Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
67
68 atomic_long_t mmap_pages_allocated;
69
70 /*
71 * The global memory commitment made in the system can be a metric
72 * that can be used to drive ballooning decisions when Linux is hosted
73 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
74 * balancing memory across competing virtual machines that are hosted.
75 * Several metrics drive this policy engine including the guest reported
76 * memory commitment.
77 */
78 unsigned long vm_memory_committed(void)
79 {
80 return percpu_counter_read_positive(&vm_committed_as);
81 }
82
83 EXPORT_SYMBOL_GPL(vm_memory_committed);
84
85 EXPORT_SYMBOL(mem_map);
86 EXPORT_SYMBOL(num_physpages);
87
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache *vm_region_jar;
90 struct rb_root nommu_region_tree = RB_ROOT;
91 DECLARE_RWSEM(nommu_region_sem);
92
93 const struct vm_operations_struct generic_file_vm_ops = {
94 };
95
96 /*
97 * Return the total memory allocated for this pointer, not
98 * just what the caller asked for.
99 *
100 * Doesn't have to be accurate, i.e. may have races.
101 */
102 unsigned int kobjsize(const void *objp)
103 {
104 struct page *page;
105
106 /*
107 * If the object we have should not have ksize performed on it,
108 * return size of 0
109 */
110 if (!objp || !virt_addr_valid(objp))
111 return 0;
112
113 page = virt_to_head_page(objp);
114
115 /*
116 * If the allocator sets PageSlab, we know the pointer came from
117 * kmalloc().
118 */
119 if (PageSlab(page))
120 return ksize(objp);
121
122 /*
123 * If it's not a compound page, see if we have a matching VMA
124 * region. This test is intentionally done in reverse order,
125 * so if there's no VMA, we still fall through and hand back
126 * PAGE_SIZE for 0-order pages.
127 */
128 if (!PageCompound(page)) {
129 struct vm_area_struct *vma;
130
131 vma = find_vma(current->mm, (unsigned long)objp);
132 if (vma)
133 return vma->vm_end - vma->vm_start;
134 }
135
136 /*
137 * The ksize() function is only guaranteed to work for pointers
138 * returned by kmalloc(). So handle arbitrary pointers here.
139 */
140 return PAGE_SIZE << compound_order(page);
141 }
142
143 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
144 unsigned long start, int nr_pages, unsigned int foll_flags,
145 struct page **pages, struct vm_area_struct **vmas,
146 int *retry)
147 {
148 struct vm_area_struct *vma;
149 unsigned long vm_flags;
150 int i;
151
152 /* calculate required read or write permissions.
153 * If FOLL_FORCE is set, we only require the "MAY" flags.
154 */
155 vm_flags = (foll_flags & FOLL_WRITE) ?
156 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
157 vm_flags &= (foll_flags & FOLL_FORCE) ?
158 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
159
160 for (i = 0; i < nr_pages; i++) {
161 vma = find_vma(mm, start);
162 if (!vma)
163 goto finish_or_fault;
164
165 /* protect what we can, including chardevs */
166 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
167 !(vm_flags & vma->vm_flags))
168 goto finish_or_fault;
169
170 if (pages) {
171 pages[i] = virt_to_page(start);
172 if (pages[i])
173 page_cache_get(pages[i]);
174 }
175 if (vmas)
176 vmas[i] = vma;
177 start = (start + PAGE_SIZE) & PAGE_MASK;
178 }
179
180 return i;
181
182 finish_or_fault:
183 return i ? : -EFAULT;
184 }
185
186 /*
187 * get a list of pages in an address range belonging to the specified process
188 * and indicate the VMA that covers each page
189 * - this is potentially dodgy as we may end incrementing the page count of a
190 * slab page or a secondary page from a compound page
191 * - don't permit access to VMAs that don't support it, such as I/O mappings
192 */
193 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
194 unsigned long start, int nr_pages, int write, int force,
195 struct page **pages, struct vm_area_struct **vmas)
196 {
197 int flags = 0;
198
199 if (write)
200 flags |= FOLL_WRITE;
201 if (force)
202 flags |= FOLL_FORCE;
203
204 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
205 NULL);
206 }
207 EXPORT_SYMBOL(get_user_pages);
208
209 /**
210 * follow_pfn - look up PFN at a user virtual address
211 * @vma: memory mapping
212 * @address: user virtual address
213 * @pfn: location to store found PFN
214 *
215 * Only IO mappings and raw PFN mappings are allowed.
216 *
217 * Returns zero and the pfn at @pfn on success, -ve otherwise.
218 */
219 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
220 unsigned long *pfn)
221 {
222 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
223 return -EINVAL;
224
225 *pfn = address >> PAGE_SHIFT;
226 return 0;
227 }
228 EXPORT_SYMBOL(follow_pfn);
229
230 DEFINE_RWLOCK(vmlist_lock);
231 struct vm_struct *vmlist;
232
233 void vfree(const void *addr)
234 {
235 kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241 /*
242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 * returns only a logical address.
244 */
245 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248
249 void *vmalloc_user(unsigned long size)
250 {
251 void *ret;
252
253 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 PAGE_KERNEL);
255 if (ret) {
256 struct vm_area_struct *vma;
257
258 down_write(&current->mm->mmap_sem);
259 vma = find_vma(current->mm, (unsigned long)ret);
260 if (vma)
261 vma->vm_flags |= VM_USERMAP;
262 up_write(&current->mm->mmap_sem);
263 }
264
265 return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268
269 struct page *vmalloc_to_page(const void *addr)
270 {
271 return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277 return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283 memcpy(buf, addr, count);
284 return count;
285 }
286
287 long vwrite(char *buf, char *addr, unsigned long count)
288 {
289 /* Don't allow overflow */
290 if ((unsigned long) addr + count < count)
291 count = -(unsigned long) addr;
292
293 memcpy(addr, buf, count);
294 return(count);
295 }
296
297 /*
298 * vmalloc - allocate virtually continguos memory
299 *
300 * @size: allocation size
301 *
302 * Allocate enough pages to cover @size from the page level
303 * allocator and map them into continguos kernel virtual space.
304 *
305 * For tight control over page level allocator and protection flags
306 * use __vmalloc() instead.
307 */
308 void *vmalloc(unsigned long size)
309 {
310 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
311 }
312 EXPORT_SYMBOL(vmalloc);
313
314 /*
315 * vzalloc - allocate virtually continguos memory with zero fill
316 *
317 * @size: allocation size
318 *
319 * Allocate enough pages to cover @size from the page level
320 * allocator and map them into continguos kernel virtual space.
321 * The memory allocated is set to zero.
322 *
323 * For tight control over page level allocator and protection flags
324 * use __vmalloc() instead.
325 */
326 void *vzalloc(unsigned long size)
327 {
328 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
329 PAGE_KERNEL);
330 }
331 EXPORT_SYMBOL(vzalloc);
332
333 /**
334 * vmalloc_node - allocate memory on a specific node
335 * @size: allocation size
336 * @node: numa node
337 *
338 * Allocate enough pages to cover @size from the page level
339 * allocator and map them into contiguous kernel virtual space.
340 *
341 * For tight control over page level allocator and protection flags
342 * use __vmalloc() instead.
