Merge branch 'for-linux-next' of git://people.freedesktop.org/~danvet/drm-intel into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlb.h>
40 #include <asm/mmu_context.h>
41
42 #include "internal.h"
43
44 #ifndef arch_mmap_check
45 #define arch_mmap_check(addr, len, flags) (0)
46 #endif
47
48 #ifndef arch_rebalance_pgtables
49 #define arch_rebalance_pgtables(addr, len) (addr)
50 #endif
51
52 static void unmap_region(struct mm_struct *mm,
53 struct vm_area_struct *vma, struct vm_area_struct *prev,
54 unsigned long start, unsigned long end);
55
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
59 *
60 * map_type prot
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
65 *
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 */
71 pgprot_t protection_map[16] = {
72 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78 return __pgprot(pgprot_val(protection_map[vm_flags &
79 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
85 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 /*
88 * Make sure vm_committed_as in one cacheline and not cacheline shared with
89 * other variables. It can be updated by several CPUs frequently.
90 */
91 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
92
93 /*
94 * The global memory commitment made in the system can be a metric
95 * that can be used to drive ballooning decisions when Linux is hosted
96 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
97 * balancing memory across competing virtual machines that are hosted.
98 * Several metrics drive this policy engine including the guest reported
99 * memory commitment.
100 */
101 unsigned long vm_memory_committed(void)
102 {
103 return percpu_counter_read_positive(&vm_committed_as);
104 }
105 EXPORT_SYMBOL_GPL(vm_memory_committed);
106
107 /*
108 * Check that a process has enough memory to allocate a new virtual
109 * mapping. 0 means there is enough memory for the allocation to
110 * succeed and -ENOMEM implies there is not.
111 *
112 * We currently support three overcommit policies, which are set via the
113 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
114 *
115 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
116 * Additional code 2002 Jul 20 by Robert Love.
117 *
118 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
119 *
120 * Note this is a helper function intended to be used by LSMs which
121 * wish to use this logic.
122 */
123 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
124 {
125 unsigned long free, allowed;
126
127 vm_acct_memory(pages);
128
129 /*
130 * Sometimes we want to use more memory than we have
131 */
132 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
133 return 0;
134
135 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
136 free = global_page_state(NR_FREE_PAGES);
137 free += global_page_state(NR_FILE_PAGES);
138
139 /*
140 * shmem pages shouldn't be counted as free in this
141 * case, they can't be purged, only swapped out, and
142 * that won't affect the overall amount of available
143 * memory in the system.
144 */
145 free -= global_page_state(NR_SHMEM);
146
147 free += get_nr_swap_pages();
148
149 /*
150 * Any slabs which are created with the
151 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
152 * which are reclaimable, under pressure. The dentry
153 * cache and most inode caches should fall into this
154 */
155 free += global_page_state(NR_SLAB_RECLAIMABLE);
156
157 /*
158 * Leave reserved pages. The pages are not for anonymous pages.
159 */
160 if (free <= totalreserve_pages)
161 goto error;
162 else
163 free -= totalreserve_pages;
164
165 /*
166 * Leave the last 3% for root
167 */
168 if (!cap_sys_admin)
169 free -= free / 32;
170
171 if (free > pages)
172 return 0;
173
174 goto error;
175 }
176
177 allowed = (totalram_pages - hugetlb_total_pages())
178 * sysctl_overcommit_ratio / 100;
179 /*
180 * Leave the last 3% for root
181 */
182 if (!cap_sys_admin)
183 allowed -= allowed / 32;
184 allowed += total_swap_pages;
185
186 /* Don't let a single process grow too big:
187 leave 3% of the size of this process for other processes */
188 if (mm)
189 allowed -= mm->total_vm / 32;
190
191 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
192 return 0;
193 error:
194 vm_unacct_memory(pages);
195
196 return -ENOMEM;
197 }
198
199 /*
200 * Requires inode->i_mapping->i_mmap_mutex
201 */
202 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
203 struct file *file, struct address_space *mapping)
204 {
205 if (vma->vm_flags & VM_DENYWRITE)
206 atomic_inc(&file_inode(file)->i_writecount);
207 if (vma->vm_flags & VM_SHARED)
208 mapping->i_mmap_writable--;
209
210 flush_dcache_mmap_lock(mapping);
211 if (unlikely(vma->vm_flags & VM_NONLINEAR))
212 list_del_init(&vma->shared.nonlinear);
213 else
214 vma_interval_tree_remove(vma, &mapping->i_mmap);
215 flush_dcache_mmap_unlock(mapping);
216 }
217
218 /*
219 * Unlink a file-based vm structure from its interval tree, to hide
220 * vma from rmap and vmtruncate before freeing its page tables.
221 */
222 void unlink_file_vma(struct vm_area_struct *vma)
223 {
224 struct file *file = vma->vm_file;
225
226 if (file) {
227 struct address_space *mapping = file->f_mapping;
228 mutex_lock(&mapping->i_mmap_mutex);
229 __remove_shared_vm_struct(vma, file, mapping);
230 mutex_unlock(&mapping->i_mmap_mutex);
231 }
232 }
233
234 /*
235 * Close a vm structure and free it, returning the next.
236 */
237 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
238 {
239 struct vm_area_struct *next = vma->vm_next;
240
241 might_sleep();
242 if (vma->vm_ops && vma->vm_ops->close)
243 vma->vm_ops->close(vma);
244 if (vma->vm_file)
245 fput(vma->vm_file);
246 mpol_put(vma_policy(vma));
247 kmem_cache_free(vm_area_cachep, vma);
248 return next;
249 }
250
251 static unsigned long do_brk(unsigned long addr, unsigned long len);
252
253 SYSCALL_DEFINE1(brk, unsigned long, brk)
254 {
255 unsigned long rlim, retval;
256 unsigned long newbrk, oldbrk;
257 struct mm_struct *mm = current->mm;
258 unsigned long min_brk;
259 bool populate;
260
261 down_write(&mm->mmap_sem);
262
263 #ifdef CONFIG_COMPAT_BRK
264 /*
265 * CONFIG_COMPAT_BRK can still be overridden by setting
266 * randomize_va_space to 2, which will still cause mm->start_brk
267 * to be arbitrarily shifted
268 */
269 if (current->brk_randomized)
270 min_brk = mm->start_brk;
271 else
272 min_brk = mm->end_data;
273 #else
274 min_brk = mm->start_brk;
275 #endif
276 if (brk < min_brk)
277 goto out;
278
279 /*
280 * Check against rlimit here. If this check is done later after the test
281 * of oldbrk with newbrk then it can escape the test and let the data
282 * segment grow beyond its set limit the in case where the limit is
283 * not page aligned -Ram Gupta
284 */
285 rlim = rlimit(RLIMIT_DATA);
286 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
287 (mm->end_data - mm->start_data) > rlim)
288 goto out;
289
290 newbrk = PAGE_ALIGN(brk);
291 oldbrk = PAGE_ALIGN(mm->brk);
292 if (oldbrk == newbrk)
293 goto set_brk;
294
295 /* Always allow shrinking brk. */
296 if (brk <= mm->brk) {
297 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
298 goto set_brk;
299 goto out;
300 }
301
302 /* Check against existing mmap mappings. */
303 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
304 goto out;
305
306 /* Ok, looks good - let it rip. */
307 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
308 goto out;
309
310 set_brk:
311 mm->brk = brk;
312 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
313 up_write(&mm->mmap_sem);
314 if (populate)
315 mm_populate(oldbrk, newbrk - oldbrk);
316 return brk;
317
318 out:
319 retval = mm->brk;
320 up_write(&mm->mmap_sem);
321 return retval;
322 }
323
324 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
325 {
326 unsigned long max, subtree_gap;
327 max = vma->vm_start;
328 if (vma->vm_prev)
329 max -= vma->vm_prev->vm_end;
330 if (vma->vm_rb.rb_left) {
331 subtree_gap = rb_entry(vma->vm_rb.rb_left,
332 struct vm_area_struct, vm_rb)->rb_subtree_gap;
333 if (subtree_gap > max)
334 max = subtree_gap;
335 }
336 if (vma->vm_rb.rb_right) {
337 subtree_gap = rb_entry(vma->vm_rb.rb_right,
338 struct vm_area_struct, vm_rb)->rb_subtree_gap;
339 if (subtree_gap > max)
340 max = subtree_gap;
341 }
342 return max;
343 }
344
345 #ifdef CONFIG_DEBUG_VM_RB
346 static int browse_rb(struct rb_root *root)
347 {
348 int i = 0, j, bug = 0;
349 struct rb_node *nd, *pn = NULL;
350 unsigned long prev = 0, pend = 0;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 if (vma->vm_start < prev) {
356 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
357 bug = 1;
358 }
359 if (vma->vm_start < pend) {
360 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
361 bug = 1;
362 }
363 if (vma->vm_start > vma->vm_end) {
364 printk("vm_end %lx < vm_start %lx\n",
365 vma->vm_end, vma->vm_start);
366 bug = 1;
367 }
368 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
369 printk("free gap %lx, correct %lx\n",
370 vma->rb_subtree_gap,
371 vma_compute_subtree_gap(vma));
372 bug = 1;
373 }
374 i++;
375 pn = nd;
376 prev = vma->vm_start;
377 pend = vma->vm_end;
378 }
379 j = 0;
380 for (nd = pn; nd; nd = rb_prev(nd))
381 j++;
382 if (i != j) {
383 printk("backwards %d, forwards %d\n", j, i);
384 bug = 1;
385 }
386 return bug ? -1 : i;
387 }
388
389 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
390 {
391 struct rb_node *nd;
392
393 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
394 struct vm_area_struct *vma;
395 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
396 BUG_ON(vma != ignore &&
397 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
398 }
399 }
400
401 void validate_mm(struct mm_struct *mm)
402 {
403 int bug = 0;
404 int i = 0;
405 unsigned long highest_address = 0;
406 struct vm_area_struct *vma = mm->mmap;
407 while (vma) {
408 struct anon_vma_chain *avc;
409 vma_lock_anon_vma(vma);
410 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
411 anon_vma_interval_tree_verify(avc);
412 vma_unlock_anon_vma(vma);
413 highest_address = vma->vm_end;
414 vma = vma->vm_next;
415 i++;
416 }
417 if (i != mm->map_count) {
418 printk("map_count %d vm_next %d\n", mm->map_count, i);
419 bug = 1;
420 }
421 if (highest_address != mm->highest_vm_end) {
422 printk("mm->highest_vm_end %lx, found %lx\n",
423 mm->highest_vm_end, highest_address);
424 bug = 1;
425 }
426 i = browse_rb(&mm->mm_rb);
427 if (i != mm->map_count) {
428 printk("map_count %d rb %d\n", mm->map_count, i);
429 bug = 1;
430 }
431 BUG_ON(bug);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
439 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
440
441 /*
442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443 * vma->vm_prev->vm_end values changed, without modifying the vma's position
444 * in the rbtree.
445 */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448 /*
449 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
450 * function that does exacltly what we want.
451 */
452 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456 struct rb_root *root)
457 {
458 /* All rb_subtree_gap values must be consistent prior to insertion */
459 validate_mm_rb(root, NULL);
460
461 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463
464 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466 /*
467 * All rb_subtree_gap values must be consistent prior to erase,
468 * with the possible exception of the vma being erased.
469 */
470 validate_mm_rb(root, vma);
471
472 /*
473 * Note rb_erase_augmented is a fairly large inline function,
474 * so make sure we instantiate it only once with our desired
475 * augmented rbtree callbacks.
