Merge tag 'for-linus-v3.10-rc3' of git://oss.sgi.com/xfs/xfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node);
70 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #endif
72
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 /*
75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78 * defined in <linux/topology.h>.
79 */
80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
82 #endif
83
84 /*
85 * Array of node states.
86 */
87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
88 [N_POSSIBLE] = NODE_MASK_ALL,
89 [N_ONLINE] = { { [0] = 1UL } },
90 #ifndef CONFIG_NUMA
91 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
92 #ifdef CONFIG_HIGHMEM
93 [N_HIGH_MEMORY] = { { [0] = 1UL } },
94 #endif
95 #ifdef CONFIG_MOVABLE_NODE
96 [N_MEMORY] = { { [0] = 1UL } },
97 #endif
98 [N_CPU] = { { [0] = 1UL } },
99 #endif /* NUMA */
100 };
101 EXPORT_SYMBOL(node_states);
102
103 unsigned long totalram_pages __read_mostly;
104 unsigned long totalreserve_pages __read_mostly;
105 /*
106 * When calculating the number of globally allowed dirty pages, there
107 * is a certain number of per-zone reserves that should not be
108 * considered dirtyable memory. This is the sum of those reserves
109 * over all existing zones that contribute dirtyable memory.
110 */
111 unsigned long dirty_balance_reserve __read_mostly;
112
113 int percpu_pagelist_fraction;
114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
115
116 #ifdef CONFIG_PM_SLEEP
117 /*
118 * The following functions are used by the suspend/hibernate code to temporarily
119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
120 * while devices are suspended. To avoid races with the suspend/hibernate code,
121 * they should always be called with pm_mutex held (gfp_allowed_mask also should
122 * only be modified with pm_mutex held, unless the suspend/hibernate code is
123 * guaranteed not to run in parallel with that modification).
124 */
125
126 static gfp_t saved_gfp_mask;
127
128 void pm_restore_gfp_mask(void)
129 {
130 WARN_ON(!mutex_is_locked(&pm_mutex));
131 if (saved_gfp_mask) {
132 gfp_allowed_mask = saved_gfp_mask;
133 saved_gfp_mask = 0;
134 }
135 }
136
137 void pm_restrict_gfp_mask(void)
138 {
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 WARN_ON(saved_gfp_mask);
141 saved_gfp_mask = gfp_allowed_mask;
142 gfp_allowed_mask &= ~GFP_IOFS;
143 }
144
145 bool pm_suspended_storage(void)
146 {
147 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
148 return false;
149 return true;
150 }
151 #endif /* CONFIG_PM_SLEEP */
152
153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
154 int pageblock_order __read_mostly;
155 #endif
156
157 static void __free_pages_ok(struct page *page, unsigned int order);
158
159 /*
160 * results with 256, 32 in the lowmem_reserve sysctl:
161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
162 * 1G machine -> (16M dma, 784M normal, 224M high)
163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
166 *
167 * TBD: should special case ZONE_DMA32 machines here - in those we normally
168 * don't need any ZONE_NORMAL reservation
169 */
170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
171 #ifdef CONFIG_ZONE_DMA
172 256,
173 #endif
174 #ifdef CONFIG_ZONE_DMA32
175 256,
176 #endif
177 #ifdef CONFIG_HIGHMEM
178 32,
179 #endif
180 32,
181 };
182
183 EXPORT_SYMBOL(totalram_pages);
184
185 static char * const zone_names[MAX_NR_ZONES] = {
186 #ifdef CONFIG_ZONE_DMA
187 "DMA",
188 #endif
189 #ifdef CONFIG_ZONE_DMA32
190 "DMA32",
191 #endif
192 "Normal",
193 #ifdef CONFIG_HIGHMEM
194 "HighMem",
195 #endif
196 "Movable",
197 };
198
199 int min_free_kbytes = 1024;
200
201 static unsigned long __meminitdata nr_kernel_pages;
202 static unsigned long __meminitdata nr_all_pages;
203 static unsigned long __meminitdata dma_reserve;
204
205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __initdata required_kernelcore;
209 static unsigned long __initdata required_movablecore;
210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
211
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
213 int movable_zone;
214 EXPORT_SYMBOL(movable_zone);
215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
216
217 #if MAX_NUMNODES > 1
218 int nr_node_ids __read_mostly = MAX_NUMNODES;
219 int nr_online_nodes __read_mostly = 1;
220 EXPORT_SYMBOL(nr_node_ids);
221 EXPORT_SYMBOL(nr_online_nodes);
222 #endif
223
224 int page_group_by_mobility_disabled __read_mostly;
225
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244 unsigned long sp, start_pfn;
245
246 do {
247 seq = zone_span_seqbegin(zone);
248 start_pfn = zone->zone_start_pfn;
249 sp = zone->spanned_pages;
250 if (!zone_spans_pfn(zone, pfn))
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 if (ret)
255 pr_err("page %lu outside zone [ %lu - %lu ]\n",
256 pfn, start_pfn, start_pfn + sp);
257
258 return ret;
259 }
260
261 static int page_is_consistent(struct zone *zone, struct page *page)
262 {
263 if (!pfn_valid_within(page_to_pfn(page)))
264 return 0;
265 if (zone != page_zone(page))
266 return 0;
267
268 return 1;
269 }
270 /*
271 * Temporary debugging check for pages not lying within a given zone.
272 */
273 static int bad_range(struct zone *zone, struct page *page)
274 {
275 if (page_outside_zone_boundaries(zone, page))
276 return 1;
277 if (!page_is_consistent(zone, page))
278 return 1;
279
280 return 0;
281 }
282 #else
283 static inline int bad_range(struct zone *zone, struct page *page)
284 {
285 return 0;
286 }
287 #endif
288
289 static void bad_page(struct page *page)
290 {
291 static unsigned long resume;
292 static unsigned long nr_shown;
293 static unsigned long nr_unshown;
294
295 /* Don't complain about poisoned pages */
296 if (PageHWPoison(page)) {
297 page_mapcount_reset(page); /* remove PageBuddy */
298 return;
299 }
300
301 /*
302 * Allow a burst of 60 reports, then keep quiet for that minute;
303 * or allow a steady drip of one report per second.
304 */
305 if (nr_shown == 60) {
306 if (time_before(jiffies, resume)) {
307 nr_unshown++;
308 goto out;
309 }
310 if (nr_unshown) {
311 printk(KERN_ALERT
312 "BUG: Bad page state: %lu messages suppressed\n",
313 nr_unshown);
314 nr_unshown = 0;
315 }
316 nr_shown = 0;
317 }
318 if (nr_shown++ == 0)
319 resume = jiffies + 60 * HZ;
320
321 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
322 current->comm, page_to_pfn(page));
323 dump_page(page);
324
325 print_modules();
326 dump_stack();
327 out:
328 /* Leave bad fields for debug, except PageBuddy could make trouble */
329 page_mapcount_reset(page); /* remove PageBuddy */
330 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
331 }
332
333 /*
334 * Higher-order pages are called "compound pages". They are structured thusly:
335 *
336 * The first PAGE_SIZE page is called the "head page".
337 *
338 * The remaining PAGE_SIZE pages are called "tail pages".
339 *
340 * All pages have PG_compound set. All tail pages have their ->first_page
341 * pointing at the head page.
342 *
343 * The first tail page's ->lru.next holds the address of the compound page's
344 * put_page() function. Its ->lru.prev holds the order of allocation.
345 * This usage means that zero-order pages may not be compound.
346 */
347
348 static void free_compound_page(struct page *page)
349 {
350 __free_pages_ok(page, compound_order(page));
351 }
352
353 void prep_compound_page(struct page *page, unsigned long order)
354 {
355 int i;
356 int nr_pages = 1 << order;
357
358 set_compound_page_dtor(page, free_compound_page);
359 set_compound_order(page, order);
360 __SetPageHead(page);
361 for (i = 1; i < nr_pages; i++) {
362 struct page *p = page + i;
363 __SetPageTail(p);
364 set_page_count(p, 0);
365 p->first_page = page;
366 }
367 }
368
369 /* update __split_huge_page_refcount if you change this function */
370 static int destroy_compound_page(struct page *page, unsigned long order)
371 {
372 int i;
373 int nr_pages = 1 << order;
374 int bad = 0;
375
376 if (unlikely(compound_order(page) != order)) {
377 bad_page(page);
378 bad++;
379 }
380
381 __ClearPageHead(page);
382
383 for (i = 1; i < nr_pages; i++) {
384 struct page *p = page + i;
385
386 if (unlikely(!PageTail(p) || (p->first_page != page))) {
387 bad_page(page);
388 bad++;
389 }
390 __ClearPageTail(p);
391 }
392
393 return bad;
394 }
395
396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
397 {
398 int i;
399
400 /*
401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 * and __GFP_HIGHMEM from hard or soft interrupt context.
403 */
404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
405 for (i = 0; i < (1 << order); i++)
406 clear_highpage(page + i);
407 }
408
409 #ifdef CONFIG_DEBUG_PAGEALLOC
410 unsigned int _debug_guardpage_minorder;
411
412 static int __init debug_guardpage_minorder_setup(char *buf)
413 {
414 unsigned long res;
415
416 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
417 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
418 return 0;
419 }
420 _debug_guardpage_minorder = res;
421 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
422 return 0;
423 }
424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
425
426 static inline void set_page_guard_flag(struct page *page)
427 {
428 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
429 }
430
431 static inline void clear_page_guard_flag(struct page *page)
432 {
433 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
434 }
435 #else
436 static inline void set_page_guard_flag(struct page *page) { }
437 static inline void clear_page_guard_flag(struct page *page) { }
438 #endif
439
440 static inline void set_page_order(struct page *page, int order)
441 {
442 set_page_private(page, order);
443 __SetPageBuddy(page);
444 }
445
446 static inline void rmv_page_order(struct page *page)
447 {
448 __ClearPageBuddy(page);
449 set_page_private(page, 0);
450 }
451
452 /*
453 * Locate the struct page for both the matching buddy in our
454 * pair (buddy1) and the combined O(n+1) page they form (page).
455 *
456 * 1) Any buddy B1 will have an order O twin B2 which satisfies
457 * the following equation:
458 * B2 = B1 ^ (1 << O)
459 * For example, if the starting buddy (buddy2) is #8 its order
460 * 1 buddy is #10:
461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
462 *
463 * 2) Any buddy B will have an order O+1 parent P which
464 * satisfies the following equation:
465 * P = B & ~(1 << O)
466 *
467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
468 */
469 static inline unsigned long
470 __find_buddy_index(unsigned long page_idx, unsigned int order)
471 {
472 return page_idx ^ (1 << order);
473 }
474
475 /*
476 * This function checks whether a page is free && is the buddy
477 * we can do coalesce a page and its buddy if
478 * (a) the buddy is not in a hole &&
479 * (b) the buddy is in the buddy system &&
480 * (c) a page and its buddy have the same order &&
481 * (d) a page and its buddy are in the same zone.
482 *
483 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
485 *
486 * For recording page's order, we use page_private(page).
487 */
488 static inline int page_is_buddy(struct page *page, struct page *buddy,
489 int order)
490 {
491 if (!pfn_valid_within(page_to_pfn(buddy)))
492 return 0;
493
494 if (page_zone_id(page) != page_zone_id(buddy))
495 return 0;
496
497 if (page_is_guard(buddy) && page_order(buddy) == order) {
498 VM_BUG_ON(page_count(buddy) != 0);
499 return 1;
500 }
501
502 if (PageBuddy(buddy) && page_order(buddy) == order) {
503 VM_BUG_ON(page_count(buddy) != 0);
504 return 1;
505 }
506 return 0;
507 }
508
509 /*
510 * Freeing function for a buddy system allocator.
511 *
512 * The concept of a buddy system is to maintain direct-mapped table
513 * (containing bit values) for memory blocks of various "orders".
514 * The bottom level table contains the map for the smallest allocatable
515 * units of memory (here, pages), and each level above it describes
516 * pairs of units from the levels below, hence, "buddies".
517 * At a high level, all that happens here is marking the table entry
518 * at the bottom level available, and propagating the changes upward
519 * as necessary, plus some accounting needed to play nicely with other
520 * parts of the VM system.
521 * At each level, we keep a list of pages, which are heads of continuous
522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
523 * order is recorded in page_private(page) field.
524 * So when we are allocating or freeing one, we can derive the state of the
525 * other. That is, if we allocate a small block, and both were
526 * free, the remainder of the region must be split into blocks.
527 * If a block is freed, and its buddy is also free, then this
528 * triggers coalescing into a block of larger size.
529 *
530 * -- nyc
531 */
532
533 static inline void __free_one_page(struct page *page,
534 struct zone *zone, unsigned int order,
535 int migratetype)
536 {
537 unsigned long page_idx;
538 unsigned long combined_idx;
539 unsigned long uninitialized_var(buddy_idx);
540 struct page *buddy;
541
542 VM_BUG_ON(!zone_is_initialized(zone));
543
544 if (unlikely(PageCompound(page)))
545 if (unlikely(destroy_compound_page(page, order)))
546 return;
547
548 VM_BUG_ON(migratetype == -1);
549
550 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
551
552 VM_BUG_ON(page_idx & ((1 << order) - 1));
553 VM_BUG_ON(bad_range(zone, page));
554
555 while (order < MAX_ORDER-1) {
556 buddy_idx = __find_buddy_index(page_idx, order);
557 buddy = page + (buddy_idx - page_idx);
558 if (!page_is_buddy(page, buddy, order))
559 break;
560 /*
561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
562 * merge with it and move up one order.
563 */
564 if (page_is_guard(buddy)) {
565 clear_page_guard_flag(buddy);
566 set_page_private(page, 0);
567 __mod_zone_freepage_state(zone, 1 << order,
568 migratetype);
569 } else {
570 list_del(&buddy->lru);
571 zone->free_area[order].nr_free--;
572 rmv_page_order(buddy);
573 }
574 combined_idx = buddy_idx & page_idx;
575 page = page + (combined_idx - page_idx);
576 page_idx = combined_idx;
577 order++;
578 }
579 set_page_order(page, order);
580
581 /*
582 * If this is not the largest possible page, check if the buddy
583 * of the next-highest order is free. If it is, it's possible
584 * that pages are being freed that will coalesce soon. In case,
585 * that is happening, add the free page to the tail of the list
586 * so it's less likely to be used soon and more likely to be merged
587 * as a higher order page
588 */
589 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
590 struct page *higher_page, *higher_buddy;
591 combined_idx = buddy_idx & page_idx;
592 higher_page = page + (combined_idx - page_idx);
593 buddy_idx = __find_buddy_index(combined_idx, order + 1);
594 higher_buddy = higher_page + (buddy_idx - combined_idx);
595 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
596 list_add_tail(&page->lru,
597 &zone->free_area[order].free_list[migratetype]);
598 goto out;
599 }
600 }
601
602 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
603 out:
604 zone->free_area[order].nr_free++;
605 }
606
607 static inline int free_pages_check(struct page *page)
608 {
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
614 bad_page(page);
615 return 1;
616 }
617 page_nid_reset_last(page);
618 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
619 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
620 return 0;
621 }
622
623 /*
624 * Frees a number of pages from the PCP lists
625 * Assumes all pages on list are in same zone, and of same order.
626 * count is the number of pages to free.
627 *
628 * If the zone was previously in an "all pages pinned" state then look to
629 * see if this freeing clears that state.
630 *
631 * And clear the zone's pages_scanned counter, to hold off the "all pages are
632 * pinned" detection logic.
633 */
634 static void free_pcppages_bulk(struct zone *zone, int count,
635 struct per_cpu_pages *pcp)
636 {
637 int migratetype = 0;
638 int batch_free = 0;
639 int to_free = count;
640
641 spin_lock(&zone->lock);
642 zone->all_unreclaimable = 0;
643 zone->pages_scanned = 0;
644
645 while (to_free) {
646 struct page *page;
647 struct list_head *list;
648
649 /*
650 * Remove pages from lists in a round-robin fashion. A
651 * batch_free count is maintained that is incremented when an
652 * empty list is encountered. This is so more pages are freed
653 * off fuller lists instead of spinning excessively around empty
654 * lists
655 */
656 do {
657 batch_free++;
658 if (++migratetype == MIGRATE_PCPTYPES)
659 migratetype = 0;
660 list = &pcp->lists[migratetype];
661 } while (list_empty(list));
662
663 /* This is the only non-empty list. Free them all. */
664 if (batch_free == MIGRATE_PCPTYPES)
665 batch_free = to_free;
666
667 do {
668 int mt; /* migratetype of the to-be-freed page */
669
670 page = list_entry(list->prev, struct page, lru);
671 /* must delete as __free_one_page list manipulates */
672 list_del(&page->lru);
673 mt = get_freepage_migratetype(page);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, mt);
676 trace_mm_page_pcpu_drain(page, 0, mt);
677 if (likely(!is_migrate_isolate_page(page))) {
678 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
679 if (is_migrate_cma(mt))
680 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
681 }
682 } while (--to_free && --batch_free && !list_empty(list));
683 }
684 spin_unlock(&zone->lock);
685 }
686
687 static void free_one_page(struct zone *zone, struct page *page, int order,
688 int migratetype)
689 {
690 spin_lock(&zone->lock);
691 zone->all_unreclaimable = 0;
692 zone->pages_scanned = 0;
693
694 __free_one_page(page, zone, order, migratetype);
695 if (unlikely(!is_migrate_isolate(migratetype)))
696 __mod_zone_freepage_state(zone, 1 << order, migratetype);
697 spin_unlock(&zone->lock);
698 }
699
700 static bool free_pages_prepare(struct page *page, unsigned int order)
701 {
702 int i;
703 int bad = 0;
704
705 trace_mm_page_free(page, order);
706 kmemcheck_free_shadow(page, order);
707
708 if (PageAnon(page))
709 page->mapping = NULL;
710 for (i = 0; i < (1 << order); i++)
711 bad += free_pages_check(page + i);
712 if (bad)
713 return false;
714
715 if (!PageHighMem(page)) {
716 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
717 debug_check_no_obj_freed(page_address(page),
718 PAGE_SIZE << order);
719 }
720 arch_free_page(page, order);
721 kernel_map_pages(page, 1 << order, 0);
722
723 return true;
724 }
725
726 static void __free_pages_ok(struct page *page, unsigned int order)
727 {
728 unsigned long flags;
729 int migratetype;
730
731 if (!free_pages_prepare(page, order))
732 return;
733
734 local_irq_save(flags);
735 __count_vm_events(PGFREE, 1 << order);
736 migratetype = get_pageblock_migratetype(page);
737 set_freepage_migratetype(page, migratetype);
738 free_one_page(page_zone(page), page, order, migratetype);
739 local_irq_restore(flags);
740 }
741
742 /*
743 * Read access to zone->managed_pages is safe because it's unsigned long,
744 * but we still need to serialize writers. Currently all callers of
745 * __free_pages_bootmem() except put_page_bootmem() should only be used
746 * at boot time. So for shorter boot time, we shift the burden to
747 * put_page_bootmem() to serialize writers.
748 */
749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
750 {
751 unsigned int nr_pages = 1 << order;
752 unsigned int loop;
753
754 prefetchw(page);
755 for (loop = 0; loop < nr_pages; loop++) {
756 struct page *p = &page[loop];
757
758 if (loop + 1 < nr_pages)
759 prefetchw(p + 1);
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 }
763
764 page_zone(page)->managed_pages += 1 << order;
765 set_page_refcounted(page);
766 __free_pages(page, order);
767 }
768
769 #ifdef CONFIG_CMA
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
772 {
773 unsigned i = pageblock_nr_pages;
774 struct page *p = page;
775
776 do {
777 __ClearPageReserved(p);
778 set_page_count(p, 0);
779 } while (++p, --i);
780
781 set_page_refcounted(page);
782 set_pageblock_migratetype(page, MIGRATE_CMA);
783 __free_pages(page, pageblock_order);
784 totalram_pages += pageblock_nr_pages;
785 #ifdef CONFIG_HIGHMEM
786 if (PageHighMem(page))
787 totalhigh_pages += pageblock_nr_pages;
788 #endif
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area * area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /* Remove an element from the buddy allocator from the fallback list */
1014 static inline struct page *
1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1016 {
1017 struct free_area * area;
1018 int current_order;
1019 struct page *page;
1020 int migratetype, i;
1021
1022 /* Find the largest possible block of pages in the other list */
1023 for (current_order = MAX_ORDER-1; current_order >= order;
1024 --current_order) {
1025 for (i = 0;; i++) {
1026 migratetype = fallbacks[start_migratetype][i];
1027
1028 /* MIGRATE_RESERVE handled later if necessary */
1029 if (migratetype == MIGRATE_RESERVE)
1030 break;
1031
1032 area = &(zone->free_area[current_order]);
1033 if (list_empty(&area->free_list[migratetype]))
1034 continue;
1035
1036 page = list_entry(area->free_list[migratetype].next,
1037 struct page, lru);
1038 area->nr_free--;
1039
1040 /*
1041 * If breaking a large block of pages, move all free
1042 * pages to the preferred allocation list. If falling
1043 * back for a reclaimable kernel allocation, be more
1044 * aggressive about taking ownership of free pages
1045 *
1046 * On the other hand, never change migration
1047 * type of MIGRATE_CMA pageblocks nor move CMA
1048 * pages on different free lists. We don't
1049 * want unmovable pages to be allocated from
1050 * MIGRATE_CMA areas.
1051 */
1052 if (!is_migrate_cma(migratetype) &&
1053 (unlikely(current_order >= pageblock_order / 2) ||
1054 start_migratetype == MIGRATE_RECLAIMABLE ||
1055 page_group_by_mobility_disabled)) {
1056 int pages;
1057 pages = move_freepages_block(zone, page,
1058 start_migratetype);
1059
1060 /* Claim the whole block if over half of it is free */
1061 if (pages >= (1 << (pageblock_order-1)) ||
1062 page_group_by_mobility_disabled)
1063 set_pageblock_migratetype(page,
1064 start_migratetype);
1065
1066 migratetype = start_migratetype;
1067 }
1068
1069 /* Remove the page from the freelists */
1070 list_del(&page->lru);
1071 rmv_page_order(page);
1072
1073 /* Take ownership for orders >= pageblock_order */
1074 if (current_order >= pageblock_order &&
1075 !is_migrate_cma(migratetype))
1076 change_pageblock_range(page, current_order,
1077 start_migratetype);
1078
1079 expand(zone, page, order, current_order, area,
1080 is_migrate_cma(migratetype)
1081 ? migratetype : start_migratetype);
1082
1083 trace_mm_page_alloc_extfrag(page, order, current_order,
1084 start_migratetype, migratetype);
1085
1086 return page;
1087 }
1088 }
1089
1090 return NULL;
1091 }
1092
1093 /*
1094 * Do the hard work of removing an element from the buddy allocator.
