Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 #include <linux/memcontrol.h>
57
58 #include <asm/tlbflush.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61
62 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
63 DEFINE_PER_CPU(int, numa_node);
64 EXPORT_PER_CPU_SYMBOL(numa_node);
65 #endif
66
67 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 /*
69 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
70 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
71 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
72 * defined in <linux/topology.h>.
73 */
74 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
75 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
76 #endif
77
78 /*
79 * Array of node states.
80 */
81 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
82 [N_POSSIBLE] = NODE_MASK_ALL,
83 [N_ONLINE] = { { [0] = 1UL } },
84 #ifndef CONFIG_NUMA
85 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
86 #ifdef CONFIG_HIGHMEM
87 [N_HIGH_MEMORY] = { { [0] = 1UL } },
88 #endif
89 [N_CPU] = { { [0] = 1UL } },
90 #endif /* NUMA */
91 };
92 EXPORT_SYMBOL(node_states);
93
94 unsigned long totalram_pages __read_mostly;
95 unsigned long totalreserve_pages __read_mostly;
96 int percpu_pagelist_fraction;
97 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98
99 #ifdef CONFIG_PM_SLEEP
100 /*
101 * The following functions are used by the suspend/hibernate code to temporarily
102 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
103 * while devices are suspended. To avoid races with the suspend/hibernate code,
104 * they should always be called with pm_mutex held (gfp_allowed_mask also should
105 * only be modified with pm_mutex held, unless the suspend/hibernate code is
106 * guaranteed not to run in parallel with that modification).
107 */
108
109 static gfp_t saved_gfp_mask;
110
111 void pm_restore_gfp_mask(void)
112 {
113 WARN_ON(!mutex_is_locked(&pm_mutex));
114 if (saved_gfp_mask) {
115 gfp_allowed_mask = saved_gfp_mask;
116 saved_gfp_mask = 0;
117 }
118 }
119
120 void pm_restrict_gfp_mask(void)
121 {
122 WARN_ON(!mutex_is_locked(&pm_mutex));
123 WARN_ON(saved_gfp_mask);
124 saved_gfp_mask = gfp_allowed_mask;
125 gfp_allowed_mask &= ~GFP_IOFS;
126 }
127 #endif /* CONFIG_PM_SLEEP */
128
129 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
130 int pageblock_order __read_mostly;
131 #endif
132
133 static void __free_pages_ok(struct page *page, unsigned int order);
134
135 /*
136 * results with 256, 32 in the lowmem_reserve sysctl:
137 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
138 * 1G machine -> (16M dma, 784M normal, 224M high)
139 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
140 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
141 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 *
143 * TBD: should special case ZONE_DMA32 machines here - in those we normally
144 * don't need any ZONE_NORMAL reservation
145 */
146 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
147 #ifdef CONFIG_ZONE_DMA
148 256,
149 #endif
150 #ifdef CONFIG_ZONE_DMA32
151 256,
152 #endif
153 #ifdef CONFIG_HIGHMEM
154 32,
155 #endif
156 32,
157 };
158
159 EXPORT_SYMBOL(totalram_pages);
160
161 static char * const zone_names[MAX_NR_ZONES] = {
162 #ifdef CONFIG_ZONE_DMA
163 "DMA",
164 #endif
165 #ifdef CONFIG_ZONE_DMA32
166 "DMA32",
167 #endif
168 "Normal",
169 #ifdef CONFIG_HIGHMEM
170 "HighMem",
171 #endif
172 "Movable",
173 };
174
175 int min_free_kbytes = 1024;
176
177 static unsigned long __meminitdata nr_kernel_pages;
178 static unsigned long __meminitdata nr_all_pages;
179 static unsigned long __meminitdata dma_reserve;
180
181 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 /*
183 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
184 * ranges of memory (RAM) that may be registered with add_active_range().
185 * Ranges passed to add_active_range() will be merged if possible
186 * so the number of times add_active_range() can be called is
187 * related to the number of nodes and the number of holes
188 */
189 #ifdef CONFIG_MAX_ACTIVE_REGIONS
190 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
191 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
192 #else
193 #if MAX_NUMNODES >= 32
194 /* If there can be many nodes, allow up to 50 holes per node */
195 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
196 #else
197 /* By default, allow up to 256 distinct regions */
198 #define MAX_ACTIVE_REGIONS 256
199 #endif
200 #endif
201
202 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
203 static int __meminitdata nr_nodemap_entries;
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221
222 int page_group_by_mobility_disabled __read_mostly;
223
224 static void set_pageblock_migratetype(struct page *page, int migratetype)
225 {
226
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
229
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
232 }
233
234 bool oom_killer_disabled __read_mostly;
235
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 {
239 int ret = 0;
240 unsigned seq;
241 unsigned long pfn = page_to_pfn(page);
242
243 do {
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 ret = 1;
247 else if (pfn < zone->zone_start_pfn)
248 ret = 1;
249 } while (zone_span_seqretry(zone, seq));
250
251 return ret;
252 }
253
254 static int page_is_consistent(struct zone *zone, struct page *page)
255 {
256 if (!pfn_valid_within(page_to_pfn(page)))
257 return 0;
258 if (zone != page_zone(page))
259 return 0;
260
261 return 1;
262 }
263 /*
264 * Temporary debugging check for pages not lying within a given zone.
265 */
266 static int bad_range(struct zone *zone, struct page *page)
267 {
268 if (page_outside_zone_boundaries(zone, page))
269 return 1;
270 if (!page_is_consistent(zone, page))
271 return 1;
272
273 return 0;
274 }
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
277 {
278 return 0;
279 }
280 #endif
281
282 static void bad_page(struct page *page)
283 {
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
287
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
291 return;
292 }
293
294 /*
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
297 */
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
300 nr_unshown++;
301 goto out;
302 }
303 if (nr_unshown) {
304 printk(KERN_ALERT
305 "BUG: Bad page state: %lu messages suppressed\n",
306 nr_unshown);
307 nr_unshown = 0;
308 }
309 nr_shown = 0;
310 }
311 if (nr_shown++ == 0)
312 resume = jiffies + 60 * HZ;
313
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
316 dump_page(page);
317
318 dump_stack();
319 out:
320 /* Leave bad fields for debug, except PageBuddy could make trouble */
321 reset_page_mapcount(page); /* remove PageBuddy */
322 add_taint(TAINT_BAD_PAGE);
323 }
324
325 /*
326 * Higher-order pages are called "compound pages". They are structured thusly:
327 *
328 * The first PAGE_SIZE page is called the "head page".
329 *
330 * The remaining PAGE_SIZE pages are called "tail pages".
331 *
332 * All pages have PG_compound set. All pages have their ->private pointing at
333 * the head page (even the head page has this).
334 *
335 * The first tail page's ->lru.next holds the address of the compound page's
336 * put_page() function. Its ->lru.prev holds the order of allocation.
337 * This usage means that zero-order pages may not be compound.
338 */
339
340 static void free_compound_page(struct page *page)
341 {
342 __free_pages_ok(page, compound_order(page));
343 }
344
345 void prep_compound_page(struct page *page, unsigned long order)
346 {
347 int i;
348 int nr_pages = 1 << order;
349
350 set_compound_page_dtor(page, free_compound_page);
351 set_compound_order(page, order);
352 __SetPageHead(page);
353 for (i = 1; i < nr_pages; i++) {
354 struct page *p = page + i;
355
356 __SetPageTail(p);
357 p->first_page = page;
358 }
359 }
360
361 /* update __split_huge_page_refcount if you change this function */
362 static int destroy_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366 int bad = 0;
367
368 if (unlikely(compound_order(page) != order) ||
369 unlikely(!PageHead(page))) {
370 bad_page(page);
371 bad++;
372 }
373
374 __ClearPageHead(page);
375
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
378
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 bad_page(page);
381 bad++;
382 }
383 __ClearPageTail(p);
384 }
385
386 return bad;
387 }
388
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 {
391 int i;
392
393 /*
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 */
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
400 }
401
402 static inline void set_page_order(struct page *page, int order)
403 {
404 set_page_private(page, order);
405 __SetPageBuddy(page);
406 }
407
408 static inline void rmv_page_order(struct page *page)
409 {
410 __ClearPageBuddy(page);
411 set_page_private(page, 0);
412 }
413
414 /*
415 * Locate the struct page for both the matching buddy in our
416 * pair (buddy1) and the combined O(n+1) page they form (page).
417 *
418 * 1) Any buddy B1 will have an order O twin B2 which satisfies
419 * the following equation:
420 * B2 = B1 ^ (1 << O)
421 * For example, if the starting buddy (buddy2) is #8 its order
422 * 1 buddy is #10:
423 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 *
425 * 2) Any buddy B will have an order O+1 parent P which
426 * satisfies the following equation:
427 * P = B & ~(1 << O)
428 *
429 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 */
431 static inline unsigned long
432 __find_buddy_index(unsigned long page_idx, unsigned int order)
433 {
434 return page_idx ^ (1 << order);
435 }
436
437 /*
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
444 *
445 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
446 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
447 *
448 * For recording page's order, we use page_private(page).
449 */
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
452 {
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
455
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
458
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
462 }
463 return 0;
464 }
465
466 /*
467 * Freeing function for a buddy system allocator.
468 *
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
486 *
487 * -- wli
488 */
489
490 static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
493 {
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 unsigned long uninitialized_var(buddy_idx);
497 struct page *buddy;
498
499 if (unlikely(PageCompound(page)))
500 if (unlikely(destroy_compound_page(page, order)))
501 return;
502
503 VM_BUG_ON(migratetype == -1);
504
505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506
507 VM_BUG_ON(page_idx & ((1 << order) - 1));
508 VM_BUG_ON(bad_range(zone, page));
509
510 while (order < MAX_ORDER-1) {
511 buddy_idx = __find_buddy_index(page_idx, order);
512 buddy = page + (buddy_idx - page_idx);
513 if (!page_is_buddy(page, buddy, order))
514 break;
515
516 /* Our buddy is free, merge with it and move up one order. */
517 list_del(&buddy->lru);
518 zone->free_area[order].nr_free--;
519 rmv_page_order(buddy);
520 combined_idx = buddy_idx & page_idx;
521 page = page + (combined_idx - page_idx);
522 page_idx = combined_idx;
523 order++;
524 }
525 set_page_order(page, order);
526
527 /*
528 * If this is not the largest possible page, check if the buddy
529 * of the next-highest order is free. If it is, it's possible
530 * that pages are being freed that will coalesce soon. In case,
531 * that is happening, add the free page to the tail of the list
532 * so it's less likely to be used soon and more likely to be merged
533 * as a higher order page
534 */
535 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
536 struct page *higher_page, *higher_buddy;
537 combined_idx = buddy_idx & page_idx;
538 higher_page = page + (combined_idx - page_idx);
539 buddy_idx = __find_buddy_index(combined_idx, order + 1);
540 higher_buddy = page + (buddy_idx - combined_idx);
541 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
542 list_add_tail(&page->lru,
543 &zone->free_area[order].free_list[migratetype]);
544 goto out;
545 }
546 }
547
548 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
549 out:
550 zone->free_area[order].nr_free++;
551 }
552
553 /*
554 * free_page_mlock() -- clean up attempts to free and mlocked() page.
555 * Page should not be on lru, so no need to fix that up.
556 * free_pages_check() will verify...
557 */
558 static inline void free_page_mlock(struct page *page)
559 {
560 __dec_zone_page_state(page, NR_MLOCK);
561 __count_vm_event(UNEVICTABLE_MLOCKFREED);
562 }
563
564 static inline int free_pages_check(struct page *page)
565 {
566 if (unlikely(page_mapcount(page) |
567 (page->mapping != NULL) |
568 (atomic_read(&page->_count) != 0) |
569 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
570 (mem_cgroup_bad_page_check(page)))) {
571 bad_page(page);
572 return 1;
573 }
574 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
575 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
576 return 0;
577 }
578
579 /*
580 * Frees a number of pages from the PCP lists
581 * Assumes all pages on list are in same zone, and of same order.
582 * count is the number of pages to free.
583 *
584 * If the zone was previously in an "all pages pinned" state then look to
585 * see if this freeing clears that state.
586 *
587 * And clear the zone's pages_scanned counter, to hold off the "all pages are
588 * pinned" detection logic.
589 */
590 static void free_pcppages_bulk(struct zone *zone, int count,
591 struct per_cpu_pages *pcp)
592 {
593 int migratetype = 0;
594 int batch_free = 0;
595 int to_free = count;
596
597 spin_lock(&zone->lock);
598 zone->all_unreclaimable = 0;
599 zone->pages_scanned = 0;
600
601 while (to_free) {
602 struct page *page;
603 struct list_head *list;
604
605 /*
606 * Remove pages from lists in a round-robin fashion. A
607 * batch_free count is maintained that is incremented when an
608 * empty list is encountered. This is so more pages are freed
609 * off fuller lists instead of spinning excessively around empty
610 * lists
611 */
612 do {
613 batch_free++;
614 if (++migratetype == MIGRATE_PCPTYPES)
615 migratetype = 0;
616 list = &pcp->lists[migratetype];
617 } while (list_empty(list));
618
619 /* This is the only non-empty list. Free them all. */
620 if (batch_free == MIGRATE_PCPTYPES)
621 batch_free = to_free;
622
623 do {
624 page = list_entry(list->prev, struct page, lru);
625 /* must delete as __free_one_page list manipulates */
626 list_del(&page->lru);
627 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
628 __free_one_page(page, zone, 0, page_private(page));
629 trace_mm_page_pcpu_drain(page, 0, page_private(page));
630 } while (--to_free && --batch_free && !list_empty(list));
631 }
632 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
633 spin_unlock(&zone->lock);
634 }
635
636 static void free_one_page(struct zone *zone, struct page *page, int order,
637 int migratetype)
638 {
639 spin_lock(&zone->lock);
640 zone->all_unreclaimable = 0;
641 zone->pages_scanned = 0;
642
643 __free_one_page(page, zone, order, migratetype);
644 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
645 spin_unlock(&zone->lock);
646 }
647
648 static bool free_pages_prepare(struct page *page, unsigned int order)
649 {
650 int i;
651 int bad = 0;
652
653 trace_mm_page_free_direct(page, order);
654 kmemcheck_free_shadow(page, order);
655
656 if (PageAnon(page))
657 page->mapping = NULL;
658 for (i = 0; i < (1 << order); i++)
659 bad += free_pages_check(page + i);
660 if (bad)
661 return false;
662
663 if (!PageHighMem(page)) {
664 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
665 debug_check_no_obj_freed(page_address(page),
666 PAGE_SIZE << order);
667 }
668 arch_free_page(page, order);
669 kernel_map_pages(page, 1 << order, 0);
670
671 return true;
672 }
673
674 static void __free_pages_ok(struct page *page, unsigned int order)
675 {
676 unsigned long flags;
677 int wasMlocked = __TestClearPageMlocked(page);
678
679 if (!free_pages_prepare(page, order))
680 return;
681
682 local_irq_save(flags);
683 if (unlikely(wasMlocked))
684 free_page_mlock(page);
685 __count_vm_events(PGFREE, 1 << order);
686 free_one_page(page_zone(page), page, order,
687 get_pageblock_migratetype(page));
688 local_irq_restore(flags);
689 }
690
691 /*
692 * permit the bootmem allocator to evade page validation on high-order frees
693 */
694 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
695 {
696 if (order == 0) {
697 __ClearPageReserved(page);
698 set_page_count(page, 0);
699 set_page_refcounted(page);
700 __free_page(page);
701 } else {
702 int loop;
703
704 prefetchw(page);
705 for (loop = 0; loop < BITS_PER_LONG; loop++) {
706 struct page *p = &page[loop];
707
708 if (loop + 1 < BITS_PER_LONG)
709 prefetchw(p + 1);
710 __ClearPageReserved(p);
711 set_page_count(p, 0);
712 }
713
714 set_page_refcounted(page);
715 __free_pages(page, order);
716 }
717 }
718
719
720 /*
721 * The order of subdivision here is critical for the IO subsystem.
722 * Please do not alter this order without good reasons and regression
723 * testing. Specifically, as large blocks of memory are subdivided,
724 * the order in which smaller blocks are delivered depends on the order
725 * they're subdivided in this function. This is the primary factor
726 * influencing the order in which pages are delivered to the IO
727 * subsystem according to empirical testing, and this is also justified
728 * by considering the behavior of a buddy system containing a single
729 * large block of memory acted on by a series of small allocations.
730 * This behavior is a critical factor in sglist merging's success.
731 *
732 * -- wli
733 */
734 static inline void expand(struct zone *zone, struct page *page,
735 int low, int high, struct free_area *area,
736 int migratetype)
737 {
738 unsigned long size = 1 << high;
739
740 while (high > low) {
741 area--;
742 high--;
743 size >>= 1;
744 VM_BUG_ON(bad_range(zone, &page[size]));
745 list_add(&page[size].lru, &area->free_list[migratetype]);
746 area->nr_free++;
747 set_page_order(&page[size], high);
748 }
749 }
750
751 /*
752 * This page is about to be returned from the page allocator
753 */
754 static inline int check_new_page(struct page *page)
755 {
756 if (unlikely(page_mapcount(page) |
757 (page->mapping != NULL) |
758 (atomic_read(&page->_count) != 0) |
759 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
760 (mem_cgroup_bad_page_check(page)))) {
761 bad_page(page);
762 return 1;
763 }
764 return 0;
765 }
766
767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768 {
769 int i;
770
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
775 }
776
777 set_page_private(page, 0);
778 set_page_refcounted(page);
779
780 arch_alloc_page(page, order);
781 kernel_map_pages(page, 1 << order, 1);
782
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
785
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
788
789 return 0;
790 }
791
792 /*
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
795 */
796 static inline
797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
798 int migratetype)
799 {
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
803
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
809
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
817 }
818
819 return NULL;
820 }
821
822
823 /*
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
826 */
827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
832 };
833
834 /*
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
838 */
839 static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
842 {
843 struct page *page;
844 unsigned long order;
845 int pages_moved = 0;
846
847 #ifndef CONFIG_HOLES_IN_ZONE
848 /*
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
854 */
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856 #endif
857
858 for (page = start_page; page <= end_page;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
865 }
866
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
870 }
871
872 order = page_order(page);
873 list_move(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 page += 1 << order;
876 pages_moved += 1 << order;
877 }
878
879 return pages_moved;
880 }
881
882 static int move_freepages_block(struct zone *zone, struct page *page,
883 int migratetype)
884 {
885 unsigned long start_pfn, end_pfn;
886 struct page *start_page, *end_page;
887
888 start_pfn = page_to_pfn(page);
889 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
890 start_page = pfn_to_page(start_pfn);
891 end_page = start_page + pageblock_nr_pages - 1;
892 end_pfn = start_pfn + pageblock_nr_pages - 1;
893
894 /* Do not cross zone boundaries */
895 if (start_pfn < zone->zone_start_pfn)
896 start_page = page;
897 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
898 return 0;
899
900 return move_freepages(zone, start_page, end_page, migratetype);
901 }
902
903 static void change_pageblock_range(struct page *pageblock_page,
904 int start_order, int migratetype)
905 {
906 int nr_pageblocks = 1 << (start_order - pageblock_order);
907
908 while (nr_pageblocks--) {
909 set_pageblock_migratetype(pageblock_page, migratetype);
910 pageblock_page += pageblock_nr_pages;
911 }
912 }
913
914 /* Remove an element from the buddy allocator from the fallback list */
915 static inline struct page *
916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
917 {
918 struct free_area * area;
919 int current_order;
920 struct page *page;
921 int migratetype, i;
922
923 /* Find the largest possible block of pages in the other list */
924 for (current_order = MAX_ORDER-1; current_order >= order;
925 --current_order) {
926 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
927 migratetype = fallbacks[start_migratetype][i];
928
929 /* MIGRATE_RESERVE handled later if necessary */
930 if (migratetype == MIGRATE_RESERVE)
931 continue;
932
933 area = &(zone->free_area[current_order]);
934 if (list_empty(&area->free_list[migratetype]))
935 continue;
936
937 page = list_entry(area->free_list[migratetype].next,
938 struct page, lru);
939 area->nr_free--;
940
941 /*
942 * If breaking a large block of pages, move all free
943 * pages to the preferred allocation list. If falling
944 * back for a reclaimable kernel allocation, be more
945 * aggressive about taking ownership of free pages
946 */
947 if (unlikely(current_order >= (pageblock_order >> 1)) ||
948 start_migratetype == MIGRATE_RECLAIMABLE ||
949 page_group_by_mobility_disabled) {
950 unsigned long pages;
951 pages = move_freepages_block(zone, page,
952 start_migratetype);
953
954 /* Claim the whole block if over half of it is free */
955 if (pages >= (1 << (pageblock_order-1)) ||
956 page_group_by_mobility_disabled)
957 set_pageblock_migratetype(page,
958 start_migratetype);
959
960 migratetype = start_migratetype;
961 }
962
963 /* Remove the page from the freelists */
964 list_del(&page->lru);
965 rmv_page_order(page);
966
967 /* Take ownership for orders >= pageblock_order */
968 if (current_order >= pageblock_order)
969 change_pageblock_range(page, current_order,
970 start_migratetype);
971
972 expand(zone, page, order, current_order, area, migratetype);
973
974 trace_mm_page_alloc_extfrag(page, order, current_order,
975 start_migratetype, migratetype);
976
977 return page;
978 }
979 }
980
981 return NULL;
982 }
983
984 /*
985 * Do the hard work of removing an element from the buddy allocator.
