battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 #include <linux/sched/sysctl.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/tlb.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mmu_context.h>
39 #include "internal.h"
40
41 #if 0
42 #define kenter(FMT, ...) \
43 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
44 #define kleave(FMT, ...) \
45 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
46 #define kdebug(FMT, ...) \
47 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #else
49 #define kenter(FMT, ...) \
50 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
51 #define kleave(FMT, ...) \
52 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
53 #define kdebug(FMT, ...) \
54 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
55 #endif
56
57 void *high_memory;
58 struct page *mem_map;
59 unsigned long max_mapnr;
60 unsigned long num_physpages;
61 unsigned long highest_memmap_pfn;
62 struct percpu_counter vm_committed_as;
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50; /* default is 50% */
65 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
66 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
67 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
68 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
69 int heap_stack_gap = 0;
70
71 atomic_long_t mmap_pages_allocated;
72
73 /*
74 * The global memory commitment made in the system can be a metric
75 * that can be used to drive ballooning decisions when Linux is hosted
76 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
77 * balancing memory across competing virtual machines that are hosted.
78 * Several metrics drive this policy engine including the guest reported
79 * memory commitment.
80 */
81 unsigned long vm_memory_committed(void)
82 {
83 return percpu_counter_read_positive(&vm_committed_as);
84 }
85
86 EXPORT_SYMBOL_GPL(vm_memory_committed);
87
88 EXPORT_SYMBOL(mem_map);
89 EXPORT_SYMBOL(num_physpages);
90
91 /* list of mapped, potentially shareable regions */
92 static struct kmem_cache *vm_region_jar;
93 struct rb_root nommu_region_tree = RB_ROOT;
94 DECLARE_RWSEM(nommu_region_sem);
95
96 const struct vm_operations_struct generic_file_vm_ops = {
97 };
98
99 /*
100 * Return the total memory allocated for this pointer, not
101 * just what the caller asked for.
102 *
103 * Doesn't have to be accurate, i.e. may have races.
104 */
105 unsigned int kobjsize(const void *objp)
106 {
107 struct page *page;
108
109 /*
110 * If the object we have should not have ksize performed on it,
111 * return size of 0
112 */
113 if (!objp || !virt_addr_valid(objp))
114 return 0;
115
116 page = virt_to_head_page(objp);
117
118 /*
119 * If the allocator sets PageSlab, we know the pointer came from
120 * kmalloc().
121 */
122 if (PageSlab(page))
123 return ksize(objp);
124
125 /*
126 * If it's not a compound page, see if we have a matching VMA
127 * region. This test is intentionally done in reverse order,
128 * so if there's no VMA, we still fall through and hand back
129 * PAGE_SIZE for 0-order pages.
130 */
131 if (!PageCompound(page)) {
132 struct vm_area_struct *vma;
133
134 vma = find_vma(current->mm, (unsigned long)objp);
135 if (vma)
136 return vma->vm_end - vma->vm_start;
137 }
138
139 /*
140 * The ksize() function is only guaranteed to work for pointers
141 * returned by kmalloc(). So handle arbitrary pointers here.
142 */
143 return PAGE_SIZE << compound_order(page);
144 }
145
146 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147 unsigned long start, unsigned long nr_pages,
148 unsigned int foll_flags, struct page **pages,
149 struct vm_area_struct **vmas, int *nonblocking)
150 {
151 struct vm_area_struct *vma;
152 unsigned long vm_flags;
153 int i;
154
155 /* calculate required read or write permissions.
156 * If FOLL_FORCE is set, we only require the "MAY" flags.
157 */
158 vm_flags = (foll_flags & FOLL_WRITE) ?
159 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160 vm_flags &= (foll_flags & FOLL_FORCE) ?
161 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162
163 for (i = 0; i < nr_pages; i++) {
164 vma = find_vma(mm, start);
165 if (!vma)
166 goto finish_or_fault;
167
168 /* protect what we can, including chardevs */
169 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170 !(vm_flags & vma->vm_flags))
171 goto finish_or_fault;
172
173 if (pages) {
174 pages[i] = virt_to_page(start);
175 if (pages[i])
176 page_cache_get(pages[i]);
177 }
178 if (vmas)
179 vmas[i] = vma;
180 start = (start + PAGE_SIZE) & PAGE_MASK;
181 }
182
183 return i;
184
185 finish_or_fault:
186 return i ? : -EFAULT;
187 }
188
189 /*
190 * get a list of pages in an address range belonging to the specified process
191 * and indicate the VMA that covers each page
192 * - this is potentially dodgy as we may end incrementing the page count of a
193 * slab page or a secondary page from a compound page
194 * - don't permit access to VMAs that don't support it, such as I/O mappings
195 */
196 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197 unsigned long start, unsigned long nr_pages,
198 int write, int force, struct page **pages,
199 struct vm_area_struct **vmas)
200 {
201 int flags = 0;
202
203 if (write)
204 flags |= FOLL_WRITE;
205 if (force)
206 flags |= FOLL_FORCE;
207
208 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209 NULL);
210 }
211 EXPORT_SYMBOL(get_user_pages);
212
213 /**
214 * follow_pfn - look up PFN at a user virtual address
215 * @vma: memory mapping
216 * @address: user virtual address
217 * @pfn: location to store found PFN
218 *
219 * Only IO mappings and raw PFN mappings are allowed.
220 *
221 * Returns zero and the pfn at @pfn on success, -ve otherwise.
222 */
223 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224 unsigned long *pfn)
225 {
226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227 return -EINVAL;
228
229 *pfn = address >> PAGE_SHIFT;
230 return 0;
231 }
232 EXPORT_SYMBOL(follow_pfn);
233
234 LIST_HEAD(vmap_area_list);
235
236 void vfree(const void *addr)
237 {
238 kfree(addr);
239 }
240 EXPORT_SYMBOL(vfree);
241
242 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243 {
244 /*
245 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246 * returns only a logical address.
247 */
248 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 }
250 EXPORT_SYMBOL(__vmalloc);
251
252 void *vmalloc_user(unsigned long size)
253 {
254 void *ret;
255
256 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257 PAGE_KERNEL);
258 if (ret) {
259 struct vm_area_struct *vma;
260
261 down_write(&current->mm->mmap_sem);
262 vma = find_vma(current->mm, (unsigned long)ret);
263 if (vma)
264 vma->vm_flags |= VM_USERMAP;
265 up_write(&current->mm->mmap_sem);
266 }
267
268 return ret;
269 }
270 EXPORT_SYMBOL(vmalloc_user);
271
272 struct page *vmalloc_to_page(const void *addr)
273 {
274 return virt_to_page(addr);
275 }
276 EXPORT_SYMBOL(vmalloc_to_page);
277
278 unsigned long vmalloc_to_pfn(const void *addr)
279 {
280 return page_to_pfn(virt_to_page(addr));
281 }
282 EXPORT_SYMBOL(vmalloc_to_pfn);
283
284 long vread(char *buf, char *addr, unsigned long count)
285 {
286 memcpy(buf, addr, count);
287 return count;
288 }
289
290 long vwrite(char *buf, char *addr, unsigned long count)
291 {
292 /* Don't allow overflow */
293 if ((unsigned long) addr + count < count)
294 count = -(unsigned long) addr;
295
296 memcpy(addr, buf, count);
297 return(count);
298 }
299
300 /*
301 * vmalloc - allocate virtually continguos memory
302 *
303 * @size: allocation size
304 *
305 * Allocate enough pages to cover @size from the page level
306 * allocator and map them into continguos kernel virtual space.
