0d8840efa27eef69a4716611a629cdcb51be0a3c
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45
46 #include "internal.h"
47 #ifdef CONFIG_SDCARD_FS
48 #include "../fs/sdcardfs/sdcardfs.h"
49 #endif
50
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags) (0)
53 #endif
54
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len) (addr)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70
71 static void unmap_region(struct mm_struct *mm,
72 struct vm_area_struct *vma, struct vm_area_struct *prev,
73 unsigned long start, unsigned long end);
74
75 /* description of effects of mapping type and prot in current implementation.
76 * this is due to the limited x86 page protection hardware. The expected
77 * behavior is in parens:
78 *
79 * map_type prot
80 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
81 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
82 * w: (no) no w: (no) no w: (yes) yes w: (no) no
83 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
84 *
85 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (copy) copy w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 *
89 */
90 pgprot_t protection_map[16] = {
91 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
92 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
93 };
94
95 pgprot_t vm_get_page_prot(unsigned long vm_flags)
96 {
97 return __pgprot(pgprot_val(protection_map[vm_flags &
98 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
99 pgprot_val(arch_vm_get_page_prot(vm_flags)));
100 }
101 EXPORT_SYMBOL(vm_get_page_prot);
102
103 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
104 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
105 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
106 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
107 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
108 /*
109 * Make sure vm_committed_as in one cacheline and not cacheline shared with
110 * other variables. It can be updated by several CPUs frequently.
111 */
112 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
113
114 /*
115 * The global memory commitment made in the system can be a metric
116 * that can be used to drive ballooning decisions when Linux is hosted
117 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
118 * balancing memory across competing virtual machines that are hosted.
119 * Several metrics drive this policy engine including the guest reported
120 * memory commitment.
121 */
122 unsigned long vm_memory_committed(void)
123 {
124 return percpu_counter_read_positive(&vm_committed_as);
125 }
126 EXPORT_SYMBOL_GPL(vm_memory_committed);
127
128 /*
129 * Check that a process has enough memory to allocate a new virtual
130 * mapping. 0 means there is enough memory for the allocation to
131 * succeed and -ENOMEM implies there is not.
132 *
133 * We currently support three overcommit policies, which are set via the
134 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
135 *
136 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
137 * Additional code 2002 Jul 20 by Robert Love.
138 *
139 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
140 *
141 * Note this is a helper function intended to be used by LSMs which
142 * wish to use this logic.
143 */
144 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
145 {
146 long free, allowed, reserve;
147
148 vm_acct_memory(pages);
149
150 /*
151 * Sometimes we want to use more memory than we have
152 */
153 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
154 return 0;
155
156 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
157 free = global_page_state(NR_FREE_PAGES);
158 free += global_page_state(NR_FILE_PAGES);
159
160 /*
161 * shmem pages shouldn't be counted as free in this
162 * case, they can't be purged, only swapped out, and
163 * that won't affect the overall amount of available
164 * memory in the system.
165 */
166 free -= global_page_state(NR_SHMEM);
167
168 free += get_nr_swap_pages();
169
170 /*
171 * Any slabs which are created with the
172 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
173 * which are reclaimable, under pressure. The dentry
174 * cache and most inode caches should fall into this
175 */
176 free += global_page_state(NR_SLAB_RECLAIMABLE);
177
178 /*
179 * Leave reserved pages. The pages are not for anonymous pages.
180 */
181 if (free <= totalreserve_pages)
182 goto error;
183 else
184 free -= totalreserve_pages;
185
186 /*
187 * Reserve some for root
188 */
189 if (!cap_sys_admin)
190 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
191
192 if (free > pages)
193 return 0;
194
195 goto error;
196 }
197
198 allowed = (totalram_pages - hugetlb_total_pages())
199 * sysctl_overcommit_ratio / 100;
200 /*
201 * Reserve some for root
202 */
203 if (!cap_sys_admin)
204 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 allowed += total_swap_pages;
206
207 /*
208 * Don't let a single process grow so big a user can't recover
209 */
210 if (mm) {
211 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
212 allowed -= min_t(long, mm->total_vm / 32, reserve);
213 }
214
215 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
216 return 0;
217 error:
218 vm_unacct_memory(pages);
219
220 return -ENOMEM;
221 }
222
223 /*
224 * Requires inode->i_mapping->i_mmap_mutex
225 */
226 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
227 struct file *file, struct address_space *mapping)
228 {
229 if (vma->vm_flags & VM_DENYWRITE)
230 atomic_inc(&file_inode(file)->i_writecount);
231 if (vma->vm_flags & VM_SHARED)
232 mapping->i_mmap_writable--;
233
234 flush_dcache_mmap_lock(mapping);
235 if (unlikely(vma->vm_flags & VM_NONLINEAR))
236 list_del_init(&vma->shared.nonlinear);
237 else
238 vma_interval_tree_remove(vma, &mapping->i_mmap);
239 flush_dcache_mmap_unlock(mapping);
240 }
241
242 /*
243 * Unlink a file-based vm structure from its interval tree, to hide
244 * vma from rmap and vmtruncate before freeing its page tables.
245 */
246 void unlink_file_vma(struct vm_area_struct *vma)
247 {
248 struct file *file = vma->vm_file;
249
250 if (file) {
251 struct address_space *mapping = file->f_mapping;
252 mutex_lock(&mapping->i_mmap_mutex);
253 __remove_shared_vm_struct(vma, file, mapping);
254 mutex_unlock(&mapping->i_mmap_mutex);
255 }
256 }
257
258 /*
259 * Close a vm structure and free it, returning the next.
260 */
261 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
262 {
263 struct vm_area_struct *next = vma->vm_next;
264
265 might_sleep();
266 if (vma->vm_ops && vma->vm_ops->close)
267 vma->vm_ops->close(vma);
268 if (vma->vm_file)
269 fput(vma->vm_file);
270 mpol_put(vma_policy(vma));
271 kmem_cache_free(vm_area_cachep, vma);
272 return next;
273 }
274
275 static unsigned long do_brk(unsigned long addr, unsigned long len);
276
277 SYSCALL_DEFINE1(brk, unsigned long, brk)
278 {
279 unsigned long rlim, retval;
280 unsigned long newbrk, oldbrk;
281 struct mm_struct *mm = current->mm;
282 struct vm_area_struct *next;
283 unsigned long min_brk;
284 bool populate;
285
286 down_write(&mm->mmap_sem);
287
288 #ifdef CONFIG_COMPAT_BRK
289 /*
290 * CONFIG_COMPAT_BRK can still be overridden by setting
291 * randomize_va_space to 2, which will still cause mm->start_brk
292 * to be arbitrarily shifted
293 */
294 if (current->brk_randomized)
295 min_brk = mm->start_brk;
296 else
297 min_brk = mm->end_data;
298 #else
299 min_brk = mm->start_brk;
300 #endif
301 if (brk < min_brk)
302 goto out;
303
304 /*
305 * Check against rlimit here. If this check is done later after the test
306 * of oldbrk with newbrk then it can escape the test and let the data
307 * segment grow beyond its set limit the in case where the limit is
308 * not page aligned -Ram Gupta
309 */
310 rlim = rlimit(RLIMIT_DATA);
311 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
312 (mm->end_data - mm->start_data) > rlim)
313 goto out;
314
315 newbrk = PAGE_ALIGN(brk);
316 oldbrk = PAGE_ALIGN(mm->brk);
317 if (oldbrk == newbrk)
318 goto set_brk;
319
320 /* Always allow shrinking brk. */
321 if (brk <= mm->brk) {
322 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
323 goto set_brk;
324 goto out;
325 }
326
327 /* Check against existing mmap mappings. */
328 next = find_vma(mm, oldbrk);
329 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
330 goto out;
331
332 /* Ok, looks good - let it rip. */
333 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
334 goto out;
335
336 set_brk:
337 mm->brk = brk;
338 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
339 up_write(&mm->mmap_sem);
340 if (populate)
341 mm_populate(oldbrk, newbrk - oldbrk);
342 return brk;
343
344 out:
345 retval = mm->brk;
346 up_write(&mm->mmap_sem);
347 return retval;
348 }
349
350 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
351 {
352 unsigned long max, prev_end, subtree_gap;
353
354 /*
355 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
356 * allow two stack_guard_gaps between them here, and when choosing
357 * an unmapped area; whereas when expanding we only require one.
358 * That's a little inconsistent, but keeps the code here simpler.
359 */
360 max = vm_start_gap(vma);
361 if (vma->vm_prev) {
362 prev_end = vm_end_gap(vma->vm_prev);
363 if (max > prev_end)
364 max -= prev_end;
365 else
366 max = 0;
367 }
368 if (vma->vm_rb.rb_left) {
369 subtree_gap = rb_entry(vma->vm_rb.rb_left,
370 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 if (subtree_gap > max)
372 max = subtree_gap;
373 }
374 if (vma->vm_rb.rb_right) {
375 subtree_gap = rb_entry(vma->vm_rb.rb_right,
376 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377 if (subtree_gap > max)
378 max = subtree_gap;
379 }
380 return max;
381 }
382
383 #ifdef CONFIG_DEBUG_VM_RB
384 static int browse_rb(struct rb_root *root)
385 {
386 int i = 0, j, bug = 0;
387 struct rb_node *nd, *pn = NULL;
388 unsigned long prev = 0, pend = 0;
389
390 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
391 struct vm_area_struct *vma;
392 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
393 if (vma->vm_start < prev) {
394 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
395 bug = 1;
396 }
397 if (vma->vm_start < pend) {
398 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
399 bug = 1;
400 }
401 if (vma->vm_start > vma->vm_end) {
402 printk("vm_end %lx < vm_start %lx\n",
403 vma->vm_end, vma->vm_start);
404 bug = 1;
405 }
406 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
407 printk("free gap %lx, correct %lx\n",
408 vma->rb_subtree_gap,
409 vma_compute_subtree_gap(vma));
410 bug = 1;
411 }
412 i++;
413 pn = nd;
414 prev = vma->vm_start;
415 pend = vma->vm_end;
416 }
417 j = 0;
418 for (nd = pn; nd; nd = rb_prev(nd))
419 j++;
420 if (i != j) {
421 printk("backwards %d, forwards %d\n", j, i);
422 bug = 1;
423 }
424 return bug ? -1 : i;
425 }
426
427 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
428 {
429 struct rb_node *nd;
430
431 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
432 struct vm_area_struct *vma;
433 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
434 BUG_ON(vma != ignore &&
435 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
436 }
437 }
438
439 void validate_mm(struct mm_struct *mm)
440 {
441 int bug = 0;
442 int i = 0;
443 unsigned long highest_address = 0;
444 struct vm_area_struct *vma = mm->mmap;
445 while (vma) {
446 struct anon_vma_chain *avc;
447 vma_lock_anon_vma(vma);
448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
449 anon_vma_interval_tree_verify(avc);
450 vma_unlock_anon_vma(vma);
451 highest_address = vm_end_gap(vma);
452 vma = vma->vm_next;
453 i++;
454 }
455 if (i != mm->map_count) {
456 printk("map_count %d vm_next %d\n", mm->map_count, i);
457 bug = 1;
458 }
459 if (highest_address != mm->highest_vm_end) {
460 printk("mm->highest_vm_end %lx, found %lx\n",
461 mm->highest_vm_end, highest_address);
462 bug = 1;
463 }
464 i = browse_rb(&mm->mm_rb);
465 if (i != mm->map_count) {
466 printk("map_count %d rb %d\n", mm->map_count, i);
467 bug = 1;
468 }
469 BUG_ON(bug);
470 }
471 #else
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
474 #endif
475
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
478
479 /*
480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481 * vma->vm_prev->vm_end values changed, without modifying the vma's position
482 * in the rbtree.
483 */
484 static void vma_gap_update(struct vm_area_struct *vma)
485 {
486 /*
487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488 * function that does exacltly what we want.
489 */
490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
491 }
492
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494 struct rb_root *root)
495 {
496 /* All rb_subtree_gap values must be consistent prior to insertion */
497 validate_mm_rb(root, NULL);
498
499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
503 {
504 /*
505 * All rb_subtree_gap values must be consistent prior to erase,
506 * with the possible exception of the vma being erased.
507 */
508 validate_mm_rb(root, vma);
509
510 /*
511 * Note rb_erase_augmented is a fairly large inline function,
512 * so make sure we instantiate it only once with our desired
513 * augmented rbtree callbacks.
