take security_mmap_file() outside of ->mmap_sem
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
238 }
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256 /*
257 * CONFIG_COMPAT_BRK can still be overridden by setting
258 * randomize_va_space to 2, which will still cause mm->start_brk
259 * to be arbitrarily shifted
260 */
261 if (current->brk_randomized)
262 min_brk = mm->start_brk;
263 else
264 min_brk = mm->end_data;
265 #else
266 min_brk = mm->start_brk;
267 #endif
268 if (brk < min_brk)
269 goto out;
270
271 /*
272 * Check against rlimit here. If this check is done later after the test
273 * of oldbrk with newbrk then it can escape the test and let the data
274 * segment grow beyond its set limit the in case where the limit is
275 * not page aligned -Ram Gupta
276 */
277 rlim = rlimit(RLIMIT_DATA);
278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 (mm->end_data - mm->start_data) > rlim)
280 goto out;
281
282 newbrk = PAGE_ALIGN(brk);
283 oldbrk = PAGE_ALIGN(mm->brk);
284 if (oldbrk == newbrk)
285 goto set_brk;
286
287 /* Always allow shrinking brk. */
288 if (brk <= mm->brk) {
289 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 goto set_brk;
291 goto out;
292 }
293
294 /* Check against existing mmap mappings. */
295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 goto out;
297
298 /* Ok, looks good - let it rip. */
299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 goto out;
301 set_brk:
302 mm->brk = brk;
303 out:
304 retval = mm->brk;
305 up_write(&mm->mmap_sem);
306 return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312 int i = 0, j;
313 struct rb_node *nd, *pn = NULL;
314 unsigned long prev = 0, pend = 0;
315
316 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 struct vm_area_struct *vma;
318 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 if (vma->vm_start < prev)
320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 if (vma->vm_start < pend)
322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 if (vma->vm_start > vma->vm_end)
324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
329 }
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd)) {
332 j++;
333 }
334 if (i != j)
335 printk("backwards %d, forwards %d\n", j, i), i = 0;
336 return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341 int bug = 0;
342 int i = 0;
343 struct vm_area_struct *tmp = mm->mmap;
344 while (tmp) {
345 tmp = tmp->vm_next;
346 i++;
347 }
348 if (i != mm->map_count)
349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 i = browse_rb(&mm->mm_rb);
351 if (i != mm->map_count)
352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 struct rb_node ** rb_parent)
363 {
364 struct vm_area_struct * vma;
365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367 __rb_link = &mm->mm_rb.rb_node;
368 rb_prev = __rb_parent = NULL;
369 vma = NULL;
370
371 while (*__rb_link) {
372 struct vm_area_struct *vma_tmp;
373
374 __rb_parent = *__rb_link;
375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377 if (vma_tmp->vm_end > addr) {
378 vma = vma_tmp;
379 if (vma_tmp->vm_start <= addr)
380 break;
381 __rb_link = &__rb_parent->rb_left;
382 } else {
383 rb_prev = __rb_parent;
384 __rb_link = &__rb_parent->rb_right;
385 }
386 }
387
388 *pprev = NULL;
389 if (rb_prev)
390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 *rb_link = __rb_link;
392 *rb_parent = __rb_parent;
393 return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405 struct file *file;
406
407 file = vma->vm_file;
408 if (file) {
409 struct address_space *mapping = file->f_mapping;
410
411 if (vma->vm_flags & VM_DENYWRITE)
412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413 if (vma->vm_flags & VM_SHARED)
414 mapping->i_mmap_writable++;
415
416 flush_dcache_mmap_lock(mapping);
417 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419 else
420 vma_prio_tree_insert(vma, &mapping->i_mmap);
421 flush_dcache_mmap_unlock(mapping);
422 }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427 struct vm_area_struct *prev, struct rb_node **rb_link,
428 struct rb_node *rb_parent)
429 {
430 __vma_link_list(mm, vma, prev, rb_parent);
431 __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
437 {
438 struct address_space *mapping = NULL;
439
440 if (vma->vm_file)
441 mapping = vma->vm_file->f_mapping;
442
443 if (mapping)
444 mutex_lock(&mapping->i_mmap_mutex);
445
446 __vma_link(mm, vma, prev, rb_link, rb_parent);
447 __vma_link_file(vma);
448
449 if (mapping)
450 mutex_unlock(&mapping->i_mmap_mutex);
451
452 mm->map_count++;
453 validate_mm(mm);
454 }
455
456 /*
457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458 * mm's list and rbtree. It has already been inserted into the prio_tree.
459 */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462 struct vm_area_struct *__vma, *prev;
463 struct rb_node **rb_link, *rb_parent;
464
465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467 __vma_link(mm, vma, prev, rb_link, rb_parent);
468 mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473 struct vm_area_struct *prev)
474 {
475 struct vm_area_struct *next = vma->vm_next;
476
477 prev->vm_next = next;
478 if (next)
479 next->vm_prev = prev;
480 rb_erase(&vma->vm_rb, &mm->mm_rb);
481 if (mm->mmap_cache == vma)
482 mm->mmap_cache = prev;
483 }
484
485 /*
486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487 * is already present in an i_mmap tree without adjusting the tree.
488 * The following helper function should be used when such adjustments
489 * are necessary. The "insert" vma (if any) is to be inserted
490 * before we drop the necessary locks.
491 */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495 struct mm_struct *mm = vma->vm_mm;
496 struct vm_area_struct *next = vma->vm_next;
497 struct vm_area_struct *importer = NULL;
498 struct address_space *mapping = NULL;
499 struct prio_tree_root *root = NULL;
500 struct anon_vma *anon_vma = NULL;
501 struct file *file = vma->vm_file;
502 long adjust_next = 0;
503 int remove_next = 0;
504
505 if (next && !insert) {
506 struct vm_area_struct *exporter = NULL;
507
508 if (end >= next->vm_end) {
509 /*
510 * vma expands, overlapping all the next, and
511 * perhaps the one after too (mprotect case 6).
512 */
513 again: remove_next = 1 + (end > next->vm_end);
514 end = next->vm_end;
515 exporter = next;
516 importer = vma;
517 } else if (end > next->vm_start) {
518 /*
519 * vma expands, overlapping part of the next:
520 * mprotect case 5 shifting the boundary up.
521 */
522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523 exporter = next;
524 importer = vma;
525 } else if (end < vma->vm_end) {
526 /*
527 * vma shrinks, and !insert tells it's not
528 * split_vma inserting another: so it must be
529 * mprotect case 4 shifting the boundary down.
530 */
531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532 exporter = vma;
533 importer = next;
534 }
535
536 /*
537 * Easily overlooked: when mprotect shifts the boundary,
538 * make sure the expanding vma has anon_vma set if the
539 * shrinking vma had, to cover any anon pages imported.
540 */
541 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542 if (anon_vma_clone(importer, exporter))
543 return -ENOMEM;
544 importer->anon_vma = exporter->anon_vma;
545 }
546 }
547
548 if (file) {
549 mapping = file->f_mapping;
550 if (!(vma->vm_flags & VM_NONLINEAR)) {
551 root = &mapping->i_mmap;
552 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554 if (adjust_next)
555 uprobe_munmap(next, next->vm_start,
556 next->vm_end);
557 }
558
559 mutex_lock(&mapping->i_mmap_mutex);
560 if (insert) {
561 /*
562 * Put into prio_tree now, so instantiated pages
563 * are visible to arm/parisc __flush_dcache_page
564 * throughout; but we cannot insert into address
565 * space until vma start or end is updated.
566 */
567 __vma_link_file(insert);
568 }
569 }
570
571 vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573 /*
574 * When changing only vma->vm_end, we don't really need anon_vma
575 * lock. This is a fairly rare case by itself, but the anon_vma
576 * lock may be shared between many sibling processes. Skipping
577 * the lock for brk adjustments makes a difference sometimes.
578 */
579 if (vma->anon_vma && (importer || start != vma->vm_start)) {
580 anon_vma = vma->anon_vma;
581 anon_vma_lock(anon_vma);
582 }
583
584 if (root) {
585 flush_dcache_mmap_lock(mapping);
586 vma_prio_tree_remove(vma, root);
587 if (adjust_next)
588 vma_prio_tree_remove(next, root);
589 }
590
591 vma->vm_start = start;
592 vma->vm_end = end;
593 vma->vm_pgoff = pgoff;
594 if (adjust_next) {
595 next->vm_start += adjust_next << PAGE_SHIFT;
596 next->vm_pgoff += adjust_next;
597 }
598
599 if (root) {
600 if (adjust_next)
601 vma_prio_tree_insert(next, root);
602 vma_prio_tree_insert(vma, root);
603 flush_dcache_mmap_unlock(mapping);
604 }
605
606 if (remove_next) {
607 /*
608 * vma_merge has merged next into vma, and needs
609 * us to remove next before dropping the locks.
610 */
611 __vma_unlink(mm, next, vma);
612 if (file)
613 __remove_shared_vm_struct(next, file, mapping);
614 } else if (insert) {
615 /*
616 * split_vma has split insert from vma, and needs
617 * us to insert it before dropping the locks
618 * (it may either follow vma or precede it).
