2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/ptrace.h>
44 #include <asm/tlbflush.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
56 int migrate_prep(void)
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
77 bool isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
79 struct address_space
*mapping
;
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
90 if (unlikely(!get_page_unless_zero(page
)))
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
98 if (unlikely(!__PageMovable(page
)))
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
111 if (unlikely(!trylock_page(page
)))
114 if (!PageMovable(page
) || PageIsolated(page
))
115 goto out_no_isolated
;
117 mapping
= page_mapping(page
);
118 VM_BUG_ON_PAGE(!mapping
, page
);
120 if (!mapping
->a_ops
->isolate_page(page
, mode
))
121 goto out_no_isolated
;
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page
));
125 __SetPageIsolated(page
);
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page
*page
)
141 struct address_space
*mapping
;
143 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
144 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
145 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
147 mapping
= page_mapping(page
);
148 mapping
->a_ops
->putback_page(page
);
149 __ClearPageIsolated(page
);
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
160 void putback_movable_pages(struct list_head
*l
)
165 list_for_each_entry_safe(page
, page2
, l
, lru
) {
166 if (unlikely(PageHuge(page
))) {
167 putback_active_hugepage(page
);
170 list_del(&page
->lru
);
171 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
172 page_is_file_cache(page
));
174 * We isolated non-lru movable page so here we can use
175 * __PageMovable because LRU page's mapping cannot have
176 * PAGE_MAPPING_MOVABLE.
178 if (unlikely(__PageMovable(page
))) {
179 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
181 if (PageMovable(page
))
182 putback_movable_page(page
);
184 __ClearPageIsolated(page
);
188 putback_lru_page(page
);
194 * Restore a potential migration pte to a working pte entry
196 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
197 unsigned long addr
, void *old
)
199 struct mm_struct
*mm
= vma
->vm_mm
;
205 if (unlikely(PageHuge(new))) {
206 ptep
= huge_pte_offset(mm
, addr
);
209 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
211 pmd
= mm_find_pmd(mm
, addr
);
215 ptep
= pte_offset_map(pmd
, addr
);
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
222 ptl
= pte_lockptr(mm
, pmd
);
227 if (!is_swap_pte(pte
))
230 entry
= pte_to_swp_entry(pte
);
232 if (!is_migration_entry(entry
) ||
233 migration_entry_to_page(entry
) != old
)
237 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
238 if (pte_swp_soft_dirty(*ptep
))
239 pte
= pte_mksoft_dirty(pte
);
241 /* Recheck VMA as permissions can change since migration started */
242 if (is_write_migration_entry(entry
))
243 pte
= maybe_mkwrite(pte
, vma
);
245 #ifdef CONFIG_HUGETLB_PAGE
247 pte
= pte_mkhuge(pte
);
248 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
251 flush_dcache_page(new);
252 set_pte_at(mm
, addr
, ptep
, pte
);
256 hugepage_add_anon_rmap(new, vma
, addr
);
259 } else if (PageAnon(new))
260 page_add_anon_rmap(new, vma
, addr
);
262 page_add_file_rmap(new);
264 if (vma
->vm_flags
& VM_LOCKED
)
267 /* No need to invalidate - it was non-present before */
268 update_mmu_cache(vma
, addr
, ptep
);
270 pte_unmap_unlock(ptep
, ptl
);
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
279 static void remove_migration_ptes(struct page
*old
, struct page
*new)
281 struct rmap_walk_control rwc
= {
282 .rmap_one
= remove_migration_pte
,
286 rmap_walk(new, &rwc
);
290 * Something used the pte of a page under migration. We need to
291 * get to the page and wait until migration is finished.
292 * When we return from this function the fault will be retried.
294 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
303 if (!is_swap_pte(pte
))
306 entry
= pte_to_swp_entry(pte
);
307 if (!is_migration_entry(entry
))
310 page
= migration_entry_to_page(entry
);
313 * Once radix-tree replacement of page migration started, page_count
314 * *must* be zero. And, we don't want to call wait_on_page_locked()
315 * against a page without get_page().
316 * So, we use get_page_unless_zero(), here. Even failed, page fault
319 if (!get_page_unless_zero(page
))
321 pte_unmap_unlock(ptep
, ptl
);
322 wait_on_page_locked(page
);
326 pte_unmap_unlock(ptep
, ptl
);
329 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
330 unsigned long address
)
332 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
333 pte_t
*ptep
= pte_offset_map(pmd
, address
);
334 __migration_entry_wait(mm
, ptep
, ptl
);
337 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
338 struct mm_struct
*mm
, pte_t
*pte
)
340 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
341 __migration_entry_wait(mm
, pte
, ptl
);
345 /* Returns true if all buffers are successfully locked */
346 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
347 enum migrate_mode mode
)
349 struct buffer_head
*bh
= head
;
351 /* Simple case, sync compaction */
352 if (mode
!= MIGRATE_ASYNC
) {
356 bh
= bh
->b_this_page
;
358 } while (bh
!= head
);
363 /* async case, we cannot block on lock_buffer so use trylock_buffer */
366 if (!trylock_buffer(bh
)) {
368 * We failed to lock the buffer and cannot stall in
369 * async migration. Release the taken locks
371 struct buffer_head
*failed_bh
= bh
;
374 while (bh
!= failed_bh
) {
377 bh
= bh
->b_this_page
;
382 bh
= bh
->b_this_page
;
383 } while (bh
!= head
);
387 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
388 enum migrate_mode mode
)
392 #endif /* CONFIG_BLOCK */
395 * Replace the page in the mapping.