514 */
515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517
518 /*
519 * vma has some anon_vma assigned, and is already inserted on that
520 * anon_vma's interval trees.
521 *
522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523 * vma must be removed from the anon_vma's interval trees using
524 * anon_vma_interval_tree_pre_update_vma().
525 *
526 * After the update, the vma will be reinserted using
527 * anon_vma_interval_tree_post_update_vma().
528 *
529 * The entire update must be protected by exclusive mmap_sem and by
530 * the root anon_vma's mutex.
531 */
532 static inline void
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
534 {
535 struct anon_vma_chain *avc;
536
537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
539 }
540
541 static inline void
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
543 {
544 struct anon_vma_chain *avc;
545
546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
548 }
549
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551 unsigned long end, struct vm_area_struct **pprev,
552 struct rb_node ***rb_link, struct rb_node **rb_parent)
553 {
554 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
555
556 __rb_link = &mm->mm_rb.rb_node;
557 rb_prev = __rb_parent = NULL;
558
559 while (*__rb_link) {
560 struct vm_area_struct *vma_tmp;
561
562 __rb_parent = *__rb_link;
563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
564
565 if (vma_tmp->vm_end > addr) {
566 /* Fail if an existing vma overlaps the area */
567 if (vma_tmp->vm_start < end)
568 return -ENOMEM;
569 __rb_link = &__rb_parent->rb_left;
570 } else {
571 rb_prev = __rb_parent;
572 __rb_link = &__rb_parent->rb_right;
573 }
574 }
575
576 *pprev = NULL;
577 if (rb_prev)
578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579 *rb_link = __rb_link;
580 *rb_parent = __rb_parent;
581 return 0;
582 }
583
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585 unsigned long addr, unsigned long end)
586 {
587 unsigned long nr_pages = 0;
588 struct vm_area_struct *vma;
589
590 /* Find first overlaping mapping */
591 vma = find_vma_intersection(mm, addr, end);
592 if (!vma)
593 return 0;
594
595 nr_pages = (min(end, vma->vm_end) -
596 max(addr, vma->vm_start)) >> PAGE_SHIFT;
597
598 /* Iterate over the rest of the overlaps */
599 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600 unsigned long overlap_len;
601
602 if (vma->vm_start > end)
603 break;
604
605 overlap_len = min(end, vma->vm_end) - vma->vm_start;
606 nr_pages += overlap_len >> PAGE_SHIFT;
607 }
608
609 return nr_pages;
610 }
611
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613 struct rb_node **rb_link, struct rb_node *rb_parent)
614 {
615 /* Update tracking information for the gap following the new vma. */
616 if (vma->vm_next)
617 vma_gap_update(vma->vm_next);
618 else
619 mm->highest_vm_end = vm_end_gap(vma);
620
621 /*
622 * vma->vm_prev wasn't known when we followed the rbtree to find the
623 * correct insertion point for that vma. As a result, we could not
624 * update the vma vm_rb parents rb_subtree_gap values on the way down.
625 * So, we first insert the vma with a zero rb_subtree_gap value
626 * (to be consistent with what we did on the way down), and then
627 * immediately update the gap to the correct value. Finally we
628 * rebalance the rbtree after all augmented values have been set.
629 */
630 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
631 vma->rb_subtree_gap = 0;
632 vma_gap_update(vma);
633 vma_rb_insert(vma, &mm->mm_rb);
634 }
635
636 static void __vma_link_file(struct vm_area_struct *vma)
637 {
638 struct file *file;
639
640 file = vma->vm_file;
641 if (file) {
642 struct address_space *mapping = file->f_mapping;
643
644 if (vma->vm_flags & VM_DENYWRITE)
645 atomic_dec(&file_inode(file)->i_writecount);
646 if (vma->vm_flags & VM_SHARED)
647 mapping->i_mmap_writable++;
648
649 flush_dcache_mmap_lock(mapping);
650 if (unlikely(vma->vm_flags & VM_NONLINEAR))
651 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
652 else
653 vma_interval_tree_insert(vma, &mapping->i_mmap);
654 flush_dcache_mmap_unlock(mapping);
655 }
656 }
657
658 static void
659 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
660 struct vm_area_struct *prev, struct rb_node **rb_link,
661 struct rb_node *rb_parent)
662 {
663 __vma_link_list(mm, vma, prev, rb_parent);
664 __vma_link_rb(mm, vma, rb_link, rb_parent);
665 }
666
667 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
668 struct vm_area_struct *prev, struct rb_node **rb_link,
669 struct rb_node *rb_parent)
670 {
671 struct address_space *mapping = NULL;
672
673 if (vma->vm_file)
674 mapping = vma->vm_file->f_mapping;
675
676 if (mapping)
677 mutex_lock(&mapping->i_mmap_mutex);
678
679 __vma_link(mm, vma, prev, rb_link, rb_parent);
680 __vma_link_file(vma);
681
682 if (mapping)
683 mutex_unlock(&mapping->i_mmap_mutex);
684
685 mm->map_count++;
686 validate_mm(mm);
687 }
688
689 /*
690 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
691 * mm's list and rbtree. It has already been inserted into the interval tree.
692 */
693 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695 struct vm_area_struct *prev;
696 struct rb_node **rb_link, *rb_parent;
697
698 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
699 &prev, &rb_link, &rb_parent))
700 BUG();
701 __vma_link(mm, vma, prev, rb_link, rb_parent);
702 mm->map_count++;
703 }
704
705 static inline void
706 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
707 struct vm_area_struct *prev)
708 {
709 struct vm_area_struct *next;
710
711 vma_rb_erase(vma, &mm->mm_rb);
712 prev->vm_next = next = vma->vm_next;
713 if (next)
714 next->vm_prev = prev;
715
716 /* Kill the cache */
717 vmacache_invalidate(mm);
718 }
719
720 /*
721 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
722 * is already present in an i_mmap tree without adjusting the tree.
723 * The following helper function should be used when such adjustments
724 * are necessary. The "insert" vma (if any) is to be inserted
725 * before we drop the necessary locks.
726 */
727 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
728 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
729 {
730 struct mm_struct *mm = vma->vm_mm;
731 struct vm_area_struct *next = vma->vm_next;
732 struct vm_area_struct *importer = NULL;
733 struct address_space *mapping = NULL;
734 struct rb_root *root = NULL;
735 struct anon_vma *anon_vma = NULL;
736 struct file *file = vma->vm_file;
737 bool start_changed = false, end_changed = false;
738 long adjust_next = 0;
739 int remove_next = 0;
740
741 if (next && !insert) {
742 struct vm_area_struct *exporter = NULL;
743
744 if (end >= next->vm_end) {
745 /*
746 * vma expands, overlapping all the next, and
747 * perhaps the one after too (mprotect case 6).
748 */
749 again: remove_next = 1 + (end > next->vm_end);
750 end = next->vm_end;
751 exporter = next;
752 importer = vma;
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 } else if (end < vma->vm_end) {
762 /*
763 * vma shrinks, and !insert tells it's not
764 * split_vma inserting another: so it must be
765 * mprotect case 4 shifting the boundary down.
766 */
767 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
768 exporter = vma;
769 importer = next;
770 }
771
772 /*
773 * Easily overlooked: when mprotect shifts the boundary,
774 * make sure the expanding vma has anon_vma set if the
775 * shrinking vma had, to cover any anon pages imported.
776 */
777 if (exporter && exporter->anon_vma && !importer->anon_vma) {
778 if (anon_vma_clone(importer, exporter))
779 return -ENOMEM;
780 importer->anon_vma = exporter->anon_vma;
781 }
782 }
783
784 if (file) {
785 mapping = file->f_mapping;
786 if (!(vma->vm_flags & VM_NONLINEAR)) {
787 root = &mapping->i_mmap;
788 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
789
790 if (adjust_next)
791 uprobe_munmap(next, next->vm_start,
792 next->vm_end);
793 }
794
795 mutex_lock(&mapping->i_mmap_mutex);
796 if (insert) {
797 /*
798 * Put into interval tree now, so instantiated pages
799 * are visible to arm/parisc __flush_dcache_page
800 * throughout; but we cannot insert into address
801 * space until vma start or end is updated.
802 */
803 __vma_link_file(insert);
804 }
805 }
806
807 vma_adjust_trans_huge(vma, start, end, adjust_next);
808
809 anon_vma = vma->anon_vma;
810 if (!anon_vma && adjust_next)
811 anon_vma = next->anon_vma;
812 if (anon_vma) {
813 VM_BUG_ON(adjust_next && next->anon_vma &&
814 anon_vma != next->anon_vma);
815 anon_vma_lock_write(anon_vma);
816 anon_vma_interval_tree_pre_update_vma(vma);
817 if (adjust_next)
818 anon_vma_interval_tree_pre_update_vma(next);
819 }
820
821 if (root) {
822 flush_dcache_mmap_lock(mapping);
823 vma_interval_tree_remove(vma, root);
824 if (adjust_next)
825 vma_interval_tree_remove(next, root);
826 }
827
828 if (start != vma->vm_start) {
829 vma->vm_start = start;
830 start_changed = true;
831 }
832 if (end != vma->vm_end) {
833 vma->vm_end = end;
834 end_changed = true;
835 }
836 vma->vm_pgoff = pgoff;
837 if (adjust_next) {
838 next->vm_start += adjust_next << PAGE_SHIFT;
839 next->vm_pgoff += adjust_next;
840 }
841
842 if (root) {
843 if (adjust_next)
844 vma_interval_tree_insert(next, root);
845 vma_interval_tree_insert(vma, root);
846 flush_dcache_mmap_unlock(mapping);
847 }
848
849 if (remove_next) {
850 /*
851 * vma_merge has merged next into vma, and needs
852 * us to remove next before dropping the locks.
853 */
854 __vma_unlink(mm, next, vma);
855 if (file)
856 __remove_shared_vm_struct(next, file, mapping);
857 } else if (insert) {
858 /*
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
862 */
863 __insert_vm_struct(mm, insert);
864 } else {
865 if (start_changed)
866 vma_gap_update(vma);
867 if (end_changed) {
868 if (!next)
869 mm->highest_vm_end = vm_end_gap(vma);
870 else if (!adjust_next)
871 vma_gap_update(next);
872 }
873 }
874
875 if (anon_vma) {
876 anon_vma_interval_tree_post_update_vma(vma);
877 if (adjust_next)
878 anon_vma_interval_tree_post_update_vma(next);
879 anon_vma_unlock_write(anon_vma);
880 }
881 if (mapping)
882 mutex_unlock(&mapping->i_mmap_mutex);
883
884 if (root) {
885 uprobe_mmap(vma);
886
887 if (adjust_next)
888 uprobe_mmap(next);
889 }
890
891 if (remove_next) {
892 if (file) {
893 uprobe_munmap(next, next->vm_start, next->vm_end);
894 fput(file);
895 }
896 if (next->anon_vma)
897 anon_vma_merge(vma, next);
898 mm->map_count--;
899 mpol_put(vma_policy(next));
900 kmem_cache_free(vm_area_cachep, next);
901 /*
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
905 */
906 next = vma->vm_next;
907 if (remove_next == 2)
908 goto again;
909 else if (next)
910 vma_gap_update(next);
911 else
912 WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
913 }
914 if (insert && file)
915 uprobe_mmap(insert);
916
917 validate_mm(mm);
918
919 return 0;
920 }
921
922 /*
923 * If the vma has a ->close operation then the driver probably needs to release
924 * per-vma resources, so we don't attempt to merge those.
925 */
926 static inline int is_mergeable_vma(struct vm_area_struct *vma,
927 struct file *file, unsigned long vm_flags,
928 const char __user *anon_name)
929 {
930 if (vma->vm_flags ^ vm_flags)
931 return 0;
932 if (vma->vm_file != file)
933 return 0;
934 if (vma->vm_ops && vma->vm_ops->close)
935 return 0;
936 if (vma_get_anon_name(vma) != anon_name)
937 return 0;
938 return 1;
939 }
940
941 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
942 struct anon_vma *anon_vma2,
943 struct vm_area_struct *vma)
944 {
945 /*
946 * The list_is_singular() test is to avoid merging VMA cloned from
947 * parents. This can improve scalability caused by anon_vma lock.
