserve_ratio[idx];
5435 managed_pages += lower_zone->managed_pages;
5436 }
5437 }
5438 }
5439
5440 /* update totalreserve_pages */
5441 calculate_totalreserve_pages();
5442 }
5443
5444 static void __setup_per_zone_wmarks(void)
5445 {
5446 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5447 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
5448 unsigned long lowmem_pages = 0;
5449 struct zone *zone;
5450 unsigned long flags;
5451
5452 /* Calculate total number of !ZONE_HIGHMEM pages */
5453 for_each_zone(zone) {
5454 if (!is_highmem(zone))
5455 lowmem_pages += zone->managed_pages;
5456 }
5457
5458 for_each_zone(zone) {
5459 u64 min, low;
5460
5461 spin_lock_irqsave(&zone->lock, flags);
5462 min = (u64)pages_min * zone->managed_pages;
5463 do_div(min, lowmem_pages);
5464 low = (u64)pages_low * zone->managed_pages;
5465 do_div(low, vm_total_pages);
5466
5467 if (is_highmem(zone)) {
5468 /*
5469 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5470 * need highmem pages, so cap pages_min to a small
5471 * value here.
5472 *
5473 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5474 * deltas controls asynch page reclaim, and so should
5475 * not be capped for highmem.
5476 */
5477 unsigned long min_pages;
5478
5479 min_pages = zone->managed_pages / 1024;
5480 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5481 zone->watermark[WMARK_MIN] = min_pages;
5482 } else {
5483 /*
5484 * If it's a lowmem zone, reserve a number of pages
5485 * proportionate to the zone's size.
5486 */
5487 zone->watermark[WMARK_MIN] = min;
5488 }
5489
5490 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
5491 low + (min >> 2);
5492 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
5493 low + (min >> 1);
5494
5495 setup_zone_migrate_reserve(zone);
5496 spin_unlock_irqrestore(&zone->lock, flags);
5497 }
5498
5499 /* update totalreserve_pages */
5500 calculate_totalreserve_pages();
5501 }
5502
5503 /**
5504 * setup_per_zone_wmarks - called when min_free_kbytes changes
5505 * or when memory is hot-{added|removed}
5506 *
5507 * Ensures that the watermark[min,low,high] values for each zone are set
5508 * correctly with respect to min_free_kbytes.
5509 */
5510 void setup_per_zone_wmarks(void)
5511 {
5512 mutex_lock(&zonelists_mutex);
5513 __setup_per_zone_wmarks();
5514 mutex_unlock(&zonelists_mutex);
5515 }
5516
5517 /*
5518 * The inactive anon list should be small enough that the VM never has to
5519 * do too much work, but large enough that each inactive page has a chance
5520 * to be referenced again before it is swapped out.
5521 *
5522 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5523 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5524 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5525 * the anonymous pages are kept on the inactive list.
5526 *
5527 * total target max
5528 * memory ratio inactive anon
5529 * -------------------------------------
5530 * 10MB 1 5MB
5531 * 100MB 1 50MB
5532 * 1GB 3 250MB
5533 * 10GB 10 0.9GB
5534 * 100GB 31 3GB
5535 * 1TB 101 10GB
5536 * 10TB 320 32GB
5537 */
5538 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5539 {
5540 #ifdef CONFIG_FIX_INACTIVE_RATIO
5541 zone->inactive_ratio = 1;
5542 #else
5543 unsigned int gb, ratio;
5544
5545 /* Zone size in gigabytes */
5546 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5547 if (gb)
5548 ratio = int_sqrt(10 * gb);
5549 else
5550 ratio = 1;
5551
5552 zone->inactive_ratio = ratio;
5553 #endif
5554 }
5555
5556 static void __meminit setup_per_zone_inactive_ratio(void)
5557 {
5558 struct zone *zone;
5559
5560 for_each_zone(zone)
5561 calculate_zone_inactive_ratio(zone);
5562 }
5563
5564 /*
5565 * Initialise min_free_kbytes.