343 */
344 void *vmalloc_node(unsigned long size, int node)
345 {
346 return vmalloc(size);
347 }
348 EXPORT_SYMBOL(vmalloc_node);
349
350 /**
351 * vzalloc_node - allocate memory on a specific node with zero fill
352 * @size: allocation size
353 * @node: numa node
354 *
355 * Allocate enough pages to cover @size from the page level
356 * allocator and map them into contiguous kernel virtual space.
357 * The memory allocated is set to zero.
358 *
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
361 */
362 void *vzalloc_node(unsigned long size, int node)
363 {
364 return vzalloc(size);
365 }
366 EXPORT_SYMBOL(vzalloc_node);
367
368 #ifndef PAGE_KERNEL_EXEC
369 # define PAGE_KERNEL_EXEC PAGE_KERNEL
370 #endif
371
372 /**
373 * vmalloc_exec - allocate virtually contiguous, executable memory
374 * @size: allocation size
375 *
376 * Kernel-internal function to allocate enough pages to cover @size
377 * the page level allocator and map them into contiguous and
378 * executable kernel virtual space.
379 *
380 * For tight control over page level allocator and protection flags
381 * use __vmalloc() instead.
382 */
383
384 void *vmalloc_exec(unsigned long size)
385 {
386 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
387 }
388
389 /**
390 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
391 * @size: allocation size
392 *
393 * Allocate enough 32bit PA addressable pages to cover @size from the
394 * page level allocator and map them into continguos kernel virtual space.
395 */
396 void *vmalloc_32(unsigned long size)
397 {
398 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
399 }
400 EXPORT_SYMBOL(vmalloc_32);
401
402 /**
403 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
404 * @size: allocation size
405 *
406 * The resulting memory area is 32bit addressable and zeroed so it can be
407 * mapped to userspace without leaking data.
408 *
409 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
410 * remap_vmalloc_range() are permissible.
411 */
412 void *vmalloc_32_user(unsigned long size)
413 {
414 /*
415 * We'll have to sort out the ZONE_DMA bits for 64-bit,
416 * but for now this can simply use vmalloc_user() directly.
417 */
418 return vmalloc_user(size);
419 }
420 EXPORT_SYMBOL(vmalloc_32_user);
421
422 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
423 {
424 BUG();
425 return NULL;
426 }
427 EXPORT_SYMBOL(vmap);
428
429 void vunmap(const void *addr)
430 {
431 BUG();
432 }
433 EXPORT_SYMBOL(vunmap);
434
435 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
436 {
437 BUG();
438 return NULL;
439 }
440 EXPORT_SYMBOL(vm_map_ram);
441
442 void vm_unmap_ram(const void *mem, unsigned int count)
443 {
444 BUG();
445 }
446 EXPORT_SYMBOL(vm_unmap_ram);
447
448 void vm_unmap_aliases(void)
449 {
450 }
451 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
452
453 /*
454 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
455 * have one.
456 */
457 void __attribute__((weak)) vmalloc_sync_all(void)
458 {
459 }
460
461 /**
462 * alloc_vm_area - allocate a range of kernel address space
463 * @size: size of the area
464 *
465 * Returns: NULL on failure, vm_struct on success
466 *
467 * This function reserves a range of kernel address space, and
468 * allocates pagetables to map that range. No actual mappings
469 * are created. If the kernel address space is not shared
470 * between processes, it syncs the pagetable across all
471 * processes.
472 */
473 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
474 {
475 BUG();
476 return NULL;
477 }
478 EXPORT_SYMBOL_GPL(alloc_vm_area);
479
480 void free_vm_area(struct vm_struct *area)
481 {
482 BUG();
483 }
484 EXPORT_SYMBOL_GPL(free_vm_area);
485
486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
487 struct page *page)
488 {
489 return -EINVAL;
490 }
491 EXPORT_SYMBOL(vm_insert_page);
492
493 /*
494 * sys_brk() for the most part doesn't need the global kernel
495 * lock, except when an application is doing something nasty
496 * like trying to un-brk an area that has already been mapped
497 * to a regular file. in this case, the unmapping will need
498 * to invoke file system routines that need the global lock.
499 */
500 SYSCALL_DEFINE1(brk, unsigned long, brk)
501 {
502 struct mm_struct *mm = current->mm;
503
504 if (brk < mm->start_brk || brk > mm->context.end_brk)
505 return mm->brk;
506
507 if (mm->brk == brk)
508 return mm->brk;
509
510 /*
511 * Always allow shrinking brk
512 */
513 if (brk <= mm->brk) {
514 mm->brk = brk;
515 return brk;
516 }
517
518 /*
519 * Ok, looks good - let it rip.
520 */
521 flush_icache_range(mm->brk, brk);
522 return mm->brk = brk;
523 }
524
525 /*
526 * initialise the VMA and region record slabs
527 */
528 void __init mmap_init(void)
529 {
530 int ret;
531
532 ret = percpu_counter_init(&vm_committed_as, 0);
533 VM_BUG_ON(ret);
534 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
535 }
536
537 /*
538 * validate the region tree
539 * - the caller must hold the region lock
540 */
541 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
542 static noinline void validate_nommu_regions(void)
543 {
544 struct vm_region *region, *last;
545 struct rb_node *p, *lastp;
546
547 lastp = rb_first(&nommu_region_tree);
548 if (!lastp)
549 return;
550
551 last = rb_entry(lastp, struct vm_region, vm_rb);
552 BUG_ON(unlikely(last->vm_end <= last->vm_start));
553 BUG_ON(unlikely(last->vm_top < last->vm_end));
554
555 while ((p = rb_next(lastp))) {
556 region = rb_entry(p, struct vm_region, vm_rb);
557 last = rb_entry(lastp, struct vm_region, vm_rb);
558
559 BUG_ON(unlikely(region->vm_end <= region->vm_start));
560 BUG_ON(unlikely(region->vm_top < region->vm_end));
561 BUG_ON(unlikely(region->vm_start < last->vm_top));
562
563 lastp = p;
564 }
565 }
566 #else
567 static void validate_nommu_regions(void)
568 {
569 }
570 #endif
571
572 /*
573 * add a region into the global tree
574 */
575 static void add_nommu_region(struct vm_region *region)
576 {
577 struct vm_region *pregion;
578 struct rb_node **p, *parent;
579
580 validate_nommu_regions();
581
582 parent = NULL;
583 p = &nommu_region_tree.rb_node;
584 while (*p) {
585 parent = *p;
586 pregion = rb_entry(parent, struct vm_region, vm_rb);
587 if (region->vm_start < pregion->vm_start)
588 p = &(*p)->rb_left;
589 else if (region->vm_start > pregion->vm_start)
590 p = &(*p)->rb_right;
591 else if (pregion == region)
592 return;
593 else
594 BUG();
595 }
596
597 rb_link_node(&region->vm_rb, parent, p);
