mb86a20s: fix demod settings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
59 #endif
60
61 static void unmap_region(struct mm_struct *mm,
62 struct vm_area_struct *vma, struct vm_area_struct *prev,
63 unsigned long start, unsigned long end);
64
65 /* description of effects of mapping type and prot in current implementation.
66 * this is due to the limited x86 page protection hardware. The expected
67 * behavior is in parens:
68 *
69 * map_type prot
70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
72 * w: (no) no w: (no) no w: (yes) yes w: (no) no
73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 *
75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
76 * w: (no) no w: (no) no w: (copy) copy w: (no) no
77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
78 *
79 */
80 pgprot_t protection_map[16] = {
81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87 return __pgprot(pgprot_val(protection_map[vm_flags &
88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101 unsigned long vm_flags = vma->vm_flags;
102
103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 if (vma_wants_writenotify(vma)) {
105 vm_flags &= ~VM_SHARED;
106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107 vm_flags);
108 }
109 }
110
111
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119 * Make sure vm_committed_as in one cacheline and not cacheline shared with
120 * other variables. It can be updated by several CPUs frequently.
121 */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123
124 /*
125 * The global memory commitment made in the system can be a metric
126 * that can be used to drive ballooning decisions when Linux is hosted
127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128 * balancing memory across competing virtual machines that are hosted.
129 * Several metrics drive this policy engine including the guest reported
130 * memory commitment.
131 */
132 unsigned long vm_memory_committed(void)
133 {
134 return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137
138 /*
139 * Check that a process has enough memory to allocate a new virtual
140 * mapping. 0 means there is enough memory for the allocation to
141 * succeed and -ENOMEM implies there is not.
142 *
143 * We currently support three overcommit policies, which are set via the
144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
145 *
146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147 * Additional code 2002 Jul 20 by Robert Love.
148 *
149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150 *
151 * Note this is a helper function intended to be used by LSMs which
152 * wish to use this logic.
153 */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156 long free, allowed, reserve;
157
158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 -(s64)vm_committed_as_batch * num_online_cpus(),
160 "memory commitment underflow");
161
162 vm_acct_memory(pages);
163
164 /*
165 * Sometimes we want to use more memory than we have
166 */
167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168 return 0;
169
170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 free = global_page_state(NR_FREE_PAGES);
172 free += global_page_state(NR_FILE_PAGES);
173
174 /*
175 * shmem pages shouldn't be counted as free in this
176 * case, they can't be purged, only swapped out, and
177 * that won't affect the overall amount of available
178 * memory in the system.
179 */
180 free -= global_page_state(NR_SHMEM);
181
182 free += get_nr_swap_pages();
183
184 /*
185 * Any slabs which are created with the
186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 * which are reclaimable, under pressure. The dentry
188 * cache and most inode caches should fall into this
189 */
190 free += global_page_state(NR_SLAB_RECLAIMABLE);
191
192 /*
193 * Leave reserved pages. The pages are not for anonymous pages.
194 */
195 if (free <= totalreserve_pages)
196 goto error;
197 else
198 free -= totalreserve_pages;
199
200 /*
201 * Reserve some for root
202 */
203 if (!cap_sys_admin)
204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205
206 if (free > pages)
207 return 0;
208
209 goto error;
210 }
211
212 allowed = vm_commit_limit();
213 /*
214 * Reserve some for root
215 */
216 if (!cap_sys_admin)
217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219 /*
220 * Don't let a single process grow so big a user can't recover
221 */
222 if (mm) {
223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed -= min_t(long, mm->total_vm / 32, reserve);
225 }
226
227 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228 return 0;
229 error:
230 vm_unacct_memory(pages);
231
232 return -ENOMEM;
233 }
234
235 /*
236 * Requires inode->i_mapping->i_mmap_rwsem
237 */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 struct file *file, struct address_space *mapping)
240 {
241 if (vma->vm_flags & VM_DENYWRITE)
242 atomic_inc(&file_inode(file)->i_writecount);
243 if (vma->vm_flags & VM_SHARED)
244 mapping_unmap_writable(mapping);
245
246 flush_dcache_mmap_lock(mapping);
247 vma_interval_tree_remove(vma, &mapping->i_mmap);
248 flush_dcache_mmap_unlock(mapping);
249 }
250
251 /*
252 * Unlink a file-based vm structure from its interval tree, to hide
253 * vma from rmap and vmtruncate before freeing its page tables.
254 */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257 struct file *file = vma->vm_file;
258
259 if (file) {
260 struct address_space *mapping = file->f_mapping;
261 i_mmap_lock_write(mapping);
262 __remove_shared_vm_struct(vma, file, mapping);
263 i_mmap_unlock_write(mapping);
264 }
265 }
266
267 /*
268 * Close a vm structure and free it, returning the next.
269 */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272 struct vm_area_struct *next = vma->vm_next;
273
274 might_sleep();
275 if (vma->vm_ops && vma->vm_ops->close)
276 vma->vm_ops->close(vma);
277 if (vma->vm_file)
278 fput(vma->vm_file);
279 mpol_put(vma_policy(vma));
280 kmem_cache_free(vm_area_cachep, vma);
281 return next;
282 }
283
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288 unsigned long retval;
289 unsigned long newbrk, oldbrk;
290 struct mm_struct *mm = current->mm;
291 unsigned long min_brk;
292 bool populate;
293
294 down_write(&mm->mmap_sem);
295
296 #ifdef CONFIG_COMPAT_BRK
297 /*
298 * CONFIG_COMPAT_BRK can still be overridden by setting
299 * randomize_va_space to 2, which will still cause mm->start_brk
300 * to be arbitrarily shifted
301 */
302 if (current->brk_randomized)
303 min_brk = mm->start_brk;
304 else
305 min_brk = mm->end_data;
306 #else
307 min_brk = mm->start_brk;
308 #endif
309 if (brk < min_brk)
310 goto out;
311
312 /*
313 * Check against rlimit here. If this check is done later after the test
314 * of oldbrk with newbrk then it can escape the test and let the data
315 * segment grow beyond its set limit the in case where the limit is
316 * not page aligned -Ram Gupta
317 */
318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 mm->end_data, mm->start_data))
320 goto out;
321
322 newbrk = PAGE_ALIGN(brk);
323 oldbrk = PAGE_ALIGN(mm->brk);
324 if (oldbrk == newbrk)
325 goto set_brk;
326
327 /* Always allow shrinking brk. */
328 if (brk <= mm->brk) {
329 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330 goto set_brk;
331 goto out;
332 }
333
334 /* Check against existing mmap mappings. */
335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336 goto out;
337
338 /* Ok, looks good - let it rip. */
339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340 goto out;
341
342 set_brk:
343 mm->brk = brk;
344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 up_write(&mm->mmap_sem);
346 if (populate)
347 mm_populate(oldbrk, newbrk - oldbrk);
348 return brk;
349
350 out:
351 retval = mm->brk;
352 up_write(&mm->mmap_sem);
353 return retval;
354 }
355
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358 unsigned long max, subtree_gap;
359 max = vma->vm_start;
360 if (vma->vm_prev)
361 max -= vma->vm_prev->vm_end;
362 if (vma->vm_rb.rb_left) {
363 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 if (subtree_gap > max)
366 max = subtree_gap;
367 }
368 if (vma->vm_rb.rb_right) {
369 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 if (subtree_gap > max)
372 max = subtree_gap;
373 }
374 return max;
375 }
376
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380 int i = 0, j, bug = 0;
381 struct rb_node *nd, *pn = NULL;
382 unsigned long prev = 0, pend = 0;
383
384 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 struct vm_area_struct *vma;
386 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 if (vma->vm_start < prev) {
388 pr_emerg("vm_start %lx < prev %lx\n",
389 vma->vm_start, prev);
390 bug = 1;
391 }
392 if (vma->vm_start < pend) {
393 pr_emerg("vm_start %lx < pend %lx\n",
394 vma->vm_start, pend);
395 bug = 1;
396 }
397 if (vma->vm_start > vma->vm_end) {
398 pr_emerg("vm_start %lx > vm_end %lx\n",
399 vma->vm_start, vma->vm_end);
400 bug = 1;
401 }
402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 pr_emerg("free gap %lx, correct %lx\n",
404 vma->rb_subtree_gap,
405 vma_compute_subtree_gap(vma));
406 bug = 1;
407 }
408 i++;
409 pn = nd;
410 prev = vma->vm_start;
411 pend = vma->vm_end;
412 }
413 j = 0;
414 for (nd = pn; nd; nd = rb_prev(nd))
415 j++;
416 if (i != j) {
417 pr_emerg("backwards %d, forwards %d\n", j, i);
418 bug = 1;
419 }
420 return bug ? -1 : i;
421 }
422
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425 struct rb_node *nd;
426
427 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 struct vm_area_struct *vma;
429 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 VM_BUG_ON_VMA(vma != ignore &&
431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432 vma);
433 }
434 }
435
436 static void validate_mm(struct mm_struct *mm)
437 {
438 int bug = 0;
439 int i = 0;
440 unsigned long highest_address = 0;
441 struct vm_area_struct *vma = mm->mmap;
442
443 while (vma) {
444 struct anon_vma *anon_vma = vma->anon_vma;
445 struct anon_vma_chain *avc;
446
447 if (anon_vma) {
448 anon_vma_lock_read(anon_vma);
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_verify(avc);
451 anon_vma_unlock_read(anon_vma);
452 }
453
454 highest_address = vma->vm_end;
455 vma = vma->vm_next;
456 i++;
457 }
458 if (i != mm->map_count) {
459 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
460 bug = 1;
461 }
462 if (highest_address != mm->highest_vm_end) {
463 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
464 mm->highest_vm_end, highest_address);
465 bug = 1;
466 }
467 i = browse_rb(&mm->mm_rb);
468 if (i != mm->map_count) {
469 if (i != -1)
470 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
471 bug = 1;
472 }
473 VM_BUG_ON_MM(bug, mm);
474 }
475 #else
476 #define validate_mm_rb(root, ignore) do { } while (0)
477 #define validate_mm(mm) do { } while (0)
478 #endif
479
480 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
481 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
482
483 /*
484 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
485 * vma->vm_prev->vm_end values changed, without modifying the vma's position
486 * in the rbtree.
487 */
488 static void vma_gap_update(struct vm_area_struct *vma)
489 {
490 /*
491 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
492 * function that does exacltly what we want.
493 */
494 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
495 }
496
497 static inline void vma_rb_insert(struct vm_area_struct *vma,
498 struct rb_root *root)
499 {
500 /* All rb_subtree_gap values must be consistent prior to insertion */
501 validate_mm_rb(root, NULL);
502
503 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
504 }
505
506 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
507 {
508 /*
509 * All rb_subtree_gap values must be consistent prior to erase,
510 * with the possible exception of the vma being erased.
511 */
512 validate_mm_rb(root, vma);
513
514 /*
515 * Note rb_erase_augmented is a fairly large inline function,
516 * so make sure we instantiate it only once with our desired
517 * augmented rbtree callbacks.
518 */
519 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
520 }
521
522 /*
523 * vma has some anon_vma assigned, and is already inserted on that
524 * anon_vma's interval trees.
525 *
526 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
527 * vma must be removed from the anon_vma's interval trees using
528 * anon_vma_interval_tree_pre_update_vma().
529 *
530 * After the update, the vma will be reinserted using
531 * anon_vma_interval_tree_post_update_vma().
532 *
533 * The entire update must be protected by exclusive mmap_sem and by
534 * the root anon_vma's mutex.