619 */
620 __insert_vm_struct(mm, insert);
621 }
622
623 if (anon_vma)
624 anon_vma_unlock(anon_vma);
625 if (mapping)
626 mutex_unlock(&mapping->i_mmap_mutex);
627
628 if (root) {
629 uprobe_mmap(vma);
630
631 if (adjust_next)
632 uprobe_mmap(next);
633 }
634
635 if (remove_next) {
636 if (file) {
637 uprobe_munmap(next, next->vm_start, next->vm_end);
638 fput(file);
639 if (next->vm_flags & VM_EXECUTABLE)
640 removed_exe_file_vma(mm);
641 }
642 if (next->anon_vma)
643 anon_vma_merge(vma, next);
644 mm->map_count--;
645 mpol_put(vma_policy(next));
646 kmem_cache_free(vm_area_cachep, next);
647 /*
648 * In mprotect's case 6 (see comments on vma_merge),
649 * we must remove another next too. It would clutter
650 * up the code too much to do both in one go.
651 */
652 if (remove_next == 2) {
653 next = vma->vm_next;
654 goto again;
655 }
656 }
657 if (insert && file)
658 uprobe_mmap(insert);
659
660 validate_mm(mm);
661
662 return 0;
663 }
664
665 /*
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
668 */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670 struct file *file, unsigned long vm_flags)
671 {
672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
674 return 0;
675 if (vma->vm_file != file)
676 return 0;
677 if (vma->vm_ops && vma->vm_ops->close)
678 return 0;
679 return 1;
680 }
681
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683 struct anon_vma *anon_vma2,
684 struct vm_area_struct *vma)
685 {
686 /*
687 * The list_is_singular() test is to avoid merging VMA cloned from
688 * parents. This can improve scalability caused by anon_vma lock.
689 */
690 if ((!anon_vma1 || !anon_vma2) && (!vma ||
691 list_is_singular(&vma->anon_vma_chain)))
692 return 1;
693 return anon_vma1 == anon_vma2;
694 }
695
696 /*
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
699 *
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 *
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
706 */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 if (vma->vm_pgoff == vm_pgoff)
714 return 1;
715 }
716 return 0;
717 }
718
719 /*
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
722 *
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730 if (is_mergeable_vma(vma, file, vm_flags) &&
731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
732 pgoff_t vm_pglen;
733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 return 1;
736 }
737 return 0;
738 }
739
740 /*
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
744 *
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
751 *
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 *
756 * AAAA AAAA AAAA AAAA
757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
758 * cannot merge might become might become might become
759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
761 * mremap move: PPPPNNNNNNNN 8
762 * AAAA
763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
764 * might become case 1 below case 2 below case 3 below
765 *
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 struct vm_area_struct *prev, unsigned long addr,
771 unsigned long end, unsigned long vm_flags,
772 struct anon_vma *anon_vma, struct file *file,
773 pgoff_t pgoff, struct mempolicy *policy)
774 {
775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 struct vm_area_struct *area, *next;
777 int err;
778
779 /*
780 * We later require that vma->vm_flags == vm_flags,
781 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 */
783 if (vm_flags & VM_SPECIAL)
784 return NULL;
785
786 if (prev)
787 next = prev->vm_next;
788 else
789 next = mm->mmap;
790 area = next;
791 if (next && next->vm_end == end) /* cases 6, 7, 8 */
792 next = next->vm_next;
793
794 /*
795 * Can it merge with the predecessor?
796 */
797 if (prev && prev->vm_end == addr &&
798 mpol_equal(vma_policy(prev), policy) &&
799 can_vma_merge_after(prev, vm_flags,
800 anon_vma, file, pgoff)) {
801 /*
802 * OK, it can. Can we now merge in the successor as well?
803 */
804 if (next && end == next->vm_start &&
805 mpol_equal(policy, vma_policy(next)) &&
806 can_vma_merge_before(next, vm_flags,
807 anon_vma, file, pgoff+pglen) &&
808 is_mergeable_anon_vma(prev->anon_vma,
809 next->anon_vma, NULL)) {
810 /* cases 1, 6 */
811 err = vma_adjust(prev, prev->vm_start,
812 next->vm_end, prev->vm_pgoff, NULL);
813 } else /* cases 2, 5, 7 */
814 err = vma_adjust(prev, prev->vm_start,
815 end, prev->vm_pgoff, NULL);
816 if (err)
817 return NULL;
818 khugepaged_enter_vma_merge(prev);
819 return prev;
820 }
821
822 /*
823 * Can this new request be merged in front of next?
824 */
825 if (next && end == next->vm_start &&
826 mpol_equal(policy, vma_policy(next)) &&
827 can_vma_merge_before(next, vm_flags,
828 anon_vma, file, pgoff+pglen)) {
829 if (prev && addr < prev->vm_end) /* case 4 */
830 err = vma_adjust(prev, prev->vm_start,
831 addr, prev->vm_pgoff, NULL);
832 else /* cases 3, 8 */
833 err = vma_adjust(area, addr, next->vm_end,
834 next->vm_pgoff - pglen, NULL);
835 if (err)
836 return NULL;
837 khugepaged_enter_vma_merge(area);
838 return area;
839 }
840
841 return NULL;
842 }
843
844 /*
845 * Rough compatbility check to quickly see if it's even worth looking
846 * at sharing an anon_vma.
847 *
848 * They need to have the same vm_file, and the flags can only differ
849 * in things that mprotect may change.
850 *
851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
852 * we can merge the two vma's. For example, we refuse to merge a vma if
853 * there is a vm_ops->close() function, because that indicates that the
854 * driver is doing some kind of reference counting. But that doesn't
855 * really matter for the anon_vma sharing case.
856 */
857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
858 {
859 return a->vm_end == b->vm_start &&
860 mpol_equal(vma_policy(a), vma_policy(b)) &&
861 a->vm_file == b->vm_file &&
862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
864 }
865
866 /*
867 * Do some basic sanity checking to see if we can re-use the anon_vma
868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
869 * the same as 'old', the other will be the new one that is trying
870 * to share the anon_vma.
871 *
872 * NOTE! This runs with mm_sem held for reading, so it is possible that
873 * the anon_vma of 'old' is concurrently in the process of being set up
874 * by another page fault trying to merge _that_. But that's ok: if it
875 * is being set up, that automatically means that it will be a singleton
876 * acceptable for merging, so we can do all of this optimistically. But
877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
878 *
879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
881 * is to return an anon_vma that is "complex" due to having gone through
882 * a fork).
883 *
884 * We also make sure that the two vma's are compatible (adjacent,
885 * and with the same memory policies). That's all stable, even with just
886 * a read lock on the mm_sem.
887 */
888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
889 {
890 if (anon_vma_compatible(a, b)) {
891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
892
893 if (anon_vma && list_is_singular(&old->anon_vma_chain))
894 return anon_vma;
895 }
896 return NULL;
897 }
898
899 /*
900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
901 * neighbouring vmas for a suitable anon_vma, before it goes off
902 * to allocate a new anon_vma. It checks because a repetitive
903 * sequence of mprotects and faults may otherwise lead to distinct
904 * anon_vmas being allocated, preventing vma merge in subsequent
905 * mprotect.
906 */
907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
908 {
909 struct anon_vma *anon_vma;
910 struct vm_area_struct *near;
911
912 near = vma->vm_next;
913 if (!near)
914 goto try_prev;
915
916 anon_vma = reusable_anon_vma(near, vma, near);
917 if (anon_vma)
918 return anon_vma;
919 try_prev:
920 near = vma->vm_prev;
921 if (!near)
922 goto none;
923
924 anon_vma = reusable_anon_vma(near, near, vma);
925 if (anon_vma)
926 return anon_vma;
927 none:
928 /*
929 * There's no absolute need to look only at touching neighbours:
930 * we could search further afield for "compatible" anon_vmas.
931 * But it would probably just be a waste of time searching,
932 * or lead to too many vmas hanging off the same anon_vma.
933 * We're trying to allow mprotect remerging later on,
934 * not trying to minimize memory used for anon_vmas.
935 */
936 return NULL;
937 }
938
939 #ifdef CONFIG_PROC_FS
940 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
941 struct file *file, long pages)
942 {
943 const unsigned long stack_flags
944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
945
946 if (file) {
947 mm->shared_vm += pages;
948 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
949 mm->exec_vm += pages;
950 } else if (flags & stack_flags)
951 mm->stack_vm += pages;
952 if (flags & (VM_RESERVED|VM_IO))
953 mm->reserved_vm += pages;
954 }
955 #endif /* CONFIG_PROC_FS */
956
957 /*
958 * If a hint addr is less than mmap_min_addr change hint to be as
959 * low as possible but still greater than mmap_min_addr
960 */
961 static inline unsigned long round_hint_to_min(unsigned long hint)
962 {
963 hint &= PAGE_MASK;
964 if (((void *)hint != NULL) &&
965 (hint < mmap_min_addr))
966 return PAGE_ALIGN(mmap_min_addr);
967 return hint;
968 }
969
970 /*
971 * The caller must hold down_write(&current->mm->mmap_sem).
972 */
973
974 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
975 unsigned long len, unsigned long prot,
976 unsigned long flags, unsigned long pgoff)
977 {
978 struct mm_struct * mm = current->mm;
979 struct inode *inode;
980 vm_flags_t vm_flags;
981 int error;
982
983 /*
984 * Does the application expect PROT_READ to imply PROT_EXEC?
