0dd082194a05825f41d17c95d761fa596ff7ebe7
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/ptrace.h>
43
44 #include <asm/tlbflush.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48
49 #include "internal.h"
50
51 /*
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
55 */
56 int migrate_prep(void)
57 {
58 /*
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
63 */
64 lru_add_drain_all();
65
66 return 0;
67 }
68
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72 lru_add_drain();
73
74 return 0;
75 }
76
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79 struct address_space *mapping;
80
81 /*
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
84 *
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
89 */
90 if (unlikely(!get_page_unless_zero(page)))
91 goto out;
92
93 /*
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
97 */
98 if (unlikely(!__PageMovable(page)))
99 goto out_putpage;
100 /*
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
104 *
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
110 */
111 if (unlikely(!trylock_page(page)))
112 goto out_putpage;
113
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
116
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
119
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
122
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
126 unlock_page(page);
127
128 return true;
129
130 out_no_isolated:
131 unlock_page(page);
132 out_putpage:
133 put_page(page);
134 out:
135 return false;
136 }
137
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141 struct address_space *mapping;
142
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
150 }
151
152 /*
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
155 *
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
159 */
160 void putback_movable_pages(struct list_head *l)
161 {
162 struct page *page;
163 struct page *page2;
164
165 list_for_each_entry_safe(page, page2, l, lru) {
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
168 continue;
169 }
170 list_del(&page->lru);
171 dec_zone_page_state(page, NR_ISOLATED_ANON +
172 page_is_file_cache(page));
173 /*
174 * We isolated non-lru movable page so here we can use
175 * __PageMovable because LRU page's mapping cannot have
176 * PAGE_MAPPING_MOVABLE.
177 */
178 if (unlikely(__PageMovable(page))) {
179 VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 lock_page(page);
181 if (PageMovable(page))
182 putback_movable_page(page);
183 else
184 __ClearPageIsolated(page);
185 unlock_page(page);
186 put_page(page);
187 } else {
188 putback_lru_page(page);
189 }
190 }
191 }
192
193 /*
194 * Restore a potential migration pte to a working pte entry
195 */
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
198 {
199 struct mm_struct *mm = vma->vm_mm;
200 swp_entry_t entry;
201 pmd_t *pmd;
202 pte_t *ptep, pte;
203 spinlock_t *ptl;
204
205 if (unlikely(PageHuge(new))) {
206 ptep = huge_pte_offset(mm, addr);
207 if (!ptep)
208 goto out;
209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 } else {
211 pmd = mm_find_pmd(mm, addr);
212 if (!pmd)
213 goto out;
214
215 ptep = pte_offset_map(pmd, addr);
216
217 /*
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
220 */
221
222 ptl = pte_lockptr(mm, pmd);
223 }
224
225 spin_lock(ptl);
226 pte = *ptep;
227 if (!is_swap_pte(pte))
228 goto unlock;
229
230 entry = pte_to_swp_entry(pte);
231
232 if (!is_migration_entry(entry) ||
233 migration_entry_to_page(entry) != old)
234 goto unlock;
235
236 get_page(new);
237 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
238 if (pte_swp_soft_dirty(*ptep))
239 pte = pte_mksoft_dirty(pte);
240
241 /* Recheck VMA as permissions can change since migration started */
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245 #ifdef CONFIG_HUGETLB_PAGE
246 if (PageHuge(new)) {
247 pte = pte_mkhuge(pte);
248 pte = arch_make_huge_pte(pte, vma, new, 0);
249 }
250 #endif
251 flush_dcache_page(new);
252 set_pte_at(mm, addr, ptep, pte);
253
254 if (PageHuge(new)) {
255 if (PageAnon(new))
256 hugepage_add_anon_rmap(new, vma, addr);
257 else
258 page_dup_rmap(new);
259 } else if (PageAnon(new))
260 page_add_anon_rmap(new, vma, addr);
261 else
262 page_add_file_rmap(new);
263
264 if (vma->vm_flags & VM_LOCKED)
265 mlock_vma_page(new);
266
267 /* No need to invalidate - it was non-present before */
268 update_mmu_cache(vma, addr, ptep);
269 unlock:
270 pte_unmap_unlock(ptep, ptl);
271 out:
272 return SWAP_AGAIN;
273 }
274
275 /*
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
278 */
279 static void remove_migration_ptes(struct page *old, struct page *new)
280 {
281 struct rmap_walk_control rwc = {
282 .rmap_one = remove_migration_pte,
283 .arg = old,
284 };
285
286 rmap_walk(new, &rwc);
287 }
288
289 /*
290 * Something used the pte of a page under migration. We need to
291 * get to the page and wait until migration is finished.
292 * When we return from this function the fault will be retried.
293 */
294 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
295 spinlock_t *ptl)
296 {
297 pte_t pte;
298 swp_entry_t entry;
299 struct page *page;
300
301 spin_lock(ptl);
302 pte = *ptep;
303 if (!is_swap_pte(pte))
304 goto out;
305
306 entry = pte_to_swp_entry(pte);
307 if (!is_migration_entry(entry))
308 goto out;
309
310 page = migration_entry_to_page(entry);
311
312 /*
313 * Once radix-tree replacement of page migration started, page_count
314 * *must* be zero. And, we don't want to call wait_on_page_locked()
315 * against a page without get_page().
316 * So, we use get_page_unless_zero(), here. Even failed, page fault
317 * will occur again.
318 */
319 if (!get_page_unless_zero(page))
320 goto out;
321 pte_unmap_unlock(ptep, ptl);
322 wait_on_page_locked(page);
323 put_page(page);
324 return;
325 out:
326 pte_unmap_unlock(ptep, ptl);
327 }
328
329 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
330 unsigned long address)
331 {
332 spinlock_t *ptl = pte_lockptr(mm, pmd);
333 pte_t *ptep = pte_offset_map(pmd, address);
334 __migration_entry_wait(mm, ptep, ptl);
335 }
336
337 void migration_entry_wait_huge(struct vm_area_struct *vma,
338 struct mm_struct *mm, pte_t *pte)
339 {
340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
341 __migration_entry_wait(mm, pte, ptl);
342 }
343
344 #ifdef CONFIG_BLOCK
345 /* Returns true if all buffers are successfully locked */
346 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
347 enum migrate_mode mode)
348 {
349 struct buffer_head *bh = head;
350
351 /* Simple case, sync compaction */
352 if (mode != MIGRATE_ASYNC) {
353 do {
354 get_bh(bh);
355 lock_buffer(bh);
356 bh = bh->b_this_page;
357
358 } while (bh != head);
359
360 return true;
361 }
362
363 /* async case, we cannot block on lock_buffer so use trylock_buffer */
364 do {
365 get_bh(bh);
366 if (!trylock_buffer(bh)) {
367 /*
368 * We failed to lock the buffer and cannot stall in
369 * async migration. Release the taken locks
370 */
371 struct buffer_head *failed_bh = bh;
372 put_bh(failed_bh);
373 bh = head;
374 while (bh != failed_bh) {
375 unlock_buffer(bh);
376 put_bh(bh);
377 bh = bh->b_this_page;
378 }
379 return false;
380 }
381
382 bh = bh->b_this_page;
383 } while (bh != head);
384 return true;
385 }
386 #else
387 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
388 enum migrate_mode mode)
389 {
390 return true;
391 }
392 #endif /* CONFIG_BLOCK */
393
394 /*
395 * Replace the page in the mapping.