1095 * Call me with the zone->lock already held.
1096 */
1097 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1098 int migratetype)
1099 {
1100 struct page *page;
1101
1102 retry_reserve:
1103 page = __rmqueue_smallest(zone, order, migratetype);
1104
1105 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1106 page = __rmqueue_fallback(zone, order, migratetype);
1107
1108 /*
1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1110 * is used because __rmqueue_smallest is an inline function
1111 * and we want just one call site
1112 */
1113 if (!page) {
1114 migratetype = MIGRATE_RESERVE;
1115 goto retry_reserve;
1116 }
1117 }
1118
1119 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1120 return page;
1121 }
1122
1123 /*
1124 * Obtain a specified number of elements from the buddy allocator, all under
1125 * a single hold of the lock, for efficiency. Add them to the supplied list.
1126 * Returns the number of new pages which were placed at *list.
1127 */
1128 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1129 unsigned long count, struct list_head *list,
1130 int migratetype, int cold)
1131 {
1132 int mt = migratetype, i;
1133
1134 spin_lock(&zone->lock);
1135 for (i = 0; i < count; ++i) {
1136 struct page *page = __rmqueue(zone, order, migratetype);
1137 if (unlikely(page == NULL))
1138 break;
1139
1140 /*
1141 * Split buddy pages returned by expand() are received here
1142 * in physical page order. The page is added to the callers and
1143 * list and the list head then moves forward. From the callers
1144 * perspective, the linked list is ordered by page number in
1145 * some conditions. This is useful for IO devices that can
1146 * merge IO requests if the physical pages are ordered
1147 * properly.
1148 */
1149 if (likely(cold == 0))
1150 list_add(&page->lru, list);
1151 else
1152 list_add_tail(&page->lru, list);
1153 if (IS_ENABLED(CONFIG_CMA)) {
1154 mt = get_pageblock_migratetype(page);
1155 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1156 mt = migratetype;
1157 }
1158 set_freepage_migratetype(page, mt);
1159 list = &page->lru;
1160 if (is_migrate_cma(mt))
1161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1162 -(1 << order));
1163 }
1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1165 spin_unlock(&zone->lock);
1166 return i;
1167 }
1168
1169 #ifdef CONFIG_NUMA
1170 /*
1171 * Called from the vmstat counter updater to drain pagesets of this
1172 * currently executing processor on remote nodes after they have
1173 * expired.
1174 *
1175 * Note that this function must be called with the thread pinned to
1176 * a single processor.
1177 */
1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1179 {
1180 unsigned long flags;
1181 int to_drain;
1182
1183 local_irq_save(flags);
1184 if (pcp->count >= pcp->batch)
1185 to_drain = pcp->batch;
1186 else
1187 to_drain = pcp->count;
1188 if (to_drain > 0) {
1189 free_pcppages_bulk(zone, to_drain, pcp);
1190 pcp->count -= to_drain;
1191 }
1192 local_irq_restore(flags);
1193 }
1194 #endif
1195
1196 /*
1197 * Drain pages of the indicated processor.
1198 *
1199 * The processor must either be the current processor and the
1200 * thread pinned to the current processor or a processor that
1201 * is not online.
1202 */
1203 static void drain_pages(unsigned int cpu)
1204 {
1205 unsigned long flags;
1206 struct zone *zone;
1207
1208 for_each_populated_zone(zone) {
1209 struct per_cpu_pageset *pset;
1210 struct per_cpu_pages *pcp;
1211
1212 local_irq_save(flags);
1213 pset = per_cpu_ptr(zone->pageset, cpu);
1214
1215 pcp = &pset->pcp;
1216 if (pcp->count) {
1217 free_pcppages_bulk(zone, pcp->count, pcp);
1218 pcp->count = 0;
1219 }
1220 local_irq_restore(flags);
1221 }
1222 }
1223
1224 /*
1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 */
1227 void drain_local_pages(void *arg)
1228 {
1229 drain_pages(smp_processor_id());
1230 }
1231
1232 /*
1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 *
1235 * Note that this code is protected against sending an IPI to an offline
1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238 * nothing keeps CPUs from showing up after we populated the cpumask and
1239 * before the call to on_each_cpu_mask().
1240 */
1241 void drain_all_pages(void)
1242 {
1243 int cpu;
1244 struct per_cpu_pageset *pcp;
1245 struct zone *zone;
1246
1247 /*
1248 * Allocate in the BSS so we wont require allocation in
1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 */
1251 static cpumask_t cpus_with_pcps;
1252
1253 /*
1254 * We don't care about racing with CPU hotplug event
1255 * as offline notification will cause the notified
1256 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 * disables preemption as part of its processing
1258 */
1259 for_each_online_cpu(cpu) {
1260 bool has_pcps = false;
1261 for_each_populated_zone(zone) {
1262 pcp = per_cpu_ptr(zone->pageset, cpu);
1263 if (pcp->pcp.count) {
1264 has_pcps = true;
1265 break;
1266 }
1267 }
1268 if (has_pcps)
1269 cpumask_set_cpu(cpu, &cpus_with_pcps);
1270 else
1271 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1272 }
1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1274 }
1275
1276 #ifdef CONFIG_HIBERNATION
1277
1278 void mark_free_pages(struct zone *zone)
1279 {
1280 unsigned long pfn, max_zone_pfn;
1281 unsigned long flags;
1282 int order, t;
1283 struct list_head *curr;
1284
1285 if (!zone->spanned_pages)
1286 return;
1287
1288 spin_lock_irqsave(&zone->lock, flags);
1289
1290 max_zone_pfn = zone_end_pfn(zone);
1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1292 if (pfn_valid(pfn)) {
1293 struct page *page = pfn_to_page(pfn);
1294
1295 if (!swsusp_page_is_forbidden(page))
1296 swsusp_unset_page_free(page);
1297 }
1298
1299 for_each_migratetype_order(order, t) {
1300 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1301 unsigned long i;
1302
1303 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1304 for (i = 0; i < (1UL << order); i++)
1305 swsusp_set_page_free(pfn_to_page(pfn + i));
1306 }
1307 }
1308 spin_unlock_irqrestore(&zone->lock, flags);
1309 }
1310 #endif /* CONFIG_PM */
1311
1312 /*
1313 * Free a 0-order page
1314 * cold == 1 ? free a cold page : free a hot page
1315 */
1316 void free_hot_cold_page(struct page *page, int cold)
1317 {
1318 struct zone *zone = page_zone(page);
1319 struct per_cpu_pages *pcp;
1320 unsigned long flags;
1321 int migratetype;
1322
1323 if (!free_pages_prepare(page, 0))
1324 return;
1325
1326 migratetype = get_pageblock_migratetype(page);
1327 set_freepage_migratetype(page, migratetype);
1328 local_irq_save(flags);
1329 __count_vm_event(PGFREE);
1330
1331 /*
1332 * We only track unmovable, reclaimable and movable on pcp lists.
1333 * Free ISOLATE pages back to the allocator because they are being
1334 * offlined but treat RESERVE as movable pages so we can get those
1335 * areas back if necessary. Otherwise, we may have to free
1336 * excessively into the page allocator
1337 */
1338 if (migratetype >= MIGRATE_PCPTYPES) {
1339 if (unlikely(is_migrate_isolate(migratetype))) {
1340 free_one_page(zone, page, 0, migratetype);
1341 goto out;
1342 }
1343 migratetype = MIGRATE_MOVABLE;
1344 }
1345
1346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1347 if (cold)
1348 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1349 else
1350 list_add(&page->lru, &pcp->lists[migratetype]);
1351 pcp->count++;
1352 if (pcp->count >= pcp->high) {
1353 free_pcppages_bulk(zone, pcp->batch, pcp);
1354 pcp->count -= pcp->batch;
1355 }
1356
1357 out:
1358 local_irq_restore(flags);
1359 }
1360
1361 /*
1362 * Free a list of 0-order pages
1363 */
1364 void free_hot_cold_page_list(struct list_head *list, int cold)
1365 {
1366 struct page *page, *next;
1367
1368 list_for_each_entry_safe(page, next, list, lru) {
1369 trace_mm_page_free_batched(page, cold);
1370 free_hot_cold_page(page, cold);
1371 }
1372 }
1373
1374 /*
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1378 *
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1381 */
1382 void split_page(struct page *page, unsigned int order)
1383 {
1384 int i;
1385
1386 VM_BUG_ON(PageCompound(page));
1387 VM_BUG_ON(!page_count(page));
1388
1389 #ifdef CONFIG_KMEMCHECK
1390 /*
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1393 */
1394 if (kmemcheck_page_is_tracked(page))
1395 split_page(virt_to_page(page[0].shadow), order);
1396 #endif
1397
1398 for (i = 1; i < (1 << order); i++)
1399 set_page_refcounted(page + i);
1400 }
1401 EXPORT_SYMBOL_GPL(split_page);
1402
1403 static int __isolate_free_page(struct page *page, unsigned int order)
1404 {
1405 unsigned long watermark;
1406 struct zone *zone;
1407 int mt;
1408
1409 BUG_ON(!PageBuddy(page));
1410
1411 zone = page_zone(page);
1412 mt = get_pageblock_migratetype(page);
1413
1414 if (!is_migrate_isolate(mt)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark = low_wmark_pages(zone) + (1 << order);
1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1418 return 0;
1419
1420 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1421 }
1422
1423 /* Remove page from free list */
1424 list_del(&page->lru);
1425 zone->free_area[order].nr_free--;
1426 rmv_page_order(page);
1427
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
1437 }
1438
1439 return 1UL << order;
1440 }
1441
1442 /*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452 int split_free_page(struct page *page)
1453 {
1454 unsigned int order;
1455 int nr_pages;
1456
1457 order = page_order(page);
1458
1459 nr_pages = __isolate_free_page(page, order);
1460 if (!nr_pages)
1461 return 0;
1462
1463 /* Split into individual pages */
1464 set_page_refcounted(page);
1465 split_page(page, order);
1466 return nr_pages;
1467 }
1468
1469 /*
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1472 * or two.
1473 */
1474 static inline
1475 struct page *buffered_rmqueue(struct zone *preferred_zone,
1476 struct zone *zone, int order, gfp_t gfp_flags,
1477 int migratetype)
1478 {
1479 unsigned long flags;
1480 struct page *page;
1481 int cold = !!(gfp_flags & __GFP_COLD);
1482
1483 again:
1484 if (likely(order == 0)) {
1485 struct per_cpu_pages *pcp;
1486 struct list_head *list;
1487
1488 local_irq_save(flags);
1489 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 list = &pcp->lists[migratetype];
1491 if (list_empty(list)) {
1492 pcp->count += rmqueue_bulk(zone, 0,
1493 pcp->batch, list,
1494 migratetype, cold);
1495 if (unlikely(list_empty(list)))
1496 goto failed;
1497 }
1498
1499 if (cold)
1500 page = list_entry(list->prev, struct page, lru);
1501 else
1502 page = list_entry(list->next, struct page, lru);
1503
1504 list_del(&page->lru);
1505 pcp->count--;
1506 } else {
1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1508 /*
1509 * __GFP_NOFAIL is not to be used in new code.
1510 *
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1513 *
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1516 * __GFP_NOFAIL.
1517 */
1518 WARN_ON_ONCE(order > 1);
1519 }
1520 spin_lock_irqsave(&zone->lock, flags);
1521 page = __rmqueue(zone, order, migratetype);
1522 spin_unlock(&zone->lock);
1523 if (!page)
1524 goto failed;
1525 __mod_zone_freepage_state(zone, -(1 << order),
1526 get_pageblock_migratetype(page));
1527 }
1528
1529 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1530 zone_statistics(preferred_zone, zone, gfp_flags);
1531 local_irq_restore(flags);
1532
1533 VM_BUG_ON(bad_range(zone, page));
1534 if (prep_new_page(page, order, gfp_flags))
1535 goto again;
1536 return page;
1537
1538 failed:
1539 local_irq_restore(flags);
1540 return NULL;
1541 }
1542
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1544
1545 static struct {
1546 struct fault_attr attr;
1547
1548 u32 ignore_gfp_highmem;
1549 u32 ignore_gfp_wait;
1550 u32 min_order;
1551 } fail_page_alloc = {
1552 .attr = FAULT_ATTR_INITIALIZER,
1553 .ignore_gfp_wait = 1,
1554 .ignore_gfp_highmem = 1,
1555 .min_order = 1,
1556 };
1557
1558 static int __init setup_fail_page_alloc(char *str)
1559 {
1560 return setup_fault_attr(&fail_page_alloc.attr, str);
1561 }
1562 __setup("fail_page_alloc=", setup_fail_page_alloc);
1563
1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1565 {
1566 if (order < fail_page_alloc.min_order)
1567 return false;
1568 if (gfp_mask & __GFP_NOFAIL)
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1571 return false;
1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1573 return false;
1574
1575 return should_fail(&fail_page_alloc.attr, 1 << order);
1576 }
1577
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1579
1580 static int __init fail_page_alloc_debugfs(void)
1581 {
1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1583 struct dentry *dir;
1584
1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 &fail_page_alloc.attr);
1587 if (IS_ERR(dir))
1588 return PTR_ERR(dir);
1589
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 &fail_page_alloc.ignore_gfp_wait))
1592 goto fail;
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 &fail_page_alloc.ignore_gfp_highmem))
1595 goto fail;
1596 if (!debugfs_create_u32("min-order", mode, dir,
1597 &fail_page_alloc.min_order))
1598 goto fail;
1599
1600 return 0;
1601 fail:
1602 debugfs_remove_recursive(dir);
1603
1604 return -ENOMEM;
1605 }
1606
1607 late_initcall(fail_page_alloc_debugfs);
1608
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1610
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1612
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1614 {
1615 return false;
1616 }
1617
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1619
1620 /*
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1623 */
1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 int classzone_idx, int alloc_flags, long free_pages)
1626 {
1627 /* free_pages my go negative - that's OK */
1628 long min = mark;
1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1630 int o;
1631
1632 free_pages -= (1 << order) - 1;
1633 if (alloc_flags & ALLOC_HIGH)
1634 min -= min / 2;
1635 if (alloc_flags & ALLOC_HARDER)
1636 min -= min / 4;
1637 #ifdef CONFIG_CMA
1638 /* If allocation can't use CMA areas don't use free CMA pages */
1639 if (!(alloc_flags & ALLOC_CMA))
1640 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1641 #endif
1642 if (free_pages <= min + lowmem_reserve)
1643 return false;
1644 for (o = 0; o < order; o++) {
1645 /* At the next order, this order's pages become unavailable */
1646 free_pages -= z->free_area[o].nr_free << o;
1647
1648 /* Require fewer higher order pages to be free */
1649 min >>= 1;
1650
1651 if (free_pages <= min)
1652 return false;
1653 }
1654 return true;
1655 }
1656
1657 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1658 int classzone_idx, int alloc_flags)
1659 {
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 zone_page_state(z, NR_FREE_PAGES));
1662 }
1663
1664 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1665 int classzone_idx, int alloc_flags)
1666 {
1667 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1668
1669 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1670 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1671
1672 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1673 free_pages);
1674 }
1675
1676 #ifdef CONFIG_NUMA
1677 /*
1678 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1679 * skip over zones that are not allowed by the cpuset, or that have
1680 * been recently (in last second) found to be nearly full. See further
1681 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1682 * that have to skip over a lot of full or unallowed zones.
1683 *
1684 * If the zonelist cache is present in the passed in zonelist, then
1685 * returns a pointer to the allowed node mask (either the current
1686 * tasks mems_allowed, or node_states[N_MEMORY].)
1687 *
1688 * If the zonelist cache is not available for this zonelist, does
1689 * nothing and returns NULL.
1690 *
1691 * If the fullzones BITMAP in the zonelist cache is stale (more than
1692 * a second since last zap'd) then we zap it out (clear its bits.)
1693 *
1694 * We hold off even calling zlc_setup, until after we've checked the
1695 * first zone in the zonelist, on the theory that most allocations will
1696 * be satisfied from that first zone, so best to examine that zone as
1697 * quickly as we can.
1698 */
1699 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1700 {
1701 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1702 nodemask_t *allowednodes; /* zonelist_cache approximation */
1703
1704 zlc = zonelist->zlcache_ptr;
1705 if (!zlc)
1706 return NULL;
1707
1708 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1710 zlc->last_full_zap = jiffies;
1711 }
1712
1713 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1714 &cpuset_current_mems_allowed :
1715 &node_states[N_MEMORY];
1716 return allowednodes;
1717 }
1718
1719 /*
1720 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1721 * if it is worth looking at further for free memory:
1722 * 1) Check that the zone isn't thought to be full (doesn't have its
1723 * bit set in the zonelist_cache fullzones BITMAP).
1724 * 2) Check that the zones node (obtained from the zonelist_cache
1725 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1726 * Return true (non-zero) if zone is worth looking at further, or
1727 * else return false (zero) if it is not.
1728 *
1729 * This check -ignores- the distinction between various watermarks,
1730 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1731 * found to be full for any variation of these watermarks, it will
1732 * be considered full for up to one second by all requests, unless
1733 * we are so low on memory on all allowed nodes that we are forced
1734 * into the second scan of the zonelist.
1735 *
1736 * In the second scan we ignore this zonelist cache and exactly
1737 * apply the watermarks to all zones, even it is slower to do so.
1738 * We are low on memory in the second scan, and should leave no stone
1739 * unturned looking for a free page.
1740 */
1741 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1742 nodemask_t *allowednodes)
1743 {
1744 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1745 int i; /* index of *z in zonelist zones */
1746 int n; /* node that zone *z is on */
1747
1748 zlc = zonelist->zlcache_ptr;
1749 if (!zlc)
1750 return 1;
1751
1752 i = z - zonelist->_zonerefs;
1753 n = zlc->z_to_n[i];
1754
1755 /* This zone is worth trying if it is allowed but not full */
1756 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1757 }
1758
1759 /*
1760 * Given 'z' scanning a zonelist, set the corresponding bit in
1761 * zlc->fullzones, so that subsequent attempts to allocate a page
1762 * from that zone don't waste time re-examining it.
1763 */
1764 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1765 {
1766 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1767 int i; /* index of *z in zonelist zones */
1768
1769 zlc = zonelist->zlcache_ptr;
1770 if (!zlc)
1771 return;
1772
1773 i = z - zonelist->_zonerefs;
1774
1775 set_bit(i, zlc->fullzones);
1776 }
1777
1778 /*
1779 * clear all zones full, called after direct reclaim makes progress so that
1780 * a zone that was recently full is not skipped over for up to a second
1781 */
1782 static void zlc_clear_zones_full(struct zonelist *zonelist)
1783 {
1784 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1785
1786 zlc = zonelist->zlcache_ptr;
1787 if (!zlc)
1788 return;
1789
1790 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1791 }
1792
1793 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1794 {
1795 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1796 }
1797
1798 static void __paginginit init_zone_allows_reclaim(int nid)
1799 {
1800 int i;
1801
1802 for_each_online_node(i)
1803 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1804 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1805 else
1806 zone_reclaim_mode = 1;
1807 }
1808
1809 #else /* CONFIG_NUMA */
1810
1811 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1812 {
1813 return NULL;
1814 }
1815
1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1817 nodemask_t *allowednodes)
1818 {
1819 return 1;
1820 }
1821
1822 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1823 {
1824 }
1825
1826 static void zlc_clear_zones_full(struct zonelist *zonelist)
1827 {
1828 }
1829
1830 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1831 {
1832 return true;
1833 }
1834
1835 static inline void init_zone_allows_reclaim(int nid)
1836 {
1837 }
1838 #endif /* CONFIG_NUMA */
1839
1840 /*
1841 * get_page_from_freelist goes through the zonelist trying to allocate
1842 * a page.
1843 */
1844 static struct page *
1845 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1846 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1847 struct zone *preferred_zone, int migratetype)
1848 {
1849 struct zoneref *z;
1850 struct page *page = NULL;
1851 int classzone_idx;
1852 struct zone *zone;
1853 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1854 int zlc_active = 0; /* set if using zonelist_cache */
1855 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1856
1857 classzone_idx = zone_idx(preferred_zone);
1858 zonelist_scan:
1859 /*
1860 * Scan zonelist, looking for a zone with enough free.
1861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1862 */
1863 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1864 high_zoneidx, nodemask) {
1865 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1866 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1867 continue;
1868 if ((alloc_flags & ALLOC_CPUSET) &&
1869 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1870 continue;
1871 /*
1872 * When allocating a page cache page for writing, we
1873 * want to get it from a zone that is within its dirty
1874 * limit, such that no single zone holds more than its
1875 * proportional share of globally allowed dirty pages.
1876 * The dirty limits take into account the zone's
1877 * lowmem reserves and high watermark so that kswapd
1878 * should be able to balance it without having to
1879 * write pages from its LRU list.
1880 *
1881 * This may look like it could increase pressure on
1882 * lower zones by failing allocations in higher zones
1883 * before they are full. But the pages that do spill
1884 * over are limited as the lower zones are protected
1885 * by this very same mechanism. It should not become
1886 * a practical burden to them.
1887 *
1888 * XXX: For now, allow allocations to potentially
1889 * exceed the per-zone dirty limit in the slowpath
1890 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1891 * which is important when on a NUMA setup the allowed
1892 * zones are together not big enough to reach the
1893 * global limit. The proper fix for these situations
1894 * will require awareness of zones in the
1895 * dirty-throttling and the flusher threads.
1896 */
1897 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1898 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1899 goto this_zone_full;
1900
1901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1902 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1903 unsigned long mark;
1904 int ret;
1905
1906 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1907 if (zone_watermark_ok(zone, order, mark,
1908 classzone_idx, alloc_flags))
1909 goto try_this_zone;
1910
1911 if (IS_ENABLED(CONFIG_NUMA) &&
1912 !did_zlc_setup && nr_online_nodes > 1) {
1913 /*
1914 * we do zlc_setup if there are multiple nodes
1915 * and before considering the first zone allowed
1916 * by the cpuset.
