mb86a20s: fix demod settings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47 #define MAX_PAUSE max(HZ/5, 1)
48
49 /*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55 /*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT 10
61
62 /*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73 int dirty_background_ratio = 10;
74
75 /*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79 unsigned long dirty_background_bytes;
80
81 /*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85 int vm_highmem_is_dirtyable;
86
87 /*
88 * The generator of dirty data starts writeback at this percentage
89 */
90 int vm_dirty_ratio = 20;
91
92 /*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96 unsigned long vm_dirty_bytes;
97
98 /*
99 * The interval between `kupdate'-style writebacks
100 */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106 * The longest time for which data is allowed to remain dirty
107 */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113 int block_dump;
114
115 /*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
135
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
144
145 unsigned long pos_ratio;
146 };
147
148 /*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190 {
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213 }
214
215 #else /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244 {
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
269 /**
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
272 *
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
275 */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 unsigned long nr_pages;
279
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
283 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285
286 return nr_pages;
287 }
288
289 static unsigned long highmem_dirtyable_memory(unsigned long total)
290 {
291 #ifdef CONFIG_HIGHMEM
292 int node;
293 unsigned long x = 0;
294
295 for_each_node_state(node, N_HIGH_MEMORY) {
296 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297
298 x += zone_dirtyable_memory(z);
299 }
300 /*
301 * Unreclaimable memory (kernel memory or anonymous memory
302 * without swap) can bring down the dirtyable pages below
303 * the zone's dirty balance reserve and the above calculation
304 * will underflow. However we still want to add in nodes
305 * which are below threshold (negative values) to get a more
306 * accurate calculation but make sure that the total never
307 * underflows.
308 */
309 if ((long)x < 0)
310 x = 0;
311
312 /*
313 * Make sure that the number of highmem pages is never larger
314 * than the number of the total dirtyable memory. This can only
315 * occur in very strange VM situations but we want to make sure
316 * that this does not occur.
317 */
318 return min(x, total);
319 #else
320 return 0;
321 #endif
322 }
323
324 /**
325 * global_dirtyable_memory - number of globally dirtyable pages
326 *
327 * Returns the global number of pages potentially available for dirty
328 * page cache. This is the base value for the global dirty limits.
329 */
330 static unsigned long global_dirtyable_memory(void)
331 {
332 unsigned long x;
333
334 x = global_page_state(NR_FREE_PAGES);
335 x -= min(x, dirty_balance_reserve);
336
337 x += global_page_state(NR_INACTIVE_FILE);
338 x += global_page_state(NR_ACTIVE_FILE);
339
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
342
343 return x + 1; /* Ensure that we never return 0 */
344 }
345
346 /**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
349 *
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354 * real-time tasks.
355 */
356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 {
358 const unsigned long available_memory = dtc->avail;
359 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360 unsigned long bytes = vm_dirty_bytes;
361 unsigned long bg_bytes = dirty_background_bytes;
362 /* convert ratios to per-PAGE_SIZE for higher precision */
363 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
364 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
365 unsigned long thresh;
366 unsigned long bg_thresh;
367 struct task_struct *tsk;
368
369 /* gdtc is !NULL iff @dtc is for memcg domain */
370 if (gdtc) {
371 unsigned long global_avail = gdtc->avail;
372
373 /*
374 * The byte settings can't be applied directly to memcg
375 * domains. Convert them to ratios by scaling against
376 * globally available memory. As the ratios are in
377 * per-PAGE_SIZE, they can be obtained by dividing bytes by
378 * number of pages.
379 */
380 if (bytes)
381 ratio = min(DIV_ROUND_UP(bytes, global_avail),
382 PAGE_SIZE);
383 if (bg_bytes)
384 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385 PAGE_SIZE);
386 bytes = bg_bytes = 0;
387 }
388
389 if (bytes)
390 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
391 else
392 thresh = (ratio * available_memory) / PAGE_SIZE;
393
394 if (bg_bytes)
395 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
396 else
397 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
398
399 if (bg_thresh >= thresh)
400 bg_thresh = thresh / 2;
401 tsk = current;
402 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
403 bg_thresh += bg_thresh / 4;
404 thresh += thresh / 4;
405 }
406 dtc->thresh = thresh;
407 dtc->bg_thresh = bg_thresh;
408
409 /* we should eventually report the domain in the TP */
410 if (!gdtc)
411 trace_global_dirty_state(bg_thresh, thresh);
412 }
413
414 /**
415 * global_dirty_limits - background-writeback and dirty-throttling thresholds
416 * @pbackground: out parameter for bg_thresh
417 * @pdirty: out parameter for thresh
418 *
419 * Calculate bg_thresh and thresh for global_wb_domain. See
420 * domain_dirty_limits() for details.
421 */
422 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423 {
424 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
425
426 gdtc.avail = global_dirtyable_memory();
427 domain_dirty_limits(&gdtc);
428
429 *pbackground = gdtc.bg_thresh;
430 *pdirty = gdtc.thresh;
431 }
432
433 /**
434 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
435 * @zone: the zone
436 *
437 * Returns the maximum number of dirty pages allowed in a zone, based
438 * on the zone's dirtyable memory.
439 */
440 static unsigned long zone_dirty_limit(struct zone *zone)
441 {
442 unsigned long zone_memory = zone_dirtyable_memory(zone);
443 struct task_struct *tsk = current;
444 unsigned long dirty;
445
446 if (vm_dirty_bytes)
447 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
448 zone_memory / global_dirtyable_memory();
449 else
450 dirty = vm_dirty_ratio * zone_memory / 100;
451
452 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
453 dirty += dirty / 4;
454
455 return dirty;
456 }
457
458 /**
459 * zone_dirty_ok - tells whether a zone is within its dirty limits
460 * @zone: the zone to check
461 *
462 * Returns %true when the dirty pages in @zone are within the zone's
463 * dirty limit, %false if the limit is exceeded.
464 */
465 bool zone_dirty_ok(struct zone *zone)
466 {
467 unsigned long limit = zone_dirty_limit(zone);
468
469 return zone_page_state(zone, NR_FILE_DIRTY) +
470 zone_page_state(zone, NR_UNSTABLE_NFS) +
471 zone_page_state(zone, NR_WRITEBACK) <= limit;
472 }
473
474 int dirty_background_ratio_handler(struct ctl_table *table, int write,
475 void __user *buffer, size_t *lenp,
476 loff_t *ppos)
477 {
478 int ret;
479
480 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 if (ret == 0 && write)
482 dirty_background_bytes = 0;
483 return ret;
484 }
485
486 int dirty_background_bytes_handler(struct ctl_table *table, int write,
487 void __user *buffer, size_t *lenp,
488 loff_t *ppos)
489 {
490 int ret;
491
492 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
493 if (ret == 0 && write)
494 dirty_background_ratio = 0;
495 return ret;
496 }
497
498 int dirty_ratio_handler(struct ctl_table *table, int write,
499 void __user *buffer, size_t *lenp,
500 loff_t *ppos)
501 {
502 int old_ratio = vm_dirty_ratio;
503 int ret;
504
505 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
506 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
507 writeback_set_ratelimit();
508 vm_dirty_bytes = 0;
509 }
510 return ret;
511 }
512
513 int dirty_bytes_handler(struct ctl_table *table, int write,
514 void __user *buffer, size_t *lenp,
515 loff_t *ppos)
516 {
517 unsigned long old_bytes = vm_dirty_bytes;
518 int ret;
519
520 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
521 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
522 writeback_set_ratelimit();
523 vm_dirty_ratio = 0;
524 }
525 return ret;
526 }
527
528 static unsigned long wp_next_time(unsigned long cur_time)
529 {
530 cur_time += VM_COMPLETIONS_PERIOD_LEN;
531 /* 0 has a special meaning... */
532 if (!cur_time)
533 return 1;
534 return cur_time;
535 }
536
537 static void wb_domain_writeout_inc(struct wb_domain *dom,
538 struct fprop_local_percpu *completions,
539 unsigned int max_prop_frac)
540 {
541 __fprop_inc_percpu_max(&dom->completions, completions,
542 max_prop_frac);
543 /* First event after period switching was turned off? */
544 if (!unlikely(dom->period_time)) {
545 /*
546 * We can race with other __bdi_writeout_inc calls here but
547 * it does not cause any harm since the resulting time when
548 * timer will fire and what is in writeout_period_time will be
549 * roughly the same.
550 */
551 dom->period_time = wp_next_time(jiffies);
552 mod_timer(&dom->period_timer, dom->period_time);
553 }
554 }
555
556 /*
557 * Increment @wb's writeout completion count and the global writeout
558 * completion count. Called from test_clear_page_writeback().
559 */
560 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
561 {
562 struct wb_domain *cgdom;
563
564 __inc_wb_stat(wb, WB_WRITTEN);
565 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
566 wb->bdi->max_prop_frac);
567
568 cgdom = mem_cgroup_wb_domain(wb);
569 if (cgdom)
570 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
571 wb->bdi->max_prop_frac);
572 }
573
574 void wb_writeout_inc(struct bdi_writeback *wb)
575 {
576 unsigned long flags;
577
578 local_irq_save(flags);
579 __wb_writeout_inc(wb);
580 local_irq_restore(flags);
581 }
582 EXPORT_SYMBOL_GPL(wb_writeout_inc);
583
584 /*
585 * On idle system, we can be called long after we scheduled because we use
586 * deferred timers so count with missed periods.
587 */
588 static void writeout_period(unsigned long t)
589 {
590 struct wb_domain *dom = (void *)t;
591 int miss_periods = (jiffies - dom->period_time) /
592 VM_COMPLETIONS_PERIOD_LEN;
593
594 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
595 dom->period_time = wp_next_time(dom->period_time +
596 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
597 mod_timer(&dom->period_timer, dom->period_time);
598 } else {
599 /*
600 * Aging has zeroed all fractions. Stop wasting CPU on period
601 * updates.