535 */
536 static inline void
537 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
538 {
539 struct anon_vma_chain *avc;
540
541 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
543 }
544
545 static inline void
546 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
547 {
548 struct anon_vma_chain *avc;
549
550 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
551 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
552 }
553
554 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
555 unsigned long end, struct vm_area_struct **pprev,
556 struct rb_node ***rb_link, struct rb_node **rb_parent)
557 {
558 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
559
560 __rb_link = &mm->mm_rb.rb_node;
561 rb_prev = __rb_parent = NULL;
562
563 while (*__rb_link) {
564 struct vm_area_struct *vma_tmp;
565
566 __rb_parent = *__rb_link;
567 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
568
569 if (vma_tmp->vm_end > addr) {
570 /* Fail if an existing vma overlaps the area */
571 if (vma_tmp->vm_start < end)
572 return -ENOMEM;
573 __rb_link = &__rb_parent->rb_left;
574 } else {
575 rb_prev = __rb_parent;
576 __rb_link = &__rb_parent->rb_right;
577 }
578 }
579
580 *pprev = NULL;
581 if (rb_prev)
582 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
583 *rb_link = __rb_link;
584 *rb_parent = __rb_parent;
585 return 0;
586 }
587
588 static unsigned long count_vma_pages_range(struct mm_struct *mm,
589 unsigned long addr, unsigned long end)
590 {
591 unsigned long nr_pages = 0;
592 struct vm_area_struct *vma;
593
594 /* Find first overlaping mapping */
595 vma = find_vma_intersection(mm, addr, end);
596 if (!vma)
597 return 0;
598
599 nr_pages = (min(end, vma->vm_end) -
600 max(addr, vma->vm_start)) >> PAGE_SHIFT;
601
602 /* Iterate over the rest of the overlaps */
603 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
604 unsigned long overlap_len;
605
606 if (vma->vm_start > end)
607 break;
608
609 overlap_len = min(end, vma->vm_end) - vma->vm_start;
610 nr_pages += overlap_len >> PAGE_SHIFT;
611 }
612
613 return nr_pages;
614 }
615
616 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
617 struct rb_node **rb_link, struct rb_node *rb_parent)
618 {
619 /* Update tracking information for the gap following the new vma. */
620 if (vma->vm_next)
621 vma_gap_update(vma->vm_next);
622 else
623 mm->highest_vm_end = vma->vm_end;
624
625 /*
626 * vma->vm_prev wasn't known when we followed the rbtree to find the
627 * correct insertion point for that vma. As a result, we could not
628 * update the vma vm_rb parents rb_subtree_gap values on the way down.
629 * So, we first insert the vma with a zero rb_subtree_gap value
630 * (to be consistent with what we did on the way down), and then
631 * immediately update the gap to the correct value. Finally we
632 * rebalance the rbtree after all augmented values have been set.
633 */
634 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
635 vma->rb_subtree_gap = 0;
636 vma_gap_update(vma);
637 vma_rb_insert(vma, &mm->mm_rb);
638 }
639
640 static void __vma_link_file(struct vm_area_struct *vma)
641 {
642 struct file *file;
643
644 file = vma->vm_file;
645 if (file) {
646 struct address_space *mapping = file->f_mapping;
647
648 if (vma->vm_flags & VM_DENYWRITE)
649 atomic_dec(&file_inode(file)->i_writecount);
650 if (vma->vm_flags & VM_SHARED)
651 atomic_inc(&mapping->i_mmap_writable);
652
653 flush_dcache_mmap_lock(mapping);
654 vma_interval_tree_insert(vma, &mapping->i_mmap);
655 flush_dcache_mmap_unlock(mapping);
656 }
657 }
658
659 static void
660 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
661 struct vm_area_struct *prev, struct rb_node **rb_link,
662 struct rb_node *rb_parent)
663 {
664 __vma_link_list(mm, vma, prev, rb_parent);
665 __vma_link_rb(mm, vma, rb_link, rb_parent);
666 }
667
668 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669 struct vm_area_struct *prev, struct rb_node **rb_link,
670 struct rb_node *rb_parent)
671 {
672 struct address_space *mapping = NULL;
673
674 if (vma->vm_file) {
675 mapping = vma->vm_file->f_mapping;
676 i_mmap_lock_write(mapping);
677 }
678
679 __vma_link(mm, vma, prev, rb_link, rb_parent);
680 __vma_link_file(vma);
681
682 if (mapping)
683 i_mmap_unlock_write(mapping);
684
685 mm->map_count++;
686 validate_mm(mm);
687 }
688
689 /*
690 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
691 * mm's list and rbtree. It has already been inserted into the interval tree.
692 */
693 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695 struct vm_area_struct *prev;
696 struct rb_node **rb_link, *rb_parent;
697
698 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
699 &prev, &rb_link, &rb_parent))
700 BUG();
701 __vma_link(mm, vma, prev, rb_link, rb_parent);
702 mm->map_count++;
703 }
704
705 static inline void
706 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
707 struct vm_area_struct *prev)
708 {
709 struct vm_area_struct *next;
710
711 vma_rb_erase(vma, &mm->mm_rb);
712 prev->vm_next = next = vma->vm_next;
713 if (next)
714 next->vm_prev = prev;
715
716 /* Kill the cache */
717 vmacache_invalidate(mm);
718 }
719
720 /*
721 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
722 * is already present in an i_mmap tree without adjusting the tree.
723 * The following helper function should be used when such adjustments
724 * are necessary. The "insert" vma (if any) is to be inserted
725 * before we drop the necessary locks.
726 */
727 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
728 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
729 {
730 struct mm_struct *mm = vma->vm_mm;
731 struct vm_area_struct *next = vma->vm_next;
732 struct vm_area_struct *importer = NULL;
733 struct address_space *mapping = NULL;
734 struct rb_root *root = NULL;
735 struct anon_vma *anon_vma = NULL;
736 struct file *file = vma->vm_file;
737 bool start_changed = false, end_changed = false;
738 long adjust_next = 0;
739 int remove_next = 0;
740
741 if (next && !insert) {
742 struct vm_area_struct *exporter = NULL;
743
744 if (end >= next->vm_end) {
745 /*
746 * vma expands, overlapping all the next, and
747 * perhaps the one after too (mprotect case 6).
748 */
749 again: remove_next = 1 + (end > next->vm_end);
750 end = next->vm_end;
751 exporter = next;
752 importer = vma;
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 } else if (end < vma->vm_end) {
762 /*
763 * vma shrinks, and !insert tells it's not
764 * split_vma inserting another: so it must be
765 * mprotect case 4 shifting the boundary down.
766 */
767 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
768 exporter = vma;
769 importer = next;
770 }
771
772 /*
773 * Easily overlooked: when mprotect shifts the boundary,
774 * make sure the expanding vma has anon_vma set if the
775 * shrinking vma had, to cover any anon pages imported.
776 */
777 if (exporter && exporter->anon_vma && !importer->anon_vma) {
778 int error;
779
780 importer->anon_vma = exporter->anon_vma;
781 error = anon_vma_clone(importer, exporter);
782 if (error)
783 return error;
784 }
785 }
786
787 if (file) {
788 mapping = file->f_mapping;
789 root = &mapping->i_mmap;
790 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
791
792 if (adjust_next)
793 uprobe_munmap(next, next->vm_start, next->vm_end);
794
795 i_mmap_lock_write(mapping);
796 if (insert) {
797 /*
798 * Put into interval tree now, so instantiated pages
799 * are visible to arm/parisc __flush_dcache_page
800 * throughout; but we cannot insert into address
801 * space until vma start or end is updated.
802 */
803 __vma_link_file(insert);
804 }
805 }
806
807 vma_adjust_trans_huge(vma, start, end, adjust_next);
808
809 anon_vma = vma->anon_vma;
810 if (!anon_vma && adjust_next)
811 anon_vma = next->anon_vma;
812 if (anon_vma) {
813 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
814 anon_vma != next->anon_vma, next);
815 anon_vma_lock_write(anon_vma);
816 anon_vma_interval_tree_pre_update_vma(vma);
817 if (adjust_next)
818 anon_vma_interval_tree_pre_update_vma(next);
819 }
820
821 if (root) {
822 flush_dcache_mmap_lock(mapping);
823 vma_interval_tree_remove(vma, root);
824 if (adjust_next)
825 vma_interval_tree_remove(next, root);
826 }
827
828 if (start != vma->vm_start) {
829 vma->vm_start = start;
830 start_changed = true;
831 }
832 if (end != vma->vm_end) {
833 vma->vm_end = end;
834 end_changed = true;
835 }
836 vma->vm_pgoff = pgoff;
837 if (adjust_next) {
838 next->vm_start += adjust_next << PAGE_SHIFT;
839 next->vm_pgoff += adjust_next;
840 }
841
842 if (root) {
843 if (adjust_next)
844 vma_interval_tree_insert(next, root);
845 vma_interval_tree_insert(vma, root);
846 flush_dcache_mmap_unlock(mapping);
847 }
848
849 if (remove_next) {
850 /*
851 * vma_merge has merged next into vma, and needs
852 * us to remove next before dropping the locks.
853 */
854 __vma_unlink(mm, next, vma);
855 if (file)
856 __remove_shared_vm_struct(next, file, mapping);
857 } else if (insert) {
858 /*
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
862 */
863 __insert_vm_struct(mm, insert);
864 } else {
865 if (start_changed)
866 vma_gap_update(vma);
867 if (end_changed) {
868 if (!next)
869 mm->highest_vm_end = end;
870 else if (!adjust_next)
871 vma_gap_update(next);
872 }
873 }
874
875 if (anon_vma) {
876 anon_vma_interval_tree_post_update_vma(vma);
877 if (adjust_next)
878 anon_vma_interval_tree_post_update_vma(next);
879 anon_vma_unlock_write(anon_vma);
880 }
881 if (mapping)
882 i_mmap_unlock_write(mapping);
883
884 if (root) {
885 uprobe_mmap(vma);
886
887 if (adjust_next)
888 uprobe_mmap(next);
889 }
890
891 if (remove_next) {
892 if (file) {
893 uprobe_munmap(next, next->vm_start, next->vm_end);
894 fput(file);
895 }
896 if (next->anon_vma)
897 anon_vma_merge(vma, next);
898 mm->map_count--;
899 mpol_put(vma_policy(next));
900 kmem_cache_free(vm_area_cachep, next);
901 /*
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
905 */
906 next = vma->vm_next;
907 if (remove_next == 2)
908 goto again;
909 else if (next)
910 vma_gap_update(next);
911 else
912 mm->highest_vm_end = end;
913 }
914 if (insert && file)
915 uprobe_mmap(insert);
916
917 validate_mm(mm);
918
919 return 0;
920 }
921
922 /*
923 * If the vma has a ->close operation then the driver probably needs to release
924 * per-vma resources, so we don't attempt to merge those.
925 */
926 static inline int is_mergeable_vma(struct vm_area_struct *vma,
927 struct file *file, unsigned long vm_flags,
928 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
929 {
930 /*
931 * VM_SOFTDIRTY should not prevent from VMA merging, if we
932 * match the flags but dirty bit -- the caller should mark
933 * merged VMA as dirty. If dirty bit won't be excluded from
934 * comparison, we increase pressue on the memory system forcing
935 * the kernel to generate new VMAs when old one could be
936 * extended instead.
937 */
938 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939 return 0;
940 if (vma->vm_file != file)
941 return 0;
942 if (vma->vm_ops && vma->vm_ops->close)
943 return 0;
944 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
945 return 0;
946 return 1;
947 }
948
949 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
950 struct anon_vma *anon_vma2,
951 struct vm_area_struct *vma)
952 {
953 /*
954 * The list_is_singular() test is to avoid merging VMA cloned from
955 * parents. This can improve scalability caused by anon_vma lock.
956 */
957 if ((!anon_vma1 || !anon_vma2) && (!vma ||
958 list_is_singular(&vma->anon_vma_chain)))
959 return 1;
960 return anon_vma1 == anon_vma2;
961 }
962
963 /*
964 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
965 * in front of (at a lower virtual address and file offset than) the vma.
966 *
967 * We cannot merge two vmas if they have differently assigned (non-NULL)
968 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
969 *
970 * We don't check here for the merged mmap wrapping around the end of pagecache
971 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
972 * wrap, nor mmaps which cover the final page at index -1UL.
973 */
974 static int
975 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
976 struct anon_vma *anon_vma, struct file *file,
977 pgoff_t vm_pgoff,
978 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
979 {
980 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
981 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
982 if (vma->vm_pgoff == vm_pgoff)
983 return 1;
984 }
985 return 0;
986 }
987
988 /*
989 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
990 * beyond (at a higher virtual address and file offset than) the vma.
991 *
992 * We cannot merge two vmas if they have differently assigned (non-NULL)
993 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
994 */
995 static int
996 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
998 pgoff_t vm_pgoff,
999 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1000 {
1001 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1002 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1003 pgoff_t vm_pglen;
1004 vm_pglen = vma_pages(vma);
1005 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1006 return 1;
1007 }
1008 return 0;
1009 }
1010
1011 /*
1012 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1013 * whether that can be merged with its predecessor or its successor.
1014 * Or both (it neatly fills a hole).