985 *
986 * (the exception is when the underlying filesystem is noexec
987 * mounted, in which case we dont add PROT_EXEC.)
988 */
989 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
990 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
991 prot |= PROT_EXEC;
992
993 if (!len)
994 return -EINVAL;
995
996 if (!(flags & MAP_FIXED))
997 addr = round_hint_to_min(addr);
998
999 /* Careful about overflows.. */
1000 len = PAGE_ALIGN(len);
1001 if (!len)
1002 return -ENOMEM;
1003
1004 /* offset overflow? */
1005 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1006 return -EOVERFLOW;
1007
1008 /* Too many mappings? */
1009 if (mm->map_count > sysctl_max_map_count)
1010 return -ENOMEM;
1011
1012 /* Obtain the address to map to. we verify (or select) it and ensure
1013 * that it represents a valid section of the address space.
1014 */
1015 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1016 if (addr & ~PAGE_MASK)
1017 return addr;
1018
1019 /* Do simple checking here so the lower-level routines won't have
1020 * to. we assume access permissions have been handled by the open
1021 * of the memory object, so we don't do any here.
1022 */
1023 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1024 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1025
1026 if (flags & MAP_LOCKED)
1027 if (!can_do_mlock())
1028 return -EPERM;
1029
1030 /* mlock MCL_FUTURE? */
1031 if (vm_flags & VM_LOCKED) {
1032 unsigned long locked, lock_limit;
1033 locked = len >> PAGE_SHIFT;
1034 locked += mm->locked_vm;
1035 lock_limit = rlimit(RLIMIT_MEMLOCK);
1036 lock_limit >>= PAGE_SHIFT;
1037 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1038 return -EAGAIN;
1039 }
1040
1041 inode = file ? file->f_path.dentry->d_inode : NULL;
1042
1043 if (file) {
1044 switch (flags & MAP_TYPE) {
1045 case MAP_SHARED:
1046 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1047 return -EACCES;
1048
1049 /*
1050 * Make sure we don't allow writing to an append-only
1051 * file..
1052 */
1053 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1054 return -EACCES;
1055
1056 /*
1057 * Make sure there are no mandatory locks on the file.
1058 */
1059 if (locks_verify_locked(inode))
1060 return -EAGAIN;
1061
1062 vm_flags |= VM_SHARED | VM_MAYSHARE;
1063 if (!(file->f_mode & FMODE_WRITE))
1064 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1065
1066 /* fall through */
1067 case MAP_PRIVATE:
1068 if (!(file->f_mode & FMODE_READ))
1069 return -EACCES;
1070 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1071 if (vm_flags & VM_EXEC)
1072 return -EPERM;
1073 vm_flags &= ~VM_MAYEXEC;
1074 }
1075
1076 if (!file->f_op || !file->f_op->mmap)
1077 return -ENODEV;
1078 break;
1079
1080 default:
1081 return -EINVAL;
1082 }
1083 } else {
1084 switch (flags & MAP_TYPE) {
1085 case MAP_SHARED:
1086 /*
1087 * Ignore pgoff.
1088 */
1089 pgoff = 0;
1090 vm_flags |= VM_SHARED | VM_MAYSHARE;
1091 break;
1092 case MAP_PRIVATE:
1093 /*
1094 * Set pgoff according to addr for anon_vma.
1095 */
1096 pgoff = addr >> PAGE_SHIFT;
1097 break;
1098 default:
1099 return -EINVAL;
1100 }
1101 }
1102
1103 error = security_mmap_addr(addr);
1104 if (error)
1105 return error;
1106
1107 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1108 }
1109
1110 unsigned long do_mmap(struct file *file, unsigned long addr,
1111 unsigned long len, unsigned long prot,
1112 unsigned long flag, unsigned long offset)
1113 {
1114 if (unlikely(offset + PAGE_ALIGN(len) < offset))
1115 return -EINVAL;
1116 if (unlikely(offset & ~PAGE_MASK))
1117 return -EINVAL;
1118 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1119 }
1120
1121 unsigned long vm_mmap(struct file *file, unsigned long addr,
1122 unsigned long len, unsigned long prot,
1123 unsigned long flag, unsigned long offset)
1124 {
1125 unsigned long ret;
1126 struct mm_struct *mm = current->mm;
1127
1128 ret = security_mmap_file(file, prot, flag);
1129 if (!ret) {
1130 down_write(&mm->mmap_sem);
1131 ret = do_mmap(file, addr, len, prot, flag, offset);
1132 up_write(&mm->mmap_sem);
1133 }
1134 return ret;
1135 }
1136 EXPORT_SYMBOL(vm_mmap);
1137
1138 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1139 unsigned long, prot, unsigned long, flags,
1140 unsigned long, fd, unsigned long, pgoff)
1141 {
1142 struct file *file = NULL;
1143 unsigned long retval = -EBADF;
1144
1145 if (!(flags & MAP_ANONYMOUS)) {
1146 audit_mmap_fd(fd, flags);
1147 if (unlikely(flags & MAP_HUGETLB))
1148 return -EINVAL;
1149 file = fget(fd);
1150 if (!file)
1151 goto out;
1152 } else if (flags & MAP_HUGETLB) {
1153 struct user_struct *user = NULL;
1154 /*
1155 * VM_NORESERVE is used because the reservations will be
1156 * taken when vm_ops->mmap() is called
1157 * A dummy user value is used because we are not locking
1158 * memory so no accounting is necessary
1159 */
1160 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1161 VM_NORESERVE, &user,
1162 HUGETLB_ANONHUGE_INODE);
1163 if (IS_ERR(file))
1164 return PTR_ERR(file);
1165 }
1166
1167 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1168
1169 retval = security_mmap_file(file, prot, flags);
1170 if (!retval) {
1171 down_write(&current->mm->mmap_sem);
1172 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1173 up_write(&current->mm->mmap_sem);
1174 }
1175
1176 if (file)
1177 fput(file);
1178 out:
1179 return retval;
1180 }
1181
1182 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1183 struct mmap_arg_struct {
1184 unsigned long addr;
1185 unsigned long len;
1186 unsigned long prot;
1187 unsigned long flags;
1188 unsigned long fd;
1189 unsigned long offset;
1190 };
1191
1192 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1193 {
1194 struct mmap_arg_struct a;
1195
1196 if (copy_from_user(&a, arg, sizeof(a)))
1197 return -EFAULT;
1198 if (a.offset & ~PAGE_MASK)
1199 return -EINVAL;
1200
1201 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1202 a.offset >> PAGE_SHIFT);
1203 }
1204 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1205
1206 /*
1207 * Some shared mappigns will want the pages marked read-only
1208 * to track write events. If so, we'll downgrade vm_page_prot
1209 * to the private version (using protection_map[] without the
1210 * VM_SHARED bit).
1211 */
1212 int vma_wants_writenotify(struct vm_area_struct *vma)
1213 {
1214 vm_flags_t vm_flags = vma->vm_flags;
1215
1216 /* If it was private or non-writable, the write bit is already clear */
1217 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1218 return 0;
1219
1220 /* The backer wishes to know when pages are first written to? */
1221 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1222 return 1;
1223
1224 /* The open routine did something to the protections already? */
1225 if (pgprot_val(vma->vm_page_prot) !=
1226 pgprot_val(vm_get_page_prot(vm_flags)))
1227 return 0;
1228
1229 /* Specialty mapping? */
1230 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1231 return 0;
1232
1233 /* Can the mapping track the dirty pages? */
1234 return vma->vm_file && vma->vm_file->f_mapping &&
1235 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1236 }
1237
1238 /*
1239 * We account for memory if it's a private writeable mapping,
1240 * not hugepages and VM_NORESERVE wasn't set.
1241 */
1242 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1243 {
1244 /*
1245 * hugetlb has its own accounting separate from the core VM
1246 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1247 */
1248 if (file && is_file_hugepages(file))
1249 return 0;
1250
1251 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1252 }
1253
1254 unsigned long mmap_region(struct file *file, unsigned long addr,
1255 unsigned long len, unsigned long flags,
1256 vm_flags_t vm_flags, unsigned long pgoff)
1257 {
1258 struct mm_struct *mm = current->mm;
1259 struct vm_area_struct *vma, *prev;
1260 int correct_wcount = 0;
1261 int error;
1262 struct rb_node **rb_link, *rb_parent;
1263 unsigned long charged = 0;
1264 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1265
1266 /* Clear old maps */
1267 error = -ENOMEM;
1268 munmap_back:
1269 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1270 if (vma && vma->vm_start < addr + len) {
1271 if (do_munmap(mm, addr, len))
1272 return -ENOMEM;
1273 goto munmap_back;
1274 }
1275
1276 /* Check against address space limit. */
1277 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1278 return -ENOMEM;
1279
1280 /*
1281 * Set 'VM_NORESERVE' if we should not account for the
1282 * memory use of this mapping.