602 */
603 dom->period_time = 0;
604 }
605 }
606
607 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
608 {
609 memset(dom, 0, sizeof(*dom));
610
611 spin_lock_init(&dom->lock);
612
613 init_timer_deferrable(&dom->period_timer);
614 dom->period_timer.function = writeout_period;
615 dom->period_timer.data = (unsigned long)dom;
616
617 dom->dirty_limit_tstamp = jiffies;
618
619 return fprop_global_init(&dom->completions, gfp);
620 }
621
622 #ifdef CONFIG_CGROUP_WRITEBACK
623 void wb_domain_exit(struct wb_domain *dom)
624 {
625 del_timer_sync(&dom->period_timer);
626 fprop_global_destroy(&dom->completions);
627 }
628 #endif
629
630 /*
631 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632 * registered backing devices, which, for obvious reasons, can not
633 * exceed 100%.
634 */
635 static unsigned int bdi_min_ratio;
636
637 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
638 {
639 int ret = 0;
640
641 spin_lock_bh(&bdi_lock);
642 if (min_ratio > bdi->max_ratio) {
643 ret = -EINVAL;
644 } else {
645 min_ratio -= bdi->min_ratio;
646 if (bdi_min_ratio + min_ratio < 100) {
647 bdi_min_ratio += min_ratio;
648 bdi->min_ratio += min_ratio;
649 } else {
650 ret = -EINVAL;
651 }
652 }
653 spin_unlock_bh(&bdi_lock);
654
655 return ret;
656 }
657
658 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
659 {
660 int ret = 0;
661
662 if (max_ratio > 100)
663 return -EINVAL;
664
665 spin_lock_bh(&bdi_lock);
666 if (bdi->min_ratio > max_ratio) {
667 ret = -EINVAL;
668 } else {
669 bdi->max_ratio = max_ratio;
670 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
671 }
672 spin_unlock_bh(&bdi_lock);
673
674 return ret;
675 }
676 EXPORT_SYMBOL(bdi_set_max_ratio);
677
678 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
679 unsigned long bg_thresh)
680 {
681 return (thresh + bg_thresh) / 2;
682 }
683
684 static unsigned long hard_dirty_limit(struct wb_domain *dom,
685 unsigned long thresh)
686 {
687 return max(thresh, dom->dirty_limit);
688 }
689
690 /*
691 * Memory which can be further allocated to a memcg domain is capped by
692 * system-wide clean memory excluding the amount being used in the domain.
693 */
694 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
695 unsigned long filepages, unsigned long headroom)
696 {
697 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
698 unsigned long clean = filepages - min(filepages, mdtc->dirty);
699 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
700 unsigned long other_clean = global_clean - min(global_clean, clean);
701
702 mdtc->avail = filepages + min(headroom, other_clean);
703 }
704
705 /**
706 * __wb_calc_thresh - @wb's share of dirty throttling threshold
707 * @dtc: dirty_throttle_context of interest
708 *
709 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
710 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
711 *
712 * Note that balance_dirty_pages() will only seriously take it as a hard limit
713 * when sleeping max_pause per page is not enough to keep the dirty pages under
714 * control. For example, when the device is completely stalled due to some error
715 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716 * In the other normal situations, it acts more gently by throttling the tasks
717 * more (rather than completely block them) when the wb dirty pages go high.
718 *
719 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
720 * - starving fast devices
721 * - piling up dirty pages (that will take long time to sync) on slow devices
722 *
723 * The wb's share of dirty limit will be adapting to its throughput and
724 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
725 */
726 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
727 {
728 struct wb_domain *dom = dtc_dom(dtc);
729 unsigned long thresh = dtc->thresh;
730 u64 wb_thresh;
731 long numerator, denominator;
732 unsigned long wb_min_ratio, wb_max_ratio;
733
734 /*
735 * Calculate this BDI's share of the thresh ratio.
736 */
737 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
738 &numerator, &denominator);
739
740 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
741 wb_thresh *= numerator;
742 do_div(wb_thresh, denominator);
743
744 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
745
746 wb_thresh += (thresh * wb_min_ratio) / 100;
747 if (wb_thresh > (thresh * wb_max_ratio) / 100)
748 wb_thresh = thresh * wb_max_ratio / 100;
749
750 return wb_thresh;
751 }
752
753 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
754 {
755 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
756 .thresh = thresh };
757 return __wb_calc_thresh(&gdtc);
758 }
759
760 /*
761 * setpoint - dirty 3
762 * f(dirty) := 1.0 + (----------------)
763 * limit - setpoint
764 *
765 * it's a 3rd order polynomial that subjects to
766 *
767 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
768 * (2) f(setpoint) = 1.0 => the balance point
769 * (3) f(limit) = 0 => the hard limit
770 * (4) df/dx <= 0 => negative feedback control
771 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772 * => fast response on large errors; small oscillation near setpoint
773 */
774 static long long pos_ratio_polynom(unsigned long setpoint,
775 unsigned long dirty,
776 unsigned long limit)
777 {
778 long long pos_ratio;
779 long x;
780
781 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
782 (limit - setpoint) | 1);
783 pos_ratio = x;
784 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
785 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
786 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
787
788 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789 }
790
791 /*
792 * Dirty position control.
793 *
794 * (o) global/bdi setpoints
795 *
796 * We want the dirty pages be balanced around the global/wb setpoints.
797 * When the number of dirty pages is higher/lower than the setpoint, the
798 * dirty position control ratio (and hence task dirty ratelimit) will be
799 * decreased/increased to bring the dirty pages back to the setpoint.
800 *
801 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
802 *
803 * if (dirty < setpoint) scale up pos_ratio
804 * if (dirty > setpoint) scale down pos_ratio
805 *
806 * if (wb_dirty < wb_setpoint) scale up pos_ratio
807 * if (wb_dirty > wb_setpoint) scale down pos_ratio
808 *
809 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
810 *
811 * (o) global control line
812 *
813 * ^ pos_ratio
814 * |
815 * | |<===== global dirty control scope ======>|
816 * 2.0 .............*
817 * | .*
818 * | . *
819 * | . *
820 * | . *
821 * | . *
822 * | . *
823 * 1.0 ................................*
824 * | . . *
825 * | . . *
826 * | . . *
827 * | . . *
828 * | . . *
829 * 0 +------------.------------------.----------------------*------------->
830 * freerun^ setpoint^ limit^ dirty pages
831 *
832 * (o) wb control line
833 *
834 * ^ pos_ratio
835 * |
836 * | *
837 * | *
838 * | *
839 * | *
840 * | * |<=========== span ============>|
841 * 1.0 .......................*
842 * | . *
843 * | . *
844 * | . *
845 * | . *
846 * | . *
847 * | . *
848 * | . *
849 * | . *
850 * | . *
851 * | . *
852 * | . *
853 * 1/4 ...............................................* * * * * * * * * * * *
854 * | . .
855 * | . .
856 * | . .
857 * 0 +----------------------.-------------------------------.------------->
858 * wb_setpoint^ x_intercept^
859 *
860 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
861 * be smoothly throttled down to normal if it starts high in situations like
862 * - start writing to a slow SD card and a fast disk at the same time. The SD
863 * card's wb_dirty may rush to many times higher than wb_setpoint.
864 * - the wb dirty thresh drops quickly due to change of JBOD workload
865 */
866 static void wb_position_ratio(struct dirty_throttle_control *dtc)
867 {
868 struct bdi_writeback *wb = dtc->wb;
869 unsigned long write_bw = wb->avg_write_bandwidth;
870 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
871 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
872 unsigned long wb_thresh = dtc->wb_thresh;
873 unsigned long x_intercept;
874 unsigned long setpoint; /* dirty pages' target balance point */
875 unsigned long wb_setpoint;
876 unsigned long span;
877 long long pos_ratio; /* for scaling up/down the rate limit */
878 long x;
879
880 dtc->pos_ratio = 0;
881
882 if (unlikely(dtc->dirty >= limit))
883 return;
884
885 /*
886 * global setpoint
887 *
888 * See comment for pos_ratio_polynom().
889 */
890 setpoint = (freerun + limit) / 2;
891 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
892
893 /*
894 * The strictlimit feature is a tool preventing mistrusted filesystems
895 * from growing a large number of dirty pages before throttling. For
896 * such filesystems balance_dirty_pages always checks wb counters
897 * against wb limits. Even if global "nr_dirty" is under "freerun".
898 * This is especially important for fuse which sets bdi->max_ratio to
899 * 1% by default. Without strictlimit feature, fuse writeback may
900 * consume arbitrary amount of RAM because it is accounted in
901 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
902 *
903 * Here, in wb_position_ratio(), we calculate pos_ratio based on
904 * two values: wb_dirty and wb_thresh. Let's consider an example:
905 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906 * limits are set by default to 10% and 20% (background and throttle).
907 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
908 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
909 * about ~6K pages (as the average of background and throttle wb
910 * limits). The 3rd order polynomial will provide positive feedback if
911 * wb_dirty is under wb_setpoint and vice versa.
912 *
913 * Note, that we cannot use global counters in these calculations
914 * because we want to throttle process writing to a strictlimit wb
915 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916 * in the example above).
917 */
918 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
919 long long wb_pos_ratio;
920
921 if (dtc->wb_dirty < 8) {
922 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
923 2 << RATELIMIT_CALC_SHIFT);
924 return;
925 }
926
927 if (dtc->wb_dirty >= wb_thresh)
928 return;
929
930 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
931 dtc->wb_bg_thresh);
932
933 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
934 return;
935
936 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
937 wb_thresh);
938
939 /*
940 * Typically, for strictlimit case, wb_setpoint << setpoint
941 * and pos_ratio >> wb_pos_ratio. In the other words global
942 * state ("dirty") is not limiting factor and we have to
943 * make decision based on wb counters. But there is an
944 * important case when global pos_ratio should get precedence:
945 * global limits are exceeded (e.g. due to activities on other
946 * wb's) while given strictlimit wb is below limit.
947 *
948 * "pos_ratio * wb_pos_ratio" would work for the case above,
949 * but it would look too non-natural for the case of all
950 * activity in the system coming from a single strictlimit wb
951 * with bdi->max_ratio == 100%.
952 *
953 * Note that min() below somewhat changes the dynamics of the
954 * control system. Normally, pos_ratio value can be well over 3
955 * (when globally we are at freerun and wb is well below wb
956 * setpoint). Now the maximum pos_ratio in the same situation
957 * is 2. We might want to tweak this if we observe the control
958 * system is too slow to adapt.