948 */
949 if ((!anon_vma1 || !anon_vma2) && (!vma ||
950 list_is_singular(&vma->anon_vma_chain)))
951 return 1;
952 return anon_vma1 == anon_vma2;
953 }
954
955 /*
956 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957 * in front of (at a lower virtual address and file offset than) the vma.
958 *
959 * We cannot merge two vmas if they have differently assigned (non-NULL)
960 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
961 *
962 * We don't check here for the merged mmap wrapping around the end of pagecache
963 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
964 * wrap, nor mmaps which cover the final page at index -1UL.
965 */
966 static int
967 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
968 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
969 const char __user *anon_name)
970 {
971 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
972 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
973 if (vma->vm_pgoff == vm_pgoff)
974 return 1;
975 }
976 return 0;
977 }
978
979 /*
980 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
981 * beyond (at a higher virtual address and file offset than) the vma.
982 *
983 * We cannot merge two vmas if they have differently assigned (non-NULL)
984 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
985 */
986 static int
987 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
988 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
989 const char __user *anon_name)
990 {
991 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
992 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
993 pgoff_t vm_pglen;
994 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
995 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
996 return 1;
997 }
998 return 0;
999 }
1000
1001 /*
1002 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1003 * figure out whether that can be merged with its predecessor or its
1004 * successor. Or both (it neatly fills a hole).
1005 *
1006 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1007 * certain not to be mapped by the time vma_merge is called; but when
1008 * called for mprotect, it is certain to be already mapped (either at
1009 * an offset within prev, or at the start of next), and the flags of
1010 * this area are about to be changed to vm_flags - and the no-change
1011 * case has already been eliminated.
1012 *
1013 * The following mprotect cases have to be considered, where AAAA is
1014 * the area passed down from mprotect_fixup, never extending beyond one
1015 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1016 *
1017 * AAAA AAAA AAAA AAAA
1018 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1019 * cannot merge might become might become might become
1020 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1021 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1022 * mremap move: PPPPNNNNNNNN 8
1023 * AAAA
1024 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1025 * might become case 1 below case 2 below case 3 below
1026 *
1027 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1028 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1029 */
1030 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1031 struct vm_area_struct *prev, unsigned long addr,
1032 unsigned long end, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t pgoff, struct mempolicy *policy,
1035 const char __user *anon_name)
1036 {
1037 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1038 struct vm_area_struct *area, *next;
1039 int err;
1040
1041 /*
1042 * We later require that vma->vm_flags == vm_flags,
1043 * so this tests vma->vm_flags & VM_SPECIAL, too.
1044 */
1045 if (vm_flags & VM_SPECIAL)
1046 return NULL;
1047
1048 if (prev)
1049 next = prev->vm_next;
1050 else
1051 next = mm->mmap;
1052 area = next;
1053 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1054 next = next->vm_next;
1055
1056 /*
1057 * Can it merge with the predecessor?
1058 */
1059 if (prev && prev->vm_end == addr &&
1060 mpol_equal(vma_policy(prev), policy) &&
1061 can_vma_merge_after(prev, vm_flags, anon_vma,
1062 file, pgoff, anon_name)) {
1063 /*
1064 * OK, it can. Can we now merge in the successor as well?
1065 */
1066 if (next && end == next->vm_start &&
1067 mpol_equal(policy, vma_policy(next)) &&
1068 can_vma_merge_before(next, vm_flags, anon_vma,
1069 file, pgoff+pglen, anon_name) &&
1070 is_mergeable_anon_vma(prev->anon_vma,
1071 next->anon_vma, NULL)) {
1072 /* cases 1, 6 */
1073 err = vma_adjust(prev, prev->vm_start,
1074 next->vm_end, prev->vm_pgoff, NULL);
1075 } else /* cases 2, 5, 7 */
1076 err = vma_adjust(prev, prev->vm_start,
1077 end, prev->vm_pgoff, NULL);
1078 if (err)
1079 return NULL;
1080 khugepaged_enter_vma_merge(prev);
1081 return prev;
1082 }
1083
1084 /*
1085 * Can this new request be merged in front of next?
1086 */
1087 if (next && end == next->vm_start &&
1088 mpol_equal(policy, vma_policy(next)) &&
1089 can_vma_merge_before(next, vm_flags, anon_vma,
1090 file, pgoff+pglen, anon_name)) {
1091 if (prev && addr < prev->vm_end) /* case 4 */
1092 err = vma_adjust(prev, prev->vm_start,
1093 addr, prev->vm_pgoff, NULL);
1094 else /* cases 3, 8 */
1095 err = vma_adjust(area, addr, next->vm_end,
1096 next->vm_pgoff - pglen, NULL);
1097 if (err)
1098 return NULL;
1099 khugepaged_enter_vma_merge(area);
1100 return area;
1101 }
1102
1103 return NULL;
1104 }
1105
1106 /*
1107 * Rough compatbility check to quickly see if it's even worth looking
1108 * at sharing an anon_vma.
1109 *
1110 * They need to have the same vm_file, and the flags can only differ
1111 * in things that mprotect may change.
1112 *
1113 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1114 * we can merge the two vma's. For example, we refuse to merge a vma if
1115 * there is a vm_ops->close() function, because that indicates that the
1116 * driver is doing some kind of reference counting. But that doesn't
1117 * really matter for the anon_vma sharing case.
1118 */
1119 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1120 {
1121 return a->vm_end == b->vm_start &&
1122 mpol_equal(vma_policy(a), vma_policy(b)) &&
1123 a->vm_file == b->vm_file &&
1124 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1125 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1126 }
1127
1128 /*
1129 * Do some basic sanity checking to see if we can re-use the anon_vma
1130 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1131 * the same as 'old', the other will be the new one that is trying
1132 * to share the anon_vma.
1133 *
1134 * NOTE! This runs with mm_sem held for reading, so it is possible that
1135 * the anon_vma of 'old' is concurrently in the process of being set up
1136 * by another page fault trying to merge _that_. But that's ok: if it
1137 * is being set up, that automatically means that it will be a singleton
1138 * acceptable for merging, so we can do all of this optimistically. But
1139 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1140 *
1141 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1142 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1143 * is to return an anon_vma that is "complex" due to having gone through
1144 * a fork).
1145 *
1146 * We also make sure that the two vma's are compatible (adjacent,
1147 * and with the same memory policies). That's all stable, even with just
1148 * a read lock on the mm_sem.
1149 */
1150 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1151 {
1152 if (anon_vma_compatible(a, b)) {
1153 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1154
1155 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1156 return anon_vma;
1157 }
1158 return NULL;
1159 }
1160
1161 /*
1162 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1163 * neighbouring vmas for a suitable anon_vma, before it goes off
1164 * to allocate a new anon_vma. It checks because a repetitive
1165 * sequence of mprotects and faults may otherwise lead to distinct
1166 * anon_vmas being allocated, preventing vma merge in subsequent
1167 * mprotect.
1168 */
1169 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1170 {
1171 struct anon_vma *anon_vma;
1172 struct vm_area_struct *near;
1173
1174 near = vma->vm_next;
1175 if (!near)
1176 goto try_prev;
1177
1178 anon_vma = reusable_anon_vma(near, vma, near);
1179 if (anon_vma)
1180 return anon_vma;
1181 try_prev:
1182 near = vma->vm_prev;
1183 if (!near)
1184 goto none;
1185
1186 anon_vma = reusable_anon_vma(near, near, vma);
1187 if (anon_vma)
1188 return anon_vma;
1189 none:
1190 /*
1191 * There's no absolute need to look only at touching neighbours:
1192 * we could search further afield for "compatible" anon_vmas.
1193 * But it would probably just be a waste of time searching,
1194 * or lead to too many vmas hanging off the same anon_vma.
1195 * We're trying to allow mprotect remerging later on,
1196 * not trying to minimize memory used for anon_vmas.
1197 */
1198 return NULL;
1199 }
1200
1201 #ifdef CONFIG_PROC_FS
1202 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1203 struct file *file, long pages)
1204 {
1205 const unsigned long stack_flags
1206 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1207
1208 mm->total_vm += pages;
1209
1210 if (file) {
1211 mm->shared_vm += pages;
1212 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1213 mm->exec_vm += pages;
1214 } else if (flags & stack_flags)
1215 mm->stack_vm += pages;
1216 }
1217 #endif /* CONFIG_PROC_FS */
1218
1219 /*
1220 * If a hint addr is less than mmap_min_addr change hint to be as
1221 * low as possible but still greater than mmap_min_addr
1222 */
1223 static inline unsigned long round_hint_to_min(unsigned long hint)
1224 {
1225 hint &= PAGE_MASK;
1226 if (((void *)hint != NULL) &&
1227 (hint < mmap_min_addr))
1228 return PAGE_ALIGN(mmap_min_addr);
1229 return hint;
1230 }
1231
1232 /*
1233 * The caller must hold down_write(&current->mm->mmap_sem).
1234 */
1235
1236 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1237 unsigned long len, unsigned long prot,
1238 unsigned long flags, unsigned long pgoff,
1239 unsigned long *populate)
1240 {
1241 struct mm_struct * mm = current->mm;
1242 struct inode *inode;
1243 vm_flags_t vm_flags;
1244
1245 *populate = 0;
1246
1247 while (file && (file->f_mode & FMODE_NONMAPPABLE))
1248 file = file->f_op->get_lower_file(file);
1249
1250 /*
1251 * Does the application expect PROT_READ to imply PROT_EXEC?
1252 *
1253 * (the exception is when the underlying filesystem is noexec
1254 * mounted, in which case we dont add PROT_EXEC.)
1255 */
1256 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1257 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1258 prot |= PROT_EXEC;
1259
1260 if (!len)
1261 return -EINVAL;
1262
1263 if (!(flags & MAP_FIXED))
1264 addr = round_hint_to_min(addr);
1265
1266 /* Careful about overflows.. */
1267 len = PAGE_ALIGN(len);
1268 if (!len)
1269 return -ENOMEM;
1270
1271 /* offset overflow? */
1272 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1273 return -EOVERFLOW;
1274
1275 /* Too many mappings? */
1276 if (mm->map_count > sysctl_max_map_count)
1277 return -ENOMEM;
1278
1279 /* Obtain the address to map to. we verify (or select) it and ensure
1280 * that it represents a valid section of the address space.
1281 */
1282 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1283 if (addr & ~PAGE_MASK)
1284 return addr;
1285
1286 /* Do simple checking here so the lower-level routines won't have
1287 * to. we assume access permissions have been handled by the open
1288 * of the memory object, so we don't do any here.
1289 */
1290 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1291 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1292
1293 if (flags & MAP_LOCKED)
1294 if (!can_do_mlock())
1295 return -EPERM;
1296
1297 /* mlock MCL_FUTURE? */
1298 if (vm_flags & VM_LOCKED) {
1299 unsigned long locked, lock_limit;
1300 locked = len >> PAGE_SHIFT;
1301 locked += mm->locked_vm;
1302 lock_limit = rlimit(RLIMIT_MEMLOCK);
1303 lock_limit >>= PAGE_SHIFT;
1304 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1305 return -EAGAIN;
1306 }
1307
1308 inode = file ? file_inode(file) : NULL;
1309
1310 if (file) {
1311 switch (flags & MAP_TYPE) {
1312 case MAP_SHARED:
1313 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1314 return -EACCES;
1315
1316 /*
1317 * Make sure we don't allow writing to an append-only
1318 * file..
1319 */
1320 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1321 return -EACCES;
1322
1323 /*
1324 * Make sure there are no mandatory locks on the file.
1325 */
1326 if (locks_verify_locked(inode))
1327 return -EAGAIN;
1328
1329 vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 if (!(file->f_mode & FMODE_WRITE))
1331 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332
1333 /* fall through */
1334 case MAP_PRIVATE:
1335 if (!(file->f_mode & FMODE_READ))
1336 return -EACCES;
1337 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1338 if (vm_flags & VM_EXEC)
1339 return -EPERM;
1340 vm_flags &= ~VM_MAYEXEC;
1341 }
1342
1343 if (!file->f_op || !file->f_op->mmap)
1344 return -ENODEV;
1345 break;
1346
1347 default:
1348 return -EINVAL;
1349 }
1350 } else {
1351 switch (flags & MAP_TYPE) {
1352 case MAP_SHARED:
1353 /*
1354 * Ignore pgoff.