396 *
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401 */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 struct page *newpage, struct page *page,
404 struct buffer_head *head, enum migrate_mode mode,
405 int extra_count)
406 {
407 struct zone *oldzone, *newzone;
408 int dirty;
409 int expected_count = 1 + extra_count;
410 void **pslot;
411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 set_page_memcg(newpage, page_memcg(page));
419 newpage->index = page->index;
420 newpage->mapping = page->mapping;
421 if (PageSwapBacked(page))
422 SetPageSwapBacked(newpage);
423
424 return MIGRATEPAGE_SUCCESS;
425 }
426
427 oldzone = page_zone(page);
428 newzone = page_zone(newpage);
429
430 spin_lock_irq(&mapping->tree_lock);
431
432 pslot = radix_tree_lookup_slot(&mapping->page_tree,
433 page_index(page));
434
435 expected_count += 1 + page_has_private(page);
436 if (page_count(page) != expected_count ||
437 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
438 spin_unlock_irq(&mapping->tree_lock);
439 return -EAGAIN;
440 }
441
442 if (!page_freeze_refs(page, expected_count)) {
443 spin_unlock_irq(&mapping->tree_lock);
444 return -EAGAIN;
445 }
446
447 /*
448 * In the async migration case of moving a page with buffers, lock the
449 * buffers using trylock before the mapping is moved. If the mapping
450 * was moved, we later failed to lock the buffers and could not move
451 * the mapping back due to an elevated page count, we would have to
452 * block waiting on other references to be dropped.
453 */
454 if (mode == MIGRATE_ASYNC && head &&
455 !buffer_migrate_lock_buffers(head, mode)) {
456 page_unfreeze_refs(page, expected_count);
457 spin_unlock_irq(&mapping->tree_lock);
458 return -EAGAIN;
459 }
460
461 /*
462 * Now we know that no one else is looking at the page:
463 * no turning back from here.
464 */
465 set_page_memcg(newpage, page_memcg(page));
466 newpage->index = page->index;
467 newpage->mapping = page->mapping;
468 if (PageSwapBacked(page))
469 SetPageSwapBacked(newpage);
470
471 get_page(newpage); /* add cache reference */
472 if (PageSwapCache(page)) {
473 SetPageSwapCache(newpage);
474 set_page_private(newpage, page_private(page));
475 }
476
477 /* Move dirty while page refs frozen and newpage not yet exposed */
478 dirty = PageDirty(page);
479 if (dirty) {
480 ClearPageDirty(page);
481 SetPageDirty(newpage);
482 }
483
484 radix_tree_replace_slot(pslot, newpage);
485
486 /*
487 * Drop cache reference from old page by unfreezing
488 * to one less reference.
489 * We know this isn't the last reference.
490 */
491 page_unfreeze_refs(page, expected_count - 1);
492
493 spin_unlock(&mapping->tree_lock);
494 /* Leave irq disabled to prevent preemption while updating stats */
495
496 /*
497 * If moved to a different zone then also account
498 * the page for that zone. Other VM counters will be
499 * taken care of when we establish references to the
500 * new page and drop references to the old page.
501 *
502 * Note that anonymous pages are accounted for
503 * via NR_FILE_PAGES and NR_ANON_PAGES if they
504 * are mapped to swap space.
505 */
506 if (newzone != oldzone) {
507 __dec_zone_state(oldzone, NR_FILE_PAGES);
508 __inc_zone_state(newzone, NR_FILE_PAGES);
509 if (PageSwapBacked(page) && !PageSwapCache(page)) {
510 __dec_zone_state(oldzone, NR_SHMEM);
511 __inc_zone_state(newzone, NR_SHMEM);
512 }
513 if (dirty && mapping_cap_account_dirty(mapping)) {
514 __dec_zone_state(oldzone, NR_FILE_DIRTY);
515 __inc_zone_state(newzone, NR_FILE_DIRTY);
516 }
517 }
518 local_irq_enable();
519
520 return MIGRATEPAGE_SUCCESS;
521 }
522 EXPORT_SYMBOL(migrate_page_move_mapping);
523
524 /*
525 * The expected number of remaining references is the same as that
526 * of migrate_page_move_mapping().
527 */
528 int migrate_huge_page_move_mapping(struct address_space *mapping,
529 struct page *newpage, struct page *page)
530 {
531 int expected_count;
532 void **pslot;
533
534 spin_lock_irq(&mapping->tree_lock);
535
536 pslot = radix_tree_lookup_slot(&mapping->page_tree,
537 page_index(page));
538
539 expected_count = 2 + page_has_private(page);
540 if (page_count(page) != expected_count ||
541 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
542 spin_unlock_irq(&mapping->tree_lock);
543 return -EAGAIN;
544 }
545
546 if (!page_freeze_refs(page, expected_count)) {
547 spin_unlock_irq(&mapping->tree_lock);
548 return -EAGAIN;
549 }
550
551 set_page_memcg(newpage, page_memcg(page));
552 newpage->index = page->index;
553 newpage->mapping = page->mapping;
554 get_page(newpage);
555
556 radix_tree_replace_slot(pslot, newpage);
557
558 page_unfreeze_refs(page, expected_count - 1);
559
560 spin_unlock_irq(&mapping->tree_lock);
561 return MIGRATEPAGE_SUCCESS;
562 }
563
564 /*
565 * Gigantic pages are so large that we do not guarantee that page++ pointer
566 * arithmetic will work across the entire page. We need something more
567 * specialized.
568 */
569 static void __copy_gigantic_page(struct page *dst, struct page *src,
570 int nr_pages)
571 {
572 int i;
573 struct page *dst_base = dst;
574 struct page *src_base = src;
575
576 for (i = 0; i < nr_pages; ) {
577 cond_resched();
578 copy_highpage(dst, src);
579
580 i++;
581 dst = mem_map_next(dst, dst_base, i);
582 src = mem_map_next(src, src_base, i);
583 }
584 }
585
586 static void copy_huge_page(struct page *dst, struct page *src)
587 {
588 int i;
589 int nr_pages;
590
591 if (PageHuge(src)) {
592 /* hugetlbfs page */
593 struct hstate *h = page_hstate(src);
594 nr_pages = pages_per_huge_page(h);
595
596 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
597 __copy_gigantic_page(dst, src, nr_pages);
598 return;
599 }
600 } else {
601 /* thp page */
602 BUG_ON(!PageTransHuge(src));
603 nr_pages = hpage_nr_pages(src);
604 }
605
606 for (i = 0; i < nr_pages; i++) {
607 cond_resched();
608 copy_highpage(dst + i, src + i);
609 }
610 }
611
612 /*
613 * Copy the page to its new location
614 */
615 void migrate_page_copy(struct page *newpage, struct page *page)
616 {
617 int cpupid;
618
619 if (PageHuge(page) || PageTransHuge(page))
620 copy_huge_page(newpage, page);
621 else
622 copy_highpage(newpage, page);
623
624 if (PageError(page))
625 SetPageError(newpage);
626 if (PageReferenced(page))
627 SetPageReferenced(newpage);
628 if (PageUptodate(page))
629 SetPageUptodate(newpage);
630 if (TestClearPageActive(page)) {
631 VM_BUG_ON_PAGE(PageUnevictable(page), page);
632 SetPageActive(newpage);
633 } else if (TestClearPageUnevictable(page))
634 SetPageUnevictable(newpage);
635 if (PageChecked(page))
636 SetPageChecked(newpage);
637 if (PageMappedToDisk(page))
638 SetPageMappedToDisk(newpage);
639
640 /* Move dirty on pages not done by migrate_page_move_mapping() */
641 if (PageDirty(page))
642 SetPageDirty(newpage);
643
644 if (page_is_young(page))
645 set_page_young(newpage);
646 if (page_is_idle(page))
647 set_page_idle(newpage);
648
649 /*
650 * Copy NUMA information to the new page, to prevent over-eager
651 * future migrations of this same page.