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 int migrate_page_move_mapping(struct address_space
*mapping
,
403 struct page
*newpage
, struct page
*page
,
404 struct buffer_head
*head
, enum migrate_mode mode
,
407 struct zone
*oldzone
, *newzone
;
409 int expected_count
= 1 + extra_count
;
413 /* Anonymous page without mapping */
414 if (page_count(page
) != expected_count
)
417 /* No turning back from here */
418 set_page_memcg(newpage
, page_memcg(page
));
419 newpage
->index
= page
->index
;
420 newpage
->mapping
= page
->mapping
;
421 if (PageSwapBacked(page
))
422 SetPageSwapBacked(newpage
);
424 return MIGRATEPAGE_SUCCESS
;
427 oldzone
= page_zone(page
);
428 newzone
= page_zone(newpage
);
430 spin_lock_irq(&mapping
->tree_lock
);
432 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
435 expected_count
+= 1 + page_has_private(page
);
436 if (page_count(page
) != expected_count
||
437 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
438 spin_unlock_irq(&mapping
->tree_lock
);
442 if (!page_freeze_refs(page
, expected_count
)) {
443 spin_unlock_irq(&mapping
->tree_lock
);
448 * In the async migration case of moving a page with buffers, lock the
449 * buffers using trylock before the mapping is moved. If the mapping
450 * was moved, we later failed to lock the buffers and could not move
451 * the mapping back due to an elevated page count, we would have to
452 * block waiting on other references to be dropped.
454 if (mode
== MIGRATE_ASYNC
&& head
&&
455 !buffer_migrate_lock_buffers(head
, mode
)) {
456 page_unfreeze_refs(page
, expected_count
);
457 spin_unlock_irq(&mapping
->tree_lock
);
462 * Now we know that no one else is looking at the page:
463 * no turning back from here.
465 set_page_memcg(newpage
, page_memcg(page
));
466 newpage
->index
= page
->index
;
467 newpage
->mapping
= page
->mapping
;
468 if (PageSwapBacked(page
))
469 SetPageSwapBacked(newpage
);
471 get_page(newpage
); /* add cache reference */
472 if (PageSwapCache(page
)) {
473 SetPageSwapCache(newpage
);
474 set_page_private(newpage
, page_private(page
));
477 /* Move dirty while page refs frozen and newpage not yet exposed */
478 dirty
= PageDirty(page
);
480 ClearPageDirty(page
);
481 SetPageDirty(newpage
);
484 radix_tree_replace_slot(pslot
, newpage
);
487 * Drop cache reference from old page by unfreezing
488 * to one less reference.
489 * We know this isn't the last reference.
491 page_unfreeze_refs(page
, expected_count
- 1);
493 spin_unlock(&mapping
->tree_lock
);
494 /* Leave irq disabled to prevent preemption while updating stats */
497 * If moved to a different zone then also account
498 * the page for that zone. Other VM counters will be
499 * taken care of when we establish references to the
500 * new page and drop references to the old page.
502 * Note that anonymous pages are accounted for
503 * via NR_FILE_PAGES and NR_ANON_PAGES if they
504 * are mapped to swap space.
506 if (newzone
!= oldzone
) {
507 __dec_zone_state(oldzone
, NR_FILE_PAGES
);
508 __inc_zone_state(newzone
, NR_FILE_PAGES
);
509 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
510 __dec_zone_state(oldzone
, NR_SHMEM
);
511 __inc_zone_state(newzone
, NR_SHMEM
);
513 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
514 __dec_zone_state(oldzone
, NR_FILE_DIRTY
);
515 __inc_zone_state(newzone
, NR_FILE_DIRTY
);
520 return MIGRATEPAGE_SUCCESS
;
522 EXPORT_SYMBOL(migrate_page_move_mapping
);
525 * The expected number of remaining references is the same as that
526 * of migrate_page_move_mapping().