476 */
477 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
478 }
479
480 /*
481 * vma has some anon_vma assigned, and is already inserted on that
482 * anon_vma's interval trees.
483 *
484 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
485 * vma must be removed from the anon_vma's interval trees using
486 * anon_vma_interval_tree_pre_update_vma().
487 *
488 * After the update, the vma will be reinserted using
489 * anon_vma_interval_tree_post_update_vma().
490 *
491 * The entire update must be protected by exclusive mmap_sem and by
492 * the root anon_vma's mutex.
493 */
494 static inline void
495 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
496 {
497 struct anon_vma_chain *avc;
498
499 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
500 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
501 }
502
503 static inline void
504 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
505 {
506 struct anon_vma_chain *avc;
507
508 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
509 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
510 }
511
512 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
513 unsigned long end, struct vm_area_struct **pprev,
514 struct rb_node ***rb_link, struct rb_node **rb_parent)
515 {
516 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
517
518 __rb_link = &mm->mm_rb.rb_node;
519 rb_prev = __rb_parent = NULL;
520
521 while (*__rb_link) {
522 struct vm_area_struct *vma_tmp;
523
524 __rb_parent = *__rb_link;
525 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
526
527 if (vma_tmp->vm_end > addr) {
528 /* Fail if an existing vma overlaps the area */
529 if (vma_tmp->vm_start < end)
530 return -ENOMEM;
531 __rb_link = &__rb_parent->rb_left;
532 } else {
533 rb_prev = __rb_parent;
534 __rb_link = &__rb_parent->rb_right;
535 }
536 }
537
538 *pprev = NULL;
539 if (rb_prev)
540 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
541 *rb_link = __rb_link;
542 *rb_parent = __rb_parent;
543 return 0;
544 }
545
546 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
547 struct rb_node **rb_link, struct rb_node *rb_parent)
548 {
549 /* Update tracking information for the gap following the new vma. */
550 if (vma->vm_next)
551 vma_gap_update(vma->vm_next);
552 else
553 mm->highest_vm_end = vma->vm_end;
554
555 /*
556 * vma->vm_prev wasn't known when we followed the rbtree to find the
557 * correct insertion point for that vma. As a result, we could not
558 * update the vma vm_rb parents rb_subtree_gap values on the way down.
559 * So, we first insert the vma with a zero rb_subtree_gap value
560 * (to be consistent with what we did on the way down), and then
561 * immediately update the gap to the correct value. Finally we
562 * rebalance the rbtree after all augmented values have been set.
563 */
564 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
565 vma->rb_subtree_gap = 0;
566 vma_gap_update(vma);
567 vma_rb_insert(vma, &mm->mm_rb);
568 }
569
570 static void __vma_link_file(struct vm_area_struct *vma)
571 {
572 struct file *file;
573
574 file = vma->vm_file;
575 if (file) {
576 struct address_space *mapping = file->f_mapping;
577
578 if (vma->vm_flags & VM_DENYWRITE)
579 atomic_dec(&file_inode(file)->i_writecount);
580 if (vma->vm_flags & VM_SHARED)
581 mapping->i_mmap_writable++;
582
583 flush_dcache_mmap_lock(mapping);
584 if (unlikely(vma->vm_flags & VM_NONLINEAR))
585 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
586 else
587 vma_interval_tree_insert(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 }
590 }
591
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594 struct vm_area_struct *prev, struct rb_node **rb_link,
595 struct rb_node *rb_parent)
596 {
597 __vma_link_list(mm, vma, prev, rb_parent);
598 __vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602 struct vm_area_struct *prev, struct rb_node **rb_link,
603 struct rb_node *rb_parent)
604 {
605 struct address_space *mapping = NULL;
606
607 if (vma->vm_file)
608 mapping = vma->vm_file->f_mapping;
609
610 if (mapping)
611 mutex_lock(&mapping->i_mmap_mutex);
612
613 __vma_link(mm, vma, prev, rb_link, rb_parent);
614 __vma_link_file(vma);
615
616 if (mapping)
617 mutex_unlock(&mapping->i_mmap_mutex);
618
619 mm->map_count++;
620 validate_mm(mm);
621 }
622
623 /*
624 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
625 * mm's list and rbtree. It has already been inserted into the interval tree.
626 */
627 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
628 {
629 struct vm_area_struct *prev;
630 struct rb_node **rb_link, *rb_parent;
631
632 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
633 &prev, &rb_link, &rb_parent))
634 BUG();
635 __vma_link(mm, vma, prev, rb_link, rb_parent);
636 mm->map_count++;
637 }
638
639 static inline void
640 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev)
642 {
643 struct vm_area_struct *next;
644
645 vma_rb_erase(vma, &mm->mm_rb);
646 prev->vm_next = next = vma->vm_next;
647 if (next)
648 next->vm_prev = prev;
649 if (mm->mmap_cache == vma)
650 mm->mmap_cache = prev;
651 }
652
653 /*
654 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
655 * is already present in an i_mmap tree without adjusting the tree.
656 * The following helper function should be used when such adjustments
657 * are necessary. The "insert" vma (if any) is to be inserted
658 * before we drop the necessary locks.
659 */
660 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
661 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
662 {
663 struct mm_struct *mm = vma->vm_mm;
664 struct vm_area_struct *next = vma->vm_next;
665 struct vm_area_struct *importer = NULL;
666 struct address_space *mapping = NULL;
667 struct rb_root *root = NULL;
668 struct anon_vma *anon_vma = NULL;
669 struct file *file = vma->vm_file;
670 bool start_changed = false, end_changed = false;
671 long adjust_next = 0;
672 int remove_next = 0;
673
674 if (next && !insert) {
675 struct vm_area_struct *exporter = NULL;
676
677 if (end >= next->vm_end) {
678 /*
679 * vma expands, overlapping all the next, and
680 * perhaps the one after too (mprotect case 6).
681 */
682 again: remove_next = 1 + (end > next->vm_end);
683 end = next->vm_end;
684 exporter = next;
685 importer = vma;
686 } else if (end > next->vm_start) {
687 /*
688 * vma expands, overlapping part of the next:
689 * mprotect case 5 shifting the boundary up.
690 */
691 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
692 exporter = next;
693 importer = vma;
694 } else if (end < vma->vm_end) {
695 /*
696 * vma shrinks, and !insert tells it's not
697 * split_vma inserting another: so it must be
698 * mprotect case 4 shifting the boundary down.
699 */
700 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
701 exporter = vma;
702 importer = next;
703 }
704
705 /*
706 * Easily overlooked: when mprotect shifts the boundary,
707 * make sure the expanding vma has anon_vma set if the
708 * shrinking vma had, to cover any anon pages imported.
709 */
710 if (exporter && exporter->anon_vma && !importer->anon_vma) {
711 if (anon_vma_clone(importer, exporter))
712 return -ENOMEM;
713 importer->anon_vma = exporter->anon_vma;
714 }
715 }
716
717 if (file) {
718 mapping = file->f_mapping;
719 if (!(vma->vm_flags & VM_NONLINEAR)) {
720 root = &mapping->i_mmap;
721 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
722
723 if (adjust_next)
724 uprobe_munmap(next, next->vm_start,
725 next->vm_end);
726 }
727
728 mutex_lock(&mapping->i_mmap_mutex);
729 if (insert) {
730 /*
731 * Put into interval tree now, so instantiated pages
732 * are visible to arm/parisc __flush_dcache_page
733 * throughout; but we cannot insert into address
734 * space until vma start or end is updated.
735 */
736 __vma_link_file(insert);
737 }
738 }
739
740 vma_adjust_trans_huge(vma, start, end, adjust_next);
741
742 anon_vma = vma->anon_vma;
743 if (!anon_vma && adjust_next)
744 anon_vma = next->anon_vma;
745 if (anon_vma) {
746 VM_BUG_ON(adjust_next && next->anon_vma &&
747 anon_vma != next->anon_vma);
748 anon_vma_lock_write(anon_vma);
749 anon_vma_interval_tree_pre_update_vma(vma);
750 if (adjust_next)
751 anon_vma_interval_tree_pre_update_vma(next);
752 }
753
754 if (root) {
755 flush_dcache_mmap_lock(mapping);
756 vma_interval_tree_remove(vma, root);
757 if (adjust_next)
758 vma_interval_tree_remove(next, root);
759 }
760
761 if (start != vma->vm_start) {
762 vma->vm_start = start;
763 start_changed = true;
764 }
765 if (end != vma->vm_end) {
766 vma->vm_end = end;
767 end_changed = true;
768 }
769 vma->vm_pgoff = pgoff;
770 if (adjust_next) {
771 next->vm_start += adjust_next << PAGE_SHIFT;
772 next->vm_pgoff += adjust_next;
773 }
774
775 if (root) {
776 if (adjust_next)
777 vma_interval_tree_insert(next, root);
778 vma_interval_tree_insert(vma, root);
779 flush_dcache_mmap_unlock(mapping);
780 }
781
782 if (remove_next) {
783 /*
784 * vma_merge has merged next into vma, and needs
785 * us to remove next before dropping the locks.
786 */
787 __vma_unlink(mm, next, vma);
788 if (file)
789 __remove_shared_vm_struct(next, file, mapping);
790 } else if (insert) {
791 /*
792 * split_vma has split insert from vma, and needs
793 * us to insert it before dropping the locks
794 * (it may either follow vma or precede it).
795 */
796 __insert_vm_struct(mm, insert);
797 } else {
798 if (start_changed)
799 vma_gap_update(vma);
800 if (end_changed) {
801 if (!next)
802 mm->highest_vm_end = end;
803 else if (!adjust_next)
804 vma_gap_update(next);
805 }
806 }
807
808 if (anon_vma) {
809 anon_vma_interval_tree_post_update_vma(vma);
810 if (adjust_next)
811 anon_vma_interval_tree_post_update_vma(next);
812 anon_vma_unlock_write(anon_vma);
813 }
814 if (mapping)
815 mutex_unlock(&mapping->i_mmap_mutex);
816
817 if (root) {
818 uprobe_mmap(vma);
819
820 if (adjust_next)
821 uprobe_mmap(next);
822 }
823
824 if (remove_next) {
825 if (file) {
826 uprobe_munmap(next, next->vm_start, next->vm_end);
827 fput(file);
828 }
829 if (next->anon_vma)
830 anon_vma_merge(vma, next);
831 mm->map_count--;
832 mpol_put(vma_policy(next));
833 kmem_cache_free(vm_area_cachep, next);
834 /*
835 * In mprotect's case 6 (see comments on vma_merge),
836 * we must remove another next too. It would clutter
837 * up the code too much to do both in one go.
838 */
839 next = vma->vm_next;
840 if (remove_next == 2)
841 goto again;
842 else if (next)
843 vma_gap_update(next);
844 else
845 mm->highest_vm_end = end;
846 }
847 if (insert && file)
848 uprobe_mmap(insert);
849
850 validate_mm(mm);
851
852 return 0;
853 }
854
855 /*
856 * If the vma has a ->close operation then the driver probably needs to release
857 * per-vma resources, so we don't attempt to merge those.
858 */
859 static inline int is_mergeable_vma(struct vm_area_struct *vma,
860 struct file *file, unsigned long vm_flags)
861 {
862 if (vma->vm_flags ^ vm_flags)
863 return 0;
864 if (vma->vm_file != file)
865 return 0;
866 if (vma->vm_ops && vma->vm_ops->close)
867 return 0;
868 return 1;
869 }
870
871 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
872 struct anon_vma *anon_vma2,
873 struct vm_area_struct *vma)
874 {
875 /*
876 * The list_is_singular() test is to avoid merging VMA cloned from
877 * parents. This can improve scalability caused by anon_vma lock.