986 * Call me with the zone->lock already held.
987 */
988 static struct page *__rmqueue(struct zone *zone, unsigned int order,
989 int migratetype)
990 {
991 struct page *page;
992
993 retry_reserve:
994 page = __rmqueue_smallest(zone, order, migratetype);
995
996 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
997 page = __rmqueue_fallback(zone, order, migratetype);
998
999 /*
1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1001 * is used because __rmqueue_smallest is an inline function
1002 * and we want just one call site
1003 */
1004 if (!page) {
1005 migratetype = MIGRATE_RESERVE;
1006 goto retry_reserve;
1007 }
1008 }
1009
1010 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1011 return page;
1012 }
1013
1014 /*
1015 * Obtain a specified number of elements from the buddy allocator, all under
1016 * a single hold of the lock, for efficiency. Add them to the supplied list.
1017 * Returns the number of new pages which were placed at *list.
1018 */
1019 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1020 unsigned long count, struct list_head *list,
1021 int migratetype, int cold)
1022 {
1023 int i;
1024
1025 spin_lock(&zone->lock);
1026 for (i = 0; i < count; ++i) {
1027 struct page *page = __rmqueue(zone, order, migratetype);
1028 if (unlikely(page == NULL))
1029 break;
1030
1031 /*
1032 * Split buddy pages returned by expand() are received here
1033 * in physical page order. The page is added to the callers and
1034 * list and the list head then moves forward. From the callers
1035 * perspective, the linked list is ordered by page number in
1036 * some conditions. This is useful for IO devices that can
1037 * merge IO requests if the physical pages are ordered
1038 * properly.
1039 */
1040 if (likely(cold == 0))
1041 list_add(&page->lru, list);
1042 else
1043 list_add_tail(&page->lru, list);
1044 set_page_private(page, migratetype);
1045 list = &page->lru;
1046 }
1047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1048 spin_unlock(&zone->lock);
1049 return i;
1050 }
1051
1052 #ifdef CONFIG_NUMA
1053 /*
1054 * Called from the vmstat counter updater to drain pagesets of this
1055 * currently executing processor on remote nodes after they have
1056 * expired.
1057 *
1058 * Note that this function must be called with the thread pinned to
1059 * a single processor.
1060 */
1061 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1062 {
1063 unsigned long flags;
1064 int to_drain;
1065
1066 local_irq_save(flags);
1067 if (pcp->count >= pcp->batch)
1068 to_drain = pcp->batch;
1069 else
1070 to_drain = pcp->count;
1071 free_pcppages_bulk(zone, to_drain, pcp);
1072 pcp->count -= to_drain;
1073 local_irq_restore(flags);
1074 }
1075 #endif
1076
1077 /*
1078 * Drain pages of the indicated processor.
1079 *
1080 * The processor must either be the current processor and the
1081 * thread pinned to the current processor or a processor that
1082 * is not online.
1083 */
1084 static void drain_pages(unsigned int cpu)
1085 {
1086 unsigned long flags;
1087 struct zone *zone;
1088
1089 for_each_populated_zone(zone) {
1090 struct per_cpu_pageset *pset;
1091 struct per_cpu_pages *pcp;
1092
1093 local_irq_save(flags);
1094 pset = per_cpu_ptr(zone->pageset, cpu);
1095
1096 pcp = &pset->pcp;
1097 if (pcp->count) {
1098 free_pcppages_bulk(zone, pcp->count, pcp);
1099 pcp->count = 0;
1100 }
1101 local_irq_restore(flags);
1102 }
1103 }
1104
1105 /*
1106 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1107 */
1108 void drain_local_pages(void *arg)
1109 {
1110 drain_pages(smp_processor_id());
1111 }
1112
1113 /*
1114 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1115 */
1116 void drain_all_pages(void)
1117 {
1118 on_each_cpu(drain_local_pages, NULL, 1);
1119 }
1120
1121 #ifdef CONFIG_HIBERNATION
1122
1123 void mark_free_pages(struct zone *zone)
1124 {
1125 unsigned long pfn, max_zone_pfn;
1126 unsigned long flags;
1127 int order, t;
1128 struct list_head *curr;
1129
1130 if (!zone->spanned_pages)
1131 return;
1132
1133 spin_lock_irqsave(&zone->lock, flags);
1134
1135 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1136 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1137 if (pfn_valid(pfn)) {
1138 struct page *page = pfn_to_page(pfn);
1139
1140 if (!swsusp_page_is_forbidden(page))
1141 swsusp_unset_page_free(page);
1142 }
1143
1144 for_each_migratetype_order(order, t) {
1145 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1146 unsigned long i;
1147
1148 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1149 for (i = 0; i < (1UL << order); i++)
1150 swsusp_set_page_free(pfn_to_page(pfn + i));
1151 }
1152 }
1153 spin_unlock_irqrestore(&zone->lock, flags);
1154 }
1155 #endif /* CONFIG_PM */
1156
1157 /*
1158 * Free a 0-order page
1159 * cold == 1 ? free a cold page : free a hot page
1160 */
1161 void free_hot_cold_page(struct page *page, int cold)
1162 {
1163 struct zone *zone = page_zone(page);
1164 struct per_cpu_pages *pcp;
1165 unsigned long flags;
1166 int migratetype;
1167 int wasMlocked = __TestClearPageMlocked(page);
1168
1169 if (!free_pages_prepare(page, 0))
1170 return;
1171
1172 migratetype = get_pageblock_migratetype(page);
1173 set_page_private(page, migratetype);
1174 local_irq_save(flags);
1175 if (unlikely(wasMlocked))
1176 free_page_mlock(page);
1177 __count_vm_event(PGFREE);
1178
1179 /*
1180 * We only track unmovable, reclaimable and movable on pcp lists.
1181 * Free ISOLATE pages back to the allocator because they are being
1182 * offlined but treat RESERVE as movable pages so we can get those
1183 * areas back if necessary. Otherwise, we may have to free
1184 * excessively into the page allocator
1185 */
1186 if (migratetype >= MIGRATE_PCPTYPES) {
1187 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1188 free_one_page(zone, page, 0, migratetype);
1189 goto out;
1190 }
1191 migratetype = MIGRATE_MOVABLE;
1192 }
1193
1194 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1195 if (cold)
1196 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1197 else
1198 list_add(&page->lru, &pcp->lists[migratetype]);
1199 pcp->count++;
1200 if (pcp->count >= pcp->high) {
1201 free_pcppages_bulk(zone, pcp->batch, pcp);
1202 pcp->count -= pcp->batch;
1203 }
1204
1205 out:
1206 local_irq_restore(flags);
1207 }
1208
1209 /*
1210 * split_page takes a non-compound higher-order page, and splits it into
1211 * n (1<<order) sub-pages: page[0..n]
1212 * Each sub-page must be freed individually.
1213 *
1214 * Note: this is probably too low level an operation for use in drivers.
1215 * Please consult with lkml before using this in your driver.
1216 */
1217 void split_page(struct page *page, unsigned int order)
1218 {
1219 int i;
1220
1221 VM_BUG_ON(PageCompound(page));
1222 VM_BUG_ON(!page_count(page));
1223
1224 #ifdef CONFIG_KMEMCHECK
1225 /*
1226 * Split shadow pages too, because free(page[0]) would
1227 * otherwise free the whole shadow.
1228 */
1229 if (kmemcheck_page_is_tracked(page))
1230 split_page(virt_to_page(page[0].shadow), order);
1231 #endif
1232
1233 for (i = 1; i < (1 << order); i++)
1234 set_page_refcounted(page + i);
1235 }
1236
1237 /*
1238 * Similar to split_page except the page is already free. As this is only
1239 * being used for migration, the migratetype of the block also changes.
1240 * As this is called with interrupts disabled, the caller is responsible
1241 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1242 * are enabled.
1243 *
1244 * Note: this is probably too low level an operation for use in drivers.
1245 * Please consult with lkml before using this in your driver.
1246 */
1247 int split_free_page(struct page *page)
1248 {
1249 unsigned int order;
1250 unsigned long watermark;
1251 struct zone *zone;
1252
1253 BUG_ON(!PageBuddy(page));
1254
1255 zone = page_zone(page);
1256 order = page_order(page);
1257
1258 /* Obey watermarks as if the page was being allocated */
1259 watermark = low_wmark_pages(zone) + (1 << order);
1260 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1261 return 0;
1262
1263 /* Remove page from free list */
1264 list_del(&page->lru);
1265 zone->free_area[order].nr_free--;
1266 rmv_page_order(page);
1267 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1268
1269 /* Split into individual pages */
1270 set_page_refcounted(page);
1271 split_page(page, order);
1272
1273 if (order >= pageblock_order - 1) {
1274 struct page *endpage = page + (1 << order) - 1;
1275 for (; page < endpage; page += pageblock_nr_pages)
1276 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1277 }
1278
1279 return 1 << order;
1280 }
1281
1282 /*
1283 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1284 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1285 * or two.
1286 */
1287 static inline
1288 struct page *buffered_rmqueue(struct zone *preferred_zone,
1289 struct zone *zone, int order, gfp_t gfp_flags,
1290 int migratetype)
1291 {
1292 unsigned long flags;
1293 struct page *page;
1294 int cold = !!(gfp_flags & __GFP_COLD);
1295
1296 again:
1297 if (likely(order == 0)) {
1298 struct per_cpu_pages *pcp;
1299 struct list_head *list;
1300
1301 local_irq_save(flags);
1302 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1303 list = &pcp->lists[migratetype];
1304 if (list_empty(list)) {
1305 pcp->count += rmqueue_bulk(zone, 0,
1306 pcp->batch, list,
1307 migratetype, cold);
1308 if (unlikely(list_empty(list)))
1309 goto failed;
1310 }
1311
1312 if (cold)
1313 page = list_entry(list->prev, struct page, lru);
1314 else
1315 page = list_entry(list->next, struct page, lru);
1316
1317 list_del(&page->lru);
1318 pcp->count--;
1319 } else {
1320 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1321 /*
1322 * __GFP_NOFAIL is not to be used in new code.
1323 *
1324 * All __GFP_NOFAIL callers should be fixed so that they
1325 * properly detect and handle allocation failures.
1326 *
1327 * We most definitely don't want callers attempting to
1328 * allocate greater than order-1 page units with
1329 * __GFP_NOFAIL.
1330 */
1331 WARN_ON_ONCE(order > 1);
1332 }
1333 spin_lock_irqsave(&zone->lock, flags);
1334 page = __rmqueue(zone, order, migratetype);
1335 spin_unlock(&zone->lock);
1336 if (!page)
1337 goto failed;
1338 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1339 }
1340
1341 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1342 zone_statistics(preferred_zone, zone, gfp_flags);
1343 local_irq_restore(flags);
1344
1345 VM_BUG_ON(bad_range(zone, page));
1346 if (prep_new_page(page, order, gfp_flags))
1347 goto again;
1348 return page;
1349
1350 failed:
1351 local_irq_restore(flags);
1352 return NULL;
1353 }
1354
1355 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1356 #define ALLOC_WMARK_MIN WMARK_MIN
1357 #define ALLOC_WMARK_LOW WMARK_LOW
1358 #define ALLOC_WMARK_HIGH WMARK_HIGH
1359 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1360
1361 /* Mask to get the watermark bits */
1362 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1363
1364 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1365 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1366 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1367
1368 #ifdef CONFIG_FAIL_PAGE_ALLOC
1369
1370 static struct fail_page_alloc_attr {
1371 struct fault_attr attr;
1372
1373 u32 ignore_gfp_highmem;
1374 u32 ignore_gfp_wait;
1375 u32 min_order;
1376
1377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1378
1379 struct dentry *ignore_gfp_highmem_file;
1380 struct dentry *ignore_gfp_wait_file;
1381 struct dentry *min_order_file;
1382
1383 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1384
1385 } fail_page_alloc = {
1386 .attr = FAULT_ATTR_INITIALIZER,
1387 .ignore_gfp_wait = 1,
1388 .ignore_gfp_highmem = 1,
1389 .min_order = 1,
1390 };
1391
1392 static int __init setup_fail_page_alloc(char *str)
1393 {
1394 return setup_fault_attr(&fail_page_alloc.attr, str);
1395 }
1396 __setup("fail_page_alloc=", setup_fail_page_alloc);
1397
1398 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1399 {
1400 if (order < fail_page_alloc.min_order)
1401 return 0;
1402 if (gfp_mask & __GFP_NOFAIL)
1403 return 0;
1404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1405 return 0;
1406 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1407 return 0;
1408
1409 return should_fail(&fail_page_alloc.attr, 1 << order);
1410 }
1411
1412 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1413
1414 static int __init fail_page_alloc_debugfs(void)
1415 {
1416 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1417 struct dentry *dir;
1418 int err;
1419
1420 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1421 "fail_page_alloc");
1422 if (err)
1423 return err;
1424 dir = fail_page_alloc.attr.dentries.dir;
1425
1426 fail_page_alloc.ignore_gfp_wait_file =
1427 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1428 &fail_page_alloc.ignore_gfp_wait);
1429
1430 fail_page_alloc.ignore_gfp_highmem_file =
1431 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1432 &fail_page_alloc.ignore_gfp_highmem);
1433 fail_page_alloc.min_order_file =
1434 debugfs_create_u32("min-order", mode, dir,
1435 &fail_page_alloc.min_order);
1436
1437 if (!fail_page_alloc.ignore_gfp_wait_file ||
1438 !fail_page_alloc.ignore_gfp_highmem_file ||
1439 !fail_page_alloc.min_order_file) {
1440 err = -ENOMEM;
1441 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1442 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1443 debugfs_remove(fail_page_alloc.min_order_file);
1444 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1445 }
1446
1447 return err;
1448 }
1449
1450 late_initcall(fail_page_alloc_debugfs);
1451
1452 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1453
1454 #else /* CONFIG_FAIL_PAGE_ALLOC */
1455
1456 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1457 {
1458 return 0;
1459 }
1460
1461 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1462
1463 /*
1464 * Return true if free pages are above 'mark'. This takes into account the order
1465 * of the allocation.
1466 */
1467 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1468 int classzone_idx, int alloc_flags, long free_pages)
1469 {
1470 /* free_pages my go negative - that's OK */
1471 long min = mark;
1472 int o;
1473
1474 free_pages -= (1 << order) + 1;
1475 if (alloc_flags & ALLOC_HIGH)
1476 min -= min / 2;
1477 if (alloc_flags & ALLOC_HARDER)
1478 min -= min / 4;
1479
1480 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1481 return false;
1482 for (o = 0; o < order; o++) {
1483 /* At the next order, this order's pages become unavailable */
1484 free_pages -= z->free_area[o].nr_free << o;
1485
1486 /* Require fewer higher order pages to be free */
1487 min >>= 1;
1488
1489 if (free_pages <= min)
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1496 int classzone_idx, int alloc_flags)
1497 {
1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1499 zone_page_state(z, NR_FREE_PAGES));
1500 }
1501
1502 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1503 int classzone_idx, int alloc_flags)
1504 {
1505 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1506
1507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1509
1510 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1511 free_pages);
1512 }
1513
1514 #ifdef CONFIG_NUMA
1515 /*
1516 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1517 * skip over zones that are not allowed by the cpuset, or that have
1518 * been recently (in last second) found to be nearly full. See further
1519 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1520 * that have to skip over a lot of full or unallowed zones.
1521 *
1522 * If the zonelist cache is present in the passed in zonelist, then
1523 * returns a pointer to the allowed node mask (either the current
1524 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1525 *
1526 * If the zonelist cache is not available for this zonelist, does
1527 * nothing and returns NULL.
1528 *
1529 * If the fullzones BITMAP in the zonelist cache is stale (more than
1530 * a second since last zap'd) then we zap it out (clear its bits.)
1531 *
1532 * We hold off even calling zlc_setup, until after we've checked the
1533 * first zone in the zonelist, on the theory that most allocations will
1534 * be satisfied from that first zone, so best to examine that zone as
1535 * quickly as we can.
1536 */
1537 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1538 {
1539 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1540 nodemask_t *allowednodes; /* zonelist_cache approximation */
1541
1542 zlc = zonelist->zlcache_ptr;
1543 if (!zlc)
1544 return NULL;
1545
1546 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1548 zlc->last_full_zap = jiffies;
1549 }
1550
1551 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1552 &cpuset_current_mems_allowed :
1553 &node_states[N_HIGH_MEMORY];
1554 return allowednodes;
1555 }
1556
1557 /*
1558 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1559 * if it is worth looking at further for free memory:
1560 * 1) Check that the zone isn't thought to be full (doesn't have its
1561 * bit set in the zonelist_cache fullzones BITMAP).
1562 * 2) Check that the zones node (obtained from the zonelist_cache
1563 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1564 * Return true (non-zero) if zone is worth looking at further, or
1565 * else return false (zero) if it is not.
1566 *
1567 * This check -ignores- the distinction between various watermarks,
1568 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1569 * found to be full for any variation of these watermarks, it will
1570 * be considered full for up to one second by all requests, unless
1571 * we are so low on memory on all allowed nodes that we are forced
1572 * into the second scan of the zonelist.
1573 *
1574 * In the second scan we ignore this zonelist cache and exactly
1575 * apply the watermarks to all zones, even it is slower to do so.
1576 * We are low on memory in the second scan, and should leave no stone
1577 * unturned looking for a free page.
1578 */
1579 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1580 nodemask_t *allowednodes)
1581 {
1582 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1583 int i; /* index of *z in zonelist zones */
1584 int n; /* node that zone *z is on */
1585
1586 zlc = zonelist->zlcache_ptr;
1587 if (!zlc)
1588 return 1;
1589
1590 i = z - zonelist->_zonerefs;
1591 n = zlc->z_to_n[i];
1592
1593 /* This zone is worth trying if it is allowed but not full */
1594 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1595 }
1596
1597 /*
1598 * Given 'z' scanning a zonelist, set the corresponding bit in
1599 * zlc->fullzones, so that subsequent attempts to allocate a page
1600 * from that zone don't waste time re-examining it.
1601 */
1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1603 {
1604 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1605 int i; /* index of *z in zonelist zones */
1606
1607 zlc = zonelist->zlcache_ptr;
1608 if (!zlc)
1609 return;
1610
1611 i = z - zonelist->_zonerefs;
1612
1613 set_bit(i, zlc->fullzones);
1614 }
1615
1616 #else /* CONFIG_NUMA */
1617
1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619 {
1620 return NULL;
1621 }
1622
1623 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1624 nodemask_t *allowednodes)
1625 {
1626 return 1;
1627 }
1628
1629 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1630 {
1631 }
1632 #endif /* CONFIG_NUMA */
1633
1634 /*
1635 * get_page_from_freelist goes through the zonelist trying to allocate
1636 * a page.
1637 */
1638 static struct page *
1639 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1640 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1641 struct zone *preferred_zone, int migratetype)
1642 {
1643 struct zoneref *z;
1644 struct page *page = NULL;
1645 int classzone_idx;
1646 struct zone *zone;
1647 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1648 int zlc_active = 0; /* set if using zonelist_cache */
1649 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1650
1651 classzone_idx = zone_idx(preferred_zone);
1652 zonelist_scan:
1653 /*
1654 * Scan zonelist, looking for a zone with enough free.
1655 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1656 */
1657 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1658 high_zoneidx, nodemask) {
1659 if (NUMA_BUILD && zlc_active &&
1660 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1661 continue;
1662 if ((alloc_flags & ALLOC_CPUSET) &&
1663 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1664 goto try_next_zone;
1665
1666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1667 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1668 unsigned long mark;
1669 int ret;
1670
1671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1672 if (zone_watermark_ok(zone, order, mark,
1673 classzone_idx, alloc_flags))
1674 goto try_this_zone;
1675
1676 if (zone_reclaim_mode == 0)
1677 goto this_zone_full;
1678
1679 ret = zone_reclaim(zone, gfp_mask, order);
1680 switch (ret) {
1681 case ZONE_RECLAIM_NOSCAN:
1682 /* did not scan */
1683 goto try_next_zone;
1684 case ZONE_RECLAIM_FULL:
1685 /* scanned but unreclaimable */
1686 goto this_zone_full;
1687 default:
1688 /* did we reclaim enough */
1689 if (!zone_watermark_ok(zone, order, mark,
1690 classzone_idx, alloc_flags))
1691 goto this_zone_full;
1692 }
1693 }
1694
1695 try_this_zone:
1696 page = buffered_rmqueue(preferred_zone, zone, order,
1697 gfp_mask, migratetype);
1698 if (page)
1699 break;
1700 this_zone_full:
1701 if (NUMA_BUILD)
1702 zlc_mark_zone_full(zonelist, z);
1703 try_next_zone:
1704 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1705 /*
1706 * we do zlc_setup after the first zone is tried but only
1707 * if there are multiple nodes make it worthwhile
1708 */
1709 allowednodes = zlc_setup(zonelist, alloc_flags);
1710 zlc_active = 1;
1711 did_zlc_setup = 1;
1712 }
1713 }
1714
1715 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1716 /* Disable zlc cache for second zonelist scan */
1717 zlc_active = 0;
1718 goto zonelist_scan;
1719 }
1720 return page;
1721 }
1722
1723 /*
1724 * Large machines with many possible nodes should not always dump per-node
1725 * meminfo in irq context.