598 rb_insert_color(&region->vm_rb, &nommu_region_tree);
599
600 validate_nommu_regions();
601 }
602
603 /*
604 * delete a region from the global tree
605 */
606 static void delete_nommu_region(struct vm_region *region)
607 {
608 BUG_ON(!nommu_region_tree.rb_node);
609
610 validate_nommu_regions();
611 rb_erase(&region->vm_rb, &nommu_region_tree);
612 validate_nommu_regions();
613 }
614
615 /*
616 * free a contiguous series of pages
617 */
618 static void free_page_series(unsigned long from, unsigned long to)
619 {
620 for (; from < to; from += PAGE_SIZE) {
621 struct page *page = virt_to_page(from);
622
623 kdebug("- free %lx", from);
624 atomic_long_dec(&mmap_pages_allocated);
625 if (page_count(page) != 1)
626 kdebug("free page %p: refcount not one: %d",
627 page, page_count(page));
628 put_page(page);
629 }
630 }
631
632 /*
633 * release a reference to a region
634 * - the caller must hold the region semaphore for writing, which this releases
635 * - the region may not have been added to the tree yet, in which case vm_top
636 * will equal vm_start
637 */
638 static void __put_nommu_region(struct vm_region *region)
639 __releases(nommu_region_sem)
640 {
641 kenter("%p{%d}", region, region->vm_usage);
642
643 BUG_ON(!nommu_region_tree.rb_node);
644
645 if (--region->vm_usage == 0) {
646 if (region->vm_top > region->vm_start)
647 delete_nommu_region(region);
648 up_write(&nommu_region_sem);
649
650 if (region->vm_file)
651 fput(region->vm_file);
652
653 /* IO memory and memory shared directly out of the pagecache
654 * from ramfs/tmpfs mustn't be released here */
655 if (region->vm_flags & VM_MAPPED_COPY) {
656 kdebug("free series");
657 free_page_series(region->vm_start, region->vm_top);
658 }
659 kmem_cache_free(vm_region_jar, region);
660 } else {
661 up_write(&nommu_region_sem);
662 }
663 }
664
665 /*
666 * release a reference to a region
667 */
668 static void put_nommu_region(struct vm_region *region)
669 {
670 down_write(&nommu_region_sem);
671 __put_nommu_region(region);
672 }
673
674 /*
675 * update protection on a vma
676 */
677 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
678 {
679 #ifdef CONFIG_MPU
680 struct mm_struct *mm = vma->vm_mm;
681 long start = vma->vm_start & PAGE_MASK;
682 while (start < vma->vm_end) {
683 protect_page(mm, start, flags);
684 start += PAGE_SIZE;
685 }
686 update_protections(mm);
687 #endif
688 }
689
690 /*
691 * add a VMA into a process's mm_struct in the appropriate place in the list
692 * and tree and add to the address space's page tree also if not an anonymous
693 * page
694 * - should be called with mm->mmap_sem held writelocked
695 */
696 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
697 {
698 struct vm_area_struct *pvma, *prev;
699 struct address_space *mapping;
700 struct rb_node **p, *parent, *rb_prev;
701
702 kenter(",%p", vma);
703
704 BUG_ON(!vma->vm_region);
705
706 mm->map_count++;
707 vma->vm_mm = mm;
708
709 protect_vma(vma, vma->vm_flags);
710
711 /* add the VMA to the mapping */
712 if (vma->vm_file) {
713 mapping = vma->vm_file->f_mapping;
714
715 mutex_lock(&mapping->i_mmap_mutex);
716 flush_dcache_mmap_lock(mapping);
717 vma_interval_tree_insert(vma, &mapping->i_mmap);
718 flush_dcache_mmap_unlock(mapping);
719 mutex_unlock(&mapping->i_mmap_mutex);
720 }
721
722 /* add the VMA to the tree */
723 parent = rb_prev = NULL;
724 p = &mm->mm_rb.rb_node;
725 while (*p) {
726 parent = *p;
727 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
728
729 /* sort by: start addr, end addr, VMA struct addr in that order
730 * (the latter is necessary as we may get identical VMAs) */
731 if (vma->vm_start < pvma->vm_start)
732 p = &(*p)->rb_left;
733 else if (vma->vm_start > pvma->vm_start) {
734 rb_prev = parent;
735 p = &(*p)->rb_right;
736 } else if (vma->vm_end < pvma->vm_end)
737 p = &(*p)->rb_left;
738 else if (vma->vm_end > pvma->vm_end) {
739 rb_prev = parent;
740 p = &(*p)->rb_right;
741 } else if (vma < pvma)
742 p = &(*p)->rb_left;
743 else if (vma > pvma) {
744 rb_prev = parent;
745 p = &(*p)->rb_right;
746 } else
747 BUG();
748 }
749
750 rb_link_node(&vma->vm_rb, parent, p);
751 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
752
753 /* add VMA to the VMA list also */
754 prev = NULL;
755 if (rb_prev)
756 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
757
758 __vma_link_list(mm, vma, prev, parent);
759 }
760
761 /*
762 * delete a VMA from its owning mm_struct and address space
763 */
764 static void delete_vma_from_mm(struct vm_area_struct *vma)
765 {
766 struct address_space *mapping;
767 struct mm_struct *mm = vma->vm_mm;
768
769 kenter("%p", vma);
770
771 protect_vma(vma, 0);
772
773 mm->map_count--;
774 if (mm->mmap_cache == vma)
775 mm->mmap_cache = NULL;
776
777 /* remove the VMA from the mapping */
778 if (vma->vm_file) {
779 mapping = vma->vm_file->f_mapping;
780
781 mutex_lock(&mapping->i_mmap_mutex);
782 flush_dcache_mmap_lock(mapping);
783 vma_interval_tree_remove(vma, &mapping->i_mmap);
784 flush_dcache_mmap_unlock(mapping);
785 mutex_unlock(&mapping->i_mmap_mutex);
786 }
787
788 /* remove from the MM's tree and list */
789 rb_erase(&vma->vm_rb, &mm->mm_rb);
790
791 if (vma->vm_prev)
792 vma->vm_prev->vm_next = vma->vm_next;
793 else
794 mm->mmap = vma->vm_next;
795
796 if (vma->vm_next)
797 vma->vm_next->vm_prev = vma->vm_prev;
798 }
799
800 /*
801 * destroy a VMA record
802 */
803 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
804 {
805 kenter("%p", vma);
806 if (vma->vm_ops && vma->vm_ops->close)
807 vma->vm_ops->close(vma);
808 if (vma->vm_file)
809 fput(vma->vm_file);
810 put_nommu_region(vma->vm_region);
811 kmem_cache_free(vm_area_cachep, vma);
812 }
813
814 /*
815 * look up the first VMA in which addr resides, NULL if none
816 * - should be called with mm->mmap_sem at least held readlocked
817 */
818 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
819 {
820 struct vm_area_struct *vma;
821
822 /* check the cache first */
823 vma = mm->mmap_cache;
824 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
825 return vma;
826
827 /* trawl the list (there may be multiple mappings in which addr
828 * resides) */
829 for (vma = mm->mmap; vma; vma = vma->vm_next) {
830 if (vma->vm_start > addr)
831 return NULL;
832 if (vma->vm_end > addr) {
833 mm->mmap_cache = vma;
834 return vma;
835 }
836 }
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(find_vma);
841
842 /*
843 * find a VMA
844 * - we don't extend stack VMAs under NOMMU conditions
845 */