652 */
653 cpupid = page_cpupid_xchg_last(page, -1);
654 page_cpupid_xchg_last(newpage, cpupid);
655
656 ksm_migrate_page(newpage, page);
657 /*
658 * Please do not reorder this without considering how mm/ksm.c's
659 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
660 */
661 if (PageSwapCache(page))
662 ClearPageSwapCache(page);
663 ClearPagePrivate(page);
664 set_page_private(page, 0);
665
666 /*
667 * If any waiters have accumulated on the new page then
668 * wake them up.
669 */
670 if (PageWriteback(newpage))
671 end_page_writeback(newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_copy);
674
675 /************************************************************
676 * Migration functions
677 ***********************************************************/
678
679 /*
680 * Common logic to directly migrate a single LRU page suitable for
681 * pages that do not use PagePrivate/PagePrivate2.
682 *
683 * Pages are locked upon entry and exit.
684 */
685 int migrate_page(struct address_space *mapping,
686 struct page *newpage, struct page *page,
687 enum migrate_mode mode)
688 {
689 int rc;
690
691 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
692
693 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
694
695 if (rc != MIGRATEPAGE_SUCCESS)
696 return rc;
697
698 migrate_page_copy(newpage, page);
699 return MIGRATEPAGE_SUCCESS;
700 }
701 EXPORT_SYMBOL(migrate_page);
702
703 #ifdef CONFIG_BLOCK
704 /*
705 * Migration function for pages with buffers. This function can only be used
706 * if the underlying filesystem guarantees that no other references to "page"
707 * exist.
708 */
709 int buffer_migrate_page(struct address_space *mapping,
710 struct page *newpage, struct page *page, enum migrate_mode mode)
711 {
712 struct buffer_head *bh, *head;
713 int rc;
714
715 if (!page_has_buffers(page))
716 return migrate_page(mapping, newpage, page, mode);
717
718 head = page_buffers(page);
719
720 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
721
722 if (rc != MIGRATEPAGE_SUCCESS)
723 return rc;
724
725 /*
726 * In the async case, migrate_page_move_mapping locked the buffers
727 * with an IRQ-safe spinlock held. In the sync case, the buffers
728 * need to be locked now
729 */
730 if (mode != MIGRATE_ASYNC)
731 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
732
733 ClearPagePrivate(page);
734 set_page_private(newpage, page_private(page));
735 set_page_private(page, 0);
736 put_page(page);
737 get_page(newpage);
738
739 bh = head;
740 do {
741 set_bh_page(bh, newpage, bh_offset(bh));
742 bh = bh->b_this_page;
743
744 } while (bh != head);
745
746 SetPagePrivate(newpage);
747
748 migrate_page_copy(newpage, page);
749
750 bh = head;
751 do {
752 unlock_buffer(bh);
753 put_bh(bh);
754 bh = bh->b_this_page;
755
756 } while (bh != head);
757
758 return MIGRATEPAGE_SUCCESS;
759 }
760 EXPORT_SYMBOL(buffer_migrate_page);
761 #endif
762
763 /*
764 * Writeback a page to clean the dirty state
765 */
766 static int writeout(struct address_space *mapping, struct page *page)
767 {
768 struct writeback_control wbc = {
769 .sync_mode = WB_SYNC_NONE,
770 .nr_to_write = 1,
771 .range_start = 0,
772 .range_end = LLONG_MAX,
773 .for_reclaim = 1
774 };
775 int rc;
776
777 if (!mapping->a_ops->writepage)
778 /* No write method for the address space */
779 return -EINVAL;
780
781 if (!clear_page_dirty_for_io(page))
782 /* Someone else already triggered a write */
783 return -EAGAIN;
784
785 /*
786 * A dirty page may imply that the underlying filesystem has
787 * the page on some queue. So the page must be clean for
788 * migration. Writeout may mean we loose the lock and the
789 * page state is no longer what we checked for earlier.
790 * At this point we know that the migration attempt cannot
791 * be successful.
792 */
793 remove_migration_ptes(page, page);
794
795 rc = mapping->a_ops->writepage(page, &wbc);
796
797 if (rc != AOP_WRITEPAGE_ACTIVATE)
798 /* unlocked. Relock */
799 lock_page(page);
800
801 return (rc < 0) ? -EIO : -EAGAIN;
802 }
803
804 /*
805 * Default handling if a filesystem does not provide a migration function.
806 */
807 static int fallback_migrate_page(struct address_space *mapping,
808 struct page *newpage, struct page *page, enum migrate_mode mode)
809 {
810 if (PageDirty(page)) {
811 /* Only writeback pages in full synchronous migration */
812 if (mode != MIGRATE_SYNC)
813 return -EBUSY;
814 return writeout(mapping, page);
815 }
816
817 /*
818 * Buffers may be managed in a filesystem specific way.
819 * We must have no buffers or drop them.
820 */
821 if (page_has_private(page) &&
822 !try_to_release_page(page, GFP_KERNEL))
823 return -EAGAIN;
824
825 return migrate_page(mapping, newpage, page, mode);
826 }
827
828 /*
829 * Move a page to a newly allocated page
830 * The page is locked and all ptes have been successfully removed.
831 *
832 * The new page will have replaced the old page if this function
833 * is successful.
834 *
835 * Return value:
836 * < 0 - error code
837 * MIGRATEPAGE_SUCCESS - success
838 */
839 static int move_to_new_page(struct page *newpage, struct page *page,
840 enum migrate_mode mode)
841 {
842 struct address_space *mapping;
843 int rc = -EAGAIN;
844 bool is_lru = !__PageMovable(page);
845
846 VM_BUG_ON_PAGE(!PageLocked(page), page);
847 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
848
849 mapping = page_mapping(page);
850
851 if (likely(is_lru)) {
852 if (!mapping)
853 rc = migrate_page(mapping, newpage, page, mode);
854 else if (mapping->a_ops->migratepage)
855 /*
856 * Most pages have a mapping and most filesystems
857 * provide a migratepage callback. Anonymous pages
858 * are part of swap space which also has its own
859 * migratepage callback. This is the most common path
860 * for page migration.
861 */
862 rc = mapping->a_ops->migratepage(mapping, newpage,
863 page, mode);
864 else
865 rc = fallback_migrate_page(mapping, newpage,
866 page, mode);
867 } else {
868 /*
869 * In case of non-lru page, it could be released after
870 * isolation step. In that case, we shouldn't try migration.