1283 */
1284 if ((flags & MAP_NORESERVE)) {
1285 /* We honor MAP_NORESERVE if allowed to overcommit */
1286 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1287 vm_flags |= VM_NORESERVE;
1288
1289 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1290 if (file && is_file_hugepages(file))
1291 vm_flags |= VM_NORESERVE;
1292 }
1293
1294 /*
1295 * Private writable mapping: check memory availability
1296 */
1297 if (accountable_mapping(file, vm_flags)) {
1298 charged = len >> PAGE_SHIFT;
1299 if (security_vm_enough_memory_mm(mm, charged))
1300 return -ENOMEM;
1301 vm_flags |= VM_ACCOUNT;
1302 }
1303
1304 /*
1305 * Can we just expand an old mapping?
1306 */
1307 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1308 if (vma)
1309 goto out;
1310
1311 /*
1312 * Determine the object being mapped and call the appropriate
1313 * specific mapper. the address has already been validated, but
1314 * not unmapped, but the maps are removed from the list.
1315 */
1316 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1317 if (!vma) {
1318 error = -ENOMEM;
1319 goto unacct_error;
1320 }
1321
1322 vma->vm_mm = mm;
1323 vma->vm_start = addr;
1324 vma->vm_end = addr + len;
1325 vma->vm_flags = vm_flags;
1326 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1327 vma->vm_pgoff = pgoff;
1328 INIT_LIST_HEAD(&vma->anon_vma_chain);
1329
1330 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1331
1332 if (file) {
1333 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334 goto free_vma;
1335 if (vm_flags & VM_DENYWRITE) {
1336 error = deny_write_access(file);
1337 if (error)
1338 goto free_vma;
1339 correct_wcount = 1;
1340 }
1341 vma->vm_file = file;
1342 get_file(file);
1343 error = file->f_op->mmap(file, vma);
1344 if (error)
1345 goto unmap_and_free_vma;
1346 if (vm_flags & VM_EXECUTABLE)
1347 added_exe_file_vma(mm);
1348
1349 /* Can addr have changed??
1350 *
1351 * Answer: Yes, several device drivers can do it in their
1352 * f_op->mmap method. -DaveM
1353 */
1354 addr = vma->vm_start;
1355 pgoff = vma->vm_pgoff;
1356 vm_flags = vma->vm_flags;
1357 } else if (vm_flags & VM_SHARED) {
1358 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1359 goto free_vma;
1360 error = shmem_zero_setup(vma);
1361 if (error)
1362 goto free_vma;
1363 }
1364
1365 if (vma_wants_writenotify(vma)) {
1366 pgprot_t pprot = vma->vm_page_prot;
1367
1368 /* Can vma->vm_page_prot have changed??
1369 *
1370 * Answer: Yes, drivers may have changed it in their
1371 * f_op->mmap method.
1372 *
1373 * Ensures that vmas marked as uncached stay that way.
1374 */
1375 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1376 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1377 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1378 }
1379
1380 vma_link(mm, vma, prev, rb_link, rb_parent);
1381 file = vma->vm_file;
1382
1383 /* Once vma denies write, undo our temporary denial count */
1384 if (correct_wcount)
1385 atomic_inc(&inode->i_writecount);
1386 out:
1387 perf_event_mmap(vma);
1388
1389 mm->total_vm += len >> PAGE_SHIFT;
1390 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1391 if (vm_flags & VM_LOCKED) {
1392 if (!mlock_vma_pages_range(vma, addr, addr + len))
1393 mm->locked_vm += (len >> PAGE_SHIFT);
1394 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1395 make_pages_present(addr, addr + len);
1396
1397 if (file && uprobe_mmap(vma))
1398 /* matching probes but cannot insert */
1399 goto unmap_and_free_vma;
1400
1401 return addr;
1402
1403 unmap_and_free_vma:
1404 if (correct_wcount)
1405 atomic_inc(&inode->i_writecount);
1406 vma->vm_file = NULL;
1407 fput(file);
1408
1409 /* Undo any partial mapping done by a device driver. */
1410 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1411 charged = 0;
1412 free_vma:
1413 kmem_cache_free(vm_area_cachep, vma);
1414 unacct_error:
1415 if (charged)
1416 vm_unacct_memory(charged);
1417 return error;
1418 }
1419
1420 /* Get an address range which is currently unmapped.
1421 * For shmat() with addr=0.
1422 *
1423 * Ugly calling convention alert:
1424 * Return value with the low bits set means error value,
1425 * ie
1426 * if (ret & ~PAGE_MASK)
1427 * error = ret;
1428 *
1429 * This function "knows" that -ENOMEM has the bits set.
1430 */
1431 #ifndef HAVE_ARCH_UNMAPPED_AREA
1432 unsigned long
1433 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1434 unsigned long len, unsigned long pgoff, unsigned long flags)
1435 {
1436 struct mm_struct *mm = current->mm;
1437 struct vm_area_struct *vma;
1438 unsigned long start_addr;
1439
1440 if (len > TASK_SIZE)
1441 return -ENOMEM;
1442
1443 if (flags & MAP_FIXED)
1444 return addr;
1445
1446 if (addr) {
1447 addr = PAGE_ALIGN(addr);
1448 vma = find_vma(mm, addr);
1449 if (TASK_SIZE - len >= addr &&
1450 (!vma || addr + len <= vma->vm_start))
1451 return addr;
1452 }
1453 if (len > mm->cached_hole_size) {
1454 start_addr = addr = mm->free_area_cache;
1455 } else {
1456 start_addr = addr = TASK_UNMAPPED_BASE;
1457 mm->cached_hole_size = 0;
1458 }
1459
1460 full_search:
1461 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1462 /* At this point: (!vma || addr < vma->vm_end). */
1463 if (TASK_SIZE - len < addr) {
1464 /*
1465 * Start a new search - just in case we missed
1466 * some holes.
1467 */
1468 if (start_addr != TASK_UNMAPPED_BASE) {
1469 addr = TASK_UNMAPPED_BASE;
1470 start_addr = addr;
1471 mm->cached_hole_size = 0;
1472 goto full_search;
1473 }
1474 return -ENOMEM;
1475 }
1476 if (!vma || addr + len <= vma->vm_start) {
1477 /*
1478 * Remember the place where we stopped the search:
1479 */
1480 mm->free_area_cache = addr + len;
1481 return addr;
1482 }
1483 if (addr + mm->cached_hole_size < vma->vm_start)
1484 mm->cached_hole_size = vma->vm_start - addr;
1485 addr = vma->vm_end;
1486 }
1487 }
1488 #endif
1489
1490 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1491 {
1492 /*
1493 * Is this a new hole at the lowest possible address?
1494 */
1495 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1496 mm->free_area_cache = addr;
1497 }
1498
1499 /*
1500 * This mmap-allocator allocates new areas top-down from below the
1501 * stack's low limit (the base):
1502 */
1503 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1504 unsigned long
1505 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1506 const unsigned long len, const unsigned long pgoff,
1507 const unsigned long flags)
1508 {
1509 struct vm_area_struct *vma;
1510 struct mm_struct *mm = current->mm;
1511 unsigned long addr = addr0, start_addr;
1512
1513 /* requested length too big for entire address space */
1514 if (len > TASK_SIZE)
1515 return -ENOMEM;
1516
1517 if (flags & MAP_FIXED)
1518 return addr;
1519
1520 /* requesting a specific address */
1521 if (addr) {
1522 addr = PAGE_ALIGN(addr);
1523 vma = find_vma(mm, addr);
1524 if (TASK_SIZE - len >= addr &&
1525 (!vma || addr + len <= vma->vm_start))
1526 return addr;
1527 }
1528
1529 /* check if free_area_cache is useful for us */
1530 if (len <= mm->cached_hole_size) {
1531 mm->cached_hole_size = 0;
1532 mm->free_area_cache = mm->mmap_base;
1533 }
1534
1535 try_again:
1536 /* either no address requested or can't fit in requested address hole */
1537 start_addr = addr = mm->free_area_cache;
1538
1539 if (addr < len)
1540 goto fail;
1541
1542 addr -= len;
1543 do {
1544 /*
1545 * Lookup failure means no vma is above this address,
1546 * else if new region fits below vma->vm_start,
1547 * return with success:
1548 */
1549 vma = find_vma(mm, addr);
1550 if (!vma || addr+len <= vma->vm_start)
1551 /* remember the address as a hint for next time */
1552 return (mm->free_area_cache = addr);
1553
1554 /* remember the largest hole we saw so far */
1555 if (addr + mm->cached_hole_size < vma->vm_start)
1556 mm->cached_hole_size = vma->vm_start - addr;
1557
1558 /* try just below the current vma->vm_start */
1559 addr = vma->vm_start-len;
1560 } while (len < vma->vm_start);
1561
1562 fail:
1563 /*
1564 * if hint left us with no space for the requested
1565 * mapping then try again:
1566 *
1567 * Note: this is different with the case of bottomup
1568 * which does the fully line-search, but we use find_vma
1569 * here that causes some holes skipped.
1570 */
1571 if (start_addr != mm->mmap_base) {
1572 mm->free_area_cache = mm->mmap_base;
1573 mm->cached_hole_size = 0;
1574 goto try_again;
1575 }
1576
1577 /*
1578 * A failed mmap() very likely causes application failure,
1579 * so fall back to the bottom-up function here. This scenario
1580 * can happen with large stack limits and large mmap()
1581 * allocations.