5566 *
5567 * For small machines we want it small (128k min). For large machines
5568 * we want it large (64MB max). But it is not linear, because network
5569 * bandwidth does not increase linearly with machine size. We use
5570 *
5571 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5572 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5573 *
5574 * which yields
5575 *
5576 * 16MB: 512k
5577 * 32MB: 724k
5578 * 64MB: 1024k
5579 * 128MB: 1448k
5580 * 256MB: 2048k
5581 * 512MB: 2896k
5582 * 1024MB: 4096k
5583 * 2048MB: 5792k
5584 * 4096MB: 8192k
5585 * 8192MB: 11584k
5586 * 16384MB: 16384k
5587 */
5588 int __meminit init_per_zone_wmark_min(void)
5589 {
5590 unsigned long lowmem_kbytes;
5591
5592 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5593
5594 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5595 if (min_free_kbytes < 128)
5596 min_free_kbytes = 128;
5597 if (min_free_kbytes > 65536)
5598 min_free_kbytes = 65536;
5599 setup_per_zone_wmarks();
5600 refresh_zone_stat_thresholds();
5601 setup_per_zone_lowmem_reserve();
5602 setup_per_zone_inactive_ratio();
5603 return 0;
5604 }
5605 module_init(init_per_zone_wmark_min)
5606
5607 /*
5608 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5609 * that we can call two helper functions whenever min_free_kbytes
5610 * or extra_free_kbytes changes.
5611 */
5612 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5613 void __user *buffer, size_t *length, loff_t *ppos)
5614 {
5615 proc_dointvec(table, write, buffer, length, ppos);
5616 if (write)
5617 setup_per_zone_wmarks();
5618 return 0;
5619 }
5620
5621 #ifdef CONFIG_NUMA
5622 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5623 void __user *buffer, size_t *length, loff_t *ppos)
5624 {
5625 struct zone *zone;
5626 int rc;
5627
5628 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5629 if (rc)
5630 return rc;
5631
5632 for_each_zone(zone)
5633 zone->min_unmapped_pages = (zone->managed_pages *
5634 sysctl_min_unmapped_ratio) / 100;
5635 return 0;
5636 }
5637
5638 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5639 void __user *buffer, size_t *length, loff_t *ppos)
5640 {
5641 struct zone *zone;
5642 int rc;
5643
5644 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5645 if (rc)
5646 return rc;
5647
5648 for_each_zone(zone)
5649 zone->min_slab_pages = (zone->managed_pages *
5650 sysctl_min_slab_ratio) / 100;
5651 return 0;
5652 }
5653 #endif
5654
5655 /*
5656 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5657 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5658 * whenever sysctl_lowmem_reserve_ratio changes.
5659 *
5660 * The reserve ratio obviously has absolutely no relation with the
5661 * minimum watermarks. The lowmem reserve ratio can only make sense
5662 * if in function of the boot time zone sizes.
5663 */
5664 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5665 void __user *buffer, size_t *length, loff_t *ppos)
5666 {
5667 proc_dointvec_minmax(table, write, buffer, length, ppos);
5668 setup_per_zone_lowmem_reserve();
5669 return 0;
5670 }
5671
5672 /*
5673 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5674 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5675 * can have before it gets flushed back to buddy allocator.