1015 *
1016 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1017 * certain not to be mapped by the time vma_merge is called; but when
1018 * called for mprotect, it is certain to be already mapped (either at
1019 * an offset within prev, or at the start of next), and the flags of
1020 * this area are about to be changed to vm_flags - and the no-change
1021 * case has already been eliminated.
1022 *
1023 * The following mprotect cases have to be considered, where AAAA is
1024 * the area passed down from mprotect_fixup, never extending beyond one
1025 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1026 *
1027 * AAAA AAAA AAAA AAAA
1028 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1029 * cannot merge might become might become might become
1030 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1031 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1032 * mremap move: PPPPNNNNNNNN 8
1033 * AAAA
1034 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1035 * might become case 1 below case 2 below case 3 below
1036 *
1037 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1038 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1039 */
1040 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1041 struct vm_area_struct *prev, unsigned long addr,
1042 unsigned long end, unsigned long vm_flags,
1043 struct anon_vma *anon_vma, struct file *file,
1044 pgoff_t pgoff, struct mempolicy *policy,
1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1046 {
1047 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1048 struct vm_area_struct *area, *next;
1049 int err;
1050
1051 /*
1052 * We later require that vma->vm_flags == vm_flags,
1053 * so this tests vma->vm_flags & VM_SPECIAL, too.
1054 */
1055 if (vm_flags & VM_SPECIAL)
1056 return NULL;
1057
1058 if (prev)
1059 next = prev->vm_next;
1060 else
1061 next = mm->mmap;
1062 area = next;
1063 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1064 next = next->vm_next;
1065
1066 /*
1067 * Can it merge with the predecessor?
1068 */
1069 if (prev && prev->vm_end == addr &&
1070 mpol_equal(vma_policy(prev), policy) &&
1071 can_vma_merge_after(prev, vm_flags,
1072 anon_vma, file, pgoff,
1073 vm_userfaultfd_ctx)) {
1074 /*
1075 * OK, it can. Can we now merge in the successor as well?
1076 */
1077 if (next && end == next->vm_start &&
1078 mpol_equal(policy, vma_policy(next)) &&
1079 can_vma_merge_before(next, vm_flags,
1080 anon_vma, file,
1081 pgoff+pglen,
1082 vm_userfaultfd_ctx) &&
1083 is_mergeable_anon_vma(prev->anon_vma,
1084 next->anon_vma, NULL)) {
1085 /* cases 1, 6 */
1086 err = vma_adjust(prev, prev->vm_start,
1087 next->vm_end, prev->vm_pgoff, NULL);
1088 } else /* cases 2, 5, 7 */
1089 err = vma_adjust(prev, prev->vm_start,
1090 end, prev->vm_pgoff, NULL);
1091 if (err)
1092 return NULL;
1093 khugepaged_enter_vma_merge(prev, vm_flags);
1094 return prev;
1095 }
1096
1097 /*
1098 * Can this new request be merged in front of next?
1099 */
1100 if (next && end == next->vm_start &&
1101 mpol_equal(policy, vma_policy(next)) &&
1102 can_vma_merge_before(next, vm_flags,
1103 anon_vma, file, pgoff+pglen,
1104 vm_userfaultfd_ctx)) {
1105 if (prev && addr < prev->vm_end) /* case 4 */
1106 err = vma_adjust(prev, prev->vm_start,
1107 addr, prev->vm_pgoff, NULL);
1108 else /* cases 3, 8 */
1109 err = vma_adjust(area, addr, next->vm_end,
1110 next->vm_pgoff - pglen, NULL);
1111 if (err)
1112 return NULL;
1113 khugepaged_enter_vma_merge(area, vm_flags);
1114 return area;
1115 }
1116
1117 return NULL;
1118 }
1119
1120 /*
1121 * Rough compatbility check to quickly see if it's even worth looking
1122 * at sharing an anon_vma.
1123 *
1124 * They need to have the same vm_file, and the flags can only differ
1125 * in things that mprotect may change.
1126 *
1127 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1128 * we can merge the two vma's. For example, we refuse to merge a vma if
1129 * there is a vm_ops->close() function, because that indicates that the
1130 * driver is doing some kind of reference counting. But that doesn't
1131 * really matter for the anon_vma sharing case.
1132 */
1133 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135 return a->vm_end == b->vm_start &&
1136 mpol_equal(vma_policy(a), vma_policy(b)) &&
1137 a->vm_file == b->vm_file &&
1138 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1139 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1140 }
1141
1142 /*
1143 * Do some basic sanity checking to see if we can re-use the anon_vma
1144 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1145 * the same as 'old', the other will be the new one that is trying
1146 * to share the anon_vma.
1147 *
1148 * NOTE! This runs with mm_sem held for reading, so it is possible that
1149 * the anon_vma of 'old' is concurrently in the process of being set up
1150 * by another page fault trying to merge _that_. But that's ok: if it
1151 * is being set up, that automatically means that it will be a singleton
1152 * acceptable for merging, so we can do all of this optimistically. But
1153 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1154 *
1155 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1156 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1157 * is to return an anon_vma that is "complex" due to having gone through
1158 * a fork).
1159 *
1160 * We also make sure that the two vma's are compatible (adjacent,
1161 * and with the same memory policies). That's all stable, even with just
1162 * a read lock on the mm_sem.
1163 */
1164 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1165 {
1166 if (anon_vma_compatible(a, b)) {
1167 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1168
1169 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1170 return anon_vma;
1171 }
1172 return NULL;
1173 }
1174
1175 /*
1176 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1177 * neighbouring vmas for a suitable anon_vma, before it goes off
1178 * to allocate a new anon_vma. It checks because a repetitive
1179 * sequence of mprotects and faults may otherwise lead to distinct
1180 * anon_vmas being allocated, preventing vma merge in subsequent
1181 * mprotect.
1182 */
1183 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1184 {
1185 struct anon_vma *anon_vma;
1186 struct vm_area_struct *near;
1187
1188 near = vma->vm_next;
1189 if (!near)
1190 goto try_prev;
1191
1192 anon_vma = reusable_anon_vma(near, vma, near);
1193 if (anon_vma)
1194 return anon_vma;
1195 try_prev:
1196 near = vma->vm_prev;
1197 if (!near)
1198 goto none;
1199
1200 anon_vma = reusable_anon_vma(near, near, vma);
1201 if (anon_vma)
1202 return anon_vma;
1203 none:
1204 /*
1205 * There's no absolute need to look only at touching neighbours:
1206 * we could search further afield for "compatible" anon_vmas.
1207 * But it would probably just be a waste of time searching,
1208 * or lead to too many vmas hanging off the same anon_vma.
1209 * We're trying to allow mprotect remerging later on,
1210 * not trying to minimize memory used for anon_vmas.
1211 */
1212 return NULL;
1213 }
1214
1215 #ifdef CONFIG_PROC_FS
1216 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1217 struct file *file, long pages)
1218 {
1219 const unsigned long stack_flags
1220 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1221
1222 mm->total_vm += pages;
1223
1224 if (file) {
1225 mm->shared_vm += pages;
1226 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1227 mm->exec_vm += pages;
1228 } else if (flags & stack_flags)
1229 mm->stack_vm += pages;
1230 }
1231 #endif /* CONFIG_PROC_FS */
1232
1233 /*
1234 * If a hint addr is less than mmap_min_addr change hint to be as
1235 * low as possible but still greater than mmap_min_addr
1236 */
1237 static inline unsigned long round_hint_to_min(unsigned long hint)
1238 {
1239 hint &= PAGE_MASK;
1240 if (((void *)hint != NULL) &&
1241 (hint < mmap_min_addr))
1242 return PAGE_ALIGN(mmap_min_addr);
1243 return hint;
1244 }
1245
1246 static inline int mlock_future_check(struct mm_struct *mm,
1247 unsigned long flags,
1248 unsigned long len)
1249 {
1250 unsigned long locked, lock_limit;
1251
1252 /* mlock MCL_FUTURE? */
1253 if (flags & VM_LOCKED) {
1254 locked = len >> PAGE_SHIFT;
1255 locked += mm->locked_vm;
1256 lock_limit = rlimit(RLIMIT_MEMLOCK);
1257 lock_limit >>= PAGE_SHIFT;
1258 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1259 return -EAGAIN;
1260 }
1261 return 0;
1262 }
1263
1264 /*
1265 * The caller must hold down_write(&current->mm->mmap_sem).
1266 */
1267 unsigned long do_mmap(struct file *file, unsigned long addr,
1268 unsigned long len, unsigned long prot,
1269 unsigned long flags, vm_flags_t vm_flags,
1270 unsigned long pgoff, unsigned long *populate)
1271 {
1272 struct mm_struct *mm = current->mm;
1273
1274 *populate = 0;
1275
1276 if (!len)
1277 return -EINVAL;
1278
1279 /*
1280 * Does the application expect PROT_READ to imply PROT_EXEC?
1281 *
1282 * (the exception is when the underlying filesystem is noexec
1283 * mounted, in which case we dont add PROT_EXEC.)
1284 */
1285 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1286 if (!(file && path_noexec(&file->f_path)))
1287 prot |= PROT_EXEC;
1288
1289 if (!(flags & MAP_FIXED))
1290 addr = round_hint_to_min(addr);
1291
1292 /* Careful about overflows.. */
1293 len = PAGE_ALIGN(len);
1294 if (!len)
1295 return -ENOMEM;
1296
1297 /* offset overflow? */
1298 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1299 return -EOVERFLOW;
1300
1301 /* Too many mappings? */
1302 if (mm->map_count > sysctl_max_map_count)
1303 return -ENOMEM;
1304
1305 /* Obtain the address to map to. we verify (or select) it and ensure
1306 * that it represents a valid section of the address space.
1307 */
1308 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1309 if (offset_in_page(addr))
1310 return addr;
1311
1312 /* Do simple checking here so the lower-level routines won't have
1313 * to. we assume access permissions have been handled by the open
1314 * of the memory object, so we don't do any here.
1315 */
1316 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1317 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1318
1319 if (flags & MAP_LOCKED)
1320 if (!can_do_mlock())
1321 return -EPERM;
1322
1323 if (mlock_future_check(mm, vm_flags, len))
1324 return -EAGAIN;
1325
1326 if (file) {
1327 struct inode *inode = file_inode(file);
1328
1329 switch (flags & MAP_TYPE) {
1330 case MAP_SHARED:
1331 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1332 return -EACCES;
1333
1334 /*
1335 * Make sure we don't allow writing to an append-only
1336 * file..
1337 */
1338 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1339 return -EACCES;
1340
1341 /*
1342 * Make sure there are no mandatory locks on the file.
1343 */
1344 if (locks_verify_locked(file))
1345 return -EAGAIN;
1346
1347 vm_flags |= VM_SHARED | VM_MAYSHARE;
1348 if (!(file->f_mode & FMODE_WRITE))
1349 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1350
1351 /* fall through */
1352 case MAP_PRIVATE:
1353 if (!(file->f_mode & FMODE_READ))
1354 return -EACCES;
1355 if (path_noexec(&file->f_path)) {
1356 if (vm_flags & VM_EXEC)
1357 return -EPERM;
1358 vm_flags &= ~VM_MAYEXEC;
1359 }
1360
1361 if (!file->f_op->mmap)
1362 return -ENODEV;
1363 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364 return -EINVAL;
1365 break;
1366
1367 default:
1368 return -EINVAL;
1369 }
1370 } else {
1371 switch (flags & MAP_TYPE) {
1372 case MAP_SHARED:
1373 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1374 return -EINVAL;
1375 /*
1376 * Ignore pgoff.
1377 */
1378 pgoff = 0;
1379 vm_flags |= VM_SHARED | VM_MAYSHARE;
1380 break;
1381 case MAP_PRIVATE:
1382 /*
1383 * Set pgoff according to addr for anon_vma.
1384 */
1385 pgoff = addr >> PAGE_SHIFT;
1386 break;
1387 default:
1388 return -EINVAL;
1389 }
1390 }
1391
1392 /*
1393 * Set 'VM_NORESERVE' if we should not account for the
1394 * memory use of this mapping.