307 *
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
310 */
311 void *vmalloc(unsigned long size)
312 {
313 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
314 }
315 EXPORT_SYMBOL(vmalloc);
316
317 /*
318 * vzalloc - allocate virtually continguos memory with zero fill
319 *
320 * @size: allocation size
321 *
322 * Allocate enough pages to cover @size from the page level
323 * allocator and map them into continguos kernel virtual space.
324 * The memory allocated is set to zero.
325 *
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
328 */
329 void *vzalloc(unsigned long size)
330 {
331 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
332 PAGE_KERNEL);
333 }
334 EXPORT_SYMBOL(vzalloc);
335
336 /**
337 * vmalloc_node - allocate memory on a specific node
338 * @size: allocation size
339 * @node: numa node
340 *
341 * Allocate enough pages to cover @size from the page level
342 * allocator and map them into contiguous kernel virtual space.
343 *
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
346 */
347 void *vmalloc_node(unsigned long size, int node)
348 {
349 return vmalloc(size);
350 }
351 EXPORT_SYMBOL(vmalloc_node);
352
353 /**
354 * vzalloc_node - allocate memory on a specific node with zero fill
355 * @size: allocation size
356 * @node: numa node
357 *
358 * Allocate enough pages to cover @size from the page level
359 * allocator and map them into contiguous kernel virtual space.
360 * The memory allocated is set to zero.
361 *
362 * For tight control over page level allocator and protection flags
363 * use __vmalloc() instead.
364 */
365 void *vzalloc_node(unsigned long size, int node)
366 {
367 return vzalloc(size);
368 }
369 EXPORT_SYMBOL(vzalloc_node);
370
371 #ifndef PAGE_KERNEL_EXEC
372 # define PAGE_KERNEL_EXEC PAGE_KERNEL
373 #endif
374
375 /**
376 * vmalloc_exec - allocate virtually contiguous, executable memory
377 * @size: allocation size
378 *
379 * Kernel-internal function to allocate enough pages to cover @size
380 * the page level allocator and map them into contiguous and
381 * executable kernel virtual space.
382 *
383 * For tight control over page level allocator and protection flags
384 * use __vmalloc() instead.
385 */
386
387 void *vmalloc_exec(unsigned long size)
388 {
389 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
390 }
391
392 /**
393 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
394 * @size: allocation size
395 *
396 * Allocate enough 32bit PA addressable pages to cover @size from the
397 * page level allocator and map them into continguos kernel virtual space.
398 */
399 void *vmalloc_32(unsigned long size)
400 {
401 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
402 }
403 EXPORT_SYMBOL(vmalloc_32);
404
405 /**
406 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
407 * @size: allocation size
408 *
409 * The resulting memory area is 32bit addressable and zeroed so it can be
410 * mapped to userspace without leaking data.
411 *
412 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
413 * remap_vmalloc_range() are permissible.
414 */
415 void *vmalloc_32_user(unsigned long size)
416 {
417 /*
418 * We'll have to sort out the ZONE_DMA bits for 64-bit,
419 * but for now this can simply use vmalloc_user() directly.
420 */
421 return vmalloc_user(size);
422 }
423 EXPORT_SYMBOL(vmalloc_32_user);
424
425 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
426 {
427 BUG();
428 return NULL;
429 }
430 EXPORT_SYMBOL(vmap);
431
432 void vunmap(const void *addr)
433 {
434 BUG();
435 }
436 EXPORT_SYMBOL(vunmap);
437
438 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
439 {
440 BUG();
441 return NULL;
442 }
443 EXPORT_SYMBOL(vm_map_ram);
444
445 void vm_unmap_ram(const void *mem, unsigned int count)
446 {
447 BUG();
448 }
449 EXPORT_SYMBOL(vm_unmap_ram);
450
451 void vm_unmap_aliases(void)
452 {
453 }
454 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
455
456 /*
457 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
458 * have one.
459 */
460 void __attribute__((weak)) vmalloc_sync_all(void)
461 {
462 }
463
464 /**
465 * alloc_vm_area - allocate a range of kernel address space
466 * @size: size of the area
467 *
468 * Returns: NULL on failure, vm_struct on success
469 *
470 * This function reserves a range of kernel address space, and
471 * allocates pagetables to map that range. No actual mappings
472 * are created. If the kernel address space is not shared
473 * between processes, it syncs the pagetable across all
474 * processes.
475 */
476 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
477 {
478 BUG();
479 return NULL;
480 }
481 EXPORT_SYMBOL_GPL(alloc_vm_area);
482
483 void free_vm_area(struct vm_struct *area)
484 {
485 BUG();
486 }
487 EXPORT_SYMBOL_GPL(free_vm_area);
488
489 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
490 struct page *page)
491 {
492 return -EINVAL;
493 }
494 EXPORT_SYMBOL(vm_insert_page);
495
496 /*
497 * sys_brk() for the most part doesn't need the global kernel
498 * lock, except when an application is doing something nasty
499 * like trying to un-brk an area that has already been mapped
500 * to a regular file. in this case, the unmapping will need
501 * to invoke file system routines that need the global lock.
502 */
503 SYSCALL_DEFINE1(brk, unsigned long, brk)
504 {
505 struct mm_struct *mm = current->mm;
506
507 if (brk < mm->start_brk || brk > mm->context.end_brk)
508 return mm->brk;
509
510 if (mm->brk == brk)
511 return mm->brk;
512
513 /*
514 * Always allow shrinking brk
515 */
516 if (brk <= mm->brk) {
517 mm->brk = brk;
518 return brk;
519 }
520
521 /*
522 * Ok, looks good - let it rip.
523 */
524 flush_icache_range(mm->brk, brk);
525 return mm->brk = brk;
526 }
527
528 /*
529 * initialise the VMA and region record slabs
530 */
531 void __init mmap_init(void)
532 {
533 int ret;
534
535 ret = percpu_counter_init(&vm_committed_as, 0);
536 VM_BUG_ON(ret);
537 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
538 }
539
540 /*
541 * validate the region tree
542 * - the caller must hold the region lock
543 */
544 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
545 static noinline void validate_nommu_regions(void)
546 {
547 struct vm_region *region, *last;
548 struct rb_node *p, *lastp;
549
550 lastp = rb_first(&nommu_region_tree);
551 if (!lastp)
552 return;
553
554 last = rb_entry(lastp, struct vm_region, vm_rb);
555 BUG_ON(unlikely(last->vm_end <= last->vm_start));
556 BUG_ON(unlikely(last->vm_top < last->vm_end));
557
558 while ((p = rb_next(lastp))) {
559 region = rb_entry(p, struct vm_region, vm_rb);
560 last = rb_entry(lastp, struct vm_region, vm_rb);
561
562 BUG_ON(unlikely(region->vm_end <= region->vm_start));
563 BUG_ON(unlikely(region->vm_top < region->vm_end));
564 BUG_ON(unlikely(region->vm_start < last->vm_top));
565
566 lastp = p;
567 }
568 }
569 #else
570 static void validate_nommu_regions(void)
571 {
572 }
573 #endif
574
575 /*
576 * add a region into the global tree
577 */
578 static void add_nommu_region(struct vm_region *region)
579 {
580 struct vm_region *pregion;
581 struct rb_node **p, *parent;
582
583 validate_nommu_regions();
584
585 parent = NULL;
586 p = &nommu_region_tree.rb_node;