1917 */
1918 allowednodes = zlc_setup(zonelist, alloc_flags);
1919 zlc_active = 1;
1920 did_zlc_setup = 1;
1921 }
1922
1923 if (zone_reclaim_mode == 0 ||
1924 !zone_allows_reclaim(preferred_zone, zone))
1925 goto this_zone_full;
1926
1927 /*
1928 * As we may have just activated ZLC, check if the first
1929 * eligible zone has failed zone_reclaim recently.
1930 */
1931 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1932 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1933 continue;
1934
1935 ret = zone_reclaim(zone, gfp_mask, order);
1936 switch (ret) {
1937 case ZONE_RECLAIM_NOSCAN:
1938 /* did not scan */
1939 continue;
1940 case ZONE_RECLAIM_FULL:
1941 /* scanned but unreclaimable */
1942 continue;
1943 default:
1944 /* did we reclaim enough */
1945 if (zone_watermark_ok(zone, order, mark,
1946 classzone_idx, alloc_flags))
1947 goto try_this_zone;
1948
1949 /*
1950 * Failed to reclaim enough to meet watermark.
1951 * Only mark the zone full if checking the min
1952 * watermark or if we failed to reclaim just
1953 * 1<<order pages or else the page allocator
1954 * fastpath will prematurely mark zones full
1955 * when the watermark is between the low and
1956 * min watermarks.
1957 */
1958 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1959 ret == ZONE_RECLAIM_SOME)
1960 goto this_zone_full;
1961
1962 continue;
1963 }
1964 }
1965
1966 try_this_zone:
1967 page = buffered_rmqueue(preferred_zone, zone, order,
1968 gfp_mask, migratetype);
1969 if (page)
1970 break;
1971 this_zone_full:
1972 if (IS_ENABLED(CONFIG_NUMA))
1973 zlc_mark_zone_full(zonelist, z);
1974 }
1975
1976 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1977 /* Disable zlc cache for second zonelist scan */
1978 zlc_active = 0;
1979 goto zonelist_scan;
1980 }
1981
1982 if (page)
1983 /*
1984 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1985 * necessary to allocate the page. The expectation is
1986 * that the caller is taking steps that will free more
1987 * memory. The caller should avoid the page being used
1988 * for !PFMEMALLOC purposes.
1989 */
1990 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1991
1992 return page;
1993 }
1994
1995 /*
1996 * Large machines with many possible nodes should not always dump per-node
1997 * meminfo in irq context.
1998 */
1999 static inline bool should_suppress_show_mem(void)
2000 {
2001 bool ret = false;
2002
2003 #if NODES_SHIFT > 8
2004 ret = in_interrupt();
2005 #endif
2006 return ret;
2007 }
2008
2009 static DEFINE_RATELIMIT_STATE(nopage_rs,
2010 DEFAULT_RATELIMIT_INTERVAL,
2011 DEFAULT_RATELIMIT_BURST);
2012
2013 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2014 {
2015 unsigned int filter = SHOW_MEM_FILTER_NODES;
2016
2017 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2018 debug_guardpage_minorder() > 0)
2019 return;
2020
2021 /*
2022 * Walking all memory to count page types is very expensive and should
2023 * be inhibited in non-blockable contexts.
2024 */
2025 if (!(gfp_mask & __GFP_WAIT))
2026 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2027
2028 /*
2029 * This documents exceptions given to allocations in certain
2030 * contexts that are allowed to allocate outside current's set
2031 * of allowed nodes.
2032 */
2033 if (!(gfp_mask & __GFP_NOMEMALLOC))
2034 if (test_thread_flag(TIF_MEMDIE) ||
2035 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2036 filter &= ~SHOW_MEM_FILTER_NODES;
2037 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2038 filter &= ~SHOW_MEM_FILTER_NODES;
2039
2040 if (fmt) {
2041 struct va_format vaf;
2042 va_list args;
2043
2044 va_start(args, fmt);
2045
2046 vaf.fmt = fmt;
2047 vaf.va = &args;
2048
2049 pr_warn("%pV", &vaf);
2050
2051 va_end(args);
2052 }
2053
2054 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2055 current->comm, order, gfp_mask);
2056
2057 dump_stack();
2058 if (!should_suppress_show_mem())
2059 show_mem(filter);
2060 }
2061
2062 static inline int
2063 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2064 unsigned long did_some_progress,
2065 unsigned long pages_reclaimed)
2066 {
2067 /* Do not loop if specifically requested */
2068 if (gfp_mask & __GFP_NORETRY)
2069 return 0;
2070
2071 /* Always retry if specifically requested */
2072 if (gfp_mask & __GFP_NOFAIL)
2073 return 1;
2074
2075 /*
2076 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2077 * making forward progress without invoking OOM. Suspend also disables
2078 * storage devices so kswapd will not help. Bail if we are suspending.
2079 */
2080 if (!did_some_progress && pm_suspended_storage())
2081 return 0;
2082
2083 /*
2084 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2085 * means __GFP_NOFAIL, but that may not be true in other
2086 * implementations.
2087 */
2088 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2089 return 1;
2090
2091 /*
2092 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2093 * specified, then we retry until we no longer reclaim any pages
2094 * (above), or we've reclaimed an order of pages at least as
2095 * large as the allocation's order. In both cases, if the
2096 * allocation still fails, we stop retrying.
2097 */
2098 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2099 return 1;
2100
2101 return 0;
2102 }
2103
2104 static inline struct page *
2105 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2106 struct zonelist *zonelist, enum zone_type high_zoneidx,
2107 nodemask_t *nodemask, struct zone *preferred_zone,
2108 int migratetype)
2109 {
2110 struct page *page;
2111
2112 /* Acquire the OOM killer lock for the zones in zonelist */
2113 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2114 schedule_timeout_uninterruptible(1);
2115 return NULL;
2116 }
2117
2118 /*
2119 * Go through the zonelist yet one more time, keep very high watermark
2120 * here, this is only to catch a parallel oom killing, we must fail if
2121 * we're still under heavy pressure.
2122 */
2123 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2124 order, zonelist, high_zoneidx,
2125 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2126 preferred_zone, migratetype);
2127 if (page)
2128 goto out;
2129
2130 if (!(gfp_mask & __GFP_NOFAIL)) {
2131 /* The OOM killer will not help higher order allocs */
2132 if (order > PAGE_ALLOC_COSTLY_ORDER)
2133 goto out;
2134 /* The OOM killer does not needlessly kill tasks for lowmem */
2135 if (high_zoneidx < ZONE_NORMAL)
2136 goto out;
2137 /*
2138 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2139 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2140 * The caller should handle page allocation failure by itself if
2141 * it specifies __GFP_THISNODE.
2142 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2143 */
2144 if (gfp_mask & __GFP_THISNODE)
2145 goto out;
2146 }
2147 /* Exhausted what can be done so it's blamo time */
2148 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2149
2150 out:
2151 clear_zonelist_oom(zonelist, gfp_mask);
2152 return page;
2153 }
2154
2155 #ifdef CONFIG_COMPACTION
2156 /* Try memory compaction for high-order allocations before reclaim */
2157 static struct page *
2158 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2159 struct zonelist *zonelist, enum zone_type high_zoneidx,
2160 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2161 int migratetype, bool sync_migration,
2162 bool *contended_compaction, bool *deferred_compaction,
2163 unsigned long *did_some_progress)
2164 {
2165 if (!order)
2166 return NULL;
2167
2168 if (compaction_deferred(preferred_zone, order)) {
2169 *deferred_compaction = true;
2170 return NULL;
2171 }
2172
2173 current->flags |= PF_MEMALLOC;
2174 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2175 nodemask, sync_migration,
2176 contended_compaction);
2177 current->flags &= ~PF_MEMALLOC;
2178
2179 if (*did_some_progress != COMPACT_SKIPPED) {
2180 struct page *page;
2181
2182 /* Page migration frees to the PCP lists but we want merging */
2183 drain_pages(get_cpu());
2184 put_cpu();
2185
2186 page = get_page_from_freelist(gfp_mask, nodemask,
2187 order, zonelist, high_zoneidx,
2188 alloc_flags & ~ALLOC_NO_WATERMARKS,
2189 preferred_zone, migratetype);
2190 if (page) {
2191 preferred_zone->compact_blockskip_flush = false;
2192 preferred_zone->compact_considered = 0;
2193 preferred_zone->compact_defer_shift = 0;
2194 if (order >= preferred_zone->compact_order_failed)
2195 preferred_zone->compact_order_failed = order + 1;
2196 count_vm_event(COMPACTSUCCESS);
2197 return page;
2198 }
2199
2200 /*
2201 * It's bad if compaction run occurs and fails.
2202 * The most likely reason is that pages exist,
2203 * but not enough to satisfy watermarks.
2204 */
2205 count_vm_event(COMPACTFAIL);
2206
2207 /*
2208 * As async compaction considers a subset of pageblocks, only
2209 * defer if the failure was a sync compaction failure.
2210 */
2211 if (sync_migration)
2212 defer_compaction(preferred_zone, order);
2213
2214 cond_resched();
2215 }
2216
2217 return NULL;
2218 }
2219 #else
2220 static inline struct page *
2221 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2222 struct zonelist *zonelist, enum zone_type high_zoneidx,
2223 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2224 int migratetype, bool sync_migration,
2225 bool *contended_compaction, bool *deferred_compaction,
2226 unsigned long *did_some_progress)
2227 {
2228 return NULL;
2229 }
2230 #endif /* CONFIG_COMPACTION */
2231
2232 /* Perform direct synchronous page reclaim */
2233 static int
2234 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2235 nodemask_t *nodemask)
2236 {
2237 struct reclaim_state reclaim_state;
2238 int progress;
2239
2240 cond_resched();
2241
2242 /* We now go into synchronous reclaim */
2243 cpuset_memory_pressure_bump();
2244 current->flags |= PF_MEMALLOC;
2245 lockdep_set_current_reclaim_state(gfp_mask);
2246 reclaim_state.reclaimed_slab = 0;
2247 current->reclaim_state = &reclaim_state;
2248
2249 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2250
2251 current->reclaim_state = NULL;
2252 lockdep_clear_current_reclaim_state();
2253 current->flags &= ~PF_MEMALLOC;
2254
2255 cond_resched();
2256
2257 return progress;
2258 }
2259
2260 /* The really slow allocator path where we enter direct reclaim */
2261 static inline struct page *
2262 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2263 struct zonelist *zonelist, enum zone_type high_zoneidx,
2264 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2265 int migratetype, unsigned long *did_some_progress)
2266 {
2267 struct page *page = NULL;
2268 bool drained = false;
2269
2270 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2271 nodemask);
2272 if (unlikely(!(*did_some_progress)))
2273 return NULL;
2274
2275 /* After successful reclaim, reconsider all zones for allocation */
2276 if (IS_ENABLED(CONFIG_NUMA))
2277 zlc_clear_zones_full(zonelist);
2278
2279 retry:
2280 page = get_page_from_freelist(gfp_mask, nodemask, order,
2281 zonelist, high_zoneidx,
2282 alloc_flags & ~ALLOC_NO_WATERMARKS,
2283 preferred_zone, migratetype);
2284
2285 /*
2286 * If an allocation failed after direct reclaim, it could be because
2287 * pages are pinned on the per-cpu lists. Drain them and try again
2288 */
2289 if (!page && !drained) {
2290 drain_all_pages();
2291 drained = true;
2292 goto retry;
2293 }
2294
2295 return page;
2296 }
2297
2298 /*
2299 * This is called in the allocator slow-path if the allocation request is of
2300 * sufficient urgency to ignore watermarks and take other desperate measures
2301 */
2302 static inline struct page *
2303 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2304 struct zonelist *zonelist, enum zone_type high_zoneidx,
2305 nodemask_t *nodemask, struct zone *preferred_zone,
2306 int migratetype)
2307 {
2308 struct page *page;
2309
2310 do {
2311 page = get_page_from_freelist(gfp_mask, nodemask, order,
2312 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2313 preferred_zone, migratetype);
2314
2315 if (!page && gfp_mask & __GFP_NOFAIL)
2316 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2317 } while (!page && (gfp_mask & __GFP_NOFAIL));
2318
2319 return page;
2320 }
2321
2322 static inline
2323 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2324 enum zone_type high_zoneidx,
2325 enum zone_type classzone_idx)
2326 {
2327 struct zoneref *z;
2328 struct zone *zone;
2329
2330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2331 wakeup_kswapd(zone, order, classzone_idx);
2332 }
2333
2334 static inline int
2335 gfp_to_alloc_flags(gfp_t gfp_mask)
2336 {
2337 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2338 const gfp_t wait = gfp_mask & __GFP_WAIT;
2339
2340 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2341 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2342
2343 /*
2344 * The caller may dip into page reserves a bit more if the caller
2345 * cannot run direct reclaim, or if the caller has realtime scheduling
2346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2347 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2348 */
2349 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2350
2351 if (!wait) {
2352 /*
2353 * Not worth trying to allocate harder for
2354 * __GFP_NOMEMALLOC even if it can't schedule.
2355 */
2356 if (!(gfp_mask & __GFP_NOMEMALLOC))
2357 alloc_flags |= ALLOC_HARDER;
2358 /*
2359 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2360 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2361 */
2362 alloc_flags &= ~ALLOC_CPUSET;
2363 } else if (unlikely(rt_task(current)) && !in_interrupt())
2364 alloc_flags |= ALLOC_HARDER;
2365
2366 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2367 if (gfp_mask & __GFP_MEMALLOC)
2368 alloc_flags |= ALLOC_NO_WATERMARKS;
2369 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 else if (!in_interrupt() &&
2372 ((current->flags & PF_MEMALLOC) ||
2373 unlikely(test_thread_flag(TIF_MEMDIE))))
2374 alloc_flags |= ALLOC_NO_WATERMARKS;
2375 }
2376 #ifdef CONFIG_CMA
2377 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2378 alloc_flags |= ALLOC_CMA;
2379 #endif
2380 return alloc_flags;
2381 }
2382
2383 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2384 {
2385 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2386 }
2387
2388 static inline struct page *
2389 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2390 struct zonelist *zonelist, enum zone_type high_zoneidx,
2391 nodemask_t *nodemask, struct zone *preferred_zone,
2392 int migratetype)
2393 {
2394 const gfp_t wait = gfp_mask & __GFP_WAIT;
2395 struct page *page = NULL;
2396 int alloc_flags;
2397 unsigned long pages_reclaimed = 0;
2398 unsigned long did_some_progress;
2399 bool sync_migration = false;
2400 bool deferred_compaction = false;
2401 bool contended_compaction = false;
2402
2403 /*
2404 * In the slowpath, we sanity check order to avoid ever trying to
2405 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2406 * be using allocators in order of preference for an area that is
2407 * too large.
2408 */
2409 if (order >= MAX_ORDER) {
2410 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2411 return NULL;
2412 }
2413
2414 /*
2415 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2416 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2417 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2418 * using a larger set of nodes after it has established that the
2419 * allowed per node queues are empty and that nodes are
2420 * over allocated.
2421 */
2422 if (IS_ENABLED(CONFIG_NUMA) &&
2423 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2424 goto nopage;
2425
2426 restart:
2427 if (!(gfp_mask & __GFP_NO_KSWAPD))
2428 wake_all_kswapd(order, zonelist, high_zoneidx,
2429 zone_idx(preferred_zone));
2430
2431 /*
2432 * OK, we're below the kswapd watermark and have kicked background
2433 * reclaim. Now things get more complex, so set up alloc_flags according
2434 * to how we want to proceed.
2435 */
2436 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2437
2438 /*
2439 * Find the true preferred zone if the allocation is unconstrained by
2440 * cpusets.
2441 */
2442 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2443 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2444 &preferred_zone);
2445
2446 rebalance:
2447 /* This is the last chance, in general, before the goto nopage. */
2448 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2449 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2450 preferred_zone, migratetype);
2451 if (page)
2452 goto got_pg;
2453
2454 /* Allocate without watermarks if the context allows */
2455 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2456 /*
2457 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2458 * the allocation is high priority and these type of
2459 * allocations are system rather than user orientated
2460 */
2461 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2462
2463 page = __alloc_pages_high_priority(gfp_mask, order,
2464 zonelist, high_zoneidx, nodemask,
2465 preferred_zone, migratetype);
2466 if (page) {
2467 goto got_pg;
2468 }
2469 }
2470
2471 /* Atomic allocations - we can't balance anything */
2472 if (!wait)
2473 goto nopage;
2474
2475 /* Avoid recursion of direct reclaim */
2476 if (current->flags & PF_MEMALLOC)
2477 goto nopage;
2478
2479 /* Avoid allocations with no watermarks from looping endlessly */
2480 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2481 goto nopage;
2482
2483 /*
2484 * Try direct compaction. The first pass is asynchronous. Subsequent
2485 * attempts after direct reclaim are synchronous
2486 */
2487 page = __alloc_pages_direct_compact(gfp_mask, order,
2488 zonelist, high_zoneidx,
2489 nodemask,
2490 alloc_flags, preferred_zone,
2491 migratetype, sync_migration,
2492 &contended_compaction,
2493 &deferred_compaction,
2494 &did_some_progress);
2495 if (page)
2496 goto got_pg;
2497 sync_migration = true;
2498
2499 /*
2500 * If compaction is deferred for high-order allocations, it is because
2501 * sync compaction recently failed. In this is the case and the caller
2502 * requested a movable allocation that does not heavily disrupt the
2503 * system then fail the allocation instead of entering direct reclaim.
2504 */
2505 if ((deferred_compaction || contended_compaction) &&
2506 (gfp_mask & __GFP_NO_KSWAPD))
2507 goto nopage;
2508
2509 /* Try direct reclaim and then allocating */
2510 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2511 zonelist, high_zoneidx,
2512 nodemask,
2513 alloc_flags, preferred_zone,
2514 migratetype, &did_some_progress);
2515 if (page)
2516 goto got_pg;
2517
2518 /*
2519 * If we failed to make any progress reclaiming, then we are
2520 * running out of options and have to consider going OOM
2521 */
2522 if (!did_some_progress) {
2523 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2524 if (oom_killer_disabled)
2525 goto nopage;
2526 /* Coredumps can quickly deplete all memory reserves */
2527 if ((current->flags & PF_DUMPCORE) &&
2528 !(gfp_mask & __GFP_NOFAIL))
2529 goto nopage;
2530 page = __alloc_pages_may_oom(gfp_mask, order,
2531 zonelist, high_zoneidx,
2532 nodemask, preferred_zone,
2533 migratetype);
2534 if (page)
2535 goto got_pg;
2536
2537 if (!(gfp_mask & __GFP_NOFAIL)) {
2538 /*
2539 * The oom killer is not called for high-order
2540 * allocations that may fail, so if no progress
2541 * is being made, there are no other options and
2542 * retrying is unlikely to help.
2543 */
2544 if (order > PAGE_ALLOC_COSTLY_ORDER)
2545 goto nopage;
2546 /*
2547 * The oom killer is not called for lowmem
2548 * allocations to prevent needlessly killing
2549 * innocent tasks.
2550 */
2551 if (high_zoneidx < ZONE_NORMAL)
2552 goto nopage;
2553 }
2554
2555 goto restart;
2556 }
2557 }
2558
2559 /* Check if we should retry the allocation */
2560 pages_reclaimed += did_some_progress;
2561 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2562 pages_reclaimed)) {
2563 /* Wait for some write requests to complete then retry */
2564 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2565 goto rebalance;
2566 } else {
2567 /*
2568 * High-order allocations do not necessarily loop after
2569 * direct reclaim and reclaim/compaction depends on compaction
2570 * being called after reclaim so call directly if necessary
2571 */
2572 page = __alloc_pages_direct_compact(gfp_mask, order,
2573 zonelist, high_zoneidx,
2574 nodemask,
2575 alloc_flags, preferred_zone,
2576 migratetype, sync_migration,
2577 &contended_compaction,
2578 &deferred_compaction,
2579 &did_some_progress);
2580 if (page)
2581 goto got_pg;
2582 }
2583
2584 nopage:
2585 warn_alloc_failed(gfp_mask, order, NULL);
2586 return page;
2587 got_pg:
2588 if (kmemcheck_enabled)
2589 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2590
2591 return page;
2592 }
2593
2594 /*
2595 * This is the 'heart' of the zoned buddy allocator.
2596 */
2597 struct page *
2598 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2599 struct zonelist *zonelist, nodemask_t *nodemask)
2600 {
2601 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2602 struct zone *preferred_zone;
2603 struct page *page = NULL;
2604 int migratetype = allocflags_to_migratetype(gfp_mask);
2605 unsigned int cpuset_mems_cookie;
2606 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2607 struct mem_cgroup *memcg = NULL;
2608
2609 gfp_mask &= gfp_allowed_mask;
2610
2611 lockdep_trace_alloc(gfp_mask);
2612
2613 might_sleep_if(gfp_mask & __GFP_WAIT);
2614
2615 if (should_fail_alloc_page(gfp_mask, order))
2616 return NULL;
2617
2618 /*
2619 * Check the zones suitable for the gfp_mask contain at least one
2620 * valid zone. It's possible to have an empty zonelist as a result
2621 * of GFP_THISNODE and a memoryless node
2622 */
2623 if (unlikely(!zonelist->_zonerefs->zone))
2624 return NULL;
2625
2626 /*
2627 * Will only have any effect when __GFP_KMEMCG is set. This is
2628 * verified in the (always inline) callee
2629 */
2630 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2631 return NULL;
2632
2633 retry_cpuset:
2634 cpuset_mems_cookie = get_mems_allowed();
2635
2636 /* The preferred zone is used for statistics later */
2637 first_zones_zonelist(zonelist, high_zoneidx,
2638 nodemask ? : &cpuset_current_mems_allowed,
2639 &preferred_zone);
2640 if (!preferred_zone)
2641 goto out;
2642
2643 #ifdef CONFIG_CMA
2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2645 alloc_flags |= ALLOC_CMA;
2646 #endif
2647 /* First allocation attempt */
2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2649 zonelist, high_zoneidx, alloc_flags,
2650 preferred_zone, migratetype);
2651 if (unlikely(!page)) {
2652 /*
2653 * Runtime PM, block IO and its error handling path
2654 * can deadlock because I/O on the device might not
2655 * complete.
2656 */
2657 gfp_mask = memalloc_noio_flags(gfp_mask);
2658 page = __alloc_pages_slowpath(gfp_mask, order,
2659 zonelist, high_zoneidx, nodemask,
2660 preferred_zone, migratetype);
2661 }
2662
2663 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2664
2665 out:
2666 /*
2667 * When updating a task's mems_allowed, it is possible to race with
2668 * parallel threads in such a way that an allocation can fail while
2669 * the mask is being updated. If a page allocation is about to fail,
2670 * check if the cpuset changed during allocation and if so, retry.