846 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
847 {
848 return find_vma(mm, addr);
849 }
850
851 /*
852 * expand a stack to a given address
853 * - not supported under NOMMU conditions
854 */
855 int expand_stack(struct vm_area_struct *vma, unsigned long address)
856 {
857 return -ENOMEM;
858 }
859
860 /*
861 * look up the first VMA exactly that exactly matches addr
862 * - should be called with mm->mmap_sem at least held readlocked
863 */
864 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
865 unsigned long addr,
866 unsigned long len)
867 {
868 struct vm_area_struct *vma;
869 unsigned long end = addr + len;
870
871 /* check the cache first */
872 vma = mm->mmap_cache;
873 if (vma && vma->vm_start == addr && vma->vm_end == end)
874 return vma;
875
876 /* trawl the list (there may be multiple mappings in which addr
877 * resides) */
878 for (vma = mm->mmap; vma; vma = vma->vm_next) {
879 if (vma->vm_start < addr)
880 continue;
881 if (vma->vm_start > addr)
882 return NULL;
883 if (vma->vm_end == end) {
884 mm->mmap_cache = vma;
885 return vma;
886 }
887 }
888
889 return NULL;
890 }
891
892 /*
893 * determine whether a mapping should be permitted and, if so, what sort of
894 * mapping we're capable of supporting
895 */
896 static int validate_mmap_request(struct file *file,
897 unsigned long addr,
898 unsigned long len,
899 unsigned long prot,
900 unsigned long flags,
901 unsigned long pgoff,
902 unsigned long *_capabilities)
903 {
904 unsigned long capabilities, rlen;
905 int ret;
906
907 /* do the simple checks first */
908 if (flags & MAP_FIXED) {
909 printk(KERN_DEBUG
910 "%d: Can't do fixed-address/overlay mmap of RAM\n",
911 current->pid);
912 return -EINVAL;
913 }
914
915 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
916 (flags & MAP_TYPE) != MAP_SHARED)
917 return -EINVAL;
918
919 if (!len)
920 return -EINVAL;
921
922 /* Careful about overflows.. */
923 rlen = PAGE_ALIGN(len);
924 if (!rlen || rlen > TASK_SIZE)
925 return -ENOMEM;
926
927 /* offset overflow? */
928 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
929 return -EOVERFLOW;
930
931 if (file) {
932 /* validate file mapping requests */
933 struct address_space *mapping;
934
935 /* files must support mmap */
936 if (!file->f_op || !file->f_op->mmap)
937 return -ENODEV;
938
939 /* work out if what we've got could possibly be shared
940 * - we support chardevs that provide their own "memory"
941 * - we support files/blockdevs that are memory backed
942 */
943 mapping = file->f_mapping;
944 if (!mapping)
945 mapping = file->f_path.dentry->d_inode->i_mapping;
946
947 capabilities = 0;
948 if (mapping && mapping->backing_dev_info)
949 capabilities = mapping->backing_dev_info->capabilities;
950
951 if (!capabilities) {
952 /* no explicit capabilities set, so assume some
953 * defaults */
954 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
955 case S_IFREG:
956 case S_IFBLK:
957 capabilities = BDI_CAP_MAP_COPY;
958 break;
959
960 case S_IFCHR:
961 capabilities =
962 BDI_CAP_MAP_DIRECT |
963 BDI_CAP_READ_MAP |
964 BDI_CAP_WRITE_MAP;
965 break;
966
967 default:
968 return -EINVAL;
969 }
970 }
971
972 /* eliminate any capabilities that we can't support on this
973 * device */
974 if (!file->f_op->get_unmapped_area)
975 capabilities &= ~BDI_CAP_MAP_DIRECT;
976 if (!file->f_op->read)
977 capabilities &= ~BDI_CAP_MAP_COPY;
978
979 /* The file shall have been opened with read permission. */
980 if (!(file->f_mode & FMODE_READ))
981 return -EACCES;
982
983 if (flags & MAP_SHARED) {
984 /* do checks for writing, appending and locking */
985 if ((prot & PROT_WRITE) &&
986 !(file->f_mode & FMODE_WRITE))
987 return -EACCES;
988
989 if (IS_APPEND(file->f_path.dentry->d_inode) &&
990 (file->f_mode & FMODE_WRITE))
991 return -EACCES;
992
993 if (locks_verify_locked(file->f_path.dentry->d_inode))
994 return -EAGAIN;
995
996 if (!(capabilities & BDI_CAP_MAP_DIRECT))
997 return -ENODEV;
998
999 /* we mustn't privatise shared mappings */
1000 capabilities &= ~BDI_CAP_MAP_COPY;
1001 }
1002 else {
1003 /* we're going to read the file into private memory we
1004 * allocate */
1005 if (!(capabilities & BDI_CAP_MAP_COPY))
1006 return -ENODEV;
1007
1008 /* we don't permit a private writable mapping to be
1009 * shared with the backing device */
1010 if (prot & PROT_WRITE)
1011 capabilities &= ~BDI_CAP_MAP_DIRECT;
1012 }
1013
1014 if (capabilities & BDI_CAP_MAP_DIRECT) {
1015 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1016 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1017 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1018 ) {
1019 capabilities &= ~BDI_CAP_MAP_DIRECT;
1020 if (flags & MAP_SHARED) {
1021 printk(KERN_WARNING
1022 "MAP_SHARED not completely supported on !MMU\n");
1023 return -EINVAL;
1024 }
1025 }
1026 }
1027
1028 /* handle executable mappings and implied executable
1029 * mappings */
1030 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1031 if (prot & PROT_EXEC)
1032 return -EPERM;
1033 }
1034 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1035 /* handle implication of PROT_EXEC by PROT_READ */
1036 if (current->personality & READ_IMPLIES_EXEC) {
1037 if (capabilities & BDI_CAP_EXEC_MAP)
1038 prot |= PROT_EXEC;
1039 }
1040 }
1041 else if ((prot & PROT_READ) &&
1042 (prot & PROT_EXEC) &&
1043 !(capabilities & BDI_CAP_EXEC_MAP)
1044 ) {
1045 /* backing file is not executable, try to copy */
1046 capabilities &= ~BDI_CAP_MAP_DIRECT;
1047 }
1048 }
1049 else {
1050 /* anonymous mappings are always memory backed and can be
1051 * privately mapped
1052 */
1053 capabilities = BDI_CAP_MAP_COPY;
1054
1055 /* handle PROT_EXEC implication by PROT_READ */
1056 if ((prot & PROT_READ) &&
1057 (current->personality & READ_IMPLIES_EXEC))
1058 prot |= PROT_EXEC;
1059 }
1060
1061 /* allow the security API to have its say */
1062 ret = security_mmap_addr(addr);
1063 if (ret < 0)
1064 return ret;
1065
1066 /* looks okay */
1067 *_capabilities = capabilities;
1068 return 0;
1069 }
1070
1071 /*
1072 * we've determined that we can make the mapping, now translate what we
1073 * now know into VMA flags
1074 */
1075 static unsigned long determine_vm_flags(struct file *file,
1076 unsigned long prot,
1077 unsigned long flags,
1078 unsigned long capabilities)
1079 {
1080 unsigned long vm_flags;
1081
1082 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1083 /* vm_flags |= mm->def_flags; */
1084
1085 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1086 /* attempt to share read-only copies of mapped file chunks */