587 while (*p) {
588 parent = *p;
589 pregion = rb_entry(parent, struct vm_region, vm_rb);
590 if (region->vm_start < pregion->vm_start)
591 p = &(*p)->rb_left;
592 else if (region->vm_start > pregion->vm_start)
593 p = &(*p)->rb_right;
594 else if (pregion == region)
595 return;
596 else
597 BUG();
598 }
599
600 rb_link_node(&region->vm_rb, parent, p);
601 rb_insert_color(&region->vm_rb, &nommu_region_tree);
602
603 validate_nommu_regions();
604 }
605
606 /*
607 * delete a region from the global tree
608 */
609 static void delete_nommu_region(struct vm_region *region)
610 {
611 BUG_ON(!nommu_region_tree.rb_node);
612
613 validate_nommu_regions();
614 rb_erase(&region->vm_rb, &nommu_region_tree);
615 validate_nommu_regions();
616 }
617
618 /*
619 * free a contiguous series of pages
620 */
621 static void free_page_series(unsigned long from, unsigned long to)
622 {
623 for (; from < to; from += PAGE_SIZE) {
624 struct page *page = virt_to_page(from);
625
626 kdebug("- free %lx", from);
627 atomic_long_dec(&mmap_pages_allocated);
628 if (page_count(page) != 1)
629 kdebug("free page %p: refcount not one: %d",
630 page, page_count(page));
631 put_page(page);
632 }
633 }
634
635 /*
636 * release a reference to a region
637 * - the caller must hold the region semaphore for writing, which this releases
638 * - the region may not have been added to the tree yet, in which case vm_top
639 * will equal vm_start
640 */
641 static void __put_nommu_region(struct vm_region *region)
642 __releases(nommu_region_sem)
643 {
644 kenter("%p{%d}", region, region->vm_usage);
645
646 BUG_ON(!nommu_region_tree.rb_node);
647
648 if (--region->vm_usage == 0) {
649 if (region->vm_top > region->vm_start)
650 delete_nommu_region(region);
651 up_write(&nommu_region_sem);
652
653 if (region->vm_file)
654 fput(region->vm_file);
655
656 /* IO memory and memory shared directly out of the pagecache
657 * from ramfs/tmpfs mustn't be released here */
658 if (region->vm_flags & VM_MAPPED_COPY) {
659 kdebug("free series");
660 free_page_series(region->vm_start, region->vm_top);
661 }
662 kmem_cache_free(vm_region_jar, region);
663 } else {
664 up_write(&nommu_region_sem);
665 }
666 }
667
668 /*
669 * release a reference to a region
670 */
671 static void put_nommu_region(struct vm_region *region)
672 {
673 down_write(&nommu_region_sem);
674 __put_nommu_region(region);
675 }
676
677 /*
678 * update protection on a vma
679 */
680 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
681 {
682 #ifdef CONFIG_MPU
683 struct mm_struct *mm = vma->vm_mm;
684 long start = vma->vm_start & PAGE_MASK;
685 while (start < vma->vm_end) {
686 protect_page(mm, start, flags);
687 start += PAGE_SIZE;
688 }
689 update_protections(mm);
690 #endif
691 }
692
693 /*
694 * add a VMA into a process's mm_struct in the appropriate place in the list
695 * and tree and add to the address space's page tree also if not an anonymous
696 * page
697 * - should be called with mm->mmap_sem held writelocked
698 */
699 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
700 {
701 struct vm_area_struct *pvma, *prev;
702 struct address_space *mapping;
703 struct rb_node **p, *parent, *rb_prev;
704
705 kenter(",%p", vma);
706
707 BUG_ON(!vma->vm_region);
708
709 mm->map_count++;
710 vma->vm_mm = mm;
711
712 protect_vma(vma, vma->vm_flags);
713
714 /* add the VMA to the mapping */
715 if (vma->vm_file) {
716 mapping = vma->vm_file->f_mapping;
717
718 mutex_lock(&mapping->i_mmap_mutex);
719 flush_dcache_mmap_lock(mapping);
720 vma_interval_tree_insert(vma, &mapping->i_mmap);
721 flush_dcache_mmap_unlock(mapping);
722 mutex_unlock(&mapping->i_mmap_mutex);
723 }
724
725 /* add the VMA to the tree */
726 parent = rb_prev = NULL;
727 p = &mm->mm_rb.rb_node;
728 while (*p) {
729 parent = *p;
730 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
731
732 /* sort by: start addr, end addr, VMA struct addr in that order
733 * (the latter is necessary as we may get identical VMAs) */
734 if (vma->vm_start < pvma->vm_start)
735 p = &(*p)->rb_left;
736 else if (vma->vm_start > pvma->vm_start) {
737 rb_prev = parent;
738 p = &(*p)->rb_right;
739 } else if (vma->vm_end < pvma->vm_end)
740 p = &(*p)->rb_left;
741 else if (vma->vm_end > pvma->vm_end) {
742 rb_prev = parent;
743 p = &(*p)->rb_right;
744 } else if (vma < pvma)
745 p = &(*p)->rb_left;
746 else if (vma > pvma) {
747 rb_prev = parent;
748 p = &(*p)->rb_right;
749 } else
750 BUG();
751 }
752
753 rb_link_node(&vma->vm_rb, parent, p);
754 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
755
756 /* add VMA to the VMA list also */
757 prev = NULL;
758 if (rb_prev)
759 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
760
761 __vma_link_list(mm, vma, prev, parent);
762 }
763
764 /*
765 * delete a VMA from its owning mm_struct and address space
766 */
767 static void delete_vma_from_mm(struct vm_area_struct *vma)
768 {
769 int i;
770 struct address_space *mapping;
771 struct mm_struct *mm = vma->vm_mm;
772 struct task_struct *curr = current;
773
774 kenter("%p", vma);
775
776 protect_vma(vma, 0);
777
778 mm->map_count--;
779 for (i = 0; i < VMACACHE_SIZE; i++) {
780 /* if the vma is cached, invalidate the entire cache */
781 if (curr->vmacache[i] == vma) {
782 vmacache_invalidate(curr->mm);
783 break;
784 }
785 }
786
787 /* remove the VMA from the mapping */
788 if (vma->vm_file) {
789 mapping = vma->vm_file->f_mapping;
790
791 mutex_lock(&mapping->i_mmap_mutex);
792 flush_dcache_mmap_lock(mapping);
793 vma_interval_tree_remove(vma, &mapping->i_mmap);
794 flush_dcache_mmap_unlock(mapping);
795 mutex_unlock(&mapping->i_mmap_mutex);
796 }
797
798 /* remove from the MM's tree and list */
799 rb_erase(&vma->vm_rb, &mm->mm_rb);
800
801 if (vma->vm_prev)
802 vma->vm_prev->vm_next = vma->vm_next;
803 else
804 mm->mmap = vma->vm_next;
805
806 if (vma->vm_next)
807 vma->vm_next->vm_prev = vma->vm_prev;
808 }
809
810 /*
811 * destroy a VMA record
812 */
813 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
814 {
815 kenter("%p", vma);
816 if (vma->vm_ops && vma->vm_ops->close)
817 vma->vm_ops->close(vma);
818 if (vma->vm_file)
819 fput(vma->vm_file);
820 put_nommu_region(vma->vm_region);
821 kmem_cache_free(vm_area_cachep, vma);
822 }
823
824 /*
825 * look up the first VMA in which addr resides, NULL if none
826 * - should be called with mm->mmap_sem at least held readlocked
827 */
828 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
829 {
830 struct vm_area_struct *vma;
831
832 /* check the cache first */
833 vma = vmacache_find(mm, addr);
834 if (likely(vma))
835 return vma;
836
837 /* trawl the list (there may be multiple mappings in which addr
838 * resides) */
839 for (vma = mm->mmap; vma; vma = vma->vm_next) {
840 if (vma->vm_start > addr)
841 return NULL;
842 if (vma->vm_end > addr) {
843 vmacache_update(addr, vma);
844 return vma;
845 }
846 }
847
848 return NULL;
849 }
850 EXPORT_SYMBOL(find_vma);
851
852 /*
853 * find a VMA
854 * - we don't extend stack VMAs under NOMMU conditions
855 */
856 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
857 {
858 return find_vma(mm, addr);
859 }
860
861 /*
862 * expand a stack to a given address