1582 */
1583 mm->cached_hole_size = ~0UL;
1584 mm->free_area_cache = TASK_UNMAPPED_BASE;
1585 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1586 /*
1587 * Restore the topdown base:
1588 */
1589 mm->free_area_cache = mm->mmap_base;
1590 mm->cached_hole_size = ~0UL;
1591
1592 return addr;
1593 }
1594 #endif
1595
1596 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1597 {
1598 /*
1599 * Is this a new hole at the highest possible address?
1600 */
1601 if (addr > mm->free_area_cache)
1602 mm->free_area_cache = addr;
1603
1604 /* dont allow allocations above current base */
1605 if (mm->free_area_cache > mm->mmap_base)
1606 mm->free_area_cache = mm->mmap_base;
1607 }
1608
1609 unsigned long
1610 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1611 unsigned long pgoff, unsigned long flags)
1612 {
1613 unsigned long (*get_area)(struct file *, unsigned long,
1614 unsigned long, unsigned long, unsigned long);
1615
1616 unsigned long error = arch_mmap_check(addr, len, flags);
1617 if (error)
1618 return error;
1619
1620 /* Careful about overflows.. */
1621 if (len > TASK_SIZE)
1622 return -ENOMEM;
1623
1624 get_area = current->mm->get_unmapped_area;
1625 if (file && file->f_op && file->f_op->get_unmapped_area)
1626 get_area = file->f_op->get_unmapped_area;
1627 addr = get_area(file, addr, len, pgoff, flags);
1628 if (IS_ERR_VALUE(addr))
1629 return addr;
1630
1631 if (addr > TASK_SIZE - len)
1632 return -ENOMEM;
1633 if (addr & ~PAGE_MASK)
1634 return -EINVAL;
1635
1636 return arch_rebalance_pgtables(addr, len);
1637 }
1638
1639 EXPORT_SYMBOL(get_unmapped_area);
1640
1641 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1642 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1643 {
1644 struct vm_area_struct *vma = NULL;
1645
1646 if (mm) {
1647 /* Check the cache first. */
1648 /* (Cache hit rate is typically around 35%.) */
1649 vma = mm->mmap_cache;
1650 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1651 struct rb_node * rb_node;
1652
1653 rb_node = mm->mm_rb.rb_node;
1654 vma = NULL;
1655
1656 while (rb_node) {
1657 struct vm_area_struct * vma_tmp;
1658
1659 vma_tmp = rb_entry(rb_node,
1660 struct vm_area_struct, vm_rb);
1661
1662 if (vma_tmp->vm_end > addr) {
1663 vma = vma_tmp;
1664 if (vma_tmp->vm_start <= addr)
1665 break;
1666 rb_node = rb_node->rb_left;
1667 } else
1668 rb_node = rb_node->rb_right;
1669 }
1670 if (vma)
1671 mm->mmap_cache = vma;
1672 }
1673 }
1674 return vma;
1675 }
1676
1677 EXPORT_SYMBOL(find_vma);
1678
1679 /*
1680 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1681 */
1682 struct vm_area_struct *
1683 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1684 struct vm_area_struct **pprev)
1685 {
1686 struct vm_area_struct *vma;
1687
1688 vma = find_vma(mm, addr);
1689 if (vma) {
1690 *pprev = vma->vm_prev;
1691 } else {
1692 struct rb_node *rb_node = mm->mm_rb.rb_node;
1693 *pprev = NULL;
1694 while (rb_node) {
1695 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1696 rb_node = rb_node->rb_right;
1697 }
1698 }
1699 return vma;
1700 }
1701
1702 /*
1703 * Verify that the stack growth is acceptable and
1704 * update accounting. This is shared with both the
1705 * grow-up and grow-down cases.
1706 */
1707 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1708 {
1709 struct mm_struct *mm = vma->vm_mm;
1710 struct rlimit *rlim = current->signal->rlim;
1711 unsigned long new_start;
1712
1713 /* address space limit tests */
1714 if (!may_expand_vm(mm, grow))
1715 return -ENOMEM;
1716
1717 /* Stack limit test */
1718 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1719 return -ENOMEM;
1720
1721 /* mlock limit tests */
1722 if (vma->vm_flags & VM_LOCKED) {
1723 unsigned long locked;
1724 unsigned long limit;
1725 locked = mm->locked_vm + grow;
1726 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1727 limit >>= PAGE_SHIFT;
1728 if (locked > limit && !capable(CAP_IPC_LOCK))
1729 return -ENOMEM;
1730 }
1731
1732 /* Check to ensure the stack will not grow into a hugetlb-only region */
1733 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1734 vma->vm_end - size;
1735 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1736 return -EFAULT;
1737
1738 /*
1739 * Overcommit.. This must be the final test, as it will
1740 * update security statistics.
1741 */
1742 if (security_vm_enough_memory_mm(mm, grow))
1743 return -ENOMEM;
1744
1745 /* Ok, everything looks good - let it rip */
1746 mm->total_vm += grow;
1747 if (vma->vm_flags & VM_LOCKED)
1748 mm->locked_vm += grow;
1749 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1750 return 0;
1751 }
1752
1753 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1754 /*
1755 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1756 * vma is the last one with address > vma->vm_end. Have to extend vma.
1757 */
1758 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1759 {
1760 int error;
1761
1762 if (!(vma->vm_flags & VM_GROWSUP))
1763 return -EFAULT;
1764
1765 /*
1766 * We must make sure the anon_vma is allocated
1767 * so that the anon_vma locking is not a noop.
1768 */
1769 if (unlikely(anon_vma_prepare(vma)))
1770 return -ENOMEM;
1771 vma_lock_anon_vma(vma);
1772
1773 /*
1774 * vma->vm_start/vm_end cannot change under us because the caller
1775 * is required to hold the mmap_sem in read mode. We need the
1776 * anon_vma lock to serialize against concurrent expand_stacks.
1777 * Also guard against wrapping around to address 0.
1778 */
1779 if (address < PAGE_ALIGN(address+4))
1780 address = PAGE_ALIGN(address+4);
1781 else {
1782 vma_unlock_anon_vma(vma);
1783 return -ENOMEM;
1784 }
1785 error = 0;
1786
1787 /* Somebody else might have raced and expanded it already */
1788 if (address > vma->vm_end) {
1789 unsigned long size, grow;
1790
1791 size = address - vma->vm_start;
1792 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1793
1794 error = -ENOMEM;
1795 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1796 error = acct_stack_growth(vma, size, grow);
1797 if (!error) {
1798 vma->vm_end = address;
1799 perf_event_mmap(vma);
1800 }
1801 }
1802 }
1803 vma_unlock_anon_vma(vma);
1804 khugepaged_enter_vma_merge(vma);
1805 return error;
1806 }
1807 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1808
1809 /*
1810 * vma is the first one with address < vma->vm_start. Have to extend vma.
1811 */
1812 int expand_downwards(struct vm_area_struct *vma,
1813 unsigned long address)
1814 {
1815 int error;
1816
1817 /*
1818 * We must make sure the anon_vma is allocated
1819 * so that the anon_vma locking is not a noop.
1820 */
1821 if (unlikely(anon_vma_prepare(vma)))
1822 return -ENOMEM;
1823
1824 address &= PAGE_MASK;
1825 error = security_mmap_addr(address);
1826 if (error)
1827 return error;
1828
1829 vma_lock_anon_vma(vma);
1830
1831 /*
1832 * vma->vm_start/vm_end cannot change under us because the caller
1833 * is required to hold the mmap_sem in read mode. We need the
1834 * anon_vma lock to serialize against concurrent expand_stacks.
1835 */
1836
1837 /* Somebody else might have raced and expanded it already */
1838 if (address < vma->vm_start) {
1839 unsigned long size, grow;
1840
1841 size = vma->vm_end - address;
1842 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1843
1844 error = -ENOMEM;
1845 if (grow <= vma->vm_pgoff) {
1846 error = acct_stack_growth(vma, size, grow);
1847 if (!error) {
1848 vma->vm_start = address;
1849 vma->vm_pgoff -= grow;
1850 perf_event_mmap(vma);
1851 }
1852 }
1853 }
1854 vma_unlock_anon_vma(vma);
1855 khugepaged_enter_vma_merge(vma);
1856 return error;
1857 }
1858
1859 #ifdef CONFIG_STACK_GROWSUP
1860 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1861 {
1862 return expand_upwards(vma, address);
1863 }
1864
1865 struct vm_area_struct *
1866 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1867 {
1868 struct vm_area_struct *vma, *prev;
1869
1870 addr &= PAGE_MASK;
1871 vma = find_vma_prev(mm, addr, &prev);
1872 if (vma && (vma->vm_start <= addr))
1873 return vma;
1874 if (!prev || expand_stack(prev, addr))
1875 return NULL;
1876 if (prev->vm_flags & VM_LOCKED) {
1877 mlock_vma_pages_range(prev, addr, prev->vm_end);
1878 }
1879 return prev;
1880 }
1881 #else
1882 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1883 {
1884 return expand_downwards(vma, address);
1885 }
1886
1887 struct vm_area_struct *
1888 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1889 {
1890 struct vm_area_struct * vma;
1891 unsigned long start;
1892
1893 addr &= PAGE_MASK;
1894 vma = find_vma(mm,addr);
1895 if (!vma)
1896 return NULL;
1897 if (vma->vm_start <= addr)
1898 return vma;
1899 if (!(vma->vm_flags & VM_GROWSDOWN))
1900 return NULL;
1901 start = vma->vm_start;
1902 if (expand_stack(vma, addr))
1903 return NULL;
1904 if (vma->vm_flags & VM_LOCKED) {
1905 mlock_vma_pages_range(vma, addr, start);
1906 }
1907 return vma;
1908 }
1909 #endif
1910
1911 /*
1912 * Ok - we have the memory areas we should free on the vma list,
1913 * so release them, and do the vma updates.