528 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
529 struct page
*newpage
, struct page
*page
)
534 spin_lock_irq(&mapping
->tree_lock
);
536 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
539 expected_count
= 2 + page_has_private(page
);
540 if (page_count(page
) != expected_count
||
541 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
542 spin_unlock_irq(&mapping
->tree_lock
);
546 if (!page_freeze_refs(page
, expected_count
)) {
547 spin_unlock_irq(&mapping
->tree_lock
);
551 set_page_memcg(newpage
, page_memcg(page
));
552 newpage
->index
= page
->index
;
553 newpage
->mapping
= page
->mapping
;
556 radix_tree_replace_slot(pslot
, newpage
);
558 page_unfreeze_refs(page
, expected_count
- 1);
560 spin_unlock_irq(&mapping
->tree_lock
);
561 return MIGRATEPAGE_SUCCESS
;
565 * Gigantic pages are so large that we do not guarantee that page++ pointer
566 * arithmetic will work across the entire page. We need something more
569 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
573 struct page
*dst_base
= dst
;
574 struct page
*src_base
= src
;
576 for (i
= 0; i
< nr_pages
; ) {
578 copy_highpage(dst
, src
);
581 dst
= mem_map_next(dst
, dst_base
, i
);
582 src
= mem_map_next(src
, src_base
, i
);
586 static void copy_huge_page(struct page
*dst
, struct page
*src
)
593 struct hstate
*h
= page_hstate(src
);
594 nr_pages
= pages_per_huge_page(h
);
596 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
597 __copy_gigantic_page(dst
, src
, nr_pages
);
602 BUG_ON(!PageTransHuge(src
));
603 nr_pages
= hpage_nr_pages(src
);
606 for (i
= 0; i
< nr_pages
; i
++) {
608 copy_highpage(dst
+ i
, src
+ i
);
613 * Copy the page to its new location
615 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
619 if (PageHuge(page
) || PageTransHuge(page
))
620 copy_huge_page(newpage
, page
);
622 copy_highpage(newpage
, page
);
625 SetPageError(newpage
);
626 if (PageReferenced(page
))
627 SetPageReferenced(newpage
);
628 if (PageUptodate(page
))
629 SetPageUptodate(newpage
);
630 if (TestClearPageActive(page
)) {
631 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
632 SetPageActive(newpage
);
633 } else if (TestClearPageUnevictable(page
))
634 SetPageUnevictable(newpage
);
635 if (PageChecked(page
))
636 SetPageChecked(newpage
);
637 if (PageMappedToDisk(page
))
638 SetPageMappedToDisk(newpage
);
640 /* Move dirty on pages not done by migrate_page_move_mapping() */
642 SetPageDirty(newpage
);
644 if (page_is_young(page
))
645 set_page_young(newpage
);
646 if (page_is_idle(page
))
647 set_page_idle(newpage
);
650 * Copy NUMA information to the new page, to prevent over-eager
651 * future migrations of this same page.
653 cpupid
= page_cpupid_xchg_last(page
, -1);
654 page_cpupid_xchg_last(newpage
, cpupid
);
656 ksm_migrate_page(newpage
, page
);
658 * Please do not reorder this without considering how mm/ksm.c's
659 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
661 if (PageSwapCache(page
))
662 ClearPageSwapCache(page
);
663 ClearPagePrivate(page
);
664 set_page_private(page
, 0);
667 * If any waiters have accumulated on the new page then
670 if (PageWriteback(newpage
))
671 end_page_writeback(newpage
);
673 EXPORT_SYMBOL(migrate_page_copy
);
675 /************************************************************
676 * Migration functions
677 ***********************************************************/
680 * Common logic to directly migrate a single LRU page suitable for
681 * pages that do not use PagePrivate/PagePrivate2.
683 * Pages are locked upon entry and exit.
685 int migrate_page(struct address_space
*mapping
,
686 struct page
*newpage
, struct page
*page
,
687 enum migrate_mode mode
)
691 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
693 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
695 if (rc
!= MIGRATEPAGE_SUCCESS
)
698 migrate_page_copy(newpage
, page
);
699 return MIGRATEPAGE_SUCCESS
;
701 EXPORT_SYMBOL(migrate_page
);
705 * Migration function for pages with buffers. This function can only be used
706 * if the underlying filesystem guarantees that no other references to "page"
709 int buffer_migrate_page(struct address_space
*mapping
,
710 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
712 struct buffer_head
*bh
, *head
;
715 if (!page_has_buffers(page
))
716 return migrate_page(mapping
, newpage
, page
, mode
);
718 head
= page_buffers(page
);
720 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
722 if (rc
!= MIGRATEPAGE_SUCCESS
)
726 * In the async case, migrate_page_move_mapping locked the buffers
727 * with an IRQ-safe spinlock held. In the sync case, the buffers
728 * need to be locked now
730 if (mode
!= MIGRATE_ASYNC
)
731 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
733 ClearPagePrivate(page
);
734 set_page_private(newpage
, page_private(page
));
735 set_page_private(page
, 0);
741 set_bh_page(bh
, newpage
, bh_offset(bh
));
742 bh
= bh
->b_this_page
;
744 } while (bh
!= head
);
746 SetPagePrivate(newpage
);
748 migrate_page_copy(newpage
, page
);
754 bh
= bh
->b_this_page
;
756 } while (bh
!= head
);
758 return MIGRATEPAGE_SUCCESS
;
760 EXPORT_SYMBOL(buffer_migrate_page
);
764 * Writeback a page to clean the dirty state
766 static int writeout(struct address_space
*mapping
, struct page
*page
)
768 struct writeback_control wbc
= {
769 .sync_mode
= WB_SYNC_NONE
,
772 .range_end
= LLONG_MAX
,
777 if (!mapping
->a_ops
->writepage
)
778 /* No write method for the address space */
781 if (!clear_page_dirty_for_io(page
))
782 /* Someone else already triggered a write */
786 * A dirty page may imply that the underlying filesystem has
787 * the page on some queue. So the page must be clean for
788 * migration. Writeout may mean we loose the lock and the
789 * page state is no longer what we checked for earlier.
790 * At this point we know that the migration attempt cannot
793 remove_migration_ptes(page
, page
);
795 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
797 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
798 /* unlocked. Relock */
801 return (rc
< 0) ? -EIO
: -EAGAIN
;
805 * Default handling if a filesystem does not provide a migration function.