959 */
960 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
961 return;
962 }
963
964 /*
965 * We have computed basic pos_ratio above based on global situation. If
966 * the wb is over/under its share of dirty pages, we want to scale
967 * pos_ratio further down/up. That is done by the following mechanism.
968 */
969
970 /*
971 * wb setpoint
972 *
973 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
974 *
975 * x_intercept - wb_dirty
976 * := --------------------------
977 * x_intercept - wb_setpoint
978 *
979 * The main wb control line is a linear function that subjects to
980 *
981 * (1) f(wb_setpoint) = 1.0
982 * (2) k = - 1 / (8 * write_bw) (in single wb case)
983 * or equally: x_intercept = wb_setpoint + 8 * write_bw
984 *
985 * For single wb case, the dirty pages are observed to fluctuate
986 * regularly within range
987 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
988 * for various filesystems, where (2) can yield in a reasonable 12.5%
989 * fluctuation range for pos_ratio.
990 *
991 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
992 * own size, so move the slope over accordingly and choose a slope that
993 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
994 */
995 if (unlikely(wb_thresh > dtc->thresh))
996 wb_thresh = dtc->thresh;
997 /*
998 * It's very possible that wb_thresh is close to 0 not because the
999 * device is slow, but that it has remained inactive for long time.
1000 * Honour such devices a reasonable good (hopefully IO efficient)
1001 * threshold, so that the occasional writes won't be blocked and active
1002 * writes can rampup the threshold quickly.
1003 */
1004 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1005 /*
1006 * scale global setpoint to wb's:
1007 * wb_setpoint = setpoint * wb_thresh / thresh
1008 */
1009 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1010 wb_setpoint = setpoint * (u64)x >> 16;
1011 /*
1012 * Use span=(8*write_bw) in single wb case as indicated by
1013 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1014 *
1015 * wb_thresh thresh - wb_thresh
1016 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1017 * thresh thresh
1018 */
1019 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1020 x_intercept = wb_setpoint + span;
1021
1022 if (dtc->wb_dirty < x_intercept - span / 4) {
1023 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1024 (x_intercept - wb_setpoint) | 1);
1025 } else
1026 pos_ratio /= 4;
1027
1028 /*
1029 * wb reserve area, safeguard against dirty pool underrun and disk idle
1030 * It may push the desired control point of global dirty pages higher
1031 * than setpoint.
1032 */
1033 x_intercept = wb_thresh / 2;
1034 if (dtc->wb_dirty < x_intercept) {
1035 if (dtc->wb_dirty > x_intercept / 8)
1036 pos_ratio = div_u64(pos_ratio * x_intercept,
1037 dtc->wb_dirty);
1038 else
1039 pos_ratio *= 8;
1040 }
1041
1042 dtc->pos_ratio = pos_ratio;
1043 }
1044
1045 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1046 unsigned long elapsed,
1047 unsigned long written)
1048 {
1049 const unsigned long period = roundup_pow_of_two(3 * HZ);
1050 unsigned long avg = wb->avg_write_bandwidth;
1051 unsigned long old = wb->write_bandwidth;
1052 u64 bw;
1053
1054 /*
1055 * bw = written * HZ / elapsed
1056 *
1057 * bw * elapsed + write_bandwidth * (period - elapsed)
1058 * write_bandwidth = ---------------------------------------------------
1059 * period
1060 *
1061 * @written may have decreased due to account_page_redirty().
1062 * Avoid underflowing @bw calculation.
1063 */
1064 bw = written - min(written, wb->written_stamp);
1065 bw *= HZ;
1066 if (unlikely(elapsed > period)) {
1067 do_div(bw, elapsed);
1068 avg = bw;
1069 goto out;
1070 }
1071 bw += (u64)wb->write_bandwidth * (period - elapsed);
1072 bw >>= ilog2(period);
1073
1074 /*
1075 * one more level of smoothing, for filtering out sudden spikes
1076 */
1077 if (avg > old && old >= (unsigned long)bw)
1078 avg -= (avg - old) >> 3;
1079
1080 if (avg < old && old <= (unsigned long)bw)
1081 avg += (old - avg) >> 3;
1082
1083 out:
1084 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085 avg = max(avg, 1LU);
1086 if (wb_has_dirty_io(wb)) {
1087 long delta = avg - wb->avg_write_bandwidth;
1088 WARN_ON_ONCE(atomic_long_add_return(delta,
1089 &wb->bdi->tot_write_bandwidth) <= 0);
1090 }
1091 wb->write_bandwidth = bw;
1092 wb->avg_write_bandwidth = avg;
1093 }
1094
1095 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1096 {
1097 struct wb_domain *dom = dtc_dom(dtc);
1098 unsigned long thresh = dtc->thresh;
1099 unsigned long limit = dom->dirty_limit;
1100
1101 /*
1102 * Follow up in one step.
1103 */
1104 if (limit < thresh) {
1105 limit = thresh;
1106 goto update;
1107 }
1108
1109 /*
1110 * Follow down slowly. Use the higher one as the target, because thresh
1111 * may drop below dirty. This is exactly the reason to introduce
1112 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1113 */
1114 thresh = max(thresh, dtc->dirty);
1115 if (limit > thresh) {
1116 limit -= (limit - thresh) >> 5;
1117 goto update;
1118 }
1119 return;
1120 update:
1121 dom->dirty_limit = limit;
1122 }
1123
1124 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1125 unsigned long now)
1126 {
1127 struct wb_domain *dom = dtc_dom(dtc);
1128
1129 /*
1130 * check locklessly first to optimize away locking for the most time
1131 */
1132 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1133 return;
1134
1135 spin_lock(&dom->lock);
1136 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1137 update_dirty_limit(dtc);
1138 dom->dirty_limit_tstamp = now;
1139 }
1140 spin_unlock(&dom->lock);
1141 }
1142
1143 /*
1144 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1145 *
1146 * Normal wb tasks will be curbed at or below it in long term.
1147 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1148 */
1149 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1150 unsigned long dirtied,
1151 unsigned long elapsed)
1152 {
1153 struct bdi_writeback *wb = dtc->wb;
1154 unsigned long dirty = dtc->dirty;
1155 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1156 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1157 unsigned long setpoint = (freerun + limit) / 2;
1158 unsigned long write_bw = wb->avg_write_bandwidth;
1159 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1160 unsigned long dirty_rate;
1161 unsigned long task_ratelimit;
1162 unsigned long balanced_dirty_ratelimit;
1163 unsigned long step;
1164 unsigned long x;
1165
1166 /*
1167 * The dirty rate will match the writeout rate in long term, except
1168 * when dirty pages are truncated by userspace or re-dirtied by FS.
1169 */
1170 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1171
1172 /*
1173 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1174 */
1175 task_ratelimit = (u64)dirty_ratelimit *
1176 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1177 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1178
1179 /*
1180 * A linear estimation of the "balanced" throttle rate. The theory is,
1181 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1182 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1183 * formula will yield the balanced rate limit (write_bw / N).
1184 *
1185 * Note that the expanded form is not a pure rate feedback:
1186 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1187 * but also takes pos_ratio into account:
1188 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1189 *
1190 * (1) is not realistic because pos_ratio also takes part in balancing
1191 * the dirty rate. Consider the state
1192 * pos_ratio = 0.5 (3)
1193 * rate = 2 * (write_bw / N) (4)
1194 * If (1) is used, it will stuck in that state! Because each dd will
1195 * be throttled at
1196 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1197 * yielding
1198 * dirty_rate = N * task_ratelimit = write_bw (6)
1199 * put (6) into (1) we get
1200 * rate_(i+1) = rate_(i) (7)
1201 *
1202 * So we end up using (2) to always keep
1203 * rate_(i+1) ~= (write_bw / N) (8)
1204 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1205 * pos_ratio is able to drive itself to 1.0, which is not only where
1206 * the dirty count meet the setpoint, but also where the slope of
1207 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1208 */
1209 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1210 dirty_rate | 1);
1211 /*
1212 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1213 */
1214 if (unlikely(balanced_dirty_ratelimit > write_bw))
1215 balanced_dirty_ratelimit = write_bw;
1216
1217 /*
1218 * We could safely do this and return immediately:
1219 *
1220 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1221 *
1222 * However to get a more stable dirty_ratelimit, the below elaborated
1223 * code makes use of task_ratelimit to filter out singular points and
1224 * limit the step size.
1225 *
1226 * The below code essentially only uses the relative value of
1227 *
1228 * task_ratelimit - dirty_ratelimit
1229 * = (pos_ratio - 1) * dirty_ratelimit
1230 *
1231 * which reflects the direction and size of dirty position error.
1232 */
1233
1234 /*
1235 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1236 * task_ratelimit is on the same side of dirty_ratelimit, too.
1237 * For example, when
1238 * - dirty_ratelimit > balanced_dirty_ratelimit
1239 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1240 * lowering dirty_ratelimit will help meet both the position and rate
1241 * control targets. Otherwise, don't update dirty_ratelimit if it will
1242 * only help meet the rate target. After all, what the users ultimately
1243 * feel and care are stable dirty rate and small position error.
1244 *
1245 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1246 * and filter out the singular points of balanced_dirty_ratelimit. Which
1247 * keeps jumping around randomly and can even leap far away at times
1248 * due to the small 200ms estimation period of dirty_rate (we want to
1249 * keep that period small to reduce time lags).
1250 */
1251 step = 0;
1252
1253 /*
1254 * For strictlimit case, calculations above were based on wb counters
1255 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1256 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1257 * Hence, to calculate "step" properly, we have to use wb_dirty as
1258 * "dirty" and wb_setpoint as "setpoint".
1259 *
1260 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1261 * it's possible that wb_thresh is close to zero due to inactivity
1262 * of backing device.