1087 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1088 if (file && !(prot & PROT_WRITE))
1089 vm_flags |= VM_MAYSHARE;
1090 } else {
1091 /* overlay a shareable mapping on the backing device or inode
1092 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1093 * romfs/cramfs */
1094 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1095 if (flags & MAP_SHARED)
1096 vm_flags |= VM_SHARED;
1097 }
1098
1099 /* refuse to let anyone share private mappings with this process if
1100 * it's being traced - otherwise breakpoints set in it may interfere
1101 * with another untraced process
1102 */
1103 if ((flags & MAP_PRIVATE) && current->ptrace)
1104 vm_flags &= ~VM_MAYSHARE;
1105
1106 return vm_flags;
1107 }
1108
1109 /*
1110 * set up a shared mapping on a file (the driver or filesystem provides and
1111 * pins the storage)
1112 */
1113 static int do_mmap_shared_file(struct vm_area_struct *vma)
1114 {
1115 int ret;
1116
1117 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1118 if (ret == 0) {
1119 vma->vm_region->vm_top = vma->vm_region->vm_end;
1120 return 0;
1121 }
1122 if (ret != -ENOSYS)
1123 return ret;
1124
1125 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1126 * opposed to tried but failed) so we can only give a suitable error as
1127 * it's not possible to make a private copy if MAP_SHARED was given */
1128 return -ENODEV;
1129 }
1130
1131 /*
1132 * set up a private mapping or an anonymous shared mapping
1133 */
1134 static int do_mmap_private(struct vm_area_struct *vma,
1135 struct vm_region *region,
1136 unsigned long len,
1137 unsigned long capabilities)
1138 {
1139 struct page *pages;
1140 unsigned long total, point, n;
1141 void *base;
1142 int ret, order;
1143
1144 /* invoke the file's mapping function so that it can keep track of
1145 * shared mappings on devices or memory
1146 * - VM_MAYSHARE will be set if it may attempt to share
1147 */
1148 if (capabilities & BDI_CAP_MAP_DIRECT) {
1149 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1150 if (ret == 0) {
1151 /* shouldn't return success if we're not sharing */
1152 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1153 vma->vm_region->vm_top = vma->vm_region->vm_end;
1154 return 0;
1155 }
1156 if (ret != -ENOSYS)
1157 return ret;
1158
1159 /* getting an ENOSYS error indicates that direct mmap isn't
1160 * possible (as opposed to tried but failed) so we'll try to
1161 * make a private copy of the data and map that instead */
1162 }
1163
1164
1165 /* allocate some memory to hold the mapping
1166 * - note that this may not return a page-aligned address if the object
1167 * we're allocating is smaller than a page
1168 */
1169 order = get_order(len);
1170 kdebug("alloc order %d for %lx", order, len);
1171
1172 pages = alloc_pages(GFP_KERNEL, order);
1173 if (!pages)
1174 goto enomem;
1175
1176 total = 1 << order;
1177 atomic_long_add(total, &mmap_pages_allocated);
1178
1179 point = len >> PAGE_SHIFT;
1180
1181 /* we allocated a power-of-2 sized page set, so we may want to trim off
1182 * the excess */
1183 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1184 while (total > point) {
1185 order = ilog2(total - point);
1186 n = 1 << order;
1187 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1188 atomic_long_sub(n, &mmap_pages_allocated);
1189 total -= n;
1190 set_page_refcounted(pages + total);
1191 __free_pages(pages + total, order);
1192 }
1193 }
1194
1195 for (point = 1; point < total; point++)
1196 set_page_refcounted(&pages[point]);
1197
1198 base = page_address(pages);
1199 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1200 region->vm_start = (unsigned long) base;
1201 region->vm_end = region->vm_start + len;
1202 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1203
1204 vma->vm_start = region->vm_start;
1205 vma->vm_end = region->vm_start + len;
1206
1207 if (vma->vm_file) {
1208 /* read the contents of a file into the copy */
1209 mm_segment_t old_fs;
1210 loff_t fpos;
1211
1212 fpos = vma->vm_pgoff;
1213 fpos <<= PAGE_SHIFT;
1214
1215 old_fs = get_fs();
1216 set_fs(KERNEL_DS);
1217 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1218 set_fs(old_fs);
1219
1220 if (ret < 0)
1221 goto error_free;
1222
1223 /* clear the last little bit */
1224 if (ret < len)
1225 memset(base + ret, 0, len - ret);
1226
1227 }
1228
1229 return 0;
1230
1231 error_free:
1232 free_page_series(region->vm_start, region->vm_top);
1233 region->vm_start = vma->vm_start = 0;
1234 region->vm_end = vma->vm_end = 0;
1235 region->vm_top = 0;
1236 return ret;
1237
1238 enomem:
1239 printk("Allocation of length %lu from process %d (%s) failed\n",
1240 len, current->pid, current->comm);
1241 show_free_areas(0);
1242 return -ENOMEM;
1243 }
1244
1245 /*
1246 * handle mapping creation for uClinux
1247 */
1248 unsigned long do_mmap_pgoff(struct file *file,
1249 unsigned long addr,
1250 unsigned long len,
1251 unsigned long prot,
1252 unsigned long flags,
1253 unsigned long pgoff)
1254 {
1255 struct vm_area_struct *vma;
1256 struct vm_region *region;
1257 struct rb_node *rb;
1258 unsigned long capabilities, vm_flags, result;
1259 int ret;
1260
1261 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1262
1263 /* decide whether we should attempt the mapping, and if so what sort of
1264 * mapping */
1265 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1266 &capabilities);
1267 if (ret < 0) {
1268 kleave(" = %d [val]", ret);
1269 return ret;
1270 }
1271
1272 /* we ignore the address hint */
1273 addr = 0;
1274 len = PAGE_ALIGN(len);
1275
1276 /* we've determined that we can make the mapping, now translate what we
1277 * now know into VMA flags */
1278 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1279
1280 /* we're going to need to record the mapping */
1281 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1282 if (!region)
1283 goto error_getting_region;
1284
1285 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1286 if (!vma)
1287 goto error_getting_vma;
1288
1289 region->vm_usage = 1;
1290 region->vm_flags = vm_flags;
1291 region->vm_pgoff = pgoff;
1292
1293 INIT_LIST_HEAD(&vma->anon_vma_chain);
1294 vma->vm_flags = vm_flags;
1295 vma->vm_pgoff = pgoff;
1296
1297 if (file) {
1298 region->vm_file = get_file(file);
1299 vma->vm_file = get_file(file);
1300 }
1301
1302 down_write(&nommu_region_sem);
1303
1304 /* if we want to share, we need to check for regions created by other
1305 * mmap() calls that overlap with our proposed mapping