5676 */
5677
5678 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5679 void __user *buffer, size_t *length, loff_t *ppos)
5680 {
5681 struct zone *zone;
5682 unsigned int cpu;
5683 int ret;
5684
5685 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5686 if (!write || (ret < 0))
5687 return ret;
5688 for_each_populated_zone(zone) {
5689 for_each_possible_cpu(cpu) {
5690 unsigned long high;
5691 high = zone->managed_pages / percpu_pagelist_fraction;
5692 setup_pagelist_highmark(
5693 per_cpu_ptr(zone->pageset, cpu), high);
5694 }
5695 }
5696 return 0;
5697 }
5698
5699 int hashdist = HASHDIST_DEFAULT;
5700
5701 #ifdef CONFIG_NUMA
5702 static int __init set_hashdist(char *str)
5703 {
5704 if (!str)
5705 return 0;
5706 hashdist = simple_strtoul(str, &str, 0);
5707 return 1;
5708 }
5709 __setup("hashdist=", set_hashdist);
5710 #endif
5711
5712 /*
5713 * allocate a large system hash table from bootmem
5714 * - it is assumed that the hash table must contain an exact power-of-2
5715 * quantity of entries
5716 * - limit is the number of hash buckets, not the total allocation size
5717 */
5718 void *__init alloc_large_system_hash(const char *tablename,
5719 unsigned long bucketsize,
5720 unsigned long numentries,
5721 int scale,
5722 int flags,
5723 unsigned int *_hash_shift,
5724 unsigned int *_hash_mask,
5725 unsigned long low_limit,
5726 unsigned long high_limit)
5727 {
5728 unsigned long long max = high_limit;
5729 unsigned long log2qty, size;
5730 void *table = NULL;
5731
5732 /* allow the kernel cmdline to have a say */
5733 if (!numentries) {
5734 /* round applicable memory size up to nearest megabyte */
5735 numentries = nr_kernel_pages;
5736 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5737 numentries >>= 20 - PAGE_SHIFT;
5738 numentries <<= 20 - PAGE_SHIFT;
5739
5740 /* limit to 1 bucket per 2^scale bytes of low memory */
5741 if (scale > PAGE_SHIFT)
5742 numentries >>= (scale - PAGE_SHIFT);
5743 else
5744 numentries <<= (PAGE_SHIFT - scale);
5745
5746 /* Make sure we've got at least a 0-order allocation.. */
5747 if (unlikely(flags & HASH_SMALL)) {
5748 /* Makes no sense without HASH_EARLY */
5749 WARN_ON(!(flags & HASH_EARLY));
5750 if (!(numentries >> *_hash_shift)) {
5751 numentries = 1UL << *_hash_shift;
5752 BUG_ON(!numentries);
5753 }
5754 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5755 numentries = PAGE_SIZE / bucketsize;
5756 }
5757 numentries = roundup_pow_of_two(numentries);
5758
5759 /* limit allocation size to 1/16 total memory by default */
5760 if (max == 0) {
5761 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5762 do_div(max, bucketsize);
5763 }
5764 max = min(max, 0x80000000ULL);
5765
5766 if (numentries < low_limit)
5767 numentries = low_limit;
5768 if (numentries > max)
5769 numentries = max;
5770
5771 log2qty = ilog2(numentries);
5772
5773 do {
5774 size = bucketsize << log2qty;
5775 if (flags & HASH_EARLY)
5776 table = alloc_bootmem_nopanic(size);
5777 else if (hashdist)
5778 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5779 else {
5780 /*
5781 * If bucketsize is not a power-of-two, we may free
5782 * some pages at the end of hash table which
5783 * alloc_pages_exact() automatically does
5784 */
5785 if (get_order(size) < MAX_ORDER) {
5786 table = alloc_pages_exact(size, GFP_ATOMIC);
5787 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5788 }
5789 }
5790 } while (!table && size > PAGE_SIZE && --log2qty);
5791
5792 if (!table)
5793 panic("Failed to allocate %s hash table\n", tablename);
5794
5795 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5796 tablename,
5797 (1UL << log2qty),
5798 ilog2(size) - PAGE_SHIFT,
5799 size);
5800
5801 if (_hash_shift)
5802 *_hash_shift = log2qty;
5803 if (_hash_mask)
5804 *_hash_mask = (1 << log2qty) - 1;
5805
5806 return table;
5807 }
5808