1355 */
1356 pgoff = 0;
1357 vm_flags |= VM_SHARED | VM_MAYSHARE;
1358 break;
1359 case MAP_PRIVATE:
1360 /*
1361 * Set pgoff according to addr for anon_vma.
1362 */
1363 pgoff = addr >> PAGE_SHIFT;
1364 break;
1365 default:
1366 return -EINVAL;
1367 }
1368 }
1369
1370 /*
1371 * Set 'VM_NORESERVE' if we should not account for the
1372 * memory use of this mapping.
1373 */
1374 if (flags & MAP_NORESERVE) {
1375 /* We honor MAP_NORESERVE if allowed to overcommit */
1376 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1377 vm_flags |= VM_NORESERVE;
1378
1379 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1380 if (file && is_file_hugepages(file))
1381 vm_flags |= VM_NORESERVE;
1382 }
1383
1384 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1385 if (!IS_ERR_VALUE(addr) &&
1386 ((vm_flags & VM_LOCKED) ||
1387 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1388 *populate = len;
1389 return addr;
1390 }
1391
1392 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1393 unsigned long, prot, unsigned long, flags,
1394 unsigned long, fd, unsigned long, pgoff)
1395 {
1396 struct file *file = NULL;
1397 unsigned long retval = -EBADF;
1398
1399 if (!(flags & MAP_ANONYMOUS)) {
1400 audit_mmap_fd(fd, flags);
1401 if (unlikely(flags & MAP_HUGETLB))
1402 return -EINVAL;
1403 file = fget(fd);
1404 if (!file)
1405 goto out;
1406 if (is_file_hugepages(file))
1407 len = ALIGN(len, huge_page_size(hstate_file(file)));
1408 } else if (flags & MAP_HUGETLB) {
1409 struct user_struct *user = NULL;
1410 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1411 SHM_HUGE_MASK);
1412
1413 if (!hs)
1414 return -EINVAL;
1415
1416 len = ALIGN(len, huge_page_size(hs));
1417 /*
1418 * VM_NORESERVE is used because the reservations will be
1419 * taken when vm_ops->mmap() is called
1420 * A dummy user value is used because we are not locking
1421 * memory so no accounting is necessary
1422 */
1423 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424 VM_NORESERVE,
1425 &user, HUGETLB_ANONHUGE_INODE,
1426 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427 if (IS_ERR(file))
1428 return PTR_ERR(file);
1429 }
1430
1431 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1432
1433 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 if (file)
1435 fput(file);
1436 out:
1437 return retval;
1438 }
1439
1440 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1441 struct mmap_arg_struct {
1442 unsigned long addr;
1443 unsigned long len;
1444 unsigned long prot;
1445 unsigned long flags;
1446 unsigned long fd;
1447 unsigned long offset;
1448 };
1449
1450 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1451 {
1452 struct mmap_arg_struct a;
1453
1454 if (copy_from_user(&a, arg, sizeof(a)))
1455 return -EFAULT;
1456 if (a.offset & ~PAGE_MASK)
1457 return -EINVAL;
1458
1459 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1460 a.offset >> PAGE_SHIFT);
1461 }
1462 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1463
1464 /*
1465 * Some shared mappigns will want the pages marked read-only
1466 * to track write events. If so, we'll downgrade vm_page_prot
1467 * to the private version (using protection_map[] without the
1468 * VM_SHARED bit).
1469 */
1470 int vma_wants_writenotify(struct vm_area_struct *vma)
1471 {
1472 vm_flags_t vm_flags = vma->vm_flags;
1473
1474 /* If it was private or non-writable, the write bit is already clear */
1475 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1476 return 0;
1477
1478 /* The backer wishes to know when pages are first written to? */
1479 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1480 return 1;
1481
1482 /* The open routine did something to the protections already? */
1483 if (pgprot_val(vma->vm_page_prot) !=
1484 pgprot_val(vm_get_page_prot(vm_flags)))
1485 return 0;
1486
1487 /* Specialty mapping? */
1488 if (vm_flags & VM_PFNMAP)
1489 return 0;
1490
1491 /* Can the mapping track the dirty pages? */
1492 return vma->vm_file && vma->vm_file->f_mapping &&
1493 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1494 }
1495
1496 /*
1497 * We account for memory if it's a private writeable mapping,
1498 * not hugepages and VM_NORESERVE wasn't set.
1499 */
1500 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1501 {
1502 /*
1503 * hugetlb has its own accounting separate from the core VM
1504 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1505 */
1506 if (file && is_file_hugepages(file))
1507 return 0;
1508
1509 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1510 }
1511
1512 unsigned long mmap_region(struct file *file, unsigned long addr,
1513 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1514 {
1515 struct mm_struct *mm = current->mm;
1516 struct vm_area_struct *vma, *prev;
1517 int correct_wcount = 0;
1518 int error;
1519 struct rb_node **rb_link, *rb_parent;
1520 unsigned long charged = 0;
1521 struct inode *inode = file ? file_inode(file) : NULL;
1522
1523 /* Check against address space limit. */
1524 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1525 unsigned long nr_pages;
1526
1527 /*
1528 * MAP_FIXED may remove pages of mappings that intersects with
1529 * requested mapping. Account for the pages it would unmap.
1530 */
1531 if (!(vm_flags & MAP_FIXED))
1532 return -ENOMEM;
1533
1534 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1535
1536 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1537 return -ENOMEM;
1538 }
1539
1540 /* Clear old maps */
1541 error = -ENOMEM;
1542 munmap_back:
1543 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1544 if (do_munmap(mm, addr, len))
1545 return -ENOMEM;
1546 goto munmap_back;
1547 }
1548
1549 /*
1550 * Private writable mapping: check memory availability
1551 */
1552 if (accountable_mapping(file, vm_flags)) {
1553 charged = len >> PAGE_SHIFT;
1554 if (security_vm_enough_memory_mm(mm, charged))
1555 return -ENOMEM;
1556 vm_flags |= VM_ACCOUNT;
1557 }
1558
1559 /*
1560 * Can we just expand an old mapping?
1561 */
1562 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1563 NULL, NULL);
1564 if (vma)
1565 goto out;
1566
1567 /*
1568 * Determine the object being mapped and call the appropriate
1569 * specific mapper. the address has already been validated, but
1570 * not unmapped, but the maps are removed from the list.
1571 */
1572 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1573 if (!vma) {
1574 error = -ENOMEM;
1575 goto unacct_error;
1576 }
1577
1578 vma->vm_mm = mm;
1579 vma->vm_start = addr;
1580 vma->vm_end = addr + len;
1581 vma->vm_flags = vm_flags;
1582 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1583 vma->vm_pgoff = pgoff;
1584 INIT_LIST_HEAD(&vma->anon_vma_chain);
1585
1586 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1587
1588 if (file) {
1589 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1590 goto free_vma;
1591 if (vm_flags & VM_DENYWRITE) {
1592 error = deny_write_access(file);
1593 if (error)
1594 goto free_vma;
1595 correct_wcount = 1;
1596 }
1597 vma->vm_file = get_file(file);
1598 error = file->f_op->mmap(file, vma);
1599 if (error)
1600 goto unmap_and_free_vma;
1601
1602 /* Can addr have changed??
1603 *
1604 * Answer: Yes, several device drivers can do it in their
1605 * f_op->mmap method. -DaveM
1606 * Bug: If addr is changed, prev, rb_link, rb_parent should
1607 * be updated for vma_link()
1608 */
1609 WARN_ON_ONCE(addr != vma->vm_start);
1610
1611 addr = vma->vm_start;
1612 pgoff = vma->vm_pgoff;
1613 vm_flags = vma->vm_flags;
1614 } else if (vm_flags & VM_SHARED) {
1615 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1616 goto free_vma;
1617 error = shmem_zero_setup(vma);
1618 if (error)
1619 goto free_vma;
1620 }
1621
1622 if (vma_wants_writenotify(vma)) {
1623 pgprot_t pprot = vma->vm_page_prot;
1624
1625 /* Can vma->vm_page_prot have changed??
1626 *
1627 * Answer: Yes, drivers may have changed it in their
1628 * f_op->mmap method.
1629 *
1630 * Ensures that vmas marked as uncached stay that way.
1631 */
1632 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1633 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1634 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1635 }
1636
1637 vma_link(mm, vma, prev, rb_link, rb_parent);
1638 file = vma->vm_file;
1639
1640 /* Once vma denies write, undo our temporary denial count */
1641 if (correct_wcount)
1642 atomic_inc(&inode->i_writecount);
1643 out:
1644 perf_event_mmap(vma);
1645
1646 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1647 if (vm_flags & VM_LOCKED) {
1648 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1649 vma == get_gate_vma(current->mm)))
1650 mm->locked_vm += (len >> PAGE_SHIFT);
1651 else
1652 vma->vm_flags &= ~VM_LOCKED;
1653 }
1654
1655 if (file)
1656 uprobe_mmap(vma);
1657
1658 return addr;
1659
1660 unmap_and_free_vma:
1661 if (correct_wcount)
1662 atomic_inc(&inode->i_writecount);
1663 vma->vm_file = NULL;
1664 fput(file);
1665
1666 /* Undo any partial mapping done by a device driver. */
1667 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1668 charged = 0;
1669 free_vma:
1670 kmem_cache_free(vm_area_cachep, vma);
1671 unacct_error:
1672 if (charged)
1673 vm_unacct_memory(charged);
1674 return error;
1675 }
1676
1677 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1678 {
1679 /*
1680 * We implement the search by looking for an rbtree node that
1681 * immediately follows a suitable gap. That is,
1682 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1683 * - gap_end = vma->vm_start >= info->low_limit + length;
1684 * - gap_end - gap_start >= length
1685 */
1686
1687 struct mm_struct *mm = current->mm;
1688 struct vm_area_struct *vma;
1689 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1690
1691 /* Adjust search length to account for worst case alignment overhead */
1692 length = info->length + info->align_mask;
1693 if (length < info->length)
1694 return -ENOMEM;
1695
1696 /* Adjust search limits by the desired length */
1697 if (info->high_limit < length)
1698 return -ENOMEM;
1699 high_limit = info->high_limit - length;
1700
1701 if (info->low_limit > high_limit)
1702 return -ENOMEM;
1703 low_limit = info->low_limit + length;
1704
1705 /* Check if rbtree root looks promising */
1706 if (RB_EMPTY_ROOT(&mm->mm_rb))
1707 goto check_highest;
1708 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1709 if (vma->rb_subtree_gap < length)
1710 goto check_highest;
1711
1712 while (true) {
1713 /* Visit left subtree if it looks promising */
1714 gap_end = vm_start_gap(vma);
1715 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1716 struct vm_area_struct *left =
1717 rb_entry(vma->vm_rb.rb_left,
1718 struct vm_area_struct, vm_rb);
1719 if (left->rb_subtree_gap >= length) {
1720 vma = left;
1721 continue;
1722 }
1723 }
1724
1725 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1726 check_current:
1727 /* Check if current node has a suitable gap */
1728 if (gap_start > high_limit)
1729 return -ENOMEM;
1730 if (gap_end >= low_limit &&
1731 gap_end > gap_start && gap_end - gap_start >= length)
1732 goto found;
1733
1734 /* Visit right subtree if it looks promising */
1735 if (vma->vm_rb.rb_right) {
1736 struct vm_area_struct *right =
1737 rb_entry(vma->vm_rb.rb_right,
1738 struct vm_area_struct, vm_rb);
1739 if (right->rb_subtree_gap >= length) {
1740 vma = right;
1741 continue;
1742 }
1743 }
1744
1745 /* Go back up the rbtree to find next candidate node */
1746 while (true) {
1747 struct rb_node *prev = &vma->vm_rb;
1748 if (!rb_parent(prev))
1749 goto check_highest;
1750 vma = rb_entry(rb_parent(prev),
1751 struct vm_area_struct, vm_rb);
1752 if (prev == vma->vm_rb.rb_left) {
1753 gap_start = vm_end_gap(vma->vm_prev);
1754 gap_end = vm_start_gap(vma);
1755 goto check_current;
1756 }
1757 }
1758 }
1759
1760 check_highest:
1761 /* Check highest gap, which does not precede any rbtree node */
1762 gap_start = mm->highest_vm_end;
1763 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1764 if (gap_start > high_limit)
1765 return -ENOMEM;
1766
1767 found:
1768 /* We found a suitable gap. Clip it with the original low_limit. */
1769 if (gap_start < info->low_limit)
1770 gap_start = info->low_limit;
1771
1772 /* Adjust gap address to the desired alignment */
1773 gap_start += (info->align_offset - gap_start) & info->align_mask;
1774
1775 VM_BUG_ON(gap_start + info->length > info->high_limit);
1776 VM_BUG_ON(gap_start + info->length > gap_end);
1777 return gap_start;
1778 }
1779
1780 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1781 {
1782 struct mm_struct *mm = current->mm;
1783 struct vm_area_struct *vma;
1784 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1785
1786 /* Adjust search length to account for worst case alignment overhead */
1787 length = info->length + info->align_mask;
1788 if (length < info->length)
1789 return -ENOMEM;
1790
1791 /*
1792 * Adjust search limits by the desired length.