1263 */
1264 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1265 dirty = dtc->wb_dirty;
1266 if (dtc->wb_dirty < 8)
1267 setpoint = dtc->wb_dirty + 1;
1268 else
1269 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1270 }
1271
1272 if (dirty < setpoint) {
1273 x = min3(wb->balanced_dirty_ratelimit,
1274 balanced_dirty_ratelimit, task_ratelimit);
1275 if (dirty_ratelimit < x)
1276 step = x - dirty_ratelimit;
1277 } else {
1278 x = max3(wb->balanced_dirty_ratelimit,
1279 balanced_dirty_ratelimit, task_ratelimit);
1280 if (dirty_ratelimit > x)
1281 step = dirty_ratelimit - x;
1282 }
1283
1284 /*
1285 * Don't pursue 100% rate matching. It's impossible since the balanced
1286 * rate itself is constantly fluctuating. So decrease the track speed
1287 * when it gets close to the target. Helps eliminate pointless tremors.
1288 */
1289 step >>= dirty_ratelimit / (2 * step + 1);
1290 /*
1291 * Limit the tracking speed to avoid overshooting.
1292 */
1293 step = (step + 7) / 8;
1294
1295 if (dirty_ratelimit < balanced_dirty_ratelimit)
1296 dirty_ratelimit += step;
1297 else
1298 dirty_ratelimit -= step;
1299
1300 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1301 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1302
1303 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1304 }
1305
1306 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1307 struct dirty_throttle_control *mdtc,
1308 unsigned long start_time,
1309 bool update_ratelimit)
1310 {
1311 struct bdi_writeback *wb = gdtc->wb;
1312 unsigned long now = jiffies;
1313 unsigned long elapsed = now - wb->bw_time_stamp;
1314 unsigned long dirtied;
1315 unsigned long written;
1316
1317 lockdep_assert_held(&wb->list_lock);
1318
1319 /*
1320 * rate-limit, only update once every 200ms.
1321 */
1322 if (elapsed < BANDWIDTH_INTERVAL)
1323 return;
1324
1325 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1326 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1327
1328 /*
1329 * Skip quiet periods when disk bandwidth is under-utilized.
1330 * (at least 1s idle time between two flusher runs)
1331 */
1332 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1333 goto snapshot;
1334
1335 if (update_ratelimit) {
1336 domain_update_bandwidth(gdtc, now);
1337 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1338
1339 /*
1340 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1341 * compiler has no way to figure that out. Help it.
1342 */
1343 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1344 domain_update_bandwidth(mdtc, now);
1345 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1346 }
1347 }
1348 wb_update_write_bandwidth(wb, elapsed, written);
1349
1350 snapshot:
1351 wb->dirtied_stamp = dirtied;
1352 wb->written_stamp = written;
1353 wb->bw_time_stamp = now;
1354 }
1355
1356 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1357 {
1358 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1359
1360 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1361 }
1362
1363 /*
1364 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1365 * will look to see if it needs to start dirty throttling.
1366 *
1367 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1368 * global_page_state() too often. So scale it near-sqrt to the safety margin
1369 * (the number of pages we may dirty without exceeding the dirty limits).
1370 */
1371 static unsigned long dirty_poll_interval(unsigned long dirty,
1372 unsigned long thresh)
1373 {
1374 if (thresh > dirty)
1375 return 1UL << (ilog2(thresh - dirty) >> 1);
1376
1377 return 1;
1378 }
1379
1380 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1381 unsigned long wb_dirty)
1382 {
1383 unsigned long bw = wb->avg_write_bandwidth;
1384 unsigned long t;
1385
1386 /*
1387 * Limit pause time for small memory systems. If sleeping for too long
1388 * time, a small pool of dirty/writeback pages may go empty and disk go
1389 * idle.
1390 *
1391 * 8 serves as the safety ratio.
1392 */
1393 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1394 t++;
1395
1396 return min_t(unsigned long, t, MAX_PAUSE);
1397 }
1398
1399 static long wb_min_pause(struct bdi_writeback *wb,
1400 long max_pause,
1401 unsigned long task_ratelimit,
1402 unsigned long dirty_ratelimit,
1403 int *nr_dirtied_pause)
1404 {
1405 long hi = ilog2(wb->avg_write_bandwidth);
1406 long lo = ilog2(wb->dirty_ratelimit);
1407 long t; /* target pause */
1408 long pause; /* estimated next pause */
1409 int pages; /* target nr_dirtied_pause */
1410
1411 /* target for 10ms pause on 1-dd case */
1412 t = max(1, HZ / 100);
1413
1414 /*
1415 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1416 * overheads.
1417 *
1418 * (N * 10ms) on 2^N concurrent tasks.
1419 */
1420 if (hi > lo)
1421 t += (hi - lo) * (10 * HZ) / 1024;
1422
1423 /*
1424 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1425 * on the much more stable dirty_ratelimit. However the next pause time
1426 * will be computed based on task_ratelimit and the two rate limits may
1427 * depart considerably at some time. Especially if task_ratelimit goes
1428 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1429 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1430 * result task_ratelimit won't be executed faithfully, which could
1431 * eventually bring down dirty_ratelimit.
1432 *
1433 * We apply two rules to fix it up:
1434 * 1) try to estimate the next pause time and if necessary, use a lower
1435 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1436 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1437 * 2) limit the target pause time to max_pause/2, so that the normal
1438 * small fluctuations of task_ratelimit won't trigger rule (1) and
1439 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1440 */
1441 t = min(t, 1 + max_pause / 2);
1442 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1443
1444 /*
1445 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1446 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1447 * When the 16 consecutive reads are often interrupted by some dirty
1448 * throttling pause during the async writes, cfq will go into idles
1449 * (deadline is fine). So push nr_dirtied_pause as high as possible
1450 * until reaches DIRTY_POLL_THRESH=32 pages.
1451 */
1452 if (pages < DIRTY_POLL_THRESH) {
1453 t = max_pause;
1454 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1455 if (pages > DIRTY_POLL_THRESH) {
1456 pages = DIRTY_POLL_THRESH;
1457 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1458 }
1459 }
1460
1461 pause = HZ * pages / (task_ratelimit + 1);
1462 if (pause > max_pause) {
1463 t = max_pause;
1464 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1465 }
1466
1467 *nr_dirtied_pause = pages;
1468 /*
1469 * The minimal pause time will normally be half the target pause time.
1470 */
1471 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1472 }
1473
1474 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1475 {
1476 struct bdi_writeback *wb = dtc->wb;
1477 unsigned long wb_reclaimable;
1478
1479 /*
1480 * wb_thresh is not treated as some limiting factor as
1481 * dirty_thresh, due to reasons
1482 * - in JBOD setup, wb_thresh can fluctuate a lot
1483 * - in a system with HDD and USB key, the USB key may somehow
1484 * go into state (wb_dirty >> wb_thresh) either because
1485 * wb_dirty starts high, or because wb_thresh drops low.
1486 * In this case we don't want to hard throttle the USB key
1487 * dirtiers for 100 seconds until wb_dirty drops under
1488 * wb_thresh. Instead the auxiliary wb control line in
1489 * wb_position_ratio() will let the dirtier task progress
1490 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1491 */
1492 dtc->wb_thresh = __wb_calc_thresh(dtc);
1493 dtc->wb_bg_thresh = dtc->thresh ?
1494 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1495
1496 /*
1497 * In order to avoid the stacked BDI deadlock we need
1498 * to ensure we accurately count the 'dirty' pages when
1499 * the threshold is low.
1500 *
1501 * Otherwise it would be possible to get thresh+n pages
1502 * reported dirty, even though there are thresh-m pages
1503 * actually dirty; with m+n sitting in the percpu
1504 * deltas.
1505 */
1506 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1507 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1508 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1509 } else {
1510 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1511 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1512 }
1513 }
1514
1515 /*
1516 * balance_dirty_pages() must be called by processes which are generating dirty
1517 * data. It looks at the number of dirty pages in the machine and will force
1518 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1519 * If we're over `background_thresh' then the writeback threads are woken to
1520 * perform some writeout.
1521 */
1522 static void balance_dirty_pages(struct address_space *mapping,
1523 struct bdi_writeback *wb,
1524 unsigned long pages_dirtied)
1525 {
1526 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1527 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1528 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1529 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1530 &mdtc_stor : NULL;
1531 struct dirty_throttle_control *sdtc;
1532 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1533 long period;
1534 long pause;
1535 long max_pause;
1536 long min_pause;
1537 int nr_dirtied_pause;
1538 bool dirty_exceeded = false;
1539 unsigned long task_ratelimit;
1540 unsigned long dirty_ratelimit;
1541 struct backing_dev_info *bdi = wb->bdi;
1542 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1543 unsigned long start_time = jiffies;
1544
1545 for (;;) {
1546 unsigned long now = jiffies;
1547 unsigned long dirty, thresh, bg_thresh;
1548 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1549 unsigned long m_thresh = 0;
1550 unsigned long m_bg_thresh = 0;
1551
1552 /*
1553 * Unstable writes are a feature of certain networked
1554 * filesystems (i.e. NFS) in which data may have been
1555 * written to the server's write cache, but has not yet
1556 * been flushed to permanent storage.
1557 */
1558 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1559 global_page_state(NR_UNSTABLE_NFS);
1560 gdtc->avail = global_dirtyable_memory();
1561 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1562
1563 domain_dirty_limits(gdtc);
1564
1565 if (unlikely(strictlimit)) {
1566 wb_dirty_limits(gdtc);
1567
1568 dirty = gdtc->wb_dirty;
1569 thresh = gdtc->wb_thresh;
1570 bg_thresh = gdtc->wb_bg_thresh;
1571 } else {
1572 dirty = gdtc->dirty;
1573 thresh = gdtc->thresh;
1574 bg_thresh = gdtc->bg_thresh;
1575 }
1576
1577 if (mdtc) {
1578 unsigned long filepages, headroom, writeback;
1579
1580 /*
1581 * If @wb belongs to !root memcg, repeat the same
1582 * basic calculations for the memcg domain.