871 */
872 VM_BUG_ON_PAGE(!PageIsolated(page), page);
873 if (!PageMovable(page)) {
874 rc = MIGRATEPAGE_SUCCESS;
875 __ClearPageIsolated(page);
876 goto out;
877 }
878
879 rc = mapping->a_ops->migratepage(mapping, newpage,
880 page, mode);
881 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
882 !PageIsolated(page));
883 }
884
885 /*
886 * When successful, old pagecache page->mapping must be cleared before
887 * page is freed; but stats require that PageAnon be left as PageAnon.
888 */
889 if (rc == MIGRATEPAGE_SUCCESS) {
890 set_page_memcg(page, NULL);
891 if (__PageMovable(page)) {
892 VM_BUG_ON_PAGE(!PageIsolated(page), page);
893
894 /*
895 * We clear PG_movable under page_lock so any compactor
896 * cannot try to migrate this page.
897 */
898 __ClearPageIsolated(page);
899 }
900
901 /*
902 * Anonymous and movable page->mapping will be cleard by
903 * free_pages_prepare so don't reset it here for keeping
904 * the type to work PageAnon, for example.
905 */
906 if (!PageMappingFlags(page))
907 page->mapping = NULL;
908 }
909 out:
910 return rc;
911 }
912
913 static int __unmap_and_move(struct page *page, struct page *newpage,
914 int force, enum migrate_mode mode)
915 {
916 int rc = -EAGAIN;
917 int page_was_mapped = 0;
918 struct anon_vma *anon_vma = NULL;
919 bool is_lru = !__PageMovable(page);
920
921 if (!trylock_page(page)) {
922 if (!force || mode == MIGRATE_ASYNC)
923 goto out;
924
925 /*
926 * It's not safe for direct compaction to call lock_page.
927 * For example, during page readahead pages are added locked
928 * to the LRU. Later, when the IO completes the pages are
929 * marked uptodate and unlocked. However, the queueing
930 * could be merging multiple pages for one bio (e.g.
931 * mpage_readpages). If an allocation happens for the
932 * second or third page, the process can end up locking
933 * the same page twice and deadlocking. Rather than
934 * trying to be clever about what pages can be locked,
935 * avoid the use of lock_page for direct compaction
936 * altogether.
937 */
938 if (current->flags & PF_MEMALLOC)
939 goto out;
940
941 lock_page(page);
942 }
943
944 if (PageWriteback(page)) {
945 /*
946 * Only in the case of a full synchronous migration is it
947 * necessary to wait for PageWriteback. In the async case,
948 * the retry loop is too short and in the sync-light case,
949 * the overhead of stalling is too much
950 */
951 if (mode != MIGRATE_SYNC) {
952 rc = -EBUSY;
953 goto out_unlock;
954 }
955 if (!force)
956 goto out_unlock;
957 wait_on_page_writeback(page);
958 }
959
960 /*
961 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
962 * we cannot notice that anon_vma is freed while we migrates a page.
963 * This get_anon_vma() delays freeing anon_vma pointer until the end
964 * of migration. File cache pages are no problem because of page_lock()
965 * File Caches may use write_page() or lock_page() in migration, then,
966 * just care Anon page here.
967 *
968 * Only page_get_anon_vma() understands the subtleties of
969 * getting a hold on an anon_vma from outside one of its mms.
970 * But if we cannot get anon_vma, then we won't need it anyway,
971 * because that implies that the anon page is no longer mapped
972 * (and cannot be remapped so long as we hold the page lock).
973 */
974 if (PageAnon(page) && !PageKsm(page))
975 anon_vma = page_get_anon_vma(page);
976
977 /*
978 * Block others from accessing the new page when we get around to
979 * establishing additional references. We are usually the only one
980 * holding a reference to newpage at this point. We used to have a BUG
981 * here if trylock_page(newpage) fails, but would like to allow for
982 * cases where there might be a race with the previous use of newpage.
983 * This is much like races on refcount of oldpage: just don't BUG().
984 */
985 if (unlikely(!trylock_page(newpage)))
986 goto out_unlock;
987
988 if (unlikely(!is_lru)) {
989 rc = move_to_new_page(newpage, page, mode);
990 goto out_unlock_both;
991 }
992
993 /*
994 * Corner case handling:
995 * 1. When a new swap-cache page is read into, it is added to the LRU
996 * and treated as swapcache but it has no rmap yet.
997 * Calling try_to_unmap() against a page->mapping==NULL page will
998 * trigger a BUG. So handle it here.
999 * 2. An orphaned page (see truncate_complete_page) might have
1000 * fs-private metadata. The page can be picked up due to memory
1001 * offlining. Everywhere else except page reclaim, the page is
1002 * invisible to the vm, so the page can not be migrated. So try to
1003 * free the metadata, so the page can be freed.
1004 */
1005 if (!page->mapping) {
1006 VM_BUG_ON_PAGE(PageAnon(page), page);
1007 if (page_has_private(page)) {
1008 try_to_free_buffers(page);
1009 goto out_unlock_both;
1010 }
1011 } else if (page_mapped(page)) {
1012 /* Establish migration ptes */
1013 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1014 page);
1015 try_to_unmap(page,
1016 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1017 page_was_mapped = 1;
1018 }
1019
1020 if (!page_mapped(page))
1021 rc = move_to_new_page(newpage, page, mode);
1022
1023 if (page_was_mapped)
1024 remove_migration_ptes(page,
1025 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
1026
1027 out_unlock_both:
1028 unlock_page(newpage);
1029 out_unlock:
1030 /* Drop an anon_vma reference if we took one */
1031 if (anon_vma)
1032 put_anon_vma(anon_vma);
1033 unlock_page(page);
1034 out:
1035 /*
1036 * If migration is successful, decrease refcount of the newpage
1037 * which will not free the page because new page owner increased
1038 * refcounter. As well, if it is LRU page, add the page to LRU
1039 * list in here.
1040 */
1041 if (rc == MIGRATEPAGE_SUCCESS) {
1042 if (unlikely(__PageMovable(newpage)))
1043 put_page(newpage);
1044 else
1045 putback_lru_page(newpage);
1046 }
1047
1048 return rc;
1049 }
1050
1051 /*
1052 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1053 * around it.
1054 */
1055 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1056 #define ICE_noinline noinline
1057 #else
1058 #define ICE_noinline
1059 #endif
1060
1061 /*
1062 * Obtain the lock on page, remove all ptes and migrate the page
1063 * to the newly allocated page in newpage.
1064 */
1065 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1066 free_page_t put_new_page,
1067 unsigned long private, struct page *page,
1068 int force, enum migrate_mode mode,
1069 enum migrate_reason reason)
1070 {
1071 int rc = MIGRATEPAGE_SUCCESS;
1072 int *result = NULL;
1073 struct page *newpage;
1074
1075 newpage = get_new_page(page, private, &result);
1076 if (!newpage)
1077 return -ENOMEM;
1078
1079 if (page_count(page) == 1) {
1080 /* page was freed from under us. So we are done. */
1081 ClearPageActive(page);
1082 ClearPageUnevictable(page);
1083 if (unlikely(__PageMovable(page))) {
1084 lock_page(page);
1085 if (!PageMovable(page))
1086 __ClearPageIsolated(page);
1087 unlock_page(page);
1088 }
1089 if (put_new_page)
1090 put_new_page(newpage, private);
1091 else
1092 put_page(newpage);
1093 goto out;
1094 }
1095
1096 if (unlikely(PageTransHuge(page)))
1097 if (unlikely(split_huge_page(page)))
1098 goto out;
1099
1100 rc = __unmap_and_move(page, newpage, force, mode);
1101
1102 out:
1103 if (rc != -EAGAIN) {
1104 /*
1105 * A page that has been migrated has all references
1106 * removed and will be freed. A page that has not been
1107 * migrated will have kepts its references and be
1108 * restored.