1726 */
1727 static inline bool should_suppress_show_mem(void)
1728 {
1729 bool ret = false;
1730
1731 #if NODES_SHIFT > 8
1732 ret = in_interrupt();
1733 #endif
1734 return ret;
1735 }
1736
1737 static inline int
1738 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1739 unsigned long pages_reclaimed)
1740 {
1741 /* Do not loop if specifically requested */
1742 if (gfp_mask & __GFP_NORETRY)
1743 return 0;
1744
1745 /*
1746 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1747 * means __GFP_NOFAIL, but that may not be true in other
1748 * implementations.
1749 */
1750 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1751 return 1;
1752
1753 /*
1754 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1755 * specified, then we retry until we no longer reclaim any pages
1756 * (above), or we've reclaimed an order of pages at least as
1757 * large as the allocation's order. In both cases, if the
1758 * allocation still fails, we stop retrying.
1759 */
1760 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1761 return 1;
1762
1763 /*
1764 * Don't let big-order allocations loop unless the caller
1765 * explicitly requests that.
1766 */
1767 if (gfp_mask & __GFP_NOFAIL)
1768 return 1;
1769
1770 return 0;
1771 }
1772
1773 static inline struct page *
1774 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1775 struct zonelist *zonelist, enum zone_type high_zoneidx,
1776 nodemask_t *nodemask, struct zone *preferred_zone,
1777 int migratetype)
1778 {
1779 struct page *page;
1780
1781 /* Acquire the OOM killer lock for the zones in zonelist */
1782 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1783 schedule_timeout_uninterruptible(1);
1784 return NULL;
1785 }
1786
1787 /*
1788 * Go through the zonelist yet one more time, keep very high watermark
1789 * here, this is only to catch a parallel oom killing, we must fail if
1790 * we're still under heavy pressure.
1791 */
1792 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1793 order, zonelist, high_zoneidx,
1794 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1795 preferred_zone, migratetype);
1796 if (page)
1797 goto out;
1798
1799 if (!(gfp_mask & __GFP_NOFAIL)) {
1800 /* The OOM killer will not help higher order allocs */
1801 if (order > PAGE_ALLOC_COSTLY_ORDER)
1802 goto out;
1803 /* The OOM killer does not needlessly kill tasks for lowmem */
1804 if (high_zoneidx < ZONE_NORMAL)
1805 goto out;
1806 /*
1807 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1808 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1809 * The caller should handle page allocation failure by itself if
1810 * it specifies __GFP_THISNODE.
1811 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1812 */
1813 if (gfp_mask & __GFP_THISNODE)
1814 goto out;
1815 }
1816 /* Exhausted what can be done so it's blamo time */
1817 out_of_memory(zonelist, gfp_mask, order, nodemask);
1818
1819 out:
1820 clear_zonelist_oom(zonelist, gfp_mask);
1821 return page;
1822 }
1823
1824 #ifdef CONFIG_COMPACTION
1825 /* Try memory compaction for high-order allocations before reclaim */
1826 static struct page *
1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828 struct zonelist *zonelist, enum zone_type high_zoneidx,
1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830 int migratetype, unsigned long *did_some_progress,
1831 bool sync_migration)
1832 {
1833 struct page *page;
1834
1835 if (!order || compaction_deferred(preferred_zone))
1836 return NULL;
1837
1838 current->flags |= PF_MEMALLOC;
1839 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1840 nodemask, sync_migration);
1841 current->flags &= ~PF_MEMALLOC;
1842 if (*did_some_progress != COMPACT_SKIPPED) {
1843
1844 /* Page migration frees to the PCP lists but we want merging */
1845 drain_pages(get_cpu());
1846 put_cpu();
1847
1848 page = get_page_from_freelist(gfp_mask, nodemask,
1849 order, zonelist, high_zoneidx,
1850 alloc_flags, preferred_zone,
1851 migratetype);
1852 if (page) {
1853 preferred_zone->compact_considered = 0;
1854 preferred_zone->compact_defer_shift = 0;
1855 count_vm_event(COMPACTSUCCESS);
1856 return page;
1857 }
1858
1859 /*
1860 * It's bad if compaction run occurs and fails.
1861 * The most likely reason is that pages exist,
1862 * but not enough to satisfy watermarks.
1863 */
1864 count_vm_event(COMPACTFAIL);
1865 defer_compaction(preferred_zone);
1866
1867 cond_resched();
1868 }
1869
1870 return NULL;
1871 }
1872 #else
1873 static inline struct page *
1874 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1875 struct zonelist *zonelist, enum zone_type high_zoneidx,
1876 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1877 int migratetype, unsigned long *did_some_progress,
1878 bool sync_migration)
1879 {
1880 return NULL;
1881 }
1882 #endif /* CONFIG_COMPACTION */
1883
1884 /* The really slow allocator path where we enter direct reclaim */
1885 static inline struct page *
1886 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1887 struct zonelist *zonelist, enum zone_type high_zoneidx,
1888 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1889 int migratetype, unsigned long *did_some_progress)
1890 {
1891 struct page *page = NULL;
1892 struct reclaim_state reclaim_state;
1893 bool drained = false;
1894
1895 cond_resched();
1896
1897 /* We now go into synchronous reclaim */
1898 cpuset_memory_pressure_bump();
1899 current->flags |= PF_MEMALLOC;
1900 lockdep_set_current_reclaim_state(gfp_mask);
1901 reclaim_state.reclaimed_slab = 0;
1902 current->reclaim_state = &reclaim_state;
1903
1904 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1905
1906 current->reclaim_state = NULL;
1907 lockdep_clear_current_reclaim_state();
1908 current->flags &= ~PF_MEMALLOC;
1909
1910 cond_resched();
1911
1912 if (unlikely(!(*did_some_progress)))
1913 return NULL;
1914
1915 retry:
1916 page = get_page_from_freelist(gfp_mask, nodemask, order,
1917 zonelist, high_zoneidx,
1918 alloc_flags, preferred_zone,
1919 migratetype);
1920
1921 /*
1922 * If an allocation failed after direct reclaim, it could be because
1923 * pages are pinned on the per-cpu lists. Drain them and try again
1924 */
1925 if (!page && !drained) {
1926 drain_all_pages();
1927 drained = true;
1928 goto retry;
1929 }
1930
1931 return page;
1932 }
1933
1934 /*
1935 * This is called in the allocator slow-path if the allocation request is of
1936 * sufficient urgency to ignore watermarks and take other desperate measures
1937 */
1938 static inline struct page *
1939 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1940 struct zonelist *zonelist, enum zone_type high_zoneidx,
1941 nodemask_t *nodemask, struct zone *preferred_zone,
1942 int migratetype)
1943 {
1944 struct page *page;
1945
1946 do {
1947 page = get_page_from_freelist(gfp_mask, nodemask, order,
1948 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1949 preferred_zone, migratetype);
1950
1951 if (!page && gfp_mask & __GFP_NOFAIL)
1952 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1953 } while (!page && (gfp_mask & __GFP_NOFAIL));
1954
1955 return page;
1956 }
1957
1958 static inline
1959 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1960 enum zone_type high_zoneidx,
1961 enum zone_type classzone_idx)
1962 {
1963 struct zoneref *z;
1964 struct zone *zone;
1965
1966 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1967 wakeup_kswapd(zone, order, classzone_idx);
1968 }
1969
1970 static inline int
1971 gfp_to_alloc_flags(gfp_t gfp_mask)
1972 {
1973 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1974 const gfp_t wait = gfp_mask & __GFP_WAIT;
1975
1976 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1977 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1978
1979 /*
1980 * The caller may dip into page reserves a bit more if the caller
1981 * cannot run direct reclaim, or if the caller has realtime scheduling
1982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1983 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1984 */
1985 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1986
1987 if (!wait) {
1988 /*
1989 * Not worth trying to allocate harder for
1990 * __GFP_NOMEMALLOC even if it can't schedule.
1991 */
1992 if (!(gfp_mask & __GFP_NOMEMALLOC))
1993 alloc_flags |= ALLOC_HARDER;
1994 /*
1995 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1996 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1997 */
1998 alloc_flags &= ~ALLOC_CPUSET;
1999 } else if (unlikely(rt_task(current)) && !in_interrupt())
2000 alloc_flags |= ALLOC_HARDER;
2001
2002 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2003 if (!in_interrupt() &&
2004 ((current->flags & PF_MEMALLOC) ||
2005 unlikely(test_thread_flag(TIF_MEMDIE))))
2006 alloc_flags |= ALLOC_NO_WATERMARKS;
2007 }
2008
2009 return alloc_flags;
2010 }
2011
2012 static inline struct page *
2013 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2014 struct zonelist *zonelist, enum zone_type high_zoneidx,
2015 nodemask_t *nodemask, struct zone *preferred_zone,
2016 int migratetype)
2017 {
2018 const gfp_t wait = gfp_mask & __GFP_WAIT;
2019 struct page *page = NULL;
2020 int alloc_flags;
2021 unsigned long pages_reclaimed = 0;
2022 unsigned long did_some_progress;
2023 bool sync_migration = false;
2024
2025 /*
2026 * In the slowpath, we sanity check order to avoid ever trying to
2027 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2028 * be using allocators in order of preference for an area that is
2029 * too large.
2030 */
2031 if (order >= MAX_ORDER) {
2032 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2033 return NULL;
2034 }
2035
2036 /*
2037 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2038 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2039 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2040 * using a larger set of nodes after it has established that the
2041 * allowed per node queues are empty and that nodes are
2042 * over allocated.
2043 */
2044 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2045 goto nopage;
2046
2047 restart:
2048 if (!(gfp_mask & __GFP_NO_KSWAPD))
2049 wake_all_kswapd(order, zonelist, high_zoneidx,
2050 zone_idx(preferred_zone));
2051
2052 /*
2053 * OK, we're below the kswapd watermark and have kicked background
2054 * reclaim. Now things get more complex, so set up alloc_flags according
2055 * to how we want to proceed.
2056 */
2057 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2058
2059 /*
2060 * Find the true preferred zone if the allocation is unconstrained by
2061 * cpusets.
2062 */
2063 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2064 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2065 &preferred_zone);
2066
2067 /* This is the last chance, in general, before the goto nopage. */
2068 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2069 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2070 preferred_zone, migratetype);
2071 if (page)
2072 goto got_pg;
2073
2074 rebalance:
2075 /* Allocate without watermarks if the context allows */
2076 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2077 page = __alloc_pages_high_priority(gfp_mask, order,
2078 zonelist, high_zoneidx, nodemask,
2079 preferred_zone, migratetype);
2080 if (page)
2081 goto got_pg;
2082 }
2083
2084 /* Atomic allocations - we can't balance anything */
2085 if (!wait)
2086 goto nopage;
2087
2088 /* Avoid recursion of direct reclaim */
2089 if (current->flags & PF_MEMALLOC)
2090 goto nopage;
2091
2092 /* Avoid allocations with no watermarks from looping endlessly */
2093 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2094 goto nopage;
2095
2096 /*
2097 * Try direct compaction. The first pass is asynchronous. Subsequent
2098 * attempts after direct reclaim are synchronous
2099 */
2100 page = __alloc_pages_direct_compact(gfp_mask, order,
2101 zonelist, high_zoneidx,
2102 nodemask,
2103 alloc_flags, preferred_zone,
2104 migratetype, &did_some_progress,
2105 sync_migration);
2106 if (page)
2107 goto got_pg;
2108 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2109
2110 /* Try direct reclaim and then allocating */
2111 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2112 zonelist, high_zoneidx,
2113 nodemask,
2114 alloc_flags, preferred_zone,
2115 migratetype, &did_some_progress);
2116 if (page)
2117 goto got_pg;
2118
2119 /*
2120 * If we failed to make any progress reclaiming, then we are
2121 * running out of options and have to consider going OOM
2122 */
2123 if (!did_some_progress) {
2124 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2125 if (oom_killer_disabled)
2126 goto nopage;
2127 page = __alloc_pages_may_oom(gfp_mask, order,
2128 zonelist, high_zoneidx,
2129 nodemask, preferred_zone,
2130 migratetype);
2131 if (page)
2132 goto got_pg;
2133
2134 if (!(gfp_mask & __GFP_NOFAIL)) {
2135 /*
2136 * The oom killer is not called for high-order
2137 * allocations that may fail, so if no progress
2138 * is being made, there are no other options and
2139 * retrying is unlikely to help.
2140 */
2141 if (order > PAGE_ALLOC_COSTLY_ORDER)
2142 goto nopage;
2143 /*
2144 * The oom killer is not called for lowmem
2145 * allocations to prevent needlessly killing
2146 * innocent tasks.
2147 */
2148 if (high_zoneidx < ZONE_NORMAL)
2149 goto nopage;
2150 }
2151
2152 goto restart;
2153 }
2154 }
2155
2156 /* Check if we should retry the allocation */
2157 pages_reclaimed += did_some_progress;
2158 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2159 /* Wait for some write requests to complete then retry */
2160 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2161 goto rebalance;
2162 } else {
2163 /*
2164 * High-order allocations do not necessarily loop after
2165 * direct reclaim and reclaim/compaction depends on compaction
2166 * being called after reclaim so call directly if necessary
2167 */
2168 page = __alloc_pages_direct_compact(gfp_mask, order,
2169 zonelist, high_zoneidx,
2170 nodemask,
2171 alloc_flags, preferred_zone,
2172 migratetype, &did_some_progress,
2173 sync_migration);
2174 if (page)
2175 goto got_pg;
2176 }
2177
2178 nopage:
2179 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2180 unsigned int filter = SHOW_MEM_FILTER_NODES;
2181
2182 /*
2183 * This documents exceptions given to allocations in certain
2184 * contexts that are allowed to allocate outside current's set
2185 * of allowed nodes.
2186 */
2187 if (!(gfp_mask & __GFP_NOMEMALLOC))
2188 if (test_thread_flag(TIF_MEMDIE) ||
2189 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2190 filter &= ~SHOW_MEM_FILTER_NODES;
2191 if (in_interrupt() || !wait)
2192 filter &= ~SHOW_MEM_FILTER_NODES;
2193
2194 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2195 current->comm, order, gfp_mask);
2196 dump_stack();
2197 if (!should_suppress_show_mem())
2198 show_mem(filter);
2199 }
2200 return page;
2201 got_pg:
2202 if (kmemcheck_enabled)
2203 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2204 return page;
2205
2206 }
2207
2208 /*
2209 * This is the 'heart' of the zoned buddy allocator.
2210 */
2211 struct page *
2212 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2213 struct zonelist *zonelist, nodemask_t *nodemask)
2214 {
2215 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2216 struct zone *preferred_zone;
2217 struct page *page;
2218 int migratetype = allocflags_to_migratetype(gfp_mask);
2219
2220 gfp_mask &= gfp_allowed_mask;
2221
2222 lockdep_trace_alloc(gfp_mask);
2223
2224 might_sleep_if(gfp_mask & __GFP_WAIT);
2225
2226 if (should_fail_alloc_page(gfp_mask, order))
2227 return NULL;
2228
2229 /*
2230 * Check the zones suitable for the gfp_mask contain at least one
2231 * valid zone. It's possible to have an empty zonelist as a result
2232 * of GFP_THISNODE and a memoryless node
2233 */
2234 if (unlikely(!zonelist->_zonerefs->zone))
2235 return NULL;
2236
2237 get_mems_allowed();
2238 /* The preferred zone is used for statistics later */
2239 first_zones_zonelist(zonelist, high_zoneidx,
2240 nodemask ? : &cpuset_current_mems_allowed,
2241 &preferred_zone);
2242 if (!preferred_zone) {
2243 put_mems_allowed();
2244 return NULL;
2245 }
2246
2247 /* First allocation attempt */
2248 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2249 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2250 preferred_zone, migratetype);
2251 if (unlikely(!page))
2252 page = __alloc_pages_slowpath(gfp_mask, order,
2253 zonelist, high_zoneidx, nodemask,
2254 preferred_zone, migratetype);
2255 put_mems_allowed();
2256
2257 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2258 return page;
2259 }
2260 EXPORT_SYMBOL(__alloc_pages_nodemask);
2261
2262 /*
2263 * Common helper functions.
2264 */
2265 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2266 {
2267 struct page *page;
2268
2269 /*
2270 * __get_free_pages() returns a 32-bit address, which cannot represent
2271 * a highmem page
2272 */
2273 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2274
2275 page = alloc_pages(gfp_mask, order);
2276 if (!page)
2277 return 0;
2278 return (unsigned long) page_address(page);
2279 }
2280 EXPORT_SYMBOL(__get_free_pages);
2281
2282 unsigned long get_zeroed_page(gfp_t gfp_mask)
2283 {
2284 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2285 }
2286 EXPORT_SYMBOL(get_zeroed_page);
2287
2288 void __pagevec_free(struct pagevec *pvec)
2289 {
2290 int i = pagevec_count(pvec);
2291
2292 while (--i >= 0) {
2293 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2294 free_hot_cold_page(pvec->pages[i], pvec->cold);
2295 }
2296 }
2297
2298 void __free_pages(struct page *page, unsigned int order)
2299 {
2300 if (put_page_testzero(page)) {
2301 if (order == 0)
2302 free_hot_cold_page(page, 0);
2303 else
2304 __free_pages_ok(page, order);
2305 }
2306 }
2307
2308 EXPORT_SYMBOL(__free_pages);
2309
2310 void free_pages(unsigned long addr, unsigned int order)
2311 {
2312 if (addr != 0) {
2313 VM_BUG_ON(!virt_addr_valid((void *)addr));
2314 __free_pages(virt_to_page((void *)addr), order);
2315 }
2316 }
2317
2318 EXPORT_SYMBOL(free_pages);
2319
2320 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2321 {
2322 if (addr) {
2323 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2324 unsigned long used = addr + PAGE_ALIGN(size);
2325
2326 split_page(virt_to_page((void *)addr), order);
2327 while (used < alloc_end) {
2328 free_page(used);
2329 used += PAGE_SIZE;
2330 }
2331 }
2332 return (void *)addr;
2333 }
2334
2335 /**
2336 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2337 * @size: the number of bytes to allocate
2338 * @gfp_mask: GFP flags for the allocation
2339 *
2340 * This function is similar to alloc_pages(), except that it allocates the
2341 * minimum number of pages to satisfy the request. alloc_pages() can only
2342 * allocate memory in power-of-two pages.
2343 *
2344 * This function is also limited by MAX_ORDER.
2345 *
2346 * Memory allocated by this function must be released by free_pages_exact().
2347 */
2348 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2349 {
2350 unsigned int order = get_order(size);
2351 unsigned long addr;
2352
2353 addr = __get_free_pages(gfp_mask, order);
2354 return make_alloc_exact(addr, order, size);
2355 }
2356 EXPORT_SYMBOL(alloc_pages_exact);
2357
2358 /**
2359 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2360 * pages on a node.
2361 * @nid: the preferred node ID where memory should be allocated
2362 * @size: the number of bytes to allocate
2363 * @gfp_mask: GFP flags for the allocation
2364 *
2365 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2366 * back.
2367 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2368 * but is not exact.
2369 */
2370 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2371 {
2372 unsigned order = get_order(size);
2373 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2374 if (!p)
2375 return NULL;
2376 return make_alloc_exact((unsigned long)page_address(p), order, size);
2377 }
2378 EXPORT_SYMBOL(alloc_pages_exact_nid);
2379
2380 /**
2381 * free_pages_exact - release memory allocated via alloc_pages_exact()
2382 * @virt: the value returned by alloc_pages_exact.
2383 * @size: size of allocation, same value as passed to alloc_pages_exact().
2384 *
2385 * Release the memory allocated by a previous call to alloc_pages_exact.