5809 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5810 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5811 unsigned long pfn)
5812 {
5813 #ifdef CONFIG_SPARSEMEM
5814 return __pfn_to_section(pfn)->pageblock_flags;
5815 #else
5816 return zone->pageblock_flags;
5817 #endif /* CONFIG_SPARSEMEM */
5818 }
5819
5820 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5821 {
5822 #ifdef CONFIG_SPARSEMEM
5823 pfn &= (PAGES_PER_SECTION-1);
5824 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5825 #else
5826 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5827 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5828 #endif /* CONFIG_SPARSEMEM */
5829 }
5830
5831 /**
5832 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5833 * @page: The page within the block of interest
5834 * @start_bitidx: The first bit of interest to retrieve
5835 * @end_bitidx: The last bit of interest
5836 * returns pageblock_bits flags
5837 */
5838 unsigned long get_pageblock_flags_group(struct page *page,
5839 int start_bitidx, int end_bitidx)
5840 {
5841 struct zone *zone;
5842 unsigned long *bitmap;
5843 unsigned long pfn, bitidx;
5844 unsigned long flags = 0;
5845 unsigned long value = 1;
5846
5847 zone = page_zone(page);
5848 pfn = page_to_pfn(page);
5849 bitmap = get_pageblock_bitmap(zone, pfn);
5850 bitidx = pfn_to_bitidx(zone, pfn);
5851
5852 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5853 if (test_bit(bitidx + start_bitidx, bitmap))
5854 flags |= value;
5855
5856 return flags;
5857 }
5858
5859 /**
5860 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5861 * @page: The page within the block of interest
5862 * @start_bitidx: The first bit of interest
5863 * @end_bitidx: The last bit of interest
5864 * @flags: The flags to set
5865 */
5866 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5867 int start_bitidx, int end_bitidx)
5868 {
5869 struct zone *zone;
5870 unsigned long *bitmap;
5871 unsigned long pfn, bitidx;
5872 unsigned long value = 1;
5873
5874 zone = page_zone(page);
5875 pfn = page_to_pfn(page);
5876 bitmap = get_pageblock_bitmap(zone, pfn);
5877 bitidx = pfn_to_bitidx(zone, pfn);
5878 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5879
5880 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5881 if (flags & value)
5882 __set_bit(bitidx + start_bitidx, bitmap);
5883 else
5884 __clear_bit(bitidx + start_bitidx, bitmap);
5885 }
5886
5887 /*
5888 * This function checks whether pageblock includes unmovable pages or not.
5889 * If @count is not zero, it is okay to include less @count unmovable pages
5890 *
5891 * PageLRU check wihtout isolation or lru_lock could race so that
5892 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5893 * expect this function should be exact.
5894 */
5895 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5896 bool skip_hwpoisoned_pages)
5897 {
5898 unsigned long pfn, iter, found;
5899 int mt;
5900
5901 /*
5902 * For avoiding noise data, lru_add_drain_all() should be called
5903 * If ZONE_MOVABLE, the zone never contains unmovable pages
5904 */
5905 if (zone_idx(zone) == ZONE_MOVABLE)
5906 return false;
5907 mt = get_pageblock_migratetype(page);
5908 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5909 return false;
5910
5911 pfn = page_to_pfn(page);
5912 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5913 unsigned long check = pfn + iter;
5914
5915 if (!pfn_valid_within(check))
5916 continue;
5917
5918 page = pfn_to_page(check);
5919 /*
5920 * We can't use page_count without pin a page
5921 * because another CPU can free compound page.
5922 * This check already skips compound tails of THP
5923 * because their page->_count is zero at all time.
5924 */
5925 if (!atomic_read(&page->_count)) {
5926 if (PageBuddy(page))
5927 iter += (1 << page_order(page)) - 1;
5928 continue;
5929 }
5930
5931 /*
5932 * The HWPoisoned page may be not in buddy system, and
5933 * page_count() is not 0.