1109 */
1110 list_del(&page->lru);
1111 dec_zone_page_state(page, NR_ISOLATED_ANON +
1112 page_is_file_cache(page));
1113 }
1114
1115 /*
1116 * If migration is successful, releases reference grabbed during
1117 * isolation. Otherwise, restore the page to right list unless
1118 * we want to retry.
1119 */
1120 if (rc == MIGRATEPAGE_SUCCESS) {
1121 if (reason == MR_MEMORY_FAILURE) {
1122 put_page(page);
1123 /*
1124 * Set PG_HWPoison on just freed page
1125 * intentionally. Although it's rather weird,
1126 * it's how HWPoison flag works at the moment.
1127 */
1128 if (!test_set_page_hwpoison(page))
1129 num_poisoned_pages_inc();
1130 } else if (IS_ENABLED(CONFIG_HPA) && !PageActive(page))
1131 put_page_freelist(page);
1132 else
1133 put_page(page);
1134 } else {
1135 if (rc != -EAGAIN) {
1136 if (likely(!__PageMovable(page))) {
1137 putback_lru_page(page);
1138 goto put_new;
1139 }
1140
1141 lock_page(page);
1142 if (PageMovable(page))
1143 putback_movable_page(page);
1144 else
1145 __ClearPageIsolated(page);
1146 unlock_page(page);
1147 put_page(page);
1148 }
1149 put_new:
1150 if (put_new_page)
1151 put_new_page(newpage, private);
1152 else
1153 put_page(newpage);
1154 }
1155
1156 if (result) {
1157 if (rc)
1158 *result = rc;
1159 else
1160 *result = page_to_nid(newpage);
1161 }
1162 return rc;
1163 }
1164
1165 /*
1166 * Counterpart of unmap_and_move_page() for hugepage migration.
1167 *
1168 * This function doesn't wait the completion of hugepage I/O
1169 * because there is no race between I/O and migration for hugepage.
1170 * Note that currently hugepage I/O occurs only in direct I/O
1171 * where no lock is held and PG_writeback is irrelevant,
1172 * and writeback status of all subpages are counted in the reference
1173 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1174 * under direct I/O, the reference of the head page is 512 and a bit more.)
1175 * This means that when we try to migrate hugepage whose subpages are
1176 * doing direct I/O, some references remain after try_to_unmap() and
1177 * hugepage migration fails without data corruption.
1178 *
1179 * There is also no race when direct I/O is issued on the page under migration,
1180 * because then pte is replaced with migration swap entry and direct I/O code
1181 * will wait in the page fault for migration to complete.
1182 */
1183 static int unmap_and_move_huge_page(new_page_t get_new_page,
1184 free_page_t put_new_page, unsigned long private,
1185 struct page *hpage, int force,
1186 enum migrate_mode mode)
1187 {
1188 int rc = -EAGAIN;
1189 int *result = NULL;
1190 int page_was_mapped = 0;
1191 struct page *new_hpage;
1192 struct anon_vma *anon_vma = NULL;
1193
1194 /*
1195 * Movability of hugepages depends on architectures and hugepage size.
1196 * This check is necessary because some callers of hugepage migration
1197 * like soft offline and memory hotremove don't walk through page
1198 * tables or check whether the hugepage is pmd-based or not before
1199 * kicking migration.
1200 */
1201 if (!hugepage_migration_supported(page_hstate(hpage))) {
1202 putback_active_hugepage(hpage);
1203 return -ENOSYS;
1204 }
1205
1206 new_hpage = get_new_page(hpage, private, &result);
1207 if (!new_hpage)
1208 return -ENOMEM;
1209
1210 if (!trylock_page(hpage)) {
1211 if (!force || mode != MIGRATE_SYNC)
1212 goto out;
1213 lock_page(hpage);
1214 }
1215
1216 if (PageAnon(hpage))
1217 anon_vma = page_get_anon_vma(hpage);
1218
1219 if (unlikely(!trylock_page(new_hpage)))
1220 goto put_anon;
1221
1222 if (page_mapped(hpage)) {
1223 try_to_unmap(hpage,
1224 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1225 page_was_mapped = 1;
1226 }
1227
1228 if (!page_mapped(hpage))
1229 rc = move_to_new_page(new_hpage, hpage, mode);
1230
1231 if (page_was_mapped)
1232 remove_migration_ptes(hpage,
1233 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1234
1235 unlock_page(new_hpage);
1236
1237 put_anon:
1238 if (anon_vma)
1239 put_anon_vma(anon_vma);
1240
1241 if (rc == MIGRATEPAGE_SUCCESS) {
1242 hugetlb_cgroup_migrate(hpage, new_hpage);
1243 put_new_page = NULL;
1244 }
1245
1246 unlock_page(hpage);
1247 out:
1248 if (rc != -EAGAIN)
1249 putback_active_hugepage(hpage);
1250
1251 /*
1252 * If migration was not successful and there's a freeing callback, use
1253 * it. Otherwise, put_page() will drop the reference grabbed during
1254 * isolation.
1255 */
1256 if (put_new_page)
1257 put_new_page(new_hpage, private);
1258 else
1259 putback_active_hugepage(new_hpage);
1260
1261 if (result) {
1262 if (rc)
1263 *result = rc;
1264 else
1265 *result = page_to_nid(new_hpage);
1266 }
1267 return rc;
1268 }
1269
1270 /*
1271 * migrate_pages - migrate the pages specified in a list, to the free pages
1272 * supplied as the target for the page migration
1273 *
1274 * @from: The list of pages to be migrated.
1275 * @get_new_page: The function used to allocate free pages to be used
1276 * as the target of the page migration.
1277 * @put_new_page: The function used to free target pages if migration
1278 * fails, or NULL if no special handling is necessary.
1279 * @private: Private data to be passed on to get_new_page()
1280 * @mode: The migration mode that specifies the constraints for
1281 * page migration, if any.
1282 * @reason: The reason for page migration.
1283 *
1284 * The function returns after 10 attempts or if no pages are movable any more
1285 * because the list has become empty or no retryable pages exist any more.
1286 * The caller should call putback_movable_pages() to return pages to the LRU
1287 * or free list only if ret != 0.
1288 *
1289 * Returns the number of pages that were not migrated, or an error code.