1306 * - we can only share with a superset match on most regular files
1307 * - shared mappings on character devices and memory backed files are
1308 * permitted to overlap inexactly as far as we are concerned for in
1309 * these cases, sharing is handled in the driver or filesystem rather
1310 * than here
1311 */
1312 if (vm_flags & VM_MAYSHARE) {
1313 struct vm_region *pregion;
1314 unsigned long pglen, rpglen, pgend, rpgend, start;
1315
1316 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1317 pgend = pgoff + pglen;
1318
1319 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1320 pregion = rb_entry(rb, struct vm_region, vm_rb);
1321
1322 if (!(pregion->vm_flags & VM_MAYSHARE))
1323 continue;
1324
1325 /* search for overlapping mappings on the same file */
1326 if (pregion->vm_file->f_path.dentry->d_inode !=
1327 file->f_path.dentry->d_inode)
1328 continue;
1329
1330 if (pregion->vm_pgoff >= pgend)
1331 continue;
1332
1333 rpglen = pregion->vm_end - pregion->vm_start;
1334 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1335 rpgend = pregion->vm_pgoff + rpglen;
1336 if (pgoff >= rpgend)
1337 continue;
1338
1339 /* handle inexactly overlapping matches between
1340 * mappings */
1341 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1342 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1343 /* new mapping is not a subset of the region */
1344 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1345 goto sharing_violation;
1346 continue;
1347 }
1348
1349 /* we've found a region we can share */
1350 pregion->vm_usage++;
1351 vma->vm_region = pregion;
1352 start = pregion->vm_start;
1353 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1354 vma->vm_start = start;
1355 vma->vm_end = start + len;
1356
1357 if (pregion->vm_flags & VM_MAPPED_COPY) {
1358 kdebug("share copy");
1359 vma->vm_flags |= VM_MAPPED_COPY;
1360 } else {
1361 kdebug("share mmap");
1362 ret = do_mmap_shared_file(vma);
1363 if (ret < 0) {
1364 vma->vm_region = NULL;
1365 vma->vm_start = 0;
1366 vma->vm_end = 0;
1367 pregion->vm_usage--;
1368 pregion = NULL;
1369 goto error_just_free;
1370 }
1371 }
1372 fput(region->vm_file);
1373 kmem_cache_free(vm_region_jar, region);
1374 region = pregion;
1375 result = start;
1376 goto share;
1377 }
1378
1379 /* obtain the address at which to make a shared mapping
1380 * - this is the hook for quasi-memory character devices to
1381 * tell us the location of a shared mapping
1382 */
1383 if (capabilities & BDI_CAP_MAP_DIRECT) {
1384 addr = file->f_op->get_unmapped_area(file, addr, len,
1385 pgoff, flags);
1386 if (IS_ERR_VALUE(addr)) {
1387 ret = addr;
1388 if (ret != -ENOSYS)
1389 goto error_just_free;
1390
1391 /* the driver refused to tell us where to site
1392 * the mapping so we'll have to attempt to copy
1393 * it */
1394 ret = -ENODEV;
1395 if (!(capabilities & BDI_CAP_MAP_COPY))
1396 goto error_just_free;
1397
1398 capabilities &= ~BDI_CAP_MAP_DIRECT;
1399 } else {
1400 vma->vm_start = region->vm_start = addr;
1401 vma->vm_end = region->vm_end = addr + len;
1402 }
1403 }
1404 }
1405
1406 vma->vm_region = region;
1407
1408 /* set up the mapping
1409 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1410 */
1411 if (file && vma->vm_flags & VM_SHARED)
1412 ret = do_mmap_shared_file(vma);
1413 else
1414 ret = do_mmap_private(vma, region, len, capabilities);
1415 if (ret < 0)
1416 goto error_just_free;
1417 add_nommu_region(region);
1418
1419 /* clear anonymous mappings that don't ask for uninitialized data */
1420 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1421 memset((void *)region->vm_start, 0,
1422 region->vm_end - region->vm_start);
1423
1424 /* okay... we have a mapping; now we have to register it */
1425 result = vma->vm_start;
1426
1427 current->mm->total_vm += len >> PAGE_SHIFT;
1428
1429 share:
1430 add_vma_to_mm(current->mm, vma);
1431
1432 /* we flush the region from the icache only when the first executable
1433 * mapping of it is made */
1434 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1435 flush_icache_range(region->vm_start, region->vm_end);
1436 region->vm_icache_flushed = true;
1437 }
1438
1439 up_write(&nommu_region_sem);
1440
1441 kleave(" = %lx", result);
1442 return result;
1443
1444 error_just_free:
1445 up_write(&nommu_region_sem);
1446 error:
1447 if (region->vm_file)
1448 fput(region->vm_file);
1449 kmem_cache_free(vm_region_jar, region);
1450 if (vma->vm_file)
1451 fput(vma->vm_file);
1452 kmem_cache_free(vm_area_cachep, vma);
1453 kleave(" = %d", ret);
1454 return ret;
1455
1456 sharing_violation:
1457 up_write(&nommu_region_sem);
1458 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1459 ret = -EINVAL;
1460 goto error;
1461
1462 error_getting_vma:
1463 kmem_cache_free(vm_region_jar, region);
1464 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1465 " from process %d failed\n",
1466 len, current->pid);
1467 show_free_areas(0);
1468 return -ENOMEM;
1469
1470 error_getting_region:
1471 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1472 " from process %d failed\n",
1473 len, current->pid);
1474 show_free_areas(0);
1475 return -ENOMEM;
1476 }
1477
1478 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1479 unsigned long, prot, unsigned long, flags,
1480 unsigned long, fd, unsigned long, pgoff)
1481 {
1482 struct file *file = NULL;
1483 unsigned long retval = -EBADF;
1484
1485 audit_mmap_fd(fd, flags);
1486 if (!(flags & MAP_ANONYMOUS)) {
1487 file = fget(fd);
1488 if (!file)
1489 goto out;
1490 }
1491
1492 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1493
1494 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1495
1496 if (file)
1497 fput(file);
1498 out:
1499 return retval;
1500 }
1501
1502 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1503 struct mmap_arg_struct {
1504 unsigned long addr;
1505 unsigned long len;
1506 unsigned long prot;
1507 unsigned long flags;
1508 unsigned long fd;
1509 unsigned long offset;
1510 };
1511
1512 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1513 {
1514 struct mmap_arg_struct a;
1515
1516 if (copy_from_user(&a, arg, sizeof(a)))
1517 return -EFAULT;
1518 if (a.offset & ~PAGE_MASK)
1519 return -EINVAL;
1520
1521 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1522 a.offset >> PAGE_SHIFT);
1523 }
1524 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1525
1526 /*
1527 * split a vma into two pieces at address 'addr', a new vma is allocated either
1528 * for the first part or the tail.