5934 */
5935 if (skip_hwpoisoned_pages && PageHWPoison(page))
5936 continue;
5937
5938 if (!PageLRU(page))
5939 found++;
5940 /*
5941 * If there are RECLAIMABLE pages, we need to check it.
5942 * But now, memory offline itself doesn't call shrink_slab()
5943 * and it still to be fixed.
5944 */
5945 /*
5946 * If the page is not RAM, page_count()should be 0.
5947 * we don't need more check. This is an _used_ not-movable page.
5948 *
5949 * The problematic thing here is PG_reserved pages. PG_reserved
5950 * is set to both of a memory hole page and a _used_ kernel
5951 * page at boot.
5952 */
5953 if (found > count)
5954 return true;
5955 }
5956 return false;
5957 }
5958
5959 bool is_pageblock_removable_nolock(struct page *page)
5960 {
5961 struct zone *zone;
5962 unsigned long pfn;
5963
5964 /*
5965 * We have to be careful here because we are iterating over memory
5966 * sections which are not zone aware so we might end up outside of
5967 * the zone but still within the section.
5968 * We have to take care about the node as well. If the node is offline
5969 * its NODE_DATA will be NULL - see page_zone.
5970 */
5971 if (!node_online(page_to_nid(page)))
5972 return false;
5973
5974 zone = page_zone(page);
5975 pfn = page_to_pfn(page);
5976 if (!zone_spans_pfn(zone, pfn))
5977 return false;
5978
5979 return !has_unmovable_pages(zone, page, 0, true);
5980 }
5981
5982 #ifdef CONFIG_CMA
5983
5984 static unsigned long pfn_max_align_down(unsigned long pfn)
5985 {
5986 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5987 pageblock_nr_pages) - 1);
5988 }
5989
5990 static unsigned long pfn_max_align_up(unsigned long pfn)
5991 {
5992 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5993 pageblock_nr_pages));
5994 }
5995
5996 /* [start, end) must belong to a single zone. */
5997 static int __alloc_contig_migrate_range(struct compact_control *cc,
5998 unsigned long start, unsigned long end)
5999 {
6000 /* This function is based on compact_zone() from compaction.c. */
6001 unsigned long nr_reclaimed;
6002 unsigned long pfn = start;
6003 unsigned int tries = 0;
6004 int ret = 0;
6005
6006 migrate_prep();
6007
6008 while (pfn < end || !list_empty(&cc->migratepages)) {
6009 if (fatal_signal_pending(current)) {
6010 ret = -EINTR;
6011 break;
6012 }
6013
6014 if (list_empty(&cc->migratepages)) {
6015 cc->nr_migratepages = 0;
6016 pfn = isolate_migratepages_range(cc->zone, cc,
6017 pfn, end, true);
6018 if (!pfn) {
6019 ret = -EINTR;
6020 break;
6021 }
6022 tries = 0;
6023 } else if (++tries == 5) {
6024 ret = ret < 0 ? ret : -EBUSY;
6025 break;
6026 }
6027
6028 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6029 &cc->migratepages);
6030 cc->nr_migratepages -= nr_reclaimed;
6031
6032 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6033 0, MIGRATE_SYNC, MR_CMA);
6034 }
6035 if (ret < 0) {
6036 putback_movable_pages(&cc->migratepages);
6037 return ret;
6038 }
6039 return 0;
6040 }
6041
6042 /**
6043 * alloc_contig_range() -- tries to allocate given range of pages
6044 * @start: start PFN to allocate
6045 * @end: one-past-the-last PFN to allocate
6046 * @migratetype: migratetype of the underlaying pageblocks (either
6047 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6048 * in range must have the same migratetype and it must
6049 * be either of the two.
6050 *
6051 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6052 * aligned, however it's the caller's responsibility to guarantee that
6053 * we are the only thread that changes migrate type of pageblocks the
6054 * pages fall in.