2386 */
2387 void free_pages_exact(void *virt, size_t size)
2388 {
2389 unsigned long addr = (unsigned long)virt;
2390 unsigned long end = addr + PAGE_ALIGN(size);
2391
2392 while (addr < end) {
2393 free_page(addr);
2394 addr += PAGE_SIZE;
2395 }
2396 }
2397 EXPORT_SYMBOL(free_pages_exact);
2398
2399 static unsigned int nr_free_zone_pages(int offset)
2400 {
2401 struct zoneref *z;
2402 struct zone *zone;
2403
2404 /* Just pick one node, since fallback list is circular */
2405 unsigned int sum = 0;
2406
2407 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2408
2409 for_each_zone_zonelist(zone, z, zonelist, offset) {
2410 unsigned long size = zone->present_pages;
2411 unsigned long high = high_wmark_pages(zone);
2412 if (size > high)
2413 sum += size - high;
2414 }
2415
2416 return sum;
2417 }
2418
2419 /*
2420 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2421 */
2422 unsigned int nr_free_buffer_pages(void)
2423 {
2424 return nr_free_zone_pages(gfp_zone(GFP_USER));
2425 }
2426 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2427
2428 /*
2429 * Amount of free RAM allocatable within all zones
2430 */
2431 unsigned int nr_free_pagecache_pages(void)
2432 {
2433 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2434 }
2435
2436 static inline void show_node(struct zone *zone)
2437 {
2438 if (NUMA_BUILD)
2439 printk("Node %d ", zone_to_nid(zone));
2440 }
2441
2442 void si_meminfo(struct sysinfo *val)
2443 {
2444 val->totalram = totalram_pages;
2445 val->sharedram = 0;
2446 val->freeram = global_page_state(NR_FREE_PAGES);
2447 val->bufferram = nr_blockdev_pages();
2448 val->totalhigh = totalhigh_pages;
2449 val->freehigh = nr_free_highpages();
2450 val->mem_unit = PAGE_SIZE;
2451 }
2452
2453 EXPORT_SYMBOL(si_meminfo);
2454
2455 #ifdef CONFIG_NUMA
2456 void si_meminfo_node(struct sysinfo *val, int nid)
2457 {
2458 pg_data_t *pgdat = NODE_DATA(nid);
2459
2460 val->totalram = pgdat->node_present_pages;
2461 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2462 #ifdef CONFIG_HIGHMEM
2463 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2464 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2465 NR_FREE_PAGES);
2466 #else
2467 val->totalhigh = 0;
2468 val->freehigh = 0;
2469 #endif
2470 val->mem_unit = PAGE_SIZE;
2471 }
2472 #endif
2473
2474 /*
2475 * Determine whether the zone's node should be displayed or not, depending on
2476 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2477 */
2478 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2479 {
2480 bool ret = false;
2481
2482 if (!(flags & SHOW_MEM_FILTER_NODES))
2483 goto out;
2484
2485 get_mems_allowed();
2486 ret = !node_isset(zone->zone_pgdat->node_id,
2487 cpuset_current_mems_allowed);
2488 put_mems_allowed();
2489 out:
2490 return ret;
2491 }
2492
2493 #define K(x) ((x) << (PAGE_SHIFT-10))
2494
2495 /*
2496 * Show free area list (used inside shift_scroll-lock stuff)
2497 * We also calculate the percentage fragmentation. We do this by counting the
2498 * memory on each free list with the exception of the first item on the list.
2499 * Suppresses nodes that are not allowed by current's cpuset if
2500 * SHOW_MEM_FILTER_NODES is passed.
2501 */
2502 void __show_free_areas(unsigned int filter)
2503 {
2504 int cpu;
2505 struct zone *zone;
2506
2507 for_each_populated_zone(zone) {
2508 if (skip_free_areas_zone(filter, zone))
2509 continue;
2510 show_node(zone);
2511 printk("%s per-cpu:\n", zone->name);
2512
2513 for_each_online_cpu(cpu) {
2514 struct per_cpu_pageset *pageset;
2515
2516 pageset = per_cpu_ptr(zone->pageset, cpu);
2517
2518 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2519 cpu, pageset->pcp.high,
2520 pageset->pcp.batch, pageset->pcp.count);
2521 }
2522 }
2523
2524 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2525 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2526 " unevictable:%lu"
2527 " dirty:%lu writeback:%lu unstable:%lu\n"
2528 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2529 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2530 global_page_state(NR_ACTIVE_ANON),
2531 global_page_state(NR_INACTIVE_ANON),
2532 global_page_state(NR_ISOLATED_ANON),
2533 global_page_state(NR_ACTIVE_FILE),
2534 global_page_state(NR_INACTIVE_FILE),
2535 global_page_state(NR_ISOLATED_FILE),
2536 global_page_state(NR_UNEVICTABLE),
2537 global_page_state(NR_FILE_DIRTY),
2538 global_page_state(NR_WRITEBACK),
2539 global_page_state(NR_UNSTABLE_NFS),
2540 global_page_state(NR_FREE_PAGES),
2541 global_page_state(NR_SLAB_RECLAIMABLE),
2542 global_page_state(NR_SLAB_UNRECLAIMABLE),
2543 global_page_state(NR_FILE_MAPPED),
2544 global_page_state(NR_SHMEM),
2545 global_page_state(NR_PAGETABLE),
2546 global_page_state(NR_BOUNCE));
2547
2548 for_each_populated_zone(zone) {
2549 int i;
2550
2551 if (skip_free_areas_zone(filter, zone))
2552 continue;
2553 show_node(zone);
2554 printk("%s"
2555 " free:%lukB"
2556 " min:%lukB"
2557 " low:%lukB"
2558 " high:%lukB"
2559 " active_anon:%lukB"
2560 " inactive_anon:%lukB"
2561 " active_file:%lukB"
2562 " inactive_file:%lukB"
2563 " unevictable:%lukB"
2564 " isolated(anon):%lukB"
2565 " isolated(file):%lukB"
2566 " present:%lukB"
2567 " mlocked:%lukB"
2568 " dirty:%lukB"
2569 " writeback:%lukB"
2570 " mapped:%lukB"
2571 " shmem:%lukB"
2572 " slab_reclaimable:%lukB"
2573 " slab_unreclaimable:%lukB"
2574 " kernel_stack:%lukB"
2575 " pagetables:%lukB"
2576 " unstable:%lukB"
2577 " bounce:%lukB"
2578 " writeback_tmp:%lukB"
2579 " pages_scanned:%lu"
2580 " all_unreclaimable? %s"
2581 "\n",
2582 zone->name,
2583 K(zone_page_state(zone, NR_FREE_PAGES)),
2584 K(min_wmark_pages(zone)),
2585 K(low_wmark_pages(zone)),
2586 K(high_wmark_pages(zone)),
2587 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2588 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2589 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2590 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2591 K(zone_page_state(zone, NR_UNEVICTABLE)),
2592 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2593 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2594 K(zone->present_pages),
2595 K(zone_page_state(zone, NR_MLOCK)),
2596 K(zone_page_state(zone, NR_FILE_DIRTY)),
2597 K(zone_page_state(zone, NR_WRITEBACK)),
2598 K(zone_page_state(zone, NR_FILE_MAPPED)),
2599 K(zone_page_state(zone, NR_SHMEM)),
2600 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2601 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2602 zone_page_state(zone, NR_KERNEL_STACK) *
2603 THREAD_SIZE / 1024,
2604 K(zone_page_state(zone, NR_PAGETABLE)),
2605 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2606 K(zone_page_state(zone, NR_BOUNCE)),
2607 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2608 zone->pages_scanned,
2609 (zone->all_unreclaimable ? "yes" : "no")
2610 );
2611 printk("lowmem_reserve[]:");
2612 for (i = 0; i < MAX_NR_ZONES; i++)
2613 printk(" %lu", zone->lowmem_reserve[i]);
2614 printk("\n");
2615 }
2616
2617 for_each_populated_zone(zone) {
2618 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2619
2620 if (skip_free_areas_zone(filter, zone))
2621 continue;
2622 show_node(zone);
2623 printk("%s: ", zone->name);
2624
2625 spin_lock_irqsave(&zone->lock, flags);
2626 for (order = 0; order < MAX_ORDER; order++) {
2627 nr[order] = zone->free_area[order].nr_free;
2628 total += nr[order] << order;
2629 }
2630 spin_unlock_irqrestore(&zone->lock, flags);
2631 for (order = 0; order < MAX_ORDER; order++)
2632 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2633 printk("= %lukB\n", K(total));
2634 }
2635
2636 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2637
2638 show_swap_cache_info();
2639 }
2640
2641 void show_free_areas(void)
2642 {
2643 __show_free_areas(0);
2644 }
2645
2646 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2647 {
2648 zoneref->zone = zone;
2649 zoneref->zone_idx = zone_idx(zone);
2650 }
2651
2652 /*
2653 * Builds allocation fallback zone lists.
2654 *
2655 * Add all populated zones of a node to the zonelist.
2656 */
2657 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2658 int nr_zones, enum zone_type zone_type)
2659 {
2660 struct zone *zone;
2661
2662 BUG_ON(zone_type >= MAX_NR_ZONES);
2663 zone_type++;
2664
2665 do {
2666 zone_type--;
2667 zone = pgdat->node_zones + zone_type;
2668 if (populated_zone(zone)) {
2669 zoneref_set_zone(zone,
2670 &zonelist->_zonerefs[nr_zones++]);
2671 check_highest_zone(zone_type);
2672 }
2673
2674 } while (zone_type);
2675 return nr_zones;
2676 }
2677
2678
2679 /*
2680 * zonelist_order:
2681 * 0 = automatic detection of better ordering.
2682 * 1 = order by ([node] distance, -zonetype)
2683 * 2 = order by (-zonetype, [node] distance)
2684 *
2685 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2686 * the same zonelist. So only NUMA can configure this param.
2687 */
2688 #define ZONELIST_ORDER_DEFAULT 0
2689 #define ZONELIST_ORDER_NODE 1
2690 #define ZONELIST_ORDER_ZONE 2
2691
2692 /* zonelist order in the kernel.
2693 * set_zonelist_order() will set this to NODE or ZONE.
2694 */
2695 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2696 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2697
2698
2699 #ifdef CONFIG_NUMA
2700 /* The value user specified ....changed by config */
2701 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2702 /* string for sysctl */
2703 #define NUMA_ZONELIST_ORDER_LEN 16
2704 char numa_zonelist_order[16] = "default";
2705
2706 /*
2707 * interface for configure zonelist ordering.
2708 * command line option "numa_zonelist_order"
2709 * = "[dD]efault - default, automatic configuration.
2710 * = "[nN]ode - order by node locality, then by zone within node
2711 * = "[zZ]one - order by zone, then by locality within zone
2712 */
2713
2714 static int __parse_numa_zonelist_order(char *s)
2715 {
2716 if (*s == 'd' || *s == 'D') {
2717 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2718 } else if (*s == 'n' || *s == 'N') {
2719 user_zonelist_order = ZONELIST_ORDER_NODE;
2720 } else if (*s == 'z' || *s == 'Z') {
2721 user_zonelist_order = ZONELIST_ORDER_ZONE;
2722 } else {
2723 printk(KERN_WARNING
2724 "Ignoring invalid numa_zonelist_order value: "
2725 "%s\n", s);
2726 return -EINVAL;
2727 }
2728 return 0;
2729 }
2730
2731 static __init int setup_numa_zonelist_order(char *s)
2732 {
2733 int ret;
2734
2735 if (!s)
2736 return 0;
2737
2738 ret = __parse_numa_zonelist_order(s);
2739 if (ret == 0)
2740 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2741
2742 return ret;
2743 }
2744 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2745
2746 /*
2747 * sysctl handler for numa_zonelist_order
2748 */
2749 int numa_zonelist_order_handler(ctl_table *table, int write,
2750 void __user *buffer, size_t *length,
2751 loff_t *ppos)
2752 {
2753 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2754 int ret;
2755 static DEFINE_MUTEX(zl_order_mutex);
2756
2757 mutex_lock(&zl_order_mutex);
2758 if (write)
2759 strcpy(saved_string, (char*)table->data);
2760 ret = proc_dostring(table, write, buffer, length, ppos);
2761 if (ret)
2762 goto out;
2763 if (write) {
2764 int oldval = user_zonelist_order;
2765 if (__parse_numa_zonelist_order((char*)table->data)) {
2766 /*
2767 * bogus value. restore saved string
2768 */
2769 strncpy((char*)table->data, saved_string,
2770 NUMA_ZONELIST_ORDER_LEN);
2771 user_zonelist_order = oldval;
2772 } else if (oldval != user_zonelist_order) {
2773 mutex_lock(&zonelists_mutex);
2774 build_all_zonelists(NULL);
2775 mutex_unlock(&zonelists_mutex);
2776 }
2777 }
2778 out:
2779 mutex_unlock(&zl_order_mutex);
2780 return ret;
2781 }
2782
2783
2784 #define MAX_NODE_LOAD (nr_online_nodes)
2785 static int node_load[MAX_NUMNODES];
2786
2787 /**
2788 * find_next_best_node - find the next node that should appear in a given node's fallback list
2789 * @node: node whose fallback list we're appending
2790 * @used_node_mask: nodemask_t of already used nodes
2791 *
2792 * We use a number of factors to determine which is the next node that should
2793 * appear on a given node's fallback list. The node should not have appeared
2794 * already in @node's fallback list, and it should be the next closest node
2795 * according to the distance array (which contains arbitrary distance values
2796 * from each node to each node in the system), and should also prefer nodes
2797 * with no CPUs, since presumably they'll have very little allocation pressure
2798 * on them otherwise.
2799 * It returns -1 if no node is found.
2800 */
2801 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2802 {
2803 int n, val;
2804 int min_val = INT_MAX;
2805 int best_node = -1;
2806 const struct cpumask *tmp = cpumask_of_node(0);
2807
2808 /* Use the local node if we haven't already */
2809 if (!node_isset(node, *used_node_mask)) {
2810 node_set(node, *used_node_mask);
2811 return node;
2812 }
2813
2814 for_each_node_state(n, N_HIGH_MEMORY) {
2815
2816 /* Don't want a node to appear more than once */
2817 if (node_isset(n, *used_node_mask))
2818 continue;
2819
2820 /* Use the distance array to find the distance */
2821 val = node_distance(node, n);
2822
2823 /* Penalize nodes under us ("prefer the next node") */
2824 val += (n < node);
2825
2826 /* Give preference to headless and unused nodes */
2827 tmp = cpumask_of_node(n);
2828 if (!cpumask_empty(tmp))
2829 val += PENALTY_FOR_NODE_WITH_CPUS;
2830
2831 /* Slight preference for less loaded node */
2832 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2833 val += node_load[n];
2834
2835 if (val < min_val) {
2836 min_val = val;
2837 best_node = n;
2838 }
2839 }
2840
2841 if (best_node >= 0)
2842 node_set(best_node, *used_node_mask);
2843
2844 return best_node;
2845 }
2846
2847
2848 /*
2849 * Build zonelists ordered by node and zones within node.
2850 * This results in maximum locality--normal zone overflows into local
2851 * DMA zone, if any--but risks exhausting DMA zone.
2852 */
2853 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2854 {
2855 int j;
2856 struct zonelist *zonelist;
2857
2858 zonelist = &pgdat->node_zonelists[0];
2859 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2860 ;
2861 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2862 MAX_NR_ZONES - 1);
2863 zonelist->_zonerefs[j].zone = NULL;
2864 zonelist->_zonerefs[j].zone_idx = 0;
2865 }
2866
2867 /*
2868 * Build gfp_thisnode zonelists
2869 */
2870 static void build_thisnode_zonelists(pg_data_t *pgdat)
2871 {
2872 int j;
2873 struct zonelist *zonelist;
2874
2875 zonelist = &pgdat->node_zonelists[1];
2876 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2877 zonelist->_zonerefs[j].zone = NULL;
2878 zonelist->_zonerefs[j].zone_idx = 0;
2879 }
2880
2881 /*
2882 * Build zonelists ordered by zone and nodes within zones.
2883 * This results in conserving DMA zone[s] until all Normal memory is
2884 * exhausted, but results in overflowing to remote node while memory
2885 * may still exist in local DMA zone.
2886 */
2887 static int node_order[MAX_NUMNODES];
2888
2889 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2890 {
2891 int pos, j, node;
2892 int zone_type; /* needs to be signed */
2893 struct zone *z;
2894 struct zonelist *zonelist;
2895
2896 zonelist = &pgdat->node_zonelists[0];
2897 pos = 0;
2898 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2899 for (j = 0; j < nr_nodes; j++) {
2900 node = node_order[j];
2901 z = &NODE_DATA(node)->node_zones[zone_type];
2902 if (populated_zone(z)) {
2903 zoneref_set_zone(z,
2904 &zonelist->_zonerefs[pos++]);
2905 check_highest_zone(zone_type);
2906 }
2907 }
2908 }
2909 zonelist->_zonerefs[pos].zone = NULL;
2910 zonelist->_zonerefs[pos].zone_idx = 0;
2911 }
2912
2913 static int default_zonelist_order(void)
2914 {
2915 int nid, zone_type;
2916 unsigned long low_kmem_size,total_size;
2917 struct zone *z;
2918 int average_size;
2919 /*
2920 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2921 * If they are really small and used heavily, the system can fall
2922 * into OOM very easily.
2923 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2924 */
2925 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2926 low_kmem_size = 0;
2927 total_size = 0;
2928 for_each_online_node(nid) {
2929 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2930 z = &NODE_DATA(nid)->node_zones[zone_type];
2931 if (populated_zone(z)) {
2932 if (zone_type < ZONE_NORMAL)
2933 low_kmem_size += z->present_pages;
2934 total_size += z->present_pages;
2935 } else if (zone_type == ZONE_NORMAL) {
2936 /*
2937 * If any node has only lowmem, then node order
2938 * is preferred to allow kernel allocations
2939 * locally; otherwise, they can easily infringe
2940 * on other nodes when there is an abundance of
2941 * lowmem available to allocate from.
2942 */
2943 return ZONELIST_ORDER_NODE;
2944 }
2945 }
2946 }
2947 if (!low_kmem_size || /* there are no DMA area. */
2948 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2949 return ZONELIST_ORDER_NODE;
2950 /*
2951 * look into each node's config.
2952 * If there is a node whose DMA/DMA32 memory is very big area on
2953 * local memory, NODE_ORDER may be suitable.
2954 */
2955 average_size = total_size /
2956 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2957 for_each_online_node(nid) {
2958 low_kmem_size = 0;
2959 total_size = 0;
2960 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2961 z = &NODE_DATA(nid)->node_zones[zone_type];
2962 if (populated_zone(z)) {
2963 if (zone_type < ZONE_NORMAL)
2964 low_kmem_size += z->present_pages;
2965 total_size += z->present_pages;
2966 }
2967 }
2968 if (low_kmem_size &&
2969 total_size > average_size && /* ignore small node */
2970 low_kmem_size > total_size * 70/100)
2971 return ZONELIST_ORDER_NODE;
2972 }
2973 return ZONELIST_ORDER_ZONE;
2974 }
2975
2976 static void set_zonelist_order(void)
2977 {
2978 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2979 current_zonelist_order = default_zonelist_order();
2980 else
2981 current_zonelist_order = user_zonelist_order;
2982 }
2983
2984 static void build_zonelists(pg_data_t *pgdat)
2985 {
2986 int j, node, load;
2987 enum zone_type i;
2988 nodemask_t used_mask;
2989 int local_node, prev_node;
2990 struct zonelist *zonelist;
2991 int order = current_zonelist_order;
2992
2993 /* initialize zonelists */
2994 for (i = 0; i < MAX_ZONELISTS; i++) {
2995 zonelist = pgdat->node_zonelists + i;
2996 zonelist->_zonerefs[0].zone = NULL;
2997 zonelist->_zonerefs[0].zone_idx = 0;
2998 }
2999
3000 /* NUMA-aware ordering of nodes */
3001 local_node = pgdat->node_id;
3002 load = nr_online_nodes;
3003 prev_node = local_node;
3004 nodes_clear(used_mask);
3005
3006 memset(node_order, 0, sizeof(node_order));
3007 j = 0;
3008
3009 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3010 int distance = node_distance(local_node, node);
3011
3012 /*
3013 * If another node is sufficiently far away then it is better
3014 * to reclaim pages in a zone before going off node.
3015 */
3016 if (distance > RECLAIM_DISTANCE)
3017 zone_reclaim_mode = 1;
3018
3019 /*
3020 * We don't want to pressure a particular node.
3021 * So adding penalty to the first node in same
3022 * distance group to make it round-robin.
3023 */
3024 if (distance != node_distance(local_node, prev_node))
3025 node_load[node] = load;
3026
3027 prev_node = node;
3028 load--;
3029 if (order == ZONELIST_ORDER_NODE)
3030 build_zonelists_in_node_order(pgdat, node);
3031 else
3032 node_order[j++] = node; /* remember order */
3033 }
3034
3035 if (order == ZONELIST_ORDER_ZONE) {
3036 /* calculate node order -- i.e., DMA last! */
3037 build_zonelists_in_zone_order(pgdat, j);
3038 }
3039
3040 build_thisnode_zonelists(pgdat);
3041 }
3042
3043 /* Construct the zonelist performance cache - see further mmzone.h */
3044 static void build_zonelist_cache(pg_data_t *pgdat)
3045 {
3046 struct zonelist *zonelist;
3047 struct zonelist_cache *zlc;
3048 struct zoneref *z;
3049
3050 zonelist = &pgdat->node_zonelists[0];
3051 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3052 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3053 for (z = zonelist->_zonerefs; z->zone; z++)
3054 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3055 }
3056
3057 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3058 /*
3059 * Return node id of node used for "local" allocations.