1290 */
1291 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1292 free_page_t put_new_page, unsigned long private,
1293 enum migrate_mode mode, int reason)
1294 {
1295 int retry = 1;
1296 int nr_failed = 0;
1297 int nr_succeeded = 0;
1298 int pass = 0;
1299 struct page *page;
1300 struct page *page2;
1301 int swapwrite = current->flags & PF_SWAPWRITE;
1302 int rc;
1303
1304 if (!swapwrite)
1305 current->flags |= PF_SWAPWRITE;
1306
1307 for(pass = 0; pass < 10 && retry; pass++) {
1308 retry = 0;
1309
1310 list_for_each_entry_safe(page, page2, from, lru) {
1311 cond_resched();
1312
1313 if (PageHuge(page))
1314 rc = unmap_and_move_huge_page(get_new_page,
1315 put_new_page, private, page,
1316 pass > 2, mode);
1317 else
1318 rc = unmap_and_move(get_new_page, put_new_page,
1319 private, page, pass > 2, mode,
1320 reason);
1321
1322 if ((reason == MR_CMA) && (rc != -EAGAIN) &&
1323 (rc != MIGRATEPAGE_SUCCESS)) {
1324 phys_addr_t pa = page_to_phys(page);
1325
1326 pr_err("%s failed(%d): PA%pa,mapcnt%d,cnt%d\n",
1327 __func__, rc, &pa,
1328 page_mapcount(page), page_count(page));
1329 }
1330
1331 switch(rc) {
1332 case -ENOMEM:
1333 goto out;
1334 case -EAGAIN:
1335 retry++;
1336 break;
1337 case MIGRATEPAGE_SUCCESS:
1338 nr_succeeded++;
1339 break;
1340 default:
1341 /*
1342 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343 * unlike -EAGAIN case, the failed page is
1344 * removed from migration page list and not
1345 * retried in the next outer loop.
1346 */
1347 nr_failed++;
1348 break;
1349 }
1350 }
1351 }
1352 nr_failed += retry;
1353 rc = nr_failed;
1354 out:
1355 if (nr_succeeded)
1356 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1357 if (nr_failed)
1358 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1359 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1360
1361 if (!swapwrite)
1362 current->flags &= ~PF_SWAPWRITE;
1363
1364 return rc;
1365 }
1366
1367 #ifdef CONFIG_NUMA
1368 /*
1369 * Move a list of individual pages
1370 */
1371 struct page_to_node {
1372 unsigned long addr;
1373 struct page *page;
1374 int node;
1375 int status;
1376 };
1377
1378 static struct page *new_page_node(struct page *p, unsigned long private,
1379 int **result)
1380 {
1381 struct page_to_node *pm = (struct page_to_node *)private;
1382
1383 while (pm->node != MAX_NUMNODES && pm->page != p)
1384 pm++;
1385
1386 if (pm->node == MAX_NUMNODES)
1387 return NULL;
1388
1389 *result = &pm->status;
1390
1391 if (PageHuge(p))
1392 return alloc_huge_page_node(page_hstate(compound_head(p)),
1393 pm->node);
1394 else
1395 return __alloc_pages_node(pm->node,
1396 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1397 }
1398
1399 /*
1400 * Move a set of pages as indicated in the pm array. The addr
1401 * field must be set to the virtual address of the page to be moved
1402 * and the node number must contain a valid target node.
1403 * The pm array ends with node = MAX_NUMNODES.
1404 */
1405 static int do_move_page_to_node_array(struct mm_struct *mm,
1406 struct page_to_node *pm,
1407 int migrate_all)
1408 {
1409 int err;
1410 struct page_to_node *pp;
1411 LIST_HEAD(pagelist);
1412
1413 down_read(&mm->mmap_sem);
1414
1415 /*
1416 * Build a list of pages to migrate
1417 */
1418 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1419 struct vm_area_struct *vma;
1420 struct page *page;
1421
1422 err = -EFAULT;
1423 vma = find_vma(mm, pp->addr);
1424 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1425 goto set_status;
1426
1427 /* FOLL_DUMP to ignore special (like zero) pages */
1428 page = follow_page(vma, pp->addr,
1429 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1430
1431 err = PTR_ERR(page);
1432 if (IS_ERR(page))
1433 goto set_status;
1434
1435 err = -ENOENT;
1436 if (!page)
1437 goto set_status;
1438
1439 pp->page = page;
1440 err = page_to_nid(page);
1441
1442 if (err == pp->node)
1443 /*
1444 * Node already in the right place
1445 */
1446 goto put_and_set;
1447
1448 err = -EACCES;
1449 if (page_mapcount(page) > 1 &&
1450 !migrate_all)
1451 goto put_and_set;
1452
1453 if (PageHuge(page)) {
1454 if (PageHead(page))
1455 isolate_huge_page(page, &pagelist);
1456 goto put_and_set;
1457 }
1458
1459 err = isolate_lru_page(page);
1460 if (!err) {
1461 list_add_tail(&page->lru, &pagelist);
1462 inc_zone_page_state(page, NR_ISOLATED_ANON +
1463 page_is_file_cache(page));
1464 }
1465 put_and_set:
1466 /*
1467 * Either remove the duplicate refcount from
1468 * isolate_lru_page() or drop the page ref if it was
1469 * not isolated.
1470 */
1471 put_page(page);
1472 set_status:
1473 pp->status = err;
1474 }
1475
1476 err = 0;
1477 if (!list_empty(&pagelist)) {
1478 err = migrate_pages(&pagelist, new_page_node, NULL,
1479 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1480 if (err)
1481 putback_movable_pages(&pagelist);
1482 }
1483
1484 up_read(&mm->mmap_sem);
1485 return err;
1486 }
1487
1488 /*
1489 * Migrate an array of page address onto an array of nodes and fill
1490 * the corresponding array of status.
1491 */
1492 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1493 unsigned long nr_pages,
1494 const void __user * __user *pages,
1495 const int __user *nodes,
1496 int __user *status, int flags)
1497 {
1498 struct page_to_node *pm;
1499 unsigned long chunk_nr_pages;
1500 unsigned long chunk_start;
1501 int err;
1502
1503 err = -ENOMEM;
1504 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1505 if (!pm)
1506 goto out;
1507
1508 migrate_prep();
1509
1510 /*
1511 * Store a chunk of page_to_node array in a page,
1512 * but keep the last one as a marker
1513 */
1514 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1515
1516 for (chunk_start = 0;
1517 chunk_start < nr_pages;
1518 chunk_start += chunk_nr_pages) {
1519 int j;
1520
1521 if (chunk_start + chunk_nr_pages > nr_pages)
1522 chunk_nr_pages = nr_pages - chunk_start;
1523
1524 /* fill the chunk pm with addrs and nodes from user-space */
1525 for (j = 0; j < chunk_nr_pages; j++) {
1526 const void __user *p;
1527 int node;
1528
1529 err = -EFAULT;
1530 if (get_user(p, pages + j + chunk_start))
1531 goto out_pm;
1532 pm[j].addr = (unsigned long) p;
1533
1534 if (get_user(node, nodes + j + chunk_start))
1535 goto out_pm;
1536
1537 err = -ENODEV;
1538 if (node < 0 || node >= MAX_NUMNODES)
1539 goto out_pm;
1540
1541 if (!node_state(node, N_MEMORY))
1542 goto out_pm;
1543
1544 err = -EACCES;
1545 if (!node_isset(node, task_nodes))
1546 goto out_pm;
1547
1548 pm[j].node = node;
1549 }
1550
1551 /* End marker for this chunk */
1552 pm[chunk_nr_pages].node = MAX_NUMNODES;
1553
1554 /* Migrate this chunk */
1555 err = do_move_page_to_node_array(mm, pm,
1556 flags & MPOL_MF_MOVE_ALL);
1557 if (err < 0)
1558 goto out_pm;
1559
1560 /* Return status information */
1561 for (j = 0; j < chunk_nr_pages; j++)
1562 if (put_user(pm[j].status, status + j + chunk_start)) {
1563 err = -EFAULT;
1564 goto out_pm;
1565 }
1566 }
1567 err = 0;
1568
1569 out_pm:
1570 free_page((unsigned long)pm);
1571 out:
1572 return err;
1573 }
1574
1575 /*
1576 * Determine the nodes of an array of pages and store it in an array of status.