878 */
879 if ((!anon_vma1 || !anon_vma2) && (!vma ||
880 list_is_singular(&vma->anon_vma_chain)))
881 return 1;
882 return anon_vma1 == anon_vma2;
883 }
884
885 /*
886 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
887 * in front of (at a lower virtual address and file offset than) the vma.
888 *
889 * We cannot merge two vmas if they have differently assigned (non-NULL)
890 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
891 *
892 * We don't check here for the merged mmap wrapping around the end of pagecache
893 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
894 * wrap, nor mmaps which cover the final page at index -1UL.
895 */
896 static int
897 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
898 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
899 {
900 if (is_mergeable_vma(vma, file, vm_flags) &&
901 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
902 if (vma->vm_pgoff == vm_pgoff)
903 return 1;
904 }
905 return 0;
906 }
907
908 /*
909 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
910 * beyond (at a higher virtual address and file offset than) the vma.
911 *
912 * We cannot merge two vmas if they have differently assigned (non-NULL)
913 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
914 */
915 static int
916 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
917 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
918 {
919 if (is_mergeable_vma(vma, file, vm_flags) &&
920 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
921 pgoff_t vm_pglen;
922 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
923 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
924 return 1;
925 }
926 return 0;
927 }
928
929 /*
930 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
931 * whether that can be merged with its predecessor or its successor.
932 * Or both (it neatly fills a hole).
933 *
934 * In most cases - when called for mmap, brk or mremap - [addr,end) is
935 * certain not to be mapped by the time vma_merge is called; but when
936 * called for mprotect, it is certain to be already mapped (either at
937 * an offset within prev, or at the start of next), and the flags of
938 * this area are about to be changed to vm_flags - and the no-change
939 * case has already been eliminated.
940 *
941 * The following mprotect cases have to be considered, where AAAA is
942 * the area passed down from mprotect_fixup, never extending beyond one
943 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
944 *
945 * AAAA AAAA AAAA AAAA
946 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
947 * cannot merge might become might become might become
948 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
949 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
950 * mremap move: PPPPNNNNNNNN 8
951 * AAAA
952 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
953 * might become case 1 below case 2 below case 3 below
954 *
955 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
956 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
957 */
958 struct vm_area_struct *vma_merge(struct mm_struct *mm,
959 struct vm_area_struct *prev, unsigned long addr,
960 unsigned long end, unsigned long vm_flags,
961 struct anon_vma *anon_vma, struct file *file,
962 pgoff_t pgoff, struct mempolicy *policy)
963 {
964 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
965 struct vm_area_struct *area, *next;
966 int err;
967
968 /*
969 * We later require that vma->vm_flags == vm_flags,
970 * so this tests vma->vm_flags & VM_SPECIAL, too.
971 */
972 if (vm_flags & VM_SPECIAL)
973 return NULL;
974
975 if (prev)
976 next = prev->vm_next;
977 else
978 next = mm->mmap;
979 area = next;
980 if (next && next->vm_end == end) /* cases 6, 7, 8 */
981 next = next->vm_next;
982
983 /*
984 * Can it merge with the predecessor?
985 */
986 if (prev && prev->vm_end == addr &&
987 mpol_equal(vma_policy(prev), policy) &&
988 can_vma_merge_after(prev, vm_flags,
989 anon_vma, file, pgoff)) {
990 /*
991 * OK, it can. Can we now merge in the successor as well?
992 */
993 if (next && end == next->vm_start &&
994 mpol_equal(policy, vma_policy(next)) &&
995 can_vma_merge_before(next, vm_flags,
996 anon_vma, file, pgoff+pglen) &&
997 is_mergeable_anon_vma(prev->anon_vma,
998 next->anon_vma, NULL)) {
999 /* cases 1, 6 */
1000 err = vma_adjust(prev, prev->vm_start,
1001 next->vm_end, prev->vm_pgoff, NULL);
1002 } else /* cases 2, 5, 7 */
1003 err = vma_adjust(prev, prev->vm_start,
1004 end, prev->vm_pgoff, NULL);
1005 if (err)
1006 return NULL;
1007 khugepaged_enter_vma_merge(prev);
1008 return prev;
1009 }
1010
1011 /*
1012 * Can this new request be merged in front of next?
1013 */
1014 if (next && end == next->vm_start &&
1015 mpol_equal(policy, vma_policy(next)) &&
1016 can_vma_merge_before(next, vm_flags,
1017 anon_vma, file, pgoff+pglen)) {
1018 if (prev && addr < prev->vm_end) /* case 4 */
1019 err = vma_adjust(prev, prev->vm_start,
1020 addr, prev->vm_pgoff, NULL);
1021 else /* cases 3, 8 */
1022 err = vma_adjust(area, addr, next->vm_end,
1023 next->vm_pgoff - pglen, NULL);
1024 if (err)
1025 return NULL;
1026 khugepaged_enter_vma_merge(area);
1027 return area;
1028 }
1029
1030 return NULL;
1031 }
1032
1033 /*
1034 * Rough compatbility check to quickly see if it's even worth looking
1035 * at sharing an anon_vma.
1036 *
1037 * They need to have the same vm_file, and the flags can only differ
1038 * in things that mprotect may change.
1039 *
1040 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1041 * we can merge the two vma's. For example, we refuse to merge a vma if
1042 * there is a vm_ops->close() function, because that indicates that the
1043 * driver is doing some kind of reference counting. But that doesn't
1044 * really matter for the anon_vma sharing case.
1045 */
1046 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1047 {
1048 return a->vm_end == b->vm_start &&
1049 mpol_equal(vma_policy(a), vma_policy(b)) &&
1050 a->vm_file == b->vm_file &&
1051 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1052 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1053 }
1054
1055 /*
1056 * Do some basic sanity checking to see if we can re-use the anon_vma
1057 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1058 * the same as 'old', the other will be the new one that is trying
1059 * to share the anon_vma.
1060 *
1061 * NOTE! This runs with mm_sem held for reading, so it is possible that
1062 * the anon_vma of 'old' is concurrently in the process of being set up
1063 * by another page fault trying to merge _that_. But that's ok: if it
1064 * is being set up, that automatically means that it will be a singleton
1065 * acceptable for merging, so we can do all of this optimistically. But
1066 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1067 *
1068 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1069 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1070 * is to return an anon_vma that is "complex" due to having gone through
1071 * a fork).
1072 *
1073 * We also make sure that the two vma's are compatible (adjacent,
1074 * and with the same memory policies). That's all stable, even with just
1075 * a read lock on the mm_sem.
1076 */
1077 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1078 {
1079 if (anon_vma_compatible(a, b)) {
1080 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1081
1082 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1083 return anon_vma;
1084 }
1085 return NULL;
1086 }
1087
1088 /*
1089 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1090 * neighbouring vmas for a suitable anon_vma, before it goes off
1091 * to allocate a new anon_vma. It checks because a repetitive
1092 * sequence of mprotects and faults may otherwise lead to distinct
1093 * anon_vmas being allocated, preventing vma merge in subsequent
1094 * mprotect.
1095 */
1096 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1097 {
1098 struct anon_vma *anon_vma;
1099 struct vm_area_struct *near;
1100
1101 near = vma->vm_next;
1102 if (!near)
1103 goto try_prev;
1104
1105 anon_vma = reusable_anon_vma(near, vma, near);
1106 if (anon_vma)
1107 return anon_vma;
1108 try_prev:
1109 near = vma->vm_prev;
1110 if (!near)
1111 goto none;
1112
1113 anon_vma = reusable_anon_vma(near, near, vma);
1114 if (anon_vma)
1115 return anon_vma;
1116 none:
1117 /*
1118 * There's no absolute need to look only at touching neighbours:
1119 * we could search further afield for "compatible" anon_vmas.
1120 * But it would probably just be a waste of time searching,
1121 * or lead to too many vmas hanging off the same anon_vma.
1122 * We're trying to allow mprotect remerging later on,
1123 * not trying to minimize memory used for anon_vmas.
1124 */
1125 return NULL;
1126 }
1127
1128 #ifdef CONFIG_PROC_FS
1129 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1130 struct file *file, long pages)
1131 {
1132 const unsigned long stack_flags
1133 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1134
1135 mm->total_vm += pages;
1136
1137 if (file) {
1138 mm->shared_vm += pages;
1139 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1140 mm->exec_vm += pages;
1141 } else if (flags & stack_flags)
1142 mm->stack_vm += pages;
1143 }
1144 #endif /* CONFIG_PROC_FS */
1145
1146 /*
1147 * If a hint addr is less than mmap_min_addr change hint to be as
1148 * low as possible but still greater than mmap_min_addr
1149 */
1150 static inline unsigned long round_hint_to_min(unsigned long hint)
1151 {
1152 hint &= PAGE_MASK;
1153 if (((void *)hint != NULL) &&
1154 (hint < mmap_min_addr))
1155 return PAGE_ALIGN(mmap_min_addr);
1156 return hint;
1157 }
1158
1159 /*
1160 * The caller must hold down_write(&current->mm->mmap_sem).
1161 */
1162
1163 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1164 unsigned long len, unsigned long prot,
1165 unsigned long flags, unsigned long pgoff,
1166 unsigned long *populate)
1167 {
1168 struct mm_struct * mm = current->mm;
1169 struct inode *inode;
1170 vm_flags_t vm_flags;
1171
1172 *populate = 0;
1173
1174 /*
1175 * Does the application expect PROT_READ to imply PROT_EXEC?
1176 *
1177 * (the exception is when the underlying filesystem is noexec
1178 * mounted, in which case we dont add PROT_EXEC.)
1179 */
1180 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1181 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1182 prot |= PROT_EXEC;
1183
1184 if (!len)
1185 return -EINVAL;
1186
1187 if (!(flags & MAP_FIXED))
1188 addr = round_hint_to_min(addr);
1189
1190 /* Careful about overflows.. */
1191 len = PAGE_ALIGN(len);
1192 if (!len)
1193 return -ENOMEM;
1194
1195 /* offset overflow? */
1196 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1197 return -EOVERFLOW;
1198
1199 /* Too many mappings? */
1200 if (mm->map_count > sysctl_max_map_count)
1201 return -ENOMEM;
1202
1203 /* Obtain the address to map to. we verify (or select) it and ensure
1204 * that it represents a valid section of the address space.
1205 */
1206 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1207 if (addr & ~PAGE_MASK)
1208 return addr;
1209
1210 /* Do simple checking here so the lower-level routines won't have
1211 * to. we assume access permissions have been handled by the open
1212 * of the memory object, so we don't do any here.
1213 */
1214 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1215 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1216
1217 if (flags & MAP_LOCKED)
1218 if (!can_do_mlock())
1219 return -EPERM;
1220
1221 /* mlock MCL_FUTURE? */
1222 if (vm_flags & VM_LOCKED) {
1223 unsigned long locked, lock_limit;
1224 locked = len >> PAGE_SHIFT;
1225 locked += mm->locked_vm;
1226 lock_limit = rlimit(RLIMIT_MEMLOCK);
1227 lock_limit >>= PAGE_SHIFT;
1228 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1229 return -EAGAIN;
1230 }
1231
1232 inode = file ? file_inode(file) : NULL;
1233
1234 if (file) {
1235 switch (flags & MAP_TYPE) {
1236 case MAP_SHARED:
1237 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1238 return -EACCES;
1239
1240 /*
1241 * Make sure we don't allow writing to an append-only
1242 * file..
1243 */
1244 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1245 return -EACCES;
1246
1247 /*
1248 * Make sure there are no mandatory locks on the file.