1914 *
1915 * Called with the mm semaphore held.
1916 */
1917 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1918 {
1919 unsigned long nr_accounted = 0;
1920
1921 /* Update high watermark before we lower total_vm */
1922 update_hiwater_vm(mm);
1923 do {
1924 long nrpages = vma_pages(vma);
1925
1926 if (vma->vm_flags & VM_ACCOUNT)
1927 nr_accounted += nrpages;
1928 mm->total_vm -= nrpages;
1929 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1930 vma = remove_vma(vma);
1931 } while (vma);
1932 vm_unacct_memory(nr_accounted);
1933 validate_mm(mm);
1934 }
1935
1936 /*
1937 * Get rid of page table information in the indicated region.
1938 *
1939 * Called with the mm semaphore held.
1940 */
1941 static void unmap_region(struct mm_struct *mm,
1942 struct vm_area_struct *vma, struct vm_area_struct *prev,
1943 unsigned long start, unsigned long end)
1944 {
1945 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1946 struct mmu_gather tlb;
1947
1948 lru_add_drain();
1949 tlb_gather_mmu(&tlb, mm, 0);
1950 update_hiwater_rss(mm);
1951 unmap_vmas(&tlb, vma, start, end);
1952 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1953 next ? next->vm_start : 0);
1954 tlb_finish_mmu(&tlb, start, end);
1955 }
1956
1957 /*
1958 * Create a list of vma's touched by the unmap, removing them from the mm's
1959 * vma list as we go..
1960 */
1961 static void
1962 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1963 struct vm_area_struct *prev, unsigned long end)
1964 {
1965 struct vm_area_struct **insertion_point;
1966 struct vm_area_struct *tail_vma = NULL;
1967 unsigned long addr;
1968
1969 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1970 vma->vm_prev = NULL;
1971 do {
1972 rb_erase(&vma->vm_rb, &mm->mm_rb);
1973 mm->map_count--;
1974 tail_vma = vma;
1975 vma = vma->vm_next;
1976 } while (vma && vma->vm_start < end);
1977 *insertion_point = vma;
1978 if (vma)
1979 vma->vm_prev = prev;
1980 tail_vma->vm_next = NULL;
1981 if (mm->unmap_area == arch_unmap_area)
1982 addr = prev ? prev->vm_end : mm->mmap_base;
1983 else
1984 addr = vma ? vma->vm_start : mm->mmap_base;
1985 mm->unmap_area(mm, addr);
1986 mm->mmap_cache = NULL; /* Kill the cache. */
1987 }
1988
1989 /*
1990 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1991 * munmap path where it doesn't make sense to fail.
1992 */
1993 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1994 unsigned long addr, int new_below)
1995 {
1996 struct mempolicy *pol;
1997 struct vm_area_struct *new;
1998 int err = -ENOMEM;
1999
2000 if (is_vm_hugetlb_page(vma) && (addr &
2001 ~(huge_page_mask(hstate_vma(vma)))))
2002 return -EINVAL;
2003
2004 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2005 if (!new)
2006 goto out_err;
2007
2008 /* most fields are the same, copy all, and then fixup */
2009 *new = *vma;
2010
2011 INIT_LIST_HEAD(&new->anon_vma_chain);
2012
2013 if (new_below)
2014 new->vm_end = addr;
2015 else {
2016 new->vm_start = addr;
2017 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2018 }
2019
2020 pol = mpol_dup(vma_policy(vma));
2021 if (IS_ERR(pol)) {
2022 err = PTR_ERR(pol);
2023 goto out_free_vma;
2024 }
2025 vma_set_policy(new, pol);
2026
2027 if (anon_vma_clone(new, vma))
2028 goto out_free_mpol;
2029
2030 if (new->vm_file) {
2031 get_file(new->vm_file);
2032 if (vma->vm_flags & VM_EXECUTABLE)
2033 added_exe_file_vma(mm);
2034 }
2035
2036 if (new->vm_ops && new->vm_ops->open)
2037 new->vm_ops->open(new);
2038
2039 if (new_below)
2040 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2041 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2042 else
2043 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2044
2045 /* Success. */
2046 if (!err)
2047 return 0;
2048
2049 /* Clean everything up if vma_adjust failed. */
2050 if (new->vm_ops && new->vm_ops->close)
2051 new->vm_ops->close(new);
2052 if (new->vm_file) {
2053 if (vma->vm_flags & VM_EXECUTABLE)
2054 removed_exe_file_vma(mm);
2055 fput(new->vm_file);
2056 }
2057 unlink_anon_vmas(new);
2058 out_free_mpol:
2059 mpol_put(pol);
2060 out_free_vma:
2061 kmem_cache_free(vm_area_cachep, new);
2062 out_err:
2063 return err;
2064 }
2065
2066 /*
2067 * Split a vma into two pieces at address 'addr', a new vma is allocated
2068 * either for the first part or the tail.
2069 */
2070 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2071 unsigned long addr, int new_below)
2072 {
2073 if (mm->map_count >= sysctl_max_map_count)
2074 return -ENOMEM;
2075
2076 return __split_vma(mm, vma, addr, new_below);
2077 }
2078
2079 /* Munmap is split into 2 main parts -- this part which finds
2080 * what needs doing, and the areas themselves, which do the
2081 * work. This now handles partial unmappings.
2082 * Jeremy Fitzhardinge <jeremy@goop.org>
2083 */
2084 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2085 {
2086 unsigned long end;
2087 struct vm_area_struct *vma, *prev, *last;
2088
2089 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2090 return -EINVAL;
2091
2092 if ((len = PAGE_ALIGN(len)) == 0)
2093 return -EINVAL;
2094
2095 /* Find the first overlapping VMA */
2096 vma = find_vma(mm, start);
2097 if (!vma)
2098 return 0;
2099 prev = vma->vm_prev;
2100 /* we have start < vma->vm_end */
2101
2102 /* if it doesn't overlap, we have nothing.. */
2103 end = start + len;
2104 if (vma->vm_start >= end)
2105 return 0;
2106
2107 /*
2108 * If we need to split any vma, do it now to save pain later.
2109 *
2110 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2111 * unmapped vm_area_struct will remain in use: so lower split_vma
2112 * places tmp vma above, and higher split_vma places tmp vma below.
2113 */
2114 if (start > vma->vm_start) {
2115 int error;
2116
2117 /*
2118 * Make sure that map_count on return from munmap() will
2119 * not exceed its limit; but let map_count go just above
2120 * its limit temporarily, to help free resources as expected.
2121 */
2122 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2123 return -ENOMEM;
2124
2125 error = __split_vma(mm, vma, start, 0);
2126 if (error)
2127 return error;
2128 prev = vma;
2129 }
2130
2131 /* Does it split the last one? */
2132 last = find_vma(mm, end);
2133 if (last && end > last->vm_start) {
2134 int error = __split_vma(mm, last, end, 1);
2135 if (error)
2136 return error;
2137 }
2138 vma = prev? prev->vm_next: mm->mmap;
2139
2140 /*
2141 * unlock any mlock()ed ranges before detaching vmas
2142 */
2143 if (mm->locked_vm) {
2144 struct vm_area_struct *tmp = vma;
2145 while (tmp && tmp->vm_start < end) {
2146 if (tmp->vm_flags & VM_LOCKED) {
2147 mm->locked_vm -= vma_pages(tmp);
2148 munlock_vma_pages_all(tmp);
2149 }
2150 tmp = tmp->vm_next;
2151 }
2152 }
2153
2154 /*
2155 * Remove the vma's, and unmap the actual pages
2156 */
2157 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2158 unmap_region(mm, vma, prev, start, end);
2159
2160 /* Fix up all other VM information */
2161 remove_vma_list(mm, vma);
2162
2163 return 0;
2164 }
2165 EXPORT_SYMBOL(do_munmap);
2166
2167 int vm_munmap(unsigned long start, size_t len)
2168 {
2169 int ret;
2170 struct mm_struct *mm = current->mm;
2171
2172 down_write(&mm->mmap_sem);
2173 ret = do_munmap(mm, start, len);
2174 up_write(&mm->mmap_sem);
2175 return ret;
2176 }
2177 EXPORT_SYMBOL(vm_munmap);
2178
2179 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2180 {
2181 profile_munmap(addr);
2182 return vm_munmap(addr, len);
2183 }
2184
2185 static inline void verify_mm_writelocked(struct mm_struct *mm)
2186 {
2187 #ifdef CONFIG_DEBUG_VM
2188 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2189 WARN_ON(1);
2190 up_read(&mm->mmap_sem);
2191 }
2192 #endif
2193 }
2194
2195 /*
2196 * this is really a simplified "do_mmap". it only handles
2197 * anonymous maps. eventually we may be able to do some
2198 * brk-specific accounting here.