2671 */
2672 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2673 goto retry_cpuset;
2674
2675 memcg_kmem_commit_charge(page, memcg, order);
2676
2677 return page;
2678 }
2679 EXPORT_SYMBOL(__alloc_pages_nodemask);
2680
2681 /*
2682 * Common helper functions.
2683 */
2684 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2685 {
2686 struct page *page;
2687
2688 /*
2689 * __get_free_pages() returns a 32-bit address, which cannot represent
2690 * a highmem page
2691 */
2692 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2693
2694 page = alloc_pages(gfp_mask, order);
2695 if (!page)
2696 return 0;
2697 return (unsigned long) page_address(page);
2698 }
2699 EXPORT_SYMBOL(__get_free_pages);
2700
2701 unsigned long get_zeroed_page(gfp_t gfp_mask)
2702 {
2703 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2704 }
2705 EXPORT_SYMBOL(get_zeroed_page);
2706
2707 void __free_pages(struct page *page, unsigned int order)
2708 {
2709 if (put_page_testzero(page)) {
2710 if (order == 0)
2711 free_hot_cold_page(page, 0);
2712 else
2713 __free_pages_ok(page, order);
2714 }
2715 }
2716
2717 EXPORT_SYMBOL(__free_pages);
2718
2719 void free_pages(unsigned long addr, unsigned int order)
2720 {
2721 if (addr != 0) {
2722 VM_BUG_ON(!virt_addr_valid((void *)addr));
2723 __free_pages(virt_to_page((void *)addr), order);
2724 }
2725 }
2726
2727 EXPORT_SYMBOL(free_pages);
2728
2729 /*
2730 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2731 * pages allocated with __GFP_KMEMCG.
2732 *
2733 * Those pages are accounted to a particular memcg, embedded in the
2734 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2735 * for that information only to find out that it is NULL for users who have no
2736 * interest in that whatsoever, we provide these functions.
2737 *
2738 * The caller knows better which flags it relies on.
2739 */
2740 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2741 {
2742 memcg_kmem_uncharge_pages(page, order);
2743 __free_pages(page, order);
2744 }
2745
2746 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2747 {
2748 if (addr != 0) {
2749 VM_BUG_ON(!virt_addr_valid((void *)addr));
2750 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2751 }
2752 }
2753
2754 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2755 {
2756 if (addr) {
2757 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2758 unsigned long used = addr + PAGE_ALIGN(size);
2759
2760 split_page(virt_to_page((void *)addr), order);
2761 while (used < alloc_end) {
2762 free_page(used);
2763 used += PAGE_SIZE;
2764 }
2765 }
2766 return (void *)addr;
2767 }
2768
2769 /**
2770 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2771 * @size: the number of bytes to allocate
2772 * @gfp_mask: GFP flags for the allocation
2773 *
2774 * This function is similar to alloc_pages(), except that it allocates the
2775 * minimum number of pages to satisfy the request. alloc_pages() can only
2776 * allocate memory in power-of-two pages.
2777 *
2778 * This function is also limited by MAX_ORDER.
2779 *
2780 * Memory allocated by this function must be released by free_pages_exact().
2781 */
2782 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2783 {
2784 unsigned int order = get_order(size);
2785 unsigned long addr;
2786
2787 addr = __get_free_pages(gfp_mask, order);
2788 return make_alloc_exact(addr, order, size);
2789 }
2790 EXPORT_SYMBOL(alloc_pages_exact);
2791
2792 /**
2793 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2794 * pages on a node.
2795 * @nid: the preferred node ID where memory should be allocated
2796 * @size: the number of bytes to allocate
2797 * @gfp_mask: GFP flags for the allocation
2798 *
2799 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2800 * back.
2801 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2802 * but is not exact.
2803 */
2804 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2805 {
2806 unsigned order = get_order(size);
2807 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2808 if (!p)
2809 return NULL;
2810 return make_alloc_exact((unsigned long)page_address(p), order, size);
2811 }
2812 EXPORT_SYMBOL(alloc_pages_exact_nid);
2813
2814 /**
2815 * free_pages_exact - release memory allocated via alloc_pages_exact()
2816 * @virt: the value returned by alloc_pages_exact.
2817 * @size: size of allocation, same value as passed to alloc_pages_exact().
2818 *
2819 * Release the memory allocated by a previous call to alloc_pages_exact.
2820 */
2821 void free_pages_exact(void *virt, size_t size)
2822 {
2823 unsigned long addr = (unsigned long)virt;
2824 unsigned long end = addr + PAGE_ALIGN(size);
2825
2826 while (addr < end) {
2827 free_page(addr);
2828 addr += PAGE_SIZE;
2829 }
2830 }
2831 EXPORT_SYMBOL(free_pages_exact);
2832
2833 /**
2834 * nr_free_zone_pages - count number of pages beyond high watermark
2835 * @offset: The zone index of the highest zone
2836 *
2837 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2838 * high watermark within all zones at or below a given zone index. For each
2839 * zone, the number of pages is calculated as:
2840 * present_pages - high_pages
2841 */
2842 static unsigned long nr_free_zone_pages(int offset)
2843 {
2844 struct zoneref *z;
2845 struct zone *zone;
2846
2847 /* Just pick one node, since fallback list is circular */
2848 unsigned long sum = 0;
2849
2850 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2851
2852 for_each_zone_zonelist(zone, z, zonelist, offset) {
2853 unsigned long size = zone->managed_pages;
2854 unsigned long high = high_wmark_pages(zone);
2855 if (size > high)
2856 sum += size - high;
2857 }
2858
2859 return sum;
2860 }
2861
2862 /**
2863 * nr_free_buffer_pages - count number of pages beyond high watermark
2864 *
2865 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2866 * watermark within ZONE_DMA and ZONE_NORMAL.
2867 */
2868 unsigned long nr_free_buffer_pages(void)
2869 {
2870 return nr_free_zone_pages(gfp_zone(GFP_USER));
2871 }
2872 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2873
2874 /**
2875 * nr_free_pagecache_pages - count number of pages beyond high watermark
2876 *
2877 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2878 * high watermark within all zones.
2879 */
2880 unsigned long nr_free_pagecache_pages(void)
2881 {
2882 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2883 }
2884
2885 static inline void show_node(struct zone *zone)
2886 {
2887 if (IS_ENABLED(CONFIG_NUMA))
2888 printk("Node %d ", zone_to_nid(zone));
2889 }
2890
2891 void si_meminfo(struct sysinfo *val)
2892 {
2893 val->totalram = totalram_pages;
2894 val->sharedram = 0;
2895 val->freeram = global_page_state(NR_FREE_PAGES);
2896 val->bufferram = nr_blockdev_pages();
2897 val->totalhigh = totalhigh_pages;
2898 val->freehigh = nr_free_highpages();
2899 val->mem_unit = PAGE_SIZE;
2900 }
2901
2902 EXPORT_SYMBOL(si_meminfo);
2903
2904 #ifdef CONFIG_NUMA
2905 void si_meminfo_node(struct sysinfo *val, int nid)
2906 {
2907 pg_data_t *pgdat = NODE_DATA(nid);
2908
2909 val->totalram = pgdat->node_present_pages;
2910 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2911 #ifdef CONFIG_HIGHMEM
2912 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2913 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2914 NR_FREE_PAGES);
2915 #else
2916 val->totalhigh = 0;
2917 val->freehigh = 0;
2918 #endif
2919 val->mem_unit = PAGE_SIZE;
2920 }
2921 #endif
2922
2923 /*
2924 * Determine whether the node should be displayed or not, depending on whether
2925 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2926 */
2927 bool skip_free_areas_node(unsigned int flags, int nid)
2928 {
2929 bool ret = false;
2930 unsigned int cpuset_mems_cookie;
2931
2932 if (!(flags & SHOW_MEM_FILTER_NODES))
2933 goto out;
2934
2935 do {
2936 cpuset_mems_cookie = get_mems_allowed();
2937 ret = !node_isset(nid, cpuset_current_mems_allowed);
2938 } while (!put_mems_allowed(cpuset_mems_cookie));
2939 out:
2940 return ret;
2941 }
2942
2943 #define K(x) ((x) << (PAGE_SHIFT-10))
2944
2945 static void show_migration_types(unsigned char type)
2946 {
2947 static const char types[MIGRATE_TYPES] = {
2948 [MIGRATE_UNMOVABLE] = 'U',
2949 [MIGRATE_RECLAIMABLE] = 'E',
2950 [MIGRATE_MOVABLE] = 'M',
2951 [MIGRATE_RESERVE] = 'R',
2952 #ifdef CONFIG_CMA
2953 [MIGRATE_CMA] = 'C',
2954 #endif
2955 #ifdef CONFIG_MEMORY_ISOLATION
2956 [MIGRATE_ISOLATE] = 'I',
2957 #endif
2958 };
2959 char tmp[MIGRATE_TYPES + 1];
2960 char *p = tmp;
2961 int i;
2962
2963 for (i = 0; i < MIGRATE_TYPES; i++) {
2964 if (type & (1 << i))
2965 *p++ = types[i];
2966 }
2967
2968 *p = '\0';
2969 printk("(%s) ", tmp);
2970 }
2971
2972 /*
2973 * Show free area list (used inside shift_scroll-lock stuff)
2974 * We also calculate the percentage fragmentation. We do this by counting the
2975 * memory on each free list with the exception of the first item on the list.
2976 * Suppresses nodes that are not allowed by current's cpuset if
2977 * SHOW_MEM_FILTER_NODES is passed.
2978 */
2979 void show_free_areas(unsigned int filter)
2980 {
2981 int cpu;
2982 struct zone *zone;
2983
2984 for_each_populated_zone(zone) {
2985 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2986 continue;
2987 show_node(zone);
2988 printk("%s per-cpu:\n", zone->name);
2989
2990 for_each_online_cpu(cpu) {
2991 struct per_cpu_pageset *pageset;
2992
2993 pageset = per_cpu_ptr(zone->pageset, cpu);
2994
2995 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2996 cpu, pageset->pcp.high,
2997 pageset->pcp.batch, pageset->pcp.count);
2998 }
2999 }
3000
3001 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3002 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3003 " unevictable:%lu"
3004 " dirty:%lu writeback:%lu unstable:%lu\n"
3005 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3006 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3007 " free_cma:%lu\n",
3008 global_page_state(NR_ACTIVE_ANON),
3009 global_page_state(NR_INACTIVE_ANON),
3010 global_page_state(NR_ISOLATED_ANON),
3011 global_page_state(NR_ACTIVE_FILE),
3012 global_page_state(NR_INACTIVE_FILE),
3013 global_page_state(NR_ISOLATED_FILE),
3014 global_page_state(NR_UNEVICTABLE),
3015 global_page_state(NR_FILE_DIRTY),
3016 global_page_state(NR_WRITEBACK),
3017 global_page_state(NR_UNSTABLE_NFS),
3018 global_page_state(NR_FREE_PAGES),
3019 global_page_state(NR_SLAB_RECLAIMABLE),
3020 global_page_state(NR_SLAB_UNRECLAIMABLE),
3021 global_page_state(NR_FILE_MAPPED),
3022 global_page_state(NR_SHMEM),
3023 global_page_state(NR_PAGETABLE),
3024 global_page_state(NR_BOUNCE),
3025 global_page_state(NR_FREE_CMA_PAGES));
3026
3027 for_each_populated_zone(zone) {
3028 int i;
3029
3030 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3031 continue;
3032 show_node(zone);
3033 printk("%s"
3034 " free:%lukB"
3035 " min:%lukB"
3036 " low:%lukB"
3037 " high:%lukB"
3038 " active_anon:%lukB"
3039 " inactive_anon:%lukB"
3040 " active_file:%lukB"
3041 " inactive_file:%lukB"
3042 " unevictable:%lukB"
3043 " isolated(anon):%lukB"
3044 " isolated(file):%lukB"
3045 " present:%lukB"
3046 " managed:%lukB"
3047 " mlocked:%lukB"
3048 " dirty:%lukB"
3049 " writeback:%lukB"
3050 " mapped:%lukB"
3051 " shmem:%lukB"
3052 " slab_reclaimable:%lukB"
3053 " slab_unreclaimable:%lukB"
3054 " kernel_stack:%lukB"
3055 " pagetables:%lukB"
3056 " unstable:%lukB"
3057 " bounce:%lukB"
3058 " free_cma:%lukB"
3059 " writeback_tmp:%lukB"
3060 " pages_scanned:%lu"
3061 " all_unreclaimable? %s"
3062 "\n",
3063 zone->name,
3064 K(zone_page_state(zone, NR_FREE_PAGES)),
3065 K(min_wmark_pages(zone)),
3066 K(low_wmark_pages(zone)),
3067 K(high_wmark_pages(zone)),
3068 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3069 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3070 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3071 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3072 K(zone_page_state(zone, NR_UNEVICTABLE)),
3073 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3074 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3075 K(zone->present_pages),
3076 K(zone->managed_pages),
3077 K(zone_page_state(zone, NR_MLOCK)),
3078 K(zone_page_state(zone, NR_FILE_DIRTY)),
3079 K(zone_page_state(zone, NR_WRITEBACK)),
3080 K(zone_page_state(zone, NR_FILE_MAPPED)),
3081 K(zone_page_state(zone, NR_SHMEM)),
3082 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3083 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3084 zone_page_state(zone, NR_KERNEL_STACK) *
3085 THREAD_SIZE / 1024,
3086 K(zone_page_state(zone, NR_PAGETABLE)),
3087 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3088 K(zone_page_state(zone, NR_BOUNCE)),
3089 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3090 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3091 zone->pages_scanned,
3092 (zone->all_unreclaimable ? "yes" : "no")
3093 );
3094 printk("lowmem_reserve[]:");
3095 for (i = 0; i < MAX_NR_ZONES; i++)
3096 printk(" %lu", zone->lowmem_reserve[i]);
3097 printk("\n");
3098 }
3099
3100 for_each_populated_zone(zone) {
3101 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3102 unsigned char types[MAX_ORDER];
3103
3104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3105 continue;
3106 show_node(zone);
3107 printk("%s: ", zone->name);
3108
3109 spin_lock_irqsave(&zone->lock, flags);
3110 for (order = 0; order < MAX_ORDER; order++) {
3111 struct free_area *area = &zone->free_area[order];
3112 int type;
3113
3114 nr[order] = area->nr_free;
3115 total += nr[order] << order;
3116
3117 types[order] = 0;
3118 for (type = 0; type < MIGRATE_TYPES; type++) {
3119 if (!list_empty(&area->free_list[type]))
3120 types[order] |= 1 << type;
3121 }
3122 }
3123 spin_unlock_irqrestore(&zone->lock, flags);
3124 for (order = 0; order < MAX_ORDER; order++) {
3125 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3126 if (nr[order])
3127 show_migration_types(types[order]);
3128 }
3129 printk("= %lukB\n", K(total));
3130 }
3131
3132 hugetlb_show_meminfo();
3133
3134 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3135
3136 show_swap_cache_info();
3137 }
3138
3139 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3140 {
3141 zoneref->zone = zone;
3142 zoneref->zone_idx = zone_idx(zone);
3143 }
3144
3145 /*
3146 * Builds allocation fallback zone lists.
3147 *
3148 * Add all populated zones of a node to the zonelist.
3149 */
3150 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3151 int nr_zones, enum zone_type zone_type)
3152 {
3153 struct zone *zone;
3154
3155 BUG_ON(zone_type >= MAX_NR_ZONES);
3156 zone_type++;
3157
3158 do {
3159 zone_type--;
3160 zone = pgdat->node_zones + zone_type;
3161 if (populated_zone(zone)) {
3162 zoneref_set_zone(zone,
3163 &zonelist->_zonerefs[nr_zones++]);
3164 check_highest_zone(zone_type);
3165 }
3166
3167 } while (zone_type);
3168 return nr_zones;
3169 }
3170
3171
3172 /*
3173 * zonelist_order:
3174 * 0 = automatic detection of better ordering.
3175 * 1 = order by ([node] distance, -zonetype)
3176 * 2 = order by (-zonetype, [node] distance)
3177 *
3178 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3179 * the same zonelist. So only NUMA can configure this param.
3180 */
3181 #define ZONELIST_ORDER_DEFAULT 0
3182 #define ZONELIST_ORDER_NODE 1
3183 #define ZONELIST_ORDER_ZONE 2
3184
3185 /* zonelist order in the kernel.
3186 * set_zonelist_order() will set this to NODE or ZONE.
3187 */
3188 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3189 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3190
3191
3192 #ifdef CONFIG_NUMA
3193 /* The value user specified ....changed by config */
3194 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3195 /* string for sysctl */
3196 #define NUMA_ZONELIST_ORDER_LEN 16
3197 char numa_zonelist_order[16] = "default";
3198
3199 /*
3200 * interface for configure zonelist ordering.
3201 * command line option "numa_zonelist_order"
3202 * = "[dD]efault - default, automatic configuration.
3203 * = "[nN]ode - order by node locality, then by zone within node
3204 * = "[zZ]one - order by zone, then by locality within zone
3205 */
3206
3207 static int __parse_numa_zonelist_order(char *s)
3208 {
3209 if (*s == 'd' || *s == 'D') {
3210 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3211 } else if (*s == 'n' || *s == 'N') {
3212 user_zonelist_order = ZONELIST_ORDER_NODE;
3213 } else if (*s == 'z' || *s == 'Z') {
3214 user_zonelist_order = ZONELIST_ORDER_ZONE;
3215 } else {
3216 printk(KERN_WARNING
3217 "Ignoring invalid numa_zonelist_order value: "
3218 "%s\n", s);
3219 return -EINVAL;
3220 }
3221 return 0;
3222 }
3223
3224 static __init int setup_numa_zonelist_order(char *s)
3225 {
3226 int ret;
3227
3228 if (!s)
3229 return 0;
3230
3231 ret = __parse_numa_zonelist_order(s);
3232 if (ret == 0)
3233 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3234
3235 return ret;
3236 }
3237 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3238
3239 /*
3240 * sysctl handler for numa_zonelist_order
3241 */
3242 int numa_zonelist_order_handler(ctl_table *table, int write,
3243 void __user *buffer, size_t *length,
3244 loff_t *ppos)
3245 {
3246 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3247 int ret;
3248 static DEFINE_MUTEX(zl_order_mutex);
3249
3250 mutex_lock(&zl_order_mutex);
3251 if (write)
3252 strcpy(saved_string, (char*)table->data);
3253 ret = proc_dostring(table, write, buffer, length, ppos);
3254 if (ret)
3255 goto out;
3256 if (write) {
3257 int oldval = user_zonelist_order;
3258 if (__parse_numa_zonelist_order((char*)table->data)) {
3259 /*
3260 * bogus value. restore saved string
3261 */
3262 strncpy((char*)table->data, saved_string,
3263 NUMA_ZONELIST_ORDER_LEN);
3264 user_zonelist_order = oldval;
3265 } else if (oldval != user_zonelist_order) {
3266 mutex_lock(&zonelists_mutex);
3267 build_all_zonelists(NULL, NULL);
3268 mutex_unlock(&zonelists_mutex);
3269 }
3270 }
3271 out:
3272 mutex_unlock(&zl_order_mutex);
3273 return ret;
3274 }
3275
3276
3277 #define MAX_NODE_LOAD (nr_online_nodes)
3278 static int node_load[MAX_NUMNODES];
3279
3280 /**
3281 * find_next_best_node - find the next node that should appear in a given node's fallback list
3282 * @node: node whose fallback list we're appending
3283 * @used_node_mask: nodemask_t of already used nodes
3284 *
3285 * We use a number of factors to determine which is the next node that should
3286 * appear on a given node's fallback list. The node should not have appeared
3287 * already in @node's fallback list, and it should be the next closest node
3288 * according to the distance array (which contains arbitrary distance values
3289 * from each node to each node in the system), and should also prefer nodes
3290 * with no CPUs, since presumably they'll have very little allocation pressure
3291 * on them otherwise.
3292 * It returns -1 if no node is found.
3293 */
3294 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3295 {
3296 int n, val;
3297 int min_val = INT_MAX;
3298 int best_node = NUMA_NO_NODE;
3299 const struct cpumask *tmp = cpumask_of_node(0);
3300
3301 /* Use the local node if we haven't already */
3302 if (!node_isset(node, *used_node_mask)) {
3303 node_set(node, *used_node_mask);
3304 return node;
3305 }
3306
3307 for_each_node_state(n, N_MEMORY) {
3308
3309 /* Don't want a node to appear more than once */
3310 if (node_isset(n, *used_node_mask))
3311 continue;
3312
3313 /* Use the distance array to find the distance */
3314 val = node_distance(node, n);
3315
3316 /* Penalize nodes under us ("prefer the next node") */
3317 val += (n < node);
3318
3319 /* Give preference to headless and unused nodes */
3320 tmp = cpumask_of_node(n);
3321 if (!cpumask_empty(tmp))
3322 val += PENALTY_FOR_NODE_WITH_CPUS;
3323
3324 /* Slight preference for less loaded node */
3325 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3326 val += node_load[n];
3327
3328 if (val < min_val) {
3329 min_val = val;
3330 best_node = n;
3331 }
3332 }
3333
3334 if (best_node >= 0)
3335 node_set(best_node, *used_node_mask);
3336
3337 return best_node;
3338 }
3339
3340
3341 /*
3342 * Build zonelists ordered by node and zones within node.
3343 * This results in maximum locality--normal zone overflows into local
3344 * DMA zone, if any--but risks exhausting DMA zone.
3345 */
3346 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3347 {
3348 int j;
3349 struct zonelist *zonelist;
3350
3351 zonelist = &pgdat->node_zonelists[0];
3352 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3353 ;
3354 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3355 MAX_NR_ZONES - 1);
3356 zonelist->_zonerefs[j].zone = NULL;
3357 zonelist->_zonerefs[j].zone_idx = 0;
3358 }
3359
3360 /*
3361 * Build gfp_thisnode zonelists
3362 */
3363 static void build_thisnode_zonelists(pg_data_t *pgdat)
3364 {
3365 int j;
3366 struct zonelist *zonelist;
3367
3368 zonelist = &pgdat->node_zonelists[1];
3369 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3370 zonelist->_zonerefs[j].zone = NULL;
3371 zonelist->_zonerefs[j].zone_idx = 0;
3372 }
3373
3374 /*
3375 * Build zonelists ordered by zone and nodes within zones.