1529 */
1530 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1531 unsigned long addr, int new_below)
1532 {
1533 struct vm_area_struct *new;
1534 struct vm_region *region;
1535 unsigned long npages;
1536
1537 kenter("");
1538
1539 /* we're only permitted to split anonymous regions (these should have
1540 * only a single usage on the region) */
1541 if (vma->vm_file)
1542 return -ENOMEM;
1543
1544 if (mm->map_count >= sysctl_max_map_count)
1545 return -ENOMEM;
1546
1547 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1548 if (!region)
1549 return -ENOMEM;
1550
1551 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1552 if (!new) {
1553 kmem_cache_free(vm_region_jar, region);
1554 return -ENOMEM;
1555 }
1556
1557 /* most fields are the same, copy all, and then fixup */
1558 *new = *vma;
1559 *region = *vma->vm_region;
1560 new->vm_region = region;
1561
1562 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1563
1564 if (new_below) {
1565 region->vm_top = region->vm_end = new->vm_end = addr;
1566 } else {
1567 region->vm_start = new->vm_start = addr;
1568 region->vm_pgoff = new->vm_pgoff += npages;
1569 }
1570
1571 if (new->vm_ops && new->vm_ops->open)
1572 new->vm_ops->open(new);
1573
1574 delete_vma_from_mm(vma);
1575 down_write(&nommu_region_sem);
1576 delete_nommu_region(vma->vm_region);
1577 if (new_below) {
1578 vma->vm_region->vm_start = vma->vm_start = addr;
1579 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1580 } else {
1581 vma->vm_region->vm_end = vma->vm_end = addr;
1582 vma->vm_region->vm_top = addr;
1583 }
1584 add_nommu_region(vma->vm_region);
1585 add_nommu_region(new->vm_region);
1586 up_write(&nommu_region_sem);
1587 add_vma_to_mm(mm, vma);
1588 add_vma_to_mm(mm, new);
1589 return 0;
1590 }
1591
1592 /*
1593 * shrink a VMA by removing the specified chunk from either the beginning or
1594 * the end
1595 */
1596 static int shrink_vma(struct mm_struct *mm,
1597 struct vm_area_struct *vma,
1598 unsigned long from, unsigned long to)
1599 {
1600 struct vm_region *region;
1601
1602 kenter("");
1603
1604 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1605 * and list */
1606 delete_vma_from_mm(vma);
1607 if (from > vma->vm_start)
1608 vma->vm_end = from;
1609 else
1610 vma->vm_start = to;
1611 add_vma_to_mm(mm, vma);
1612
1613 /* cut the backing region down to size */
1614 region = vma->vm_region;
1615 BUG_ON(region->vm_usage != 1);
1616
1617 down_write(&nommu_region_sem);
1618 delete_nommu_region(region);
1619 if (from > region->vm_start) {
1620 to = region->vm_top;
1621 region->vm_top = region->vm_end = from;
1622 } else {
1623 region->vm_start = to;
1624 }
1625 add_nommu_region(region);
1626 up_write(&nommu_region_sem);
1627
1628 free_page_series(from, to);
1629 return 0;
1630 }
1631
1632 /*
1633 * release a mapping
1634 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1635 * VMA, though it need not cover the whole VMA
1636 */
1637 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1638 {
1639 struct vm_area_struct *vma;
1640 unsigned long end;
1641 int ret;
1642
1643 kenter(",%lx,%zx", start, len);
1644
1645 len = PAGE_ALIGN(len);
1646 if (len == 0)
1647 return -EINVAL;
1648
1649 end = start + len;
1650
1651 /* find the first potentially overlapping VMA */
1652 vma = find_vma(mm, start);
1653 if (!vma) {
1654 static int limit = 0;
1655 if (limit < 5) {
1656 printk(KERN_WARNING
1657 "munmap of memory not mmapped by process %d"
1658 " (%s): 0x%lx-0x%lx\n",
1659 current->pid, current->comm,
1660 start, start + len - 1);
1661 limit++;
1662 }
1663 return -EINVAL;
1664 }
1665
1666 /* we're allowed to split an anonymous VMA but not a file-backed one */
1667 if (vma->vm_file) {
1668 do {
1669 if (start > vma->vm_start) {
1670 kleave(" = -EINVAL [miss]");
1671 return -EINVAL;
1672 }
1673 if (end == vma->vm_end)
1674 goto erase_whole_vma;
1675 vma = vma->vm_next;
1676 } while (vma);
1677 kleave(" = -EINVAL [split file]");
1678 return -EINVAL;
1679 } else {
1680 /* the chunk must be a subset of the VMA found */
1681 if (start == vma->vm_start && end == vma->vm_end)
1682 goto erase_whole_vma;
1683 if (start < vma->vm_start || end > vma->vm_end) {
1684 kleave(" = -EINVAL [superset]");
1685 return -EINVAL;
1686 }
1687 if (start & ~PAGE_MASK) {
1688 kleave(" = -EINVAL [unaligned start]");
1689 return -EINVAL;
1690 }
1691 if (end != vma->vm_end && end & ~PAGE_MASK) {
1692 kleave(" = -EINVAL [unaligned split]");
1693 return -EINVAL;
1694 }
1695 if (start != vma->vm_start && end != vma->vm_end) {
1696 ret = split_vma(mm, vma, start, 1);
1697 if (ret < 0) {
1698 kleave(" = %d [split]", ret);
1699 return ret;
1700 }
1701 }
1702 return shrink_vma(mm, vma, start, end);
1703 }
1704
1705 erase_whole_vma:
1706 delete_vma_from_mm(vma);
1707 delete_vma(mm, vma);
1708 kleave(" = 0");
1709 return 0;
1710 }
1711 EXPORT_SYMBOL(do_munmap);
1712
1713 int vm_munmap(unsigned long addr, size_t len)
1714 {
1715 struct mm_struct *mm = current->mm;
1716 int ret;
1717
1718 down_write(&mm->mmap_sem);
1719 ret = do_munmap(mm, addr, len);
1720 up_write(&mm->mmap_sem);
1721 return ret;
1722 }
1723 EXPORT_SYMBOL(vm_munmap);
1724
1725 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1726 {
1727 return vm_munmap(addr, len);
1728 }
1729
1730 /*
1731 * release all the mappings made in a process's VM space
1732 */
1733 void exit_mmap(struct mm_struct *mm)
1734 {
1735 struct vm_area_struct *vma;
1736
1737 if (!mm)
1738 return;
1739
1740 kenter("");
1741
1742 mm->total_vm = 0;
1743
1744 while ((vma = mm->mmap)) {
1745 mm->mmap = vma->vm_next;
1746 delete_vma_from_mm(vma);
1747 delete_vma(mm, vma);
1748 cond_resched();
1749 }
1750
1751 kleave("");
1752 }
1753
1754 unsigned long vm_brk(unsigned long addr, unsigned long len)
1755 {
1756 return -ENOMEM;
1757 }
1758
1759 /*
1760 * expand (or shrink) an existing mapping, potentially moving it at the same
1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762 *
1763 * under NOMMU conditions, we only permit changing a mapping's size, and only
1764 * as long as it stays within the region allocated by do_mmap_private() and the
1765 * block is not shareable
1766 *
1767 * MREMAP_FIXED is not supported under NOMMU conditions
1768 */
1769 unsigned long do_mremap(unsigned long addr,
1770 unsigned long old_len, unsigned long new_len,
1771 unsigned long flags, unsigned long new_addr)
1772 {
1773 struct vm_area_struct *vma;
1774
1775 /* insanity checks first */
1776 old_len = PAGE_ALIGN(old_len);
1777 new_len = PAGE_ALIGN(new_len);
1778 if (old_len == 0 || new_len == 0)
1779 return (unsigned long) -EINVAL;
1780
1781 if (addr & ~PAGE_MASK)
1782 return -EINVAL;
1783
1784 if (flags & MREMAP_FIXED && new_addr != addr)
1785 return (unsigned long) -EINVAL;
1786
1787 vma = find_vma_exact(current->mm, addr, old_len);
1788 if (!vma)
1789 return (unsigned long) -EINVAL;
1790
1791 if (vma->vm_end != vma->vm_start + old_len)
1792 return (unsigned long) -EFAULT;
1793
1794 if (vma->vm_flags & VM_MAYSHARE)
1795 return (unsigned long) -EPERM;
1796
1797 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1798 return (unsigned long) -ENOMEM;
1799
1800 /* all checks complete - do it */
1801 vma->vm_end = vma->vm_start + new_len;
1802 return vma->vm_start;
1803 }
1804 EXPORT_SYMBOL(do_mremap);
1805
1806 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1807 unsigned long, new_len, unsigned long, flags,
1808 unsigned long, new_addr)
1809 {
1810 unsigned long ret;
1811
1812 down_write(&current->mm->mmap_sem);
1813 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1814 up_write(&current->mm->mmap_sem);
1815 return ret;
1816 }
1817
1818 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1819 unsigned int foll_flags)
1820 {
1821 return NULL;
1822 }
1823
1824 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1825 unsigned long pfn, unsigned long size, pgprot_t prot)
1826 {
1827 if (addr != (pfn << PAGE_SHIFT))
1828 return -EINVAL;
1829
1830 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1831 return 0;
1832 }
1833 EXPORT_SYMBOL(remap_pfn_range);
1834
1835 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1836 unsigned long pgoff)
1837 {
1838 unsigned int size = vma->vm_end - vma->vm_start;
1839
1840 if (!(vma->vm_flags & VM_USERMAP))
1841 return -EINVAL;
1842
1843 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1844 vma->vm_end = vma->vm_start + size;
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(remap_vmalloc_range);
1849
1850 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1851 unsigned long len, unsigned long pgoff, unsigned long flags)
1852 {
1853 return -ENOMEM;
1854 }
1855
1856 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1857 {
1858 }
1859
1860 void unmap_mapping_range(struct address_space *mapping,
1861 loff_t const holebegin, loff_t const holelen,
1862 int even_cows)
1863 {
1864 }
1865 EXPORT_SYMBOL(unmap_mapping_range);
1866
1867 /*
1868 * Check that a process has enough memory to allocate a new virtual
1869 * mapping. 0 means there is enough memory for the allocation to
1870 * succeed and -ENOMEM implies there is not.