2199 */
2200 static unsigned long do_brk(unsigned long addr, unsigned long len)
2201 {
2202 struct mm_struct * mm = current->mm;
2203 struct vm_area_struct * vma, * prev;
2204 unsigned long flags;
2205 struct rb_node ** rb_link, * rb_parent;
2206 pgoff_t pgoff = addr >> PAGE_SHIFT;
2207 int error;
2208
2209 len = PAGE_ALIGN(len);
2210 if (!len)
2211 return addr;
2212
2213 error = security_mmap_addr(addr);
2214 if (error)
2215 return error;
2216
2217 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2218
2219 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2220 if (error & ~PAGE_MASK)
2221 return error;
2222
2223 /*
2224 * mlock MCL_FUTURE?
2225 */
2226 if (mm->def_flags & VM_LOCKED) {
2227 unsigned long locked, lock_limit;
2228 locked = len >> PAGE_SHIFT;
2229 locked += mm->locked_vm;
2230 lock_limit = rlimit(RLIMIT_MEMLOCK);
2231 lock_limit >>= PAGE_SHIFT;
2232 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2233 return -EAGAIN;
2234 }
2235
2236 /*
2237 * mm->mmap_sem is required to protect against another thread
2238 * changing the mappings in case we sleep.
2239 */
2240 verify_mm_writelocked(mm);
2241
2242 /*
2243 * Clear old maps. this also does some error checking for us
2244 */
2245 munmap_back:
2246 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2247 if (vma && vma->vm_start < addr + len) {
2248 if (do_munmap(mm, addr, len))
2249 return -ENOMEM;
2250 goto munmap_back;
2251 }
2252
2253 /* Check against address space limits *after* clearing old maps... */
2254 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2255 return -ENOMEM;
2256
2257 if (mm->map_count > sysctl_max_map_count)
2258 return -ENOMEM;
2259
2260 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2261 return -ENOMEM;
2262
2263 /* Can we just expand an old private anonymous mapping? */
2264 vma = vma_merge(mm, prev, addr, addr + len, flags,
2265 NULL, NULL, pgoff, NULL);
2266 if (vma)
2267 goto out;
2268
2269 /*
2270 * create a vma struct for an anonymous mapping
2271 */
2272 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2273 if (!vma) {
2274 vm_unacct_memory(len >> PAGE_SHIFT);
2275 return -ENOMEM;
2276 }
2277
2278 INIT_LIST_HEAD(&vma->anon_vma_chain);
2279 vma->vm_mm = mm;
2280 vma->vm_start = addr;
2281 vma->vm_end = addr + len;
2282 vma->vm_pgoff = pgoff;
2283 vma->vm_flags = flags;
2284 vma->vm_page_prot = vm_get_page_prot(flags);
2285 vma_link(mm, vma, prev, rb_link, rb_parent);
2286 out:
2287 perf_event_mmap(vma);
2288 mm->total_vm += len >> PAGE_SHIFT;
2289 if (flags & VM_LOCKED) {
2290 if (!mlock_vma_pages_range(vma, addr, addr + len))
2291 mm->locked_vm += (len >> PAGE_SHIFT);
2292 }
2293 return addr;
2294 }
2295
2296 unsigned long vm_brk(unsigned long addr, unsigned long len)
2297 {
2298 struct mm_struct *mm = current->mm;
2299 unsigned long ret;
2300
2301 down_write(&mm->mmap_sem);
2302 ret = do_brk(addr, len);
2303 up_write(&mm->mmap_sem);
2304 return ret;
2305 }
2306 EXPORT_SYMBOL(vm_brk);
2307
2308 /* Release all mmaps. */
2309 void exit_mmap(struct mm_struct *mm)
2310 {
2311 struct mmu_gather tlb;
2312 struct vm_area_struct *vma;
2313 unsigned long nr_accounted = 0;
2314
2315 /* mm's last user has gone, and its about to be pulled down */
2316 mmu_notifier_release(mm);
2317
2318 if (mm->locked_vm) {
2319 vma = mm->mmap;
2320 while (vma) {
2321 if (vma->vm_flags & VM_LOCKED)
2322 munlock_vma_pages_all(vma);
2323 vma = vma->vm_next;
2324 }
2325 }
2326
2327 arch_exit_mmap(mm);
2328
2329 vma = mm->mmap;
2330 if (!vma) /* Can happen if dup_mmap() received an OOM */
2331 return;
2332
2333 lru_add_drain();
2334 flush_cache_mm(mm);
2335 tlb_gather_mmu(&tlb, mm, 1);
2336 /* update_hiwater_rss(mm) here? but nobody should be looking */
2337 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2338 unmap_vmas(&tlb, vma, 0, -1);
2339
2340 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2341 tlb_finish_mmu(&tlb, 0, -1);
2342
2343 /*
2344 * Walk the list again, actually closing and freeing it,
2345 * with preemption enabled, without holding any MM locks.
2346 */
2347 while (vma) {
2348 if (vma->vm_flags & VM_ACCOUNT)
2349 nr_accounted += vma_pages(vma);
2350 vma = remove_vma(vma);
2351 }
2352 vm_unacct_memory(nr_accounted);
2353
2354 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2355 }
2356
2357 /* Insert vm structure into process list sorted by address
2358 * and into the inode's i_mmap tree. If vm_file is non-NULL
2359 * then i_mmap_mutex is taken here.
2360 */
2361 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2362 {
2363 struct vm_area_struct * __vma, * prev;
2364 struct rb_node ** rb_link, * rb_parent;
2365
2366 /*
2367 * The vm_pgoff of a purely anonymous vma should be irrelevant
2368 * until its first write fault, when page's anon_vma and index
2369 * are set. But now set the vm_pgoff it will almost certainly
2370 * end up with (unless mremap moves it elsewhere before that
2371 * first wfault), so /proc/pid/maps tells a consistent story.
2372 *
2373 * By setting it to reflect the virtual start address of the
2374 * vma, merges and splits can happen in a seamless way, just
2375 * using the existing file pgoff checks and manipulations.
2376 * Similarly in do_mmap_pgoff and in do_brk.
2377 */
2378 if (!vma->vm_file) {
2379 BUG_ON(vma->anon_vma);
2380 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2381 }
2382 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2383 if (__vma && __vma->vm_start < vma->vm_end)
2384 return -ENOMEM;
2385 if ((vma->vm_flags & VM_ACCOUNT) &&
2386 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2387 return -ENOMEM;
2388
2389 if (vma->vm_file && uprobe_mmap(vma))
2390 return -EINVAL;
2391
2392 vma_link(mm, vma, prev, rb_link, rb_parent);
2393 return 0;
2394 }
2395
2396 /*
2397 * Copy the vma structure to a new location in the same mm,
2398 * prior to moving page table entries, to effect an mremap move.
2399 */
2400 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2401 unsigned long addr, unsigned long len, pgoff_t pgoff)
2402 {
2403 struct vm_area_struct *vma = *vmap;
2404 unsigned long vma_start = vma->vm_start;
2405 struct mm_struct *mm = vma->vm_mm;
2406 struct vm_area_struct *new_vma, *prev;
2407 struct rb_node **rb_link, *rb_parent;
2408 struct mempolicy *pol;
2409 bool faulted_in_anon_vma = true;
2410
2411 /*
2412 * If anonymous vma has not yet been faulted, update new pgoff
2413 * to match new location, to increase its chance of merging.
2414 */
2415 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2416 pgoff = addr >> PAGE_SHIFT;
2417 faulted_in_anon_vma = false;
2418 }
2419
2420 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2421 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2422 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2423 if (new_vma) {
2424 /*
2425 * Source vma may have been merged into new_vma
2426 */
2427 if (unlikely(vma_start >= new_vma->vm_start &&
2428 vma_start < new_vma->vm_end)) {
2429 /*
2430 * The only way we can get a vma_merge with
2431 * self during an mremap is if the vma hasn't
2432 * been faulted in yet and we were allowed to
2433 * reset the dst vma->vm_pgoff to the
2434 * destination address of the mremap to allow
2435 * the merge to happen. mremap must change the
2436 * vm_pgoff linearity between src and dst vmas
2437 * (in turn preventing a vma_merge) to be
2438 * safe. It is only safe to keep the vm_pgoff
2439 * linear if there are no pages mapped yet.