1249 */
1250 if (locks_verify_locked(inode))
1251 return -EAGAIN;
1252
1253 vm_flags |= VM_SHARED | VM_MAYSHARE;
1254 if (!(file->f_mode & FMODE_WRITE))
1255 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1256
1257 /* fall through */
1258 case MAP_PRIVATE:
1259 if (!(file->f_mode & FMODE_READ))
1260 return -EACCES;
1261 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1262 if (vm_flags & VM_EXEC)
1263 return -EPERM;
1264 vm_flags &= ~VM_MAYEXEC;
1265 }
1266
1267 if (!file->f_op || !file->f_op->mmap)
1268 return -ENODEV;
1269 break;
1270
1271 default:
1272 return -EINVAL;
1273 }
1274 } else {
1275 switch (flags & MAP_TYPE) {
1276 case MAP_SHARED:
1277 /*
1278 * Ignore pgoff.
1279 */
1280 pgoff = 0;
1281 vm_flags |= VM_SHARED | VM_MAYSHARE;
1282 break;
1283 case MAP_PRIVATE:
1284 /*
1285 * Set pgoff according to addr for anon_vma.
1286 */
1287 pgoff = addr >> PAGE_SHIFT;
1288 break;
1289 default:
1290 return -EINVAL;
1291 }
1292 }
1293
1294 /*
1295 * Set 'VM_NORESERVE' if we should not account for the
1296 * memory use of this mapping.
1297 */
1298 if (flags & MAP_NORESERVE) {
1299 /* We honor MAP_NORESERVE if allowed to overcommit */
1300 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1301 vm_flags |= VM_NORESERVE;
1302
1303 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1304 if (file && is_file_hugepages(file))
1305 vm_flags |= VM_NORESERVE;
1306 }
1307
1308 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1309 if (!IS_ERR_VALUE(addr) &&
1310 ((vm_flags & VM_LOCKED) ||
1311 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1312 *populate = len;
1313 return addr;
1314 }
1315
1316 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1317 unsigned long, prot, unsigned long, flags,
1318 unsigned long, fd, unsigned long, pgoff)
1319 {
1320 struct file *file = NULL;
1321 unsigned long retval = -EBADF;
1322
1323 if (!(flags & MAP_ANONYMOUS)) {
1324 audit_mmap_fd(fd, flags);
1325 if (unlikely(flags & MAP_HUGETLB))
1326 return -EINVAL;
1327 file = fget(fd);
1328 if (!file)
1329 goto out;
1330 } else if (flags & MAP_HUGETLB) {
1331 struct user_struct *user = NULL;
1332 /*
1333 * VM_NORESERVE is used because the reservations will be
1334 * taken when vm_ops->mmap() is called
1335 * A dummy user value is used because we are not locking
1336 * memory so no accounting is necessary
1337 */
1338 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1339 VM_NORESERVE,
1340 &user, HUGETLB_ANONHUGE_INODE,
1341 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1342 if (IS_ERR(file))
1343 return PTR_ERR(file);
1344 }
1345
1346 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1347
1348 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1349 if (file)
1350 fput(file);
1351 out:
1352 return retval;
1353 }
1354
1355 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1356 struct mmap_arg_struct {
1357 unsigned long addr;
1358 unsigned long len;
1359 unsigned long prot;
1360 unsigned long flags;
1361 unsigned long fd;
1362 unsigned long offset;
1363 };
1364
1365 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1366 {
1367 struct mmap_arg_struct a;
1368
1369 if (copy_from_user(&a, arg, sizeof(a)))
1370 return -EFAULT;
1371 if (a.offset & ~PAGE_MASK)
1372 return -EINVAL;
1373
1374 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1375 a.offset >> PAGE_SHIFT);
1376 }
1377 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1378
1379 /*
1380 * Some shared mappigns will want the pages marked read-only
1381 * to track write events. If so, we'll downgrade vm_page_prot
1382 * to the private version (using protection_map[] without the
1383 * VM_SHARED bit).
1384 */
1385 int vma_wants_writenotify(struct vm_area_struct *vma)
1386 {
1387 vm_flags_t vm_flags = vma->vm_flags;
1388
1389 /* If it was private or non-writable, the write bit is already clear */
1390 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1391 return 0;
1392
1393 /* The backer wishes to know when pages are first written to? */
1394 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1395 return 1;
1396
1397 /* The open routine did something to the protections already? */
1398 if (pgprot_val(vma->vm_page_prot) !=
1399 pgprot_val(vm_get_page_prot(vm_flags)))
1400 return 0;
1401
1402 /* Specialty mapping? */
1403 if (vm_flags & VM_PFNMAP)
1404 return 0;
1405
1406 /* Can the mapping track the dirty pages? */
1407 return vma->vm_file && vma->vm_file->f_mapping &&
1408 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1409 }
1410
1411 /*
1412 * We account for memory if it's a private writeable mapping,
1413 * not hugepages and VM_NORESERVE wasn't set.
1414 */
1415 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1416 {
1417 /*
1418 * hugetlb has its own accounting separate from the core VM
1419 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1420 */
1421 if (file && is_file_hugepages(file))
1422 return 0;
1423
1424 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1425 }
1426
1427 unsigned long mmap_region(struct file *file, unsigned long addr,
1428 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1429 {
1430 struct mm_struct *mm = current->mm;
1431 struct vm_area_struct *vma, *prev;
1432 int correct_wcount = 0;
1433 int error;
1434 struct rb_node **rb_link, *rb_parent;
1435 unsigned long charged = 0;
1436 struct inode *inode = file ? file_inode(file) : NULL;
1437
1438 /* Clear old maps */
1439 error = -ENOMEM;
1440 munmap_back:
1441 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1442 if (do_munmap(mm, addr, len))
1443 return -ENOMEM;
1444 goto munmap_back;
1445 }
1446
1447 /* Check against address space limit. */
1448 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1449 return -ENOMEM;
1450
1451 /*
1452 * Private writable mapping: check memory availability
1453 */
1454 if (accountable_mapping(file, vm_flags)) {
1455 charged = len >> PAGE_SHIFT;
1456 if (security_vm_enough_memory_mm(mm, charged))
1457 return -ENOMEM;
1458 vm_flags |= VM_ACCOUNT;
1459 }
1460
1461 /*
1462 * Can we just expand an old mapping?
1463 */
1464 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1465 if (vma)
1466 goto out;
1467
1468 /*
1469 * Determine the object being mapped and call the appropriate
1470 * specific mapper. the address has already been validated, but
1471 * not unmapped, but the maps are removed from the list.
1472 */
1473 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1474 if (!vma) {
1475 error = -ENOMEM;
1476 goto unacct_error;
1477 }
1478
1479 vma->vm_mm = mm;
1480 vma->vm_start = addr;
1481 vma->vm_end = addr + len;
1482 vma->vm_flags = vm_flags;
1483 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1484 vma->vm_pgoff = pgoff;
1485 INIT_LIST_HEAD(&vma->anon_vma_chain);
1486
1487 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1488
1489 if (file) {
1490 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1491 goto free_vma;
1492 if (vm_flags & VM_DENYWRITE) {
1493 error = deny_write_access(file);
1494 if (error)
1495 goto free_vma;
1496 correct_wcount = 1;
1497 }
1498 vma->vm_file = get_file(file);
1499 error = file->f_op->mmap(file, vma);
1500 if (error)
1501 goto unmap_and_free_vma;
1502
1503 /* Can addr have changed??
1504 *
1505 * Answer: Yes, several device drivers can do it in their
1506 * f_op->mmap method. -DaveM
1507 * Bug: If addr is changed, prev, rb_link, rb_parent should
1508 * be updated for vma_link()
1509 */
1510 WARN_ON_ONCE(addr != vma->vm_start);
1511
1512 addr = vma->vm_start;
1513 pgoff = vma->vm_pgoff;
1514 vm_flags = vma->vm_flags;
1515 } else if (vm_flags & VM_SHARED) {
1516 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1517 goto free_vma;
1518 error = shmem_zero_setup(vma);
1519 if (error)
1520 goto free_vma;
1521 }
1522
1523 if (vma_wants_writenotify(vma)) {
1524 pgprot_t pprot = vma->vm_page_prot;
1525
1526 /* Can vma->vm_page_prot have changed??
1527 *
1528 * Answer: Yes, drivers may have changed it in their
1529 * f_op->mmap method.
1530 *
1531 * Ensures that vmas marked as uncached stay that way.
1532 */
1533 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1534 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1535 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1536 }
1537
1538 vma_link(mm, vma, prev, rb_link, rb_parent);
1539 file = vma->vm_file;
1540
1541 /* Once vma denies write, undo our temporary denial count */
1542 if (correct_wcount)
1543 atomic_inc(&inode->i_writecount);
1544 out:
1545 perf_event_mmap(vma);
1546
1547 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1548 if (vm_flags & VM_LOCKED) {
1549 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1550 vma == get_gate_vma(current->mm)))
1551 mm->locked_vm += (len >> PAGE_SHIFT);
1552 else
1553 vma->vm_flags &= ~VM_LOCKED;
1554 }
1555
1556 if (file)
1557 uprobe_mmap(vma);
1558
1559 return addr;
1560
1561 unmap_and_free_vma:
1562 if (correct_wcount)
1563 atomic_inc(&inode->i_writecount);
1564 vma->vm_file = NULL;
1565 fput(file);
1566
1567 /* Undo any partial mapping done by a device driver. */
1568 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1569 charged = 0;
1570 free_vma:
1571 kmem_cache_free(vm_area_cachep, vma);
1572 unacct_error:
1573 if (charged)
1574 vm_unacct_memory(charged);
1575 return error;
1576 }
1577
1578 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1579 {
1580 /*
1581 * We implement the search by looking for an rbtree node that
1582 * immediately follows a suitable gap. That is,
1583 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1584 * - gap_end = vma->vm_start >= info->low_limit + length;
1585 * - gap_end - gap_start >= length
1586 */
1587
1588 struct mm_struct *mm = current->mm;
1589 struct vm_area_struct *vma;
1590 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1591
1592 /* Adjust search length to account for worst case alignment overhead */
1593 length = info->length + info->align_mask;
1594 if (length < info->length)
1595 return -ENOMEM;
1596
1597 /* Adjust search limits by the desired length */
1598 if (info->high_limit < length)
1599 return -ENOMEM;
1600 high_limit = info->high_limit - length;
1601
1602 if (info->low_limit > high_limit)
1603 return -ENOMEM;
1604 low_limit = info->low_limit + length;
1605
1606 /* Check if rbtree root looks promising */
1607 if (RB_EMPTY_ROOT(&mm->mm_rb))
1608 goto check_highest;
1609 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1610 if (vma->rb_subtree_gap < length)
1611 goto check_highest;
1612
1613 while (true) {
1614 /* Visit left subtree if it looks promising */
1615 gap_end = vma->vm_start;
1616 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1617 struct vm_area_struct *left =
1618 rb_entry(vma->vm_rb.rb_left,
1619 struct vm_area_struct, vm_rb);
1620 if (left->rb_subtree_gap >= length) {
1621 vma = left;
1622 continue;
1623 }
1624 }
1625
1626 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1627 check_current:
1628 /* Check if current node has a suitable gap */
1629 if (gap_start > high_limit)
1630 return -ENOMEM;
1631 if (gap_end >= low_limit && gap_end - gap_start >= length)
1632 goto found;
1633
1634 /* Visit right subtree if it looks promising */
1635 if (vma->vm_rb.rb_right) {
1636 struct vm_area_struct *right =
1637 rb_entry(vma->vm_rb.rb_right,
1638 struct vm_area_struct, vm_rb);
1639 if (right->rb_subtree_gap >= length) {
1640 vma = right;
1641 continue;
1642 }
1643 }
1644
1645 /* Go back up the rbtree to find next candidate node */
1646 while (true) {
1647 struct rb_node *prev = &vma->vm_rb;
1648 if (!rb_parent(prev))
1649 goto check_highest;
1650 vma = rb_entry(rb_parent(prev),
1651 struct vm_area_struct, vm_rb);
1652 if (prev == vma->vm_rb.rb_left) {
1653 gap_start = vma->vm_prev->vm_end;
1654 gap_end = vma->vm_start;
1655 goto check_current;
1656 }
1657 }
1658 }
1659
1660 check_highest:
1661 /* Check highest gap, which does not precede any rbtree node */
1662 gap_start = mm->highest_vm_end;
1663 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1664 if (gap_start > high_limit)
1665 return -ENOMEM;
1666
1667 found:
1668 /* We found a suitable gap. Clip it with the original low_limit. */
1669 if (gap_start < info->low_limit)
1670 gap_start = info->low_limit;
1671
1672 /* Adjust gap address to the desired alignment */
1673 gap_start += (info->align_offset - gap_start) & info->align_mask;
1674
1675 VM_BUG_ON(gap_start + info->length > info->high_limit);
1676 VM_BUG_ON(gap_start + info->length > gap_end);
1677 return gap_start;
1678 }
1679
1680 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1681 {
1682 struct mm_struct *mm = current->mm;
1683 struct vm_area_struct *vma;
1684 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1685
1686 /* Adjust search length to account for worst case alignment overhead */
1687 length = info->length + info->align_mask;
1688 if (length < info->length)
1689 return -ENOMEM;
1690
1691 /*
1692 * Adjust search limits by the desired length.