807 static int fallback_migrate_page(struct address_space
*mapping
,
808 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
810 if (PageDirty(page
)) {
811 /* Only writeback pages in full synchronous migration */
812 if (mode
!= MIGRATE_SYNC
)
814 return writeout(mapping
, page
);
818 * Buffers may be managed in a filesystem specific way.
819 * We must have no buffers or drop them.
821 if (page_has_private(page
) &&
822 !try_to_release_page(page
, GFP_KERNEL
))
825 return migrate_page(mapping
, newpage
, page
, mode
);
829 * Move a page to a newly allocated page
830 * The page is locked and all ptes have been successfully removed.
832 * The new page will have replaced the old page if this function
837 * MIGRATEPAGE_SUCCESS - success
839 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
840 enum migrate_mode mode
)
842 struct address_space
*mapping
;
844 bool is_lru
= !__PageMovable(page
);
846 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
847 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
849 mapping
= page_mapping(page
);
851 if (likely(is_lru
)) {
853 rc
= migrate_page(mapping
, newpage
, page
, mode
);
854 else if (mapping
->a_ops
->migratepage
)
856 * Most pages have a mapping and most filesystems
857 * provide a migratepage callback. Anonymous pages
858 * are part of swap space which also has its own
859 * migratepage callback. This is the most common path
860 * for page migration.
862 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
865 rc
= fallback_migrate_page(mapping
, newpage
,
869 * In case of non-lru page, it could be released after
870 * isolation step. In that case, we shouldn't try migration.
872 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
873 if (!PageMovable(page
)) {
874 rc
= MIGRATEPAGE_SUCCESS
;
875 __ClearPageIsolated(page
);
879 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
881 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
882 !PageIsolated(page
));
886 * When successful, old pagecache page->mapping must be cleared before
887 * page is freed; but stats require that PageAnon be left as PageAnon.
889 if (rc
== MIGRATEPAGE_SUCCESS
) {
890 set_page_memcg(page
, NULL
);
891 if (__PageMovable(page
)) {
892 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
895 * We clear PG_movable under page_lock so any compactor
896 * cannot try to migrate this page.
898 __ClearPageIsolated(page
);
902 * Anonymous and movable page->mapping will be cleard by
903 * free_pages_prepare so don't reset it here for keeping
904 * the type to work PageAnon, for example.
906 if (!PageMappingFlags(page
))
907 page
->mapping
= NULL
;
913 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
914 int force
, enum migrate_mode mode
)
917 int page_was_mapped
= 0;
918 struct anon_vma
*anon_vma
= NULL
;
919 bool is_lru
= !__PageMovable(page
);
921 if (!trylock_page(page
)) {
922 if (!force
|| mode
== MIGRATE_ASYNC
)
926 * It's not safe for direct compaction to call lock_page.
927 * For example, during page readahead pages are added locked
928 * to the LRU. Later, when the IO completes the pages are
929 * marked uptodate and unlocked. However, the queueing
930 * could be merging multiple pages for one bio (e.g.
931 * mpage_readpages). If an allocation happens for the
932 * second or third page, the process can end up locking
933 * the same page twice and deadlocking. Rather than
934 * trying to be clever about what pages can be locked,
935 * avoid the use of lock_page for direct compaction
938 if (current
->flags
& PF_MEMALLOC
)
944 if (PageWriteback(page
)) {
946 * Only in the case of a full synchronous migration is it
947 * necessary to wait for PageWriteback. In the async case,
948 * the retry loop is too short and in the sync-light case,
949 * the overhead of stalling is too much
951 if (mode
!= MIGRATE_SYNC
) {
957 wait_on_page_writeback(page
);
961 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
962 * we cannot notice that anon_vma is freed while we migrates a page.
963 * This get_anon_vma() delays freeing anon_vma pointer until the end
964 * of migration. File cache pages are no problem because of page_lock()
965 * File Caches may use write_page() or lock_page() in migration, then,
966 * just care Anon page here.
968 * Only page_get_anon_vma() understands the subtleties of
969 * getting a hold on an anon_vma from outside one of its mms.
970 * But if we cannot get anon_vma, then we won't need it anyway,
971 * because that implies that the anon page is no longer mapped
972 * (and cannot be remapped so long as we hold the page lock).
974 if (PageAnon(page
) && !PageKsm(page
))
975 anon_vma
= page_get_anon_vma(page
);
978 * Block others from accessing the new page when we get around to
979 * establishing additional references. We are usually the only one
980 * holding a reference to newpage at this point. We used to have a BUG
981 * here if trylock_page(newpage) fails, but would like to allow for
982 * cases where there might be a race with the previous use of newpage.
983 * This is much like races on refcount of oldpage: just don't BUG().
985 if (unlikely(!trylock_page(newpage
)))
988 if (unlikely(!is_lru
)) {
989 rc
= move_to_new_page(newpage
, page
, mode
);
990 goto out_unlock_both
;
994 * Corner case handling:
995 * 1. When a new swap-cache page is read into, it is added to the LRU
996 * and treated as swapcache but it has no rmap yet.
997 * Calling try_to_unmap() against a page->mapping==NULL page will
998 * trigger a BUG. So handle it here.
999 * 2. An orphaned page (see truncate_complete_page) might have
1000 * fs-private metadata. The page can be picked up due to memory
1001 * offlining. Everywhere else except page reclaim, the page is
1002 * invisible to the vm, so the page can not be migrated. So try to
1003 * free the metadata, so the page can be freed.