1793 * See implementation comment at top of unmapped_area().
1794 */
1795 gap_end = info->high_limit;
1796 if (gap_end < length)
1797 return -ENOMEM;
1798 high_limit = gap_end - length;
1799
1800 if (info->low_limit > high_limit)
1801 return -ENOMEM;
1802 low_limit = info->low_limit + length;
1803
1804 /* Check highest gap, which does not precede any rbtree node */
1805 gap_start = mm->highest_vm_end;
1806 if (gap_start <= high_limit)
1807 goto found_highest;
1808
1809 /* Check if rbtree root looks promising */
1810 if (RB_EMPTY_ROOT(&mm->mm_rb))
1811 return -ENOMEM;
1812 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1813 if (vma->rb_subtree_gap < length)
1814 return -ENOMEM;
1815
1816 while (true) {
1817 /* Visit right subtree if it looks promising */
1818 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1819 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1820 struct vm_area_struct *right =
1821 rb_entry(vma->vm_rb.rb_right,
1822 struct vm_area_struct, vm_rb);
1823 if (right->rb_subtree_gap >= length) {
1824 vma = right;
1825 continue;
1826 }
1827 }
1828
1829 check_current:
1830 /* Check if current node has a suitable gap */
1831 gap_end = vm_start_gap(vma);
1832 if (gap_end < low_limit)
1833 return -ENOMEM;
1834 if (gap_start <= high_limit &&
1835 gap_end > gap_start && gap_end - gap_start >= length)
1836 goto found;
1837
1838 /* Visit left subtree if it looks promising */
1839 if (vma->vm_rb.rb_left) {
1840 struct vm_area_struct *left =
1841 rb_entry(vma->vm_rb.rb_left,
1842 struct vm_area_struct, vm_rb);
1843 if (left->rb_subtree_gap >= length) {
1844 vma = left;
1845 continue;
1846 }
1847 }
1848
1849 /* Go back up the rbtree to find next candidate node */
1850 while (true) {
1851 struct rb_node *prev = &vma->vm_rb;
1852 if (!rb_parent(prev))
1853 return -ENOMEM;
1854 vma = rb_entry(rb_parent(prev),
1855 struct vm_area_struct, vm_rb);
1856 if (prev == vma->vm_rb.rb_right) {
1857 gap_start = vma->vm_prev ?
1858 vm_end_gap(vma->vm_prev) : 0;
1859 goto check_current;
1860 }
1861 }
1862 }
1863
1864 found:
1865 /* We found a suitable gap. Clip it with the original high_limit. */
1866 if (gap_end > info->high_limit)
1867 gap_end = info->high_limit;
1868
1869 found_highest:
1870 /* Compute highest gap address at the desired alignment */
1871 gap_end -= info->length;
1872 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1873
1874 VM_BUG_ON(gap_end < info->low_limit);
1875 VM_BUG_ON(gap_end < gap_start);
1876 return gap_end;
1877 }
1878
1879 /* Get an address range which is currently unmapped.
1880 * For shmat() with addr=0.
1881 *
1882 * Ugly calling convention alert:
1883 * Return value with the low bits set means error value,
1884 * ie
1885 * if (ret & ~PAGE_MASK)
1886 * error = ret;
1887 *
1888 * This function "knows" that -ENOMEM has the bits set.
1889 */
1890 #ifndef HAVE_ARCH_UNMAPPED_AREA
1891 unsigned long
1892 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1893 unsigned long len, unsigned long pgoff, unsigned long flags)
1894 {
1895 struct mm_struct *mm = current->mm;
1896 struct vm_area_struct *vma, *prev;
1897 struct vm_unmapped_area_info info;
1898
1899 if (len > TASK_SIZE - mmap_min_addr)
1900 return -ENOMEM;
1901
1902 if (flags & MAP_FIXED)
1903 return addr;
1904
1905 if (addr) {
1906 addr = PAGE_ALIGN(addr);
1907 vma = find_vma_prev(mm, addr, &prev);
1908 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1909 (!vma || addr + len <= vm_start_gap(vma)) &&
1910 (!prev || addr >= vm_end_gap(prev)))
1911 return addr;
1912 }
1913
1914 info.flags = 0;
1915 info.length = len;
1916 info.low_limit = TASK_UNMAPPED_BASE;
1917 info.high_limit = TASK_SIZE;
1918 info.align_mask = 0;
1919 return vm_unmapped_area(&info);
1920 }
1921 #endif
1922
1923 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1924 {
1925 /*
1926 * Is this a new hole at the lowest possible address?
1927 */
1928 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1929 mm->free_area_cache = addr;
1930 }
1931
1932 /*
1933 * This mmap-allocator allocates new areas top-down from below the
1934 * stack's low limit (the base):
1935 */
1936 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1937 unsigned long
1938 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1939 const unsigned long len, const unsigned long pgoff,
1940 const unsigned long flags)
1941 {
1942 struct vm_area_struct *vma, *prev;
1943 struct mm_struct *mm = current->mm;
1944 unsigned long addr = addr0;
1945 struct vm_unmapped_area_info info;
1946
1947 /* requested length too big for entire address space */
1948 if (len > TASK_SIZE - mmap_min_addr)
1949 return -ENOMEM;
1950
1951 if (flags & MAP_FIXED)
1952 return addr;
1953
1954 /* requesting a specific address */
1955 if (addr) {
1956 addr = PAGE_ALIGN(addr);
1957 vma = find_vma_prev(mm, addr, &prev);
1958 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1959 (!vma || addr + len <= vm_start_gap(vma)) &&
1960 (!prev || addr >= vm_end_gap(prev)))
1961 return addr;
1962 }
1963
1964 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1965 info.length = len;
1966 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1967 info.high_limit = mm->mmap_base;
1968 info.align_mask = 0;
1969 addr = vm_unmapped_area(&info);
1970
1971 /*
1972 * A failed mmap() very likely causes application failure,
1973 * so fall back to the bottom-up function here. This scenario
1974 * can happen with large stack limits and large mmap()
1975 * allocations.
1976 */
1977 if (addr & ~PAGE_MASK) {
1978 VM_BUG_ON(addr != -ENOMEM);
1979 info.flags = 0;
1980 info.low_limit = TASK_UNMAPPED_BASE;
1981 info.high_limit = TASK_SIZE;
1982 addr = vm_unmapped_area(&info);
1983 }
1984
1985 return addr;
1986 }
1987 #endif
1988
1989 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1990 {
1991 /*
1992 * Is this a new hole at the highest possible address?
1993 */
1994 if (addr > mm->free_area_cache)
1995 mm->free_area_cache = addr;
1996
1997 /* dont allow allocations above current base */
1998 if (mm->free_area_cache > mm->mmap_base)
1999 mm->free_area_cache = mm->mmap_base;
2000 }
2001
2002 unsigned long
2003 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2004 unsigned long pgoff, unsigned long flags)
2005 {
2006 unsigned long (*get_area)(struct file *, unsigned long,
2007 unsigned long, unsigned long, unsigned long);
2008
2009 unsigned long error = arch_mmap_check(addr, len, flags);
2010 if (error)
2011 return error;
2012
2013 /* Careful about overflows.. */
2014 if (len > TASK_SIZE)
2015 return -ENOMEM;
2016
2017 get_area = current->mm->get_unmapped_area;
2018 if (file && file->f_op && file->f_op->get_unmapped_area)
2019 get_area = file->f_op->get_unmapped_area;
2020 addr = get_area(file, addr, len, pgoff, flags);
2021 if (IS_ERR_VALUE(addr))
2022 return addr;
2023
2024 if (addr > TASK_SIZE - len)
2025 return -ENOMEM;
2026 if (addr & ~PAGE_MASK)
2027 return -EINVAL;
2028
2029 addr = arch_rebalance_pgtables(addr, len);
2030 error = security_mmap_addr(addr);
2031 return error ? error : addr;
2032 }
2033
2034 EXPORT_SYMBOL(get_unmapped_area);
2035
2036 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2037 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2038 {
2039 struct rb_node *rb_node;
2040 struct vm_area_struct *vma;
2041
2042 /* Check the cache first. */
2043 vma = vmacache_find(mm, addr);
2044 if (likely(vma))
2045 return vma;
2046
2047 rb_node = mm->mm_rb.rb_node;
2048 vma = NULL;
2049
2050 while (rb_node) {
2051 struct vm_area_struct *tmp;
2052
2053 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2054
2055 if (tmp->vm_end > addr) {
2056 vma = tmp;
2057 if (tmp->vm_start <= addr)
2058 break;
2059 rb_node = rb_node->rb_left;
2060 } else
2061 rb_node = rb_node->rb_right;
2062 }
2063
2064 if (vma)
2065 vmacache_update(addr, vma);
2066 return vma;
2067 }
2068
2069 EXPORT_SYMBOL(find_vma);
2070
2071 /*
2072 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2073 */
2074 struct vm_area_struct *
2075 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2076 struct vm_area_struct **pprev)
2077 {
2078 struct vm_area_struct *vma;
2079
2080 vma = find_vma(mm, addr);
2081 if (vma) {
2082 *pprev = vma->vm_prev;
2083 } else {
2084 struct rb_node *rb_node = mm->mm_rb.rb_node;
2085 *pprev = NULL;
2086 while (rb_node) {
2087 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2088 rb_node = rb_node->rb_right;
2089 }
2090 }
2091 return vma;
2092 }
2093
2094 /*
2095 * Verify that the stack growth is acceptable and
2096 * update accounting. This is shared with both the
2097 * grow-up and grow-down cases.
2098 */
2099 static int acct_stack_growth(struct vm_area_struct *vma,
2100 unsigned long size, unsigned long grow)
2101 {
2102 struct mm_struct *mm = vma->vm_mm;
2103 struct rlimit *rlim = current->signal->rlim;
2104 unsigned long new_start;
2105
2106 /* address space limit tests */
2107 if (!may_expand_vm(mm, grow))
2108 return -ENOMEM;
2109
2110 /* Stack limit test */
2111 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2112 return -ENOMEM;
2113
2114 /* mlock limit tests */
2115 if (vma->vm_flags & VM_LOCKED) {
2116 unsigned long locked;
2117 unsigned long limit;
2118 locked = mm->locked_vm + grow;
2119 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2120 limit >>= PAGE_SHIFT;
2121 if (locked > limit && !capable(CAP_IPC_LOCK))
2122 return -ENOMEM;
2123 }
2124
2125 /* Check to ensure the stack will not grow into a hugetlb-only region */
2126 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2127 vma->vm_end - size;
2128 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2129 return -EFAULT;
2130
2131 /*
2132 * Overcommit.. This must be the final test, as it will
2133 * update security statistics.
2134 */
2135 if (security_vm_enough_memory_mm(mm, grow))
2136 return -ENOMEM;
2137
2138 /* Ok, everything looks good - let it rip */
2139 if (vma->vm_flags & VM_LOCKED)
2140 mm->locked_vm += grow;
2141 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2142 return 0;
2143 }
2144
2145 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2146 /*
2147 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2148 * vma is the last one with address > vma->vm_end. Have to extend vma.