2440 */
2441 VM_BUG_ON(faulted_in_anon_vma);
2442 *vmap = new_vma;
2443 } else
2444 anon_vma_moveto_tail(new_vma);
2445 } else {
2446 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2447 if (new_vma) {
2448 *new_vma = *vma;
2449 pol = mpol_dup(vma_policy(vma));
2450 if (IS_ERR(pol))
2451 goto out_free_vma;
2452 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2453 if (anon_vma_clone(new_vma, vma))
2454 goto out_free_mempol;
2455 vma_set_policy(new_vma, pol);
2456 new_vma->vm_start = addr;
2457 new_vma->vm_end = addr + len;
2458 new_vma->vm_pgoff = pgoff;
2459 if (new_vma->vm_file) {
2460 get_file(new_vma->vm_file);
2461
2462 if (uprobe_mmap(new_vma))
2463 goto out_free_mempol;
2464
2465 if (vma->vm_flags & VM_EXECUTABLE)
2466 added_exe_file_vma(mm);
2467 }
2468 if (new_vma->vm_ops && new_vma->vm_ops->open)
2469 new_vma->vm_ops->open(new_vma);
2470 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2471 }
2472 }
2473 return new_vma;
2474
2475 out_free_mempol:
2476 mpol_put(pol);
2477 out_free_vma:
2478 kmem_cache_free(vm_area_cachep, new_vma);
2479 return NULL;
2480 }
2481
2482 /*
2483 * Return true if the calling process may expand its vm space by the passed
2484 * number of pages
2485 */
2486 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2487 {
2488 unsigned long cur = mm->total_vm; /* pages */
2489 unsigned long lim;
2490
2491 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2492
2493 if (cur + npages > lim)
2494 return 0;
2495 return 1;
2496 }
2497
2498
2499 static int special_mapping_fault(struct vm_area_struct *vma,
2500 struct vm_fault *vmf)
2501 {
2502 pgoff_t pgoff;
2503 struct page **pages;
2504
2505 /*
2506 * special mappings have no vm_file, and in that case, the mm
2507 * uses vm_pgoff internally. So we have to subtract it from here.
2508 * We are allowed to do this because we are the mm; do not copy
2509 * this code into drivers!
2510 */
2511 pgoff = vmf->pgoff - vma->vm_pgoff;
2512
2513 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2514 pgoff--;
2515
2516 if (*pages) {
2517 struct page *page = *pages;
2518 get_page(page);
2519 vmf->page = page;
2520 return 0;
2521 }
2522
2523 return VM_FAULT_SIGBUS;
2524 }
2525
2526 /*
2527 * Having a close hook prevents vma merging regardless of flags.
2528 */
2529 static void special_mapping_close(struct vm_area_struct *vma)
2530 {
2531 }
2532
2533 static const struct vm_operations_struct special_mapping_vmops = {
2534 .close = special_mapping_close,
2535 .fault = special_mapping_fault,
2536 };
2537
2538 /*
2539 * Called with mm->mmap_sem held for writing.
2540 * Insert a new vma covering the given region, with the given flags.
2541 * Its pages are supplied by the given array of struct page *.
2542 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2543 * The region past the last page supplied will always produce SIGBUS.
2544 * The array pointer and the pages it points to are assumed to stay alive
2545 * for as long as this mapping might exist.
2546 */
2547 int install_special_mapping(struct mm_struct *mm,
2548 unsigned long addr, unsigned long len,
2549 unsigned long vm_flags, struct page **pages)
2550 {
2551 int ret;
2552 struct vm_area_struct *vma;
2553
2554 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2555 if (unlikely(vma == NULL))
2556 return -ENOMEM;
2557
2558 INIT_LIST_HEAD(&vma->anon_vma_chain);
2559 vma->vm_mm = mm;
2560 vma->vm_start = addr;
2561 vma->vm_end = addr + len;
2562
2563 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2564 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2565
2566 vma->vm_ops = &special_mapping_vmops;
2567 vma->vm_private_data = pages;
2568
2569 ret = security_mmap_addr(vma->vm_start);
2570 if (ret)
2571 goto out;
2572
2573 ret = insert_vm_struct(mm, vma);
2574 if (ret)
2575 goto out;
2576
2577 mm->total_vm += len >> PAGE_SHIFT;
2578
2579 perf_event_mmap(vma);
2580
2581 return 0;
2582
2583 out:
2584 kmem_cache_free(vm_area_cachep, vma);
2585 return ret;
2586 }
2587
2588 static DEFINE_MUTEX(mm_all_locks_mutex);
2589
2590 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2591 {
2592 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2593 /*
2594 * The LSB of head.next can't change from under us
2595 * because we hold the mm_all_locks_mutex.
2596 */
2597 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2598 /*
2599 * We can safely modify head.next after taking the
2600 * anon_vma->root->mutex. If some other vma in this mm shares
2601 * the same anon_vma we won't take it again.
2602 *
2603 * No need of atomic instructions here, head.next
2604 * can't change from under us thanks to the
2605 * anon_vma->root->mutex.
2606 */
2607 if (__test_and_set_bit(0, (unsigned long *)
2608 &anon_vma->root->head.next))
2609 BUG();
2610 }
2611 }
2612
2613 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2614 {
2615 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2616 /*
2617 * AS_MM_ALL_LOCKS can't change from under us because
2618 * we hold the mm_all_locks_mutex.
2619 *
2620 * Operations on ->flags have to be atomic because
2621 * even if AS_MM_ALL_LOCKS is stable thanks to the
2622 * mm_all_locks_mutex, there may be other cpus
2623 * changing other bitflags in parallel to us.
2624 */
2625 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2626 BUG();
2627 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2628 }
2629 }
2630
2631 /*
2632 * This operation locks against the VM for all pte/vma/mm related
2633 * operations that could ever happen on a certain mm. This includes
2634 * vmtruncate, try_to_unmap, and all page faults.
2635 *
2636 * The caller must take the mmap_sem in write mode before calling
2637 * mm_take_all_locks(). The caller isn't allowed to release the
2638 * mmap_sem until mm_drop_all_locks() returns.
2639 *
2640 * mmap_sem in write mode is required in order to block all operations
2641 * that could modify pagetables and free pages without need of
2642 * altering the vma layout (for example populate_range() with
2643 * nonlinear vmas). It's also needed in write mode to avoid new
2644 * anon_vmas to be associated with existing vmas.
2645 *
2646 * A single task can't take more than one mm_take_all_locks() in a row
2647 * or it would deadlock.
2648 *
2649 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2650 * mapping->flags avoid to take the same lock twice, if more than one
2651 * vma in this mm is backed by the same anon_vma or address_space.
2652 *
2653 * We can take all the locks in random order because the VM code
2654 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2655 * takes more than one of them in a row. Secondly we're protected
2656 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2657 *
2658 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2659 * that may have to take thousand of locks.
2660 *
2661 * mm_take_all_locks() can fail if it's interrupted by signals.
2662 */
2663 int mm_take_all_locks(struct mm_struct *mm)
2664 {
2665 struct vm_area_struct *vma;
2666 struct anon_vma_chain *avc;
2667
2668 BUG_ON(down_read_trylock(&mm->mmap_sem));
2669
2670 mutex_lock(&mm_all_locks_mutex);
2671
2672 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2673 if (signal_pending(current))
2674 goto out_unlock;
2675 if (vma->vm_file && vma->vm_file->f_mapping)
2676 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2677 }
2678
2679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2680 if (signal_pending(current))
2681 goto out_unlock;
2682 if (vma->anon_vma)
2683 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2684 vm_lock_anon_vma(mm, avc->anon_vma);
2685 }
2686
2687 return 0;
2688
2689 out_unlock:
2690 mm_drop_all_locks(mm);
2691 return -EINTR;
2692 }
2693
2694 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2695 {
2696 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2697 /*
2698 * The LSB of head.next can't change to 0 from under
2699 * us because we hold the mm_all_locks_mutex.
2700 *
2701 * We must however clear the bitflag before unlocking
2702 * the vma so the users using the anon_vma->head will
2703 * never see our bitflag.
2704 *
2705 * No need of atomic instructions here, head.next
2706 * can't change from under us until we release the
2707 * anon_vma->root->mutex.
2708 */
2709 if (!__test_and_clear_bit(0, (unsigned long *)
2710 &anon_vma->root->head.next))
2711 BUG();
2712 anon_vma_unlock(anon_vma);
2713 }
2714 }
2715
2716 static void vm_unlock_mapping(struct address_space *mapping)
2717 {
2718 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2719 /*
2720 * AS_MM_ALL_LOCKS can't change to 0 from under us
2721 * because we hold the mm_all_locks_mutex.
2722 */
2723 mutex_unlock(&mapping->i_mmap_mutex);
2724 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2725 &mapping->flags))
2726 BUG();
2727 }
2728 }
2729
2730 /*
2731 * The mmap_sem cannot be released by the caller until
2732 * mm_drop_all_locks() returns.
2733 */
2734 void mm_drop_all_locks(struct mm_struct *mm)
2735 {
2736 struct vm_area_struct *vma;
2737 struct anon_vma_chain *avc;
2738
2739 BUG_ON(down_read_trylock(&mm->mmap_sem));
2740 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2741
2742 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2743 if (vma->anon_vma)
2744 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2745 vm_unlock_anon_vma(avc->anon_vma);
2746 if (vma->vm_file && vma->vm_file->f_mapping)
2747 vm_unlock_mapping(vma->vm_file->f_mapping);
2748 }
2749
2750 mutex_unlock(&mm_all_locks_mutex);
2751 }
2752
2753 /*
2754 * initialise the VMA slab
2755 */
2756 void __init mmap_init(void)
2757 {
2758 int ret;
2759
2760 ret = percpu_counter_init(&vm_committed_as, 0);
2761 VM_BUG_ON(ret);
2762 }