1005 if (!page
->mapping
) {
1006 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1007 if (page_has_private(page
)) {
1008 try_to_free_buffers(page
);
1009 goto out_unlock_both
;
1011 } else if (page_mapped(page
)) {
1012 /* Establish migration ptes */
1013 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1016 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1017 page_was_mapped
= 1;
1020 if (!page_mapped(page
))
1021 rc
= move_to_new_page(newpage
, page
, mode
);
1023 if (page_was_mapped
)
1024 remove_migration_ptes(page
,
1025 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
);
1028 unlock_page(newpage
);
1030 /* Drop an anon_vma reference if we took one */
1032 put_anon_vma(anon_vma
);
1036 * If migration is successful, decrease refcount of the newpage
1037 * which will not free the page because new page owner increased
1038 * refcounter. As well, if it is LRU page, add the page to LRU
1041 if (rc
== MIGRATEPAGE_SUCCESS
) {
1042 if (unlikely(__PageMovable(newpage
)))
1045 putback_lru_page(newpage
);
1052 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1055 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1056 #define ICE_noinline noinline
1058 #define ICE_noinline
1062 * Obtain the lock on page, remove all ptes and migrate the page
1063 * to the newly allocated page in newpage.
1065 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1066 free_page_t put_new_page
,
1067 unsigned long private, struct page
*page
,
1068 int force
, enum migrate_mode mode
,
1069 enum migrate_reason reason
)
1071 int rc
= MIGRATEPAGE_SUCCESS
;
1073 struct page
*newpage
;
1075 newpage
= get_new_page(page
, private, &result
);
1079 if (page_count(page
) == 1) {
1080 /* page was freed from under us. So we are done. */
1081 ClearPageActive(page
);
1082 ClearPageUnevictable(page
);
1083 if (unlikely(__PageMovable(page
))) {
1085 if (!PageMovable(page
))
1086 __ClearPageIsolated(page
);
1090 put_new_page(newpage
, private);
1096 if (unlikely(PageTransHuge(page
)))
1097 if (unlikely(split_huge_page(page
)))
1100 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1103 if (rc
!= -EAGAIN
) {
1105 * A page that has been migrated has all references
1106 * removed and will be freed. A page that has not been
1107 * migrated will have kepts its references and be
1110 list_del(&page
->lru
);
1111 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1112 page_is_file_cache(page
));
1116 * If migration is successful, releases reference grabbed during
1117 * isolation. Otherwise, restore the page to right list unless
1120 if (rc
== MIGRATEPAGE_SUCCESS
) {
1121 if (reason
== MR_MEMORY_FAILURE
) {
1124 * Set PG_HWPoison on just freed page
1125 * intentionally. Although it's rather weird,
1126 * it's how HWPoison flag works at the moment.
1128 if (!test_set_page_hwpoison(page
))
1129 num_poisoned_pages_inc();
1130 } else if (IS_ENABLED(CONFIG_HPA
) && !PageActive(page
))
1131 put_page_freelist(page
);
1135 if (rc
!= -EAGAIN
) {
1136 if (likely(!__PageMovable(page
))) {
1137 putback_lru_page(page
);
1142 if (PageMovable(page
))
1143 putback_movable_page(page
);
1145 __ClearPageIsolated(page
);
1151 put_new_page(newpage
, private);
1160 *result
= page_to_nid(newpage
);
1166 * Counterpart of unmap_and_move_page() for hugepage migration.
1168 * This function doesn't wait the completion of hugepage I/O
1169 * because there is no race between I/O and migration for hugepage.
1170 * Note that currently hugepage I/O occurs only in direct I/O
1171 * where no lock is held and PG_writeback is irrelevant,
1172 * and writeback status of all subpages are counted in the reference
1173 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1174 * under direct I/O, the reference of the head page is 512 and a bit more.)
1175 * This means that when we try to migrate hugepage whose subpages are
1176 * doing direct I/O, some references remain after try_to_unmap() and
1177 * hugepage migration fails without data corruption.
1179 * There is also no race when direct I/O is issued on the page under migration,
1180 * because then pte is replaced with migration swap entry and direct I/O code
1181 * will wait in the page fault for migration to complete.
1183 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1184 free_page_t put_new_page
, unsigned long private,
1185 struct page
*hpage
, int force
,
1186 enum migrate_mode mode
)
1190 int page_was_mapped
= 0;
1191 struct page
*new_hpage
;
1192 struct anon_vma
*anon_vma
= NULL
;
1195 * Movability of hugepages depends on architectures and hugepage size.
1196 * This check is necessary because some callers of hugepage migration
1197 * like soft offline and memory hotremove don't walk through page
1198 * tables or check whether the hugepage is pmd-based or not before
1199 * kicking migration.