1583 */
1584 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1585 &mdtc->dirty, &writeback);
1586 mdtc->dirty += writeback;
1587 mdtc_calc_avail(mdtc, filepages, headroom);
1588
1589 domain_dirty_limits(mdtc);
1590
1591 if (unlikely(strictlimit)) {
1592 wb_dirty_limits(mdtc);
1593 m_dirty = mdtc->wb_dirty;
1594 m_thresh = mdtc->wb_thresh;
1595 m_bg_thresh = mdtc->wb_bg_thresh;
1596 } else {
1597 m_dirty = mdtc->dirty;
1598 m_thresh = mdtc->thresh;
1599 m_bg_thresh = mdtc->bg_thresh;
1600 }
1601 }
1602
1603 /*
1604 * Throttle it only when the background writeback cannot
1605 * catch-up. This avoids (excessively) small writeouts
1606 * when the wb limits are ramping up in case of !strictlimit.
1607 *
1608 * In strictlimit case make decision based on the wb counters
1609 * and limits. Small writeouts when the wb limits are ramping
1610 * up are the price we consciously pay for strictlimit-ing.
1611 *
1612 * If memcg domain is in effect, @dirty should be under
1613 * both global and memcg freerun ceilings.
1614 */
1615 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1616 (!mdtc ||
1617 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1618 unsigned long intv = dirty_poll_interval(dirty, thresh);
1619 unsigned long m_intv = ULONG_MAX;
1620
1621 current->dirty_paused_when = now;
1622 current->nr_dirtied = 0;
1623 if (mdtc)
1624 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1625 current->nr_dirtied_pause = min(intv, m_intv);
1626 break;
1627 }
1628
1629 if (unlikely(!writeback_in_progress(wb)))
1630 wb_start_background_writeback(wb);
1631
1632 /*
1633 * Calculate global domain's pos_ratio and select the
1634 * global dtc by default.
1635 */
1636 if (!strictlimit)
1637 wb_dirty_limits(gdtc);
1638
1639 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1640 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1641
1642 wb_position_ratio(gdtc);
1643 sdtc = gdtc;
1644
1645 if (mdtc) {
1646 /*
1647 * If memcg domain is in effect, calculate its
1648 * pos_ratio. @wb should satisfy constraints from
1649 * both global and memcg domains. Choose the one
1650 * w/ lower pos_ratio.
1651 */
1652 if (!strictlimit)
1653 wb_dirty_limits(mdtc);
1654
1655 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1656 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1657
1658 wb_position_ratio(mdtc);
1659 if (mdtc->pos_ratio < gdtc->pos_ratio)
1660 sdtc = mdtc;
1661 }
1662
1663 if (dirty_exceeded && !wb->dirty_exceeded)
1664 wb->dirty_exceeded = 1;
1665
1666 if (time_is_before_jiffies(wb->bw_time_stamp +
1667 BANDWIDTH_INTERVAL)) {
1668 spin_lock(&wb->list_lock);
1669 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1670 spin_unlock(&wb->list_lock);
1671 }
1672
1673 /* throttle according to the chosen dtc */
1674 dirty_ratelimit = wb->dirty_ratelimit;
1675 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1676 RATELIMIT_CALC_SHIFT;
1677 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1678 min_pause = wb_min_pause(wb, max_pause,
1679 task_ratelimit, dirty_ratelimit,
1680 &nr_dirtied_pause);
1681
1682 if (unlikely(task_ratelimit == 0)) {
1683 period = max_pause;
1684 pause = max_pause;
1685 goto pause;
1686 }
1687 period = HZ * pages_dirtied / task_ratelimit;
1688 pause = period;
1689 if (current->dirty_paused_when)
1690 pause -= now - current->dirty_paused_when;
1691 /*
1692 * For less than 1s think time (ext3/4 may block the dirtier
1693 * for up to 800ms from time to time on 1-HDD; so does xfs,
1694 * however at much less frequency), try to compensate it in
1695 * future periods by updating the virtual time; otherwise just
1696 * do a reset, as it may be a light dirtier.
1697 */
1698 if (pause < min_pause) {
1699 trace_balance_dirty_pages(wb,
1700 sdtc->thresh,
1701 sdtc->bg_thresh,
1702 sdtc->dirty,
1703 sdtc->wb_thresh,
1704 sdtc->wb_dirty,
1705 dirty_ratelimit,
1706 task_ratelimit,
1707 pages_dirtied,
1708 period,
1709 min(pause, 0L),
1710 start_time);
1711 if (pause < -HZ) {
1712 current->dirty_paused_when = now;
1713 current->nr_dirtied = 0;
1714 } else if (period) {
1715 current->dirty_paused_when += period;
1716 current->nr_dirtied = 0;
1717 } else if (current->nr_dirtied_pause <= pages_dirtied)
1718 current->nr_dirtied_pause += pages_dirtied;
1719 break;
1720 }
1721 if (unlikely(pause > max_pause)) {
1722 /* for occasional dropped task_ratelimit */
1723 now += min(pause - max_pause, max_pause);
1724 pause = max_pause;
1725 }
1726
1727 pause:
1728 trace_balance_dirty_pages(wb,
1729 sdtc->thresh,
1730 sdtc->bg_thresh,
1731 sdtc->dirty,
1732 sdtc->wb_thresh,
1733 sdtc->wb_dirty,
1734 dirty_ratelimit,
1735 task_ratelimit,
1736 pages_dirtied,
1737 period,
1738 pause,
1739 start_time);
1740 __set_current_state(TASK_KILLABLE);
1741 io_schedule_timeout(pause);
1742
1743 current->dirty_paused_when = now + pause;
1744 current->nr_dirtied = 0;
1745 current->nr_dirtied_pause = nr_dirtied_pause;
1746
1747 /*
1748 * This is typically equal to (dirty < thresh) and can also
1749 * keep "1000+ dd on a slow USB stick" under control.
1750 */
1751 if (task_ratelimit)
1752 break;
1753
1754 /*
1755 * In the case of an unresponding NFS server and the NFS dirty
1756 * pages exceeds dirty_thresh, give the other good wb's a pipe
1757 * to go through, so that tasks on them still remain responsive.
1758 *
1759 * In theory 1 page is enough to keep the comsumer-producer
1760 * pipe going: the flusher cleans 1 page => the task dirties 1
1761 * more page. However wb_dirty has accounting errors. So use
1762 * the larger and more IO friendly wb_stat_error.
1763 */
1764 if (sdtc->wb_dirty <= wb_stat_error(wb))
1765 break;
1766
1767 if (fatal_signal_pending(current))
1768 break;
1769 }
1770
1771 if (!dirty_exceeded && wb->dirty_exceeded)
1772 wb->dirty_exceeded = 0;
1773
1774 if (writeback_in_progress(wb))
1775 return;
1776
1777 /*
1778 * In laptop mode, we wait until hitting the higher threshold before
1779 * starting background writeout, and then write out all the way down
1780 * to the lower threshold. So slow writers cause minimal disk activity.
1781 *
1782 * In normal mode, we start background writeout at the lower
1783 * background_thresh, to keep the amount of dirty memory low.
1784 */
1785 if (laptop_mode)
1786 return;
1787
1788 if (nr_reclaimable > gdtc->bg_thresh)
1789 wb_start_background_writeback(wb);
1790 }
1791
1792 static DEFINE_PER_CPU(int, bdp_ratelimits);
1793
1794 /*
1795 * Normal tasks are throttled by
1796 * loop {
1797 * dirty tsk->nr_dirtied_pause pages;
1798 * take a snap in balance_dirty_pages();
1799 * }
1800 * However there is a worst case. If every task exit immediately when dirtied
1801 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1802 * called to throttle the page dirties. The solution is to save the not yet
1803 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1804 * randomly into the running tasks. This works well for the above worst case,
1805 * as the new task will pick up and accumulate the old task's leaked dirty
1806 * count and eventually get throttled.
1807 */
1808 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1809
1810 /**
1811 * balance_dirty_pages_ratelimited - balance dirty memory state
1812 * @mapping: address_space which was dirtied
1813 *
1814 * Processes which are dirtying memory should call in here once for each page
1815 * which was newly dirtied. The function will periodically check the system's
1816 * dirty state and will initiate writeback if needed.
1817 *
1818 * On really big machines, get_writeback_state is expensive, so try to avoid
1819 * calling it too often (ratelimiting). But once we're over the dirty memory
1820 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1821 * from overshooting the limit by (ratelimit_pages) each.
1822 */
1823 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1824 {
1825 struct inode *inode = mapping->host;
1826 struct backing_dev_info *bdi = inode_to_bdi(inode);
1827 struct bdi_writeback *wb = NULL;
1828 int ratelimit;
1829 int *p;
1830
1831 if (!bdi_cap_account_dirty(bdi))
1832 return;
1833
1834 if (inode_cgwb_enabled(inode))
1835 wb = wb_get_create_current(bdi, GFP_KERNEL);
1836 if (!wb)
1837 wb = &bdi->wb;
1838
1839 ratelimit = current->nr_dirtied_pause;
1840 if (wb->dirty_exceeded)
1841 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1842
1843 preempt_disable();
1844 /*
1845 * This prevents one CPU to accumulate too many dirtied pages without
1846 * calling into balance_dirty_pages(), which can happen when there are
1847 * 1000+ tasks, all of them start dirtying pages at exactly the same
1848 * time, hence all honoured too large initial task->nr_dirtied_pause.
1849 */
1850 p = this_cpu_ptr(&bdp_ratelimits);
1851 if (unlikely(current->nr_dirtied >= ratelimit))
1852 *p = 0;
1853 else if (unlikely(*p >= ratelimit_pages)) {
1854 *p = 0;
1855 ratelimit = 0;
1856 }
1857 /*
1858 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1859 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1860 * the dirty throttling and livelock other long-run dirtiers.
1861 */
1862 p = this_cpu_ptr(&dirty_throttle_leaks);
1863 if (*p > 0 && current->nr_dirtied < ratelimit) {
1864 unsigned long nr_pages_dirtied;
1865 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1866 *p -= nr_pages_dirtied;
1867 current->nr_dirtied += nr_pages_dirtied;
1868 }
1869 preempt_enable();
1870
1871 if (unlikely(current->nr_dirtied >= ratelimit))
1872 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1873
1874 wb_put(wb);
1875 }
1876 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1877
1878 /**
1879 * wb_over_bg_thresh - does @wb need to be written back?
1880 * @wb: bdi_writeback of interest
1881 *
1882 * Determines whether background writeback should keep writing @wb or it's
1883 * clean enough. Returns %true if writeback should continue.