1395 */
1396 if (flags & MAP_NORESERVE) {
1397 /* We honor MAP_NORESERVE if allowed to overcommit */
1398 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1399 vm_flags |= VM_NORESERVE;
1400
1401 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402 if (file && is_file_hugepages(file))
1403 vm_flags |= VM_NORESERVE;
1404 }
1405
1406 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1407 if (!IS_ERR_VALUE(addr) &&
1408 ((vm_flags & VM_LOCKED) ||
1409 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1410 *populate = len;
1411 return addr;
1412 }
1413
1414 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1415 unsigned long, prot, unsigned long, flags,
1416 unsigned long, fd, unsigned long, pgoff)
1417 {
1418 struct file *file = NULL;
1419 unsigned long retval;
1420
1421 if (!(flags & MAP_ANONYMOUS)) {
1422 audit_mmap_fd(fd, flags);
1423 file = fget(fd);
1424 if (!file)
1425 return -EBADF;
1426 if (is_file_hugepages(file))
1427 len = ALIGN(len, huge_page_size(hstate_file(file)));
1428 retval = -EINVAL;
1429 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1430 goto out_fput;
1431 } else if (flags & MAP_HUGETLB) {
1432 struct user_struct *user = NULL;
1433 struct hstate *hs;
1434
1435 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1436 if (!hs)
1437 return -EINVAL;
1438
1439 len = ALIGN(len, huge_page_size(hs));
1440 /*
1441 * VM_NORESERVE is used because the reservations will be
1442 * taken when vm_ops->mmap() is called
1443 * A dummy user value is used because we are not locking
1444 * memory so no accounting is necessary
1445 */
1446 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1447 VM_NORESERVE,
1448 &user, HUGETLB_ANONHUGE_INODE,
1449 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1450 if (IS_ERR(file))
1451 return PTR_ERR(file);
1452 }
1453
1454 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1455
1456 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1457 out_fput:
1458 if (file)
1459 fput(file);
1460 return retval;
1461 }
1462
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct {
1465 unsigned long addr;
1466 unsigned long len;
1467 unsigned long prot;
1468 unsigned long flags;
1469 unsigned long fd;
1470 unsigned long offset;
1471 };
1472
1473 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1474 {
1475 struct mmap_arg_struct a;
1476
1477 if (copy_from_user(&a, arg, sizeof(a)))
1478 return -EFAULT;
1479 if (offset_in_page(a.offset))
1480 return -EINVAL;
1481
1482 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1483 a.offset >> PAGE_SHIFT);
1484 }
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1486
1487 /*
1488 * Some shared mappigns will want the pages marked read-only
1489 * to track write events. If so, we'll downgrade vm_page_prot
1490 * to the private version (using protection_map[] without the
1491 * VM_SHARED bit).
1492 */
1493 int vma_wants_writenotify(struct vm_area_struct *vma)
1494 {
1495 vm_flags_t vm_flags = vma->vm_flags;
1496 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1497
1498 /* If it was private or non-writable, the write bit is already clear */
1499 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1500 return 0;
1501
1502 /* The backer wishes to know when pages are first written to? */
1503 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1504 return 1;
1505
1506 /* The open routine did something to the protections that pgprot_modify
1507 * won't preserve? */
1508 if (pgprot_val(vma->vm_page_prot) !=
1509 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1510 return 0;
1511
1512 /* Do we need to track softdirty? */
1513 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1514 return 1;
1515
1516 /* Specialty mapping? */
1517 if (vm_flags & VM_PFNMAP)
1518 return 0;
1519
1520 /* Can the mapping track the dirty pages? */
1521 return vma->vm_file && vma->vm_file->f_mapping &&
1522 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1523 }
1524
1525 /*
1526 * We account for memory if it's a private writeable mapping,
1527 * not hugepages and VM_NORESERVE wasn't set.
1528 */
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531 /*
1532 * hugetlb has its own accounting separate from the core VM
1533 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534 */
1535 if (file && is_file_hugepages(file))
1536 return 0;
1537
1538 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540
1541 unsigned long mmap_region(struct file *file, unsigned long addr,
1542 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1543 {
1544 struct mm_struct *mm = current->mm;
1545 struct vm_area_struct *vma, *prev;
1546 int error;
1547 struct rb_node **rb_link, *rb_parent;
1548 unsigned long charged = 0;
1549
1550 /* Check against address space limit. */
1551 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1552 unsigned long nr_pages;
1553
1554 /*
1555 * MAP_FIXED may remove pages of mappings that intersects with
1556 * requested mapping. Account for the pages it would unmap.
1557 */
1558 if (!(vm_flags & MAP_FIXED))
1559 return -ENOMEM;
1560
1561 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1562
1563 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1564 return -ENOMEM;
1565 }
1566
1567 /* Clear old maps */
1568 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1569 &rb_parent)) {
1570 if (do_munmap(mm, addr, len))
1571 return -ENOMEM;
1572 }
1573
1574 /*
1575 * Private writable mapping: check memory availability
1576 */
1577 if (accountable_mapping(file, vm_flags)) {
1578 charged = len >> PAGE_SHIFT;
1579 if (security_vm_enough_memory_mm(mm, charged))
1580 return -ENOMEM;
1581 vm_flags |= VM_ACCOUNT;
1582 }
1583
1584 /*
1585 * Can we just expand an old mapping?
1586 */
1587 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1588 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1589 if (vma)
1590 goto out;
1591
1592 /*
1593 * Determine the object being mapped and call the appropriate
1594 * specific mapper. the address has already been validated, but
1595 * not unmapped, but the maps are removed from the list.
1596 */
1597 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1598 if (!vma) {
1599 error = -ENOMEM;
1600 goto unacct_error;
1601 }
1602
1603 vma->vm_mm = mm;
1604 vma->vm_start = addr;
1605 vma->vm_end = addr + len;
1606 vma->vm_flags = vm_flags;
1607 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1608 vma->vm_pgoff = pgoff;
1609 INIT_LIST_HEAD(&vma->anon_vma_chain);
1610
1611 if (file) {
1612 if (vm_flags & VM_DENYWRITE) {
1613 error = deny_write_access(file);
1614 if (error)
1615 goto free_vma;
1616 }
1617 if (vm_flags & VM_SHARED) {
1618 error = mapping_map_writable(file->f_mapping);
1619 if (error)
1620 goto allow_write_and_free_vma;
1621 }
1622
1623 /* ->mmap() can change vma->vm_file, but must guarantee that
1624 * vma_link() below can deny write-access if VM_DENYWRITE is set
1625 * and map writably if VM_SHARED is set. This usually means the
1626 * new file must not have been exposed to user-space, yet.
1627 */
1628 vma->vm_file = get_file(file);
1629 error = file->f_op->mmap(file, vma);
1630 if (error)
1631 goto unmap_and_free_vma;
1632
1633 /* Can addr have changed??
1634 *
1635 * Answer: Yes, several device drivers can do it in their
1636 * f_op->mmap method. -DaveM
1637 * Bug: If addr is changed, prev, rb_link, rb_parent should
1638 * be updated for vma_link()
1639 */
1640 WARN_ON_ONCE(addr != vma->vm_start);
1641
1642 addr = vma->vm_start;
1643 vm_flags = vma->vm_flags;
1644 } else if (vm_flags & VM_SHARED) {
1645 error = shmem_zero_setup(vma);
1646 if (error)
1647 goto free_vma;
1648 }
1649
1650 vma_link(mm, vma, prev, rb_link, rb_parent);
1651 /* Once vma denies write, undo our temporary denial count */
1652 if (file) {
1653 if (vm_flags & VM_SHARED)
1654 mapping_unmap_writable(file->f_mapping);
1655 if (vm_flags & VM_DENYWRITE)
1656 allow_write_access(file);
1657 }
1658 file = vma->vm_file;
1659 out:
1660 perf_event_mmap(vma);
1661
1662 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1663 if (vm_flags & VM_LOCKED) {
1664 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1665 vma == get_gate_vma(current->mm)))
1666 mm->locked_vm += (len >> PAGE_SHIFT);
1667 else
1668 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1669 }
1670
1671 if (file)
1672 uprobe_mmap(vma);
1673
1674 /*
1675 * New (or expanded) vma always get soft dirty status.
1676 * Otherwise user-space soft-dirty page tracker won't
1677 * be able to distinguish situation when vma area unmapped,
1678 * then new mapped in-place (which must be aimed as
1679 * a completely new data area).
1680 */
1681 vma->vm_flags |= VM_SOFTDIRTY;
1682
1683 vma_set_page_prot(vma);
1684
1685 return addr;
1686
1687 unmap_and_free_vma:
1688 vma->vm_file = NULL;
1689 fput(file);
1690
1691 /* Undo any partial mapping done by a device driver. */
1692 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1693 charged = 0;
1694 if (vm_flags & VM_SHARED)
1695 mapping_unmap_writable(file->f_mapping);
1696 allow_write_and_free_vma:
1697 if (vm_flags & VM_DENYWRITE)
1698 allow_write_access(file);
1699 free_vma:
1700 kmem_cache_free(vm_area_cachep, vma);
1701 unacct_error:
1702 if (charged)
1703 vm_unacct_memory(charged);
1704 return error;
1705 }
1706
1707 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1708 {
1709 /*
1710 * We implement the search by looking for an rbtree node that
1711 * immediately follows a suitable gap. That is,
1712 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1713 * - gap_end = vma->vm_start >= info->low_limit + length;
1714 * - gap_end - gap_start >= length
1715 */
1716
1717 struct mm_struct *mm = current->mm;
1718 struct vm_area_struct *vma;
1719 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1720
1721 /* Adjust search length to account for worst case alignment overhead */
1722 length = info->length + info->align_mask;
1723 if (length < info->length)
1724 return -ENOMEM;
1725
1726 /* Adjust search limits by the desired length */
1727 if (info->high_limit < length)
1728 return -ENOMEM;
1729 high_limit = info->high_limit - length;
1730
1731 if (info->low_limit > high_limit)
1732 return -ENOMEM;
1733 low_limit = info->low_limit + length;
1734
1735 /* Check if rbtree root looks promising */
1736 if (RB_EMPTY_ROOT(&mm->mm_rb))
1737 goto check_highest;
1738 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1739 if (vma->rb_subtree_gap < length)
1740 goto check_highest;
1741
1742 while (true) {
1743 /* Visit left subtree if it looks promising */
1744 gap_end = vma->vm_start;
1745 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1746 struct vm_area_struct *left =
1747 rb_entry(vma->vm_rb.rb_left,
1748 struct vm_area_struct, vm_rb);
1749 if (left->rb_subtree_gap >= length) {
1750 vma = left;
1751 continue;
1752 }
1753 }
1754
1755 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1756 check_current:
1757 /* Check if current node has a suitable gap */
1758 if (gap_start > high_limit)
1759 return -ENOMEM;
1760 if (gap_end >= low_limit && gap_end - gap_start >= length)
1761 goto found;
1762
1763 /* Visit right subtree if it looks promising */
1764 if (vma->vm_rb.rb_right) {
1765 struct vm_area_struct *right =
1766 rb_entry(vma->vm_rb.rb_right,
1767 struct vm_area_struct, vm_rb);
1768 if (right->rb_subtree_gap >= length) {
1769 vma = right;
1770 continue;
1771 }
1772 }
1773
1774 /* Go back up the rbtree to find next candidate node */
1775 while (true) {
1776 struct rb_node *prev = &vma->vm_rb;
1777 if (!rb_parent(prev))
1778 goto check_highest;
1779 vma = rb_entry(rb_parent(prev),
1780 struct vm_area_struct, vm_rb);
1781 if (prev == vma->vm_rb.rb_left) {
1782 gap_start = vma->vm_prev->vm_end;
1783 gap_end = vma->vm_start;
1784 goto check_current;
1785 }
1786 }
1787 }
1788
1789 check_highest:
1790 /* Check highest gap, which does not precede any rbtree node */
1791 gap_start = mm->highest_vm_end;
1792 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1793 if (gap_start > high_limit)
1794 return -ENOMEM;
1795
1796 found:
1797 /* We found a suitable gap. Clip it with the original low_limit. */
1798 if (gap_start < info->low_limit)
1799 gap_start = info->low_limit;
1800
1801 /* Adjust gap address to the desired alignment */
1802 gap_start += (info->align_offset - gap_start) & info->align_mask;
1803
1804 VM_BUG_ON(gap_start + info->length > info->high_limit);
1805 VM_BUG_ON(gap_start + info->length > gap_end);
1806 return gap_start;
1807 }
1808
1809 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1810 {
1811 struct mm_struct *mm = current->mm;
1812 struct vm_area_struct *vma;
1813 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1814
1815 /* Adjust search length to account for worst case alignment overhead */
1816 length = info->length + info->align_mask;
1817 if (length < info->length)
1818 return -ENOMEM;
1819
1820 /*
1821 * Adjust search limits by the desired length.