1201 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1202 putback_active_hugepage(hpage
);
1206 new_hpage
= get_new_page(hpage
, private, &result
);
1210 if (!trylock_page(hpage
)) {
1211 if (!force
|| mode
!= MIGRATE_SYNC
)
1216 if (PageAnon(hpage
))
1217 anon_vma
= page_get_anon_vma(hpage
);
1219 if (unlikely(!trylock_page(new_hpage
)))
1222 if (page_mapped(hpage
)) {
1224 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1225 page_was_mapped
= 1;
1228 if (!page_mapped(hpage
))
1229 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1231 if (page_was_mapped
)
1232 remove_migration_ptes(hpage
,
1233 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
);
1235 unlock_page(new_hpage
);
1239 put_anon_vma(anon_vma
);
1241 if (rc
== MIGRATEPAGE_SUCCESS
) {
1242 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1243 put_new_page
= NULL
;
1249 putback_active_hugepage(hpage
);
1252 * If migration was not successful and there's a freeing callback, use
1253 * it. Otherwise, put_page() will drop the reference grabbed during
1257 put_new_page(new_hpage
, private);
1259 putback_active_hugepage(new_hpage
);
1265 *result
= page_to_nid(new_hpage
);
1271 * migrate_pages - migrate the pages specified in a list, to the free pages
1272 * supplied as the target for the page migration
1274 * @from: The list of pages to be migrated.
1275 * @get_new_page: The function used to allocate free pages to be used
1276 * as the target of the page migration.
1277 * @put_new_page: The function used to free target pages if migration
1278 * fails, or NULL if no special handling is necessary.
1279 * @private: Private data to be passed on to get_new_page()
1280 * @mode: The migration mode that specifies the constraints for
1281 * page migration, if any.
1282 * @reason: The reason for page migration.
1284 * The function returns after 10 attempts or if no pages are movable any more
1285 * because the list has become empty or no retryable pages exist any more.
1286 * The caller should call putback_movable_pages() to return pages to the LRU
1287 * or free list only if ret != 0.
1289 * Returns the number of pages that were not migrated, or an error code.
1291 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1292 free_page_t put_new_page
, unsigned long private,
1293 enum migrate_mode mode
, int reason
)
1297 int nr_succeeded
= 0;
1301 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1305 current
->flags
|= PF_SWAPWRITE
;
1307 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1310 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1314 rc
= unmap_and_move_huge_page(get_new_page
,
1315 put_new_page
, private, page
,
1318 rc
= unmap_and_move(get_new_page
, put_new_page
,
1319 private, page
, pass
> 2, mode
,
1322 if ((reason
== MR_CMA
) && (rc
!= -EAGAIN
) &&
1323 (rc
!= MIGRATEPAGE_SUCCESS
)) {
1324 phys_addr_t pa
= page_to_phys(page
);
1326 pr_err("%s failed(%d): PA%pa,mapcnt%d,cnt%d\n",
1328 page_mapcount(page
), page_count(page
));
1337 case MIGRATEPAGE_SUCCESS
:
1342 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343 * unlike -EAGAIN case, the failed page is
1344 * removed from migration page list and not
1345 * retried in the next outer loop.
1356 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1358 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1359 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1362 current
->flags
&= ~PF_SWAPWRITE
;
1369 * Move a list of individual pages
1371 struct page_to_node
{
1378 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1381 struct page_to_node
*pm
= (struct page_to_node
*)private;
1383 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1386 if (pm
->node
== MAX_NUMNODES
)
1389 *result
= &pm
->status
;
1392 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1395 return __alloc_pages_node(pm
->node
,
1396 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1400 * Move a set of pages as indicated in the pm array. The addr
1401 * field must be set to the virtual address of the page to be moved
1402 * and the node number must contain a valid target node.
1403 * The pm array ends with node = MAX_NUMNODES.
1405 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1406 struct page_to_node
*pm
,
1410 struct page_to_node
*pp
;
1411 LIST_HEAD(pagelist
);
1413 down_read(&mm
->mmap_sem
);
1416 * Build a list of pages to migrate
1418 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1419 struct vm_area_struct
*vma
;
1423 vma
= find_vma(mm
, pp
->addr
);
1424 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1427 /* FOLL_DUMP to ignore special (like zero) pages */
1428 page
= follow_page(vma
, pp
->addr
,
1429 FOLL_GET
| FOLL_SPLIT
| FOLL_DUMP
);
1431 err
= PTR_ERR(page
);
1440 err
= page_to_nid(page
);
1442 if (err
== pp
->node
)
1444 * Node already in the right place
1449 if (page_mapcount(page
) > 1 &&
1453 if (PageHuge(page
)) {
1455 isolate_huge_page(page
, &pagelist
);
1459 err
= isolate_lru_page(page
);
1461 list_add_tail(&page
->lru
, &pagelist
);
1462 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1463 page_is_file_cache(page
));
1467 * Either remove the duplicate refcount from
1468 * isolate_lru_page() or drop the page ref if it was
1477 if (!list_empty(&pagelist
)) {
1478 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1479 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1481 putback_movable_pages(&pagelist
);
1484 up_read(&mm
->mmap_sem
);
1489 * Migrate an array of page address onto an array of nodes and fill
1490 * the corresponding array of status.