3060 * I.e., first node id of first zone in arg node's generic zonelist.
3061 * Used for initializing percpu 'numa_mem', which is used primarily
3062 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3063 */
3064 int local_memory_node(int node)
3065 {
3066 struct zone *zone;
3067
3068 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3069 gfp_zone(GFP_KERNEL),
3070 NULL,
3071 &zone);
3072 return zone->node;
3073 }
3074 #endif
3075
3076 #else /* CONFIG_NUMA */
3077
3078 static void set_zonelist_order(void)
3079 {
3080 current_zonelist_order = ZONELIST_ORDER_ZONE;
3081 }
3082
3083 static void build_zonelists(pg_data_t *pgdat)
3084 {
3085 int node, local_node;
3086 enum zone_type j;
3087 struct zonelist *zonelist;
3088
3089 local_node = pgdat->node_id;
3090
3091 zonelist = &pgdat->node_zonelists[0];
3092 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3093
3094 /*
3095 * Now we build the zonelist so that it contains the zones
3096 * of all the other nodes.
3097 * We don't want to pressure a particular node, so when
3098 * building the zones for node N, we make sure that the
3099 * zones coming right after the local ones are those from
3100 * node N+1 (modulo N)
3101 */
3102 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3103 if (!node_online(node))
3104 continue;
3105 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3106 MAX_NR_ZONES - 1);
3107 }
3108 for (node = 0; node < local_node; node++) {
3109 if (!node_online(node))
3110 continue;
3111 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3112 MAX_NR_ZONES - 1);
3113 }
3114
3115 zonelist->_zonerefs[j].zone = NULL;
3116 zonelist->_zonerefs[j].zone_idx = 0;
3117 }
3118
3119 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3120 static void build_zonelist_cache(pg_data_t *pgdat)
3121 {
3122 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3123 }
3124
3125 #endif /* CONFIG_NUMA */
3126
3127 /*
3128 * Boot pageset table. One per cpu which is going to be used for all
3129 * zones and all nodes. The parameters will be set in such a way
3130 * that an item put on a list will immediately be handed over to
3131 * the buddy list. This is safe since pageset manipulation is done
3132 * with interrupts disabled.
3133 *
3134 * The boot_pagesets must be kept even after bootup is complete for
3135 * unused processors and/or zones. They do play a role for bootstrapping
3136 * hotplugged processors.
3137 *
3138 * zoneinfo_show() and maybe other functions do
3139 * not check if the processor is online before following the pageset pointer.
3140 * Other parts of the kernel may not check if the zone is available.
3141 */
3142 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3143 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3144 static void setup_zone_pageset(struct zone *zone);
3145
3146 /*
3147 * Global mutex to protect against size modification of zonelists
3148 * as well as to serialize pageset setup for the new populated zone.
3149 */
3150 DEFINE_MUTEX(zonelists_mutex);
3151
3152 /* return values int ....just for stop_machine() */
3153 static __init_refok int __build_all_zonelists(void *data)
3154 {
3155 int nid;
3156 int cpu;
3157
3158 #ifdef CONFIG_NUMA
3159 memset(node_load, 0, sizeof(node_load));
3160 #endif
3161 for_each_online_node(nid) {
3162 pg_data_t *pgdat = NODE_DATA(nid);
3163
3164 build_zonelists(pgdat);
3165 build_zonelist_cache(pgdat);
3166 }
3167
3168 /*
3169 * Initialize the boot_pagesets that are going to be used
3170 * for bootstrapping processors. The real pagesets for
3171 * each zone will be allocated later when the per cpu
3172 * allocator is available.
3173 *
3174 * boot_pagesets are used also for bootstrapping offline
3175 * cpus if the system is already booted because the pagesets
3176 * are needed to initialize allocators on a specific cpu too.
3177 * F.e. the percpu allocator needs the page allocator which
3178 * needs the percpu allocator in order to allocate its pagesets
3179 * (a chicken-egg dilemma).
3180 */
3181 for_each_possible_cpu(cpu) {
3182 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3183
3184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3185 /*
3186 * We now know the "local memory node" for each node--
3187 * i.e., the node of the first zone in the generic zonelist.
3188 * Set up numa_mem percpu variable for on-line cpus. During
3189 * boot, only the boot cpu should be on-line; we'll init the
3190 * secondary cpus' numa_mem as they come on-line. During
3191 * node/memory hotplug, we'll fixup all on-line cpus.
3192 */
3193 if (cpu_online(cpu))
3194 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3195 #endif
3196 }
3197
3198 return 0;
3199 }
3200
3201 /*
3202 * Called with zonelists_mutex held always
3203 * unless system_state == SYSTEM_BOOTING.
3204 */
3205 void __ref build_all_zonelists(void *data)
3206 {
3207 set_zonelist_order();
3208
3209 if (system_state == SYSTEM_BOOTING) {
3210 __build_all_zonelists(NULL);
3211 mminit_verify_zonelist();
3212 cpuset_init_current_mems_allowed();
3213 } else {
3214 /* we have to stop all cpus to guarantee there is no user
3215 of zonelist */
3216 #ifdef CONFIG_MEMORY_HOTPLUG
3217 if (data)
3218 setup_zone_pageset((struct zone *)data);
3219 #endif
3220 stop_machine(__build_all_zonelists, NULL, NULL);
3221 /* cpuset refresh routine should be here */
3222 }
3223 vm_total_pages = nr_free_pagecache_pages();
3224 /*
3225 * Disable grouping by mobility if the number of pages in the
3226 * system is too low to allow the mechanism to work. It would be
3227 * more accurate, but expensive to check per-zone. This check is
3228 * made on memory-hotadd so a system can start with mobility
3229 * disabled and enable it later
3230 */
3231 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3232 page_group_by_mobility_disabled = 1;
3233 else
3234 page_group_by_mobility_disabled = 0;
3235
3236 printk("Built %i zonelists in %s order, mobility grouping %s. "
3237 "Total pages: %ld\n",
3238 nr_online_nodes,
3239 zonelist_order_name[current_zonelist_order],
3240 page_group_by_mobility_disabled ? "off" : "on",
3241 vm_total_pages);
3242 #ifdef CONFIG_NUMA
3243 printk("Policy zone: %s\n", zone_names[policy_zone]);
3244 #endif
3245 }
3246
3247 /*
3248 * Helper functions to size the waitqueue hash table.
3249 * Essentially these want to choose hash table sizes sufficiently
3250 * large so that collisions trying to wait on pages are rare.
3251 * But in fact, the number of active page waitqueues on typical
3252 * systems is ridiculously low, less than 200. So this is even
3253 * conservative, even though it seems large.
3254 *
3255 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3256 * waitqueues, i.e. the size of the waitq table given the number of pages.
3257 */
3258 #define PAGES_PER_WAITQUEUE 256
3259
3260 #ifndef CONFIG_MEMORY_HOTPLUG
3261 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3262 {
3263 unsigned long size = 1;
3264
3265 pages /= PAGES_PER_WAITQUEUE;
3266
3267 while (size < pages)
3268 size <<= 1;
3269
3270 /*
3271 * Once we have dozens or even hundreds of threads sleeping
3272 * on IO we've got bigger problems than wait queue collision.
3273 * Limit the size of the wait table to a reasonable size.
3274 */
3275 size = min(size, 4096UL);
3276
3277 return max(size, 4UL);
3278 }
3279 #else
3280 /*
3281 * A zone's size might be changed by hot-add, so it is not possible to determine
3282 * a suitable size for its wait_table. So we use the maximum size now.
3283 *
3284 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3285 *
3286 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3287 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3288 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3289 *
3290 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3291 * or more by the traditional way. (See above). It equals:
3292 *
3293 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3294 * ia64(16K page size) : = ( 8G + 4M)byte.
3295 * powerpc (64K page size) : = (32G +16M)byte.
3296 */
3297 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3298 {
3299 return 4096UL;
3300 }
3301 #endif
3302
3303 /*
3304 * This is an integer logarithm so that shifts can be used later
3305 * to extract the more random high bits from the multiplicative
3306 * hash function before the remainder is taken.
3307 */
3308 static inline unsigned long wait_table_bits(unsigned long size)
3309 {
3310 return ffz(~size);
3311 }
3312
3313 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3314
3315 /*
3316 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3317 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3318 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3319 * higher will lead to a bigger reserve which will get freed as contiguous
3320 * blocks as reclaim kicks in
3321 */
3322 static void setup_zone_migrate_reserve(struct zone *zone)
3323 {
3324 unsigned long start_pfn, pfn, end_pfn;
3325 struct page *page;
3326 unsigned long block_migratetype;
3327 int reserve;
3328
3329 /* Get the start pfn, end pfn and the number of blocks to reserve */
3330 start_pfn = zone->zone_start_pfn;
3331 end_pfn = start_pfn + zone->spanned_pages;
3332 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3333 pageblock_order;
3334
3335 /*
3336 * Reserve blocks are generally in place to help high-order atomic
3337 * allocations that are short-lived. A min_free_kbytes value that
3338 * would result in more than 2 reserve blocks for atomic allocations
3339 * is assumed to be in place to help anti-fragmentation for the
3340 * future allocation of hugepages at runtime.
3341 */
3342 reserve = min(2, reserve);
3343
3344 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3345 if (!pfn_valid(pfn))
3346 continue;
3347 page = pfn_to_page(pfn);
3348
3349 /* Watch out for overlapping nodes */
3350 if (page_to_nid(page) != zone_to_nid(zone))
3351 continue;
3352
3353 /* Blocks with reserved pages will never free, skip them. */
3354 if (PageReserved(page))
3355 continue;
3356
3357 block_migratetype = get_pageblock_migratetype(page);
3358
3359 /* If this block is reserved, account for it */
3360 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3361 reserve--;
3362 continue;
3363 }
3364
3365 /* Suitable for reserving if this block is movable */
3366 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3367 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3368 move_freepages_block(zone, page, MIGRATE_RESERVE);
3369 reserve--;
3370 continue;
3371 }
3372
3373 /*
3374 * If the reserve is met and this is a previous reserved block,
3375 * take it back
3376 */
3377 if (block_migratetype == MIGRATE_RESERVE) {
3378 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3379 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3380 }
3381 }
3382 }
3383
3384 /*
3385 * Initially all pages are reserved - free ones are freed
3386 * up by free_all_bootmem() once the early boot process is
3387 * done. Non-atomic initialization, single-pass.
3388 */
3389 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3390 unsigned long start_pfn, enum memmap_context context)
3391 {
3392 struct page *page;
3393 unsigned long end_pfn = start_pfn + size;
3394 unsigned long pfn;
3395 struct zone *z;
3396
3397 if (highest_memmap_pfn < end_pfn - 1)
3398 highest_memmap_pfn = end_pfn - 1;
3399
3400 z = &NODE_DATA(nid)->node_zones[zone];
3401 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3402 /*
3403 * There can be holes in boot-time mem_map[]s
3404 * handed to this function. They do not
3405 * exist on hotplugged memory.
3406 */
3407 if (context == MEMMAP_EARLY) {
3408 if (!early_pfn_valid(pfn))
3409 continue;
3410 if (!early_pfn_in_nid(pfn, nid))
3411 continue;
3412 }
3413 page = pfn_to_page(pfn);
3414 set_page_links(page, zone, nid, pfn);
3415 mminit_verify_page_links(page, zone, nid, pfn);
3416 init_page_count(page);
3417 reset_page_mapcount(page);
3418 SetPageReserved(page);
3419 /*
3420 * Mark the block movable so that blocks are reserved for
3421 * movable at startup. This will force kernel allocations
3422 * to reserve their blocks rather than leaking throughout
3423 * the address space during boot when many long-lived
3424 * kernel allocations are made. Later some blocks near
3425 * the start are marked MIGRATE_RESERVE by
3426 * setup_zone_migrate_reserve()
3427 *
3428 * bitmap is created for zone's valid pfn range. but memmap
3429 * can be created for invalid pages (for alignment)
3430 * check here not to call set_pageblock_migratetype() against
3431 * pfn out of zone.
3432 */
3433 if ((z->zone_start_pfn <= pfn)
3434 && (pfn < z->zone_start_pfn + z->spanned_pages)
3435 && !(pfn & (pageblock_nr_pages - 1)))
3436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3437
3438 INIT_LIST_HEAD(&page->lru);
3439 #ifdef WANT_PAGE_VIRTUAL
3440 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3441 if (!is_highmem_idx(zone))
3442 set_page_address(page, __va(pfn << PAGE_SHIFT));
3443 #endif
3444 }
3445 }
3446
3447 static void __meminit zone_init_free_lists(struct zone *zone)
3448 {
3449 int order, t;
3450 for_each_migratetype_order(order, t) {
3451 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3452 zone->free_area[order].nr_free = 0;
3453 }
3454 }
3455
3456 #ifndef __HAVE_ARCH_MEMMAP_INIT
3457 #define memmap_init(size, nid, zone, start_pfn) \
3458 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3459 #endif
3460
3461 static int zone_batchsize(struct zone *zone)
3462 {
3463 #ifdef CONFIG_MMU
3464 int batch;
3465
3466 /*
3467 * The per-cpu-pages pools are set to around 1000th of the
3468 * size of the zone. But no more than 1/2 of a meg.
3469 *
3470 * OK, so we don't know how big the cache is. So guess.
3471 */
3472 batch = zone->present_pages / 1024;
3473 if (batch * PAGE_SIZE > 512 * 1024)
3474 batch = (512 * 1024) / PAGE_SIZE;
3475 batch /= 4; /* We effectively *= 4 below */
3476 if (batch < 1)
3477 batch = 1;
3478
3479 /*
3480 * Clamp the batch to a 2^n - 1 value. Having a power
3481 * of 2 value was found to be more likely to have
3482 * suboptimal cache aliasing properties in some cases.
3483 *
3484 * For example if 2 tasks are alternately allocating
3485 * batches of pages, one task can end up with a lot
3486 * of pages of one half of the possible page colors
3487 * and the other with pages of the other colors.
3488 */
3489 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3490
3491 return batch;
3492
3493 #else
3494 /* The deferral and batching of frees should be suppressed under NOMMU
3495 * conditions.
3496 *
3497 * The problem is that NOMMU needs to be able to allocate large chunks
3498 * of contiguous memory as there's no hardware page translation to
3499 * assemble apparent contiguous memory from discontiguous pages.
3500 *
3501 * Queueing large contiguous runs of pages for batching, however,
3502 * causes the pages to actually be freed in smaller chunks. As there
3503 * can be a significant delay between the individual batches being
3504 * recycled, this leads to the once large chunks of space being
3505 * fragmented and becoming unavailable for high-order allocations.
3506 */
3507 return 0;
3508 #endif
3509 }
3510
3511 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3512 {
3513 struct per_cpu_pages *pcp;
3514 int migratetype;
3515
3516 memset(p, 0, sizeof(*p));
3517
3518 pcp = &p->pcp;
3519 pcp->count = 0;
3520 pcp->high = 6 * batch;
3521 pcp->batch = max(1UL, 1 * batch);
3522 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3523 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3524 }
3525
3526 /*
3527 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3528 * to the value high for the pageset p.
3529 */
3530
3531 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3532 unsigned long high)
3533 {
3534 struct per_cpu_pages *pcp;
3535
3536 pcp = &p->pcp;
3537 pcp->high = high;
3538 pcp->batch = max(1UL, high/4);
3539 if ((high/4) > (PAGE_SHIFT * 8))
3540 pcp->batch = PAGE_SHIFT * 8;
3541 }
3542
3543 static __meminit void setup_zone_pageset(struct zone *zone)
3544 {
3545 int cpu;
3546
3547 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3548
3549 for_each_possible_cpu(cpu) {
3550 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3551
3552 setup_pageset(pcp, zone_batchsize(zone));
3553
3554 if (percpu_pagelist_fraction)
3555 setup_pagelist_highmark(pcp,
3556 (zone->present_pages /
3557 percpu_pagelist_fraction));
3558 }
3559 }
3560
3561 /*
3562 * Allocate per cpu pagesets and initialize them.
3563 * Before this call only boot pagesets were available.
3564 */
3565 void __init setup_per_cpu_pageset(void)
3566 {
3567 struct zone *zone;
3568
3569 for_each_populated_zone(zone)
3570 setup_zone_pageset(zone);
3571 }
3572
3573 static noinline __init_refok
3574 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3575 {
3576 int i;
3577 struct pglist_data *pgdat = zone->zone_pgdat;
3578 size_t alloc_size;
3579
3580 /*
3581 * The per-page waitqueue mechanism uses hashed waitqueues
3582 * per zone.
3583 */
3584 zone->wait_table_hash_nr_entries =
3585 wait_table_hash_nr_entries(zone_size_pages);
3586 zone->wait_table_bits =
3587 wait_table_bits(zone->wait_table_hash_nr_entries);
3588 alloc_size = zone->wait_table_hash_nr_entries
3589 * sizeof(wait_queue_head_t);
3590
3591 if (!slab_is_available()) {
3592 zone->wait_table = (wait_queue_head_t *)
3593 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3594 } else {
3595 /*
3596 * This case means that a zone whose size was 0 gets new memory
3597 * via memory hot-add.
3598 * But it may be the case that a new node was hot-added. In
3599 * this case vmalloc() will not be able to use this new node's
3600 * memory - this wait_table must be initialized to use this new
3601 * node itself as well.
3602 * To use this new node's memory, further consideration will be
3603 * necessary.
3604 */
3605 zone->wait_table = vmalloc(alloc_size);
3606 }
3607 if (!zone->wait_table)
3608 return -ENOMEM;
3609
3610 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3611 init_waitqueue_head(zone->wait_table + i);
3612
3613 return 0;
3614 }
3615
3616 static int __zone_pcp_update(void *data)
3617 {
3618 struct zone *zone = data;
3619 int cpu;
3620 unsigned long batch = zone_batchsize(zone), flags;
3621
3622 for_each_possible_cpu(cpu) {
3623 struct per_cpu_pageset *pset;
3624 struct per_cpu_pages *pcp;
3625
3626 pset = per_cpu_ptr(zone->pageset, cpu);
3627 pcp = &pset->pcp;
3628
3629 local_irq_save(flags);
3630 free_pcppages_bulk(zone, pcp->count, pcp);
3631 setup_pageset(pset, batch);
3632 local_irq_restore(flags);
3633 }
3634 return 0;
3635 }
3636
3637 void zone_pcp_update(struct zone *zone)
3638 {
3639 stop_machine(__zone_pcp_update, zone, NULL);
3640 }
3641
3642 static __meminit void zone_pcp_init(struct zone *zone)
3643 {
3644 /*
3645 * per cpu subsystem is not up at this point. The following code
3646 * relies on the ability of the linker to provide the
3647 * offset of a (static) per cpu variable into the per cpu area.
3648 */
3649 zone->pageset = &boot_pageset;
3650
3651 if (zone->present_pages)
3652 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3653 zone->name, zone->present_pages,
3654 zone_batchsize(zone));
3655 }
3656
3657 __meminit int init_currently_empty_zone(struct zone *zone,
3658 unsigned long zone_start_pfn,
3659 unsigned long size,
3660 enum memmap_context context)
3661 {
3662 struct pglist_data *pgdat = zone->zone_pgdat;
3663 int ret;
3664 ret = zone_wait_table_init(zone, size);
3665 if (ret)
3666 return ret;
3667 pgdat->nr_zones = zone_idx(zone) + 1;
3668
3669 zone->zone_start_pfn = zone_start_pfn;
3670
3671 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3672 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3673 pgdat->node_id,
3674 (unsigned long)zone_idx(zone),
3675 zone_start_pfn, (zone_start_pfn + size));
3676
3677 zone_init_free_lists(zone);
3678
3679 return 0;
3680 }
3681
3682 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3683 /*
3684 * Basic iterator support. Return the first range of PFNs for a node
3685 * Note: nid == MAX_NUMNODES returns first region regardless of node
3686 */
3687 static int __meminit first_active_region_index_in_nid(int nid)
3688 {
3689 int i;
3690
3691 for (i = 0; i < nr_nodemap_entries; i++)
3692 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3693 return i;
3694
3695 return -1;
3696 }
3697
3698 /*
3699 * Basic iterator support. Return the next active range of PFNs for a node
3700 * Note: nid == MAX_NUMNODES returns next region regardless of node
3701 */
3702 static int __meminit next_active_region_index_in_nid(int index, int nid)
3703 {
3704 for (index = index + 1; index < nr_nodemap_entries; index++)
3705 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3706 return index;
3707
3708 return -1;
3709 }
3710
3711 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3712 /*
3713 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3714 * Architectures may implement their own version but if add_active_range()
3715 * was used and there are no special requirements, this is a convenient
3716 * alternative
3717 */
3718 int __meminit __early_pfn_to_nid(unsigned long pfn)
3719 {
3720 int i;
3721
3722 for (i = 0; i < nr_nodemap_entries; i++) {
3723 unsigned long start_pfn = early_node_map[i].start_pfn;
3724 unsigned long end_pfn = early_node_map[i].end_pfn;
3725
3726 if (start_pfn <= pfn && pfn < end_pfn)
3727 return early_node_map[i].nid;
3728 }
3729 /* This is a memory hole */
3730 return -1;
3731 }
3732 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3733
3734 int __meminit early_pfn_to_nid(unsigned long pfn)
3735 {
3736 int nid;
3737
3738 nid = __early_pfn_to_nid(pfn);
3739 if (nid >= 0)
3740 return nid;
3741 /* just returns 0 */
3742 return 0;
3743 }
3744
3745 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3746 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3747 {
3748 int nid;
3749
3750 nid = __early_pfn_to_nid(pfn);
3751 if (nid >= 0 && nid != node)
3752 return false;
3753 return true;
3754 }
3755 #endif
3756
3757 /* Basic iterator support to walk early_node_map[] */
3758 #define for_each_active_range_index_in_nid(i, nid) \
3759 for (i = first_active_region_index_in_nid(nid); i != -1; \
3760 i = next_active_region_index_in_nid(i, nid))
3761
3762 /**
3763 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3764 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3765 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3766 *
3767 * If an architecture guarantees that all ranges registered with
3768 * add_active_ranges() contain no holes and may be freed, this
3769 * this function may be used instead of calling free_bootmem() manually.