3376 * This results in conserving DMA zone[s] until all Normal memory is
3377 * exhausted, but results in overflowing to remote node while memory
3378 * may still exist in local DMA zone.
3379 */
3380 static int node_order[MAX_NUMNODES];
3381
3382 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3383 {
3384 int pos, j, node;
3385 int zone_type; /* needs to be signed */
3386 struct zone *z;
3387 struct zonelist *zonelist;
3388
3389 zonelist = &pgdat->node_zonelists[0];
3390 pos = 0;
3391 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3392 for (j = 0; j < nr_nodes; j++) {
3393 node = node_order[j];
3394 z = &NODE_DATA(node)->node_zones[zone_type];
3395 if (populated_zone(z)) {
3396 zoneref_set_zone(z,
3397 &zonelist->_zonerefs[pos++]);
3398 check_highest_zone(zone_type);
3399 }
3400 }
3401 }
3402 zonelist->_zonerefs[pos].zone = NULL;
3403 zonelist->_zonerefs[pos].zone_idx = 0;
3404 }
3405
3406 static int default_zonelist_order(void)
3407 {
3408 int nid, zone_type;
3409 unsigned long low_kmem_size,total_size;
3410 struct zone *z;
3411 int average_size;
3412 /*
3413 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3414 * If they are really small and used heavily, the system can fall
3415 * into OOM very easily.
3416 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3417 */
3418 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3419 low_kmem_size = 0;
3420 total_size = 0;
3421 for_each_online_node(nid) {
3422 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3423 z = &NODE_DATA(nid)->node_zones[zone_type];
3424 if (populated_zone(z)) {
3425 if (zone_type < ZONE_NORMAL)
3426 low_kmem_size += z->present_pages;
3427 total_size += z->present_pages;
3428 } else if (zone_type == ZONE_NORMAL) {
3429 /*
3430 * If any node has only lowmem, then node order
3431 * is preferred to allow kernel allocations
3432 * locally; otherwise, they can easily infringe
3433 * on other nodes when there is an abundance of
3434 * lowmem available to allocate from.
3435 */
3436 return ZONELIST_ORDER_NODE;
3437 }
3438 }
3439 }
3440 if (!low_kmem_size || /* there are no DMA area. */
3441 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3442 return ZONELIST_ORDER_NODE;
3443 /*
3444 * look into each node's config.
3445 * If there is a node whose DMA/DMA32 memory is very big area on
3446 * local memory, NODE_ORDER may be suitable.
3447 */
3448 average_size = total_size /
3449 (nodes_weight(node_states[N_MEMORY]) + 1);
3450 for_each_online_node(nid) {
3451 low_kmem_size = 0;
3452 total_size = 0;
3453 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3454 z = &NODE_DATA(nid)->node_zones[zone_type];
3455 if (populated_zone(z)) {
3456 if (zone_type < ZONE_NORMAL)
3457 low_kmem_size += z->present_pages;
3458 total_size += z->present_pages;
3459 }
3460 }
3461 if (low_kmem_size &&
3462 total_size > average_size && /* ignore small node */
3463 low_kmem_size > total_size * 70/100)
3464 return ZONELIST_ORDER_NODE;
3465 }
3466 return ZONELIST_ORDER_ZONE;
3467 }
3468
3469 static void set_zonelist_order(void)
3470 {
3471 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3472 current_zonelist_order = default_zonelist_order();
3473 else
3474 current_zonelist_order = user_zonelist_order;
3475 }
3476
3477 static void build_zonelists(pg_data_t *pgdat)
3478 {
3479 int j, node, load;
3480 enum zone_type i;
3481 nodemask_t used_mask;
3482 int local_node, prev_node;
3483 struct zonelist *zonelist;
3484 int order = current_zonelist_order;
3485
3486 /* initialize zonelists */
3487 for (i = 0; i < MAX_ZONELISTS; i++) {
3488 zonelist = pgdat->node_zonelists + i;
3489 zonelist->_zonerefs[0].zone = NULL;
3490 zonelist->_zonerefs[0].zone_idx = 0;
3491 }
3492
3493 /* NUMA-aware ordering of nodes */
3494 local_node = pgdat->node_id;
3495 load = nr_online_nodes;
3496 prev_node = local_node;
3497 nodes_clear(used_mask);
3498
3499 memset(node_order, 0, sizeof(node_order));
3500 j = 0;
3501
3502 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3503 /*
3504 * We don't want to pressure a particular node.
3505 * So adding penalty to the first node in same
3506 * distance group to make it round-robin.
3507 */
3508 if (node_distance(local_node, node) !=
3509 node_distance(local_node, prev_node))
3510 node_load[node] = load;
3511
3512 prev_node = node;
3513 load--;
3514 if (order == ZONELIST_ORDER_NODE)
3515 build_zonelists_in_node_order(pgdat, node);
3516 else
3517 node_order[j++] = node; /* remember order */
3518 }
3519
3520 if (order == ZONELIST_ORDER_ZONE) {
3521 /* calculate node order -- i.e., DMA last! */
3522 build_zonelists_in_zone_order(pgdat, j);
3523 }
3524
3525 build_thisnode_zonelists(pgdat);
3526 }
3527
3528 /* Construct the zonelist performance cache - see further mmzone.h */
3529 static void build_zonelist_cache(pg_data_t *pgdat)
3530 {
3531 struct zonelist *zonelist;
3532 struct zonelist_cache *zlc;
3533 struct zoneref *z;
3534
3535 zonelist = &pgdat->node_zonelists[0];
3536 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3537 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3538 for (z = zonelist->_zonerefs; z->zone; z++)
3539 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3540 }
3541
3542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3543 /*
3544 * Return node id of node used for "local" allocations.
3545 * I.e., first node id of first zone in arg node's generic zonelist.
3546 * Used for initializing percpu 'numa_mem', which is used primarily
3547 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3548 */
3549 int local_memory_node(int node)
3550 {
3551 struct zone *zone;
3552
3553 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3554 gfp_zone(GFP_KERNEL),
3555 NULL,
3556 &zone);
3557 return zone->node;
3558 }
3559 #endif
3560
3561 #else /* CONFIG_NUMA */
3562
3563 static void set_zonelist_order(void)
3564 {
3565 current_zonelist_order = ZONELIST_ORDER_ZONE;
3566 }
3567
3568 static void build_zonelists(pg_data_t *pgdat)
3569 {
3570 int node, local_node;
3571 enum zone_type j;
3572 struct zonelist *zonelist;
3573
3574 local_node = pgdat->node_id;
3575
3576 zonelist = &pgdat->node_zonelists[0];
3577 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3578
3579 /*
3580 * Now we build the zonelist so that it contains the zones
3581 * of all the other nodes.
3582 * We don't want to pressure a particular node, so when
3583 * building the zones for node N, we make sure that the
3584 * zones coming right after the local ones are those from
3585 * node N+1 (modulo N)
3586 */
3587 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3588 if (!node_online(node))
3589 continue;
3590 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3591 MAX_NR_ZONES - 1);
3592 }
3593 for (node = 0; node < local_node; node++) {
3594 if (!node_online(node))
3595 continue;
3596 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3597 MAX_NR_ZONES - 1);
3598 }
3599
3600 zonelist->_zonerefs[j].zone = NULL;
3601 zonelist->_zonerefs[j].zone_idx = 0;
3602 }
3603
3604 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3605 static void build_zonelist_cache(pg_data_t *pgdat)
3606 {
3607 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3608 }
3609
3610 #endif /* CONFIG_NUMA */
3611
3612 /*
3613 * Boot pageset table. One per cpu which is going to be used for all
3614 * zones and all nodes. The parameters will be set in such a way
3615 * that an item put on a list will immediately be handed over to
3616 * the buddy list. This is safe since pageset manipulation is done
3617 * with interrupts disabled.
3618 *
3619 * The boot_pagesets must be kept even after bootup is complete for
3620 * unused processors and/or zones. They do play a role for bootstrapping
3621 * hotplugged processors.
3622 *
3623 * zoneinfo_show() and maybe other functions do
3624 * not check if the processor is online before following the pageset pointer.
3625 * Other parts of the kernel may not check if the zone is available.
3626 */
3627 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3628 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3629 static void setup_zone_pageset(struct zone *zone);
3630
3631 /*
3632 * Global mutex to protect against size modification of zonelists
3633 * as well as to serialize pageset setup for the new populated zone.
3634 */
3635 DEFINE_MUTEX(zonelists_mutex);
3636
3637 /* return values int ....just for stop_machine() */
3638 static int __build_all_zonelists(void *data)
3639 {
3640 int nid;
3641 int cpu;
3642 pg_data_t *self = data;
3643
3644 #ifdef CONFIG_NUMA
3645 memset(node_load, 0, sizeof(node_load));
3646 #endif
3647
3648 if (self && !node_online(self->node_id)) {
3649 build_zonelists(self);
3650 build_zonelist_cache(self);
3651 }
3652
3653 for_each_online_node(nid) {
3654 pg_data_t *pgdat = NODE_DATA(nid);
3655
3656 build_zonelists(pgdat);
3657 build_zonelist_cache(pgdat);
3658 }
3659
3660 /*
3661 * Initialize the boot_pagesets that are going to be used
3662 * for bootstrapping processors. The real pagesets for
3663 * each zone will be allocated later when the per cpu
3664 * allocator is available.
3665 *
3666 * boot_pagesets are used also for bootstrapping offline
3667 * cpus if the system is already booted because the pagesets
3668 * are needed to initialize allocators on a specific cpu too.
3669 * F.e. the percpu allocator needs the page allocator which
3670 * needs the percpu allocator in order to allocate its pagesets
3671 * (a chicken-egg dilemma).
3672 */
3673 for_each_possible_cpu(cpu) {
3674 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3675
3676 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3677 /*
3678 * We now know the "local memory node" for each node--
3679 * i.e., the node of the first zone in the generic zonelist.
3680 * Set up numa_mem percpu variable for on-line cpus. During
3681 * boot, only the boot cpu should be on-line; we'll init the
3682 * secondary cpus' numa_mem as they come on-line. During
3683 * node/memory hotplug, we'll fixup all on-line cpus.
3684 */
3685 if (cpu_online(cpu))
3686 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3687 #endif
3688 }
3689
3690 return 0;
3691 }
3692
3693 /*
3694 * Called with zonelists_mutex held always
3695 * unless system_state == SYSTEM_BOOTING.
3696 */
3697 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3698 {
3699 set_zonelist_order();
3700
3701 if (system_state == SYSTEM_BOOTING) {
3702 __build_all_zonelists(NULL);
3703 mminit_verify_zonelist();
3704 cpuset_init_current_mems_allowed();
3705 } else {
3706 /* we have to stop all cpus to guarantee there is no user
3707 of zonelist */
3708 #ifdef CONFIG_MEMORY_HOTPLUG
3709 if (zone)
3710 setup_zone_pageset(zone);
3711 #endif
3712 stop_machine(__build_all_zonelists, pgdat, NULL);
3713 /* cpuset refresh routine should be here */
3714 }
3715 vm_total_pages = nr_free_pagecache_pages();
3716 /*
3717 * Disable grouping by mobility if the number of pages in the
3718 * system is too low to allow the mechanism to work. It would be
3719 * more accurate, but expensive to check per-zone. This check is
3720 * made on memory-hotadd so a system can start with mobility
3721 * disabled and enable it later
3722 */
3723 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3724 page_group_by_mobility_disabled = 1;
3725 else
3726 page_group_by_mobility_disabled = 0;
3727
3728 printk("Built %i zonelists in %s order, mobility grouping %s. "
3729 "Total pages: %ld\n",
3730 nr_online_nodes,
3731 zonelist_order_name[current_zonelist_order],
3732 page_group_by_mobility_disabled ? "off" : "on",
3733 vm_total_pages);
3734 #ifdef CONFIG_NUMA
3735 printk("Policy zone: %s\n", zone_names[policy_zone]);
3736 #endif
3737 }
3738
3739 /*
3740 * Helper functions to size the waitqueue hash table.
3741 * Essentially these want to choose hash table sizes sufficiently
3742 * large so that collisions trying to wait on pages are rare.
3743 * But in fact, the number of active page waitqueues on typical
3744 * systems is ridiculously low, less than 200. So this is even
3745 * conservative, even though it seems large.
3746 *
3747 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3748 * waitqueues, i.e. the size of the waitq table given the number of pages.
3749 */
3750 #define PAGES_PER_WAITQUEUE 256
3751
3752 #ifndef CONFIG_MEMORY_HOTPLUG
3753 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3754 {
3755 unsigned long size = 1;
3756
3757 pages /= PAGES_PER_WAITQUEUE;
3758
3759 while (size < pages)
3760 size <<= 1;
3761
3762 /*
3763 * Once we have dozens or even hundreds of threads sleeping
3764 * on IO we've got bigger problems than wait queue collision.
3765 * Limit the size of the wait table to a reasonable size.
3766 */
3767 size = min(size, 4096UL);
3768
3769 return max(size, 4UL);
3770 }
3771 #else
3772 /*
3773 * A zone's size might be changed by hot-add, so it is not possible to determine
3774 * a suitable size for its wait_table. So we use the maximum size now.
3775 *
3776 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3777 *
3778 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3779 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3780 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3781 *
3782 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3783 * or more by the traditional way. (See above). It equals:
3784 *
3785 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3786 * ia64(16K page size) : = ( 8G + 4M)byte.
3787 * powerpc (64K page size) : = (32G +16M)byte.
3788 */
3789 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3790 {
3791 return 4096UL;
3792 }
3793 #endif
3794
3795 /*
3796 * This is an integer logarithm so that shifts can be used later
3797 * to extract the more random high bits from the multiplicative
3798 * hash function before the remainder is taken.
3799 */
3800 static inline unsigned long wait_table_bits(unsigned long size)
3801 {
3802 return ffz(~size);
3803 }
3804
3805 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3806
3807 /*
3808 * Check if a pageblock contains reserved pages
3809 */
3810 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3811 {
3812 unsigned long pfn;
3813
3814 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3815 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3816 return 1;
3817 }
3818 return 0;
3819 }
3820
3821 /*
3822 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3823 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3824 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3825 * higher will lead to a bigger reserve which will get freed as contiguous
3826 * blocks as reclaim kicks in
3827 */
3828 static void setup_zone_migrate_reserve(struct zone *zone)
3829 {
3830 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3831 struct page *page;
3832 unsigned long block_migratetype;
3833 int reserve;
3834
3835 /*
3836 * Get the start pfn, end pfn and the number of blocks to reserve
3837 * We have to be careful to be aligned to pageblock_nr_pages to
3838 * make sure that we always check pfn_valid for the first page in
3839 * the block.
3840 */
3841 start_pfn = zone->zone_start_pfn;
3842 end_pfn = zone_end_pfn(zone);
3843 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3844 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3845 pageblock_order;
3846
3847 /*
3848 * Reserve blocks are generally in place to help high-order atomic
3849 * allocations that are short-lived. A min_free_kbytes value that
3850 * would result in more than 2 reserve blocks for atomic allocations
3851 * is assumed to be in place to help anti-fragmentation for the
3852 * future allocation of hugepages at runtime.
3853 */
3854 reserve = min(2, reserve);
3855
3856 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3857 if (!pfn_valid(pfn))
3858 continue;
3859 page = pfn_to_page(pfn);
3860
3861 /* Watch out for overlapping nodes */
3862 if (page_to_nid(page) != zone_to_nid(zone))
3863 continue;
3864
3865 block_migratetype = get_pageblock_migratetype(page);
3866
3867 /* Only test what is necessary when the reserves are not met */
3868 if (reserve > 0) {
3869 /*
3870 * Blocks with reserved pages will never free, skip
3871 * them.
3872 */
3873 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3874 if (pageblock_is_reserved(pfn, block_end_pfn))
3875 continue;
3876
3877 /* If this block is reserved, account for it */
3878 if (block_migratetype == MIGRATE_RESERVE) {
3879 reserve--;
3880 continue;
3881 }
3882
3883 /* Suitable for reserving if this block is movable */
3884 if (block_migratetype == MIGRATE_MOVABLE) {
3885 set_pageblock_migratetype(page,
3886 MIGRATE_RESERVE);
3887 move_freepages_block(zone, page,
3888 MIGRATE_RESERVE);
3889 reserve--;
3890 continue;
3891 }
3892 }
3893
3894 /*
3895 * If the reserve is met and this is a previous reserved block,
3896 * take it back
3897 */
3898 if (block_migratetype == MIGRATE_RESERVE) {
3899 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3900 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3901 }
3902 }
3903 }
3904
3905 /*
3906 * Initially all pages are reserved - free ones are freed
3907 * up by free_all_bootmem() once the early boot process is
3908 * done. Non-atomic initialization, single-pass.
3909 */
3910 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3911 unsigned long start_pfn, enum memmap_context context)
3912 {
3913 struct page *page;
3914 unsigned long end_pfn = start_pfn + size;
3915 unsigned long pfn;
3916 struct zone *z;
3917
3918 if (highest_memmap_pfn < end_pfn - 1)
3919 highest_memmap_pfn = end_pfn - 1;
3920
3921 z = &NODE_DATA(nid)->node_zones[zone];
3922 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3923 /*
3924 * There can be holes in boot-time mem_map[]s
3925 * handed to this function. They do not
3926 * exist on hotplugged memory.
3927 */
3928 if (context == MEMMAP_EARLY) {
3929 if (!early_pfn_valid(pfn))
3930 continue;
3931 if (!early_pfn_in_nid(pfn, nid))
3932 continue;
3933 }
3934 page = pfn_to_page(pfn);
3935 set_page_links(page, zone, nid, pfn);
3936 mminit_verify_page_links(page, zone, nid, pfn);
3937 init_page_count(page);
3938 page_mapcount_reset(page);
3939 page_nid_reset_last(page);
3940 SetPageReserved(page);
3941 /*
3942 * Mark the block movable so that blocks are reserved for
3943 * movable at startup. This will force kernel allocations
3944 * to reserve their blocks rather than leaking throughout
3945 * the address space during boot when many long-lived
3946 * kernel allocations are made. Later some blocks near
3947 * the start are marked MIGRATE_RESERVE by
3948 * setup_zone_migrate_reserve()
3949 *
3950 * bitmap is created for zone's valid pfn range. but memmap
3951 * can be created for invalid pages (for alignment)
3952 * check here not to call set_pageblock_migratetype() against
3953 * pfn out of zone.
3954 */
3955 if ((z->zone_start_pfn <= pfn)
3956 && (pfn < zone_end_pfn(z))
3957 && !(pfn & (pageblock_nr_pages - 1)))
3958 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3959
3960 INIT_LIST_HEAD(&page->lru);
3961 #ifdef WANT_PAGE_VIRTUAL
3962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3963 if (!is_highmem_idx(zone))
3964 set_page_address(page, __va(pfn << PAGE_SHIFT));
3965 #endif
3966 }
3967 }
3968
3969 static void __meminit zone_init_free_lists(struct zone *zone)
3970 {
3971 int order, t;
3972 for_each_migratetype_order(order, t) {
3973 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3974 zone->free_area[order].nr_free = 0;
3975 }
3976 }
3977
3978 #ifndef __HAVE_ARCH_MEMMAP_INIT
3979 #define memmap_init(size, nid, zone, start_pfn) \
3980 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3981 #endif
3982
3983 static int __meminit zone_batchsize(struct zone *zone)
3984 {
3985 #ifdef CONFIG_MMU
3986 int batch;
3987
3988 /*
3989 * The per-cpu-pages pools are set to around 1000th of the
3990 * size of the zone. But no more than 1/2 of a meg.
3991 *
3992 * OK, so we don't know how big the cache is. So guess.
3993 */
3994 batch = zone->managed_pages / 1024;
3995 if (batch * PAGE_SIZE > 512 * 1024)
3996 batch = (512 * 1024) / PAGE_SIZE;
3997 batch /= 4; /* We effectively *= 4 below */
3998 if (batch < 1)
3999 batch = 1;
4000
4001 /*
4002 * Clamp the batch to a 2^n - 1 value. Having a power
4003 * of 2 value was found to be more likely to have
4004 * suboptimal cache aliasing properties in some cases.
4005 *
4006 * For example if 2 tasks are alternately allocating
4007 * batches of pages, one task can end up with a lot
4008 * of pages of one half of the possible page colors
4009 * and the other with pages of the other colors.
4010 */
4011 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4012
4013 return batch;
4014
4015 #else
4016 /* The deferral and batching of frees should be suppressed under NOMMU
4017 * conditions.
4018 *
4019 * The problem is that NOMMU needs to be able to allocate large chunks
4020 * of contiguous memory as there's no hardware page translation to
4021 * assemble apparent contiguous memory from discontiguous pages.
4022 *
4023 * Queueing large contiguous runs of pages for batching, however,
4024 * causes the pages to actually be freed in smaller chunks. As there
4025 * can be a significant delay between the individual batches being
4026 * recycled, this leads to the once large chunks of space being
4027 * fragmented and becoming unavailable for high-order allocations.
4028 */
4029 return 0;
4030 #endif
4031 }
4032
4033 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4034 {
4035 struct per_cpu_pages *pcp;
4036 int migratetype;
4037
4038 memset(p, 0, sizeof(*p));
4039
4040 pcp = &p->pcp;
4041 pcp->count = 0;
4042 pcp->high = 6 * batch;
4043 pcp->batch = max(1UL, 1 * batch);
4044 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4045 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4046 }
4047
4048 /*
4049 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4050 * to the value high for the pageset p.
4051 */
4052
4053 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4054 unsigned long high)
4055 {
4056 struct per_cpu_pages *pcp;
4057
4058 pcp = &p->pcp;
4059 pcp->high = high;
4060 pcp->batch = max(1UL, high/4);
4061 if ((high/4) > (PAGE_SHIFT * 8))
4062 pcp->batch = PAGE_SHIFT * 8;
4063 }
4064
4065 static void __meminit setup_zone_pageset(struct zone *zone)
4066 {
4067 int cpu;
4068
4069 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4070
4071 for_each_possible_cpu(cpu) {
4072 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4073
4074 setup_pageset(pcp, zone_batchsize(zone));
4075
4076 if (percpu_pagelist_fraction)
4077 setup_pagelist_highmark(pcp,
4078 (zone->managed_pages /
4079 percpu_pagelist_fraction));
4080 }
4081 }
4082
4083 /*
4084 * Allocate per cpu pagesets and initialize them.