863 * - not supported under NOMMU conditions
864 */
865 int expand_stack(struct vm_area_struct *vma, unsigned long address)
866 {
867 return -ENOMEM;
868 }
869
870 /*
871 * look up the first VMA exactly that exactly matches addr
872 * - should be called with mm->mmap_sem at least held readlocked
873 */
874 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
875 unsigned long addr,
876 unsigned long len)
877 {
878 struct vm_area_struct *vma;
879 unsigned long end = addr + len;
880
881 /* check the cache first */
882 vma = vmacache_find_exact(mm, addr, end);
883 if (vma)
884 return vma;
885
886 /* trawl the list (there may be multiple mappings in which addr
887 * resides) */
888 for (vma = mm->mmap; vma; vma = vma->vm_next) {
889 if (vma->vm_start < addr)
890 continue;
891 if (vma->vm_start > addr)
892 return NULL;
893 if (vma->vm_end == end) {
894 vmacache_update(addr, vma);
895 return vma;
896 }
897 }
898
899 return NULL;
900 }
901
902 /*
903 * determine whether a mapping should be permitted and, if so, what sort of
904 * mapping we're capable of supporting
905 */
906 static int validate_mmap_request(struct file *file,
907 unsigned long addr,
908 unsigned long len,
909 unsigned long prot,
910 unsigned long flags,
911 unsigned long pgoff,
912 unsigned long *_capabilities)
913 {
914 unsigned long capabilities, rlen;
915 int ret;
916
917 /* do the simple checks first */
918 if (flags & MAP_FIXED) {
919 printk(KERN_DEBUG
920 "%d: Can't do fixed-address/overlay mmap of RAM\n",
921 current->pid);
922 return -EINVAL;
923 }
924
925 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
926 (flags & MAP_TYPE) != MAP_SHARED)
927 return -EINVAL;
928
929 if (!len)
930 return -EINVAL;
931
932 /* Careful about overflows.. */
933 rlen = PAGE_ALIGN(len);
934 if (!rlen || rlen > TASK_SIZE)
935 return -ENOMEM;
936
937 /* offset overflow? */
938 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
939 return -EOVERFLOW;
940
941 if (file) {
942 /* validate file mapping requests */
943 struct address_space *mapping;
944
945 /* files must support mmap */
946 if (!file->f_op || !file->f_op->mmap)
947 return -ENODEV;
948
949 /* work out if what we've got could possibly be shared
950 * - we support chardevs that provide their own "memory"
951 * - we support files/blockdevs that are memory backed
952 */
953 mapping = file->f_mapping;
954 if (!mapping)
955 mapping = file_inode(file)->i_mapping;
956
957 capabilities = 0;
958 if (mapping && mapping->backing_dev_info)
959 capabilities = mapping->backing_dev_info->capabilities;
960
961 if (!capabilities) {
962 /* no explicit capabilities set, so assume some
963 * defaults */
964 switch (file_inode(file)->i_mode & S_IFMT) {
965 case S_IFREG:
966 case S_IFBLK:
967 capabilities = BDI_CAP_MAP_COPY;
968 break;
969
970 case S_IFCHR:
971 capabilities =
972 BDI_CAP_MAP_DIRECT |
973 BDI_CAP_READ_MAP |
974 BDI_CAP_WRITE_MAP;
975 break;
976
977 default:
978 return -EINVAL;
979 }
980 }
981
982 /* eliminate any capabilities that we can't support on this
983 * device */
984 if (!file->f_op->get_unmapped_area)
985 capabilities &= ~BDI_CAP_MAP_DIRECT;
986 if (!file->f_op->read)
987 capabilities &= ~BDI_CAP_MAP_COPY;
988
989 /* The file shall have been opened with read permission. */
990 if (!(file->f_mode & FMODE_READ))
991 return -EACCES;
992
993 if (flags & MAP_SHARED) {
994 /* do checks for writing, appending and locking */
995 if ((prot & PROT_WRITE) &&
996 !(file->f_mode & FMODE_WRITE))
997 return -EACCES;
998
999 if (IS_APPEND(file_inode(file)) &&
1000 (file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1002
1003 if (locks_verify_locked(file_inode(file)))
1004 return -EAGAIN;
1005
1006 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1007 return -ENODEV;
1008
1009 /* we mustn't privatise shared mappings */
1010 capabilities &= ~BDI_CAP_MAP_COPY;
1011 }
1012 else {
1013 /* we're going to read the file into private memory we
1014 * allocate */
1015 if (!(capabilities & BDI_CAP_MAP_COPY))
1016 return -ENODEV;
1017
1018 /* we don't permit a private writable mapping to be
1019 * shared with the backing device */
1020 if (prot & PROT_WRITE)
1021 capabilities &= ~BDI_CAP_MAP_DIRECT;
1022 }
1023
1024 if (capabilities & BDI_CAP_MAP_DIRECT) {
1025 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1026 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1027 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1028 ) {
1029 capabilities &= ~BDI_CAP_MAP_DIRECT;
1030 if (flags & MAP_SHARED) {
1031 printk(KERN_WARNING
1032 "MAP_SHARED not completely supported on !MMU\n");
1033 return -EINVAL;
1034 }
1035 }
1036 }
1037
1038 /* handle executable mappings and implied executable
1039 * mappings */
1040 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1041 if (prot & PROT_EXEC)
1042 return -EPERM;
1043 }
1044 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1045 /* handle implication of PROT_EXEC by PROT_READ */
1046 if (current->personality & READ_IMPLIES_EXEC) {
1047 if (capabilities & BDI_CAP_EXEC_MAP)
1048 prot |= PROT_EXEC;
1049 }
1050 }
1051 else if ((prot & PROT_READ) &&
1052 (prot & PROT_EXEC) &&
1053 !(capabilities & BDI_CAP_EXEC_MAP)
1054 ) {
1055 /* backing file is not executable, try to copy */
1056 capabilities &= ~BDI_CAP_MAP_DIRECT;
1057 }
1058 }
1059 else {
1060 /* anonymous mappings are always memory backed and can be
1061 * privately mapped
1062 */
1063 capabilities = BDI_CAP_MAP_COPY;
1064
1065 /* handle PROT_EXEC implication by PROT_READ */
1066 if ((prot & PROT_READ) &&
1067 (current->personality & READ_IMPLIES_EXEC))
1068 prot |= PROT_EXEC;
1069 }
1070
1071 /* allow the security API to have its say */
1072 ret = security_mmap_addr(addr);
1073 if (ret < 0)
1074 return ret;
1075
1076 /* looks okay */
1077 *_capabilities = capabilities;
1078 return 0;
1079 }
1080
1081 /*
1082 * we've determined that we can make the mapping, now translate what we
1083 * now know into VMA flags
1084 */
1085 static unsigned long determine_vm_flags(struct file *file,
1086 unsigned long prot,
1087 unsigned long flags,
1088 unsigned long capabilities)
1089 {
1090 unsigned long vm_flags;
1091
1092 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1093 /* vm_flags |= mm->def_flags; */
1094
1095 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1096 /* attempt to share read-only copies of mapped file chunks */
1097 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1098 if (file && !(prot & PROT_WRITE))
1099 vm_flags |= VM_MAYSHARE;
1100 } else {
1101 /* overlay a shareable mapping on the backing device or inode
1102 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1103 * romfs/cramfs */
1104 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1105 if (flags & MAP_SHARED)
1106 vm_flags |= VM_SHARED;
1107 }
1108
1109 /* refuse to let anyone share private mappings with this process if
1110 * it's being traced - otherwise breakpoints set in it may interfere
1111 * with another untraced process
1112 */
1113 if ((flags & MAP_PRIVATE) && current->ptrace)
1114 vm_flags &= ~VM_MAYSHARE;
1115
1116 return vm_flags;
1117 }
1118
1119 /*
1120 * set up a shared mapping on a file (the driver or filesystem provides and
1121 * pins the storage)