1884 */
1885 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1886 {
1887 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1888 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1889 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1890 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1891 &mdtc_stor : NULL;
1892
1893 /*
1894 * Similar to balance_dirty_pages() but ignores pages being written
1895 * as we're trying to decide whether to put more under writeback.
1896 */
1897 gdtc->avail = global_dirtyable_memory();
1898 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1899 global_page_state(NR_UNSTABLE_NFS);
1900 domain_dirty_limits(gdtc);
1901
1902 if (gdtc->dirty > gdtc->bg_thresh)
1903 return true;
1904
1905 if (wb_stat(wb, WB_RECLAIMABLE) >
1906 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1907 return true;
1908
1909 if (mdtc) {
1910 unsigned long filepages, headroom, writeback;
1911
1912 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1913 &writeback);
1914 mdtc_calc_avail(mdtc, filepages, headroom);
1915 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1916
1917 if (mdtc->dirty > mdtc->bg_thresh)
1918 return true;
1919
1920 if (wb_stat(wb, WB_RECLAIMABLE) >
1921 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1922 return true;
1923 }
1924
1925 return false;
1926 }
1927
1928 void throttle_vm_writeout(gfp_t gfp_mask)
1929 {
1930 unsigned long background_thresh;
1931 unsigned long dirty_thresh;
1932
1933 for ( ; ; ) {
1934 global_dirty_limits(&background_thresh, &dirty_thresh);
1935 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1936
1937 /*
1938 * Boost the allowable dirty threshold a bit for page
1939 * allocators so they don't get DoS'ed by heavy writers
1940 */
1941 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1942
1943 if (global_page_state(NR_UNSTABLE_NFS) +
1944 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1945 break;
1946 congestion_wait(BLK_RW_ASYNC, HZ/10);
1947
1948 /*
1949 * The caller might hold locks which can prevent IO completion
1950 * or progress in the filesystem. So we cannot just sit here
1951 * waiting for IO to complete.
1952 */
1953 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1954 break;
1955 }
1956 }
1957
1958 /*
1959 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1960 */
1961 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1962 void __user *buffer, size_t *length, loff_t *ppos)
1963 {
1964 proc_dointvec(table, write, buffer, length, ppos);
1965 return 0;
1966 }
1967
1968 #ifdef CONFIG_BLOCK
1969 void laptop_mode_timer_fn(unsigned long data)
1970 {
1971 struct request_queue *q = (struct request_queue *)data;
1972 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1973 global_page_state(NR_UNSTABLE_NFS);
1974 struct bdi_writeback *wb;
1975
1976 /*
1977 * We want to write everything out, not just down to the dirty
1978 * threshold
1979 */
1980 if (!bdi_has_dirty_io(&q->backing_dev_info))
1981 return;
1982
1983 rcu_read_lock();
1984 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1985 if (wb_has_dirty_io(wb))
1986 wb_start_writeback(wb, nr_pages, true,
1987 WB_REASON_LAPTOP_TIMER);
1988 rcu_read_unlock();
1989 }
1990
1991 /*
1992 * We've spun up the disk and we're in laptop mode: schedule writeback
1993 * of all dirty data a few seconds from now. If the flush is already scheduled
1994 * then push it back - the user is still using the disk.
1995 */
1996 void laptop_io_completion(struct backing_dev_info *info)
1997 {
1998 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1999 }
2000
2001 /*
2002 * We're in laptop mode and we've just synced. The sync's writes will have
2003 * caused another writeback to be scheduled by laptop_io_completion.
2004 * Nothing needs to be written back anymore, so we unschedule the writeback.
2005 */
2006 void laptop_sync_completion(void)
2007 {
2008 struct backing_dev_info *bdi;
2009
2010 rcu_read_lock();
2011
2012 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2013 del_timer(&bdi->laptop_mode_wb_timer);
2014
2015 rcu_read_unlock();
2016 }
2017 #endif
2018
2019 /*
2020 * If ratelimit_pages is too high then we can get into dirty-data overload
2021 * if a large number of processes all perform writes at the same time.
2022 * If it is too low then SMP machines will call the (expensive)
2023 * get_writeback_state too often.
2024 *
2025 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2026 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2027 * thresholds.
2028 */
2029
2030 void writeback_set_ratelimit(void)
2031 {
2032 struct wb_domain *dom = &global_wb_domain;
2033 unsigned long background_thresh;
2034 unsigned long dirty_thresh;
2035
2036 global_dirty_limits(&background_thresh, &dirty_thresh);
2037 dom->dirty_limit = dirty_thresh;
2038 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2039 if (ratelimit_pages < 16)
2040 ratelimit_pages = 16;
2041 }
2042
2043 static int
2044 ratelimit_handler(struct notifier_block *self, unsigned long action,
2045 void *hcpu)
2046 {
2047
2048 switch (action & ~CPU_TASKS_FROZEN) {
2049 case CPU_ONLINE:
2050 case CPU_DEAD:
2051 writeback_set_ratelimit();
2052 return NOTIFY_OK;
2053 default:
2054 return NOTIFY_DONE;
2055 }
2056 }
2057
2058 static struct notifier_block ratelimit_nb = {
2059 .notifier_call = ratelimit_handler,
2060 .next = NULL,
2061 };
2062
2063 /*
2064 * Called early on to tune the page writeback dirty limits.
2065 *
2066 * We used to scale dirty pages according to how total memory
2067 * related to pages that could be allocated for buffers (by
2068 * comparing nr_free_buffer_pages() to vm_total_pages.
2069 *
2070 * However, that was when we used "dirty_ratio" to scale with
2071 * all memory, and we don't do that any more. "dirty_ratio"
2072 * is now applied to total non-HIGHPAGE memory (by subtracting
2073 * totalhigh_pages from vm_total_pages), and as such we can't
2074 * get into the old insane situation any more where we had
2075 * large amounts of dirty pages compared to a small amount of
2076 * non-HIGHMEM memory.
2077 *
2078 * But we might still want to scale the dirty_ratio by how
2079 * much memory the box has..
2080 */
2081 void __init page_writeback_init(void)
2082 {
2083 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084
2085 writeback_set_ratelimit();
2086 register_cpu_notifier(&ratelimit_nb);
2087 }
2088
2089 /**
2090 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091 * @mapping: address space structure to write
2092 * @start: starting page index
2093 * @end: ending page index (inclusive)
2094 *
2095 * This function scans the page range from @start to @end (inclusive) and tags
2096 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097 * that write_cache_pages (or whoever calls this function) will then use
2098 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2099 * used to avoid livelocking of writeback by a process steadily creating new
2100 * dirty pages in the file (thus it is important for this function to be quick
2101 * so that it can tag pages faster than a dirtying process can create them).
2102 */
2103 /*
2104 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2105 */
2106 void tag_pages_for_writeback(struct address_space *mapping,
2107 pgoff_t start, pgoff_t end)
2108 {
2109 #define WRITEBACK_TAG_BATCH 4096
2110 unsigned long tagged;
2111
2112 do {
2113 spin_lock_irq(&mapping->tree_lock);
2114 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2115 &start, end, WRITEBACK_TAG_BATCH,
2116 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2117 spin_unlock_irq(&mapping->tree_lock);
2118 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2119 cond_resched();
2120 /* We check 'start' to handle wrapping when end == ~0UL */
2121 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2122 }
2123 EXPORT_SYMBOL(tag_pages_for_writeback);
2124
2125 /**
2126 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2127 * @mapping: address space structure to write
2128 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2129 * @writepage: function called for each page
2130 * @data: data passed to writepage function
2131 *
2132 * If a page is already under I/O, write_cache_pages() skips it, even
2133 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2134 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2135 * and msync() need to guarantee that all the data which was dirty at the time
2136 * the call was made get new I/O started against them. If wbc->sync_mode is
2137 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2138 * existing IO to complete.
2139 *
2140 * To avoid livelocks (when other process dirties new pages), we first tag
2141 * pages which should be written back with TOWRITE tag and only then start
2142 * writing them. For data-integrity sync we have to be careful so that we do
2143 * not miss some pages (e.g., because some other process has cleared TOWRITE
2144 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2145 * by the process clearing the DIRTY tag (and submitting the page for IO).
2146 */
2147 int write_cache_pages(struct address_space *mapping,
2148 struct writeback_control *wbc, writepage_t writepage,
2149 void *data)
2150 {
2151 int ret = 0;
2152 int done = 0;
2153 struct pagevec pvec;
2154 int nr_pages;
2155 pgoff_t uninitialized_var(writeback_index);
2156 pgoff_t index;
2157 pgoff_t end; /* Inclusive */
2158 pgoff_t done_index;
2159 int cycled;
2160 int range_whole = 0;
2161 int tag;
2162
2163 pagevec_init(&pvec, 0);
2164 if (wbc->range_cyclic) {
2165 writeback_index = mapping->writeback_index; /* prev offset */
2166 index = writeback_index;
2167 if (index == 0)
2168 cycled = 1;
2169 else
2170 cycled = 0;
2171 end = -1;
2172 } else {
2173 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2174 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2175 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2176 range_whole = 1;
2177 cycled = 1; /* ignore range_cyclic tests */
2178 }
2179 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2180 tag = PAGECACHE_TAG_TOWRITE;
2181 else
2182 tag = PAGECACHE_TAG_DIRTY;
2183 retry:
2184 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2185 tag_pages_for_writeback(mapping, index, end);
2186 done_index = index;
2187 while (!done && (index <= end)) {
2188 int i;
2189
2190 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192 if (nr_pages == 0)
2193 break;
2194
2195 for (i = 0; i < nr_pages; i++) {
2196 struct page *page = pvec.pages[i];
2197
2198 /*
2199 * At this point, the page may be truncated or
2200 * invalidated (changing page->mapping to NULL), or
2201 * even swizzled back from swapper_space to tmpfs file
2202 * mapping. However, page->index will not change
2203 * because we have a reference on the page.
2204 */
2205 if (page->index > end) {
2206 /*
2207 * can't be range_cyclic (1st pass) because
2208 * end == -1 in that case.