3770 */
3771 void __init free_bootmem_with_active_regions(int nid,
3772 unsigned long max_low_pfn)
3773 {
3774 int i;
3775
3776 for_each_active_range_index_in_nid(i, nid) {
3777 unsigned long size_pages = 0;
3778 unsigned long end_pfn = early_node_map[i].end_pfn;
3779
3780 if (early_node_map[i].start_pfn >= max_low_pfn)
3781 continue;
3782
3783 if (end_pfn > max_low_pfn)
3784 end_pfn = max_low_pfn;
3785
3786 size_pages = end_pfn - early_node_map[i].start_pfn;
3787 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3788 PFN_PHYS(early_node_map[i].start_pfn),
3789 size_pages << PAGE_SHIFT);
3790 }
3791 }
3792
3793 #ifdef CONFIG_HAVE_MEMBLOCK
3794 /*
3795 * Basic iterator support. Return the last range of PFNs for a node
3796 * Note: nid == MAX_NUMNODES returns last region regardless of node
3797 */
3798 static int __meminit last_active_region_index_in_nid(int nid)
3799 {
3800 int i;
3801
3802 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3803 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3804 return i;
3805
3806 return -1;
3807 }
3808
3809 /*
3810 * Basic iterator support. Return the previous active range of PFNs for a node
3811 * Note: nid == MAX_NUMNODES returns next region regardless of node
3812 */
3813 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3814 {
3815 for (index = index - 1; index >= 0; index--)
3816 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3817 return index;
3818
3819 return -1;
3820 }
3821
3822 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3823 for (i = last_active_region_index_in_nid(nid); i != -1; \
3824 i = previous_active_region_index_in_nid(i, nid))
3825
3826 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3827 u64 goal, u64 limit)
3828 {
3829 int i;
3830
3831 /* Need to go over early_node_map to find out good range for node */
3832 for_each_active_range_index_in_nid_reverse(i, nid) {
3833 u64 addr;
3834 u64 ei_start, ei_last;
3835 u64 final_start, final_end;
3836
3837 ei_last = early_node_map[i].end_pfn;
3838 ei_last <<= PAGE_SHIFT;
3839 ei_start = early_node_map[i].start_pfn;
3840 ei_start <<= PAGE_SHIFT;
3841
3842 final_start = max(ei_start, goal);
3843 final_end = min(ei_last, limit);
3844
3845 if (final_start >= final_end)
3846 continue;
3847
3848 addr = memblock_find_in_range(final_start, final_end, size, align);
3849
3850 if (addr == MEMBLOCK_ERROR)
3851 continue;
3852
3853 return addr;
3854 }
3855
3856 return MEMBLOCK_ERROR;
3857 }
3858 #endif
3859
3860 int __init add_from_early_node_map(struct range *range, int az,
3861 int nr_range, int nid)
3862 {
3863 int i;
3864 u64 start, end;
3865
3866 /* need to go over early_node_map to find out good range for node */
3867 for_each_active_range_index_in_nid(i, nid) {
3868 start = early_node_map[i].start_pfn;
3869 end = early_node_map[i].end_pfn;
3870 nr_range = add_range(range, az, nr_range, start, end);
3871 }
3872 return nr_range;
3873 }
3874
3875 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3876 {
3877 int i;
3878 int ret;
3879
3880 for_each_active_range_index_in_nid(i, nid) {
3881 ret = work_fn(early_node_map[i].start_pfn,
3882 early_node_map[i].end_pfn, data);
3883 if (ret)
3884 break;
3885 }
3886 }
3887 /**
3888 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3889 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3890 *
3891 * If an architecture guarantees that all ranges registered with
3892 * add_active_ranges() contain no holes and may be freed, this
3893 * function may be used instead of calling memory_present() manually.
3894 */
3895 void __init sparse_memory_present_with_active_regions(int nid)
3896 {
3897 int i;
3898
3899 for_each_active_range_index_in_nid(i, nid)
3900 memory_present(early_node_map[i].nid,
3901 early_node_map[i].start_pfn,
3902 early_node_map[i].end_pfn);
3903 }
3904
3905 /**
3906 * get_pfn_range_for_nid - Return the start and end page frames for a node
3907 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3908 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3909 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3910 *
3911 * It returns the start and end page frame of a node based on information
3912 * provided by an arch calling add_active_range(). If called for a node
3913 * with no available memory, a warning is printed and the start and end
3914 * PFNs will be 0.
3915 */
3916 void __meminit get_pfn_range_for_nid(unsigned int nid,
3917 unsigned long *start_pfn, unsigned long *end_pfn)
3918 {
3919 int i;
3920 *start_pfn = -1UL;
3921 *end_pfn = 0;
3922
3923 for_each_active_range_index_in_nid(i, nid) {
3924 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3925 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3926 }
3927
3928 if (*start_pfn == -1UL)
3929 *start_pfn = 0;
3930 }
3931
3932 /*
3933 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3934 * assumption is made that zones within a node are ordered in monotonic
3935 * increasing memory addresses so that the "highest" populated zone is used
3936 */
3937 static void __init find_usable_zone_for_movable(void)
3938 {
3939 int zone_index;
3940 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3941 if (zone_index == ZONE_MOVABLE)
3942 continue;
3943
3944 if (arch_zone_highest_possible_pfn[zone_index] >
3945 arch_zone_lowest_possible_pfn[zone_index])
3946 break;
3947 }
3948
3949 VM_BUG_ON(zone_index == -1);
3950 movable_zone = zone_index;
3951 }
3952
3953 /*
3954 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3955 * because it is sized independent of architecture. Unlike the other zones,
3956 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3957 * in each node depending on the size of each node and how evenly kernelcore
3958 * is distributed. This helper function adjusts the zone ranges
3959 * provided by the architecture for a given node by using the end of the
3960 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3961 * zones within a node are in order of monotonic increases memory addresses
3962 */
3963 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3964 unsigned long zone_type,
3965 unsigned long node_start_pfn,
3966 unsigned long node_end_pfn,
3967 unsigned long *zone_start_pfn,
3968 unsigned long *zone_end_pfn)
3969 {
3970 /* Only adjust if ZONE_MOVABLE is on this node */
3971 if (zone_movable_pfn[nid]) {
3972 /* Size ZONE_MOVABLE */
3973 if (zone_type == ZONE_MOVABLE) {
3974 *zone_start_pfn = zone_movable_pfn[nid];
3975 *zone_end_pfn = min(node_end_pfn,
3976 arch_zone_highest_possible_pfn[movable_zone]);
3977
3978 /* Adjust for ZONE_MOVABLE starting within this range */
3979 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3980 *zone_end_pfn > zone_movable_pfn[nid]) {
3981 *zone_end_pfn = zone_movable_pfn[nid];
3982
3983 /* Check if this whole range is within ZONE_MOVABLE */
3984 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3985 *zone_start_pfn = *zone_end_pfn;
3986 }
3987 }
3988
3989 /*
3990 * Return the number of pages a zone spans in a node, including holes
3991 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3992 */
3993 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3994 unsigned long zone_type,
3995 unsigned long *ignored)
3996 {
3997 unsigned long node_start_pfn, node_end_pfn;
3998 unsigned long zone_start_pfn, zone_end_pfn;
3999
4000 /* Get the start and end of the node and zone */
4001 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4002 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4003 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4004 adjust_zone_range_for_zone_movable(nid, zone_type,
4005 node_start_pfn, node_end_pfn,
4006 &zone_start_pfn, &zone_end_pfn);
4007
4008 /* Check that this node has pages within the zone's required range */
4009 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4010 return 0;
4011
4012 /* Move the zone boundaries inside the node if necessary */
4013 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4014 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4015
4016 /* Return the spanned pages */
4017 return zone_end_pfn - zone_start_pfn;
4018 }
4019
4020 /*
4021 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4022 * then all holes in the requested range will be accounted for.
4023 */
4024 unsigned long __meminit __absent_pages_in_range(int nid,
4025 unsigned long range_start_pfn,
4026 unsigned long range_end_pfn)
4027 {
4028 int i = 0;
4029 unsigned long prev_end_pfn = 0, hole_pages = 0;
4030 unsigned long start_pfn;
4031
4032 /* Find the end_pfn of the first active range of pfns in the node */
4033 i = first_active_region_index_in_nid(nid);
4034 if (i == -1)
4035 return 0;
4036
4037 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4038
4039 /* Account for ranges before physical memory on this node */
4040 if (early_node_map[i].start_pfn > range_start_pfn)
4041 hole_pages = prev_end_pfn - range_start_pfn;
4042
4043 /* Find all holes for the zone within the node */
4044 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4045
4046 /* No need to continue if prev_end_pfn is outside the zone */
4047 if (prev_end_pfn >= range_end_pfn)
4048 break;
4049
4050 /* Make sure the end of the zone is not within the hole */
4051 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4052 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4053
4054 /* Update the hole size cound and move on */
4055 if (start_pfn > range_start_pfn) {
4056 BUG_ON(prev_end_pfn > start_pfn);
4057 hole_pages += start_pfn - prev_end_pfn;
4058 }
4059 prev_end_pfn = early_node_map[i].end_pfn;
4060 }
4061
4062 /* Account for ranges past physical memory on this node */
4063 if (range_end_pfn > prev_end_pfn)
4064 hole_pages += range_end_pfn -
4065 max(range_start_pfn, prev_end_pfn);
4066
4067 return hole_pages;
4068 }
4069
4070 /**
4071 * absent_pages_in_range - Return number of page frames in holes within a range
4072 * @start_pfn: The start PFN to start searching for holes
4073 * @end_pfn: The end PFN to stop searching for holes
4074 *
4075 * It returns the number of pages frames in memory holes within a range.
4076 */
4077 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4078 unsigned long end_pfn)
4079 {
4080 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4081 }
4082
4083 /* Return the number of page frames in holes in a zone on a node */
4084 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4085 unsigned long zone_type,
4086 unsigned long *ignored)
4087 {
4088 unsigned long node_start_pfn, node_end_pfn;
4089 unsigned long zone_start_pfn, zone_end_pfn;
4090
4091 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4092 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4093 node_start_pfn);
4094 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4095 node_end_pfn);
4096
4097 adjust_zone_range_for_zone_movable(nid, zone_type,
4098 node_start_pfn, node_end_pfn,
4099 &zone_start_pfn, &zone_end_pfn);
4100 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4101 }
4102
4103 #else
4104 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4105 unsigned long zone_type,
4106 unsigned long *zones_size)
4107 {
4108 return zones_size[zone_type];
4109 }
4110
4111 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4112 unsigned long zone_type,
4113 unsigned long *zholes_size)
4114 {
4115 if (!zholes_size)
4116 return 0;
4117
4118 return zholes_size[zone_type];
4119 }
4120
4121 #endif
4122
4123 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4124 unsigned long *zones_size, unsigned long *zholes_size)
4125 {
4126 unsigned long realtotalpages, totalpages = 0;
4127 enum zone_type i;
4128
4129 for (i = 0; i < MAX_NR_ZONES; i++)
4130 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4131 zones_size);
4132 pgdat->node_spanned_pages = totalpages;
4133
4134 realtotalpages = totalpages;
4135 for (i = 0; i < MAX_NR_ZONES; i++)
4136 realtotalpages -=
4137 zone_absent_pages_in_node(pgdat->node_id, i,
4138 zholes_size);
4139 pgdat->node_present_pages = realtotalpages;
4140 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4141 realtotalpages);
4142 }
4143
4144 #ifndef CONFIG_SPARSEMEM
4145 /*
4146 * Calculate the size of the zone->blockflags rounded to an unsigned long
4147 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4148 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4149 * round what is now in bits to nearest long in bits, then return it in
4150 * bytes.
4151 */
4152 static unsigned long __init usemap_size(unsigned long zonesize)
4153 {
4154 unsigned long usemapsize;
4155
4156 usemapsize = roundup(zonesize, pageblock_nr_pages);
4157 usemapsize = usemapsize >> pageblock_order;
4158 usemapsize *= NR_PAGEBLOCK_BITS;
4159 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4160
4161 return usemapsize / 8;
4162 }
4163
4164 static void __init setup_usemap(struct pglist_data *pgdat,
4165 struct zone *zone, unsigned long zonesize)
4166 {
4167 unsigned long usemapsize = usemap_size(zonesize);
4168 zone->pageblock_flags = NULL;
4169 if (usemapsize)
4170 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4171 usemapsize);
4172 }
4173 #else
4174 static inline void setup_usemap(struct pglist_data *pgdat,
4175 struct zone *zone, unsigned long zonesize) {}
4176 #endif /* CONFIG_SPARSEMEM */
4177
4178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4179
4180 /* Return a sensible default order for the pageblock size. */
4181 static inline int pageblock_default_order(void)
4182 {
4183 if (HPAGE_SHIFT > PAGE_SHIFT)
4184 return HUGETLB_PAGE_ORDER;
4185
4186 return MAX_ORDER-1;
4187 }
4188
4189 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4190 static inline void __init set_pageblock_order(unsigned int order)
4191 {
4192 /* Check that pageblock_nr_pages has not already been setup */
4193 if (pageblock_order)
4194 return;
4195
4196 /*
4197 * Assume the largest contiguous order of interest is a huge page.
4198 * This value may be variable depending on boot parameters on IA64
4199 */
4200 pageblock_order = order;
4201 }
4202 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4203
4204 /*
4205 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4206 * and pageblock_default_order() are unused as pageblock_order is set
4207 * at compile-time. See include/linux/pageblock-flags.h for the values of
4208 * pageblock_order based on the kernel config
4209 */
4210 static inline int pageblock_default_order(unsigned int order)
4211 {
4212 return MAX_ORDER-1;
4213 }
4214 #define set_pageblock_order(x) do {} while (0)
4215
4216 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4217
4218 /*
4219 * Set up the zone data structures:
4220 * - mark all pages reserved
4221 * - mark all memory queues empty
4222 * - clear the memory bitmaps
4223 */
4224 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4225 unsigned long *zones_size, unsigned long *zholes_size)
4226 {
4227 enum zone_type j;
4228 int nid = pgdat->node_id;
4229 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4230 int ret;
4231
4232 pgdat_resize_init(pgdat);
4233 pgdat->nr_zones = 0;
4234 init_waitqueue_head(&pgdat->kswapd_wait);
4235 pgdat->kswapd_max_order = 0;
4236 pgdat_page_cgroup_init(pgdat);
4237
4238 for (j = 0; j < MAX_NR_ZONES; j++) {
4239 struct zone *zone = pgdat->node_zones + j;
4240 unsigned long size, realsize, memmap_pages;
4241 enum lru_list l;
4242
4243 size = zone_spanned_pages_in_node(nid, j, zones_size);
4244 realsize = size - zone_absent_pages_in_node(nid, j,
4245 zholes_size);
4246
4247 /*
4248 * Adjust realsize so that it accounts for how much memory
4249 * is used by this zone for memmap. This affects the watermark
4250 * and per-cpu initialisations
4251 */
4252 memmap_pages =
4253 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4254 if (realsize >= memmap_pages) {
4255 realsize -= memmap_pages;
4256 if (memmap_pages)
4257 printk(KERN_DEBUG
4258 " %s zone: %lu pages used for memmap\n",
4259 zone_names[j], memmap_pages);
4260 } else
4261 printk(KERN_WARNING
4262 " %s zone: %lu pages exceeds realsize %lu\n",
4263 zone_names[j], memmap_pages, realsize);
4264
4265 /* Account for reserved pages */
4266 if (j == 0 && realsize > dma_reserve) {
4267 realsize -= dma_reserve;
4268 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4269 zone_names[0], dma_reserve);
4270 }
4271
4272 if (!is_highmem_idx(j))
4273 nr_kernel_pages += realsize;
4274 nr_all_pages += realsize;
4275
4276 zone->spanned_pages = size;
4277 zone->present_pages = realsize;
4278 #ifdef CONFIG_NUMA
4279 zone->node = nid;
4280 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4281 / 100;
4282 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4283 #endif
4284 zone->name = zone_names[j];
4285 spin_lock_init(&zone->lock);
4286 spin_lock_init(&zone->lru_lock);
4287 zone_seqlock_init(zone);
4288 zone->zone_pgdat = pgdat;
4289
4290 zone_pcp_init(zone);
4291 for_each_lru(l) {
4292 INIT_LIST_HEAD(&zone->lru[l].list);
4293 zone->reclaim_stat.nr_saved_scan[l] = 0;
4294 }
4295 zone->reclaim_stat.recent_rotated[0] = 0;
4296 zone->reclaim_stat.recent_rotated[1] = 0;
4297 zone->reclaim_stat.recent_scanned[0] = 0;
4298 zone->reclaim_stat.recent_scanned[1] = 0;
4299 zap_zone_vm_stats(zone);
4300 zone->flags = 0;
4301 if (!size)
4302 continue;
4303
4304 set_pageblock_order(pageblock_default_order());
4305 setup_usemap(pgdat, zone, size);
4306 ret = init_currently_empty_zone(zone, zone_start_pfn,
4307 size, MEMMAP_EARLY);
4308 BUG_ON(ret);
4309 memmap_init(size, nid, j, zone_start_pfn);
4310 zone_start_pfn += size;
4311 }
4312 }
4313
4314 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4315 {
4316 /* Skip empty nodes */
4317 if (!pgdat->node_spanned_pages)
4318 return;
4319
4320 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4321 /* ia64 gets its own node_mem_map, before this, without bootmem */
4322 if (!pgdat->node_mem_map) {
4323 unsigned long size, start, end;
4324 struct page *map;
4325
4326 /*
4327 * The zone's endpoints aren't required to be MAX_ORDER
4328 * aligned but the node_mem_map endpoints must be in order
4329 * for the buddy allocator to function correctly.
4330 */
4331 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4332 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4333 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4334 size = (end - start) * sizeof(struct page);
4335 map = alloc_remap(pgdat->node_id, size);
4336 if (!map)
4337 map = alloc_bootmem_node_nopanic(pgdat, size);
4338 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4339 }
4340 #ifndef CONFIG_NEED_MULTIPLE_NODES
4341 /*
4342 * With no DISCONTIG, the global mem_map is just set as node 0's
4343 */
4344 if (pgdat == NODE_DATA(0)) {
4345 mem_map = NODE_DATA(0)->node_mem_map;
4346 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4347 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4348 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4349 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4350 }
4351 #endif
4352 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4353 }
4354
4355 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4356 unsigned long node_start_pfn, unsigned long *zholes_size)
4357 {
4358 pg_data_t *pgdat = NODE_DATA(nid);
4359
4360 pgdat->node_id = nid;
4361 pgdat->node_start_pfn = node_start_pfn;
4362 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4363
4364 alloc_node_mem_map(pgdat);
4365 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4366 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4367 nid, (unsigned long)pgdat,
4368 (unsigned long)pgdat->node_mem_map);
4369 #endif
4370
4371 free_area_init_core(pgdat, zones_size, zholes_size);
4372 }
4373
4374 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4375
4376 #if MAX_NUMNODES > 1
4377 /*
4378 * Figure out the number of possible node ids.
4379 */
4380 static void __init setup_nr_node_ids(void)
4381 {
4382 unsigned int node;
4383 unsigned int highest = 0;
4384
4385 for_each_node_mask(node, node_possible_map)
4386 highest = node;
4387 nr_node_ids = highest + 1;
4388 }
4389 #else
4390 static inline void setup_nr_node_ids(void)
4391 {
4392 }
4393 #endif
4394
4395 /**
4396 * add_active_range - Register a range of PFNs backed by physical memory
4397 * @nid: The node ID the range resides on
4398 * @start_pfn: The start PFN of the available physical memory
4399 * @end_pfn: The end PFN of the available physical memory
4400 *
4401 * These ranges are stored in an early_node_map[] and later used by
4402 * free_area_init_nodes() to calculate zone sizes and holes. If the
4403 * range spans a memory hole, it is up to the architecture to ensure
4404 * the memory is not freed by the bootmem allocator. If possible
4405 * the range being registered will be merged with existing ranges.