6055 *
6056 * The PFN range must belong to a single zone.
6057 *
6058 * Returns zero on success or negative error code. On success all
6059 * pages which PFN is in [start, end) are allocated for the caller and
6060 * need to be freed with free_contig_range().
6061 */
6062 int alloc_contig_range(unsigned long start, unsigned long end,
6063 unsigned migratetype)
6064 {
6065 unsigned long outer_start, outer_end;
6066 int ret = 0, order;
6067 struct zone *zone = page_zone(pfn_to_page(start));
6068
6069 struct compact_control cc = {
6070 .nr_migratepages = 0,
6071 .order = -1,
6072 .zone = zone,
6073 .sync = true,
6074 .ignore_skip_hint = true,
6075 };
6076 INIT_LIST_HEAD(&cc.migratepages);
6077
6078 /*
6079 * What we do here is we mark all pageblocks in range as
6080 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6081 * have different sizes, and due to the way page allocator
6082 * work, we align the range to biggest of the two pages so
6083 * that page allocator won't try to merge buddies from
6084 * different pageblocks and change MIGRATE_ISOLATE to some
6085 * other migration type.
6086 *
6087 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6088 * migrate the pages from an unaligned range (ie. pages that
6089 * we are interested in). This will put all the pages in
6090 * range back to page allocator as MIGRATE_ISOLATE.
6091 *
6092 * When this is done, we take the pages in range from page
6093 * allocator removing them from the buddy system. This way
6094 * page allocator will never consider using them.
6095 *
6096 * This lets us mark the pageblocks back as
6097 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6098 * aligned range but not in the unaligned, original range are
6099 * put back to page allocator so that buddy can use them.
6100 */
6101
6102 ret = start_isolate_page_range(pfn_max_align_down(start),
6103 pfn_max_align_up(end), migratetype,
6104 false);
6105 if (ret)
6106 return ret;
6107
6108 zone->cma_alloc = 1;
6109
6110 ret = __alloc_contig_migrate_range(&cc, start, end);
6111 if (ret)
6112 goto done;
6113
6114 /*
6115 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6116 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6117 * more, all pages in [start, end) are free in page allocator.
6118 * What we are going to do is to allocate all pages from
6119 * [start, end) (that is remove them from page allocator).
6120 *
6121 * The only problem is that pages at the beginning and at the
6122 * end of interesting range may be not aligned with pages that
6123 * page allocator holds, ie. they can be part of higher order
6124 * pages. Because of this, we reserve the bigger range and
6125 * once this is done free the pages we are not interested in.
6126 *
6127 * We don't have to hold zone->lock here because the pages are
6128 * isolated thus they won't get removed from buddy.
6129 */
6130
6131 lru_add_drain_all();
6132 drain_all_pages();
6133
6134 order = 0;
6135 outer_start = start;
6136 while (!PageBuddy(pfn_to_page(outer_start))) {
6137 if (++order >= MAX_ORDER) {
6138 ret = -EBUSY;
6139 goto done;
6140 }
6141 outer_start &= ~0UL << order;
6142 }
6143