1822 * See implementation comment at top of unmapped_area().
1823 */
1824 gap_end = info->high_limit;
1825 if (gap_end < length)
1826 return -ENOMEM;
1827 high_limit = gap_end - length;
1828
1829 if (info->low_limit > high_limit)
1830 return -ENOMEM;
1831 low_limit = info->low_limit + length;
1832
1833 /* Check highest gap, which does not precede any rbtree node */
1834 gap_start = mm->highest_vm_end;
1835 if (gap_start <= high_limit)
1836 goto found_highest;
1837
1838 /* Check if rbtree root looks promising */
1839 if (RB_EMPTY_ROOT(&mm->mm_rb))
1840 return -ENOMEM;
1841 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1842 if (vma->rb_subtree_gap < length)
1843 return -ENOMEM;
1844
1845 while (true) {
1846 /* Visit right subtree if it looks promising */
1847 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1848 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1849 struct vm_area_struct *right =
1850 rb_entry(vma->vm_rb.rb_right,
1851 struct vm_area_struct, vm_rb);
1852 if (right->rb_subtree_gap >= length) {
1853 vma = right;
1854 continue;
1855 }
1856 }
1857
1858 check_current:
1859 /* Check if current node has a suitable gap */
1860 gap_end = vma->vm_start;
1861 if (gap_end < low_limit)
1862 return -ENOMEM;
1863 if (gap_start <= high_limit && gap_end - gap_start >= length)
1864 goto found;
1865
1866 /* Visit left subtree if it looks promising */
1867 if (vma->vm_rb.rb_left) {
1868 struct vm_area_struct *left =
1869 rb_entry(vma->vm_rb.rb_left,
1870 struct vm_area_struct, vm_rb);
1871 if (left->rb_subtree_gap >= length) {
1872 vma = left;
1873 continue;
1874 }
1875 }
1876
1877 /* Go back up the rbtree to find next candidate node */
1878 while (true) {
1879 struct rb_node *prev = &vma->vm_rb;
1880 if (!rb_parent(prev))
1881 return -ENOMEM;
1882 vma = rb_entry(rb_parent(prev),
1883 struct vm_area_struct, vm_rb);
1884 if (prev == vma->vm_rb.rb_right) {
1885 gap_start = vma->vm_prev ?
1886 vma->vm_prev->vm_end : 0;
1887 goto check_current;
1888 }
1889 }
1890 }
1891
1892 found:
1893 /* We found a suitable gap. Clip it with the original high_limit. */
1894 if (gap_end > info->high_limit)
1895 gap_end = info->high_limit;
1896
1897 found_highest:
1898 /* Compute highest gap address at the desired alignment */
1899 gap_end -= info->length;
1900 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1901
1902 VM_BUG_ON(gap_end < info->low_limit);
1903 VM_BUG_ON(gap_end < gap_start);
1904 return gap_end;
1905 }
1906
1907 /* Get an address range which is currently unmapped.
1908 * For shmat() with addr=0.
1909 *
1910 * Ugly calling convention alert:
1911 * Return value with the low bits set means error value,
1912 * ie
1913 * if (ret & ~PAGE_MASK)
1914 * error = ret;
1915 *
1916 * This function "knows" that -ENOMEM has the bits set.
1917 */
1918 #ifndef HAVE_ARCH_UNMAPPED_AREA
1919 unsigned long
1920 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1921 unsigned long len, unsigned long pgoff, unsigned long flags)
1922 {
1923 struct mm_struct *mm = current->mm;
1924 struct vm_area_struct *vma;
1925 struct vm_unmapped_area_info info;
1926
1927 if (len > TASK_SIZE - mmap_min_addr)
1928 return -ENOMEM;
1929
1930 if (flags & MAP_FIXED)
1931 return addr;
1932
1933 if (addr) {
1934 addr = PAGE_ALIGN(addr);
1935 vma = find_vma(mm, addr);
1936 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1937 (!vma || addr + len <= vma->vm_start))
1938 return addr;
1939 }
1940
1941 info.flags = 0;
1942 info.length = len;
1943 info.low_limit = mm->mmap_base;
1944 info.high_limit = TASK_SIZE;
1945 info.align_mask = 0;
1946 return vm_unmapped_area(&info);
1947 }
1948 #endif
1949
1950 /*
1951 * This mmap-allocator allocates new areas top-down from below the
1952 * stack's low limit (the base):
1953 */
1954 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1955 unsigned long
1956 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1957 const unsigned long len, const unsigned long pgoff,
1958 const unsigned long flags)
1959 {
1960 struct vm_area_struct *vma;
1961 struct mm_struct *mm = current->mm;
1962 unsigned long addr = addr0;
1963 struct vm_unmapped_area_info info;
1964
1965 /* requested length too big for entire address space */
1966 if (len > TASK_SIZE - mmap_min_addr)
1967 return -ENOMEM;
1968
1969 if (flags & MAP_FIXED)
1970 return addr;
1971
1972 /* requesting a specific address */
1973 if (addr) {
1974 addr = PAGE_ALIGN(addr);
1975 vma = find_vma(mm, addr);
1976 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1977 (!vma || addr + len <= vma->vm_start))
1978 return addr;
1979 }
1980
1981 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1982 info.length = len;
1983 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1984 info.high_limit = mm->mmap_base;
1985 info.align_mask = 0;
1986 addr = vm_unmapped_area(&info);
1987
1988 /*
1989 * A failed mmap() very likely causes application failure,
1990 * so fall back to the bottom-up function here. This scenario
1991 * can happen with large stack limits and large mmap()
1992 * allocations.
1993 */
1994 if (offset_in_page(addr)) {
1995 VM_BUG_ON(addr != -ENOMEM);
1996 info.flags = 0;
1997 info.low_limit = TASK_UNMAPPED_BASE;
1998 info.high_limit = TASK_SIZE;
1999 addr = vm_unmapped_area(&info);
2000 }
2001
2002 return addr;
2003 }
2004 #endif
2005
2006 unsigned long
2007 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2008 unsigned long pgoff, unsigned long flags)
2009 {
2010 unsigned long (*get_area)(struct file *, unsigned long,
2011 unsigned long, unsigned long, unsigned long);
2012
2013 unsigned long error = arch_mmap_check(addr, len, flags);
2014 if (error)
2015 return error;
2016
2017 /* Careful about overflows.. */
2018 if (len > TASK_SIZE)
2019 return -ENOMEM;
2020
2021 get_area = current->mm->get_unmapped_area;
2022 if (file && file->f_op->get_unmapped_area)
2023 get_area = file->f_op->get_unmapped_area;
2024 addr = get_area(file, addr, len, pgoff, flags);
2025 if (IS_ERR_VALUE(addr))
2026 return addr;
2027
2028 if (addr > TASK_SIZE - len)
2029 return -ENOMEM;
2030 if (offset_in_page(addr))
2031 return -EINVAL;
2032
2033 addr = arch_rebalance_pgtables(addr, len);
2034 error = security_mmap_addr(addr);
2035 return error ? error : addr;
2036 }
2037
2038 EXPORT_SYMBOL(get_unmapped_area);
2039
2040 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2041 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2042 {
2043 struct rb_node *rb_node;
2044 struct vm_area_struct *vma;
2045
2046 /* Check the cache first. */
2047 vma = vmacache_find(mm, addr);
2048 if (likely(vma))
2049 return vma;
2050
2051 rb_node = mm->mm_rb.rb_node;
2052
2053 while (rb_node) {
2054 struct vm_area_struct *tmp;
2055
2056 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2057
2058 if (tmp->vm_end > addr) {
2059 vma = tmp;
2060 if (tmp->vm_start <= addr)
2061 break;
2062 rb_node = rb_node->rb_left;
2063 } else
2064 rb_node = rb_node->rb_right;
2065 }
2066
2067 if (vma)
2068 vmacache_update(addr, vma);
2069 return vma;
2070 }
2071
2072 EXPORT_SYMBOL(find_vma);
2073
2074 /*
2075 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2076 */
2077 struct vm_area_struct *
2078 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2079 struct vm_area_struct **pprev)
2080 {
2081 struct vm_area_struct *vma;
2082
2083 vma = find_vma(mm, addr);
2084 if (vma) {
2085 *pprev = vma->vm_prev;
2086 } else {
2087 struct rb_node *rb_node = mm->mm_rb.rb_node;
2088 *pprev = NULL;
2089 while (rb_node) {
2090 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2091 rb_node = rb_node->rb_right;
2092 }
2093 }
2094 return vma;
2095 }
2096
2097 /*
2098 * Verify that the stack growth is acceptable and
2099 * update accounting. This is shared with both the
2100 * grow-up and grow-down cases.
2101 */
2102 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2103 {
2104 struct mm_struct *mm = vma->vm_mm;
2105 struct rlimit *rlim = current->signal->rlim;
2106 unsigned long new_start, actual_size;
2107
2108 /* address space limit tests */
2109 if (!may_expand_vm(mm, grow))
2110 return -ENOMEM;
2111
2112 /* Stack limit test */
2113 actual_size = size;
2114 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2115 actual_size -= PAGE_SIZE;
2116 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2117 return -ENOMEM;
2118
2119 /* mlock limit tests */
2120 if (vma->vm_flags & VM_LOCKED) {
2121 unsigned long locked;
2122 unsigned long limit;
2123 locked = mm->locked_vm + grow;
2124 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2125 limit >>= PAGE_SHIFT;
2126 if (locked > limit && !capable(CAP_IPC_LOCK))
2127 return -ENOMEM;
2128 }
2129
2130 /* Check to ensure the stack will not grow into a hugetlb-only region */
2131 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2132 vma->vm_end - size;
2133 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2134 return -EFAULT;
2135
2136 /*
2137 * Overcommit.. This must be the final test, as it will
2138 * update security statistics.
2139 */
2140 if (security_vm_enough_memory_mm(mm, grow))
2141 return -ENOMEM;
2142
2143 return 0;
2144 }
2145
2146 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2147 /*
2148 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2149 * vma is the last one with address > vma->vm_end. Have to extend vma.
2150 */
2151 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2152 {
2153 struct mm_struct *mm = vma->vm_mm;
2154 int error = 0;
2155
2156 if (!(vma->vm_flags & VM_GROWSUP))
2157 return -EFAULT;
2158
2159 /* Guard against wrapping around to address 0. */
2160 if (address < PAGE_ALIGN(address+4))
2161 address = PAGE_ALIGN(address+4);
2162 else
2163 return -ENOMEM;
2164
2165 /* We must make sure the anon_vma is allocated. */
2166 if (unlikely(anon_vma_prepare(vma)))
2167 return -ENOMEM;
2168
2169 /*
2170 * vma->vm_start/vm_end cannot change under us because the caller
2171 * is required to hold the mmap_sem in read mode. We need the
2172 * anon_vma lock to serialize against concurrent expand_stacks.
2173 */
2174 anon_vma_lock_write(vma->anon_vma);
2175
2176 /* Somebody else might have raced and expanded it already */
2177 if (address > vma->vm_end) {
2178 unsigned long size, grow;
2179
2180 size = address - vma->vm_start;
2181 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2182
2183 error = -ENOMEM;
2184 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2185 error = acct_stack_growth(vma, size, grow);
2186 if (!error) {
2187 /*
2188 * vma_gap_update() doesn't support concurrent
2189 * updates, but we only hold a shared mmap_sem
2190 * lock here, so we need to protect against
2191 * concurrent vma expansions.
2192 * anon_vma_lock_write() doesn't help here, as
2193 * we don't guarantee that all growable vmas
2194 * in a mm share the same root anon vma.
2195 * So, we reuse mm->page_table_lock to guard
2196 * against concurrent vma expansions.
2197 */
2198 spin_lock(&mm->page_table_lock);
2199 if (vma->vm_flags & VM_LOCKED)
2200 mm->locked_vm += grow;
2201 vm_stat_account(mm, vma->vm_flags,
2202 vma->vm_file, grow);
2203 anon_vma_interval_tree_pre_update_vma(vma);
2204 vma->vm_end = address;
2205 anon_vma_interval_tree_post_update_vma(vma);
2206 if (vma->vm_next)
2207 vma_gap_update(vma->vm_next);
2208 else
2209 mm->highest_vm_end = address;
2210 spin_unlock(&mm->page_table_lock);
2211
2212 perf_event_mmap(vma);
2213 }
2214 }
2215 }
2216 anon_vma_unlock_write(vma->anon_vma);
2217 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2218 validate_mm(mm);
2219 return error;
2220 }
2221 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2222
2223 /*
2224 * vma is the first one with address < vma->vm_start. Have to extend vma.