1492 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1493 unsigned long nr_pages
,
1494 const void __user
* __user
*pages
,
1495 const int __user
*nodes
,
1496 int __user
*status
, int flags
)
1498 struct page_to_node
*pm
;
1499 unsigned long chunk_nr_pages
;
1500 unsigned long chunk_start
;
1504 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1511 * Store a chunk of page_to_node array in a page,
1512 * but keep the last one as a marker
1514 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1516 for (chunk_start
= 0;
1517 chunk_start
< nr_pages
;
1518 chunk_start
+= chunk_nr_pages
) {
1521 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1522 chunk_nr_pages
= nr_pages
- chunk_start
;
1524 /* fill the chunk pm with addrs and nodes from user-space */
1525 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1526 const void __user
*p
;
1530 if (get_user(p
, pages
+ j
+ chunk_start
))
1532 pm
[j
].addr
= (unsigned long) p
;
1534 if (get_user(node
, nodes
+ j
+ chunk_start
))
1538 if (node
< 0 || node
>= MAX_NUMNODES
)
1541 if (!node_state(node
, N_MEMORY
))
1545 if (!node_isset(node
, task_nodes
))
1551 /* End marker for this chunk */
1552 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1554 /* Migrate this chunk */
1555 err
= do_move_page_to_node_array(mm
, pm
,
1556 flags
& MPOL_MF_MOVE_ALL
);
1560 /* Return status information */
1561 for (j
= 0; j
< chunk_nr_pages
; j
++)
1562 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1570 free_page((unsigned long)pm
);
1576 * Determine the nodes of an array of pages and store it in an array of status.
1578 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1579 const void __user
**pages
, int *status
)
1583 down_read(&mm
->mmap_sem
);
1585 for (i
= 0; i
< nr_pages
; i
++) {
1586 unsigned long addr
= (unsigned long)(*pages
);
1587 struct vm_area_struct
*vma
;
1591 vma
= find_vma(mm
, addr
);
1592 if (!vma
|| addr
< vma
->vm_start
)
1595 /* FOLL_DUMP to ignore special (like zero) pages */
1596 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1598 err
= PTR_ERR(page
);
1602 err
= page
? page_to_nid(page
) : -ENOENT
;
1610 up_read(&mm
->mmap_sem
);
1614 * Determine the nodes of a user array of pages and store it in
1615 * a user array of status.
1617 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1618 const void __user
* __user
*pages
,
1621 #define DO_PAGES_STAT_CHUNK_NR 16
1622 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1623 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1626 unsigned long chunk_nr
;
1628 chunk_nr
= nr_pages
;
1629 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1630 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1632 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1635 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1637 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1642 nr_pages
-= chunk_nr
;
1644 return nr_pages
? -EFAULT
: 0;
1648 * Move a list of pages in the address space of the currently executing
1651 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1652 const void __user
* __user
*, pages
,
1653 const int __user
*, nodes
,
1654 int __user
*, status
, int, flags
)
1656 struct task_struct
*task
;
1657 struct mm_struct
*mm
;
1659 nodemask_t task_nodes
;
1662 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1665 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1668 /* Find the mm_struct */
1670 task
= pid
? find_task_by_vpid(pid
) : current
;
1675 get_task_struct(task
);
1678 * Check if this process has the right to modify the specified
1679 * process. Use the regular "ptrace_may_access()" checks.
1681 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1688 err
= security_task_movememory(task
);
1692 task_nodes
= cpuset_mems_allowed(task
);
1693 mm
= get_task_mm(task
);
1694 put_task_struct(task
);
1700 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1701 nodes
, status
, flags
);
1703 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1709 put_task_struct(task
);
1713 #ifdef CONFIG_NUMA_BALANCING
1715 * Returns true if this is a safe migration target node for misplaced NUMA
1716 * pages. Currently it only checks the watermarks which crude
1718 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1719 unsigned long nr_migrate_pages
)
1722 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1723 struct zone
*zone
= pgdat
->node_zones
+ z
;
1725 if (!populated_zone(zone
))
1728 if (!zone_reclaimable(zone
))
1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732 if (!zone_watermark_ok(zone
, 0,
1733 high_wmark_pages(zone
) +
1742 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1746 int nid
= (int) data
;
1747 struct page
*newpage
;
1749 newpage
= __alloc_pages_node(nid
,
1750 (GFP_HIGHUSER_MOVABLE
|
1751 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1752 __GFP_NORETRY
| __GFP_NOWARN
) &
1759 * page migration rate limiting control.
1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761 * window of time. Default here says do not migrate more than 1280M per second.
1763 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1764 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1768 unsigned long nr_pages
)
1771 * Rate-limit the amount of data that is being migrated to a node.
1772 * Optimal placement is no good if the memory bus is saturated and
1773 * all the time is being spent migrating!
1775 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1776 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1777 pgdat
->numabalancing_migrate_nr_pages
= 0;
1778 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1779 msecs_to_jiffies(migrate_interval_millisecs
);
1780 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1782 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1783 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1789 * This is an unlocked non-atomic update so errors are possible.
1790 * The consequences are failing to migrate when we potentiall should
1791 * have which is not severe enough to warrant locking. If it is ever
1792 * a problem, it can be converted to a per-cpu counter.
1794 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1798 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1802 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1804 /* Avoid migrating to a node that is nearly full */
1805 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1808 if (isolate_lru_page(page
))
1812 * migrate_misplaced_transhuge_page() skips page migration's usual
1813 * check on page_count(), so we must do it here, now that the page
1814 * has been isolated: a GUP pin, or any other pin, prevents migration.
1815 * The expected page count is 3: 1 for page's mapcount and 1 for the
1816 * caller's pin and 1 for the reference taken by isolate_lru_page().