1577 */
1578 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1579 const void __user **pages, int *status)
1580 {
1581 unsigned long i;
1582
1583 down_read(&mm->mmap_sem);
1584
1585 for (i = 0; i < nr_pages; i++) {
1586 unsigned long addr = (unsigned long)(*pages);
1587 struct vm_area_struct *vma;
1588 struct page *page;
1589 int err = -EFAULT;
1590
1591 vma = find_vma(mm, addr);
1592 if (!vma || addr < vma->vm_start)
1593 goto set_status;
1594
1595 /* FOLL_DUMP to ignore special (like zero) pages */
1596 page = follow_page(vma, addr, FOLL_DUMP);
1597
1598 err = PTR_ERR(page);
1599 if (IS_ERR(page))
1600 goto set_status;
1601
1602 err = page ? page_to_nid(page) : -ENOENT;
1603 set_status:
1604 *status = err;
1605
1606 pages++;
1607 status++;
1608 }
1609
1610 up_read(&mm->mmap_sem);
1611 }
1612
1613 /*
1614 * Determine the nodes of a user array of pages and store it in
1615 * a user array of status.
1616 */
1617 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1618 const void __user * __user *pages,
1619 int __user *status)
1620 {
1621 #define DO_PAGES_STAT_CHUNK_NR 16
1622 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1623 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1624
1625 while (nr_pages) {
1626 unsigned long chunk_nr;
1627
1628 chunk_nr = nr_pages;
1629 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1630 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1631
1632 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1633 break;
1634
1635 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1636
1637 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1638 break;
1639
1640 pages += chunk_nr;
1641 status += chunk_nr;
1642 nr_pages -= chunk_nr;
1643 }
1644 return nr_pages ? -EFAULT : 0;
1645 }
1646
1647 /*
1648 * Move a list of pages in the address space of the currently executing
1649 * process.
1650 */
1651 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1652 const void __user * __user *, pages,
1653 const int __user *, nodes,
1654 int __user *, status, int, flags)
1655 {
1656 struct task_struct *task;
1657 struct mm_struct *mm;
1658 int err;
1659 nodemask_t task_nodes;
1660
1661 /* Check flags */
1662 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663 return -EINVAL;
1664
1665 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666 return -EPERM;
1667
1668 /* Find the mm_struct */
1669 rcu_read_lock();
1670 task = pid ? find_task_by_vpid(pid) : current;
1671 if (!task) {
1672 rcu_read_unlock();
1673 return -ESRCH;
1674 }
1675 get_task_struct(task);
1676
1677 /*
1678 * Check if this process has the right to modify the specified
1679 * process. Use the regular "ptrace_may_access()" checks.
1680 */
1681 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1682 rcu_read_unlock();
1683 err = -EPERM;
1684 goto out;
1685 }
1686 rcu_read_unlock();
1687
1688 err = security_task_movememory(task);
1689 if (err)
1690 goto out;
1691
1692 task_nodes = cpuset_mems_allowed(task);
1693 mm = get_task_mm(task);
1694 put_task_struct(task);
1695
1696 if (!mm)
1697 return -EINVAL;
1698
1699 if (nodes)
1700 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1701 nodes, status, flags);
1702 else
1703 err = do_pages_stat(mm, nr_pages, pages, status);
1704
1705 mmput(mm);
1706 return err;
1707
1708 out:
1709 put_task_struct(task);
1710 return err;
1711 }
1712
1713 #ifdef CONFIG_NUMA_BALANCING
1714 /*
1715 * Returns true if this is a safe migration target node for misplaced NUMA
1716 * pages. Currently it only checks the watermarks which crude
1717 */
1718 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1719 unsigned long nr_migrate_pages)
1720 {
1721 int z;
1722 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1723 struct zone *zone = pgdat->node_zones + z;
1724
1725 if (!populated_zone(zone))
1726 continue;
1727
1728 if (!zone_reclaimable(zone))
1729 continue;
1730
1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732 if (!zone_watermark_ok(zone, 0,
1733 high_wmark_pages(zone) +
1734 nr_migrate_pages,
1735 0, 0))
1736 continue;
1737 return true;
1738 }
1739 return false;
1740 }
1741
1742 static struct page *alloc_misplaced_dst_page(struct page *page,
1743 unsigned long data,
1744 int **result)
1745 {
1746 int nid = (int) data;
1747 struct page *newpage;
1748
1749 newpage = __alloc_pages_node(nid,
1750 (GFP_HIGHUSER_MOVABLE |
1751 __GFP_THISNODE | __GFP_NOMEMALLOC |
1752 __GFP_NORETRY | __GFP_NOWARN) &
1753 ~__GFP_RECLAIM, 0);
1754
1755 return newpage;
1756 }
1757
1758 /*
1759 * page migration rate limiting control.
1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761 * window of time. Default here says do not migrate more than 1280M per second.
1762 */
1763 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1765
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1768 unsigned long nr_pages)
1769 {
1770 /*
1771 * Rate-limit the amount of data that is being migrated to a node.
1772 * Optimal placement is no good if the memory bus is saturated and
1773 * all the time is being spent migrating!
1774 */
1775 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776 spin_lock(&pgdat->numabalancing_migrate_lock);
1777 pgdat->numabalancing_migrate_nr_pages = 0;
1778 pgdat->numabalancing_migrate_next_window = jiffies +
1779 msecs_to_jiffies(migrate_interval_millisecs);
1780 spin_unlock(&pgdat->numabalancing_migrate_lock);
1781 }
1782 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1783 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1784 nr_pages);
1785 return true;
1786 }
1787
1788 /*
1789 * This is an unlocked non-atomic update so errors are possible.
1790 * The consequences are failing to migrate when we potentiall should
1791 * have which is not severe enough to warrant locking. If it is ever
1792 * a problem, it can be converted to a per-cpu counter.
1793 */
1794 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1795 return false;
1796 }
1797
1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1799 {
1800 int page_lru;
1801
1802 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1803
1804 /* Avoid migrating to a node that is nearly full */
1805 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1806 return 0;
1807
1808 if (isolate_lru_page(page))
1809 return 0;
1810
1811 /*
1812 * migrate_misplaced_transhuge_page() skips page migration's usual
1813 * check on page_count(), so we must do it here, now that the page
1814 * has been isolated: a GUP pin, or any other pin, prevents migration.
1815 * The expected page count is 3: 1 for page's mapcount and 1 for the
1816 * caller's pin and 1 for the reference taken by isolate_lru_page().