2225 */
2226 int expand_downwards(struct vm_area_struct *vma,
2227 unsigned long address)
2228 {
2229 struct mm_struct *mm = vma->vm_mm;
2230 int error;
2231
2232 address &= PAGE_MASK;
2233 error = security_mmap_addr(address);
2234 if (error)
2235 return error;
2236
2237 /* We must make sure the anon_vma is allocated. */
2238 if (unlikely(anon_vma_prepare(vma)))
2239 return -ENOMEM;
2240
2241 /*
2242 * vma->vm_start/vm_end cannot change under us because the caller
2243 * is required to hold the mmap_sem in read mode. We need the
2244 * anon_vma lock to serialize against concurrent expand_stacks.
2245 */
2246 anon_vma_lock_write(vma->anon_vma);
2247
2248 /* Somebody else might have raced and expanded it already */
2249 if (address < vma->vm_start) {
2250 unsigned long size, grow;
2251
2252 size = vma->vm_end - address;
2253 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2254
2255 error = -ENOMEM;
2256 if (grow <= vma->vm_pgoff) {
2257 error = acct_stack_growth(vma, size, grow);
2258 if (!error) {
2259 /*
2260 * vma_gap_update() doesn't support concurrent
2261 * updates, but we only hold a shared mmap_sem
2262 * lock here, so we need to protect against
2263 * concurrent vma expansions.
2264 * anon_vma_lock_write() doesn't help here, as
2265 * we don't guarantee that all growable vmas
2266 * in a mm share the same root anon vma.
2267 * So, we reuse mm->page_table_lock to guard
2268 * against concurrent vma expansions.
2269 */
2270 spin_lock(&mm->page_table_lock);
2271 if (vma->vm_flags & VM_LOCKED)
2272 mm->locked_vm += grow;
2273 vm_stat_account(mm, vma->vm_flags,
2274 vma->vm_file, grow);
2275 anon_vma_interval_tree_pre_update_vma(vma);
2276 vma->vm_start = address;
2277 vma->vm_pgoff -= grow;
2278 anon_vma_interval_tree_post_update_vma(vma);
2279 vma_gap_update(vma);
2280 spin_unlock(&mm->page_table_lock);
2281
2282 perf_event_mmap(vma);
2283 }
2284 }
2285 }
2286 anon_vma_unlock_write(vma->anon_vma);
2287 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2288 validate_mm(mm);
2289 return error;
2290 }
2291
2292 /*
2293 * Note how expand_stack() refuses to expand the stack all the way to
2294 * abut the next virtual mapping, *unless* that mapping itself is also
2295 * a stack mapping. We want to leave room for a guard page, after all
2296 * (the guard page itself is not added here, that is done by the
2297 * actual page faulting logic)
2298 *
2299 * This matches the behavior of the guard page logic (see mm/memory.c:
2300 * check_stack_guard_page()), which only allows the guard page to be
2301 * removed under these circumstances.
2302 */
2303 #ifdef CONFIG_STACK_GROWSUP
2304 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2305 {
2306 struct vm_area_struct *next;
2307
2308 address &= PAGE_MASK;
2309 next = vma->vm_next;
2310 if (next && next->vm_start == address + PAGE_SIZE) {
2311 if (!(next->vm_flags & VM_GROWSUP))
2312 return -ENOMEM;
2313 }
2314 return expand_upwards(vma, address);
2315 }
2316
2317 struct vm_area_struct *
2318 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2319 {
2320 struct vm_area_struct *vma, *prev;
2321
2322 addr &= PAGE_MASK;
2323 vma = find_vma_prev(mm, addr, &prev);
2324 if (vma && (vma->vm_start <= addr))
2325 return vma;
2326 if (!prev || expand_stack(prev, addr))
2327 return NULL;
2328 if (prev->vm_flags & VM_LOCKED)
2329 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2330 return prev;
2331 }
2332 #else
2333 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 struct vm_area_struct *prev;
2336
2337 address &= PAGE_MASK;
2338 prev = vma->vm_prev;
2339 if (prev && prev->vm_end == address) {
2340 if (!(prev->vm_flags & VM_GROWSDOWN))
2341 return -ENOMEM;
2342 }
2343 return expand_downwards(vma, address);
2344 }
2345
2346 struct vm_area_struct *
2347 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2348 {
2349 struct vm_area_struct *vma;
2350 unsigned long start;
2351
2352 addr &= PAGE_MASK;
2353 vma = find_vma(mm, addr);
2354 if (!vma)
2355 return NULL;
2356 if (vma->vm_start <= addr)
2357 return vma;
2358 if (!(vma->vm_flags & VM_GROWSDOWN))
2359 return NULL;
2360 start = vma->vm_start;
2361 if (expand_stack(vma, addr))
2362 return NULL;
2363 if (vma->vm_flags & VM_LOCKED)
2364 populate_vma_page_range(vma, addr, start, NULL);
2365 return vma;
2366 }
2367 #endif
2368
2369 EXPORT_SYMBOL_GPL(find_extend_vma);
2370
2371 /*
2372 * Ok - we have the memory areas we should free on the vma list,
2373 * so release them, and do the vma updates.
2374 *
2375 * Called with the mm semaphore held.
2376 */
2377 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2378 {
2379 unsigned long nr_accounted = 0;
2380
2381 /* Update high watermark before we lower total_vm */
2382 update_hiwater_vm(mm);
2383 do {
2384 long nrpages = vma_pages(vma);
2385
2386 if (vma->vm_flags & VM_ACCOUNT)
2387 nr_accounted += nrpages;
2388 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2389 vma = remove_vma(vma);
2390 } while (vma);
2391 vm_unacct_memory(nr_accounted);
2392 validate_mm(mm);
2393 }
2394
2395 /*
2396 * Get rid of page table information in the indicated region.
2397 *
2398 * Called with the mm semaphore held.
2399 */
2400 static void unmap_region(struct mm_struct *mm,
2401 struct vm_area_struct *vma, struct vm_area_struct *prev,
2402 unsigned long start, unsigned long end)
2403 {
2404 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2405 struct mmu_gather tlb;
2406
2407 lru_add_drain();
2408 tlb_gather_mmu(&tlb, mm, start, end);
2409 update_hiwater_rss(mm);
2410 unmap_vmas(&tlb, vma, start, end);
2411 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2412 next ? next->vm_start : USER_PGTABLES_CEILING);
2413 tlb_finish_mmu(&tlb, start, end);
2414 }
2415
2416 /*
2417 * Create a list of vma's touched by the unmap, removing them from the mm's
2418 * vma list as we go..
2419 */
2420 static void
2421 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2422 struct vm_area_struct *prev, unsigned long end)
2423 {
2424 struct vm_area_struct **insertion_point;
2425 struct vm_area_struct *tail_vma = NULL;
2426
2427 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2428 vma->vm_prev = NULL;
2429 do {
2430 vma_rb_erase(vma, &mm->mm_rb);
2431 mm->map_count--;
2432 tail_vma = vma;
2433 vma = vma->vm_next;
2434 } while (vma && vma->vm_start < end);
2435 *insertion_point = vma;
2436 if (vma) {
2437 vma->vm_prev = prev;
2438 vma_gap_update(vma);
2439 } else
2440 mm->highest_vm_end = prev ? prev->vm_end : 0;
2441 tail_vma->vm_next = NULL;
2442
2443 /* Kill the cache */
2444 vmacache_invalidate(mm);
2445 }
2446
2447 /*
2448 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2449 * munmap path where it doesn't make sense to fail.
2450 */
2451 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2452 unsigned long addr, int new_below)
2453 {
2454 struct vm_area_struct *new;
2455 int err;
2456
2457 if (is_vm_hugetlb_page(vma) && (addr &
2458 ~(huge_page_mask(hstate_vma(vma)))))
2459 return -EINVAL;
2460
2461 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2462 if (!new)
2463 return -ENOMEM;
2464
2465 /* most fields are the same, copy all, and then fixup */
2466 *new = *vma;
2467
2468 INIT_LIST_HEAD(&new->anon_vma_chain);
2469
2470 if (new_below)
2471 new->vm_end = addr;
2472 else {
2473 new->vm_start = addr;
2474 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2475 }
2476
2477 err = vma_dup_policy(vma, new);
2478 if (err)
2479 goto out_free_vma;
2480
2481 err = anon_vma_clone(new, vma);
2482 if (err)
2483 goto out_free_mpol;
2484
2485 if (new->vm_file)
2486 get_file(new->vm_file);
2487
2488 if (new->vm_ops && new->vm_ops->open)
2489 new->vm_ops->open(new);
2490
2491 if (new_below)
2492 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2493 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2494 else
2495 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2496
2497 /* Success. */
2498 if (!err)
2499 return 0;
2500
2501 /* Clean everything up if vma_adjust failed. */
2502 if (new->vm_ops && new->vm_ops->close)
2503 new->vm_ops->close(new);
2504 if (new->vm_file)
2505 fput(new->vm_file);
2506 unlink_anon_vmas(new);
2507 out_free_mpol:
2508 mpol_put(vma_policy(new));
2509 out_free_vma:
2510 kmem_cache_free(vm_area_cachep, new);
2511 return err;
2512 }
2513
2514 /*
2515 * Split a vma into two pieces at address 'addr', a new vma is allocated
2516 * either for the first part or the tail.
2517 */
2518 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long addr, int new_below)
2520 {
2521 if (mm->map_count >= sysctl_max_map_count)
2522 return -ENOMEM;
2523
2524 return __split_vma(mm, vma, addr, new_below);
2525 }
2526
2527 /* Munmap is split into 2 main parts -- this part which finds
2528 * what needs doing, and the areas themselves, which do the
2529 * work. This now handles partial unmappings.
2530 * Jeremy Fitzhardinge <jeremy@goop.org>
2531 */
2532 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2533 {
2534 unsigned long end;
2535 struct vm_area_struct *vma, *prev, *last;
2536
2537 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2538 return -EINVAL;
2539
2540 len = PAGE_ALIGN(len);
2541 if (len == 0)
2542 return -EINVAL;
2543
2544 /* Find the first overlapping VMA */
2545 vma = find_vma(mm, start);
2546 if (!vma)
2547 return 0;
2548 prev = vma->vm_prev;
2549 /* we have start < vma->vm_end */
2550
2551 /* if it doesn't overlap, we have nothing.. */
2552 end = start + len;
2553 if (vma->vm_start >= end)
2554 return 0;
2555
2556 /*
2557 * If we need to split any vma, do it now to save pain later.
2558 *
2559 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2560 * unmapped vm_area_struct will remain in use: so lower split_vma
2561 * places tmp vma above, and higher split_vma places tmp vma below.
2562 */
2563 if (start > vma->vm_start) {
2564 int error;
2565
2566 /*
2567 * Make sure that map_count on return from munmap() will
2568 * not exceed its limit; but let map_count go just above
2569 * its limit temporarily, to help free resources as expected.
2570 */
2571 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2572 return -ENOMEM;
2573
2574 error = __split_vma(mm, vma, start, 0);
2575 if (error)
2576 return error;
2577 prev = vma;
2578 }
2579
2580 /* Does it split the last one? */
2581 last = find_vma(mm, end);
2582 if (last && end > last->vm_start) {
2583 int error = __split_vma(mm, last, end, 1);
2584 if (error)
2585 return error;
2586 }
2587 vma = prev ? prev->vm_next : mm->mmap;
2588
2589 /*
2590 * unlock any mlock()ed ranges before detaching vmas
2591 */
2592 if (mm->locked_vm) {
2593 struct vm_area_struct *tmp = vma;
2594 while (tmp && tmp->vm_start < end) {
2595 if (tmp->vm_flags & VM_LOCKED) {
2596 mm->locked_vm -= vma_pages(tmp);
2597 munlock_vma_pages_all(tmp);
2598 }
2599 tmp = tmp->vm_next;
2600 }
2601 }
2602
2603 /*
2604 * Remove the vma's, and unmap the actual pages
2605 */
2606 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2607 unmap_region(mm, vma, prev, start, end);
2608
2609 arch_unmap(mm, vma, start, end);
2610
2611 /* Fix up all other VM information */
2612 remove_vma_list(mm, vma);
2613
2614 return 0;
2615 }
2616
2617 int vm_munmap(unsigned long start, size_t len)
2618 {
2619 int ret;
2620 struct mm_struct *mm = current->mm;
2621
2622 down_write(&mm->mmap_sem);
2623 ret = do_munmap(mm, start, len);
2624 up_write(&mm->mmap_sem);
2625 return ret;
2626 }
2627 EXPORT_SYMBOL(vm_munmap);
2628
2629 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2630 {
2631 profile_munmap(addr);
2632 return vm_munmap(addr, len);
2633 }
2634
2635
2636 /*
2637 * Emulation of deprecated remap_file_pages() syscall.