2209 */
2210 done = 1;
2211 break;
2212 }
2213
2214 done_index = page->index;
2215
2216 lock_page(page);
2217
2218 /*
2219 * Page truncated or invalidated. We can freely skip it
2220 * then, even for data integrity operations: the page
2221 * has disappeared concurrently, so there could be no
2222 * real expectation of this data interity operation
2223 * even if there is now a new, dirty page at the same
2224 * pagecache address.
2225 */
2226 if (unlikely(page->mapping != mapping)) {
2227 continue_unlock:
2228 unlock_page(page);
2229 continue;
2230 }
2231
2232 if (!PageDirty(page)) {
2233 /* someone wrote it for us */
2234 goto continue_unlock;
2235 }
2236
2237 if (PageWriteback(page)) {
2238 if (wbc->sync_mode != WB_SYNC_NONE)
2239 wait_on_page_writeback(page);
2240 else
2241 goto continue_unlock;
2242 }
2243
2244 BUG_ON(PageWriteback(page));
2245 if (!clear_page_dirty_for_io(page))
2246 goto continue_unlock;
2247
2248 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2249 ret = (*writepage)(page, wbc, data);
2250 if (unlikely(ret)) {
2251 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2252 unlock_page(page);
2253 ret = 0;
2254 } else {
2255 /*
2256 * done_index is set past this page,
2257 * so media errors will not choke
2258 * background writeout for the entire
2259 * file. This has consequences for
2260 * range_cyclic semantics (ie. it may
2261 * not be suitable for data integrity
2262 * writeout).
2263 */
2264 done_index = page->index + 1;
2265 done = 1;
2266 break;
2267 }
2268 }
2269
2270 /*
2271 * We stop writing back only if we are not doing
2272 * integrity sync. In case of integrity sync we have to
2273 * keep going until we have written all the pages
2274 * we tagged for writeback prior to entering this loop.
2275 */
2276 if (--wbc->nr_to_write <= 0 &&
2277 wbc->sync_mode == WB_SYNC_NONE) {
2278 done = 1;
2279 break;
2280 }
2281 }
2282 pagevec_release(&pvec);
2283 cond_resched();
2284 }
2285 if (!cycled && !done) {
2286 /*
2287 * range_cyclic:
2288 * We hit the last page and there is more work to be done: wrap
2289 * back to the start of the file
2290 */
2291 cycled = 1;
2292 index = 0;
2293 end = writeback_index - 1;
2294 goto retry;
2295 }
2296 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297 mapping->writeback_index = done_index;
2298
2299 return ret;
2300 }
2301 EXPORT_SYMBOL(write_cache_pages);
2302
2303 /*
2304 * Function used by generic_writepages to call the real writepage
2305 * function and set the mapping flags on error
2306 */
2307 static int __writepage(struct page *page, struct writeback_control *wbc,
2308 void *data)
2309 {
2310 struct address_space *mapping = data;
2311 int ret = mapping->a_ops->writepage(page, wbc);
2312 mapping_set_error(mapping, ret);
2313 return ret;
2314 }
2315
2316 /**
2317 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318 * @mapping: address space structure to write
2319 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320 *
2321 * This is a library function, which implements the writepages()
2322 * address_space_operation.
2323 */
2324 int generic_writepages(struct address_space *mapping,
2325 struct writeback_control *wbc)
2326 {
2327 struct blk_plug plug;
2328 int ret;
2329
2330 /* deal with chardevs and other special file */
2331 if (!mapping->a_ops->writepage)
2332 return 0;
2333
2334 blk_start_plug(&plug);
2335 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2336 blk_finish_plug(&plug);
2337 return ret;
2338 }
2339
2340 EXPORT_SYMBOL(generic_writepages);
2341
2342 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2343 {
2344 int ret;
2345
2346 if (wbc->nr_to_write <= 0)
2347 return 0;
2348 if (mapping->a_ops->writepages)
2349 ret = mapping->a_ops->writepages(mapping, wbc);
2350 else
2351 ret = generic_writepages(mapping, wbc);
2352 return ret;
2353 }
2354
2355 /**
2356 * write_one_page - write out a single page and optionally wait on I/O
2357 * @page: the page to write
2358 * @wait: if true, wait on writeout
2359 *
2360 * The page must be locked by the caller and will be unlocked upon return.
2361 *
2362 * write_one_page() returns a negative error code if I/O failed.
2363 */
2364 int write_one_page(struct page *page, int wait)
2365 {
2366 struct address_space *mapping = page->mapping;
2367 int ret = 0;
2368 struct writeback_control wbc = {
2369 .sync_mode = WB_SYNC_ALL,
2370 .nr_to_write = 1,
2371 };
2372
2373 BUG_ON(!PageLocked(page));
2374
2375 if (wait)
2376 wait_on_page_writeback(page);
2377
2378 if (clear_page_dirty_for_io(page)) {
2379 page_cache_get(page);
2380 ret = mapping->a_ops->writepage(page, &wbc);
2381 if (ret == 0 && wait) {
2382 wait_on_page_writeback(page);
2383 if (PageError(page))
2384 ret = -EIO;
2385 }
2386 page_cache_release(page);
2387 } else {
2388 unlock_page(page);
2389 }
2390 return ret;
2391 }
2392 EXPORT_SYMBOL(write_one_page);
2393
2394 /*
2395 * For address_spaces which do not use buffers nor write back.
2396 */
2397 int __set_page_dirty_no_writeback(struct page *page)
2398 {
2399 if (!PageDirty(page))
2400 return !TestSetPageDirty(page);
2401 return 0;
2402 }
2403
2404 /*
2405 * Helper function for set_page_dirty family.
2406 *
2407 * Caller must hold mem_cgroup_begin_page_stat().
2408 *
2409 * NOTE: This relies on being atomic wrt interrupts.
2410 */
2411 void account_page_dirtied(struct page *page, struct address_space *mapping,
2412 struct mem_cgroup *memcg)
2413 {
2414 struct inode *inode = mapping->host;
2415
2416 trace_writeback_dirty_page(page, mapping);
2417
2418 if (mapping_cap_account_dirty(mapping)) {
2419 struct bdi_writeback *wb;
2420
2421 inode_attach_wb(inode, page);
2422 wb = inode_to_wb(inode);
2423
2424 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2425 __inc_zone_page_state(page, NR_FILE_DIRTY);
2426 __inc_zone_page_state(page, NR_DIRTIED);
2427 __inc_wb_stat(wb, WB_RECLAIMABLE);
2428 __inc_wb_stat(wb, WB_DIRTIED);
2429 task_io_account_write(PAGE_CACHE_SIZE);
2430 current->nr_dirtied++;
2431 this_cpu_inc(bdp_ratelimits);
2432 }
2433 }
2434 EXPORT_SYMBOL(account_page_dirtied);
2435
2436 /*
2437 * Helper function for deaccounting dirty page without writeback.
2438 *
2439 * Caller must hold mem_cgroup_begin_page_stat().
2440 */
2441 void account_page_cleaned(struct page *page, struct address_space *mapping,
2442 struct mem_cgroup *memcg, struct bdi_writeback *wb)
2443 {
2444 if (mapping_cap_account_dirty(mapping)) {
2445 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2446 dec_zone_page_state(page, NR_FILE_DIRTY);
2447 dec_wb_stat(wb, WB_RECLAIMABLE);
2448 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2449 }
2450 }
2451
2452 /*
2453 * For address_spaces which do not use buffers. Just tag the page as dirty in
2454 * its radix tree.
2455 *
2456 * This is also used when a single buffer is being dirtied: we want to set the
2457 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2458 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2459 *
2460 * The caller must ensure this doesn't race with truncation. Most will simply
2461 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2462 * the pte lock held, which also locks out truncation.
2463 */
2464 int __set_page_dirty_nobuffers(struct page *page)
2465 {
2466 struct mem_cgroup *memcg;
2467
2468 memcg = mem_cgroup_begin_page_stat(page);
2469 if (!TestSetPageDirty(page)) {
2470 struct address_space *mapping = page_mapping(page);
2471 unsigned long flags;
2472
2473 if (!mapping) {
2474 mem_cgroup_end_page_stat(memcg);
2475 return 1;
2476 }
2477
2478 spin_lock_irqsave(&mapping->tree_lock, flags);
2479 BUG_ON(page_mapping(page) != mapping);
2480 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2481 account_page_dirtied(page, mapping, memcg);
2482 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2483 PAGECACHE_TAG_DIRTY);
2484 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2485 mem_cgroup_end_page_stat(memcg);
2486
2487 if (mapping->host) {
2488 /* !PageAnon && !swapper_space */
2489 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2490 }
2491 return 1;
2492 }
2493 mem_cgroup_end_page_stat(memcg);
2494 return 0;
2495 }
2496 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2497
2498 /*
2499 * Call this whenever redirtying a page, to de-account the dirty counters
2500 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2501 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2502 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2503 * control.
2504 */
2505 void account_page_redirty(struct page *page)
2506 {
2507 struct address_space *mapping = page->mapping;
2508
2509 if (mapping && mapping_cap_account_dirty(mapping)) {
2510 struct inode *inode = mapping->host;
2511 struct bdi_writeback *wb;
2512 bool locked;
2513
2514 wb = unlocked_inode_to_wb_begin(inode, &locked);
2515 current->nr_dirtied--;
2516 dec_zone_page_state(page, NR_DIRTIED);
2517 dec_wb_stat(wb, WB_DIRTIED);
2518 unlocked_inode_to_wb_end(inode, locked);
2519 }
2520 }
2521 EXPORT_SYMBOL(account_page_redirty);
2522
2523 /*
2524 * When a writepage implementation decides that it doesn't want to write this
2525 * page for some reason, it should redirty the locked page via
2526 * redirty_page_for_writepage() and it should then unlock the page and return 0
2527 */
2528 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2529 {
2530 int ret;
2531
2532 wbc->pages_skipped++;
2533 ret = __set_page_dirty_nobuffers(page);
2534 account_page_redirty(page);
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(redirty_page_for_writepage);
2538
2539 /*
2540 * Dirty a page.