1122 */
1123 static int do_mmap_shared_file(struct vm_area_struct *vma)
1124 {
1125 int ret;
1126
1127 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1128 if (ret == 0) {
1129 vma->vm_region->vm_top = vma->vm_region->vm_end;
1130 return 0;
1131 }
1132 if (ret != -ENOSYS)
1133 return ret;
1134
1135 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1136 * opposed to tried but failed) so we can only give a suitable error as
1137 * it's not possible to make a private copy if MAP_SHARED was given */
1138 return -ENODEV;
1139 }
1140
1141 /*
1142 * set up a private mapping or an anonymous shared mapping
1143 */
1144 static int do_mmap_private(struct vm_area_struct *vma,
1145 struct vm_region *region,
1146 unsigned long len,
1147 unsigned long capabilities)
1148 {
1149 struct page *pages;
1150 unsigned long total, point, n;
1151 void *base;
1152 int ret, order;
1153
1154 /* invoke the file's mapping function so that it can keep track of
1155 * shared mappings on devices or memory
1156 * - VM_MAYSHARE will be set if it may attempt to share
1157 */
1158 if (capabilities & BDI_CAP_MAP_DIRECT) {
1159 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1160 if (ret == 0) {
1161 /* shouldn't return success if we're not sharing */
1162 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1163 vma->vm_region->vm_top = vma->vm_region->vm_end;
1164 return 0;
1165 }
1166 if (ret != -ENOSYS)
1167 return ret;
1168
1169 /* getting an ENOSYS error indicates that direct mmap isn't
1170 * possible (as opposed to tried but failed) so we'll try to
1171 * make a private copy of the data and map that instead */
1172 }
1173
1174
1175 /* allocate some memory to hold the mapping
1176 * - note that this may not return a page-aligned address if the object
1177 * we're allocating is smaller than a page
1178 */
1179 order = get_order(len);
1180 kdebug("alloc order %d for %lx", order, len);
1181
1182 pages = alloc_pages(GFP_KERNEL, order);
1183 if (!pages)
1184 goto enomem;
1185
1186 total = 1 << order;
1187 atomic_long_add(total, &mmap_pages_allocated);
1188
1189 point = len >> PAGE_SHIFT;
1190
1191 /* we allocated a power-of-2 sized page set, so we may want to trim off
1192 * the excess */
1193 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1194 while (total > point) {
1195 order = ilog2(total - point);
1196 n = 1 << order;
1197 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1198 atomic_long_sub(n, &mmap_pages_allocated);
1199 total -= n;
1200 set_page_refcounted(pages + total);
1201 __free_pages(pages + total, order);
1202 }
1203 }
1204
1205 for (point = 1; point < total; point++)
1206 set_page_refcounted(&pages[point]);
1207
1208 base = page_address(pages);
1209 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1210 region->vm_start = (unsigned long) base;
1211 region->vm_end = region->vm_start + len;
1212 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1213
1214 vma->vm_start = region->vm_start;
1215 vma->vm_end = region->vm_start + len;
1216
1217 if (vma->vm_file) {
1218 /* read the contents of a file into the copy */
1219 mm_segment_t old_fs;
1220 loff_t fpos;
1221
1222 fpos = vma->vm_pgoff;
1223 fpos <<= PAGE_SHIFT;
1224
1225 old_fs = get_fs();
1226 set_fs(KERNEL_DS);
1227 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1228 set_fs(old_fs);
1229
1230 if (ret < 0)
1231 goto error_free;
1232
1233 /* clear the last little bit */
1234 if (ret < len)
1235 memset(base + ret, 0, len - ret);
1236
1237 }
1238
1239 return 0;
1240
1241 error_free:
1242 free_page_series(region->vm_start, region->vm_top);
1243 region->vm_start = vma->vm_start = 0;
1244 region->vm_end = vma->vm_end = 0;
1245 region->vm_top = 0;
1246 return ret;
1247
1248 enomem:
1249 printk("Allocation of length %lu from process %d (%s) failed\n",
1250 len, current->pid, current->comm);
1251 show_free_areas(0);
1252 return -ENOMEM;
1253 }
1254
1255 /*
1256 * handle mapping creation for uClinux
1257 */
1258 unsigned long do_mmap_pgoff(struct file *file,
1259 unsigned long addr,
1260 unsigned long len,
1261 unsigned long prot,
1262 unsigned long flags,
1263 unsigned long pgoff,
1264 unsigned long *populate)
1265 {
1266 struct vm_area_struct *vma;
1267 struct vm_region *region;
1268 struct rb_node *rb;
1269 unsigned long capabilities, vm_flags, result;
1270 int ret;
1271
1272 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1273
1274 *populate = 0;
1275
1276 /* decide whether we should attempt the mapping, and if so what sort of
1277 * mapping */
1278 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1279 &capabilities);
1280 if (ret < 0) {
1281 kleave(" = %d [val]", ret);
1282 return ret;
1283 }
1284
1285 /* we ignore the address hint */
1286 addr = 0;
1287 len = PAGE_ALIGN(len);
1288
1289 /* we've determined that we can make the mapping, now translate what we
1290 * now know into VMA flags */
1291 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1292
1293 /* we're going to need to record the mapping */
1294 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1295 if (!region)
1296 goto error_getting_region;
1297
1298 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299 if (!vma)
1300 goto error_getting_vma;
1301
1302 region->vm_usage = 1;
1303 region->vm_flags = vm_flags;
1304 region->vm_pgoff = pgoff;
1305
1306 INIT_LIST_HEAD(&vma->anon_vma_chain);
1307 vma->vm_flags = vm_flags;
1308 vma->vm_pgoff = pgoff;
1309
1310 if (file) {
1311 region->vm_file = get_file(file);
1312 vma->vm_file = get_file(file);
1313 }
1314
1315 down_write(&nommu_region_sem);
1316
1317 /* if we want to share, we need to check for regions created by other
1318 * mmap() calls that overlap with our proposed mapping
1319 * - we can only share with a superset match on most regular files
1320 * - shared mappings on character devices and memory backed files are
1321 * permitted to overlap inexactly as far as we are concerned for in
1322 * these cases, sharing is handled in the driver or filesystem rather
1323 * than here
1324 */
1325 if (vm_flags & VM_MAYSHARE) {
1326 struct vm_region *pregion;
1327 unsigned long pglen, rpglen, pgend, rpgend, start;
1328
1329 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 pgend = pgoff + pglen;
1331
1332 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1333 pregion = rb_entry(rb, struct vm_region, vm_rb);
1334
1335 if (!(pregion->vm_flags & VM_MAYSHARE))
1336 continue;
1337
1338 /* search for overlapping mappings on the same file */
1339 if (file_inode(pregion->vm_file) !=
1340 file_inode(file))
1341 continue;
1342
1343 if (pregion->vm_pgoff >= pgend)
1344 continue;
1345
1346 rpglen = pregion->vm_end - pregion->vm_start;
1347 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1348 rpgend = pregion->vm_pgoff + rpglen;
1349 if (pgoff >= rpgend)
1350 continue;
1351
1352 /* handle inexactly overlapping matches between
1353 * mappings */
1354 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1355 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1356 /* new mapping is not a subset of the region */
1357 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1358 goto sharing_violation;
1359 continue;
1360 }
1361
1362 /* we've found a region we can share */