1693 * See implementation comment at top of unmapped_area().
1694 */
1695 gap_end = info->high_limit;
1696 if (gap_end < length)
1697 return -ENOMEM;
1698 high_limit = gap_end - length;
1699
1700 if (info->low_limit > high_limit)
1701 return -ENOMEM;
1702 low_limit = info->low_limit + length;
1703
1704 /* Check highest gap, which does not precede any rbtree node */
1705 gap_start = mm->highest_vm_end;
1706 if (gap_start <= high_limit)
1707 goto found_highest;
1708
1709 /* Check if rbtree root looks promising */
1710 if (RB_EMPTY_ROOT(&mm->mm_rb))
1711 return -ENOMEM;
1712 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1713 if (vma->rb_subtree_gap < length)
1714 return -ENOMEM;
1715
1716 while (true) {
1717 /* Visit right subtree if it looks promising */
1718 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1719 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1720 struct vm_area_struct *right =
1721 rb_entry(vma->vm_rb.rb_right,
1722 struct vm_area_struct, vm_rb);
1723 if (right->rb_subtree_gap >= length) {
1724 vma = right;
1725 continue;
1726 }
1727 }
1728
1729 check_current:
1730 /* Check if current node has a suitable gap */
1731 gap_end = vma->vm_start;
1732 if (gap_end < low_limit)
1733 return -ENOMEM;
1734 if (gap_start <= high_limit && gap_end - gap_start >= length)
1735 goto found;
1736
1737 /* Visit left subtree if it looks promising */
1738 if (vma->vm_rb.rb_left) {
1739 struct vm_area_struct *left =
1740 rb_entry(vma->vm_rb.rb_left,
1741 struct vm_area_struct, vm_rb);
1742 if (left->rb_subtree_gap >= length) {
1743 vma = left;
1744 continue;
1745 }
1746 }
1747
1748 /* Go back up the rbtree to find next candidate node */
1749 while (true) {
1750 struct rb_node *prev = &vma->vm_rb;
1751 if (!rb_parent(prev))
1752 return -ENOMEM;
1753 vma = rb_entry(rb_parent(prev),
1754 struct vm_area_struct, vm_rb);
1755 if (prev == vma->vm_rb.rb_right) {
1756 gap_start = vma->vm_prev ?
1757 vma->vm_prev->vm_end : 0;
1758 goto check_current;
1759 }
1760 }
1761 }
1762
1763 found:
1764 /* We found a suitable gap. Clip it with the original high_limit. */
1765 if (gap_end > info->high_limit)
1766 gap_end = info->high_limit;
1767
1768 found_highest:
1769 /* Compute highest gap address at the desired alignment */
1770 gap_end -= info->length;
1771 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1772
1773 VM_BUG_ON(gap_end < info->low_limit);
1774 VM_BUG_ON(gap_end < gap_start);
1775 return gap_end;
1776 }
1777
1778 /* Get an address range which is currently unmapped.
1779 * For shmat() with addr=0.
1780 *
1781 * Ugly calling convention alert:
1782 * Return value with the low bits set means error value,
1783 * ie
1784 * if (ret & ~PAGE_MASK)
1785 * error = ret;
1786 *
1787 * This function "knows" that -ENOMEM has the bits set.
1788 */
1789 #ifndef HAVE_ARCH_UNMAPPED_AREA
1790 unsigned long
1791 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1792 unsigned long len, unsigned long pgoff, unsigned long flags)
1793 {
1794 struct mm_struct *mm = current->mm;
1795 struct vm_area_struct *vma;
1796 struct vm_unmapped_area_info info;
1797
1798 if (len > TASK_SIZE)
1799 return -ENOMEM;
1800
1801 if (flags & MAP_FIXED)
1802 return addr;
1803
1804 if (addr) {
1805 addr = PAGE_ALIGN(addr);
1806 vma = find_vma(mm, addr);
1807 if (TASK_SIZE - len >= addr &&
1808 (!vma || addr + len <= vma->vm_start))
1809 return addr;
1810 }
1811
1812 info.flags = 0;
1813 info.length = len;
1814 info.low_limit = TASK_UNMAPPED_BASE;
1815 info.high_limit = TASK_SIZE;
1816 info.align_mask = 0;
1817 return vm_unmapped_area(&info);
1818 }
1819 #endif
1820
1821 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1822 {
1823 /*
1824 * Is this a new hole at the lowest possible address?
1825 */
1826 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1827 mm->free_area_cache = addr;
1828 }
1829
1830 /*
1831 * This mmap-allocator allocates new areas top-down from below the
1832 * stack's low limit (the base):
1833 */
1834 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1835 unsigned long
1836 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1837 const unsigned long len, const unsigned long pgoff,
1838 const unsigned long flags)
1839 {
1840 struct vm_area_struct *vma;
1841 struct mm_struct *mm = current->mm;
1842 unsigned long addr = addr0;
1843 struct vm_unmapped_area_info info;
1844
1845 /* requested length too big for entire address space */
1846 if (len > TASK_SIZE)
1847 return -ENOMEM;
1848
1849 if (flags & MAP_FIXED)
1850 return addr;
1851
1852 /* requesting a specific address */
1853 if (addr) {
1854 addr = PAGE_ALIGN(addr);
1855 vma = find_vma(mm, addr);
1856 if (TASK_SIZE - len >= addr &&
1857 (!vma || addr + len <= vma->vm_start))
1858 return addr;
1859 }
1860
1861 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1862 info.length = len;
1863 info.low_limit = PAGE_SIZE;
1864 info.high_limit = mm->mmap_base;
1865 info.align_mask = 0;
1866 addr = vm_unmapped_area(&info);
1867
1868 /*
1869 * A failed mmap() very likely causes application failure,
1870 * so fall back to the bottom-up function here. This scenario
1871 * can happen with large stack limits and large mmap()
1872 * allocations.
1873 */
1874 if (addr & ~PAGE_MASK) {
1875 VM_BUG_ON(addr != -ENOMEM);
1876 info.flags = 0;
1877 info.low_limit = TASK_UNMAPPED_BASE;
1878 info.high_limit = TASK_SIZE;
1879 addr = vm_unmapped_area(&info);
1880 }
1881
1882 return addr;
1883 }
1884 #endif
1885
1886 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1887 {
1888 /*
1889 * Is this a new hole at the highest possible address?
1890 */
1891 if (addr > mm->free_area_cache)
1892 mm->free_area_cache = addr;
1893
1894 /* dont allow allocations above current base */
1895 if (mm->free_area_cache > mm->mmap_base)
1896 mm->free_area_cache = mm->mmap_base;
1897 }
1898
1899 unsigned long
1900 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1901 unsigned long pgoff, unsigned long flags)
1902 {
1903 unsigned long (*get_area)(struct file *, unsigned long,
1904 unsigned long, unsigned long, unsigned long);
1905
1906 unsigned long error = arch_mmap_check(addr, len, flags);
1907 if (error)
1908 return error;
1909
1910 /* Careful about overflows.. */
1911 if (len > TASK_SIZE)
1912 return -ENOMEM;
1913
1914 get_area = current->mm->get_unmapped_area;
1915 if (file && file->f_op && file->f_op->get_unmapped_area)
1916 get_area = file->f_op->get_unmapped_area;
1917 addr = get_area(file, addr, len, pgoff, flags);
1918 if (IS_ERR_VALUE(addr))
1919 return addr;
1920
1921 if (addr > TASK_SIZE - len)
1922 return -ENOMEM;
1923 if (addr & ~PAGE_MASK)
1924 return -EINVAL;
1925
1926 addr = arch_rebalance_pgtables(addr, len);
1927 error = security_mmap_addr(addr);
1928 return error ? error : addr;
1929 }
1930
1931 EXPORT_SYMBOL(get_unmapped_area);
1932
1933 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1934 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1935 {
1936 struct vm_area_struct *vma = NULL;
1937
1938 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1939 return NULL;
1940
1941 /* Check the cache first. */
1942 /* (Cache hit rate is typically around 35%.) */
1943 vma = ACCESS_ONCE(mm->mmap_cache);
1944 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1945 struct rb_node *rb_node;
1946
1947 rb_node = mm->mm_rb.rb_node;
1948 vma = NULL;
1949
1950 while (rb_node) {
1951 struct vm_area_struct *vma_tmp;
1952
1953 vma_tmp = rb_entry(rb_node,
1954 struct vm_area_struct, vm_rb);
1955
1956 if (vma_tmp->vm_end > addr) {
1957 vma = vma_tmp;
1958 if (vma_tmp->vm_start <= addr)
1959 break;
1960 rb_node = rb_node->rb_left;
1961 } else
1962 rb_node = rb_node->rb_right;
1963 }
1964 if (vma)
1965 mm->mmap_cache = vma;
1966 }
1967 return vma;
1968 }
1969
1970 EXPORT_SYMBOL(find_vma);
1971
1972 /*
1973 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1974 */
1975 struct vm_area_struct *
1976 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1977 struct vm_area_struct **pprev)
1978 {
1979 struct vm_area_struct *vma;
1980
1981 vma = find_vma(mm, addr);
1982 if (vma) {
1983 *pprev = vma->vm_prev;
1984 } else {
1985 struct rb_node *rb_node = mm->mm_rb.rb_node;
1986 *pprev = NULL;
1987 while (rb_node) {
1988 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1989 rb_node = rb_node->rb_right;
1990 }
1991 }
1992 return vma;
1993 }
1994
1995 /*
1996 * Verify that the stack growth is acceptable and
1997 * update accounting. This is shared with both the
1998 * grow-up and grow-down cases.