6144 /* Make sure the range is really isolated. */
6145 if (test_pages_isolated(outer_start, end, false)) {
6146 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6147 outer_start, end);
6148 ret = -EBUSY;
6149 goto done;
6150 }
6151
6152
6153 /* Grab isolated pages from freelists. */
6154 outer_end = isolate_freepages_range(&cc, outer_start, end);
6155 if (!outer_end) {
6156 ret = -EBUSY;
6157 goto done;
6158 }
6159
6160 /* Free head and tail (if any) */
6161 if (start != outer_start)
6162 free_contig_range(outer_start, start - outer_start);
6163 if (end != outer_end)
6164 free_contig_range(end, outer_end - end);
6165
6166 done:
6167 undo_isolate_page_range(pfn_max_align_down(start),
6168 pfn_max_align_up(end), migratetype);
6169 zone->cma_alloc = 0;
6170 return ret;
6171 }
6172
6173 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6174 {
6175 unsigned int count = 0;
6176
6177 for (; nr_pages--; pfn++) {
6178 struct page *page = pfn_to_page(pfn);
6179
6180 count += page_count(page) != 1;
6181 __free_page(page);
6182 }
6183 WARN(count != 0, "%d pages are still in use!\n", count);
6184 }
6185 #endif
6186
6187 #ifdef CONFIG_MEMORY_HOTPLUG
6188 static int __meminit __zone_pcp_update(void *data)
6189 {
6190 struct zone *zone = data;
6191 int cpu;
6192 unsigned long batch = zone_batchsize(zone), flags;
6193
6194 for_each_possible_cpu(cpu) {
6195 struct per_cpu_pageset *pset;
6196 struct per_cpu_pages *pcp;
6197
6198 pset = per_cpu_ptr(zone->pageset, cpu);
6199 pcp = &pset->pcp;
6200
6201 local_irq_save(flags);
6202 if (pcp->count > 0)
6203 free_pcppages_bulk(zone, pcp->count, pcp);
6204 drain_zonestat(zone, pset);
6205 setup_pageset(pset, batch);
6206 local_irq_restore(flags);
6207 }
6208 return 0;
6209 }
6210
6211 void __meminit zone_pcp_update(struct zone *zone)
6212 {
6213 stop_machine(__zone_pcp_update, zone, NULL);
6214 }
6215 #endif
6216
6217 void zone_pcp_reset(struct zone *zone)
6218 {
6219 unsigned long flags;
6220 int cpu;
6221 struct per_cpu_pageset *pset;
6222
6223 /* avoid races with drain_pages() */
6224 local_irq_save(flags);
6225 if (zone->pageset != &boot_pageset) {
6226 for_each_online_cpu(cpu) {
6227 pset = per_cpu_ptr(zone->pageset, cpu);
6228 drain_zonestat(zone, pset);
6229 }
6230 free_percpu(zone->pageset);
6231 zone->pageset = &boot_pageset;
6232 }
6233 local_irq_restore(flags);
6234 }
6235
6236 #ifdef CONFIG_MEMORY_HOTREMOVE
6237 /*
6238 * All pages in the range must be isolated before calling this.
6239 */
6240 void
6241 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6242 {
6243 struct page *page;
6244 struct zone *zone;
6245 int order, i;
6246 unsigned long pfn;
6247 unsigned long flags;
6248 /* find the first valid pfn */
6249 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6250 if (pfn_valid(pfn))
6251 break;
6252 if (pfn == end_pfn)
6253 return;
6254 zone = page_zone(pfn_to_page(pfn));
6255 spin_lock_irqsave(&zone->lock, flags);
6256 pfn = start_pfn;
6257 while (pfn < end_pfn) {
6258 if (!pfn_valid(pfn)) {
6259 pfn++;
6260 continue;
6261 }
6262 page = pfn_to_page(pfn);
6263 /*
6264 * The HWPoisoned page may be not in buddy system, and
6265 * page_count() is not 0.