2638 */
2639 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2640 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2641 {
2642
2643 struct mm_struct *mm = current->mm;
2644 struct vm_area_struct *vma;
2645 unsigned long populate = 0;
2646 unsigned long ret = -EINVAL;
2647 struct file *file;
2648
2649 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2650 "See Documentation/vm/remap_file_pages.txt.\n",
2651 current->comm, current->pid);
2652
2653 if (prot)
2654 return ret;
2655 start = start & PAGE_MASK;
2656 size = size & PAGE_MASK;
2657
2658 if (start + size <= start)
2659 return ret;
2660
2661 /* Does pgoff wrap? */
2662 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2663 return ret;
2664
2665 down_write(&mm->mmap_sem);
2666 vma = find_vma(mm, start);
2667
2668 if (!vma || !(vma->vm_flags & VM_SHARED))
2669 goto out;
2670
2671 if (start < vma->vm_start)
2672 goto out;
2673
2674 if (start + size > vma->vm_end) {
2675 struct vm_area_struct *next;
2676
2677 for (next = vma->vm_next; next; next = next->vm_next) {
2678 /* hole between vmas ? */
2679 if (next->vm_start != next->vm_prev->vm_end)
2680 goto out;
2681
2682 if (next->vm_file != vma->vm_file)
2683 goto out;
2684
2685 if (next->vm_flags != vma->vm_flags)
2686 goto out;
2687
2688 if (start + size <= next->vm_end)
2689 break;
2690 }
2691
2692 if (!next)
2693 goto out;
2694 }
2695
2696 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2697 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2698 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2699
2700 flags &= MAP_NONBLOCK;
2701 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2702 if (vma->vm_flags & VM_LOCKED) {
2703 struct vm_area_struct *tmp;
2704 flags |= MAP_LOCKED;
2705
2706 /* drop PG_Mlocked flag for over-mapped range */
2707 for (tmp = vma; tmp->vm_start >= start + size;
2708 tmp = tmp->vm_next) {
2709 munlock_vma_pages_range(tmp,
2710 max(tmp->vm_start, start),
2711 min(tmp->vm_end, start + size));
2712 }
2713 }
2714
2715 file = get_file(vma->vm_file);
2716 ret = do_mmap_pgoff(vma->vm_file, start, size,
2717 prot, flags, pgoff, &populate);
2718 fput(file);
2719 out:
2720 up_write(&mm->mmap_sem);
2721 if (populate)
2722 mm_populate(ret, populate);
2723 if (!IS_ERR_VALUE(ret))
2724 ret = 0;
2725 return ret;
2726 }
2727
2728 static inline void verify_mm_writelocked(struct mm_struct *mm)
2729 {
2730 #ifdef CONFIG_DEBUG_VM
2731 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2732 WARN_ON(1);
2733 up_read(&mm->mmap_sem);
2734 }
2735 #endif
2736 }
2737
2738 /*
2739 * this is really a simplified "do_mmap". it only handles
2740 * anonymous maps. eventually we may be able to do some
2741 * brk-specific accounting here.
2742 */
2743 static unsigned long do_brk(unsigned long addr, unsigned long len)
2744 {
2745 struct mm_struct *mm = current->mm;
2746 struct vm_area_struct *vma, *prev;
2747 unsigned long flags;
2748 struct rb_node **rb_link, *rb_parent;
2749 pgoff_t pgoff = addr >> PAGE_SHIFT;
2750 int error;
2751
2752 len = PAGE_ALIGN(len);
2753 if (!len)
2754 return addr;
2755
2756 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2757
2758 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2759 if (offset_in_page(error))
2760 return error;
2761
2762 error = mlock_future_check(mm, mm->def_flags, len);
2763 if (error)
2764 return error;
2765
2766 /*
2767 * mm->mmap_sem is required to protect against another thread
2768 * changing the mappings in case we sleep.
2769 */
2770 verify_mm_writelocked(mm);
2771
2772 /*
2773 * Clear old maps. this also does some error checking for us
2774 */
2775 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2776 &rb_parent)) {
2777 if (do_munmap(mm, addr, len))
2778 return -ENOMEM;
2779 }
2780
2781 /* Check against address space limits *after* clearing old maps... */
2782 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2783 return -ENOMEM;
2784
2785 if (mm->map_count > sysctl_max_map_count)
2786 return -ENOMEM;
2787
2788 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2789 return -ENOMEM;
2790
2791 /* Can we just expand an old private anonymous mapping? */
2792 vma = vma_merge(mm, prev, addr, addr + len, flags,
2793 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2794 if (vma)
2795 goto out;
2796
2797 /*
2798 * create a vma struct for an anonymous mapping
2799 */
2800 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2801 if (!vma) {
2802 vm_unacct_memory(len >> PAGE_SHIFT);
2803 return -ENOMEM;
2804 }
2805
2806 INIT_LIST_HEAD(&vma->anon_vma_chain);
2807 vma->vm_mm = mm;
2808 vma->vm_start = addr;
2809 vma->vm_end = addr + len;
2810 vma->vm_pgoff = pgoff;
2811 vma->vm_flags = flags;
2812 vma->vm_page_prot = vm_get_page_prot(flags);
2813 vma_link(mm, vma, prev, rb_link, rb_parent);
2814 out:
2815 perf_event_mmap(vma);
2816 mm->total_vm += len >> PAGE_SHIFT;
2817 if (flags & VM_LOCKED)
2818 mm->locked_vm += (len >> PAGE_SHIFT);
2819 vma->vm_flags |= VM_SOFTDIRTY;
2820 return addr;
2821 }
2822
2823 unsigned long vm_brk(unsigned long addr, unsigned long len)
2824 {
2825 struct mm_struct *mm = current->mm;
2826 unsigned long ret;
2827 bool populate;
2828
2829 down_write(&mm->mmap_sem);
2830 ret = do_brk(addr, len);
2831 populate = ((mm->def_flags & VM_LOCKED) != 0);
2832 up_write(&mm->mmap_sem);
2833 if (populate)
2834 mm_populate(addr, len);
2835 return ret;
2836 }
2837 EXPORT_SYMBOL(vm_brk);
2838
2839 /* Release all mmaps. */
2840 void exit_mmap(struct mm_struct *mm)
2841 {
2842 struct mmu_gather tlb;
2843 struct vm_area_struct *vma;
2844 unsigned long nr_accounted = 0;
2845
2846 /* mm's last user has gone, and its about to be pulled down */
2847 mmu_notifier_release(mm);
2848
2849 if (mm->locked_vm) {
2850 vma = mm->mmap;
2851 while (vma) {
2852 if (vma->vm_flags & VM_LOCKED)
2853 munlock_vma_pages_all(vma);
2854 vma = vma->vm_next;
2855 }
2856 }
2857
2858 arch_exit_mmap(mm);
2859
2860 vma = mm->mmap;
2861 if (!vma) /* Can happen if dup_mmap() received an OOM */
2862 return;
2863
2864 lru_add_drain();
2865 flush_cache_mm(mm);
2866 tlb_gather_mmu(&tlb, mm, 0, -1);
2867 /* update_hiwater_rss(mm) here? but nobody should be looking */
2868 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2869 unmap_vmas(&tlb, vma, 0, -1);
2870
2871 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2872 tlb_finish_mmu(&tlb, 0, -1);
2873
2874 /*
2875 * Walk the list again, actually closing and freeing it,
2876 * with preemption enabled, without holding any MM locks.
2877 */
2878 while (vma) {
2879 if (vma->vm_flags & VM_ACCOUNT)
2880 nr_accounted += vma_pages(vma);
2881 vma = remove_vma(vma);
2882 }
2883 vm_unacct_memory(nr_accounted);
2884 }
2885
2886 /* Insert vm structure into process list sorted by address
2887 * and into the inode's i_mmap tree. If vm_file is non-NULL
2888 * then i_mmap_rwsem is taken here.
2889 */
2890 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2891 {
2892 struct vm_area_struct *prev;
2893 struct rb_node **rb_link, *rb_parent;
2894
2895 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2896 &prev, &rb_link, &rb_parent))
2897 return -ENOMEM;
2898 if ((vma->vm_flags & VM_ACCOUNT) &&
2899 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2900 return -ENOMEM;
2901
2902 /*
2903 * The vm_pgoff of a purely anonymous vma should be irrelevant
2904 * until its first write fault, when page's anon_vma and index
2905 * are set. But now set the vm_pgoff it will almost certainly
2906 * end up with (unless mremap moves it elsewhere before that
2907 * first wfault), so /proc/pid/maps tells a consistent story.
2908 *
2909 * By setting it to reflect the virtual start address of the
2910 * vma, merges and splits can happen in a seamless way, just
2911 * using the existing file pgoff checks and manipulations.
2912 * Similarly in do_mmap_pgoff and in do_brk.
2913 */
2914 if (vma_is_anonymous(vma)) {
2915 BUG_ON(vma->anon_vma);
2916 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2917 }
2918
2919 vma_link(mm, vma, prev, rb_link, rb_parent);
2920 return 0;
2921 }
2922
2923 /*
2924 * Copy the vma structure to a new location in the same mm,
2925 * prior to moving page table entries, to effect an mremap move.
2926 */
2927 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2928 unsigned long addr, unsigned long len, pgoff_t pgoff,
2929 bool *need_rmap_locks)
2930 {
2931 struct vm_area_struct *vma = *vmap;
2932 unsigned long vma_start = vma->vm_start;
2933 struct mm_struct *mm = vma->vm_mm;
2934 struct vm_area_struct *new_vma, *prev;
2935 struct rb_node **rb_link, *rb_parent;
2936 bool faulted_in_anon_vma = true;
2937
2938 /*
2939 * If anonymous vma has not yet been faulted, update new pgoff
2940 * to match new location, to increase its chance of merging.
2941 */
2942 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2943 pgoff = addr >> PAGE_SHIFT;
2944 faulted_in_anon_vma = false;
2945 }
2946
2947 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2948 return NULL; /* should never get here */
2949 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2950 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2951 vma->vm_userfaultfd_ctx);
2952 if (new_vma) {
2953 /*
2954 * Source vma may have been merged into new_vma
2955 */
2956 if (unlikely(vma_start >= new_vma->vm_start &&
2957 vma_start < new_vma->vm_end)) {
2958 /*
2959 * The only way we can get a vma_merge with
2960 * self during an mremap is if the vma hasn't
2961 * been faulted in yet and we were allowed to
2962 * reset the dst vma->vm_pgoff to the
2963 * destination address of the mremap to allow
2964 * the merge to happen. mremap must change the
2965 * vm_pgoff linearity between src and dst vmas
2966 * (in turn preventing a vma_merge) to be
2967 * safe. It is only safe to keep the vm_pgoff
2968 * linear if there are no pages mapped yet.
2969 */
2970 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2971 *vmap = vma = new_vma;
2972 }
2973 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2974 } else {
2975 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2976 if (!new_vma)
2977 goto out;
2978 *new_vma = *vma;
2979 new_vma->vm_start = addr;
2980 new_vma->vm_end = addr + len;
2981 new_vma->vm_pgoff = pgoff;
2982 if (vma_dup_policy(vma, new_vma))
2983 goto out_free_vma;
2984 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2985 if (anon_vma_clone(new_vma, vma))
2986 goto out_free_mempol;
2987 if (new_vma->vm_file)
2988 get_file(new_vma->vm_file);
2989 if (new_vma->vm_ops && new_vma->vm_ops->open)
2990 new_vma->vm_ops->open(new_vma);
2991 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2992 *need_rmap_locks = false;
2993 }
2994 return new_vma;
2995
2996 out_free_mempol:
2997 mpol_put(vma_policy(new_vma));
2998 out_free_vma:
2999 kmem_cache_free(vm_area_cachep, new_vma);
3000 out:
3001 return NULL;
3002 }
3003
3004 /*
3005 * Return true if the calling process may expand its vm space by the passed
3006 * number of pages
3007 */
3008 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3009 {
3010 unsigned long cur = mm->total_vm; /* pages */
3011 unsigned long lim;
3012
3013 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3014
3015 if (cur + npages > lim)
3016 return 0;
3017 return 1;
3018 }
3019
3020 static int special_mapping_fault(struct vm_area_struct *vma,
3021 struct vm_fault *vmf);
3022
3023 /*
3024 * Having a close hook prevents vma merging regardless of flags.