1999 */
2000 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2001 {
2002 struct mm_struct *mm = vma->vm_mm;
2003 struct rlimit *rlim = current->signal->rlim;
2004 unsigned long new_start;
2005
2006 /* address space limit tests */
2007 if (!may_expand_vm(mm, grow))
2008 return -ENOMEM;
2009
2010 /* Stack limit test */
2011 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2012 return -ENOMEM;
2013
2014 /* mlock limit tests */
2015 if (vma->vm_flags & VM_LOCKED) {
2016 unsigned long locked;
2017 unsigned long limit;
2018 locked = mm->locked_vm + grow;
2019 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2020 limit >>= PAGE_SHIFT;
2021 if (locked > limit && !capable(CAP_IPC_LOCK))
2022 return -ENOMEM;
2023 }
2024
2025 /* Check to ensure the stack will not grow into a hugetlb-only region */
2026 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2027 vma->vm_end - size;
2028 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2029 return -EFAULT;
2030
2031 /*
2032 * Overcommit.. This must be the final test, as it will
2033 * update security statistics.
2034 */
2035 if (security_vm_enough_memory_mm(mm, grow))
2036 return -ENOMEM;
2037
2038 /* Ok, everything looks good - let it rip */
2039 if (vma->vm_flags & VM_LOCKED)
2040 mm->locked_vm += grow;
2041 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2042 return 0;
2043 }
2044
2045 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2046 /*
2047 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2048 * vma is the last one with address > vma->vm_end. Have to extend vma.
2049 */
2050 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2051 {
2052 int error;
2053
2054 if (!(vma->vm_flags & VM_GROWSUP))
2055 return -EFAULT;
2056
2057 /*
2058 * We must make sure the anon_vma is allocated
2059 * so that the anon_vma locking is not a noop.
2060 */
2061 if (unlikely(anon_vma_prepare(vma)))
2062 return -ENOMEM;
2063 vma_lock_anon_vma(vma);
2064
2065 /*
2066 * vma->vm_start/vm_end cannot change under us because the caller
2067 * is required to hold the mmap_sem in read mode. We need the
2068 * anon_vma lock to serialize against concurrent expand_stacks.
2069 * Also guard against wrapping around to address 0.
2070 */
2071 if (address < PAGE_ALIGN(address+4))
2072 address = PAGE_ALIGN(address+4);
2073 else {
2074 vma_unlock_anon_vma(vma);
2075 return -ENOMEM;
2076 }
2077 error = 0;
2078
2079 /* Somebody else might have raced and expanded it already */
2080 if (address > vma->vm_end) {
2081 unsigned long size, grow;
2082
2083 size = address - vma->vm_start;
2084 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2085
2086 error = -ENOMEM;
2087 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2088 error = acct_stack_growth(vma, size, grow);
2089 if (!error) {
2090 /*
2091 * vma_gap_update() doesn't support concurrent
2092 * updates, but we only hold a shared mmap_sem
2093 * lock here, so we need to protect against
2094 * concurrent vma expansions.
2095 * vma_lock_anon_vma() doesn't help here, as
2096 * we don't guarantee that all growable vmas
2097 * in a mm share the same root anon vma.
2098 * So, we reuse mm->page_table_lock to guard
2099 * against concurrent vma expansions.
2100 */
2101 spin_lock(&vma->vm_mm->page_table_lock);
2102 anon_vma_interval_tree_pre_update_vma(vma);
2103 vma->vm_end = address;
2104 anon_vma_interval_tree_post_update_vma(vma);
2105 if (vma->vm_next)
2106 vma_gap_update(vma->vm_next);
2107 else
2108 vma->vm_mm->highest_vm_end = address;
2109 spin_unlock(&vma->vm_mm->page_table_lock);
2110
2111 perf_event_mmap(vma);
2112 }
2113 }
2114 }
2115 vma_unlock_anon_vma(vma);
2116 khugepaged_enter_vma_merge(vma);
2117 validate_mm(vma->vm_mm);
2118 return error;
2119 }
2120 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2121
2122 /*
2123 * vma is the first one with address < vma->vm_start. Have to extend vma.
2124 */
2125 int expand_downwards(struct vm_area_struct *vma,
2126 unsigned long address)
2127 {
2128 int error;
2129
2130 /*
2131 * We must make sure the anon_vma is allocated
2132 * so that the anon_vma locking is not a noop.
2133 */
2134 if (unlikely(anon_vma_prepare(vma)))
2135 return -ENOMEM;
2136
2137 address &= PAGE_MASK;
2138 error = security_mmap_addr(address);
2139 if (error)
2140 return error;
2141
2142 vma_lock_anon_vma(vma);
2143
2144 /*
2145 * vma->vm_start/vm_end cannot change under us because the caller
2146 * is required to hold the mmap_sem in read mode. We need the
2147 * anon_vma lock to serialize against concurrent expand_stacks.
2148 */
2149
2150 /* Somebody else might have raced and expanded it already */
2151 if (address < vma->vm_start) {
2152 unsigned long size, grow;
2153
2154 size = vma->vm_end - address;
2155 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2156
2157 error = -ENOMEM;
2158 if (grow <= vma->vm_pgoff) {
2159 error = acct_stack_growth(vma, size, grow);
2160 if (!error) {
2161 /*
2162 * vma_gap_update() doesn't support concurrent
2163 * updates, but we only hold a shared mmap_sem
2164 * lock here, so we need to protect against
2165 * concurrent vma expansions.
2166 * vma_lock_anon_vma() doesn't help here, as
2167 * we don't guarantee that all growable vmas
2168 * in a mm share the same root anon vma.
2169 * So, we reuse mm->page_table_lock to guard
2170 * against concurrent vma expansions.
2171 */
2172 spin_lock(&vma->vm_mm->page_table_lock);
2173 anon_vma_interval_tree_pre_update_vma(vma);
2174 vma->vm_start = address;
2175 vma->vm_pgoff -= grow;
2176 anon_vma_interval_tree_post_update_vma(vma);
2177 vma_gap_update(vma);
2178 spin_unlock(&vma->vm_mm->page_table_lock);
2179
2180 perf_event_mmap(vma);
2181 }
2182 }
2183 }
2184 vma_unlock_anon_vma(vma);
2185 khugepaged_enter_vma_merge(vma);
2186 validate_mm(vma->vm_mm);
2187 return error;
2188 }
2189
2190 /*
2191 * Note how expand_stack() refuses to expand the stack all the way to
2192 * abut the next virtual mapping, *unless* that mapping itself is also
2193 * a stack mapping. We want to leave room for a guard page, after all
2194 * (the guard page itself is not added here, that is done by the
2195 * actual page faulting logic)
2196 *
2197 * This matches the behavior of the guard page logic (see mm/memory.c:
2198 * check_stack_guard_page()), which only allows the guard page to be
2199 * removed under these circumstances.
2200 */
2201 #ifdef CONFIG_STACK_GROWSUP
2202 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2203 {
2204 struct vm_area_struct *next;
2205
2206 address &= PAGE_MASK;
2207 next = vma->vm_next;
2208 if (next && next->vm_start == address + PAGE_SIZE) {
2209 if (!(next->vm_flags & VM_GROWSUP))
2210 return -ENOMEM;
2211 }
2212 return expand_upwards(vma, address);
2213 }
2214
2215 struct vm_area_struct *
2216 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2217 {
2218 struct vm_area_struct *vma, *prev;
2219
2220 addr &= PAGE_MASK;
2221 vma = find_vma_prev(mm, addr, &prev);
2222 if (vma && (vma->vm_start <= addr))
2223 return vma;
2224 if (!prev || expand_stack(prev, addr))
2225 return NULL;
2226 if (prev->vm_flags & VM_LOCKED)
2227 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2228 return prev;
2229 }
2230 #else
2231 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2232 {
2233 struct vm_area_struct *prev;
2234
2235 address &= PAGE_MASK;
2236 prev = vma->vm_prev;
2237 if (prev && prev->vm_end == address) {
2238 if (!(prev->vm_flags & VM_GROWSDOWN))
2239 return -ENOMEM;
2240 }
2241 return expand_downwards(vma, address);
2242 }
2243
2244 struct vm_area_struct *
2245 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2246 {
2247 struct vm_area_struct * vma;
2248 unsigned long start;
2249
2250 addr &= PAGE_MASK;
2251 vma = find_vma(mm,addr);
2252 if (!vma)
2253 return NULL;
2254 if (vma->vm_start <= addr)
2255 return vma;
2256 if (!(vma->vm_flags & VM_GROWSDOWN))
2257 return NULL;
2258 start = vma->vm_start;
2259 if (expand_stack(vma, addr))
2260 return NULL;
2261 if (vma->vm_flags & VM_LOCKED)
2262 __mlock_vma_pages_range(vma, addr, start, NULL);
2263 return vma;
2264 }
2265 #endif
2266
2267 /*
2268 * Ok - we have the memory areas we should free on the vma list,
2269 * so release them, and do the vma updates.
2270 *
2271 * Called with the mm semaphore held.
2272 */
2273 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2274 {
2275 unsigned long nr_accounted = 0;
2276
2277 /* Update high watermark before we lower total_vm */
2278 update_hiwater_vm(mm);
2279 do {
2280 long nrpages = vma_pages(vma);
2281
2282 if (vma->vm_flags & VM_ACCOUNT)
2283 nr_accounted += nrpages;
2284 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2285 vma = remove_vma(vma);
2286 } while (vma);
2287 vm_unacct_memory(nr_accounted);
2288 validate_mm(mm);
2289 }
2290
2291 /*
2292 * Get rid of page table information in the indicated region.
2293 *
2294 * Called with the mm semaphore held.
2295 */
2296 static void unmap_region(struct mm_struct *mm,
2297 struct vm_area_struct *vma, struct vm_area_struct *prev,
2298 unsigned long start, unsigned long end)
2299 {
2300 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2301 struct mmu_gather tlb;
2302
2303 lru_add_drain();
2304 tlb_gather_mmu(&tlb, mm, 0);
2305 update_hiwater_rss(mm);
2306 unmap_vmas(&tlb, vma, start, end);
2307 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2308 next ? next->vm_start : 0);
2309 tlb_finish_mmu(&tlb, start, end);
2310 }
2311
2312 /*
2313 * Create a list of vma's touched by the unmap, removing them from the mm's
2314 * vma list as we go..
2315 */
2316 static void
2317 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2318 struct vm_area_struct *prev, unsigned long end)
2319 {
2320 struct vm_area_struct **insertion_point;
2321 struct vm_area_struct *tail_vma = NULL;
2322 unsigned long addr;
2323
2324 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2325 vma->vm_prev = NULL;
2326 do {
2327 vma_rb_erase(vma, &mm->mm_rb);
2328 mm->map_count--;
2329 tail_vma = vma;
2330 vma = vma->vm_next;
2331 } while (vma && vma->vm_start < end);
2332 *insertion_point = vma;
2333 if (vma) {
2334 vma->vm_prev = prev;
2335 vma_gap_update(vma);
2336 } else
2337 mm->highest_vm_end = prev ? prev->vm_end : 0;
2338 tail_vma->vm_next = NULL;
2339 if (mm->unmap_area == arch_unmap_area)
2340 addr = prev ? prev->vm_end : mm->mmap_base;
2341 else
2342 addr = vma ? vma->vm_start : mm->mmap_base;
2343 mm->unmap_area(mm, addr);
2344 mm->mmap_cache = NULL; /* Kill the cache. */
2345 }
2346
2347 /*
2348 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2349 * munmap path where it doesn't make sense to fail.