1871 *
1872 * We currently support three overcommit policies, which are set via the
1873 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1874 *
1875 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1876 * Additional code 2002 Jul 20 by Robert Love.
1877 *
1878 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1879 *
1880 * Note this is a helper function intended to be used by LSMs which
1881 * wish to use this logic.
1882 */
1883 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1884 {
1885 unsigned long free, allowed;
1886
1887 vm_acct_memory(pages);
1888
1889 /*
1890 * Sometimes we want to use more memory than we have
1891 */
1892 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1893 return 0;
1894
1895 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1896 free = global_page_state(NR_FREE_PAGES);
1897 free += global_page_state(NR_FILE_PAGES);
1898
1899 /*
1900 * shmem pages shouldn't be counted as free in this
1901 * case, they can't be purged, only swapped out, and
1902 * that won't affect the overall amount of available
1903 * memory in the system.
1904 */
1905 free -= global_page_state(NR_SHMEM);
1906
1907 free += nr_swap_pages;
1908
1909 /*
1910 * Any slabs which are created with the
1911 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1912 * which are reclaimable, under pressure. The dentry
1913 * cache and most inode caches should fall into this
1914 */
1915 free += global_page_state(NR_SLAB_RECLAIMABLE);
1916
1917 /*
1918 * Leave reserved pages. The pages are not for anonymous pages.
1919 */
1920 if (free <= totalreserve_pages)
1921 goto error;
1922 else
1923 free -= totalreserve_pages;
1924
1925 /*
1926 * Leave the last 3% for root
1927 */
1928 if (!cap_sys_admin)
1929 free -= free / 32;
1930
1931 if (free > pages)
1932 return 0;
1933
1934 goto error;
1935 }
1936
1937 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1938 /*
1939 * Leave the last 3% for root
1940 */
1941 if (!cap_sys_admin)
1942 allowed -= allowed / 32;
1943 allowed += total_swap_pages;
1944
1945 /* Don't let a single process grow too big:
1946 leave 3% of the size of this process for other processes */
1947 if (mm)
1948 allowed -= mm->total_vm / 32;
1949
1950 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1951 return 0;
1952
1953 error:
1954 vm_unacct_memory(pages);
1955
1956 return -ENOMEM;
1957 }
1958
1959 int in_gate_area_no_mm(unsigned long addr)
1960 {
1961 return 0;
1962 }
1963
1964 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1965 {
1966 BUG();
1967 return 0;
1968 }
1969 EXPORT_SYMBOL(filemap_fault);
1970
1971 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1972 unsigned long size, pgoff_t pgoff)
1973 {
1974 BUG();
1975 return 0;
1976 }
1977 EXPORT_SYMBOL(generic_file_remap_pages);
1978
1979 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1980 unsigned long addr, void *buf, int len, int write)
1981 {
1982 struct vm_area_struct *vma;
1983
1984 down_read(&mm->mmap_sem);
1985
1986 /* the access must start within one of the target process's mappings */
1987 vma = find_vma(mm, addr);
1988 if (vma) {
1989 /* don't overrun this mapping */
1990 if (addr + len >= vma->vm_end)
1991 len = vma->vm_end - addr;
1992
1993 /* only read or write mappings where it is permitted */
1994 if (write && vma->vm_flags & VM_MAYWRITE)
1995 copy_to_user_page(vma, NULL, addr,
1996 (void *) addr, buf, len);
1997 else if (!write && vma->vm_flags & VM_MAYREAD)
1998 copy_from_user_page(vma, NULL, addr,
1999 buf, (void *) addr, len);
2000 else
2001 len = 0;
2002 } else {
2003 len = 0;
2004 }
2005
2006 up_read(&mm->mmap_sem);
2007
2008 return len;
2009 }
2010
2011 /**
2012 * @access_remote_vm - access another process' address space
2013 * @mm: the mm_struct of the target address space
2014 * @addr: start address to access
2015 * @buf: source or destination buffer
2016 * @len: number of bytes to transfer
2017 * @write: whether the access is a write
2018 *
2019 * The caller must hold a reference on @mm.
2020 */
2021 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2022 void *buf, int len, int write)
2023 {
2024 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2025 }
2026
2027 /*
2028 * Access another process' address space.
2029 * - source/target buffer must be kernel space
2030 */
2031 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2032 {
2033 struct mm_struct *mm;
2034
2035 if (addr + len < addr)
2036 return 0;
2037
2038 mm = get_task_mm(tsk);
2039 if (!mm)
2040 return 0;
2041
2042 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2043
2044 mmput(mm);
2045 return len;
2046 }
2047
2048 /**
2049 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2050 * @inode: The inode to check
2051 * @size: The current filesize of the inode
2052 * @newsize: The proposed filesize of the inode
2053 *
2054 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2055 * make sure that that any outstanding VMAs aren't broken and then shrink the
2056 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2057 * automatically grant mappings that are too large.
2058 */
2059 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2060 size_t newsize)
2061 {
2062 struct vm_area_struct *vma;
2063 struct vm_region *region;
2064 pgoff_t low, high;
2065 size_t r_size, r_top;
2066
2067 low = newsize >> PAGE_SHIFT;
2068 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2069
2070 down_write(&nommu_region_sem);
2071 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2072
2073 /* search for VMAs that fall within the dead zone */
2074 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2075 /* found one - only interested if it's shared out of the page
2076 * cache */
2077 if (vma->vm_flags & VM_SHARED) {
2078 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2079 up_write(&nommu_region_sem);
2080 return -ETXTBSY; /* not quite true, but near enough */
2081 }
2082 }
2083
2084 /* reduce any regions that overlap the dead zone - if in existence,
2085 * these will be pointed to by VMAs that don't overlap the dead zone
2086 *
2087 * we don't check for any regions that start beyond the EOF as there
2088 * shouldn't be any
2089 */
2090 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2091 0, ULONG_MAX) {
2092 if (!(vma->vm_flags & VM_SHARED))
2093 continue;
2094
2095 region = vma->vm_region;
2096 r_size = region->vm_top - region->vm_start;
2097 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2098
2099 if (r_top > newsize) {
2100 region->vm_top -= r_top - newsize;
2101 if (region->vm_end > region->vm_top)
2102 region->vm_end = region->vm_top;
2103 }
2104 }
2105
2106 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107 up_write(&nommu_region_sem);
2108 return 0;
2109 }