4085 * Before this call only boot pagesets were available.
4086 */
4087 void __init setup_per_cpu_pageset(void)
4088 {
4089 struct zone *zone;
4090
4091 for_each_populated_zone(zone)
4092 setup_zone_pageset(zone);
4093 }
4094
4095 static noinline __init_refok
4096 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4097 {
4098 int i;
4099 struct pglist_data *pgdat = zone->zone_pgdat;
4100 size_t alloc_size;
4101
4102 /*
4103 * The per-page waitqueue mechanism uses hashed waitqueues
4104 * per zone.
4105 */
4106 zone->wait_table_hash_nr_entries =
4107 wait_table_hash_nr_entries(zone_size_pages);
4108 zone->wait_table_bits =
4109 wait_table_bits(zone->wait_table_hash_nr_entries);
4110 alloc_size = zone->wait_table_hash_nr_entries
4111 * sizeof(wait_queue_head_t);
4112
4113 if (!slab_is_available()) {
4114 zone->wait_table = (wait_queue_head_t *)
4115 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4116 } else {
4117 /*
4118 * This case means that a zone whose size was 0 gets new memory
4119 * via memory hot-add.
4120 * But it may be the case that a new node was hot-added. In
4121 * this case vmalloc() will not be able to use this new node's
4122 * memory - this wait_table must be initialized to use this new
4123 * node itself as well.
4124 * To use this new node's memory, further consideration will be
4125 * necessary.
4126 */
4127 zone->wait_table = vmalloc(alloc_size);
4128 }
4129 if (!zone->wait_table)
4130 return -ENOMEM;
4131
4132 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4133 init_waitqueue_head(zone->wait_table + i);
4134
4135 return 0;
4136 }
4137
4138 static __meminit void zone_pcp_init(struct zone *zone)
4139 {
4140 /*
4141 * per cpu subsystem is not up at this point. The following code
4142 * relies on the ability of the linker to provide the
4143 * offset of a (static) per cpu variable into the per cpu area.
4144 */
4145 zone->pageset = &boot_pageset;
4146
4147 if (zone->present_pages)
4148 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4149 zone->name, zone->present_pages,
4150 zone_batchsize(zone));
4151 }
4152
4153 int __meminit init_currently_empty_zone(struct zone *zone,
4154 unsigned long zone_start_pfn,
4155 unsigned long size,
4156 enum memmap_context context)
4157 {
4158 struct pglist_data *pgdat = zone->zone_pgdat;
4159 int ret;
4160 ret = zone_wait_table_init(zone, size);
4161 if (ret)
4162 return ret;
4163 pgdat->nr_zones = zone_idx(zone) + 1;
4164
4165 zone->zone_start_pfn = zone_start_pfn;
4166
4167 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4168 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4169 pgdat->node_id,
4170 (unsigned long)zone_idx(zone),
4171 zone_start_pfn, (zone_start_pfn + size));
4172
4173 zone_init_free_lists(zone);
4174
4175 return 0;
4176 }
4177
4178 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4179 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4180 /*
4181 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4182 * Architectures may implement their own version but if add_active_range()
4183 * was used and there are no special requirements, this is a convenient
4184 * alternative
4185 */
4186 int __meminit __early_pfn_to_nid(unsigned long pfn)
4187 {
4188 unsigned long start_pfn, end_pfn;
4189 int i, nid;
4190 /*
4191 * NOTE: The following SMP-unsafe globals are only used early in boot
4192 * when the kernel is running single-threaded.
4193 */
4194 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4195 static int __meminitdata last_nid;
4196
4197 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4198 return last_nid;
4199
4200 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4201 if (start_pfn <= pfn && pfn < end_pfn) {
4202 last_start_pfn = start_pfn;
4203 last_end_pfn = end_pfn;
4204 last_nid = nid;
4205 return nid;
4206 }
4207 /* This is a memory hole */
4208 return -1;
4209 }
4210 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4211
4212 int __meminit early_pfn_to_nid(unsigned long pfn)
4213 {
4214 int nid;
4215
4216 nid = __early_pfn_to_nid(pfn);
4217 if (nid >= 0)
4218 return nid;
4219 /* just returns 0 */
4220 return 0;
4221 }
4222
4223 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4224 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4225 {
4226 int nid;
4227
4228 nid = __early_pfn_to_nid(pfn);
4229 if (nid >= 0 && nid != node)
4230 return false;
4231 return true;
4232 }
4233 #endif
4234
4235 /**
4236 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4237 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4238 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4239 *
4240 * If an architecture guarantees that all ranges registered with
4241 * add_active_ranges() contain no holes and may be freed, this
4242 * this function may be used instead of calling free_bootmem() manually.
4243 */
4244 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4245 {
4246 unsigned long start_pfn, end_pfn;
4247 int i, this_nid;
4248
4249 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4250 start_pfn = min(start_pfn, max_low_pfn);
4251 end_pfn = min(end_pfn, max_low_pfn);
4252
4253 if (start_pfn < end_pfn)
4254 free_bootmem_node(NODE_DATA(this_nid),
4255 PFN_PHYS(start_pfn),
4256 (end_pfn - start_pfn) << PAGE_SHIFT);
4257 }
4258 }
4259
4260 /**
4261 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4262 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4263 *
4264 * If an architecture guarantees that all ranges registered with
4265 * add_active_ranges() contain no holes and may be freed, this
4266 * function may be used instead of calling memory_present() manually.
4267 */
4268 void __init sparse_memory_present_with_active_regions(int nid)
4269 {
4270 unsigned long start_pfn, end_pfn;
4271 int i, this_nid;
4272
4273 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4274 memory_present(this_nid, start_pfn, end_pfn);
4275 }
4276
4277 /**
4278 * get_pfn_range_for_nid - Return the start and end page frames for a node
4279 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4280 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4281 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4282 *
4283 * It returns the start and end page frame of a node based on information
4284 * provided by an arch calling add_active_range(). If called for a node
4285 * with no available memory, a warning is printed and the start and end
4286 * PFNs will be 0.
4287 */
4288 void __meminit get_pfn_range_for_nid(unsigned int nid,
4289 unsigned long *start_pfn, unsigned long *end_pfn)
4290 {
4291 unsigned long this_start_pfn, this_end_pfn;
4292 int i;
4293
4294 *start_pfn = -1UL;
4295 *end_pfn = 0;
4296
4297 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4298 *start_pfn = min(*start_pfn, this_start_pfn);
4299 *end_pfn = max(*end_pfn, this_end_pfn);
4300 }
4301
4302 if (*start_pfn == -1UL)
4303 *start_pfn = 0;
4304 }
4305
4306 /*
4307 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4308 * assumption is made that zones within a node are ordered in monotonic
4309 * increasing memory addresses so that the "highest" populated zone is used
4310 */
4311 static void __init find_usable_zone_for_movable(void)
4312 {
4313 int zone_index;
4314 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4315 if (zone_index == ZONE_MOVABLE)
4316 continue;
4317
4318 if (arch_zone_highest_possible_pfn[zone_index] >
4319 arch_zone_lowest_possible_pfn[zone_index])
4320 break;
4321 }
4322
4323 VM_BUG_ON(zone_index == -1);
4324 movable_zone = zone_index;
4325 }
4326
4327 /*
4328 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4329 * because it is sized independent of architecture. Unlike the other zones,
4330 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4331 * in each node depending on the size of each node and how evenly kernelcore
4332 * is distributed. This helper function adjusts the zone ranges
4333 * provided by the architecture for a given node by using the end of the
4334 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4335 * zones within a node are in order of monotonic increases memory addresses
4336 */
4337 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4338 unsigned long zone_type,
4339 unsigned long node_start_pfn,
4340 unsigned long node_end_pfn,
4341 unsigned long *zone_start_pfn,
4342 unsigned long *zone_end_pfn)
4343 {
4344 /* Only adjust if ZONE_MOVABLE is on this node */
4345 if (zone_movable_pfn[nid]) {
4346 /* Size ZONE_MOVABLE */
4347 if (zone_type == ZONE_MOVABLE) {
4348 *zone_start_pfn = zone_movable_pfn[nid];
4349 *zone_end_pfn = min(node_end_pfn,
4350 arch_zone_highest_possible_pfn[movable_zone]);
4351
4352 /* Adjust for ZONE_MOVABLE starting within this range */
4353 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4354 *zone_end_pfn > zone_movable_pfn[nid]) {
4355 *zone_end_pfn = zone_movable_pfn[nid];
4356
4357 /* Check if this whole range is within ZONE_MOVABLE */
4358 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4359 *zone_start_pfn = *zone_end_pfn;
4360 }
4361 }
4362
4363 /*
4364 * Return the number of pages a zone spans in a node, including holes
4365 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4366 */
4367 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4368 unsigned long zone_type,
4369 unsigned long *ignored)
4370 {
4371 unsigned long node_start_pfn, node_end_pfn;
4372 unsigned long zone_start_pfn, zone_end_pfn;
4373
4374 /* Get the start and end of the node and zone */
4375 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4376 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4377 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4378 adjust_zone_range_for_zone_movable(nid, zone_type,
4379 node_start_pfn, node_end_pfn,
4380 &zone_start_pfn, &zone_end_pfn);
4381
4382 /* Check that this node has pages within the zone's required range */
4383 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4384 return 0;
4385
4386 /* Move the zone boundaries inside the node if necessary */
4387 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4388 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4389
4390 /* Return the spanned pages */
4391 return zone_end_pfn - zone_start_pfn;
4392 }
4393
4394 /*
4395 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4396 * then all holes in the requested range will be accounted for.
4397 */
4398 unsigned long __meminit __absent_pages_in_range(int nid,
4399 unsigned long range_start_pfn,
4400 unsigned long range_end_pfn)
4401 {
4402 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4403 unsigned long start_pfn, end_pfn;
4404 int i;
4405
4406 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4407 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4408 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4409 nr_absent -= end_pfn - start_pfn;
4410 }
4411 return nr_absent;
4412 }
4413
4414 /**
4415 * absent_pages_in_range - Return number of page frames in holes within a range
4416 * @start_pfn: The start PFN to start searching for holes
4417 * @end_pfn: The end PFN to stop searching for holes
4418 *
4419 * It returns the number of pages frames in memory holes within a range.
4420 */
4421 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4422 unsigned long end_pfn)
4423 {
4424 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4425 }
4426
4427 /* Return the number of page frames in holes in a zone on a node */
4428 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4429 unsigned long zone_type,
4430 unsigned long *ignored)
4431 {
4432 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4433 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4434 unsigned long node_start_pfn, node_end_pfn;
4435 unsigned long zone_start_pfn, zone_end_pfn;
4436
4437 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4438 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4439 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4440
4441 adjust_zone_range_for_zone_movable(nid, zone_type,
4442 node_start_pfn, node_end_pfn,
4443 &zone_start_pfn, &zone_end_pfn);
4444 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4445 }
4446
4447 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4448 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4449 unsigned long zone_type,
4450 unsigned long *zones_size)
4451 {
4452 return zones_size[zone_type];
4453 }
4454
4455 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4456 unsigned long zone_type,
4457 unsigned long *zholes_size)
4458 {
4459 if (!zholes_size)
4460 return 0;
4461
4462 return zholes_size[zone_type];
4463 }
4464
4465 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4466
4467 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4468 unsigned long *zones_size, unsigned long *zholes_size)
4469 {
4470 unsigned long realtotalpages, totalpages = 0;
4471 enum zone_type i;
4472
4473 for (i = 0; i < MAX_NR_ZONES; i++)
4474 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4475 zones_size);
4476 pgdat->node_spanned_pages = totalpages;
4477
4478 realtotalpages = totalpages;
4479 for (i = 0; i < MAX_NR_ZONES; i++)
4480 realtotalpages -=
4481 zone_absent_pages_in_node(pgdat->node_id, i,
4482 zholes_size);
4483 pgdat->node_present_pages = realtotalpages;
4484 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4485 realtotalpages);
4486 }
4487
4488 #ifndef CONFIG_SPARSEMEM
4489 /*
4490 * Calculate the size of the zone->blockflags rounded to an unsigned long
4491 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4492 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4493 * round what is now in bits to nearest long in bits, then return it in
4494 * bytes.
4495 */
4496 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4497 {
4498 unsigned long usemapsize;
4499
4500 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4501 usemapsize = roundup(zonesize, pageblock_nr_pages);
4502 usemapsize = usemapsize >> pageblock_order;
4503 usemapsize *= NR_PAGEBLOCK_BITS;
4504 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4505
4506 return usemapsize / 8;
4507 }
4508
4509 static void __init setup_usemap(struct pglist_data *pgdat,
4510 struct zone *zone,
4511 unsigned long zone_start_pfn,
4512 unsigned long zonesize)
4513 {
4514 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4515 zone->pageblock_flags = NULL;
4516 if (usemapsize)
4517 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4518 usemapsize);
4519 }
4520 #else
4521 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4522 unsigned long zone_start_pfn, unsigned long zonesize) {}
4523 #endif /* CONFIG_SPARSEMEM */
4524
4525 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4526
4527 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4528 void __init set_pageblock_order(void)
4529 {
4530 unsigned int order;
4531
4532 /* Check that pageblock_nr_pages has not already been setup */
4533 if (pageblock_order)
4534 return;
4535
4536 if (HPAGE_SHIFT > PAGE_SHIFT)
4537 order = HUGETLB_PAGE_ORDER;
4538 else
4539 order = MAX_ORDER - 1;
4540
4541 /*
4542 * Assume the largest contiguous order of interest is a huge page.
4543 * This value may be variable depending on boot parameters on IA64 and
4544 * powerpc.
4545 */
4546 pageblock_order = order;
4547 }
4548 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4549
4550 /*
4551 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4552 * is unused as pageblock_order is set at compile-time. See
4553 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4554 * the kernel config
4555 */
4556 void __init set_pageblock_order(void)
4557 {
4558 }
4559
4560 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4561
4562 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4563 unsigned long present_pages)
4564 {
4565 unsigned long pages = spanned_pages;
4566
4567 /*
4568 * Provide a more accurate estimation if there are holes within
4569 * the zone and SPARSEMEM is in use. If there are holes within the
4570 * zone, each populated memory region may cost us one or two extra
4571 * memmap pages due to alignment because memmap pages for each
4572 * populated regions may not naturally algined on page boundary.
4573 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4574 */
4575 if (spanned_pages > present_pages + (present_pages >> 4) &&
4576 IS_ENABLED(CONFIG_SPARSEMEM))
4577 pages = present_pages;
4578
4579 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4580 }
4581
4582 /*
4583 * Set up the zone data structures:
4584 * - mark all pages reserved
4585 * - mark all memory queues empty
4586 * - clear the memory bitmaps
4587 *
4588 * NOTE: pgdat should get zeroed by caller.
4589 */
4590 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4591 unsigned long *zones_size, unsigned long *zholes_size)
4592 {
4593 enum zone_type j;
4594 int nid = pgdat->node_id;
4595 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4596 int ret;
4597
4598 pgdat_resize_init(pgdat);
4599 #ifdef CONFIG_NUMA_BALANCING
4600 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4601 pgdat->numabalancing_migrate_nr_pages = 0;
4602 pgdat->numabalancing_migrate_next_window = jiffies;
4603 #endif
4604 init_waitqueue_head(&pgdat->kswapd_wait);
4605 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4606 pgdat_page_cgroup_init(pgdat);
4607
4608 for (j = 0; j < MAX_NR_ZONES; j++) {
4609 struct zone *zone = pgdat->node_zones + j;
4610 unsigned long size, realsize, freesize, memmap_pages;
4611
4612 size = zone_spanned_pages_in_node(nid, j, zones_size);
4613 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4614 zholes_size);
4615
4616 /*
4617 * Adjust freesize so that it accounts for how much memory
4618 * is used by this zone for memmap. This affects the watermark
4619 * and per-cpu initialisations
4620 */
4621 memmap_pages = calc_memmap_size(size, realsize);
4622 if (freesize >= memmap_pages) {
4623 freesize -= memmap_pages;
4624 if (memmap_pages)
4625 printk(KERN_DEBUG
4626 " %s zone: %lu pages used for memmap\n",
4627 zone_names[j], memmap_pages);
4628 } else
4629 printk(KERN_WARNING
4630 " %s zone: %lu pages exceeds freesize %lu\n",
4631 zone_names[j], memmap_pages, freesize);
4632
4633 /* Account for reserved pages */
4634 if (j == 0 && freesize > dma_reserve) {
4635 freesize -= dma_reserve;
4636 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4637 zone_names[0], dma_reserve);
4638 }
4639
4640 if (!is_highmem_idx(j))
4641 nr_kernel_pages += freesize;
4642 /* Charge for highmem memmap if there are enough kernel pages */
4643 else if (nr_kernel_pages > memmap_pages * 2)
4644 nr_kernel_pages -= memmap_pages;
4645 nr_all_pages += freesize;
4646
4647 zone->spanned_pages = size;
4648 zone->present_pages = realsize;
4649 /*
4650 * Set an approximate value for lowmem here, it will be adjusted
4651 * when the bootmem allocator frees pages into the buddy system.
4652 * And all highmem pages will be managed by the buddy system.
4653 */
4654 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4655 #ifdef CONFIG_NUMA
4656 zone->node = nid;
4657 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4658 / 100;
4659 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4660 #endif
4661 zone->name = zone_names[j];
4662 spin_lock_init(&zone->lock);
4663 spin_lock_init(&zone->lru_lock);
4664 zone_seqlock_init(zone);
4665 zone->zone_pgdat = pgdat;
4666
4667 zone_pcp_init(zone);
4668 lruvec_init(&zone->lruvec);
4669 if (!size)
4670 continue;
4671
4672 set_pageblock_order();
4673 setup_usemap(pgdat, zone, zone_start_pfn, size);
4674 ret = init_currently_empty_zone(zone, zone_start_pfn,
4675 size, MEMMAP_EARLY);
4676 BUG_ON(ret);
4677 memmap_init(size, nid, j, zone_start_pfn);
4678 zone_start_pfn += size;
4679 }
4680 }
4681
4682 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4683 {
4684 /* Skip empty nodes */
4685 if (!pgdat->node_spanned_pages)
4686 return;
4687
4688 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4689 /* ia64 gets its own node_mem_map, before this, without bootmem */
4690 if (!pgdat->node_mem_map) {
4691 unsigned long size, start, end;
4692 struct page *map;
4693
4694 /*
4695 * The zone's endpoints aren't required to be MAX_ORDER
4696 * aligned but the node_mem_map endpoints must be in order
4697 * for the buddy allocator to function correctly.
4698 */
4699 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4700 end = pgdat_end_pfn(pgdat);
4701 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4702 size = (end - start) * sizeof(struct page);
4703 map = alloc_remap(pgdat->node_id, size);
4704 if (!map)
4705 map = alloc_bootmem_node_nopanic(pgdat, size);
4706 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4707 }
4708 #ifndef CONFIG_NEED_MULTIPLE_NODES
4709 /*
4710 * With no DISCONTIG, the global mem_map is just set as node 0's
4711 */
4712 if (pgdat == NODE_DATA(0)) {
4713 mem_map = NODE_DATA(0)->node_mem_map;
4714 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4715 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4716 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4717 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4718 }
4719 #endif
4720 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4721 }
4722
4723 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4724 unsigned long node_start_pfn, unsigned long *zholes_size)
4725 {
4726 pg_data_t *pgdat = NODE_DATA(nid);
4727
4728 /* pg_data_t should be reset to zero when it's allocated */
4729 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4730
4731 pgdat->node_id = nid;
4732 pgdat->node_start_pfn = node_start_pfn;
4733 init_zone_allows_reclaim(nid);
4734 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4735
4736 alloc_node_mem_map(pgdat);
4737 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4738 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4739 nid, (unsigned long)pgdat,
4740 (unsigned long)pgdat->node_mem_map);
4741 #endif
4742
4743 free_area_init_core(pgdat, zones_size, zholes_size);
4744 }
4745
4746 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4747
4748 #if MAX_NUMNODES > 1
4749 /*
4750 * Figure out the number of possible node ids.
4751 */
4752 void __init setup_nr_node_ids(void)
4753 {
4754 unsigned int node;
4755 unsigned int highest = 0;
4756
4757 for_each_node_mask(node, node_possible_map)
4758 highest = node;
4759 nr_node_ids = highest + 1;
4760 }
4761 #endif
4762
4763 /**
4764 * node_map_pfn_alignment - determine the maximum internode alignment
4765 *
4766 * This function should be called after node map is populated and sorted.
4767 * It calculates the maximum power of two alignment which can distinguish
4768 * all the nodes.
4769 *
4770 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4771 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4772 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4773 * shifted, 1GiB is enough and this function will indicate so.
4774 *
4775 * This is used to test whether pfn -> nid mapping of the chosen memory
4776 * model has fine enough granularity to avoid incorrect mapping for the
4777 * populated node map.
4778 *
4779 * Returns the determined alignment in pfn's. 0 if there is no alignment
4780 * requirement (single node).
4781 */
4782 unsigned long __init node_map_pfn_alignment(void)
4783 {
4784 unsigned long accl_mask = 0, last_end = 0;
4785 unsigned long start, end, mask;
4786 int last_nid = -1;
4787 int i, nid;
4788
4789 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4790 if (!start || last_nid < 0 || last_nid == nid) {
4791 last_nid = nid;
4792 last_end = end;
4793 continue;
4794 }
4795
4796 /*
4797 * Start with a mask granular enough to pin-point to the
4798 * start pfn and tick off bits one-by-one until it becomes
4799 * too coarse to separate the current node from the last.
4800 */
4801 mask = ~((1 << __ffs(start)) - 1);
4802 while (mask && last_end <= (start & (mask << 1)))
4803 mask <<= 1;
4804
4805 /* accumulate all internode masks */
4806 accl_mask |= mask;
4807 }
4808
4809 /* convert mask to number of pages */
4810 return ~accl_mask + 1;
4811 }
4812
4813 /* Find the lowest pfn for a node */
4814 static unsigned long __init find_min_pfn_for_node(int nid)
4815 {
4816 unsigned long min_pfn = ULONG_MAX;
4817 unsigned long start_pfn;
4818 int i;
4819
4820 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4821 min_pfn = min(min_pfn, start_pfn);
4822
4823 if (min_pfn == ULONG_MAX) {
4824 printk(KERN_WARNING
4825 "Could not find start_pfn for node %d\n", nid);
4826 return 0;
4827 }
4828
4829 return min_pfn;
4830 }
4831
4832 /**
4833 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4834 *
4835 * It returns the minimum PFN based on information provided via
4836 * add_active_range().