6266 */
6267 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6268 pfn++;
6269 SetPageReserved(page);
6270 continue;
6271 }
6272
6273 BUG_ON(page_count(page));
6274 BUG_ON(!PageBuddy(page));
6275 order = page_order(page);
6276 #ifdef CONFIG_DEBUG_VM
6277 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6278 pfn, 1 << order, end_pfn);
6279 #endif
6280 list_del(&page->lru);
6281 rmv_page_order(page);
6282 zone->free_area[order].nr_free--;
6283 #ifdef CONFIG_HIGHMEM
6284 if (PageHighMem(page))
6285 totalhigh_pages -= 1 << order;
6286 #endif
6287 for (i = 0; i < (1 << order); i++)
6288 SetPageReserved((page+i));
6289 pfn += (1 << order);
6290 }
6291 spin_unlock_irqrestore(&zone->lock, flags);
6292 }
6293 #endif
6294
6295 #ifdef CONFIG_MEMORY_FAILURE
6296 bool is_free_buddy_page(struct page *page)
6297 {
6298 struct zone *zone = page_zone(page);
6299 unsigned long pfn = page_to_pfn(page);
6300 unsigned long flags;
6301 int order;
6302
6303 spin_lock_irqsave(&zone->lock, flags);
6304 for (order = 0; order < MAX_ORDER; order++) {
6305 struct page *page_head = page - (pfn & ((1 << order) - 1));
6306
6307 if (PageBuddy(page_head) && page_order(page_head) >= order)
6308 break;
6309 }
6310 spin_unlock_irqrestore(&zone->lock, flags);
6311
6312 return order < MAX_ORDER;
6313 }
6314 #endif
6315
6316 static const struct trace_print_flags pageflag_names[] = {
6317 {1UL << PG_locked, "locked" },
6318 {1UL << PG_error, "error" },
6319 {1UL << PG_referenced, "referenced" },
6320 {1UL << PG_uptodate, "uptodate" },
6321 {1UL << PG_dirty, "dirty" },
6322 {1UL << PG_lru, "lru" },
6323 {1UL << PG_active, "active" },
6324 {1UL << PG_slab, "slab" },
6325 {1UL << PG_owner_priv_1, "owner_priv_1" },
6326 {1UL << PG_arch_1, "arch_1" },
6327 {1UL << PG_reserved, "reserved" },
6328 {1UL << PG_private, "private" },
6329 {1UL << PG_private_2, "private_2" },
6330 {1UL << PG_writeback, "writeback" },
6331 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6332 {1UL << PG_head, "head" },
6333 {1UL << PG_tail, "tail" },
6334 #else
6335 {1UL << PG_compound, "compound" },
6336 #endif
6337 {1UL << PG_swapcache, "swapcache" },
6338 {1UL << PG_mappedtodisk, "mappedtodisk" },
6339 {1UL << PG_reclaim, "reclaim" },
6340 {1UL << PG_swapbacked, "swapbacked" },
6341 {1UL << PG_unevictable, "unevictable" },
6342 #ifdef CONFIG_MMU
6343 {1UL << PG_mlocked, "mlocked" },
6344 #endif
6345 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6346 {1UL << PG_uncached, "uncached" },
6347 #endif
6348 #ifdef CONFIG_MEMORY_FAILURE
6349 {1UL << PG_hwpoison, "hwpoison" },
6350 #endif
6351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6352 {1UL << PG_compound_lock, "compound_lock" },
6353 #endif
6354 };
6355
6356 static void dump_page_flags(unsigned long flags)
6357 {
6358 const char *delim = "";
6359 unsigned long mask;
6360 int i;
6361
6362 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6363
6364 printk(KERN_ALERT "page flags: %#lx(", flags);
6365
6366 /* remove zone id */
6367 flags &= (1UL << NR_PAGEFLAGS) - 1;
6368
6369 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6370
6371 mask = pageflag_names[i].mask;
6372 if ((flags & mask) != mask)
6373 continue;
6374
6375 flags &= ~mask;
6376 printk("%s%s", delim, pageflag_names[i].name);
6377 delim = "|";
6378 }
6379
6380 /* check for left over flags */
6381 if (flags)
6382 printk("%s%#lx", delim, flags);
6383
6384 printk(")\n");
6385 }
6386
6387 void dump_page(struct page *page)
6388 {
6389 printk(KERN_ALERT
6390 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6391 page, atomic_read(&page->_count), page_mapcount(page),
6392 page->mapping, page->index);
6393 dump_page_flags(page->flags);
6394 mem_cgroup_print_bad_page(page);
6395 }