2350 */
2351 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2352 unsigned long addr, int new_below)
2353 {
2354 struct mempolicy *pol;
2355 struct vm_area_struct *new;
2356 int err = -ENOMEM;
2357
2358 if (is_vm_hugetlb_page(vma) && (addr &
2359 ~(huge_page_mask(hstate_vma(vma)))))
2360 return -EINVAL;
2361
2362 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2363 if (!new)
2364 goto out_err;
2365
2366 /* most fields are the same, copy all, and then fixup */
2367 *new = *vma;
2368
2369 INIT_LIST_HEAD(&new->anon_vma_chain);
2370
2371 if (new_below)
2372 new->vm_end = addr;
2373 else {
2374 new->vm_start = addr;
2375 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2376 }
2377
2378 pol = mpol_dup(vma_policy(vma));
2379 if (IS_ERR(pol)) {
2380 err = PTR_ERR(pol);
2381 goto out_free_vma;
2382 }
2383 vma_set_policy(new, pol);
2384
2385 if (anon_vma_clone(new, vma))
2386 goto out_free_mpol;
2387
2388 if (new->vm_file)
2389 get_file(new->vm_file);
2390
2391 if (new->vm_ops && new->vm_ops->open)
2392 new->vm_ops->open(new);
2393
2394 if (new_below)
2395 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2396 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2397 else
2398 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2399
2400 /* Success. */
2401 if (!err)
2402 return 0;
2403
2404 /* Clean everything up if vma_adjust failed. */
2405 if (new->vm_ops && new->vm_ops->close)
2406 new->vm_ops->close(new);
2407 if (new->vm_file)
2408 fput(new->vm_file);
2409 unlink_anon_vmas(new);
2410 out_free_mpol:
2411 mpol_put(pol);
2412 out_free_vma:
2413 kmem_cache_free(vm_area_cachep, new);
2414 out_err:
2415 return err;
2416 }
2417
2418 /*
2419 * Split a vma into two pieces at address 'addr', a new vma is allocated
2420 * either for the first part or the tail.
2421 */
2422 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2423 unsigned long addr, int new_below)
2424 {
2425 if (mm->map_count >= sysctl_max_map_count)
2426 return -ENOMEM;
2427
2428 return __split_vma(mm, vma, addr, new_below);
2429 }
2430
2431 /* Munmap is split into 2 main parts -- this part which finds
2432 * what needs doing, and the areas themselves, which do the
2433 * work. This now handles partial unmappings.
2434 * Jeremy Fitzhardinge <jeremy@goop.org>
2435 */
2436 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2437 {
2438 unsigned long end;
2439 struct vm_area_struct *vma, *prev, *last;
2440
2441 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2442 return -EINVAL;
2443
2444 if ((len = PAGE_ALIGN(len)) == 0)
2445 return -EINVAL;
2446
2447 /* Find the first overlapping VMA */
2448 vma = find_vma(mm, start);
2449 if (!vma)
2450 return 0;
2451 prev = vma->vm_prev;
2452 /* we have start < vma->vm_end */
2453
2454 /* if it doesn't overlap, we have nothing.. */
2455 end = start + len;
2456 if (vma->vm_start >= end)
2457 return 0;
2458
2459 /*
2460 * If we need to split any vma, do it now to save pain later.
2461 *
2462 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2463 * unmapped vm_area_struct will remain in use: so lower split_vma
2464 * places tmp vma above, and higher split_vma places tmp vma below.
2465 */
2466 if (start > vma->vm_start) {
2467 int error;
2468
2469 /*
2470 * Make sure that map_count on return from munmap() will
2471 * not exceed its limit; but let map_count go just above
2472 * its limit temporarily, to help free resources as expected.
2473 */
2474 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2475 return -ENOMEM;
2476
2477 error = __split_vma(mm, vma, start, 0);
2478 if (error)
2479 return error;
2480 prev = vma;
2481 }
2482
2483 /* Does it split the last one? */
2484 last = find_vma(mm, end);
2485 if (last && end > last->vm_start) {
2486 int error = __split_vma(mm, last, end, 1);
2487 if (error)
2488 return error;
2489 }
2490 vma = prev? prev->vm_next: mm->mmap;
2491
2492 /*
2493 * unlock any mlock()ed ranges before detaching vmas
2494 */
2495 if (mm->locked_vm) {
2496 struct vm_area_struct *tmp = vma;
2497 while (tmp && tmp->vm_start < end) {
2498 if (tmp->vm_flags & VM_LOCKED) {
2499 mm->locked_vm -= vma_pages(tmp);
2500 munlock_vma_pages_all(tmp);
2501 }
2502 tmp = tmp->vm_next;
2503 }
2504 }
2505
2506 /*
2507 * Remove the vma's, and unmap the actual pages
2508 */
2509 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2510 unmap_region(mm, vma, prev, start, end);
2511
2512 /* Fix up all other VM information */
2513 remove_vma_list(mm, vma);
2514
2515 return 0;
2516 }
2517
2518 int vm_munmap(unsigned long start, size_t len)
2519 {
2520 int ret;
2521 struct mm_struct *mm = current->mm;
2522
2523 down_write(&mm->mmap_sem);
2524 ret = do_munmap(mm, start, len);
2525 up_write(&mm->mmap_sem);
2526 return ret;
2527 }
2528 EXPORT_SYMBOL(vm_munmap);
2529
2530 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2531 {
2532 profile_munmap(addr);
2533 return vm_munmap(addr, len);
2534 }
2535
2536 static inline void verify_mm_writelocked(struct mm_struct *mm)
2537 {
2538 #ifdef CONFIG_DEBUG_VM
2539 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2540 WARN_ON(1);
2541 up_read(&mm->mmap_sem);
2542 }
2543 #endif
2544 }
2545
2546 /*
2547 * this is really a simplified "do_mmap". it only handles
2548 * anonymous maps. eventually we may be able to do some
2549 * brk-specific accounting here.
2550 */
2551 static unsigned long do_brk(unsigned long addr, unsigned long len)
2552 {
2553 struct mm_struct * mm = current->mm;
2554 struct vm_area_struct * vma, * prev;
2555 unsigned long flags;
2556 struct rb_node ** rb_link, * rb_parent;
2557 pgoff_t pgoff = addr >> PAGE_SHIFT;
2558 int error;
2559
2560 len = PAGE_ALIGN(len);
2561 if (!len)
2562 return addr;
2563
2564 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2565
2566 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2567 if (error & ~PAGE_MASK)
2568 return error;
2569
2570 /*
2571 * mlock MCL_FUTURE?
2572 */
2573 if (mm->def_flags & VM_LOCKED) {
2574 unsigned long locked, lock_limit;
2575 locked = len >> PAGE_SHIFT;
2576 locked += mm->locked_vm;
2577 lock_limit = rlimit(RLIMIT_MEMLOCK);
2578 lock_limit >>= PAGE_SHIFT;
2579 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2580 return -EAGAIN;
2581 }
2582
2583 /*
2584 * mm->mmap_sem is required to protect against another thread
2585 * changing the mappings in case we sleep.
2586 */
2587 verify_mm_writelocked(mm);
2588
2589 /*
2590 * Clear old maps. this also does some error checking for us
2591 */
2592 munmap_back:
2593 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2594 if (do_munmap(mm, addr, len))
2595 return -ENOMEM;
2596 goto munmap_back;
2597 }
2598
2599 /* Check against address space limits *after* clearing old maps... */
2600 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2601 return -ENOMEM;
2602
2603 if (mm->map_count > sysctl_max_map_count)
2604 return -ENOMEM;
2605
2606 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2607 return -ENOMEM;
2608
2609 /* Can we just expand an old private anonymous mapping? */
2610 vma = vma_merge(mm, prev, addr, addr + len, flags,
2611 NULL, NULL, pgoff, NULL);
2612 if (vma)
2613 goto out;
2614
2615 /*
2616 * create a vma struct for an anonymous mapping
2617 */
2618 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2619 if (!vma) {
2620 vm_unacct_memory(len >> PAGE_SHIFT);
2621 return -ENOMEM;
2622 }
2623
2624 INIT_LIST_HEAD(&vma->anon_vma_chain);
2625 vma->vm_mm = mm;
2626 vma->vm_start = addr;
2627 vma->vm_end = addr + len;
2628 vma->vm_pgoff = pgoff;
2629 vma->vm_flags = flags;
2630 vma->vm_page_prot = vm_get_page_prot(flags);
2631 vma_link(mm, vma, prev, rb_link, rb_parent);
2632 out:
2633 perf_event_mmap(vma);
2634 mm->total_vm += len >> PAGE_SHIFT;
2635 if (flags & VM_LOCKED)
2636 mm->locked_vm += (len >> PAGE_SHIFT);
2637 return addr;
2638 }
2639
2640 unsigned long vm_brk(unsigned long addr, unsigned long len)
2641 {
2642 struct mm_struct *mm = current->mm;
2643 unsigned long ret;
2644 bool populate;
2645
2646 down_write(&mm->mmap_sem);
2647 ret = do_brk(addr, len);
2648 populate = ((mm->def_flags & VM_LOCKED) != 0);
2649 up_write(&mm->mmap_sem);
2650 if (populate)
2651 mm_populate(addr, len);
2652 return ret;
2653 }
2654 EXPORT_SYMBOL(vm_brk);
2655
2656 /* Release all mmaps. */
2657 void exit_mmap(struct mm_struct *mm)
2658 {
2659 struct mmu_gather tlb;
2660 struct vm_area_struct *vma;
2661 unsigned long nr_accounted = 0;
2662
2663 /* mm's last user has gone, and its about to be pulled down */
2664 mmu_notifier_release(mm);
2665
2666 if (mm->locked_vm) {
2667 vma = mm->mmap;
2668 while (vma) {
2669 if (vma->vm_flags & VM_LOCKED)
2670 munlock_vma_pages_all(vma);
2671 vma = vma->vm_next;
2672 }
2673 }
2674
2675 arch_exit_mmap(mm);
2676
2677 vma = mm->mmap;
2678 if (!vma) /* Can happen if dup_mmap() received an OOM */
2679 return;
2680
2681 lru_add_drain();
2682 flush_cache_mm(mm);
2683 tlb_gather_mmu(&tlb, mm, 1);
2684 /* update_hiwater_rss(mm) here? but nobody should be looking */
2685 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2686 unmap_vmas(&tlb, vma, 0, -1);
2687
2688 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2689 tlb_finish_mmu(&tlb, 0, -1);
2690
2691 /*
2692 * Walk the list again, actually closing and freeing it,
2693 * with preemption enabled, without holding any MM locks.
2694 */
2695 while (vma) {
2696 if (vma->vm_flags & VM_ACCOUNT)
2697 nr_accounted += vma_pages(vma);
2698 vma = remove_vma(vma);
2699 }
2700 vm_unacct_memory(nr_accounted);
2701
2702 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2703 }
2704
2705 /* Insert vm structure into process list sorted by address
2706 * and into the inode's i_mmap tree. If vm_file is non-NULL
2707 * then i_mmap_mutex is taken here.
2708 */
2709 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2710 {
2711 struct vm_area_struct *prev;
2712 struct rb_node **rb_link, *rb_parent;
2713
2714 /*
2715 * The vm_pgoff of a purely anonymous vma should be irrelevant
2716 * until its first write fault, when page's anon_vma and index
2717 * are set. But now set the vm_pgoff it will almost certainly
2718 * end up with (unless mremap moves it elsewhere before that
2719 * first wfault), so /proc/pid/maps tells a consistent story.
2720 *
2721 * By setting it to reflect the virtual start address of the
2722 * vma, merges and splits can happen in a seamless way, just
2723 * using the existing file pgoff checks and manipulations.
2724 * Similarly in do_mmap_pgoff and in do_brk.