4837 */
4838 unsigned long __init find_min_pfn_with_active_regions(void)
4839 {
4840 return find_min_pfn_for_node(MAX_NUMNODES);
4841 }
4842
4843 /*
4844 * early_calculate_totalpages()
4845 * Sum pages in active regions for movable zone.
4846 * Populate N_MEMORY for calculating usable_nodes.
4847 */
4848 static unsigned long __init early_calculate_totalpages(void)
4849 {
4850 unsigned long totalpages = 0;
4851 unsigned long start_pfn, end_pfn;
4852 int i, nid;
4853
4854 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4855 unsigned long pages = end_pfn - start_pfn;
4856
4857 totalpages += pages;
4858 if (pages)
4859 node_set_state(nid, N_MEMORY);
4860 }
4861 return totalpages;
4862 }
4863
4864 /*
4865 * Find the PFN the Movable zone begins in each node. Kernel memory
4866 * is spread evenly between nodes as long as the nodes have enough
4867 * memory. When they don't, some nodes will have more kernelcore than
4868 * others
4869 */
4870 static void __init find_zone_movable_pfns_for_nodes(void)
4871 {
4872 int i, nid;
4873 unsigned long usable_startpfn;
4874 unsigned long kernelcore_node, kernelcore_remaining;
4875 /* save the state before borrow the nodemask */
4876 nodemask_t saved_node_state = node_states[N_MEMORY];
4877 unsigned long totalpages = early_calculate_totalpages();
4878 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4879
4880 /*
4881 * If movablecore was specified, calculate what size of
4882 * kernelcore that corresponds so that memory usable for
4883 * any allocation type is evenly spread. If both kernelcore
4884 * and movablecore are specified, then the value of kernelcore
4885 * will be used for required_kernelcore if it's greater than
4886 * what movablecore would have allowed.
4887 */
4888 if (required_movablecore) {
4889 unsigned long corepages;
4890
4891 /*
4892 * Round-up so that ZONE_MOVABLE is at least as large as what
4893 * was requested by the user
4894 */
4895 required_movablecore =
4896 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4897 corepages = totalpages - required_movablecore;
4898
4899 required_kernelcore = max(required_kernelcore, corepages);
4900 }
4901
4902 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4903 if (!required_kernelcore)
4904 goto out;
4905
4906 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4907 find_usable_zone_for_movable();
4908 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4909
4910 restart:
4911 /* Spread kernelcore memory as evenly as possible throughout nodes */
4912 kernelcore_node = required_kernelcore / usable_nodes;
4913 for_each_node_state(nid, N_MEMORY) {
4914 unsigned long start_pfn, end_pfn;
4915
4916 /*
4917 * Recalculate kernelcore_node if the division per node
4918 * now exceeds what is necessary to satisfy the requested
4919 * amount of memory for the kernel
4920 */
4921 if (required_kernelcore < kernelcore_node)
4922 kernelcore_node = required_kernelcore / usable_nodes;
4923
4924 /*
4925 * As the map is walked, we track how much memory is usable
4926 * by the kernel using kernelcore_remaining. When it is
4927 * 0, the rest of the node is usable by ZONE_MOVABLE
4928 */
4929 kernelcore_remaining = kernelcore_node;
4930
4931 /* Go through each range of PFNs within this node */
4932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4933 unsigned long size_pages;
4934
4935 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4936 if (start_pfn >= end_pfn)
4937 continue;
4938
4939 /* Account for what is only usable for kernelcore */
4940 if (start_pfn < usable_startpfn) {
4941 unsigned long kernel_pages;
4942 kernel_pages = min(end_pfn, usable_startpfn)
4943 - start_pfn;
4944
4945 kernelcore_remaining -= min(kernel_pages,
4946 kernelcore_remaining);
4947 required_kernelcore -= min(kernel_pages,
4948 required_kernelcore);
4949
4950 /* Continue if range is now fully accounted */
4951 if (end_pfn <= usable_startpfn) {
4952
4953 /*
4954 * Push zone_movable_pfn to the end so
4955 * that if we have to rebalance
4956 * kernelcore across nodes, we will
4957 * not double account here
4958 */
4959 zone_movable_pfn[nid] = end_pfn;
4960 continue;
4961 }
4962 start_pfn = usable_startpfn;
4963 }
4964
4965 /*
4966 * The usable PFN range for ZONE_MOVABLE is from
4967 * start_pfn->end_pfn. Calculate size_pages as the
4968 * number of pages used as kernelcore
4969 */
4970 size_pages = end_pfn - start_pfn;
4971 if (size_pages > kernelcore_remaining)
4972 size_pages = kernelcore_remaining;
4973 zone_movable_pfn[nid] = start_pfn + size_pages;
4974
4975 /*
4976 * Some kernelcore has been met, update counts and
4977 * break if the kernelcore for this node has been
4978 * satisified
4979 */
4980 required_kernelcore -= min(required_kernelcore,
4981 size_pages);
4982 kernelcore_remaining -= size_pages;
4983 if (!kernelcore_remaining)
4984 break;
4985 }
4986 }
4987
4988 /*
4989 * If there is still required_kernelcore, we do another pass with one
4990 * less node in the count. This will push zone_movable_pfn[nid] further
4991 * along on the nodes that still have memory until kernelcore is
4992 * satisified
4993 */
4994 usable_nodes--;
4995 if (usable_nodes && required_kernelcore > usable_nodes)
4996 goto restart;
4997
4998 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4999 for (nid = 0; nid < MAX_NUMNODES; nid++)
5000 zone_movable_pfn[nid] =
5001 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5002
5003 out:
5004 /* restore the node_state */
5005 node_states[N_MEMORY] = saved_node_state;
5006 }
5007
5008 /* Any regular or high memory on that node ? */
5009 static void check_for_memory(pg_data_t *pgdat, int nid)
5010 {
5011 enum zone_type zone_type;
5012
5013 if (N_MEMORY == N_NORMAL_MEMORY)
5014 return;
5015
5016 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5017 struct zone *zone = &pgdat->node_zones[zone_type];
5018 if (zone->present_pages) {
5019 node_set_state(nid, N_HIGH_MEMORY);
5020 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5021 zone_type <= ZONE_NORMAL)
5022 node_set_state(nid, N_NORMAL_MEMORY);
5023 break;
5024 }
5025 }
5026 }
5027
5028 /**
5029 * free_area_init_nodes - Initialise all pg_data_t and zone data
5030 * @max_zone_pfn: an array of max PFNs for each zone
5031 *
5032 * This will call free_area_init_node() for each active node in the system.
5033 * Using the page ranges provided by add_active_range(), the size of each
5034 * zone in each node and their holes is calculated. If the maximum PFN
5035 * between two adjacent zones match, it is assumed that the zone is empty.
5036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5038 * starts where the previous one ended. For example, ZONE_DMA32 starts
5039 * at arch_max_dma_pfn.
5040 */
5041 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5042 {
5043 unsigned long start_pfn, end_pfn;
5044 int i, nid;
5045
5046 /* Record where the zone boundaries are */
5047 memset(arch_zone_lowest_possible_pfn, 0,
5048 sizeof(arch_zone_lowest_possible_pfn));
5049 memset(arch_zone_highest_possible_pfn, 0,
5050 sizeof(arch_zone_highest_possible_pfn));
5051 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5052 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5053 for (i = 1; i < MAX_NR_ZONES; i++) {
5054 if (i == ZONE_MOVABLE)
5055 continue;
5056 arch_zone_lowest_possible_pfn[i] =
5057 arch_zone_highest_possible_pfn[i-1];
5058 arch_zone_highest_possible_pfn[i] =
5059 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5060 }
5061 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5062 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5063
5064 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5065 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5066 find_zone_movable_pfns_for_nodes();
5067
5068 /* Print out the zone ranges */
5069 printk("Zone ranges:\n");
5070 for (i = 0; i < MAX_NR_ZONES; i++) {
5071 if (i == ZONE_MOVABLE)
5072 continue;
5073 printk(KERN_CONT " %-8s ", zone_names[i]);
5074 if (arch_zone_lowest_possible_pfn[i] ==
5075 arch_zone_highest_possible_pfn[i])
5076 printk(KERN_CONT "empty\n");
5077 else
5078 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5079 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5080 (arch_zone_highest_possible_pfn[i]
5081 << PAGE_SHIFT) - 1);
5082 }
5083
5084 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5085 printk("Movable zone start for each node\n");
5086 for (i = 0; i < MAX_NUMNODES; i++) {
5087 if (zone_movable_pfn[i])
5088 printk(" Node %d: %#010lx\n", i,
5089 zone_movable_pfn[i] << PAGE_SHIFT);
5090 }
5091
5092 /* Print out the early node map */
5093 printk("Early memory node ranges\n");
5094 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5095 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5096 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5097
5098 /* Initialise every node */
5099 mminit_verify_pageflags_layout();
5100 setup_nr_node_ids();
5101 for_each_online_node(nid) {
5102 pg_data_t *pgdat = NODE_DATA(nid);
5103 free_area_init_node(nid, NULL,
5104 find_min_pfn_for_node(nid), NULL);
5105
5106 /* Any memory on that node */
5107 if (pgdat->node_present_pages)
5108 node_set_state(nid, N_MEMORY);
5109 check_for_memory(pgdat, nid);
5110 }
5111 }
5112
5113 static int __init cmdline_parse_core(char *p, unsigned long *core)
5114 {
5115 unsigned long long coremem;
5116 if (!p)
5117 return -EINVAL;
5118
5119 coremem = memparse(p, &p);
5120 *core = coremem >> PAGE_SHIFT;
5121
5122 /* Paranoid check that UL is enough for the coremem value */
5123 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5124
5125 return 0;
5126 }
5127
5128 /*
5129 * kernelcore=size sets the amount of memory for use for allocations that
5130 * cannot be reclaimed or migrated.
5131 */
5132 static int __init cmdline_parse_kernelcore(char *p)
5133 {
5134 return cmdline_parse_core(p, &required_kernelcore);
5135 }
5136
5137 /*
5138 * movablecore=size sets the amount of memory for use for allocations that
5139 * can be reclaimed or migrated.
5140 */
5141 static int __init cmdline_parse_movablecore(char *p)
5142 {
5143 return cmdline_parse_core(p, &required_movablecore);
5144 }
5145
5146 early_param("kernelcore", cmdline_parse_kernelcore);
5147 early_param("movablecore", cmdline_parse_movablecore);
5148
5149 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5150
5151 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5152 int poison, char *s)
5153 {
5154 unsigned long pages, pos;
5155
5156 pos = start = PAGE_ALIGN(start);
5157 end &= PAGE_MASK;
5158 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5159 if (poison)
5160 memset((void *)pos, poison, PAGE_SIZE);
5161 free_reserved_page(virt_to_page((void *)pos));
5162 }
5163
5164 if (pages && s)
5165 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5166 s, pages << (PAGE_SHIFT - 10), start, end);
5167
5168 return pages;
5169 }
5170
5171 #ifdef CONFIG_HIGHMEM
5172 void free_highmem_page(struct page *page)
5173 {
5174 __free_reserved_page(page);
5175 totalram_pages++;
5176 totalhigh_pages++;
5177 }
5178 #endif
5179
5180 /**
5181 * set_dma_reserve - set the specified number of pages reserved in the first zone
5182 * @new_dma_reserve: The number of pages to mark reserved
5183 *
5184 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5185 * In the DMA zone, a significant percentage may be consumed by kernel image
5186 * and other unfreeable allocations which can skew the watermarks badly. This
5187 * function may optionally be used to account for unfreeable pages in the
5188 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5189 * smaller per-cpu batchsize.
5190 */
5191 void __init set_dma_reserve(unsigned long new_dma_reserve)
5192 {
5193 dma_reserve = new_dma_reserve;
5194 }
5195
5196 void __init free_area_init(unsigned long *zones_size)
5197 {
5198 free_area_init_node(0, zones_size,
5199 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5200 }
5201
5202 static int page_alloc_cpu_notify(struct notifier_block *self,
5203 unsigned long action, void *hcpu)
5204 {
5205 int cpu = (unsigned long)hcpu;
5206
5207 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5208 lru_add_drain_cpu(cpu);
5209 drain_pages(cpu);
5210
5211 /*
5212 * Spill the event counters of the dead processor
5213 * into the current processors event counters.
5214 * This artificially elevates the count of the current
5215 * processor.
5216 */
5217 vm_events_fold_cpu(cpu);
5218
5219 /*
5220 * Zero the differential counters of the dead processor
5221 * so that the vm statistics are consistent.
5222 *
5223 * This is only okay since the processor is dead and cannot
5224 * race with what we are doing.
5225 */
5226 refresh_cpu_vm_stats(cpu);
5227 }
5228 return NOTIFY_OK;
5229 }
5230
5231 void __init page_alloc_init(void)
5232 {
5233 hotcpu_notifier(page_alloc_cpu_notify, 0);
5234 }
5235
5236 /*
5237 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5238 * or min_free_kbytes changes.
5239 */
5240 static void calculate_totalreserve_pages(void)
5241 {
5242 struct pglist_data *pgdat;
5243 unsigned long reserve_pages = 0;
5244 enum zone_type i, j;
5245
5246 for_each_online_pgdat(pgdat) {
5247 for (i = 0; i < MAX_NR_ZONES; i++) {
5248 struct zone *zone = pgdat->node_zones + i;
5249 unsigned long max = 0;
5250
5251 /* Find valid and maximum lowmem_reserve in the zone */
5252 for (j = i; j < MAX_NR_ZONES; j++) {
5253 if (zone->lowmem_reserve[j] > max)
5254 max = zone->lowmem_reserve[j];
5255 }
5256
5257 /* we treat the high watermark as reserved pages. */
5258 max += high_wmark_pages(zone);
5259
5260 if (max > zone->managed_pages)
5261 max = zone->managed_pages;
5262 reserve_pages += max;
5263 /*
5264 * Lowmem reserves are not available to
5265 * GFP_HIGHUSER page cache allocations and
5266 * kswapd tries to balance zones to their high
5267 * watermark. As a result, neither should be
5268 * regarded as dirtyable memory, to prevent a
5269 * situation where reclaim has to clean pages
5270 * in order to balance the zones.
5271 */
5272 zone->dirty_balance_reserve = max;
5273 }
5274 }
5275 dirty_balance_reserve = reserve_pages;
5276 totalreserve_pages = reserve_pages;
5277 }
5278
5279 /*
5280 * setup_per_zone_lowmem_reserve - called whenever
5281 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5282 * has a correct pages reserved value, so an adequate number of
5283 * pages are left in the zone after a successful __alloc_pages().
5284 */
5285 static void setup_per_zone_lowmem_reserve(void)
5286 {
5287 struct pglist_data *pgdat;
5288 enum zone_type j, idx;
5289
5290 for_each_online_pgdat(pgdat) {
5291 for (j = 0; j < MAX_NR_ZONES; j++) {
5292 struct zone *zone = pgdat->node_zones + j;
5293 unsigned long managed_pages = zone->managed_pages;
5294
5295 zone->lowmem_reserve[j] = 0;
5296
5297 idx = j;
5298 while (idx) {
5299 struct zone *lower_zone;
5300
5301 idx--;
5302
5303 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5304 sysctl_lowmem_reserve_ratio[idx] = 1;
5305
5306 lower_zone = pgdat->node_zones + idx;
5307 lower_zone->lowmem_reserve[j] = managed_pages /
5308 sysctl_lowmem_reserve_ratio[idx];
5309 managed_pages += lower_zone->managed_pages;
5310 }
5311 }
5312 }
5313
5314 /* update totalreserve_pages */
5315 calculate_totalreserve_pages();
5316 }
5317
5318 static void __setup_per_zone_wmarks(void)
5319 {
5320 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5321 unsigned long lowmem_pages = 0;
5322 struct zone *zone;
5323 unsigned long flags;
5324
5325 /* Calculate total number of !ZONE_HIGHMEM pages */
5326 for_each_zone(zone) {
5327 if (!is_highmem(zone))
5328 lowmem_pages += zone->managed_pages;
5329 }
5330
5331 for_each_zone(zone) {
5332 u64 tmp;
5333
5334 spin_lock_irqsave(&zone->lock, flags);
5335 tmp = (u64)pages_min * zone->managed_pages;
5336 do_div(tmp, lowmem_pages);
5337 if (is_highmem(zone)) {
5338 /*
5339 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5340 * need highmem pages, so cap pages_min to a small
5341 * value here.
5342 *
5343 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5344 * deltas controls asynch page reclaim, and so should
5345 * not be capped for highmem.
5346 */
5347 unsigned long min_pages;
5348
5349 min_pages = zone->managed_pages / 1024;
5350 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5351 zone->watermark[WMARK_MIN] = min_pages;
5352 } else {
5353 /*
5354 * If it's a lowmem zone, reserve a number of pages
5355 * proportionate to the zone's size.
5356 */
5357 zone->watermark[WMARK_MIN] = tmp;
5358 }
5359
5360 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5361 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5362
5363 setup_zone_migrate_reserve(zone);
5364 spin_unlock_irqrestore(&zone->lock, flags);
5365 }
5366
5367 /* update totalreserve_pages */
5368 calculate_totalreserve_pages();
5369 }
5370
5371 /**
5372 * setup_per_zone_wmarks - called when min_free_kbytes changes
5373 * or when memory is hot-{added|removed}
5374 *
5375 * Ensures that the watermark[min,low,high] values for each zone are set
5376 * correctly with respect to min_free_kbytes.
5377 */
5378 void setup_per_zone_wmarks(void)
5379 {
5380 mutex_lock(&zonelists_mutex);
5381 __setup_per_zone_wmarks();
5382 mutex_unlock(&zonelists_mutex);
5383 }
5384
5385 /*
5386 * The inactive anon list should be small enough that the VM never has to
5387 * do too much work, but large enough that each inactive page has a chance
5388 * to be referenced again before it is swapped out.
5389 *
5390 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5391 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5392 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5393 * the anonymous pages are kept on the inactive list.
5394 *
5395 * total target max
5396 * memory ratio inactive anon
5397 * -------------------------------------
5398 * 10MB 1 5MB
5399 * 100MB 1 50MB
5400 * 1GB 3 250MB
5401 * 10GB 10 0.9GB
5402 * 100GB 31 3GB
5403 * 1TB 101 10GB
5404 * 10TB 320 32GB
5405 */
5406 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5407 {
5408 unsigned int gb, ratio;
5409
5410 /* Zone size in gigabytes */
5411 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5412 if (gb)
5413 ratio = int_sqrt(10 * gb);
5414 else
5415 ratio = 1;
5416
5417 zone->inactive_ratio = ratio;
5418 }
5419
5420 static void __meminit setup_per_zone_inactive_ratio(void)
5421 {
5422 struct zone *zone;
5423
5424 for_each_zone(zone)
5425 calculate_zone_inactive_ratio(zone);
5426 }
5427
5428 /*
5429 * Initialise min_free_kbytes.
5430 *
5431 * For small machines we want it small (128k min). For large machines
5432 * we want it large (64MB max). But it is not linear, because network
5433 * bandwidth does not increase linearly with machine size. We use
5434 *
5435 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5436 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5437 *
5438 * which yields
5439 *
5440 * 16MB: 512k
5441 * 32MB: 724k
5442 * 64MB: 1024k
5443 * 128MB: 1448k
5444 * 256MB: 2048k
5445 * 512MB: 2896k
5446 * 1024MB: 4096k
5447 * 2048MB: 5792k
5448 * 4096MB: 8192k
5449 * 8192MB: 11584k
5450 * 16384MB: 16384k
5451 */
5452 int __meminit init_per_zone_wmark_min(void)
5453 {
5454 unsigned long lowmem_kbytes;
5455
5456 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5457
5458 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5459 if (min_free_kbytes < 128)
5460 min_free_kbytes = 128;
5461 if (min_free_kbytes > 65536)
5462 min_free_kbytes = 65536;
5463 setup_per_zone_wmarks();
5464 refresh_zone_stat_thresholds();
5465 setup_per_zone_lowmem_reserve();
5466 setup_per_zone_inactive_ratio();
5467 return 0;
5468 }
5469 module_init(init_per_zone_wmark_min)
5470
5471 /*
5472 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5473 * that we can call two helper functions whenever min_free_kbytes
5474 * changes.
5475 */
5476 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5477 void __user *buffer, size_t *length, loff_t *ppos)
5478 {
5479 proc_dointvec(table, write, buffer, length, ppos);
5480 if (write)
5481 setup_per_zone_wmarks();
5482 return 0;
5483 }
5484
5485 #ifdef CONFIG_NUMA
5486 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5487 void __user *buffer, size_t *length, loff_t *ppos)
5488 {
5489 struct zone *zone;
5490 int rc;
5491
5492 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5493 if (rc)
5494 return rc;
5495
5496 for_each_zone(zone)
5497 zone->min_unmapped_pages = (zone->managed_pages *
5498 sysctl_min_unmapped_ratio) / 100;
5499 return 0;
5500 }
5501
5502 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5503 void __user *buffer, size_t *length, loff_t *ppos)
5504 {
5505 struct zone *zone;
5506 int rc;
5507
5508 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5509 if (rc)
5510 return rc;
5511
5512 for_each_zone(zone)
5513 zone->min_slab_pages = (zone->managed_pages *
5514 sysctl_min_slab_ratio) / 100;
5515 return 0;
5516 }
5517 #endif
5518
5519 /*
5520 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5521 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5522 * whenever sysctl_lowmem_reserve_ratio changes.
5523 *
5524 * The reserve ratio obviously has absolutely no relation with the
5525 * minimum watermarks. The lowmem reserve ratio can only make sense
5526 * if in function of the boot time zone sizes.
5527 */
5528 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5529 void __user *buffer, size_t *length, loff_t *ppos)
5530 {
5531 proc_dointvec_minmax(table, write, buffer, length, ppos);
5532 setup_per_zone_lowmem_reserve();
5533 return 0;
5534 }
5535
5536 /*
5537 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5538 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5539 * can have before it gets flushed back to buddy allocator.