1818 if (PageTransHuge(page
) && page_count(page
) != 3) {
1819 putback_lru_page(page
);
1823 page_lru
= page_is_file_cache(page
);
1824 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1825 hpage_nr_pages(page
));
1828 * Isolating the page has taken another reference, so the
1829 * caller's reference can be safely dropped without the page
1830 * disappearing underneath us during migration.
1836 bool pmd_trans_migrating(pmd_t pmd
)
1838 struct page
*page
= pmd_page(pmd
);
1839 return PageLocked(page
);
1843 * Attempt to migrate a misplaced page to the specified destination
1844 * node. Caller is expected to have an elevated reference count on
1845 * the page that will be dropped by this function before returning.
1847 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1850 pg_data_t
*pgdat
= NODE_DATA(node
);
1853 LIST_HEAD(migratepages
);
1856 * Don't migrate file pages that are mapped in multiple processes
1857 * with execute permissions as they are probably shared libraries.
1859 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1860 (vma
->vm_flags
& VM_EXEC
))
1864 * Rate-limit the amount of data that is being migrated to a node.
1865 * Optimal placement is no good if the memory bus is saturated and
1866 * all the time is being spent migrating!
1868 if (numamigrate_update_ratelimit(pgdat
, 1))
1871 isolated
= numamigrate_isolate_page(pgdat
, page
);
1875 list_add(&page
->lru
, &migratepages
);
1876 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1877 NULL
, node
, MIGRATE_ASYNC
,
1880 if (!list_empty(&migratepages
)) {
1881 list_del(&page
->lru
);
1882 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1883 page_is_file_cache(page
));
1884 putback_lru_page(page
);
1888 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1889 BUG_ON(!list_empty(&migratepages
));
1896 #endif /* CONFIG_NUMA_BALANCING */
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1900 * Migrates a THP to a given target node. page must be locked and is unlocked
1903 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1904 struct vm_area_struct
*vma
,
1905 pmd_t
*pmd
, pmd_t entry
,
1906 unsigned long address
,
1907 struct page
*page
, int node
)
1910 pg_data_t
*pgdat
= NODE_DATA(node
);
1912 struct page
*new_page
= NULL
;
1913 int page_lru
= page_is_file_cache(page
);
1914 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1915 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1919 * Rate-limit the amount of data that is being migrated to a node.
1920 * Optimal placement is no good if the memory bus is saturated and
1921 * all the time is being spent migrating!
1923 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1926 new_page
= alloc_pages_node(node
,
1927 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1932 isolated
= numamigrate_isolate_page(pgdat
, page
);
1938 if (mm_tlb_flush_pending(mm
))
1939 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1941 /* Prepare a page as a migration target */
1942 __set_page_locked(new_page
);
1943 SetPageSwapBacked(new_page
);
1945 /* anon mapping, we can simply copy page->mapping to the new page: */
1946 new_page
->mapping
= page
->mapping
;
1947 new_page
->index
= page
->index
;
1948 migrate_page_copy(new_page
, page
);
1949 WARN_ON(PageLRU(new_page
));
1951 /* Recheck the target PMD */
1952 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1953 ptl
= pmd_lock(mm
, pmd
);
1954 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1957 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1959 /* Reverse changes made by migrate_page_copy() */
1960 if (TestClearPageActive(new_page
))
1961 SetPageActive(page
);
1962 if (TestClearPageUnevictable(new_page
))
1963 SetPageUnevictable(page
);
1965 unlock_page(new_page
);
1966 put_page(new_page
); /* Free it */
1968 /* Retake the callers reference and putback on LRU */
1970 putback_lru_page(page
);
1971 mod_zone_page_state(page_zone(page
),
1972 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1978 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1979 entry
= pmd_mkhuge(entry
);
1980 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1983 * Clear the old entry under pagetable lock and establish the new PTE.
1984 * Any parallel GUP will either observe the old page blocking on the
1985 * page lock, block on the page table lock or observe the new page.
1986 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1987 * guarantee the copy is visible before the pagetable update.
1989 flush_cache_range(vma
, mmun_start
, mmun_end
);
1990 page_add_anon_rmap(new_page
, vma
, mmun_start
);
1991 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
1992 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1993 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1994 update_mmu_cache_pmd(vma
, address
, &entry
);
1996 if (page_count(page
) != 2) {
1997 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1998 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1999 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
2000 update_mmu_cache_pmd(vma
, address
, &entry
);
2001 page_remove_rmap(new_page
);
2005 mlock_migrate_page(new_page
, page
);
2006 set_page_memcg(new_page
, page_memcg(page
));
2007 set_page_memcg(page
, NULL
);
2008 page_remove_rmap(page
);
2011 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2013 /* Take an "isolate" reference and put new page on the LRU. */
2015 putback_lru_page(new_page
);
2017 unlock_page(new_page
);
2019 put_page(page
); /* Drop the rmap reference */
2020 put_page(page
); /* Drop the LRU isolation reference */
2022 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2023 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2025 mod_zone_page_state(page_zone(page
),
2026 NR_ISOLATED_ANON
+ page_lru
,
2031 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2033 ptl
= pmd_lock(mm
, pmd
);
2034 if (pmd_same(*pmd
, entry
)) {
2035 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2036 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2037 update_mmu_cache_pmd(vma
, address
, &entry
);
2046 #endif /* CONFIG_NUMA_BALANCING */
2048 #endif /* CONFIG_NUMA */