2149 */
2150 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2151 {
2152 struct vm_area_struct *next;
2153 unsigned long gap_addr;
2154 int error = 0;
2155
2156 if (!(vma->vm_flags & VM_GROWSUP))
2157 return -EFAULT;
2158
2159 /* Guard against exceeding limits of the address space. */
2160 address &= PAGE_MASK;
2161 if (address >= (TASK_SIZE & PAGE_MASK))
2162 return -ENOMEM;
2163 address += PAGE_SIZE;
2164
2165 /* Enforce stack_guard_gap */
2166 gap_addr = address + stack_guard_gap;
2167
2168 /* Guard against overflow */
2169 if (gap_addr < address || gap_addr > TASK_SIZE)
2170 gap_addr = TASK_SIZE;
2171
2172 next = vma->vm_next;
2173 if (next && next->vm_start < gap_addr) {
2174 if (!(next->vm_flags & VM_GROWSUP))
2175 return -ENOMEM;
2176 /* Check that both stack segments have the same anon_vma? */
2177 }
2178
2179 /* We must make sure the anon_vma is allocated. */
2180 if (unlikely(anon_vma_prepare(vma)))
2181 return -ENOMEM;
2182
2183 /* Enforce stack_guard_gap */
2184 gap_addr = address + stack_guard_gap;
2185 if (gap_addr < address)
2186 return -ENOMEM;
2187 next = vma->vm_next;
2188 if (next && next->vm_start < gap_addr) {
2189 if (!(next->vm_flags & VM_GROWSUP))
2190 return -ENOMEM;
2191 /* Check that both stack segments have the same anon_vma? */
2192 }
2193
2194 /* We must make sure the anon_vma is allocated. */
2195 if (unlikely(anon_vma_prepare(vma)))
2196 return -ENOMEM;
2197
2198 /*
2199 * vma->vm_start/vm_end cannot change under us because the caller
2200 * is required to hold the mmap_sem in read mode. We need the
2201 * anon_vma lock to serialize against concurrent expand_stacks.
2202 */
2203 vma_lock_anon_vma(vma);
2204
2205 /* Somebody else might have raced and expanded it already */
2206 if (address > vma->vm_end) {
2207 unsigned long size, grow;
2208
2209 size = address - vma->vm_start;
2210 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2211
2212 error = -ENOMEM;
2213 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2214 error = acct_stack_growth(vma, size, grow);
2215 if (!error) {
2216 /*
2217 * vma_gap_update() doesn't support concurrent
2218 * updates, but we only hold a shared mmap_sem
2219 * lock here, so we need to protect against
2220 * concurrent vma expansions.
2221 * vma_lock_anon_vma() doesn't help here, as
2222 * we don't guarantee that all growable vmas
2223 * in a mm share the same root anon vma.
2224 * So, we reuse mm->page_table_lock to guard
2225 * against concurrent vma expansions.
2226 */
2227 spin_lock(&vma->vm_mm->page_table_lock);
2228 anon_vma_interval_tree_pre_update_vma(vma);
2229 vma->vm_end = address;
2230 anon_vma_interval_tree_post_update_vma(vma);
2231 if (vma->vm_next)
2232 vma_gap_update(vma->vm_next);
2233 else
2234 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2235 spin_unlock(&vma->vm_mm->page_table_lock);
2236
2237 perf_event_mmap(vma);
2238 }
2239 }
2240 }
2241 vma_unlock_anon_vma(vma);
2242 khugepaged_enter_vma_merge(vma);
2243 validate_mm(vma->vm_mm);
2244 return error;
2245 }
2246 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2247
2248 /*
2249 * vma is the first one with address < vma->vm_start. Have to extend vma.
2250 */
2251 int expand_downwards(struct vm_area_struct *vma,
2252 unsigned long address)
2253 {
2254 struct vm_area_struct *prev;
2255 unsigned long gap_addr;
2256 int error;
2257
2258 address &= PAGE_MASK;
2259 error = security_mmap_addr(address);
2260 if (error)
2261 return error;
2262
2263 /* Enforce stack_guard_gap */
2264 gap_addr = address - stack_guard_gap;
2265 if (gap_addr > address)
2266 return -ENOMEM;
2267 prev = vma->vm_prev;
2268 if (prev && prev->vm_end > gap_addr) {
2269 if (!(prev->vm_flags & VM_GROWSDOWN))
2270 return -ENOMEM;
2271 /* Check that both stack segments have the same anon_vma? */
2272 }
2273
2274 /* We must make sure the anon_vma is allocated. */
2275 if (unlikely(anon_vma_prepare(vma)))
2276 return -ENOMEM;
2277
2278 /*
2279 * vma->vm_start/vm_end cannot change under us because the caller
2280 * is required to hold the mmap_sem in read mode. We need the
2281 * anon_vma lock to serialize against concurrent expand_stacks.
2282 */
2283 vma_lock_anon_vma(vma);
2284
2285 /* Somebody else might have raced and expanded it already */
2286 if (address < vma->vm_start) {
2287 unsigned long size, grow;
2288
2289 size = vma->vm_end - address;
2290 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2291
2292 error = -ENOMEM;
2293 if (grow <= vma->vm_pgoff) {
2294 error = acct_stack_growth(vma, size, grow);
2295 if (!error) {
2296 /*
2297 * vma_gap_update() doesn't support concurrent
2298 * updates, but we only hold a shared mmap_sem
2299 * lock here, so we need to protect against
2300 * concurrent vma expansions.
2301 * vma_lock_anon_vma() doesn't help here, as
2302 * we don't guarantee that all growable vmas
2303 * in a mm share the same root anon vma.
2304 * So, we reuse mm->page_table_lock to guard
2305 * against concurrent vma expansions.
2306 */
2307 spin_lock(&vma->vm_mm->page_table_lock);
2308 anon_vma_interval_tree_pre_update_vma(vma);
2309 vma->vm_start = address;
2310 vma->vm_pgoff -= grow;
2311 anon_vma_interval_tree_post_update_vma(vma);
2312 vma_gap_update(vma);
2313 spin_unlock(&vma->vm_mm->page_table_lock);
2314
2315 perf_event_mmap(vma);
2316 }
2317 }
2318 }
2319 vma_unlock_anon_vma(vma);
2320 khugepaged_enter_vma_merge(vma);
2321 validate_mm(vma->vm_mm);
2322 return error;
2323 }
2324
2325 /* enforced gap between the expanding stack and other mappings. */
2326 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2327
2328 static int __init cmdline_parse_stack_guard_gap(char *p)
2329 {
2330 unsigned long val;
2331 char *endptr;
2332
2333 val = simple_strtoul(p, &endptr, 10);
2334 if (!*endptr)
2335 stack_guard_gap = val << PAGE_SHIFT;
2336
2337 return 0;
2338 }
2339 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2340
2341 #ifdef CONFIG_STACK_GROWSUP
2342 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2343 {
2344 return expand_upwards(vma, address);
2345 }
2346
2347 struct vm_area_struct *
2348 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2349 {
2350 struct vm_area_struct *vma, *prev;
2351
2352 addr &= PAGE_MASK;
2353 vma = find_vma_prev(mm, addr, &prev);
2354 if (vma && (vma->vm_start <= addr))
2355 return vma;
2356 if (!prev || expand_stack(prev, addr))
2357 return NULL;
2358 if (prev->vm_flags & VM_LOCKED)
2359 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2360 return prev;
2361 }
2362 #else
2363 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2364 {
2365 return expand_downwards(vma, address);
2366 }
2367
2368 struct vm_area_struct *
2369 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2370 {
2371 struct vm_area_struct * vma;
2372 unsigned long start;
2373
2374 addr &= PAGE_MASK;
2375 vma = find_vma(mm,addr);
2376 if (!vma)
2377 return NULL;
2378 if (vma->vm_start <= addr)
2379 return vma;
2380 if (!(vma->vm_flags & VM_GROWSDOWN))
2381 return NULL;
2382 start = vma->vm_start;
2383 if (expand_stack(vma, addr))
2384 return NULL;
2385 if (vma->vm_flags & VM_LOCKED)
2386 __mlock_vma_pages_range(vma, addr, start, NULL);
2387 return vma;
2388 }
2389 #endif
2390
2391 /*
2392 * Ok - we have the memory areas we should free on the vma list,
2393 * so release them, and do the vma updates.
2394 *
2395 * Called with the mm semaphore held.
2396 */
2397 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2398 {
2399 unsigned long nr_accounted = 0;
2400
2401 /* Update high watermark before we lower total_vm */
2402 update_hiwater_vm(mm);
2403 do {
2404 long nrpages = vma_pages(vma);
2405
2406 if (vma->vm_flags & VM_ACCOUNT)
2407 nr_accounted += nrpages;
2408 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2409 vma = remove_vma(vma);
2410 } while (vma);
2411 vm_unacct_memory(nr_accounted);
2412 validate_mm(mm);
2413 }
2414
2415 /*
2416 * Get rid of page table information in the indicated region.
2417 *
2418 * Called with the mm semaphore held.
2419 */
2420 static void unmap_region(struct mm_struct *mm,
2421 struct vm_area_struct *vma, struct vm_area_struct *prev,
2422 unsigned long start, unsigned long end)
2423 {
2424 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2425 struct mmu_gather tlb;
2426
2427 lru_add_drain();
2428 tlb_gather_mmu(&tlb, mm, start, end);
2429 update_hiwater_rss(mm);
2430 unmap_vmas(&tlb, vma, start, end);
2431 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2432 next ? next->vm_start : USER_PGTABLES_CEILING);
2433 tlb_finish_mmu(&tlb, start, end);
2434 }
2435
2436 /*
2437 * Create a list of vma's touched by the unmap, removing them from the mm's
2438 * vma list as we go..
2439 */
2440 static void
2441 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2442 struct vm_area_struct *prev, unsigned long end)
2443 {
2444 struct vm_area_struct **insertion_point;
2445 struct vm_area_struct *tail_vma = NULL;
2446 unsigned long addr;
2447
2448 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2449 vma->vm_prev = NULL;
2450 do {
2451 vma_rb_erase(vma, &mm->mm_rb);
2452 mm->map_count--;
2453 tail_vma = vma;
2454 vma = vma->vm_next;
2455 } while (vma && vma->vm_start < end);
2456 *insertion_point = vma;
2457 if (vma) {
2458 vma->vm_prev = prev;
2459 vma_gap_update(vma);
2460 } else
2461 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2462 tail_vma->vm_next = NULL;
2463 if (mm->unmap_area == arch_unmap_area)
2464 addr = prev ? prev->vm_end : mm->mmap_base;
2465 else
2466 addr = vma ? vma->vm_start : mm->mmap_base;
2467 mm->unmap_area(mm, addr);
2468
2469 /* Kill the cache */
2470 vmacache_invalidate(mm);
2471 }
2472
2473 /*
2474 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2475 * munmap path where it doesn't make sense to fail.
2476 */
2477 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2478 unsigned long addr, int new_below)
2479 {
2480 struct vm_area_struct *new;
2481 int err = -ENOMEM;
2482
2483 if (is_vm_hugetlb_page(vma) && (addr &
2484 ~(huge_page_mask(hstate_vma(vma)))))
2485 return -EINVAL;
2486
2487 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2488 if (!new)
2489 goto out_err;
2490
2491 /* most fields are the same, copy all, and then fixup */
2492 *new = *vma;
2493
2494 INIT_LIST_HEAD(&new->anon_vma_chain);
2495
2496 if (new_below)
2497 new->vm_end = addr;
2498 else {
2499 new->vm_start = addr;
2500 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2501 }
2502
2503 err = vma_dup_policy(vma, new);
2504 if (err)
2505 goto out_free_vma;
2506
2507 if (anon_vma_clone(new, vma))
2508 goto out_free_mpol;
2509
2510 if (new->vm_file)
2511 get_file(new->vm_file);
2512
2513 if (new->vm_ops && new->vm_ops->open)
2514 new->vm_ops->open(new);
2515
2516 if (new_below)
2517 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2518 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2519 else
2520 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2521
2522 /* Success. */
2523 if (!err)
2524 return 0;
2525
2526 /* Clean everything up if vma_adjust failed. */
2527 if (new->vm_ops && new->vm_ops->close)
2528 new->vm_ops->close(new);
2529 if (new->vm_file)
2530 fput(new->vm_file);
2531 unlink_anon_vmas(new);
2532 out_free_mpol:
2533 mpol_put(vma_policy(new));
2534 out_free_vma:
2535 kmem_cache_free(vm_area_cachep, new);
2536 out_err:
2537 return err;
2538 }
2539
2540 /*
2541 * Split a vma into two pieces at address 'addr', a new vma is allocated
2542 * either for the first part or the tail.