1363 pregion->vm_usage++;
1364 vma->vm_region = pregion;
1365 start = pregion->vm_start;
1366 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1367 vma->vm_start = start;
1368 vma->vm_end = start + len;
1369
1370 if (pregion->vm_flags & VM_MAPPED_COPY) {
1371 kdebug("share copy");
1372 vma->vm_flags |= VM_MAPPED_COPY;
1373 } else {
1374 kdebug("share mmap");
1375 ret = do_mmap_shared_file(vma);
1376 if (ret < 0) {
1377 vma->vm_region = NULL;
1378 vma->vm_start = 0;
1379 vma->vm_end = 0;
1380 pregion->vm_usage--;
1381 pregion = NULL;
1382 goto error_just_free;
1383 }
1384 }
1385 fput(region->vm_file);
1386 kmem_cache_free(vm_region_jar, region);
1387 region = pregion;
1388 result = start;
1389 goto share;
1390 }
1391
1392 /* obtain the address at which to make a shared mapping
1393 * - this is the hook for quasi-memory character devices to
1394 * tell us the location of a shared mapping
1395 */
1396 if (capabilities & BDI_CAP_MAP_DIRECT) {
1397 addr = file->f_op->get_unmapped_area(file, addr, len,
1398 pgoff, flags);
1399 if (IS_ERR_VALUE(addr)) {
1400 ret = addr;
1401 if (ret != -ENOSYS)
1402 goto error_just_free;
1403
1404 /* the driver refused to tell us where to site
1405 * the mapping so we'll have to attempt to copy
1406 * it */
1407 ret = -ENODEV;
1408 if (!(capabilities & BDI_CAP_MAP_COPY))
1409 goto error_just_free;
1410
1411 capabilities &= ~BDI_CAP_MAP_DIRECT;
1412 } else {
1413 vma->vm_start = region->vm_start = addr;
1414 vma->vm_end = region->vm_end = addr + len;
1415 }
1416 }
1417 }
1418
1419 vma->vm_region = region;
1420
1421 /* set up the mapping
1422 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1423 */
1424 if (file && vma->vm_flags & VM_SHARED)
1425 ret = do_mmap_shared_file(vma);
1426 else
1427 ret = do_mmap_private(vma, region, len, capabilities);
1428 if (ret < 0)
1429 goto error_just_free;
1430 add_nommu_region(region);
1431
1432 /* clear anonymous mappings that don't ask for uninitialized data */
1433 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1434 memset((void *)region->vm_start, 0,
1435 region->vm_end - region->vm_start);
1436
1437 /* okay... we have a mapping; now we have to register it */
1438 result = vma->vm_start;
1439
1440 current->mm->total_vm += len >> PAGE_SHIFT;
1441
1442 share:
1443 add_vma_to_mm(current->mm, vma);
1444
1445 /* we flush the region from the icache only when the first executable
1446 * mapping of it is made */
1447 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1448 flush_icache_range(region->vm_start, region->vm_end);
1449 region->vm_icache_flushed = true;
1450 }
1451
1452 up_write(&nommu_region_sem);
1453
1454 kleave(" = %lx", result);
1455 return result;
1456
1457 error_just_free:
1458 up_write(&nommu_region_sem);
1459 error:
1460 if (region->vm_file)
1461 fput(region->vm_file);
1462 kmem_cache_free(vm_region_jar, region);
1463 if (vma->vm_file)
1464 fput(vma->vm_file);
1465 kmem_cache_free(vm_area_cachep, vma);
1466 kleave(" = %d", ret);
1467 return ret;
1468
1469 sharing_violation:
1470 up_write(&nommu_region_sem);
1471 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1472 ret = -EINVAL;
1473 goto error;
1474
1475 error_getting_vma:
1476 kmem_cache_free(vm_region_jar, region);
1477 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1478 " from process %d failed\n",
1479 len, current->pid);
1480 show_free_areas(0);
1481 return -ENOMEM;
1482
1483 error_getting_region:
1484 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1485 " from process %d failed\n",
1486 len, current->pid);
1487 show_free_areas(0);
1488 return -ENOMEM;
1489 }
1490
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492 unsigned long, prot, unsigned long, flags,
1493 unsigned long, fd, unsigned long, pgoff)
1494 {
1495 struct file *file = NULL;
1496 unsigned long retval = -EBADF;
1497
1498 audit_mmap_fd(fd, flags);
1499 if (!(flags & MAP_ANONYMOUS)) {
1500 file = fget(fd);
1501 if (!file)
1502 goto out;
1503 }
1504
1505 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1506
1507 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1508
1509 if (file)
1510 fput(file);
1511 out:
1512 return retval;
1513 }
1514
1515 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1516 struct mmap_arg_struct {
1517 unsigned long addr;
1518 unsigned long len;
1519 unsigned long prot;
1520 unsigned long flags;
1521 unsigned long fd;
1522 unsigned long offset;
1523 };
1524
1525 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1526 {
1527 struct mmap_arg_struct a;
1528
1529 if (copy_from_user(&a, arg, sizeof(a)))
1530 return -EFAULT;
1531 if (a.offset & ~PAGE_MASK)
1532 return -EINVAL;
1533
1534 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1535 a.offset >> PAGE_SHIFT);
1536 }
1537 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1538
1539 /*
1540 * split a vma into two pieces at address 'addr', a new vma is allocated either
1541 * for the first part or the tail.
1542 */
1543 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1544 unsigned long addr, int new_below)
1545 {
1546 struct vm_area_struct *new;
1547 struct vm_region *region;
1548 unsigned long npages;
1549
1550 kenter("");
1551
1552 /* we're only permitted to split anonymous regions (these should have
1553 * only a single usage on the region) */
1554 if (vma->vm_file)
1555 return -ENOMEM;
1556
1557 if (mm->map_count >= sysctl_max_map_count)
1558 return -ENOMEM;
1559
1560 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1561 if (!region)
1562 return -ENOMEM;
1563
1564 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1565 if (!new) {
1566 kmem_cache_free(vm_region_jar, region);
1567 return -ENOMEM;
1568 }
1569
1570 /* most fields are the same, copy all, and then fixup */
1571 *new = *vma;
1572 *region = *vma->vm_region;
1573 new->vm_region = region;
1574
1575 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1576
1577 if (new_below) {
1578 region->vm_top = region->vm_end = new->vm_end = addr;
1579 } else {
1580 region->vm_start = new->vm_start = addr;
1581 region->vm_pgoff = new->vm_pgoff += npages;
1582 }
1583
1584 if (new->vm_ops && new->vm_ops->open)
1585 new->vm_ops->open(new);
1586
1587 delete_vma_from_mm(vma);
1588 down_write(&nommu_region_sem);
1589 delete_nommu_region(vma->vm_region);
1590 if (new_below) {
1591 vma->vm_region->vm_start = vma->vm_start = addr;
1592 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1593 } else {
1594 vma->vm_region->vm_end = vma->vm_end = addr;
1595 vma->vm_region->vm_top = addr;
1596 }
1597 add_nommu_region(vma->vm_region);
1598 add_nommu_region(new->vm_region);
1599 up_write(&nommu_region_sem);
1600 add_vma_to_mm(mm, vma);
1601 add_vma_to_mm(mm, new);
1602 return 0;
1603 }
1604
1605 /*
1606 * shrink a VMA by removing the specified chunk from either the beginning or
1607 * the end
1608 */
1609 static int shrink_vma(struct mm_struct *mm,
1610 struct vm_area_struct *vma,
1611 unsigned long from, unsigned long to)
1612 {
1613 struct vm_region *region;
1614
1615 kenter("");
1616
1617 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1618 * and list */
1619 delete_vma_from_mm(vma);
1620 if (from > vma->vm_start)
1621 vma->vm_end = from;
1622 else
1623 vma->vm_start = to;