3025 */
3026 static void special_mapping_close(struct vm_area_struct *vma)
3027 {
3028 }
3029
3030 static const char *special_mapping_name(struct vm_area_struct *vma)
3031 {
3032 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3033 }
3034
3035 static const struct vm_operations_struct special_mapping_vmops = {
3036 .close = special_mapping_close,
3037 .fault = special_mapping_fault,
3038 .name = special_mapping_name,
3039 };
3040
3041 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3042 .close = special_mapping_close,
3043 .fault = special_mapping_fault,
3044 };
3045
3046 static int special_mapping_fault(struct vm_area_struct *vma,
3047 struct vm_fault *vmf)
3048 {
3049 pgoff_t pgoff;
3050 struct page **pages;
3051
3052 if (vma->vm_ops == &legacy_special_mapping_vmops)
3053 pages = vma->vm_private_data;
3054 else
3055 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3056 pages;
3057
3058 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3059 pgoff--;
3060
3061 if (*pages) {
3062 struct page *page = *pages;
3063 get_page(page);
3064 vmf->page = page;
3065 return 0;
3066 }
3067
3068 return VM_FAULT_SIGBUS;
3069 }
3070
3071 static struct vm_area_struct *__install_special_mapping(
3072 struct mm_struct *mm,
3073 unsigned long addr, unsigned long len,
3074 unsigned long vm_flags, void *priv,
3075 const struct vm_operations_struct *ops)
3076 {
3077 int ret;
3078 struct vm_area_struct *vma;
3079
3080 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3081 if (unlikely(vma == NULL))
3082 return ERR_PTR(-ENOMEM);
3083
3084 INIT_LIST_HEAD(&vma->anon_vma_chain);
3085 vma->vm_mm = mm;
3086 vma->vm_start = addr;
3087 vma->vm_end = addr + len;
3088
3089 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3090 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3091
3092 vma->vm_ops = ops;
3093 vma->vm_private_data = priv;
3094
3095 ret = insert_vm_struct(mm, vma);
3096 if (ret)
3097 goto out;
3098
3099 mm->total_vm += len >> PAGE_SHIFT;
3100
3101 perf_event_mmap(vma);
3102
3103 return vma;
3104
3105 out:
3106 kmem_cache_free(vm_area_cachep, vma);
3107 return ERR_PTR(ret);
3108 }
3109
3110 /*
3111 * Called with mm->mmap_sem held for writing.
3112 * Insert a new vma covering the given region, with the given flags.
3113 * Its pages are supplied by the given array of struct page *.
3114 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3115 * The region past the last page supplied will always produce SIGBUS.
3116 * The array pointer and the pages it points to are assumed to stay alive
3117 * for as long as this mapping might exist.
3118 */
3119 struct vm_area_struct *_install_special_mapping(
3120 struct mm_struct *mm,
3121 unsigned long addr, unsigned long len,
3122 unsigned long vm_flags, const struct vm_special_mapping *spec)
3123 {
3124 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3125 &special_mapping_vmops);
3126 }
3127
3128 int install_special_mapping(struct mm_struct *mm,
3129 unsigned long addr, unsigned long len,
3130 unsigned long vm_flags, struct page **pages)
3131 {
3132 struct vm_area_struct *vma = __install_special_mapping(
3133 mm, addr, len, vm_flags, (void *)pages,
3134 &legacy_special_mapping_vmops);
3135
3136 return PTR_ERR_OR_ZERO(vma);
3137 }
3138
3139 static DEFINE_MUTEX(mm_all_locks_mutex);
3140
3141 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3142 {
3143 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3144 /*
3145 * The LSB of head.next can't change from under us
3146 * because we hold the mm_all_locks_mutex.
3147 */
3148 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3149 /*
3150 * We can safely modify head.next after taking the
3151 * anon_vma->root->rwsem. If some other vma in this mm shares
3152 * the same anon_vma we won't take it again.
3153 *
3154 * No need of atomic instructions here, head.next
3155 * can't change from under us thanks to the
3156 * anon_vma->root->rwsem.
3157 */
3158 if (__test_and_set_bit(0, (unsigned long *)
3159 &anon_vma->root->rb_root.rb_node))
3160 BUG();
3161 }
3162 }
3163
3164 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3165 {
3166 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3167 /*
3168 * AS_MM_ALL_LOCKS can't change from under us because
3169 * we hold the mm_all_locks_mutex.
3170 *
3171 * Operations on ->flags have to be atomic because
3172 * even if AS_MM_ALL_LOCKS is stable thanks to the
3173 * mm_all_locks_mutex, there may be other cpus
3174 * changing other bitflags in parallel to us.
3175 */
3176 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3177 BUG();
3178 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3179 }
3180 }
3181
3182 /*
3183 * This operation locks against the VM for all pte/vma/mm related
3184 * operations that could ever happen on a certain mm. This includes
3185 * vmtruncate, try_to_unmap, and all page faults.
3186 *
3187 * The caller must take the mmap_sem in write mode before calling
3188 * mm_take_all_locks(). The caller isn't allowed to release the
3189 * mmap_sem until mm_drop_all_locks() returns.
3190 *
3191 * mmap_sem in write mode is required in order to block all operations
3192 * that could modify pagetables and free pages without need of
3193 * altering the vma layout. It's also needed in write mode to avoid new
3194 * anon_vmas to be associated with existing vmas.
3195 *
3196 * A single task can't take more than one mm_take_all_locks() in a row
3197 * or it would deadlock.
3198 *
3199 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3200 * mapping->flags avoid to take the same lock twice, if more than one
3201 * vma in this mm is backed by the same anon_vma or address_space.
3202 *
3203 * We can take all the locks in random order because the VM code
3204 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3205 * takes more than one of them in a row. Secondly we're protected
3206 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3207 *
3208 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3209 * that may have to take thousand of locks.
3210 *
3211 * mm_take_all_locks() can fail if it's interrupted by signals.
3212 */
3213 int mm_take_all_locks(struct mm_struct *mm)
3214 {
3215 struct vm_area_struct *vma;
3216 struct anon_vma_chain *avc;
3217
3218 BUG_ON(down_read_trylock(&mm->mmap_sem));
3219
3220 mutex_lock(&mm_all_locks_mutex);
3221
3222 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3223 if (signal_pending(current))
3224 goto out_unlock;
3225 if (vma->vm_file && vma->vm_file->f_mapping)
3226 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3227 }
3228
3229 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3230 if (signal_pending(current))
3231 goto out_unlock;
3232 if (vma->anon_vma)
3233 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3234 vm_lock_anon_vma(mm, avc->anon_vma);
3235 }
3236
3237 return 0;
3238
3239 out_unlock:
3240 mm_drop_all_locks(mm);
3241 return -EINTR;
3242 }
3243
3244 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3245 {
3246 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3247 /*
3248 * The LSB of head.next can't change to 0 from under
3249 * us because we hold the mm_all_locks_mutex.
3250 *
3251 * We must however clear the bitflag before unlocking
3252 * the vma so the users using the anon_vma->rb_root will
3253 * never see our bitflag.
3254 *
3255 * No need of atomic instructions here, head.next
3256 * can't change from under us until we release the
3257 * anon_vma->root->rwsem.
3258 */
3259 if (!__test_and_clear_bit(0, (unsigned long *)
3260 &anon_vma->root->rb_root.rb_node))
3261 BUG();
3262 anon_vma_unlock_write(anon_vma);
3263 }
3264 }
3265
3266 static void vm_unlock_mapping(struct address_space *mapping)
3267 {
3268 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3269 /*
3270 * AS_MM_ALL_LOCKS can't change to 0 from under us
3271 * because we hold the mm_all_locks_mutex.
3272 */
3273 i_mmap_unlock_write(mapping);
3274 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3275 &mapping->flags))
3276 BUG();
3277 }
3278 }
3279
3280 /*
3281 * The mmap_sem cannot be released by the caller until
3282 * mm_drop_all_locks() returns.
3283 */
3284 void mm_drop_all_locks(struct mm_struct *mm)
3285 {
3286 struct vm_area_struct *vma;
3287 struct anon_vma_chain *avc;
3288
3289 BUG_ON(down_read_trylock(&mm->mmap_sem));
3290 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3291
3292 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3293 if (vma->anon_vma)
3294 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3295 vm_unlock_anon_vma(avc->anon_vma);
3296 if (vma->vm_file && vma->vm_file->f_mapping)
3297 vm_unlock_mapping(vma->vm_file->f_mapping);
3298 }
3299
3300 mutex_unlock(&mm_all_locks_mutex);
3301 }
3302
3303 /*
3304 * initialise the VMA slab
3305 */
3306 void __init mmap_init(void)
3307 {
3308 int ret;
3309
3310 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3311 VM_BUG_ON(ret);
3312 }
3313
3314 /*
3315 * Initialise sysctl_user_reserve_kbytes.
3316 *
3317 * This is intended to prevent a user from starting a single memory hogging
3318 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3319 * mode.
3320 *
3321 * The default value is min(3% of free memory, 128MB)
3322 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3323 */
3324 static int init_user_reserve(void)
3325 {
3326 unsigned long free_kbytes;
3327
3328 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3329
3330 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3331 return 0;
3332 }
3333 subsys_initcall(init_user_reserve);
3334
3335 /*
3336 * Initialise sysctl_admin_reserve_kbytes.
3337 *
3338 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3339 * to log in and kill a memory hogging process.
3340 *
3341 * Systems with more than 256MB will reserve 8MB, enough to recover
3342 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3343 * only reserve 3% of free pages by default.
3344 */
3345 static int init_admin_reserve(void)
3346 {
3347 unsigned long free_kbytes;
3348
3349 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3350
3351 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3352 return 0;
3353 }
3354 subsys_initcall(init_admin_reserve);
3355
3356 /*
3357 * Reinititalise user and admin reserves if memory is added or removed.
3358 *
3359 * The default user reserve max is 128MB, and the default max for the
3360 * admin reserve is 8MB. These are usually, but not always, enough to
3361 * enable recovery from a memory hogging process using login/sshd, a shell,
3362 * and tools like top. It may make sense to increase or even disable the
3363 * reserve depending on the existence of swap or variations in the recovery
3364 * tools. So, the admin may have changed them.
3365 *
3366 * If memory is added and the reserves have been eliminated or increased above
3367 * the default max, then we'll trust the admin.
3368 *
3369 * If memory is removed and there isn't enough free memory, then we
3370 * need to reset the reserves.
3371 *
3372 * Otherwise keep the reserve set by the admin.
3373 */
3374 static int reserve_mem_notifier(struct notifier_block *nb,
3375 unsigned long action, void *data)
3376 {
3377 unsigned long tmp, free_kbytes;
3378
3379 switch (action) {
3380 case MEM_ONLINE:
3381 /* Default max is 128MB. Leave alone if modified by operator. */
3382 tmp = sysctl_user_reserve_kbytes;
3383 if (0 < tmp && tmp < (1UL << 17))
3384 init_user_reserve();
3385
3386 /* Default max is 8MB. Leave alone if modified by operator. */
3387 tmp = sysctl_admin_reserve_kbytes;
3388 if (0 < tmp && tmp < (1UL << 13))
3389 init_admin_reserve();
3390
3391 break;
3392 case MEM_OFFLINE:
3393 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3394
3395 if (sysctl_user_reserve_kbytes > free_kbytes) {
3396 init_user_reserve();
3397 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3398 sysctl_user_reserve_kbytes);
3399 }
3400
3401 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3402 init_admin_reserve();
3403 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3404 sysctl_admin_reserve_kbytes);
3405 }
3406 break;
3407 default:
3408 break;
3409 }
3410 return NOTIFY_OK;
3411 }
3412
3413 static struct notifier_block reserve_mem_nb = {
3414 .notifier_call = reserve_mem_notifier,
3415 };
3416
3417 static int __meminit init_reserve_notifier(void)
3418 {
3419 if (register_hotmemory_notifier(&reserve_mem_nb))
3420 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3421
3422 return 0;
3423 }
3424 subsys_initcall(init_reserve_notifier);