2543 */
2544 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2545 unsigned long addr, int new_below)
2546 {
2547 if (mm->map_count >= sysctl_max_map_count)
2548 return -ENOMEM;
2549
2550 return __split_vma(mm, vma, addr, new_below);
2551 }
2552
2553 /* Munmap is split into 2 main parts -- this part which finds
2554 * what needs doing, and the areas themselves, which do the
2555 * work. This now handles partial unmappings.
2556 * Jeremy Fitzhardinge <jeremy@goop.org>
2557 */
2558 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2559 {
2560 unsigned long end;
2561 struct vm_area_struct *vma, *prev, *last;
2562
2563 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2564 return -EINVAL;
2565
2566 if ((len = PAGE_ALIGN(len)) == 0)
2567 return -EINVAL;
2568
2569 /* Find the first overlapping VMA */
2570 vma = find_vma(mm, start);
2571 if (!vma)
2572 return 0;
2573 prev = vma->vm_prev;
2574 /* we have start < vma->vm_end */
2575
2576 /* if it doesn't overlap, we have nothing.. */
2577 end = start + len;
2578 if (vma->vm_start >= end)
2579 return 0;
2580
2581 /*
2582 * If we need to split any vma, do it now to save pain later.
2583 *
2584 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2585 * unmapped vm_area_struct will remain in use: so lower split_vma
2586 * places tmp vma above, and higher split_vma places tmp vma below.
2587 */
2588 if (start > vma->vm_start) {
2589 int error;
2590
2591 /*
2592 * Make sure that map_count on return from munmap() will
2593 * not exceed its limit; but let map_count go just above
2594 * its limit temporarily, to help free resources as expected.
2595 */
2596 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2597 return -ENOMEM;
2598
2599 error = __split_vma(mm, vma, start, 0);
2600 if (error)
2601 return error;
2602 prev = vma;
2603 }
2604
2605 /* Does it split the last one? */
2606 last = find_vma(mm, end);
2607 if (last && end > last->vm_start) {
2608 int error = __split_vma(mm, last, end, 1);
2609 if (error)
2610 return error;
2611 }
2612 vma = prev? prev->vm_next: mm->mmap;
2613
2614 /*
2615 * unlock any mlock()ed ranges before detaching vmas
2616 */
2617 if (mm->locked_vm) {
2618 struct vm_area_struct *tmp = vma;
2619 while (tmp && tmp->vm_start < end) {
2620 if (tmp->vm_flags & VM_LOCKED) {
2621 mm->locked_vm -= vma_pages(tmp);
2622 munlock_vma_pages_all(tmp);
2623 }
2624 tmp = tmp->vm_next;
2625 }
2626 }
2627
2628 /*
2629 * Remove the vma's, and unmap the actual pages
2630 */
2631 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2632 unmap_region(mm, vma, prev, start, end);
2633
2634 /* Fix up all other VM information */
2635 remove_vma_list(mm, vma);
2636
2637 return 0;
2638 }
2639
2640 int vm_munmap(unsigned long start, size_t len)
2641 {
2642 int ret;
2643 struct mm_struct *mm = current->mm;
2644
2645 down_write(&mm->mmap_sem);
2646 ret = do_munmap(mm, start, len);
2647 up_write(&mm->mmap_sem);
2648 return ret;
2649 }
2650 EXPORT_SYMBOL(vm_munmap);
2651
2652 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2653 {
2654 profile_munmap(addr);
2655 return vm_munmap(addr, len);
2656 }
2657
2658 static inline void verify_mm_writelocked(struct mm_struct *mm)
2659 {
2660 #ifdef CONFIG_DEBUG_VM
2661 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2662 WARN_ON(1);
2663 up_read(&mm->mmap_sem);
2664 }
2665 #endif
2666 }
2667
2668 /*
2669 * this is really a simplified "do_mmap". it only handles
2670 * anonymous maps. eventually we may be able to do some
2671 * brk-specific accounting here.
2672 */
2673 static unsigned long do_brk(unsigned long addr, unsigned long len)
2674 {
2675 struct mm_struct * mm = current->mm;
2676 struct vm_area_struct * vma, * prev;
2677 unsigned long flags;
2678 struct rb_node ** rb_link, * rb_parent;
2679 pgoff_t pgoff = addr >> PAGE_SHIFT;
2680 int error;
2681
2682 len = PAGE_ALIGN(len);
2683 if (!len)
2684 return addr;
2685
2686 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2687
2688 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2689 if (error & ~PAGE_MASK)
2690 return error;
2691
2692 /*
2693 * mlock MCL_FUTURE?
2694 */
2695 if (mm->def_flags & VM_LOCKED) {
2696 unsigned long locked, lock_limit;
2697 locked = len >> PAGE_SHIFT;
2698 locked += mm->locked_vm;
2699 lock_limit = rlimit(RLIMIT_MEMLOCK);
2700 lock_limit >>= PAGE_SHIFT;
2701 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2702 return -EAGAIN;
2703 }
2704
2705 /*
2706 * mm->mmap_sem is required to protect against another thread
2707 * changing the mappings in case we sleep.
2708 */
2709 verify_mm_writelocked(mm);
2710
2711 /*
2712 * Clear old maps. this also does some error checking for us
2713 */
2714 munmap_back:
2715 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2716 if (do_munmap(mm, addr, len))
2717 return -ENOMEM;
2718 goto munmap_back;
2719 }
2720
2721 /* Check against address space limits *after* clearing old maps... */
2722 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2723 return -ENOMEM;
2724
2725 if (mm->map_count > sysctl_max_map_count)
2726 return -ENOMEM;
2727
2728 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2729 return -ENOMEM;
2730
2731 /* Can we just expand an old private anonymous mapping? */
2732 vma = vma_merge(mm, prev, addr, addr + len, flags,
2733 NULL, NULL, pgoff, NULL, NULL);
2734 if (vma)
2735 goto out;
2736
2737 /*
2738 * create a vma struct for an anonymous mapping
2739 */
2740 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2741 if (!vma) {
2742 vm_unacct_memory(len >> PAGE_SHIFT);
2743 return -ENOMEM;
2744 }
2745
2746 INIT_LIST_HEAD(&vma->anon_vma_chain);
2747 vma->vm_mm = mm;
2748 vma->vm_start = addr;
2749 vma->vm_end = addr + len;
2750 vma->vm_pgoff = pgoff;
2751 vma->vm_flags = flags;
2752 vma->vm_page_prot = vm_get_page_prot(flags);
2753 vma_link(mm, vma, prev, rb_link, rb_parent);
2754 out:
2755 perf_event_mmap(vma);
2756 mm->total_vm += len >> PAGE_SHIFT;
2757 if (flags & VM_LOCKED)
2758 mm->locked_vm += (len >> PAGE_SHIFT);
2759 return addr;
2760 }
2761
2762 unsigned long vm_brk(unsigned long addr, unsigned long len)
2763 {
2764 struct mm_struct *mm = current->mm;
2765 unsigned long ret;
2766 bool populate;
2767
2768 down_write(&mm->mmap_sem);
2769 ret = do_brk(addr, len);
2770 populate = ((mm->def_flags & VM_LOCKED) != 0);
2771 up_write(&mm->mmap_sem);
2772 if (populate)
2773 mm_populate(addr, len);
2774 return ret;
2775 }
2776 EXPORT_SYMBOL(vm_brk);
2777
2778 /* Release all mmaps. */
2779 void exit_mmap(struct mm_struct *mm)
2780 {
2781 struct mmu_gather tlb;
2782 struct vm_area_struct *vma;
2783 unsigned long nr_accounted = 0;
2784
2785 /* mm's last user has gone, and its about to be pulled down */
2786 mmu_notifier_release(mm);
2787
2788 if (mm->locked_vm) {
2789 vma = mm->mmap;
2790 while (vma) {
2791 if (vma->vm_flags & VM_LOCKED)
2792 munlock_vma_pages_all(vma);
2793 vma = vma->vm_next;
2794 }
2795 }
2796
2797 arch_exit_mmap(mm);
2798
2799 vma = mm->mmap;
2800 if (!vma) /* Can happen if dup_mmap() received an OOM */
2801 return;
2802
2803 lru_add_drain();
2804 flush_cache_mm(mm);
2805 tlb_gather_mmu(&tlb, mm, 0, -1);
2806 /* update_hiwater_rss(mm) here? but nobody should be looking */
2807 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2808 unmap_vmas(&tlb, vma, 0, -1);
2809
2810 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2811 tlb_finish_mmu(&tlb, 0, -1);
2812
2813 /*
2814 * Walk the list again, actually closing and freeing it,
2815 * with preemption enabled, without holding any MM locks.
2816 */
2817 while (vma) {
2818 if (vma->vm_flags & VM_ACCOUNT)
2819 nr_accounted += vma_pages(vma);
2820 vma = remove_vma(vma);
2821 }
2822 vm_unacct_memory(nr_accounted);
2823
2824 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2825 }
2826
2827 /* Insert vm structure into process list sorted by address
2828 * and into the inode's i_mmap tree. If vm_file is non-NULL
2829 * then i_mmap_mutex is taken here.
2830 */
2831 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2832 {
2833 struct vm_area_struct *prev;
2834 struct rb_node **rb_link, *rb_parent;
2835
2836 /*
2837 * The vm_pgoff of a purely anonymous vma should be irrelevant
2838 * until its first write fault, when page's anon_vma and index
2839 * are set. But now set the vm_pgoff it will almost certainly
2840 * end up with (unless mremap moves it elsewhere before that
2841 * first wfault), so /proc/pid/maps tells a consistent story.
2842 *
2843 * By setting it to reflect the virtual start address of the
2844 * vma, merges and splits can happen in a seamless way, just
2845 * using the existing file pgoff checks and manipulations.
2846 * Similarly in do_mmap_pgoff and in do_brk.
2847 */
2848 if (!vma->vm_file) {
2849 BUG_ON(vma->anon_vma);
2850 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2851 }
2852 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2853 &prev, &rb_link, &rb_parent))
2854 return -ENOMEM;
2855 if ((vma->vm_flags & VM_ACCOUNT) &&
2856 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2857 return -ENOMEM;
2858
2859 vma_link(mm, vma, prev, rb_link, rb_parent);
2860 return 0;
2861 }
2862
2863 /*
2864 * Copy the vma structure to a new location in the same mm,
2865 * prior to moving page table entries, to effect an mremap move.
2866 */
2867 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2868 unsigned long addr, unsigned long len, pgoff_t pgoff,
2869 bool *need_rmap_locks)
2870 {
2871 struct vm_area_struct *vma = *vmap;
2872 unsigned long vma_start = vma->vm_start;
2873 struct mm_struct *mm = vma->vm_mm;
2874 struct vm_area_struct *new_vma, *prev;
2875 struct rb_node **rb_link, *rb_parent;
2876 bool faulted_in_anon_vma = true;
2877
2878 /*
2879 * If anonymous vma has not yet been faulted, update new pgoff
2880 * to match new location, to increase its chance of merging.
2881 */
2882 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2883 pgoff = addr >> PAGE_SHIFT;
2884 faulted_in_anon_vma = false;
2885 }
2886
2887 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2888 return NULL; /* should never get here */
2889 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2890 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2891 vma_get_anon_name(vma));
2892 if (new_vma) {
2893 /*
2894 * Source vma may have been merged into new_vma
2895 */
2896 if (unlikely(vma_start >= new_vma->vm_start &&
2897 vma_start < new_vma->vm_end)) {
2898 /*
2899 * The only way we can get a vma_merge with
2900 * self during an mremap is if the vma hasn't
2901 * been faulted in yet and we were allowed to
2902 * reset the dst vma->vm_pgoff to the
2903 * destination address of the mremap to allow
2904 * the merge to happen. mremap must change the
2905 * vm_pgoff linearity between src and dst vmas
2906 * (in turn preventing a vma_merge) to be
2907 * safe. It is only safe to keep the vm_pgoff
2908 * linear if there are no pages mapped yet.