4406 */
4407 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4408 unsigned long end_pfn)
4409 {
4410 int i;
4411
4412 mminit_dprintk(MMINIT_TRACE, "memory_register",
4413 "Entering add_active_range(%d, %#lx, %#lx) "
4414 "%d entries of %d used\n",
4415 nid, start_pfn, end_pfn,
4416 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4417
4418 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4419
4420 /* Merge with existing active regions if possible */
4421 for (i = 0; i < nr_nodemap_entries; i++) {
4422 if (early_node_map[i].nid != nid)
4423 continue;
4424
4425 /* Skip if an existing region covers this new one */
4426 if (start_pfn >= early_node_map[i].start_pfn &&
4427 end_pfn <= early_node_map[i].end_pfn)
4428 return;
4429
4430 /* Merge forward if suitable */
4431 if (start_pfn <= early_node_map[i].end_pfn &&
4432 end_pfn > early_node_map[i].end_pfn) {
4433 early_node_map[i].end_pfn = end_pfn;
4434 return;
4435 }
4436
4437 /* Merge backward if suitable */
4438 if (start_pfn < early_node_map[i].start_pfn &&
4439 end_pfn >= early_node_map[i].start_pfn) {
4440 early_node_map[i].start_pfn = start_pfn;
4441 return;
4442 }
4443 }
4444
4445 /* Check that early_node_map is large enough */
4446 if (i >= MAX_ACTIVE_REGIONS) {
4447 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4448 MAX_ACTIVE_REGIONS);
4449 return;
4450 }
4451
4452 early_node_map[i].nid = nid;
4453 early_node_map[i].start_pfn = start_pfn;
4454 early_node_map[i].end_pfn = end_pfn;
4455 nr_nodemap_entries = i + 1;
4456 }
4457
4458 /**
4459 * remove_active_range - Shrink an existing registered range of PFNs
4460 * @nid: The node id the range is on that should be shrunk
4461 * @start_pfn: The new PFN of the range
4462 * @end_pfn: The new PFN of the range
4463 *
4464 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4465 * The map is kept near the end physical page range that has already been
4466 * registered. This function allows an arch to shrink an existing registered
4467 * range.
4468 */
4469 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4470 unsigned long end_pfn)
4471 {
4472 int i, j;
4473 int removed = 0;
4474
4475 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4476 nid, start_pfn, end_pfn);
4477
4478 /* Find the old active region end and shrink */
4479 for_each_active_range_index_in_nid(i, nid) {
4480 if (early_node_map[i].start_pfn >= start_pfn &&
4481 early_node_map[i].end_pfn <= end_pfn) {
4482 /* clear it */
4483 early_node_map[i].start_pfn = 0;
4484 early_node_map[i].end_pfn = 0;
4485 removed = 1;
4486 continue;
4487 }
4488 if (early_node_map[i].start_pfn < start_pfn &&
4489 early_node_map[i].end_pfn > start_pfn) {
4490 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4491 early_node_map[i].end_pfn = start_pfn;
4492 if (temp_end_pfn > end_pfn)
4493 add_active_range(nid, end_pfn, temp_end_pfn);
4494 continue;
4495 }
4496 if (early_node_map[i].start_pfn >= start_pfn &&
4497 early_node_map[i].end_pfn > end_pfn &&
4498 early_node_map[i].start_pfn < end_pfn) {
4499 early_node_map[i].start_pfn = end_pfn;
4500 continue;
4501 }
4502 }
4503
4504 if (!removed)
4505 return;
4506
4507 /* remove the blank ones */
4508 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4509 if (early_node_map[i].nid != nid)
4510 continue;
4511 if (early_node_map[i].end_pfn)
4512 continue;
4513 /* we found it, get rid of it */
4514 for (j = i; j < nr_nodemap_entries - 1; j++)
4515 memcpy(&early_node_map[j], &early_node_map[j+1],
4516 sizeof(early_node_map[j]));
4517 j = nr_nodemap_entries - 1;
4518 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4519 nr_nodemap_entries--;
4520 }
4521 }
4522
4523 /**
4524 * remove_all_active_ranges - Remove all currently registered regions
4525 *
4526 * During discovery, it may be found that a table like SRAT is invalid
4527 * and an alternative discovery method must be used. This function removes
4528 * all currently registered regions.
4529 */
4530 void __init remove_all_active_ranges(void)
4531 {
4532 memset(early_node_map, 0, sizeof(early_node_map));
4533 nr_nodemap_entries = 0;
4534 }
4535
4536 /* Compare two active node_active_regions */
4537 static int __init cmp_node_active_region(const void *a, const void *b)
4538 {
4539 struct node_active_region *arange = (struct node_active_region *)a;
4540 struct node_active_region *brange = (struct node_active_region *)b;
4541
4542 /* Done this way to avoid overflows */
4543 if (arange->start_pfn > brange->start_pfn)
4544 return 1;
4545 if (arange->start_pfn < brange->start_pfn)
4546 return -1;
4547
4548 return 0;
4549 }
4550
4551 /* sort the node_map by start_pfn */
4552 void __init sort_node_map(void)
4553 {
4554 sort(early_node_map, (size_t)nr_nodemap_entries,
4555 sizeof(struct node_active_region),
4556 cmp_node_active_region, NULL);
4557 }
4558
4559 /* Find the lowest pfn for a node */
4560 static unsigned long __init find_min_pfn_for_node(int nid)
4561 {
4562 int i;
4563 unsigned long min_pfn = ULONG_MAX;
4564
4565 /* Assuming a sorted map, the first range found has the starting pfn */
4566 for_each_active_range_index_in_nid(i, nid)
4567 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4568
4569 if (min_pfn == ULONG_MAX) {
4570 printk(KERN_WARNING
4571 "Could not find start_pfn for node %d\n", nid);
4572 return 0;
4573 }
4574
4575 return min_pfn;
4576 }
4577
4578 /**
4579 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4580 *
4581 * It returns the minimum PFN based on information provided via
4582 * add_active_range().
4583 */
4584 unsigned long __init find_min_pfn_with_active_regions(void)
4585 {
4586 return find_min_pfn_for_node(MAX_NUMNODES);
4587 }
4588
4589 /*
4590 * early_calculate_totalpages()
4591 * Sum pages in active regions for movable zone.
4592 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4593 */
4594 static unsigned long __init early_calculate_totalpages(void)
4595 {
4596 int i;
4597 unsigned long totalpages = 0;
4598
4599 for (i = 0; i < nr_nodemap_entries; i++) {
4600 unsigned long pages = early_node_map[i].end_pfn -
4601 early_node_map[i].start_pfn;
4602 totalpages += pages;
4603 if (pages)
4604 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4605 }
4606 return totalpages;
4607 }
4608
4609 /*
4610 * Find the PFN the Movable zone begins in each node. Kernel memory
4611 * is spread evenly between nodes as long as the nodes have enough
4612 * memory. When they don't, some nodes will have more kernelcore than
4613 * others
4614 */
4615 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4616 {
4617 int i, nid;
4618 unsigned long usable_startpfn;
4619 unsigned long kernelcore_node, kernelcore_remaining;
4620 /* save the state before borrow the nodemask */
4621 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4622 unsigned long totalpages = early_calculate_totalpages();
4623 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4624
4625 /*
4626 * If movablecore was specified, calculate what size of
4627 * kernelcore that corresponds so that memory usable for
4628 * any allocation type is evenly spread. If both kernelcore
4629 * and movablecore are specified, then the value of kernelcore
4630 * will be used for required_kernelcore if it's greater than
4631 * what movablecore would have allowed.
4632 */
4633 if (required_movablecore) {
4634 unsigned long corepages;
4635
4636 /*
4637 * Round-up so that ZONE_MOVABLE is at least as large as what
4638 * was requested by the user
4639 */
4640 required_movablecore =
4641 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4642 corepages = totalpages - required_movablecore;
4643
4644 required_kernelcore = max(required_kernelcore, corepages);
4645 }
4646
4647 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4648 if (!required_kernelcore)
4649 goto out;
4650
4651 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4652 find_usable_zone_for_movable();
4653 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4654
4655 restart:
4656 /* Spread kernelcore memory as evenly as possible throughout nodes */
4657 kernelcore_node = required_kernelcore / usable_nodes;
4658 for_each_node_state(nid, N_HIGH_MEMORY) {
4659 /*
4660 * Recalculate kernelcore_node if the division per node
4661 * now exceeds what is necessary to satisfy the requested
4662 * amount of memory for the kernel
4663 */
4664 if (required_kernelcore < kernelcore_node)
4665 kernelcore_node = required_kernelcore / usable_nodes;
4666
4667 /*
4668 * As the map is walked, we track how much memory is usable
4669 * by the kernel using kernelcore_remaining. When it is
4670 * 0, the rest of the node is usable by ZONE_MOVABLE
4671 */
4672 kernelcore_remaining = kernelcore_node;
4673
4674 /* Go through each range of PFNs within this node */
4675 for_each_active_range_index_in_nid(i, nid) {
4676 unsigned long start_pfn, end_pfn;
4677 unsigned long size_pages;
4678
4679 start_pfn = max(early_node_map[i].start_pfn,
4680 zone_movable_pfn[nid]);
4681 end_pfn = early_node_map[i].end_pfn;
4682 if (start_pfn >= end_pfn)
4683 continue;
4684
4685 /* Account for what is only usable for kernelcore */
4686 if (start_pfn < usable_startpfn) {
4687 unsigned long kernel_pages;
4688 kernel_pages = min(end_pfn, usable_startpfn)
4689 - start_pfn;
4690
4691 kernelcore_remaining -= min(kernel_pages,
4692 kernelcore_remaining);
4693 required_kernelcore -= min(kernel_pages,
4694 required_kernelcore);
4695
4696 /* Continue if range is now fully accounted */
4697 if (end_pfn <= usable_startpfn) {
4698
4699 /*
4700 * Push zone_movable_pfn to the end so
4701 * that if we have to rebalance
4702 * kernelcore across nodes, we will
4703 * not double account here
4704 */
4705 zone_movable_pfn[nid] = end_pfn;
4706 continue;
4707 }
4708 start_pfn = usable_startpfn;
4709 }
4710
4711 /*
4712 * The usable PFN range for ZONE_MOVABLE is from
4713 * start_pfn->end_pfn. Calculate size_pages as the
4714 * number of pages used as kernelcore
4715 */
4716 size_pages = end_pfn - start_pfn;
4717 if (size_pages > kernelcore_remaining)
4718 size_pages = kernelcore_remaining;
4719 zone_movable_pfn[nid] = start_pfn + size_pages;
4720
4721 /*
4722 * Some kernelcore has been met, update counts and
4723 * break if the kernelcore for this node has been
4724 * satisified
4725 */
4726 required_kernelcore -= min(required_kernelcore,
4727 size_pages);
4728 kernelcore_remaining -= size_pages;
4729 if (!kernelcore_remaining)
4730 break;
4731 }
4732 }
4733
4734 /*
4735 * If there is still required_kernelcore, we do another pass with one
4736 * less node in the count. This will push zone_movable_pfn[nid] further
4737 * along on the nodes that still have memory until kernelcore is
4738 * satisified
4739 */
4740 usable_nodes--;
4741 if (usable_nodes && required_kernelcore > usable_nodes)
4742 goto restart;
4743
4744 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4745 for (nid = 0; nid < MAX_NUMNODES; nid++)
4746 zone_movable_pfn[nid] =
4747 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4748
4749 out:
4750 /* restore the node_state */
4751 node_states[N_HIGH_MEMORY] = saved_node_state;
4752 }
4753
4754 /* Any regular memory on that node ? */
4755 static void check_for_regular_memory(pg_data_t *pgdat)
4756 {
4757 #ifdef CONFIG_HIGHMEM
4758 enum zone_type zone_type;
4759
4760 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4761 struct zone *zone = &pgdat->node_zones[zone_type];
4762 if (zone->present_pages)
4763 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4764 }
4765 #endif
4766 }
4767
4768 /**
4769 * free_area_init_nodes - Initialise all pg_data_t and zone data
4770 * @max_zone_pfn: an array of max PFNs for each zone
4771 *
4772 * This will call free_area_init_node() for each active node in the system.
4773 * Using the page ranges provided by add_active_range(), the size of each
4774 * zone in each node and their holes is calculated. If the maximum PFN
4775 * between two adjacent zones match, it is assumed that the zone is empty.
4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778 * starts where the previous one ended. For example, ZONE_DMA32 starts
4779 * at arch_max_dma_pfn.
4780 */
4781 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4782 {
4783 unsigned long nid;
4784 int i;
4785
4786 /* Sort early_node_map as initialisation assumes it is sorted */
4787 sort_node_map();
4788
4789 /* Record where the zone boundaries are */
4790 memset(arch_zone_lowest_possible_pfn, 0,
4791 sizeof(arch_zone_lowest_possible_pfn));
4792 memset(arch_zone_highest_possible_pfn, 0,
4793 sizeof(arch_zone_highest_possible_pfn));
4794 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4795 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4796 for (i = 1; i < MAX_NR_ZONES; i++) {
4797 if (i == ZONE_MOVABLE)
4798 continue;
4799 arch_zone_lowest_possible_pfn[i] =
4800 arch_zone_highest_possible_pfn[i-1];
4801 arch_zone_highest_possible_pfn[i] =
4802 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4803 }
4804 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4805 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4806
4807 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4808 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4809 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4810
4811 /* Print out the zone ranges */
4812 printk("Zone PFN ranges:\n");
4813 for (i = 0; i < MAX_NR_ZONES; i++) {
4814 if (i == ZONE_MOVABLE)
4815 continue;
4816 printk(" %-8s ", zone_names[i]);
4817 if (arch_zone_lowest_possible_pfn[i] ==
4818 arch_zone_highest_possible_pfn[i])
4819 printk("empty\n");
4820 else
4821 printk("%0#10lx -> %0#10lx\n",
4822 arch_zone_lowest_possible_pfn[i],
4823 arch_zone_highest_possible_pfn[i]);
4824 }
4825
4826 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4827 printk("Movable zone start PFN for each node\n");
4828 for (i = 0; i < MAX_NUMNODES; i++) {
4829 if (zone_movable_pfn[i])
4830 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4831 }
4832
4833 /* Print out the early_node_map[] */
4834 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4835 for (i = 0; i < nr_nodemap_entries; i++)
4836 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4837 early_node_map[i].start_pfn,
4838 early_node_map[i].end_pfn);
4839
4840 /* Initialise every node */
4841 mminit_verify_pageflags_layout();
4842 setup_nr_node_ids();
4843 for_each_online_node(nid) {
4844 pg_data_t *pgdat = NODE_DATA(nid);
4845 free_area_init_node(nid, NULL,
4846 find_min_pfn_for_node(nid), NULL);
4847
4848 /* Any memory on that node */
4849 if (pgdat->node_present_pages)
4850 node_set_state(nid, N_HIGH_MEMORY);
4851 check_for_regular_memory(pgdat);
4852 }
4853 }
4854
4855 static int __init cmdline_parse_core(char *p, unsigned long *core)
4856 {
4857 unsigned long long coremem;
4858 if (!p)
4859 return -EINVAL;
4860
4861 coremem = memparse(p, &p);
4862 *core = coremem >> PAGE_SHIFT;
4863
4864 /* Paranoid check that UL is enough for the coremem value */
4865 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4866
4867 return 0;
4868 }
4869
4870 /*
4871 * kernelcore=size sets the amount of memory for use for allocations that
4872 * cannot be reclaimed or migrated.
4873 */
4874 static int __init cmdline_parse_kernelcore(char *p)
4875 {
4876 return cmdline_parse_core(p, &required_kernelcore);
4877 }
4878
4879 /*
4880 * movablecore=size sets the amount of memory for use for allocations that
4881 * can be reclaimed or migrated.
4882 */
4883 static int __init cmdline_parse_movablecore(char *p)
4884 {
4885 return cmdline_parse_core(p, &required_movablecore);
4886 }
4887
4888 early_param("kernelcore", cmdline_parse_kernelcore);
4889 early_param("movablecore", cmdline_parse_movablecore);
4890
4891 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4892
4893 /**
4894 * set_dma_reserve - set the specified number of pages reserved in the first zone
4895 * @new_dma_reserve: The number of pages to mark reserved
4896 *
4897 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4898 * In the DMA zone, a significant percentage may be consumed by kernel image
4899 * and other unfreeable allocations which can skew the watermarks badly. This
4900 * function may optionally be used to account for unfreeable pages in the
4901 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4902 * smaller per-cpu batchsize.
4903 */
4904 void __init set_dma_reserve(unsigned long new_dma_reserve)
4905 {
4906 dma_reserve = new_dma_reserve;
4907 }
4908
4909 void __init free_area_init(unsigned long *zones_size)
4910 {
4911 free_area_init_node(0, zones_size,
4912 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4913 }
4914
4915 static int page_alloc_cpu_notify(struct notifier_block *self,
4916 unsigned long action, void *hcpu)
4917 {
4918 int cpu = (unsigned long)hcpu;
4919
4920 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4921 drain_pages(cpu);
4922
4923 /*
4924 * Spill the event counters of the dead processor
4925 * into the current processors event counters.
4926 * This artificially elevates the count of the current
4927 * processor.
4928 */
4929 vm_events_fold_cpu(cpu);
4930
4931 /*
4932 * Zero the differential counters of the dead processor
4933 * so that the vm statistics are consistent.
4934 *
4935 * This is only okay since the processor is dead and cannot
4936 * race with what we are doing.
4937 */
4938 refresh_cpu_vm_stats(cpu);
4939 }
4940 return NOTIFY_OK;
4941 }
4942
4943 void __init page_alloc_init(void)
4944 {
4945 hotcpu_notifier(page_alloc_cpu_notify, 0);
4946 }
4947
4948 /*
4949 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4950 * or min_free_kbytes changes.
4951 */
4952 static void calculate_totalreserve_pages(void)
4953 {
4954 struct pglist_data *pgdat;
4955 unsigned long reserve_pages = 0;
4956 enum zone_type i, j;
4957
4958 for_each_online_pgdat(pgdat) {
4959 for (i = 0; i < MAX_NR_ZONES; i++) {
4960 struct zone *zone = pgdat->node_zones + i;
4961 unsigned long max = 0;
4962
4963 /* Find valid and maximum lowmem_reserve in the zone */
4964 for (j = i; j < MAX_NR_ZONES; j++) {
4965 if (zone->lowmem_reserve[j] > max)
4966 max = zone->lowmem_reserve[j];
4967 }
4968
4969 /* we treat the high watermark as reserved pages. */
4970 max += high_wmark_pages(zone);
4971
4972 if (max > zone->present_pages)
4973 max = zone->present_pages;
4974 reserve_pages += max;
4975 }
4976 }
4977 totalreserve_pages = reserve_pages;
4978 }
4979
4980 /*
4981 * setup_per_zone_lowmem_reserve - called whenever
4982 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4983 * has a correct pages reserved value, so an adequate number of
4984 * pages are left in the zone after a successful __alloc_pages().
4985 */
4986 static void setup_per_zone_lowmem_reserve(void)
4987 {
4988 struct pglist_data *pgdat;
4989 enum zone_type j, idx;
4990
4991 for_each_online_pgdat(pgdat) {
4992 for (j = 0; j < MAX_NR_ZONES; j++) {
4993 struct zone *zone = pgdat->node_zones + j;
4994 unsigned long present_pages = zone->present_pages;
4995
4996 zone->lowmem_reserve[j] = 0;
4997
4998 idx = j;
4999 while (idx) {
5000 struct zone *lower_zone;
5001
5002 idx--;
5003
5004 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5005 sysctl_lowmem_reserve_ratio[idx] = 1;
5006
5007 lower_zone = pgdat->node_zones + idx;
5008 lower_zone->lowmem_reserve[j] = present_pages /
5009 sysctl_lowmem_reserve_ratio[idx];
5010 present_pages += lower_zone->present_pages;
5011 }
5012 }
5013 }
5014
5015 /* update totalreserve_pages */
5016 calculate_totalreserve_pages();
5017 }
5018
5019 /**
5020 * setup_per_zone_wmarks - called when min_free_kbytes changes
5021 * or when memory is hot-{added|removed}
5022 *
5023 * Ensures that the watermark[min,low,high] values for each zone are set
5024 * correctly with respect to min_free_kbytes.
5025 */
5026 void setup_per_zone_wmarks(void)
5027 {
5028 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5029 unsigned long lowmem_pages = 0;
5030 struct zone *zone;
5031 unsigned long flags;
5032
5033 /* Calculate total number of !ZONE_HIGHMEM pages */
5034 for_each_zone(zone) {
5035 if (!is_highmem(zone))
5036 lowmem_pages += zone->present_pages;
5037 }
5038
5039 for_each_zone(zone) {
5040 u64 tmp;
5041
5042 spin_lock_irqsave(&zone->lock, flags);
5043 tmp = (u64)pages_min * zone->present_pages;
5044 do_div(tmp, lowmem_pages);
5045 if (is_highmem(zone)) {
5046 /*
5047 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5048 * need highmem pages, so cap pages_min to a small
5049 * value here.