1624 add_vma_to_mm(mm, vma);
1625
1626 /* cut the backing region down to size */
1627 region = vma->vm_region;
1628 BUG_ON(region->vm_usage != 1);
1629
1630 down_write(&nommu_region_sem);
1631 delete_nommu_region(region);
1632 if (from > region->vm_start) {
1633 to = region->vm_top;
1634 region->vm_top = region->vm_end = from;
1635 } else {
1636 region->vm_start = to;
1637 }
1638 add_nommu_region(region);
1639 up_write(&nommu_region_sem);
1640
1641 free_page_series(from, to);
1642 return 0;
1643 }
1644
1645 /*
1646 * release a mapping
1647 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1648 * VMA, though it need not cover the whole VMA
1649 */
1650 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1651 {
1652 struct vm_area_struct *vma;
1653 unsigned long end;
1654 int ret;
1655
1656 kenter(",%lx,%zx", start, len);
1657
1658 len = PAGE_ALIGN(len);
1659 if (len == 0)
1660 return -EINVAL;
1661
1662 end = start + len;
1663
1664 /* find the first potentially overlapping VMA */
1665 vma = find_vma(mm, start);
1666 if (!vma) {
1667 static int limit = 0;
1668 if (limit < 5) {
1669 printk(KERN_WARNING
1670 "munmap of memory not mmapped by process %d"
1671 " (%s): 0x%lx-0x%lx\n",
1672 current->pid, current->comm,
1673 start, start + len - 1);
1674 limit++;
1675 }
1676 return -EINVAL;
1677 }
1678
1679 /* we're allowed to split an anonymous VMA but not a file-backed one */
1680 if (vma->vm_file) {
1681 do {
1682 if (start > vma->vm_start) {
1683 kleave(" = -EINVAL [miss]");
1684 return -EINVAL;
1685 }
1686 if (end == vma->vm_end)
1687 goto erase_whole_vma;
1688 vma = vma->vm_next;
1689 } while (vma);
1690 kleave(" = -EINVAL [split file]");
1691 return -EINVAL;
1692 } else {
1693 /* the chunk must be a subset of the VMA found */
1694 if (start == vma->vm_start && end == vma->vm_end)
1695 goto erase_whole_vma;
1696 if (start < vma->vm_start || end > vma->vm_end) {
1697 kleave(" = -EINVAL [superset]");
1698 return -EINVAL;
1699 }
1700 if (start & ~PAGE_MASK) {
1701 kleave(" = -EINVAL [unaligned start]");
1702 return -EINVAL;
1703 }
1704 if (end != vma->vm_end && end & ~PAGE_MASK) {
1705 kleave(" = -EINVAL [unaligned split]");
1706 return -EINVAL;
1707 }
1708 if (start != vma->vm_start && end != vma->vm_end) {
1709 ret = split_vma(mm, vma, start, 1);
1710 if (ret < 0) {
1711 kleave(" = %d [split]", ret);
1712 return ret;
1713 }
1714 }
1715 return shrink_vma(mm, vma, start, end);
1716 }
1717
1718 erase_whole_vma:
1719 delete_vma_from_mm(vma);
1720 delete_vma(mm, vma);
1721 kleave(" = 0");
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(do_munmap);
1725
1726 int vm_munmap(unsigned long addr, size_t len)
1727 {
1728 struct mm_struct *mm = current->mm;
1729 int ret;
1730
1731 down_write(&mm->mmap_sem);
1732 ret = do_munmap(mm, addr, len);
1733 up_write(&mm->mmap_sem);
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(vm_munmap);
1737
1738 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1739 {
1740 return vm_munmap(addr, len);
1741 }
1742
1743 /*
1744 * release all the mappings made in a process's VM space
1745 */
1746 void exit_mmap(struct mm_struct *mm)
1747 {
1748 struct vm_area_struct *vma;
1749
1750 if (!mm)
1751 return;
1752
1753 kenter("");
1754
1755 mm->total_vm = 0;
1756
1757 while ((vma = mm->mmap)) {
1758 mm->mmap = vma->vm_next;
1759 delete_vma_from_mm(vma);
1760 delete_vma(mm, vma);
1761 cond_resched();
1762 }
1763
1764 kleave("");
1765 }
1766
1767 unsigned long vm_brk(unsigned long addr, unsigned long len)
1768 {
1769 return -ENOMEM;
1770 }
1771
1772 /*
1773 * expand (or shrink) an existing mapping, potentially moving it at the same
1774 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1775 *
1776 * under NOMMU conditions, we only permit changing a mapping's size, and only
1777 * as long as it stays within the region allocated by do_mmap_private() and the
1778 * block is not shareable
1779 *
1780 * MREMAP_FIXED is not supported under NOMMU conditions
1781 */
1782 static unsigned long do_mremap(unsigned long addr,
1783 unsigned long old_len, unsigned long new_len,
1784 unsigned long flags, unsigned long new_addr)
1785 {
1786 struct vm_area_struct *vma;
1787
1788 /* insanity checks first */
1789 old_len = PAGE_ALIGN(old_len);
1790 new_len = PAGE_ALIGN(new_len);
1791 if (old_len == 0 || new_len == 0)
1792 return (unsigned long) -EINVAL;
1793
1794 if (addr & ~PAGE_MASK)
1795 return -EINVAL;
1796
1797 if (flags & MREMAP_FIXED && new_addr != addr)
1798 return (unsigned long) -EINVAL;
1799
1800 vma = find_vma_exact(current->mm, addr, old_len);
1801 if (!vma)
1802 return (unsigned long) -EINVAL;
1803
1804 if (vma->vm_end != vma->vm_start + old_len)
1805 return (unsigned long) -EFAULT;
1806
1807 if (vma->vm_flags & VM_MAYSHARE)
1808 return (unsigned long) -EPERM;
1809
1810 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1811 return (unsigned long) -ENOMEM;
1812
1813 /* all checks complete - do it */
1814 vma->vm_end = vma->vm_start + new_len;
1815 return vma->vm_start;
1816 }
1817
1818 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1819 unsigned long, new_len, unsigned long, flags,
1820 unsigned long, new_addr)
1821 {
1822 unsigned long ret;
1823
1824 down_write(&current->mm->mmap_sem);
1825 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1826 up_write(&current->mm->mmap_sem);
1827 return ret;
1828 }
1829
1830 struct page *follow_page_mask(struct vm_area_struct *vma,
1831 unsigned long address, unsigned int flags,
1832 unsigned int *page_mask)
1833 {
1834 *page_mask = 0;
1835 return NULL;
1836 }
1837
1838 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839 unsigned long pfn, unsigned long size, pgprot_t prot)
1840 {
1841 if (addr != (pfn << PAGE_SHIFT))
1842 return -EINVAL;
1843
1844 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1845 return 0;
1846 }
1847 EXPORT_SYMBOL(remap_pfn_range);
1848
1849 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1850 {
1851 unsigned long pfn = start >> PAGE_SHIFT;
1852 unsigned long vm_len = vma->vm_end - vma->vm_start;
1853
1854 pfn += vma->vm_pgoff;
1855 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1856 }
1857 EXPORT_SYMBOL(vm_iomap_memory);
1858
1859 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1860 unsigned long pgoff)
1861 {
1862 unsigned int size = vma->vm_end - vma->vm_start;
1863
1864 if (!(vma->vm_flags & VM_USERMAP))
1865 return -EINVAL;
1866
1867 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1868 vma->vm_end = vma->vm_start + size;
1869
1870 return 0;
1871 }
1872 EXPORT_SYMBOL(remap_vmalloc_range);
1873
1874 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1875 unsigned long len, unsigned long pgoff, unsigned long flags)
1876 {
1877 return -ENOMEM;
1878 }
1879
1880 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1881 {
1882 }
1883
1884 void unmap_mapping_range(struct address_space *mapping,
1885 loff_t const holebegin, loff_t const holelen,
1886 int even_cows)
1887 {
1888 }
1889 EXPORT_SYMBOL(unmap_mapping_range);
1890
1891 /*
1892 * Check that a process has enough memory to allocate a new virtual
1893 * mapping. 0 means there is enough memory for the allocation to
1894 * succeed and -ENOMEM implies there is not.