2725 */
2726 if (!vma->vm_file) {
2727 BUG_ON(vma->anon_vma);
2728 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2729 }
2730 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2731 &prev, &rb_link, &rb_parent))
2732 return -ENOMEM;
2733 if ((vma->vm_flags & VM_ACCOUNT) &&
2734 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2735 return -ENOMEM;
2736
2737 vma_link(mm, vma, prev, rb_link, rb_parent);
2738 return 0;
2739 }
2740
2741 /*
2742 * Copy the vma structure to a new location in the same mm,
2743 * prior to moving page table entries, to effect an mremap move.
2744 */
2745 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2746 unsigned long addr, unsigned long len, pgoff_t pgoff,
2747 bool *need_rmap_locks)
2748 {
2749 struct vm_area_struct *vma = *vmap;
2750 unsigned long vma_start = vma->vm_start;
2751 struct mm_struct *mm = vma->vm_mm;
2752 struct vm_area_struct *new_vma, *prev;
2753 struct rb_node **rb_link, *rb_parent;
2754 struct mempolicy *pol;
2755 bool faulted_in_anon_vma = true;
2756
2757 /*
2758 * If anonymous vma has not yet been faulted, update new pgoff
2759 * to match new location, to increase its chance of merging.
2760 */
2761 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2762 pgoff = addr >> PAGE_SHIFT;
2763 faulted_in_anon_vma = false;
2764 }
2765
2766 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2767 return NULL; /* should never get here */
2768 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2769 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2770 if (new_vma) {
2771 /*
2772 * Source vma may have been merged into new_vma
2773 */
2774 if (unlikely(vma_start >= new_vma->vm_start &&
2775 vma_start < new_vma->vm_end)) {
2776 /*
2777 * The only way we can get a vma_merge with
2778 * self during an mremap is if the vma hasn't
2779 * been faulted in yet and we were allowed to
2780 * reset the dst vma->vm_pgoff to the
2781 * destination address of the mremap to allow
2782 * the merge to happen. mremap must change the
2783 * vm_pgoff linearity between src and dst vmas
2784 * (in turn preventing a vma_merge) to be
2785 * safe. It is only safe to keep the vm_pgoff
2786 * linear if there are no pages mapped yet.
2787 */
2788 VM_BUG_ON(faulted_in_anon_vma);
2789 *vmap = vma = new_vma;
2790 }
2791 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2792 } else {
2793 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2794 if (new_vma) {
2795 *new_vma = *vma;
2796 new_vma->vm_start = addr;
2797 new_vma->vm_end = addr + len;
2798 new_vma->vm_pgoff = pgoff;
2799 pol = mpol_dup(vma_policy(vma));
2800 if (IS_ERR(pol))
2801 goto out_free_vma;
2802 vma_set_policy(new_vma, pol);
2803 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2804 if (anon_vma_clone(new_vma, vma))
2805 goto out_free_mempol;
2806 if (new_vma->vm_file)
2807 get_file(new_vma->vm_file);
2808 if (new_vma->vm_ops && new_vma->vm_ops->open)
2809 new_vma->vm_ops->open(new_vma);
2810 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2811 *need_rmap_locks = false;
2812 }
2813 }
2814 return new_vma;
2815
2816 out_free_mempol:
2817 mpol_put(pol);
2818 out_free_vma:
2819 kmem_cache_free(vm_area_cachep, new_vma);
2820 return NULL;
2821 }
2822
2823 /*
2824 * Return true if the calling process may expand its vm space by the passed
2825 * number of pages
2826 */
2827 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2828 {
2829 unsigned long cur = mm->total_vm; /* pages */
2830 unsigned long lim;
2831
2832 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2833
2834 if (cur + npages > lim)
2835 return 0;
2836 return 1;
2837 }
2838
2839
2840 static int special_mapping_fault(struct vm_area_struct *vma,
2841 struct vm_fault *vmf)
2842 {
2843 pgoff_t pgoff;
2844 struct page **pages;
2845
2846 /*
2847 * special mappings have no vm_file, and in that case, the mm
2848 * uses vm_pgoff internally. So we have to subtract it from here.
2849 * We are allowed to do this because we are the mm; do not copy
2850 * this code into drivers!
2851 */
2852 pgoff = vmf->pgoff - vma->vm_pgoff;
2853
2854 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2855 pgoff--;
2856
2857 if (*pages) {
2858 struct page *page = *pages;
2859 get_page(page);
2860 vmf->page = page;
2861 return 0;
2862 }
2863
2864 return VM_FAULT_SIGBUS;
2865 }
2866
2867 /*
2868 * Having a close hook prevents vma merging regardless of flags.
2869 */
2870 static void special_mapping_close(struct vm_area_struct *vma)
2871 {
2872 }
2873
2874 static const struct vm_operations_struct special_mapping_vmops = {
2875 .close = special_mapping_close,
2876 .fault = special_mapping_fault,
2877 };
2878
2879 /*
2880 * Called with mm->mmap_sem held for writing.
2881 * Insert a new vma covering the given region, with the given flags.
2882 * Its pages are supplied by the given array of struct page *.
2883 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2884 * The region past the last page supplied will always produce SIGBUS.
2885 * The array pointer and the pages it points to are assumed to stay alive
2886 * for as long as this mapping might exist.
2887 */
2888 int install_special_mapping(struct mm_struct *mm,
2889 unsigned long addr, unsigned long len,
2890 unsigned long vm_flags, struct page **pages)
2891 {
2892 int ret;
2893 struct vm_area_struct *vma;
2894
2895 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2896 if (unlikely(vma == NULL))
2897 return -ENOMEM;
2898
2899 INIT_LIST_HEAD(&vma->anon_vma_chain);
2900 vma->vm_mm = mm;
2901 vma->vm_start = addr;
2902 vma->vm_end = addr + len;
2903
2904 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2905 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2906
2907 vma->vm_ops = &special_mapping_vmops;
2908 vma->vm_private_data = pages;
2909
2910 ret = insert_vm_struct(mm, vma);
2911 if (ret)
2912 goto out;
2913
2914 mm->total_vm += len >> PAGE_SHIFT;
2915
2916 perf_event_mmap(vma);
2917
2918 return 0;
2919
2920 out:
2921 kmem_cache_free(vm_area_cachep, vma);
2922 return ret;
2923 }
2924
2925 static DEFINE_MUTEX(mm_all_locks_mutex);
2926
2927 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2928 {
2929 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2930 /*
2931 * The LSB of head.next can't change from under us
2932 * because we hold the mm_all_locks_mutex.
2933 */
2934 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2935 /*
2936 * We can safely modify head.next after taking the
2937 * anon_vma->root->rwsem. If some other vma in this mm shares
2938 * the same anon_vma we won't take it again.
2939 *
2940 * No need of atomic instructions here, head.next
2941 * can't change from under us thanks to the
2942 * anon_vma->root->rwsem.
2943 */
2944 if (__test_and_set_bit(0, (unsigned long *)
2945 &anon_vma->root->rb_root.rb_node))
2946 BUG();
2947 }
2948 }
2949
2950 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2951 {
2952 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2953 /*
2954 * AS_MM_ALL_LOCKS can't change from under us because
2955 * we hold the mm_all_locks_mutex.
2956 *
2957 * Operations on ->flags have to be atomic because
2958 * even if AS_MM_ALL_LOCKS is stable thanks to the
2959 * mm_all_locks_mutex, there may be other cpus
2960 * changing other bitflags in parallel to us.
2961 */
2962 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2963 BUG();
2964 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2965 }
2966 }
2967
2968 /*
2969 * This operation locks against the VM for all pte/vma/mm related
2970 * operations that could ever happen on a certain mm. This includes
2971 * vmtruncate, try_to_unmap, and all page faults.
2972 *
2973 * The caller must take the mmap_sem in write mode before calling
2974 * mm_take_all_locks(). The caller isn't allowed to release the
2975 * mmap_sem until mm_drop_all_locks() returns.
2976 *
2977 * mmap_sem in write mode is required in order to block all operations
2978 * that could modify pagetables and free pages without need of
2979 * altering the vma layout (for example populate_range() with
2980 * nonlinear vmas). It's also needed in write mode to avoid new
2981 * anon_vmas to be associated with existing vmas.
2982 *
2983 * A single task can't take more than one mm_take_all_locks() in a row
2984 * or it would deadlock.
2985 *
2986 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2987 * mapping->flags avoid to take the same lock twice, if more than one
2988 * vma in this mm is backed by the same anon_vma or address_space.
2989 *
2990 * We can take all the locks in random order because the VM code
2991 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2992 * takes more than one of them in a row. Secondly we're protected
2993 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2994 *
2995 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2996 * that may have to take thousand of locks.
2997 *
2998 * mm_take_all_locks() can fail if it's interrupted by signals.
2999 */
3000 int mm_take_all_locks(struct mm_struct *mm)
3001 {
3002 struct vm_area_struct *vma;
3003 struct anon_vma_chain *avc;
3004
3005 BUG_ON(down_read_trylock(&mm->mmap_sem));
3006
3007 mutex_lock(&mm_all_locks_mutex);
3008
3009 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3010 if (signal_pending(current))
3011 goto out_unlock;
3012 if (vma->vm_file && vma->vm_file->f_mapping)
3013 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3014 }
3015
3016 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3017 if (signal_pending(current))
3018 goto out_unlock;
3019 if (vma->anon_vma)
3020 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3021 vm_lock_anon_vma(mm, avc->anon_vma);
3022 }
3023
3024 return 0;
3025
3026 out_unlock:
3027 mm_drop_all_locks(mm);
3028 return -EINTR;
3029 }
3030
3031 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3032 {
3033 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3034 /*
3035 * The LSB of head.next can't change to 0 from under
3036 * us because we hold the mm_all_locks_mutex.
3037 *
3038 * We must however clear the bitflag before unlocking
3039 * the vma so the users using the anon_vma->rb_root will
3040 * never see our bitflag.
3041 *
3042 * No need of atomic instructions here, head.next
3043 * can't change from under us until we release the
3044 * anon_vma->root->rwsem.
3045 */
3046 if (!__test_and_clear_bit(0, (unsigned long *)
3047 &anon_vma->root->rb_root.rb_node))
3048 BUG();
3049 anon_vma_unlock_write(anon_vma);
3050 }
3051 }
3052
3053 static void vm_unlock_mapping(struct address_space *mapping)
3054 {
3055 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3056 /*
3057 * AS_MM_ALL_LOCKS can't change to 0 from under us
3058 * because we hold the mm_all_locks_mutex.
3059 */
3060 mutex_unlock(&mapping->i_mmap_mutex);
3061 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3062 &mapping->flags))
3063 BUG();
3064 }
3065 }
3066
3067 /*
3068 * The mmap_sem cannot be released by the caller until
3069 * mm_drop_all_locks() returns.
3070 */
3071 void mm_drop_all_locks(struct mm_struct *mm)
3072 {
3073 struct vm_area_struct *vma;
3074 struct anon_vma_chain *avc;
3075
3076 BUG_ON(down_read_trylock(&mm->mmap_sem));
3077 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3078
3079 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3080 if (vma->anon_vma)
3081 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3082 vm_unlock_anon_vma(avc->anon_vma);
3083 if (vma->vm_file && vma->vm_file->f_mapping)
3084 vm_unlock_mapping(vma->vm_file->f_mapping);
3085 }
3086
3087 mutex_unlock(&mm_all_locks_mutex);
3088 }
3089
3090 /*
3091 * initialise the VMA slab
3092 */
3093 void __init mmap_init(void)
3094 {
3095 int ret;
3096
3097 ret = percpu_counter_init(&vm_committed_as, 0);
3098 VM_BUG_ON(ret);
3099 }