5050 *
5051 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5052 * deltas controls asynch page reclaim, and so should
5053 * not be capped for highmem.
5054 */
5055 int min_pages;
5056
5057 min_pages = zone->present_pages / 1024;
5058 if (min_pages < SWAP_CLUSTER_MAX)
5059 min_pages = SWAP_CLUSTER_MAX;
5060 if (min_pages > 128)
5061 min_pages = 128;
5062 zone->watermark[WMARK_MIN] = min_pages;
5063 } else {
5064 /*
5065 * If it's a lowmem zone, reserve a number of pages
5066 * proportionate to the zone's size.
5067 */
5068 zone->watermark[WMARK_MIN] = tmp;
5069 }
5070
5071 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5072 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5073 setup_zone_migrate_reserve(zone);
5074 spin_unlock_irqrestore(&zone->lock, flags);
5075 }
5076
5077 /* update totalreserve_pages */
5078 calculate_totalreserve_pages();
5079 }
5080
5081 /*
5082 * The inactive anon list should be small enough that the VM never has to
5083 * do too much work, but large enough that each inactive page has a chance
5084 * to be referenced again before it is swapped out.
5085 *
5086 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5087 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5088 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5089 * the anonymous pages are kept on the inactive list.
5090 *
5091 * total target max
5092 * memory ratio inactive anon
5093 * -------------------------------------
5094 * 10MB 1 5MB
5095 * 100MB 1 50MB
5096 * 1GB 3 250MB
5097 * 10GB 10 0.9GB
5098 * 100GB 31 3GB
5099 * 1TB 101 10GB
5100 * 10TB 320 32GB
5101 */
5102 void calculate_zone_inactive_ratio(struct zone *zone)
5103 {
5104 unsigned int gb, ratio;
5105
5106 /* Zone size in gigabytes */
5107 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5108 if (gb)
5109 ratio = int_sqrt(10 * gb);
5110 else
5111 ratio = 1;
5112
5113 zone->inactive_ratio = ratio;
5114 }
5115
5116 static void __init setup_per_zone_inactive_ratio(void)
5117 {
5118 struct zone *zone;
5119
5120 for_each_zone(zone)
5121 calculate_zone_inactive_ratio(zone);
5122 }
5123
5124 /*
5125 * Initialise min_free_kbytes.
5126 *
5127 * For small machines we want it small (128k min). For large machines
5128 * we want it large (64MB max). But it is not linear, because network
5129 * bandwidth does not increase linearly with machine size. We use
5130 *
5131 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5132 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5133 *
5134 * which yields
5135 *
5136 * 16MB: 512k
5137 * 32MB: 724k
5138 * 64MB: 1024k
5139 * 128MB: 1448k
5140 * 256MB: 2048k
5141 * 512MB: 2896k
5142 * 1024MB: 4096k
5143 * 2048MB: 5792k
5144 * 4096MB: 8192k
5145 * 8192MB: 11584k
5146 * 16384MB: 16384k
5147 */
5148 static int __init init_per_zone_wmark_min(void)
5149 {
5150 unsigned long lowmem_kbytes;
5151
5152 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5153
5154 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5155 if (min_free_kbytes < 128)
5156 min_free_kbytes = 128;
5157 if (min_free_kbytes > 65536)
5158 min_free_kbytes = 65536;
5159 setup_per_zone_wmarks();
5160 setup_per_zone_lowmem_reserve();
5161 setup_per_zone_inactive_ratio();
5162 return 0;
5163 }
5164 module_init(init_per_zone_wmark_min)
5165
5166 /*
5167 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5168 * that we can call two helper functions whenever min_free_kbytes
5169 * changes.
5170 */
5171 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5172 void __user *buffer, size_t *length, loff_t *ppos)
5173 {
5174 proc_dointvec(table, write, buffer, length, ppos);
5175 if (write)
5176 setup_per_zone_wmarks();
5177 return 0;
5178 }
5179
5180 #ifdef CONFIG_NUMA
5181 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5182 void __user *buffer, size_t *length, loff_t *ppos)
5183 {
5184 struct zone *zone;
5185 int rc;
5186
5187 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5188 if (rc)
5189 return rc;
5190
5191 for_each_zone(zone)
5192 zone->min_unmapped_pages = (zone->present_pages *
5193 sysctl_min_unmapped_ratio) / 100;
5194 return 0;
5195 }
5196
5197 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5198 void __user *buffer, size_t *length, loff_t *ppos)
5199 {
5200 struct zone *zone;
5201 int rc;
5202
5203 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5204 if (rc)
5205 return rc;
5206
5207 for_each_zone(zone)
5208 zone->min_slab_pages = (zone->present_pages *
5209 sysctl_min_slab_ratio) / 100;
5210 return 0;
5211 }
5212 #endif
5213
5214 /*
5215 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5216 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5217 * whenever sysctl_lowmem_reserve_ratio changes.
5218 *
5219 * The reserve ratio obviously has absolutely no relation with the
5220 * minimum watermarks. The lowmem reserve ratio can only make sense
5221 * if in function of the boot time zone sizes.
5222 */
5223 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5224 void __user *buffer, size_t *length, loff_t *ppos)
5225 {
5226 proc_dointvec_minmax(table, write, buffer, length, ppos);
5227 setup_per_zone_lowmem_reserve();
5228 return 0;
5229 }
5230
5231 /*
5232 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5233 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5234 * can have before it gets flushed back to buddy allocator.
5235 */
5236
5237 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5238 void __user *buffer, size_t *length, loff_t *ppos)
5239 {
5240 struct zone *zone;
5241 unsigned int cpu;
5242 int ret;
5243
5244 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5245 if (!write || (ret == -EINVAL))
5246 return ret;
5247 for_each_populated_zone(zone) {
5248 for_each_possible_cpu(cpu) {
5249 unsigned long high;
5250 high = zone->present_pages / percpu_pagelist_fraction;
5251 setup_pagelist_highmark(
5252 per_cpu_ptr(zone->pageset, cpu), high);
5253 }
5254 }
5255 return 0;
5256 }
5257
5258 int hashdist = HASHDIST_DEFAULT;
5259
5260 #ifdef CONFIG_NUMA
5261 static int __init set_hashdist(char *str)
5262 {
5263 if (!str)
5264 return 0;
5265 hashdist = simple_strtoul(str, &str, 0);
5266 return 1;
5267 }
5268 __setup("hashdist=", set_hashdist);
5269 #endif
5270
5271 /*
5272 * allocate a large system hash table from bootmem
5273 * - it is assumed that the hash table must contain an exact power-of-2
5274 * quantity of entries
5275 * - limit is the number of hash buckets, not the total allocation size
5276 */
5277 void *__init alloc_large_system_hash(const char *tablename,
5278 unsigned long bucketsize,
5279 unsigned long numentries,
5280 int scale,
5281 int flags,
5282 unsigned int *_hash_shift,
5283 unsigned int *_hash_mask,
5284 unsigned long limit)
5285 {
5286 unsigned long long max = limit;
5287 unsigned long log2qty, size;
5288 void *table = NULL;
5289
5290 /* allow the kernel cmdline to have a say */
5291 if (!numentries) {
5292 /* round applicable memory size up to nearest megabyte */
5293 numentries = nr_kernel_pages;
5294 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5295 numentries >>= 20 - PAGE_SHIFT;
5296 numentries <<= 20 - PAGE_SHIFT;
5297
5298 /* limit to 1 bucket per 2^scale bytes of low memory */
5299 if (scale > PAGE_SHIFT)
5300 numentries >>= (scale - PAGE_SHIFT);
5301 else
5302 numentries <<= (PAGE_SHIFT - scale);
5303
5304 /* Make sure we've got at least a 0-order allocation.. */
5305 if (unlikely(flags & HASH_SMALL)) {
5306 /* Makes no sense without HASH_EARLY */
5307 WARN_ON(!(flags & HASH_EARLY));
5308 if (!(numentries >> *_hash_shift)) {
5309 numentries = 1UL << *_hash_shift;
5310 BUG_ON(!numentries);
5311 }
5312 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5313 numentries = PAGE_SIZE / bucketsize;
5314 }
5315 numentries = roundup_pow_of_two(numentries);
5316
5317 /* limit allocation size to 1/16 total memory by default */
5318 if (max == 0) {
5319 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5320 do_div(max, bucketsize);
5321 }
5322
5323 if (numentries > max)
5324 numentries = max;
5325
5326 log2qty = ilog2(numentries);
5327
5328 do {
5329 size = bucketsize << log2qty;
5330 if (flags & HASH_EARLY)
5331 table = alloc_bootmem_nopanic(size);
5332 else if (hashdist)
5333 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5334 else {
5335 /*
5336 * If bucketsize is not a power-of-two, we may free
5337 * some pages at the end of hash table which
5338 * alloc_pages_exact() automatically does
5339 */
5340 if (get_order(size) < MAX_ORDER) {
5341 table = alloc_pages_exact(size, GFP_ATOMIC);
5342 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5343 }
5344 }
5345 } while (!table && size > PAGE_SIZE && --log2qty);
5346
5347 if (!table)
5348 panic("Failed to allocate %s hash table\n", tablename);
5349
5350 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5351 tablename,
5352 (1UL << log2qty),
5353 ilog2(size) - PAGE_SHIFT,
5354 size);
5355
5356 if (_hash_shift)
5357 *_hash_shift = log2qty;
5358 if (_hash_mask)
5359 *_hash_mask = (1 << log2qty) - 1;
5360
5361 return table;
5362 }
5363
5364 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5365 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5366 unsigned long pfn)
5367 {
5368 #ifdef CONFIG_SPARSEMEM
5369 return __pfn_to_section(pfn)->pageblock_flags;
5370 #else
5371 return zone->pageblock_flags;
5372 #endif /* CONFIG_SPARSEMEM */
5373 }
5374
5375 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5376 {
5377 #ifdef CONFIG_SPARSEMEM
5378 pfn &= (PAGES_PER_SECTION-1);
5379 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5380 #else
5381 pfn = pfn - zone->zone_start_pfn;
5382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5383 #endif /* CONFIG_SPARSEMEM */
5384 }
5385
5386 /**
5387 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5388 * @page: The page within the block of interest
5389 * @start_bitidx: The first bit of interest to retrieve
5390 * @end_bitidx: The last bit of interest
5391 * returns pageblock_bits flags
5392 */
5393 unsigned long get_pageblock_flags_group(struct page *page,
5394 int start_bitidx, int end_bitidx)
5395 {
5396 struct zone *zone;
5397 unsigned long *bitmap;
5398 unsigned long pfn, bitidx;
5399 unsigned long flags = 0;
5400 unsigned long value = 1;
5401
5402 zone = page_zone(page);
5403 pfn = page_to_pfn(page);
5404 bitmap = get_pageblock_bitmap(zone, pfn);
5405 bitidx = pfn_to_bitidx(zone, pfn);
5406
5407 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5408 if (test_bit(bitidx + start_bitidx, bitmap))
5409 flags |= value;
5410
5411 return flags;
5412 }
5413
5414 /**
5415 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5416 * @page: The page within the block of interest
5417 * @start_bitidx: The first bit of interest
5418 * @end_bitidx: The last bit of interest
5419 * @flags: The flags to set
5420 */
5421 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5422 int start_bitidx, int end_bitidx)
5423 {
5424 struct zone *zone;
5425 unsigned long *bitmap;
5426 unsigned long pfn, bitidx;
5427 unsigned long value = 1;
5428
5429 zone = page_zone(page);
5430 pfn = page_to_pfn(page);
5431 bitmap = get_pageblock_bitmap(zone, pfn);
5432 bitidx = pfn_to_bitidx(zone, pfn);
5433 VM_BUG_ON(pfn < zone->zone_start_pfn);
5434 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5435
5436 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5437 if (flags & value)
5438 __set_bit(bitidx + start_bitidx, bitmap);
5439 else
5440 __clear_bit(bitidx + start_bitidx, bitmap);
5441 }
5442
5443 /*
5444 * This is designed as sub function...plz see page_isolation.c also.
5445 * set/clear page block's type to be ISOLATE.
5446 * page allocater never alloc memory from ISOLATE block.
5447 */
5448
5449 static int
5450 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5451 {
5452 unsigned long pfn, iter, found;
5453 /*
5454 * For avoiding noise data, lru_add_drain_all() should be called
5455 * If ZONE_MOVABLE, the zone never contains immobile pages
5456 */
5457 if (zone_idx(zone) == ZONE_MOVABLE)
5458 return true;
5459
5460 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5461 return true;
5462
5463 pfn = page_to_pfn(page);
5464 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5465 unsigned long check = pfn + iter;
5466
5467 if (!pfn_valid_within(check))
5468 continue;
5469
5470 page = pfn_to_page(check);
5471 if (!page_count(page)) {
5472 if (PageBuddy(page))
5473 iter += (1 << page_order(page)) - 1;
5474 continue;
5475 }
5476 if (!PageLRU(page))
5477 found++;
5478 /*
5479 * If there are RECLAIMABLE pages, we need to check it.
5480 * But now, memory offline itself doesn't call shrink_slab()
5481 * and it still to be fixed.
5482 */
5483 /*
5484 * If the page is not RAM, page_count()should be 0.
5485 * we don't need more check. This is an _used_ not-movable page.
5486 *
5487 * The problematic thing here is PG_reserved pages. PG_reserved
5488 * is set to both of a memory hole page and a _used_ kernel
5489 * page at boot.
5490 */
5491 if (found > count)
5492 return false;
5493 }
5494 return true;
5495 }
5496
5497 bool is_pageblock_removable_nolock(struct page *page)
5498 {
5499 struct zone *zone = page_zone(page);
5500 return __count_immobile_pages(zone, page, 0);
5501 }
5502
5503 int set_migratetype_isolate(struct page *page)
5504 {
5505 struct zone *zone;
5506 unsigned long flags, pfn;
5507 struct memory_isolate_notify arg;
5508 int notifier_ret;
5509 int ret = -EBUSY;
5510 int zone_idx;
5511
5512 zone = page_zone(page);
5513 zone_idx = zone_idx(zone);
5514
5515 spin_lock_irqsave(&zone->lock, flags);
5516
5517 pfn = page_to_pfn(page);
5518 arg.start_pfn = pfn;
5519 arg.nr_pages = pageblock_nr_pages;
5520 arg.pages_found = 0;
5521
5522 /*
5523 * It may be possible to isolate a pageblock even if the
5524 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5525 * notifier chain is used by balloon drivers to return the
5526 * number of pages in a range that are held by the balloon
5527 * driver to shrink memory. If all the pages are accounted for
5528 * by balloons, are free, or on the LRU, isolation can continue.
5529 * Later, for example, when memory hotplug notifier runs, these
5530 * pages reported as "can be isolated" should be isolated(freed)
5531 * by the balloon driver through the memory notifier chain.
5532 */
5533 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5534 notifier_ret = notifier_to_errno(notifier_ret);
5535 if (notifier_ret)
5536 goto out;
5537 /*
5538 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5539 * We just check MOVABLE pages.
5540 */
5541 if (__count_immobile_pages(zone, page, arg.pages_found))
5542 ret = 0;
5543
5544 /*
5545 * immobile means "not-on-lru" paes. If immobile is larger than
5546 * removable-by-driver pages reported by notifier, we'll fail.
5547 */
5548
5549 out:
5550 if (!ret) {
5551 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5552 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5553 }
5554
5555 spin_unlock_irqrestore(&zone->lock, flags);
5556 if (!ret)
5557 drain_all_pages();
5558 return ret;
5559 }
5560
5561 void unset_migratetype_isolate(struct page *page)
5562 {
5563 struct zone *zone;
5564 unsigned long flags;
5565 zone = page_zone(page);
5566 spin_lock_irqsave(&zone->lock, flags);
5567 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5568 goto out;
5569 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5570 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5571 out:
5572 spin_unlock_irqrestore(&zone->lock, flags);
5573 }
5574
5575 #ifdef CONFIG_MEMORY_HOTREMOVE
5576 /*
5577 * All pages in the range must be isolated before calling this.
5578 */
5579 void
5580 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5581 {
5582 struct page *page;
5583 struct zone *zone;
5584 int order, i;
5585 unsigned long pfn;
5586 unsigned long flags;
5587 /* find the first valid pfn */
5588 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5589 if (pfn_valid(pfn))
5590 break;
5591 if (pfn == end_pfn)
5592 return;
5593 zone = page_zone(pfn_to_page(pfn));
5594 spin_lock_irqsave(&zone->lock, flags);
5595 pfn = start_pfn;
5596 while (pfn < end_pfn) {
5597 if (!pfn_valid(pfn)) {
5598 pfn++;
5599 continue;
5600 }
5601 page = pfn_to_page(pfn);
5602 BUG_ON(page_count(page));
5603 BUG_ON(!PageBuddy(page));
5604 order = page_order(page);
5605 #ifdef CONFIG_DEBUG_VM
5606 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5607 pfn, 1 << order, end_pfn);
5608 #endif
5609 list_del(&page->lru);
5610 rmv_page_order(page);
5611 zone->free_area[order].nr_free--;
5612 __mod_zone_page_state(zone, NR_FREE_PAGES,
5613 - (1UL << order));
5614 for (i = 0; i < (1 << order); i++)
5615 SetPageReserved((page+i));
5616 pfn += (1 << order);
5617 }
5618 spin_unlock_irqrestore(&zone->lock, flags);
5619 }
5620 #endif
5621
5622 #ifdef CONFIG_MEMORY_FAILURE
5623 bool is_free_buddy_page(struct page *page)
5624 {
5625 struct zone *zone = page_zone(page);
5626 unsigned long pfn = page_to_pfn(page);
5627 unsigned long flags;
5628 int order;
5629
5630 spin_lock_irqsave(&zone->lock, flags);
5631 for (order = 0; order < MAX_ORDER; order++) {
5632 struct page *page_head = page - (pfn & ((1 << order) - 1));
5633
5634 if (PageBuddy(page_head) && page_order(page_head) >= order)
5635 break;
5636 }
5637 spin_unlock_irqrestore(&zone->lock, flags);
5638
5639 return order < MAX_ORDER;
5640 }
5641 #endif
5642
5643 static struct trace_print_flags pageflag_names[] = {
5644 {1UL << PG_locked, "locked" },
5645 {1UL << PG_error, "error" },
5646 {1UL << PG_referenced, "referenced" },
5647 {1UL << PG_uptodate, "uptodate" },
5648 {1UL << PG_dirty, "dirty" },
5649 {1UL << PG_lru, "lru" },
5650 {1UL << PG_active, "active" },
5651 {1UL << PG_slab, "slab" },
5652 {1UL << PG_owner_priv_1, "owner_priv_1" },
5653 {1UL << PG_arch_1, "arch_1" },
5654 {1UL << PG_reserved, "reserved" },
5655 {1UL << PG_private, "private" },
5656 {1UL << PG_private_2, "private_2" },
5657 {1UL << PG_writeback, "writeback" },
5658 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5659 {1UL << PG_head, "head" },
5660 {1UL << PG_tail, "tail" },
5661 #else
5662 {1UL << PG_compound, "compound" },
5663 #endif
5664 {1UL << PG_swapcache, "swapcache" },
5665 {1UL << PG_mappedtodisk, "mappedtodisk" },
5666 {1UL << PG_reclaim, "reclaim" },
5667 {1UL << PG_swapbacked, "swapbacked" },
5668 {1UL << PG_unevictable, "unevictable" },
5669 #ifdef CONFIG_MMU
5670 {1UL << PG_mlocked, "mlocked" },
5671 #endif
5672 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5673 {1UL << PG_uncached, "uncached" },
5674 #endif
5675 #ifdef CONFIG_MEMORY_FAILURE
5676 {1UL << PG_hwpoison, "hwpoison" },
5677 #endif
5678 {-1UL, NULL },
5679 };
5680
5681 static void dump_page_flags(unsigned long flags)
5682 {
5683 const char *delim = "";
5684 unsigned long mask;
5685 int i;
5686
5687 printk(KERN_ALERT "page flags: %#lx(", flags);
5688
5689 /* remove zone id */
5690 flags &= (1UL << NR_PAGEFLAGS) - 1;
5691
5692 for (i = 0; pageflag_names[i].name && flags; i++) {
5693
5694 mask = pageflag_names[i].mask;
5695 if ((flags & mask) != mask)
5696 continue;
5697
5698 flags &= ~mask;
5699 printk("%s%s", delim, pageflag_names[i].name);
5700 delim = "|";
5701 }
5702
5703 /* check for left over flags */
5704 if (flags)
5705 printk("%s%#lx", delim, flags);
5706
5707 printk(")\n");
5708 }
5709
5710 void dump_page(struct page *page)
5711 {
5712 printk(KERN_ALERT
5713 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5714 page, atomic_read(&page->_count), page_mapcount(page),
5715 page->mapping, page->index);
5716 dump_page_flags(page->flags);
5717 mem_cgroup_print_bad_page(page);
5718 }