1895 *
1896 * We currently support three overcommit policies, which are set via the
1897 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1898 *
1899 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1900 * Additional code 2002 Jul 20 by Robert Love.
1901 *
1902 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1903 *
1904 * Note this is a helper function intended to be used by LSMs which
1905 * wish to use this logic.
1906 */
1907 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1908 {
1909 long free, allowed, reserve;
1910
1911 vm_acct_memory(pages);
1912
1913 /*
1914 * Sometimes we want to use more memory than we have
1915 */
1916 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1917 return 0;
1918
1919 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1920 free = global_page_state(NR_FREE_PAGES);
1921 free += global_page_state(NR_FILE_PAGES);
1922
1923 /*
1924 * shmem pages shouldn't be counted as free in this
1925 * case, they can't be purged, only swapped out, and
1926 * that won't affect the overall amount of available
1927 * memory in the system.
1928 */
1929 free -= global_page_state(NR_SHMEM);
1930
1931 free += get_nr_swap_pages();
1932
1933 /*
1934 * Any slabs which are created with the
1935 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1936 * which are reclaimable, under pressure. The dentry
1937 * cache and most inode caches should fall into this
1938 */
1939 free += global_page_state(NR_SLAB_RECLAIMABLE);
1940
1941 /*
1942 * Leave reserved pages. The pages are not for anonymous pages.
1943 */
1944 if (free <= totalreserve_pages)
1945 goto error;
1946 else
1947 free -= totalreserve_pages;
1948
1949 /*
1950 * Reserve some for root
1951 */
1952 if (!cap_sys_admin)
1953 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1954
1955 if (free > pages)
1956 return 0;
1957
1958 goto error;
1959 }
1960
1961 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1962 /*
1963 * Reserve some 3% for root
1964 */
1965 if (!cap_sys_admin)
1966 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1967 allowed += total_swap_pages;
1968
1969 /*
1970 * Don't let a single process grow so big a user can't recover
1971 */
1972 if (mm) {
1973 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1974 allowed -= min_t(long, mm->total_vm / 32, reserve);
1975 }
1976
1977 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1978 return 0;
1979
1980 error:
1981 vm_unacct_memory(pages);
1982
1983 return -ENOMEM;
1984 }
1985
1986 int in_gate_area_no_mm(unsigned long addr)
1987 {
1988 return 0;
1989 }
1990
1991 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1992 {
1993 BUG();
1994 return 0;
1995 }
1996 EXPORT_SYMBOL(filemap_fault);
1997
1998 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long size, pgoff_t pgoff)
2000 {
2001 BUG();
2002 return 0;
2003 }
2004 EXPORT_SYMBOL(generic_file_remap_pages);
2005
2006 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2007 unsigned long addr, void *buf, int len, int write)
2008 {
2009 struct vm_area_struct *vma;
2010
2011 down_read(&mm->mmap_sem);
2012
2013 /* the access must start within one of the target process's mappings */
2014 vma = find_vma(mm, addr);
2015 if (vma) {
2016 /* don't overrun this mapping */
2017 if (addr + len >= vma->vm_end)
2018 len = vma->vm_end - addr;
2019
2020 /* only read or write mappings where it is permitted */
2021 if (write && vma->vm_flags & VM_MAYWRITE)
2022 copy_to_user_page(vma, NULL, addr,
2023 (void *) addr, buf, len);
2024 else if (!write && vma->vm_flags & VM_MAYREAD)
2025 copy_from_user_page(vma, NULL, addr,
2026 buf, (void *) addr, len);
2027 else
2028 len = 0;
2029 } else {
2030 len = 0;
2031 }
2032
2033 up_read(&mm->mmap_sem);
2034
2035 return len;
2036 }
2037
2038 /**
2039 * @access_remote_vm - access another process' address space
2040 * @mm: the mm_struct of the target address space
2041 * @addr: start address to access
2042 * @buf: source or destination buffer
2043 * @len: number of bytes to transfer
2044 * @write: whether the access is a write
2045 *
2046 * The caller must hold a reference on @mm.
2047 */
2048 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2049 void *buf, int len, int write)
2050 {
2051 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2052 }
2053
2054 /*
2055 * Access another process' address space.
2056 * - source/target buffer must be kernel space
2057 */
2058 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2059 {
2060 struct mm_struct *mm;
2061
2062 if (addr + len < addr)
2063 return 0;
2064
2065 mm = get_task_mm(tsk);
2066 if (!mm)
2067 return 0;
2068
2069 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2070
2071 mmput(mm);
2072 return len;
2073 }
2074
2075 /**
2076 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2077 * @inode: The inode to check
2078 * @size: The current filesize of the inode
2079 * @newsize: The proposed filesize of the inode
2080 *
2081 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2082 * make sure that that any outstanding VMAs aren't broken and then shrink the
2083 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2084 * automatically grant mappings that are too large.
2085 */
2086 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2087 size_t newsize)
2088 {
2089 struct vm_area_struct *vma;
2090 struct vm_region *region;
2091 pgoff_t low, high;
2092 size_t r_size, r_top;
2093
2094 low = newsize >> PAGE_SHIFT;
2095 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2096
2097 down_write(&nommu_region_sem);
2098 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2099
2100 /* search for VMAs that fall within the dead zone */
2101 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2102 /* found one - only interested if it's shared out of the page
2103 * cache */
2104 if (vma->vm_flags & VM_SHARED) {
2105 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2106 up_write(&nommu_region_sem);
2107 return -ETXTBSY; /* not quite true, but near enough */
2108 }
2109 }
2110
2111 /* reduce any regions that overlap the dead zone - if in existence,
2112 * these will be pointed to by VMAs that don't overlap the dead zone
2113 *
2114 * we don't check for any regions that start beyond the EOF as there
2115 * shouldn't be any
2116 */
2117 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2118 0, ULONG_MAX) {
2119 if (!(vma->vm_flags & VM_SHARED))
2120 continue;
2121
2122 region = vma->vm_region;
2123 r_size = region->vm_top - region->vm_start;
2124 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2125
2126 if (r_top > newsize) {
2127 region->vm_top -= r_top - newsize;
2128 if (region->vm_end > region->vm_top)
2129 region->vm_end = region->vm_top;
2130 }
2131 }
2132
2133 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2134 up_write(&nommu_region_sem);
2135 return 0;
2136 }
2137
2138 /*
2139 * Initialise sysctl_user_reserve_kbytes.
2140 *
2141 * This is intended to prevent a user from starting a single memory hogging
2142 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2143 * mode.
2144 *
2145 * The default value is min(3% of free memory, 128MB)
2146 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2147 */
2148 static int __meminit init_user_reserve(void)
2149 {
2150 unsigned long free_kbytes;
2151
2152 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2153
2154 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2155 return 0;
2156 }
2157 module_init(init_user_reserve)
2158
2159 /*
2160 * Initialise sysctl_admin_reserve_kbytes.
2161 *
2162 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2163 * to log in and kill a memory hogging process.
2164 *
2165 * Systems with more than 256MB will reserve 8MB, enough to recover
2166 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2167 * only reserve 3% of free pages by default.
2168 */
2169 static int __meminit init_admin_reserve(void)
2170 {
2171 unsigned long free_kbytes;
2172
2173 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2174
2175 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2176 return 0;
2177 }
2178 module_init(init_admin_reserve)