2909 */
2910 VM_BUG_ON(faulted_in_anon_vma);
2911 *vmap = vma = new_vma;
2912 }
2913 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2914 } else {
2915 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2916 if (new_vma) {
2917 *new_vma = *vma;
2918 new_vma->vm_start = addr;
2919 new_vma->vm_end = addr + len;
2920 new_vma->vm_pgoff = pgoff;
2921 if (vma_dup_policy(vma, new_vma))
2922 goto out_free_vma;
2923 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2924 if (anon_vma_clone(new_vma, vma))
2925 goto out_free_mempol;
2926 if (new_vma->vm_file)
2927 get_file(new_vma->vm_file);
2928 if (new_vma->vm_ops && new_vma->vm_ops->open)
2929 new_vma->vm_ops->open(new_vma);
2930 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2931 *need_rmap_locks = false;
2932 }
2933 }
2934 return new_vma;
2935
2936 out_free_mempol:
2937 mpol_put(vma_policy(new_vma));
2938 out_free_vma:
2939 kmem_cache_free(vm_area_cachep, new_vma);
2940 return NULL;
2941 }
2942
2943 /*
2944 * Return true if the calling process may expand its vm space by the passed
2945 * number of pages
2946 */
2947 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2948 {
2949 unsigned long cur = mm->total_vm; /* pages */
2950 unsigned long lim;
2951
2952 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2953
2954 if (cur + npages > lim)
2955 return 0;
2956 return 1;
2957 }
2958
2959
2960 static int special_mapping_fault(struct vm_area_struct *vma,
2961 struct vm_fault *vmf)
2962 {
2963 pgoff_t pgoff;
2964 struct page **pages;
2965
2966 /*
2967 * special mappings have no vm_file, and in that case, the mm
2968 * uses vm_pgoff internally. So we have to subtract it from here.
2969 * We are allowed to do this because we are the mm; do not copy
2970 * this code into drivers!
2971 */
2972 pgoff = vmf->pgoff - vma->vm_pgoff;
2973
2974 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2975 pgoff--;
2976
2977 if (*pages) {
2978 struct page *page = *pages;
2979 get_page(page);
2980 vmf->page = page;
2981 return 0;
2982 }
2983
2984 return VM_FAULT_SIGBUS;
2985 }
2986
2987 /*
2988 * Having a close hook prevents vma merging regardless of flags.
2989 */
2990 static void special_mapping_close(struct vm_area_struct *vma)
2991 {
2992 }
2993
2994 static const struct vm_operations_struct special_mapping_vmops = {
2995 .close = special_mapping_close,
2996 .fault = special_mapping_fault,
2997 };
2998
2999 /*
3000 * Called with mm->mmap_sem held for writing.
3001 * Insert a new vma covering the given region, with the given flags.
3002 * Its pages are supplied by the given array of struct page *.
3003 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3004 * The region past the last page supplied will always produce SIGBUS.
3005 * The array pointer and the pages it points to are assumed to stay alive
3006 * for as long as this mapping might exist.
3007 */
3008 int install_special_mapping(struct mm_struct *mm,
3009 unsigned long addr, unsigned long len,
3010 unsigned long vm_flags, struct page **pages)
3011 {
3012 int ret;
3013 struct vm_area_struct *vma;
3014
3015 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3016 if (unlikely(vma == NULL))
3017 return -ENOMEM;
3018
3019 INIT_LIST_HEAD(&vma->anon_vma_chain);
3020 vma->vm_mm = mm;
3021 vma->vm_start = addr;
3022 vma->vm_end = addr + len;
3023
3024 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
3025 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3026
3027 vma->vm_ops = &special_mapping_vmops;
3028 vma->vm_private_data = pages;
3029
3030 ret = insert_vm_struct(mm, vma);
3031 if (ret)
3032 goto out;
3033
3034 mm->total_vm += len >> PAGE_SHIFT;
3035
3036 perf_event_mmap(vma);
3037
3038 return 0;
3039
3040 out:
3041 kmem_cache_free(vm_area_cachep, vma);
3042 return ret;
3043 }
3044
3045 static DEFINE_MUTEX(mm_all_locks_mutex);
3046
3047 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3048 {
3049 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3050 /*
3051 * The LSB of head.next can't change from under us
3052 * because we hold the mm_all_locks_mutex.
3053 */
3054 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3055 /*
3056 * We can safely modify head.next after taking the
3057 * anon_vma->root->rwsem. If some other vma in this mm shares
3058 * the same anon_vma we won't take it again.
3059 *
3060 * No need of atomic instructions here, head.next
3061 * can't change from under us thanks to the
3062 * anon_vma->root->rwsem.
3063 */
3064 if (__test_and_set_bit(0, (unsigned long *)
3065 &anon_vma->root->rb_root.rb_node))
3066 BUG();
3067 }
3068 }
3069
3070 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3071 {
3072 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3073 /*
3074 * AS_MM_ALL_LOCKS can't change from under us because
3075 * we hold the mm_all_locks_mutex.
3076 *
3077 * Operations on ->flags have to be atomic because
3078 * even if AS_MM_ALL_LOCKS is stable thanks to the
3079 * mm_all_locks_mutex, there may be other cpus
3080 * changing other bitflags in parallel to us.
3081 */
3082 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3083 BUG();
3084 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3085 }
3086 }
3087
3088 /*
3089 * This operation locks against the VM for all pte/vma/mm related
3090 * operations that could ever happen on a certain mm. This includes
3091 * vmtruncate, try_to_unmap, and all page faults.
3092 *
3093 * The caller must take the mmap_sem in write mode before calling
3094 * mm_take_all_locks(). The caller isn't allowed to release the
3095 * mmap_sem until mm_drop_all_locks() returns.
3096 *
3097 * mmap_sem in write mode is required in order to block all operations
3098 * that could modify pagetables and free pages without need of
3099 * altering the vma layout (for example populate_range() with
3100 * nonlinear vmas). It's also needed in write mode to avoid new
3101 * anon_vmas to be associated with existing vmas.
3102 *
3103 * A single task can't take more than one mm_take_all_locks() in a row
3104 * or it would deadlock.
3105 *
3106 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3107 * mapping->flags avoid to take the same lock twice, if more than one
3108 * vma in this mm is backed by the same anon_vma or address_space.
3109 *
3110 * We can take all the locks in random order because the VM code
3111 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3112 * takes more than one of them in a row. Secondly we're protected
3113 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3114 *
3115 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3116 * that may have to take thousand of locks.
3117 *
3118 * mm_take_all_locks() can fail if it's interrupted by signals.
3119 */
3120 int mm_take_all_locks(struct mm_struct *mm)
3121 {
3122 struct vm_area_struct *vma;
3123 struct anon_vma_chain *avc;
3124
3125 BUG_ON(down_read_trylock(&mm->mmap_sem));
3126
3127 mutex_lock(&mm_all_locks_mutex);
3128
3129 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3130 if (signal_pending(current))
3131 goto out_unlock;
3132 if (vma->vm_file && vma->vm_file->f_mapping)
3133 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3134 }
3135
3136 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3137 if (signal_pending(current))
3138 goto out_unlock;
3139 if (vma->anon_vma)
3140 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3141 vm_lock_anon_vma(mm, avc->anon_vma);
3142 }
3143
3144 return 0;
3145
3146 out_unlock:
3147 mm_drop_all_locks(mm);
3148 return -EINTR;
3149 }
3150
3151 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3152 {
3153 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3154 /*
3155 * The LSB of head.next can't change to 0 from under
3156 * us because we hold the mm_all_locks_mutex.
3157 *
3158 * We must however clear the bitflag before unlocking
3159 * the vma so the users using the anon_vma->rb_root will
3160 * never see our bitflag.
3161 *
3162 * No need of atomic instructions here, head.next
3163 * can't change from under us until we release the
3164 * anon_vma->root->rwsem.
3165 */
3166 if (!__test_and_clear_bit(0, (unsigned long *)
3167 &anon_vma->root->rb_root.rb_node))
3168 BUG();
3169 anon_vma_unlock_write(anon_vma);
3170 }
3171 }
3172
3173 static void vm_unlock_mapping(struct address_space *mapping)
3174 {
3175 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3176 /*
3177 * AS_MM_ALL_LOCKS can't change to 0 from under us
3178 * because we hold the mm_all_locks_mutex.
3179 */
3180 mutex_unlock(&mapping->i_mmap_mutex);
3181 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3182 &mapping->flags))
3183 BUG();
3184 }
3185 }
3186
3187 /*
3188 * The mmap_sem cannot be released by the caller until
3189 * mm_drop_all_locks() returns.
3190 */
3191 void mm_drop_all_locks(struct mm_struct *mm)
3192 {
3193 struct vm_area_struct *vma;
3194 struct anon_vma_chain *avc;
3195
3196 BUG_ON(down_read_trylock(&mm->mmap_sem));
3197 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3198
3199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3200 if (vma->anon_vma)
3201 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3202 vm_unlock_anon_vma(avc->anon_vma);
3203 if (vma->vm_file && vma->vm_file->f_mapping)
3204 vm_unlock_mapping(vma->vm_file->f_mapping);
3205 }
3206
3207 mutex_unlock(&mm_all_locks_mutex);
3208 }
3209
3210 /*
3211 * initialise the VMA slab
3212 */
3213 void __init mmap_init(void)
3214 {
3215 int ret;
3216
3217 ret = percpu_counter_init(&vm_committed_as, 0);
3218 VM_BUG_ON(ret);
3219 }
3220
3221 /*
3222 * Initialise sysctl_user_reserve_kbytes.
3223 *
3224 * This is intended to prevent a user from starting a single memory hogging
3225 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3226 * mode.
3227 *
3228 * The default value is min(3% of free memory, 128MB)
3229 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3230 */
3231 static int init_user_reserve(void)
3232 {
3233 unsigned long free_kbytes;
3234
3235 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3236
3237 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3238 return 0;
3239 }
3240 module_init(init_user_reserve)
3241
3242 /*
3243 * Initialise sysctl_admin_reserve_kbytes.
3244 *
3245 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3246 * to log in and kill a memory hogging process.
3247 *
3248 * Systems with more than 256MB will reserve 8MB, enough to recover
3249 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3250 * only reserve 3% of free pages by default.
3251 */
3252 static int init_admin_reserve(void)
3253 {
3254 unsigned long free_kbytes;
3255
3256 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3257
3258 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3259 return 0;
3260 }
3261 module_init(init_admin_reserve)
3262
3263 /*
3264 * Reinititalise user and admin reserves if memory is added or removed.
3265 *
3266 * The default user reserve max is 128MB, and the default max for the
3267 * admin reserve is 8MB. These are usually, but not always, enough to
3268 * enable recovery from a memory hogging process using login/sshd, a shell,
3269 * and tools like top. It may make sense to increase or even disable the
3270 * reserve depending on the existence of swap or variations in the recovery
3271 * tools. So, the admin may have changed them.
3272 *
3273 * If memory is added and the reserves have been eliminated or increased above
3274 * the default max, then we'll trust the admin.
3275 *
3276 * If memory is removed and there isn't enough free memory, then we
3277 * need to reset the reserves.
3278 *
3279 * Otherwise keep the reserve set by the admin.
3280 */
3281 static int reserve_mem_notifier(struct notifier_block *nb,
3282 unsigned long action, void *data)
3283 {
3284 unsigned long tmp, free_kbytes;
3285
3286 switch (action) {
3287 case MEM_ONLINE:
3288 /* Default max is 128MB. Leave alone if modified by operator. */
3289 tmp = sysctl_user_reserve_kbytes;
3290 if (0 < tmp && tmp < (1UL << 17))
3291 init_user_reserve();
3292
3293 /* Default max is 8MB. Leave alone if modified by operator. */
3294 tmp = sysctl_admin_reserve_kbytes;
3295 if (0 < tmp && tmp < (1UL << 13))
3296 init_admin_reserve();
3297
3298 break;
3299 case MEM_OFFLINE:
3300 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3301
3302 if (sysctl_user_reserve_kbytes > free_kbytes) {
3303 init_user_reserve();
3304 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3305 sysctl_user_reserve_kbytes);
3306 }
3307
3308 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3309 init_admin_reserve();
3310 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3311 sysctl_admin_reserve_kbytes);
3312 }
3313 break;
3314 default:
3315 break;
3316 }
3317 return NOTIFY_OK;
3318 }
3319
3320 static struct notifier_block reserve_mem_nb = {
3321 .notifier_call = reserve_mem_notifier,
3322 };
3323
3324 static int __meminit init_reserve_notifier(void)
3325 {
3326 if (register_hotmemory_notifier(&reserve_mem_nb))
3327 printk("Failed registering memory add/remove notifier for admin reserve");
3328
3329 return 0;
3330 }
3331 module_init(init_reserve_notifier)