1817 */
1818 if (PageTransHuge(page) && page_count(page) != 3) {
1819 putback_lru_page(page);
1820 return 0;
1821 }
1822
1823 page_lru = page_is_file_cache(page);
1824 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1825 hpage_nr_pages(page));
1826
1827 /*
1828 * Isolating the page has taken another reference, so the
1829 * caller's reference can be safely dropped without the page
1830 * disappearing underneath us during migration.
1831 */
1832 put_page(page);
1833 return 1;
1834 }
1835
1836 bool pmd_trans_migrating(pmd_t pmd)
1837 {
1838 struct page *page = pmd_page(pmd);
1839 return PageLocked(page);
1840 }
1841
1842 /*
1843 * Attempt to migrate a misplaced page to the specified destination
1844 * node. Caller is expected to have an elevated reference count on
1845 * the page that will be dropped by this function before returning.
1846 */
1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1848 int node)
1849 {
1850 pg_data_t *pgdat = NODE_DATA(node);
1851 int isolated;
1852 int nr_remaining;
1853 LIST_HEAD(migratepages);
1854
1855 /*
1856 * Don't migrate file pages that are mapped in multiple processes
1857 * with execute permissions as they are probably shared libraries.
1858 */
1859 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1860 (vma->vm_flags & VM_EXEC))
1861 goto out;
1862
1863 /*
1864 * Rate-limit the amount of data that is being migrated to a node.
1865 * Optimal placement is no good if the memory bus is saturated and
1866 * all the time is being spent migrating!
1867 */
1868 if (numamigrate_update_ratelimit(pgdat, 1))
1869 goto out;
1870
1871 isolated = numamigrate_isolate_page(pgdat, page);
1872 if (!isolated)
1873 goto out;
1874
1875 list_add(&page->lru, &migratepages);
1876 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877 NULL, node, MIGRATE_ASYNC,
1878 MR_NUMA_MISPLACED);
1879 if (nr_remaining) {
1880 if (!list_empty(&migratepages)) {
1881 list_del(&page->lru);
1882 dec_zone_page_state(page, NR_ISOLATED_ANON +
1883 page_is_file_cache(page));
1884 putback_lru_page(page);
1885 }
1886 isolated = 0;
1887 } else
1888 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889 BUG_ON(!list_empty(&migratepages));
1890 return isolated;
1891
1892 out:
1893 put_page(page);
1894 return 0;
1895 }
1896 #endif /* CONFIG_NUMA_BALANCING */
1897
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 /*
1900 * Migrates a THP to a given target node. page must be locked and is unlocked
1901 * before returning.
1902 */
1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1904 struct vm_area_struct *vma,
1905 pmd_t *pmd, pmd_t entry,
1906 unsigned long address,
1907 struct page *page, int node)
1908 {
1909 spinlock_t *ptl;
1910 pg_data_t *pgdat = NODE_DATA(node);
1911 int isolated = 0;
1912 struct page *new_page = NULL;
1913 int page_lru = page_is_file_cache(page);
1914 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1915 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916 pmd_t orig_entry;
1917
1918 /*
1919 * Rate-limit the amount of data that is being migrated to a node.
1920 * Optimal placement is no good if the memory bus is saturated and
1921 * all the time is being spent migrating!
1922 */
1923 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924 goto out_dropref;
1925
1926 new_page = alloc_pages_node(node,
1927 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1928 HPAGE_PMD_ORDER);
1929 if (!new_page)
1930 goto out_fail;
1931
1932 isolated = numamigrate_isolate_page(pgdat, page);
1933 if (!isolated) {
1934 put_page(new_page);
1935 goto out_fail;
1936 }
1937
1938 if (mm_tlb_flush_pending(mm))
1939 flush_tlb_range(vma, mmun_start, mmun_end);
1940
1941 /* Prepare a page as a migration target */
1942 __set_page_locked(new_page);
1943 SetPageSwapBacked(new_page);
1944
1945 /* anon mapping, we can simply copy page->mapping to the new page: */
1946 new_page->mapping = page->mapping;
1947 new_page->index = page->index;
1948 migrate_page_copy(new_page, page);
1949 WARN_ON(PageLRU(new_page));
1950
1951 /* Recheck the target PMD */
1952 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1953 ptl = pmd_lock(mm, pmd);
1954 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1955 fail_putback:
1956 spin_unlock(ptl);
1957 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1958
1959 /* Reverse changes made by migrate_page_copy() */
1960 if (TestClearPageActive(new_page))
1961 SetPageActive(page);
1962 if (TestClearPageUnevictable(new_page))
1963 SetPageUnevictable(page);
1964
1965 unlock_page(new_page);
1966 put_page(new_page); /* Free it */
1967
1968 /* Retake the callers reference and putback on LRU */
1969 get_page(page);
1970 putback_lru_page(page);
1971 mod_zone_page_state(page_zone(page),
1972 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1973
1974 goto out_unlock;
1975 }
1976
1977 orig_entry = *pmd;
1978 entry = mk_pmd(new_page, vma->vm_page_prot);
1979 entry = pmd_mkhuge(entry);
1980 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1981
1982 /*
1983 * Clear the old entry under pagetable lock and establish the new PTE.
1984 * Any parallel GUP will either observe the old page blocking on the
1985 * page lock, block on the page table lock or observe the new page.
1986 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1987 * guarantee the copy is visible before the pagetable update.
1988 */
1989 flush_cache_range(vma, mmun_start, mmun_end);
1990 page_add_anon_rmap(new_page, vma, mmun_start);
1991 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1992 set_pmd_at(mm, mmun_start, pmd, entry);
1993 flush_tlb_range(vma, mmun_start, mmun_end);
1994 update_mmu_cache_pmd(vma, address, &entry);
1995
1996 if (page_count(page) != 2) {
1997 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1998 flush_tlb_range(vma, mmun_start, mmun_end);
1999 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2000 update_mmu_cache_pmd(vma, address, &entry);
2001 page_remove_rmap(new_page);
2002 goto fail_putback;
2003 }
2004
2005 mlock_migrate_page(new_page, page);
2006 set_page_memcg(new_page, page_memcg(page));
2007 set_page_memcg(page, NULL);
2008 page_remove_rmap(page);
2009
2010 spin_unlock(ptl);
2011 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2012
2013 /* Take an "isolate" reference and put new page on the LRU. */
2014 get_page(new_page);
2015 putback_lru_page(new_page);
2016
2017 unlock_page(new_page);
2018 unlock_page(page);
2019 put_page(page); /* Drop the rmap reference */
2020 put_page(page); /* Drop the LRU isolation reference */
2021
2022 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2023 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2024
2025 mod_zone_page_state(page_zone(page),
2026 NR_ISOLATED_ANON + page_lru,
2027 -HPAGE_PMD_NR);
2028 return isolated;
2029
2030 out_fail:
2031 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2032 out_dropref:
2033 ptl = pmd_lock(mm, pmd);
2034 if (pmd_same(*pmd, entry)) {
2035 entry = pmd_modify(entry, vma->vm_page_prot);
2036 set_pmd_at(mm, mmun_start, pmd, entry);
2037 update_mmu_cache_pmd(vma, address, &entry);
2038 }
2039 spin_unlock(ptl);
2040
2041 out_unlock:
2042 unlock_page(page);
2043 put_page(page);
2044 return 0;
2045 }
2046 #endif /* CONFIG_NUMA_BALANCING */
2047
2048 #endif /* CONFIG_NUMA */