2541 *
2542 * For pages with a mapping this should be done under the page lock
2543 * for the benefit of asynchronous memory errors who prefer a consistent
2544 * dirty state. This rule can be broken in some special cases,
2545 * but should be better not to.
2546 *
2547 * If the mapping doesn't provide a set_page_dirty a_op, then
2548 * just fall through and assume that it wants buffer_heads.
2549 */
2550 int set_page_dirty(struct page *page)
2551 {
2552 struct address_space *mapping = page_mapping(page);
2553
2554 if (likely(mapping)) {
2555 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556 /*
2557 * readahead/lru_deactivate_page could remain
2558 * PG_readahead/PG_reclaim due to race with end_page_writeback
2559 * About readahead, if the page is written, the flags would be
2560 * reset. So no problem.
2561 * About lru_deactivate_page, if the page is redirty, the flag
2562 * will be reset. So no problem. but if the page is used by readahead
2563 * it will confuse readahead and make it restart the size rampup
2564 * process. But it's a trivial problem.
2565 */
2566 if (PageReclaim(page))
2567 ClearPageReclaim(page);
2568 #ifdef CONFIG_BLOCK
2569 if (!spd)
2570 spd = __set_page_dirty_buffers;
2571 #endif
2572 return (*spd)(page);
2573 }
2574 if (!PageDirty(page)) {
2575 if (!TestSetPageDirty(page))
2576 return 1;
2577 }
2578 return 0;
2579 }
2580 EXPORT_SYMBOL(set_page_dirty);
2581
2582 /*
2583 * set_page_dirty() is racy if the caller has no reference against
2584 * page->mapping->host, and if the page is unlocked. This is because another
2585 * CPU could truncate the page off the mapping and then free the mapping.
2586 *
2587 * Usually, the page _is_ locked, or the caller is a user-space process which
2588 * holds a reference on the inode by having an open file.
2589 *
2590 * In other cases, the page should be locked before running set_page_dirty().
2591 */
2592 int set_page_dirty_lock(struct page *page)
2593 {
2594 int ret;
2595
2596 lock_page(page);
2597 ret = set_page_dirty(page);
2598 unlock_page(page);
2599 return ret;
2600 }
2601 EXPORT_SYMBOL(set_page_dirty_lock);
2602
2603 /*
2604 * This cancels just the dirty bit on the kernel page itself, it does NOT
2605 * actually remove dirty bits on any mmap's that may be around. It also
2606 * leaves the page tagged dirty, so any sync activity will still find it on
2607 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608 * look at the dirty bits in the VM.
2609 *
2610 * Doing this should *normally* only ever be done when a page is truncated,
2611 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612 * this when it notices that somebody has cleaned out all the buffers on a
2613 * page without actually doing it through the VM. Can you say "ext3 is
2614 * horribly ugly"? Thought you could.
2615 */
2616 void cancel_dirty_page(struct page *page)
2617 {
2618 struct address_space *mapping = page_mapping(page);
2619
2620 if (mapping_cap_account_dirty(mapping)) {
2621 struct inode *inode = mapping->host;
2622 struct bdi_writeback *wb;
2623 struct mem_cgroup *memcg;
2624 bool locked;
2625
2626 memcg = mem_cgroup_begin_page_stat(page);
2627 wb = unlocked_inode_to_wb_begin(inode, &locked);
2628
2629 if (TestClearPageDirty(page))
2630 account_page_cleaned(page, mapping, memcg, wb);
2631
2632 unlocked_inode_to_wb_end(inode, locked);
2633 mem_cgroup_end_page_stat(memcg);
2634 } else {
2635 ClearPageDirty(page);
2636 }
2637 }
2638 EXPORT_SYMBOL(cancel_dirty_page);
2639
2640 /*
2641 * Clear a page's dirty flag, while caring for dirty memory accounting.
2642 * Returns true if the page was previously dirty.
2643 *
2644 * This is for preparing to put the page under writeout. We leave the page
2645 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2646 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2647 * implementation will run either set_page_writeback() or set_page_dirty(),
2648 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2649 * back into sync.
2650 *
2651 * This incoherency between the page's dirty flag and radix-tree tag is
2652 * unfortunate, but it only exists while the page is locked.
2653 */
2654 int clear_page_dirty_for_io(struct page *page)
2655 {
2656 struct address_space *mapping = page_mapping(page);
2657 int ret = 0;
2658
2659 BUG_ON(!PageLocked(page));
2660
2661 if (mapping && mapping_cap_account_dirty(mapping)) {
2662 struct inode *inode = mapping->host;
2663 struct bdi_writeback *wb;
2664 struct mem_cgroup *memcg;
2665 bool locked;
2666
2667 /*
2668 * Yes, Virginia, this is indeed insane.
2669 *
2670 * We use this sequence to make sure that
2671 * (a) we account for dirty stats properly
2672 * (b) we tell the low-level filesystem to
2673 * mark the whole page dirty if it was
2674 * dirty in a pagetable. Only to then
2675 * (c) clean the page again and return 1 to
2676 * cause the writeback.
2677 *
2678 * This way we avoid all nasty races with the
2679 * dirty bit in multiple places and clearing
2680 * them concurrently from different threads.
2681 *
2682 * Note! Normally the "set_page_dirty(page)"
2683 * has no effect on the actual dirty bit - since
2684 * that will already usually be set. But we
2685 * need the side effects, and it can help us
2686 * avoid races.
2687 *
2688 * We basically use the page "master dirty bit"
2689 * as a serialization point for all the different
2690 * threads doing their things.
2691 */
2692 if (page_mkclean(page))
2693 set_page_dirty(page);
2694 /*
2695 * We carefully synchronise fault handlers against
2696 * installing a dirty pte and marking the page dirty
2697 * at this point. We do this by having them hold the
2698 * page lock while dirtying the page, and pages are
2699 * always locked coming in here, so we get the desired
2700 * exclusion.
2701 */
2702 memcg = mem_cgroup_begin_page_stat(page);
2703 wb = unlocked_inode_to_wb_begin(inode, &locked);
2704 if (TestClearPageDirty(page)) {
2705 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2706 dec_zone_page_state(page, NR_FILE_DIRTY);
2707 dec_wb_stat(wb, WB_RECLAIMABLE);
2708 ret = 1;
2709 }
2710 unlocked_inode_to_wb_end(inode, locked);
2711 mem_cgroup_end_page_stat(memcg);
2712 return ret;
2713 }
2714 return TestClearPageDirty(page);
2715 }
2716 EXPORT_SYMBOL(clear_page_dirty_for_io);
2717
2718 int test_clear_page_writeback(struct page *page)
2719 {
2720 struct address_space *mapping = page_mapping(page);
2721 struct mem_cgroup *memcg;
2722 int ret;
2723
2724 memcg = mem_cgroup_begin_page_stat(page);
2725 if (mapping) {
2726 struct inode *inode = mapping->host;
2727 struct backing_dev_info *bdi = inode_to_bdi(inode);
2728 unsigned long flags;
2729
2730 spin_lock_irqsave(&mapping->tree_lock, flags);
2731 ret = TestClearPageWriteback(page);
2732 if (ret) {
2733 radix_tree_tag_clear(&mapping->page_tree,
2734 page_index(page),
2735 PAGECACHE_TAG_WRITEBACK);
2736 if (bdi_cap_account_writeback(bdi)) {
2737 struct bdi_writeback *wb = inode_to_wb(inode);
2738
2739 __dec_wb_stat(wb, WB_WRITEBACK);
2740 __wb_writeout_inc(wb);
2741 }
2742 }
2743 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2744 } else {
2745 ret = TestClearPageWriteback(page);
2746 }
2747 if (ret) {
2748 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2749 dec_zone_page_state(page, NR_WRITEBACK);
2750 inc_zone_page_state(page, NR_WRITTEN);
2751 }
2752 mem_cgroup_end_page_stat(memcg);
2753 return ret;
2754 }
2755
2756 int __test_set_page_writeback(struct page *page, bool keep_write)
2757 {
2758 struct address_space *mapping = page_mapping(page);
2759 struct mem_cgroup *memcg;
2760 int ret;
2761
2762 memcg = mem_cgroup_begin_page_stat(page);
2763 if (mapping) {
2764 struct inode *inode = mapping->host;
2765 struct backing_dev_info *bdi = inode_to_bdi(inode);
2766 unsigned long flags;
2767
2768 spin_lock_irqsave(&mapping->tree_lock, flags);
2769 ret = TestSetPageWriteback(page);
2770 if (!ret) {
2771 radix_tree_tag_set(&mapping->page_tree,
2772 page_index(page),
2773 PAGECACHE_TAG_WRITEBACK);
2774 if (bdi_cap_account_writeback(bdi))
2775 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2776 }
2777 if (!PageDirty(page))
2778 radix_tree_tag_clear(&mapping->page_tree,
2779 page_index(page),
2780 PAGECACHE_TAG_DIRTY);
2781 if (!keep_write)
2782 radix_tree_tag_clear(&mapping->page_tree,
2783 page_index(page),
2784 PAGECACHE_TAG_TOWRITE);
2785 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2786 } else {
2787 ret = TestSetPageWriteback(page);
2788 }
2789 if (!ret) {
2790 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2791 inc_zone_page_state(page, NR_WRITEBACK);
2792 }
2793 mem_cgroup_end_page_stat(memcg);
2794 return ret;
2795
2796 }
2797 EXPORT_SYMBOL(__test_set_page_writeback);
2798
2799 /*
2800 * Return true if any of the pages in the mapping are marked with the
2801 * passed tag.
2802 */
2803 int mapping_tagged(struct address_space *mapping, int tag)
2804 {
2805 return radix_tree_tagged(&mapping->page_tree, tag);
2806 }
2807 EXPORT_SYMBOL(mapping_tagged);
2808
2809 /**
2810 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2811 * @page: The page to wait on.
2812 *
2813 * This function determines if the given page is related to a backing device
2814 * that requires page contents to be held stable during writeback. If so, then
2815 * it will wait for any pending writeback to complete.
2816 */
2817 void wait_for_stable_page(struct page *page)
2818 {
2819 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2820 wait_on_page_writeback(page);
2821 }
2822 EXPORT_SYMBOL_GPL(wait_for_stable_page);