5540 */
5541
5542 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5543 void __user *buffer, size_t *length, loff_t *ppos)
5544 {
5545 struct zone *zone;
5546 unsigned int cpu;
5547 int ret;
5548
5549 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5550 if (!write || (ret < 0))
5551 return ret;
5552 for_each_populated_zone(zone) {
5553 for_each_possible_cpu(cpu) {
5554 unsigned long high;
5555 high = zone->managed_pages / percpu_pagelist_fraction;
5556 setup_pagelist_highmark(
5557 per_cpu_ptr(zone->pageset, cpu), high);
5558 }
5559 }
5560 return 0;
5561 }
5562
5563 int hashdist = HASHDIST_DEFAULT;
5564
5565 #ifdef CONFIG_NUMA
5566 static int __init set_hashdist(char *str)
5567 {
5568 if (!str)
5569 return 0;
5570 hashdist = simple_strtoul(str, &str, 0);
5571 return 1;
5572 }
5573 __setup("hashdist=", set_hashdist);
5574 #endif
5575
5576 /*
5577 * allocate a large system hash table from bootmem
5578 * - it is assumed that the hash table must contain an exact power-of-2
5579 * quantity of entries
5580 * - limit is the number of hash buckets, not the total allocation size
5581 */
5582 void *__init alloc_large_system_hash(const char *tablename,
5583 unsigned long bucketsize,
5584 unsigned long numentries,
5585 int scale,
5586 int flags,
5587 unsigned int *_hash_shift,
5588 unsigned int *_hash_mask,
5589 unsigned long low_limit,
5590 unsigned long high_limit)
5591 {
5592 unsigned long long max = high_limit;
5593 unsigned long log2qty, size;
5594 void *table = NULL;
5595
5596 /* allow the kernel cmdline to have a say */
5597 if (!numentries) {
5598 /* round applicable memory size up to nearest megabyte */
5599 numentries = nr_kernel_pages;
5600 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5601 numentries >>= 20 - PAGE_SHIFT;
5602 numentries <<= 20 - PAGE_SHIFT;
5603
5604 /* limit to 1 bucket per 2^scale bytes of low memory */
5605 if (scale > PAGE_SHIFT)
5606 numentries >>= (scale - PAGE_SHIFT);
5607 else
5608 numentries <<= (PAGE_SHIFT - scale);
5609
5610 /* Make sure we've got at least a 0-order allocation.. */
5611 if (unlikely(flags & HASH_SMALL)) {
5612 /* Makes no sense without HASH_EARLY */
5613 WARN_ON(!(flags & HASH_EARLY));
5614 if (!(numentries >> *_hash_shift)) {
5615 numentries = 1UL << *_hash_shift;
5616 BUG_ON(!numentries);
5617 }
5618 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5619 numentries = PAGE_SIZE / bucketsize;
5620 }
5621 numentries = roundup_pow_of_two(numentries);
5622
5623 /* limit allocation size to 1/16 total memory by default */
5624 if (max == 0) {
5625 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5626 do_div(max, bucketsize);
5627 }
5628 max = min(max, 0x80000000ULL);
5629
5630 if (numentries < low_limit)
5631 numentries = low_limit;
5632 if (numentries > max)
5633 numentries = max;
5634
5635 log2qty = ilog2(numentries);
5636
5637 do {
5638 size = bucketsize << log2qty;
5639 if (flags & HASH_EARLY)
5640 table = alloc_bootmem_nopanic(size);
5641 else if (hashdist)
5642 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5643 else {
5644 /*
5645 * If bucketsize is not a power-of-two, we may free
5646 * some pages at the end of hash table which
5647 * alloc_pages_exact() automatically does
5648 */
5649 if (get_order(size) < MAX_ORDER) {
5650 table = alloc_pages_exact(size, GFP_ATOMIC);
5651 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5652 }
5653 }
5654 } while (!table && size > PAGE_SIZE && --log2qty);
5655
5656 if (!table)
5657 panic("Failed to allocate %s hash table\n", tablename);
5658
5659 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5660 tablename,
5661 (1UL << log2qty),
5662 ilog2(size) - PAGE_SHIFT,
5663 size);
5664
5665 if (_hash_shift)
5666 *_hash_shift = log2qty;
5667 if (_hash_mask)
5668 *_hash_mask = (1 << log2qty) - 1;
5669
5670 return table;
5671 }
5672
5673 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5674 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5675 unsigned long pfn)
5676 {
5677 #ifdef CONFIG_SPARSEMEM
5678 return __pfn_to_section(pfn)->pageblock_flags;
5679 #else
5680 return zone->pageblock_flags;
5681 #endif /* CONFIG_SPARSEMEM */
5682 }
5683
5684 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5685 {
5686 #ifdef CONFIG_SPARSEMEM
5687 pfn &= (PAGES_PER_SECTION-1);
5688 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5689 #else
5690 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5691 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5692 #endif /* CONFIG_SPARSEMEM */
5693 }
5694
5695 /**
5696 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5697 * @page: The page within the block of interest
5698 * @start_bitidx: The first bit of interest to retrieve
5699 * @end_bitidx: The last bit of interest
5700 * returns pageblock_bits flags
5701 */
5702 unsigned long get_pageblock_flags_group(struct page *page,
5703 int start_bitidx, int end_bitidx)
5704 {
5705 struct zone *zone;
5706 unsigned long *bitmap;
5707 unsigned long pfn, bitidx;
5708 unsigned long flags = 0;
5709 unsigned long value = 1;
5710
5711 zone = page_zone(page);
5712 pfn = page_to_pfn(page);
5713 bitmap = get_pageblock_bitmap(zone, pfn);
5714 bitidx = pfn_to_bitidx(zone, pfn);
5715
5716 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5717 if (test_bit(bitidx + start_bitidx, bitmap))
5718 flags |= value;
5719
5720 return flags;
5721 }
5722
5723 /**
5724 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5725 * @page: The page within the block of interest
5726 * @start_bitidx: The first bit of interest
5727 * @end_bitidx: The last bit of interest
5728 * @flags: The flags to set
5729 */
5730 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5731 int start_bitidx, int end_bitidx)
5732 {
5733 struct zone *zone;
5734 unsigned long *bitmap;
5735 unsigned long pfn, bitidx;
5736 unsigned long value = 1;
5737
5738 zone = page_zone(page);
5739 pfn = page_to_pfn(page);
5740 bitmap = get_pageblock_bitmap(zone, pfn);
5741 bitidx = pfn_to_bitidx(zone, pfn);
5742 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5743
5744 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5745 if (flags & value)
5746 __set_bit(bitidx + start_bitidx, bitmap);
5747 else
5748 __clear_bit(bitidx + start_bitidx, bitmap);
5749 }
5750
5751 /*
5752 * This function checks whether pageblock includes unmovable pages or not.
5753 * If @count is not zero, it is okay to include less @count unmovable pages
5754 *
5755 * PageLRU check wihtout isolation or lru_lock could race so that
5756 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5757 * expect this function should be exact.
5758 */
5759 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5760 bool skip_hwpoisoned_pages)
5761 {
5762 unsigned long pfn, iter, found;
5763 int mt;
5764
5765 /*
5766 * For avoiding noise data, lru_add_drain_all() should be called
5767 * If ZONE_MOVABLE, the zone never contains unmovable pages
5768 */
5769 if (zone_idx(zone) == ZONE_MOVABLE)
5770 return false;
5771 mt = get_pageblock_migratetype(page);
5772 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5773 return false;
5774
5775 pfn = page_to_pfn(page);
5776 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5777 unsigned long check = pfn + iter;
5778
5779 if (!pfn_valid_within(check))
5780 continue;
5781
5782 page = pfn_to_page(check);
5783 /*
5784 * We can't use page_count without pin a page
5785 * because another CPU can free compound page.
5786 * This check already skips compound tails of THP
5787 * because their page->_count is zero at all time.
5788 */
5789 if (!atomic_read(&page->_count)) {
5790 if (PageBuddy(page))
5791 iter += (1 << page_order(page)) - 1;
5792 continue;
5793 }
5794
5795 /*
5796 * The HWPoisoned page may be not in buddy system, and
5797 * page_count() is not 0.
5798 */
5799 if (skip_hwpoisoned_pages && PageHWPoison(page))
5800 continue;
5801
5802 if (!PageLRU(page))
5803 found++;
5804 /*
5805 * If there are RECLAIMABLE pages, we need to check it.
5806 * But now, memory offline itself doesn't call shrink_slab()
5807 * and it still to be fixed.
5808 */
5809 /*
5810 * If the page is not RAM, page_count()should be 0.
5811 * we don't need more check. This is an _used_ not-movable page.
5812 *
5813 * The problematic thing here is PG_reserved pages. PG_reserved
5814 * is set to both of a memory hole page and a _used_ kernel
5815 * page at boot.
5816 */
5817 if (found > count)
5818 return true;
5819 }
5820 return false;
5821 }
5822
5823 bool is_pageblock_removable_nolock(struct page *page)
5824 {
5825 struct zone *zone;
5826 unsigned long pfn;
5827
5828 /*
5829 * We have to be careful here because we are iterating over memory
5830 * sections which are not zone aware so we might end up outside of
5831 * the zone but still within the section.
5832 * We have to take care about the node as well. If the node is offline
5833 * its NODE_DATA will be NULL - see page_zone.
5834 */
5835 if (!node_online(page_to_nid(page)))
5836 return false;
5837
5838 zone = page_zone(page);
5839 pfn = page_to_pfn(page);
5840 if (!zone_spans_pfn(zone, pfn))
5841 return false;
5842
5843 return !has_unmovable_pages(zone, page, 0, true);
5844 }
5845
5846 #ifdef CONFIG_CMA
5847
5848 static unsigned long pfn_max_align_down(unsigned long pfn)
5849 {
5850 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5851 pageblock_nr_pages) - 1);
5852 }
5853
5854 static unsigned long pfn_max_align_up(unsigned long pfn)
5855 {
5856 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5857 pageblock_nr_pages));
5858 }
5859
5860 /* [start, end) must belong to a single zone. */
5861 static int __alloc_contig_migrate_range(struct compact_control *cc,
5862 unsigned long start, unsigned long end)
5863 {
5864 /* This function is based on compact_zone() from compaction.c. */
5865 unsigned long nr_reclaimed;
5866 unsigned long pfn = start;
5867 unsigned int tries = 0;
5868 int ret = 0;
5869
5870 migrate_prep();
5871
5872 while (pfn < end || !list_empty(&cc->migratepages)) {
5873 if (fatal_signal_pending(current)) {
5874 ret = -EINTR;
5875 break;
5876 }
5877
5878 if (list_empty(&cc->migratepages)) {
5879 cc->nr_migratepages = 0;
5880 pfn = isolate_migratepages_range(cc->zone, cc,
5881 pfn, end, true);
5882 if (!pfn) {
5883 ret = -EINTR;
5884 break;
5885 }
5886 tries = 0;
5887 } else if (++tries == 5) {
5888 ret = ret < 0 ? ret : -EBUSY;
5889 break;
5890 }
5891
5892 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5893 &cc->migratepages);
5894 cc->nr_migratepages -= nr_reclaimed;
5895
5896 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5897 0, MIGRATE_SYNC, MR_CMA);
5898 }
5899 if (ret < 0) {
5900 putback_movable_pages(&cc->migratepages);
5901 return ret;
5902 }
5903 return 0;
5904 }
5905
5906 /**
5907 * alloc_contig_range() -- tries to allocate given range of pages
5908 * @start: start PFN to allocate
5909 * @end: one-past-the-last PFN to allocate
5910 * @migratetype: migratetype of the underlaying pageblocks (either
5911 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5912 * in range must have the same migratetype and it must
5913 * be either of the two.
5914 *
5915 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5916 * aligned, however it's the caller's responsibility to guarantee that
5917 * we are the only thread that changes migrate type of pageblocks the
5918 * pages fall in.
5919 *
5920 * The PFN range must belong to a single zone.
5921 *
5922 * Returns zero on success or negative error code. On success all
5923 * pages which PFN is in [start, end) are allocated for the caller and
5924 * need to be freed with free_contig_range().
5925 */
5926 int alloc_contig_range(unsigned long start, unsigned long end,
5927 unsigned migratetype)
5928 {
5929 unsigned long outer_start, outer_end;
5930 int ret = 0, order;
5931
5932 struct compact_control cc = {
5933 .nr_migratepages = 0,
5934 .order = -1,
5935 .zone = page_zone(pfn_to_page(start)),
5936 .sync = true,
5937 .ignore_skip_hint = true,
5938 };
5939 INIT_LIST_HEAD(&cc.migratepages);
5940
5941 /*
5942 * What we do here is we mark all pageblocks in range as
5943 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5944 * have different sizes, and due to the way page allocator
5945 * work, we align the range to biggest of the two pages so
5946 * that page allocator won't try to merge buddies from
5947 * different pageblocks and change MIGRATE_ISOLATE to some
5948 * other migration type.
5949 *
5950 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5951 * migrate the pages from an unaligned range (ie. pages that
5952 * we are interested in). This will put all the pages in
5953 * range back to page allocator as MIGRATE_ISOLATE.
5954 *
5955 * When this is done, we take the pages in range from page
5956 * allocator removing them from the buddy system. This way
5957 * page allocator will never consider using them.
5958 *
5959 * This lets us mark the pageblocks back as
5960 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5961 * aligned range but not in the unaligned, original range are
5962 * put back to page allocator so that buddy can use them.
5963 */
5964
5965 ret = start_isolate_page_range(pfn_max_align_down(start),
5966 pfn_max_align_up(end), migratetype,
5967 false);
5968 if (ret)
5969 return ret;
5970
5971 ret = __alloc_contig_migrate_range(&cc, start, end);
5972 if (ret)
5973 goto done;
5974
5975 /*
5976 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5977 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5978 * more, all pages in [start, end) are free in page allocator.
5979 * What we are going to do is to allocate all pages from
5980 * [start, end) (that is remove them from page allocator).
5981 *
5982 * The only problem is that pages at the beginning and at the
5983 * end of interesting range may be not aligned with pages that
5984 * page allocator holds, ie. they can be part of higher order
5985 * pages. Because of this, we reserve the bigger range and
5986 * once this is done free the pages we are not interested in.
5987 *
5988 * We don't have to hold zone->lock here because the pages are
5989 * isolated thus they won't get removed from buddy.
5990 */
5991
5992 lru_add_drain_all();
5993 drain_all_pages();
5994
5995 order = 0;
5996 outer_start = start;
5997 while (!PageBuddy(pfn_to_page(outer_start))) {
5998 if (++order >= MAX_ORDER) {
5999 ret = -EBUSY;
6000 goto done;
6001 }
6002 outer_start &= ~0UL << order;
6003 }
6004
6005 /* Make sure the range is really isolated. */
6006 if (test_pages_isolated(outer_start, end, false)) {
6007 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6008 outer_start, end);
6009 ret = -EBUSY;
6010 goto done;
6011 }
6012
6013
6014 /* Grab isolated pages from freelists. */
6015 outer_end = isolate_freepages_range(&cc, outer_start, end);
6016 if (!outer_end) {
6017 ret = -EBUSY;
6018 goto done;
6019 }
6020
6021 /* Free head and tail (if any) */
6022 if (start != outer_start)
6023 free_contig_range(outer_start, start - outer_start);
6024 if (end != outer_end)
6025 free_contig_range(end, outer_end - end);
6026
6027 done:
6028 undo_isolate_page_range(pfn_max_align_down(start),
6029 pfn_max_align_up(end), migratetype);
6030 return ret;
6031 }
6032
6033 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6034 {
6035 unsigned int count = 0;
6036
6037 for (; nr_pages--; pfn++) {
6038 struct page *page = pfn_to_page(pfn);
6039
6040 count += page_count(page) != 1;
6041 __free_page(page);
6042 }
6043 WARN(count != 0, "%d pages are still in use!\n", count);
6044 }
6045 #endif
6046
6047 #ifdef CONFIG_MEMORY_HOTPLUG
6048 static int __meminit __zone_pcp_update(void *data)
6049 {
6050 struct zone *zone = data;
6051 int cpu;
6052 unsigned long batch = zone_batchsize(zone), flags;
6053
6054 for_each_possible_cpu(cpu) {
6055 struct per_cpu_pageset *pset;
6056 struct per_cpu_pages *pcp;
6057
6058 pset = per_cpu_ptr(zone->pageset, cpu);
6059 pcp = &pset->pcp;
6060
6061 local_irq_save(flags);
6062 if (pcp->count > 0)
6063 free_pcppages_bulk(zone, pcp->count, pcp);
6064 drain_zonestat(zone, pset);
6065 setup_pageset(pset, batch);
6066 local_irq_restore(flags);
6067 }
6068 return 0;
6069 }
6070
6071 void __meminit zone_pcp_update(struct zone *zone)
6072 {
6073 stop_machine(__zone_pcp_update, zone, NULL);
6074 }
6075 #endif
6076
6077 void zone_pcp_reset(struct zone *zone)
6078 {
6079 unsigned long flags;
6080 int cpu;
6081 struct per_cpu_pageset *pset;
6082
6083 /* avoid races with drain_pages() */
6084 local_irq_save(flags);
6085 if (zone->pageset != &boot_pageset) {
6086 for_each_online_cpu(cpu) {
6087 pset = per_cpu_ptr(zone->pageset, cpu);
6088 drain_zonestat(zone, pset);
6089 }
6090 free_percpu(zone->pageset);
6091 zone->pageset = &boot_pageset;
6092 }
6093 local_irq_restore(flags);
6094 }
6095
6096 #ifdef CONFIG_MEMORY_HOTREMOVE
6097 /*
6098 * All pages in the range must be isolated before calling this.
6099 */
6100 void
6101 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6102 {
6103 struct page *page;
6104 struct zone *zone;
6105 int order, i;
6106 unsigned long pfn;
6107 unsigned long flags;
6108 /* find the first valid pfn */
6109 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6110 if (pfn_valid(pfn))
6111 break;
6112 if (pfn == end_pfn)
6113 return;
6114 zone = page_zone(pfn_to_page(pfn));
6115 spin_lock_irqsave(&zone->lock, flags);
6116 pfn = start_pfn;
6117 while (pfn < end_pfn) {
6118 if (!pfn_valid(pfn)) {
6119 pfn++;
6120 continue;
6121 }
6122 page = pfn_to_page(pfn);
6123 /*
6124 * The HWPoisoned page may be not in buddy system, and
6125 * page_count() is not 0.
6126 */
6127 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6128 pfn++;
6129 SetPageReserved(page);
6130 continue;
6131 }
6132
6133 BUG_ON(page_count(page));
6134 BUG_ON(!PageBuddy(page));
6135 order = page_order(page);
6136 #ifdef CONFIG_DEBUG_VM
6137 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6138 pfn, 1 << order, end_pfn);
6139 #endif
6140 list_del(&page->lru);
6141 rmv_page_order(page);
6142 zone->free_area[order].nr_free--;
6143 for (i = 0; i < (1 << order); i++)
6144 SetPageReserved((page+i));
6145 pfn += (1 << order);
6146 }
6147 spin_unlock_irqrestore(&zone->lock, flags);
6148 }
6149 #endif
6150
6151 #ifdef CONFIG_MEMORY_FAILURE
6152 bool is_free_buddy_page(struct page *page)
6153 {
6154 struct zone *zone = page_zone(page);
6155 unsigned long pfn = page_to_pfn(page);
6156 unsigned long flags;
6157 int order;
6158
6159 spin_lock_irqsave(&zone->lock, flags);
6160 for (order = 0; order < MAX_ORDER; order++) {
6161 struct page *page_head = page - (pfn & ((1 << order) - 1));
6162
6163 if (PageBuddy(page_head) && page_order(page_head) >= order)
6164 break;
6165 }
6166 spin_unlock_irqrestore(&zone->lock, flags);
6167
6168 return order < MAX_ORDER;
6169 }
6170 #endif
6171
6172 static const struct trace_print_flags pageflag_names[] = {
6173 {1UL << PG_locked, "locked" },
6174 {1UL << PG_error, "error" },
6175 {1UL << PG_referenced, "referenced" },
6176 {1UL << PG_uptodate, "uptodate" },
6177 {1UL << PG_dirty, "dirty" },
6178 {1UL << PG_lru, "lru" },
6179 {1UL << PG_active, "active" },
6180 {1UL << PG_slab, "slab" },
6181 {1UL << PG_owner_priv_1, "owner_priv_1" },
6182 {1UL << PG_arch_1, "arch_1" },
6183 {1UL << PG_reserved, "reserved" },
6184 {1UL << PG_private, "private" },
6185 {1UL << PG_private_2, "private_2" },
6186 {1UL << PG_writeback, "writeback" },
6187 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6188 {1UL << PG_head, "head" },
6189 {1UL << PG_tail, "tail" },
6190 #else
6191 {1UL << PG_compound, "compound" },
6192 #endif
6193 {1UL << PG_swapcache, "swapcache" },
6194 {1UL << PG_mappedtodisk, "mappedtodisk" },
6195 {1UL << PG_reclaim, "reclaim" },
6196 {1UL << PG_swapbacked, "swapbacked" },
6197 {1UL << PG_unevictable, "unevictable" },
6198 #ifdef CONFIG_MMU
6199 {1UL << PG_mlocked, "mlocked" },
6200 #endif
6201 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6202 {1UL << PG_uncached, "uncached" },
6203 #endif
6204 #ifdef CONFIG_MEMORY_FAILURE
6205 {1UL << PG_hwpoison, "hwpoison" },
6206 #endif
6207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6208 {1UL << PG_compound_lock, "compound_lock" },
6209 #endif
6210 };
6211
6212 static void dump_page_flags(unsigned long flags)
6213 {
6214 const char *delim = "";
6215 unsigned long mask;
6216 int i;
6217
6218 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6219
6220 printk(KERN_ALERT "page flags: %#lx(", flags);
6221
6222 /* remove zone id */
6223 flags &= (1UL << NR_PAGEFLAGS) - 1;
6224
6225 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6226
6227 mask = pageflag_names[i].mask;
6228 if ((flags & mask) != mask)
6229 continue;
6230
6231 flags &= ~mask;
6232 printk("%s%s", delim, pageflag_names[i].name);
6233 delim = "|";
6234 }
6235
6236 /* check for left over flags */
6237 if (flags)
6238 printk("%s%#lx", delim, flags);
6239
6240 printk(")\n");
6241 }
6242
6243 void dump_page(struct page *page)
6244 {
6245 printk(KERN_ALERT
6246 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6247 page, atomic_read(&page->_count), page_mapcount(page),
6248 page->mapping, page->index);
6249 dump_page_flags(page->flags);
6250 mem_cgroup_print_bad_page(page);
6251 }