Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43
44 /*
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
48 */
49 int migrate_prep(void)
50 {
51 /*
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
56 */
57 lru_add_drain_all();
58
59 return 0;
60 }
61
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
64 {
65 lru_add_drain();
66
67 return 0;
68 }
69
70 /*
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
73 */
74 void putback_lru_pages(struct list_head *l)
75 {
76 struct page *page;
77 struct page *page2;
78
79 list_for_each_entry_safe(page, page2, l, lru) {
80 list_del(&page->lru);
81 dec_zone_page_state(page, NR_ISOLATED_ANON +
82 page_is_file_cache(page));
83 putback_lru_page(page);
84 }
85 }
86
87 /*
88 * Put previously isolated pages back onto the appropriate lists
89 * from where they were once taken off for compaction/migration.
90 *
91 * This function shall be used instead of putback_lru_pages(),
92 * whenever the isolated pageset has been built by isolate_migratepages_range()
93 */
94 void putback_movable_pages(struct list_head *l)
95 {
96 struct page *page;
97 struct page *page2;
98
99 list_for_each_entry_safe(page, page2, l, lru) {
100 list_del(&page->lru);
101 dec_zone_page_state(page, NR_ISOLATED_ANON +
102 page_is_file_cache(page));
103 if (unlikely(balloon_page_movable(page)))
104 balloon_page_putback(page);
105 else
106 putback_lru_page(page);
107 }
108 }
109
110 /*
111 * Restore a potential migration pte to a working pte entry
112 */
113 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
114 unsigned long addr, void *old)
115 {
116 struct mm_struct *mm = vma->vm_mm;
117 swp_entry_t entry;
118 pmd_t *pmd;
119 pte_t *ptep, pte;
120 spinlock_t *ptl;
121
122 if (unlikely(PageHuge(new))) {
123 ptep = huge_pte_offset(mm, addr);
124 if (!ptep)
125 goto out;
126 ptl = &mm->page_table_lock;
127 } else {
128 pmd = mm_find_pmd(mm, addr);
129 if (!pmd)
130 goto out;
131 if (pmd_trans_huge(*pmd))
132 goto out;
133
134 ptep = pte_offset_map(pmd, addr);
135
136 /*
137 * Peek to check is_swap_pte() before taking ptlock? No, we
138 * can race mremap's move_ptes(), which skips anon_vma lock.
139 */
140
141 ptl = pte_lockptr(mm, pmd);
142 }
143
144 spin_lock(ptl);
145 pte = *ptep;
146 if (!is_swap_pte(pte))
147 goto unlock;
148
149 entry = pte_to_swp_entry(pte);
150
151 if (!is_migration_entry(entry) ||
152 migration_entry_to_page(entry) != old)
153 goto unlock;
154
155 get_page(new);
156 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
157 if (is_write_migration_entry(entry))
158 pte = pte_mkwrite(pte);
159 #ifdef CONFIG_HUGETLB_PAGE
160 if (PageHuge(new))
161 pte = pte_mkhuge(pte);
162 #endif
163 flush_cache_page(vma, addr, pte_pfn(pte));
164 set_pte_at(mm, addr, ptep, pte);
165
166 if (PageHuge(new)) {
167 if (PageAnon(new))
168 hugepage_add_anon_rmap(new, vma, addr);
169 else
170 page_dup_rmap(new);
171 } else if (PageAnon(new))
172 page_add_anon_rmap(new, vma, addr);
173 else
174 page_add_file_rmap(new);
175
176 /* No need to invalidate - it was non-present before */
177 update_mmu_cache(vma, addr, ptep);
178 unlock:
179 pte_unmap_unlock(ptep, ptl);
180 out:
181 return SWAP_AGAIN;
182 }
183
184 /*
185 * Get rid of all migration entries and replace them by
186 * references to the indicated page.
187 */
188 static void remove_migration_ptes(struct page *old, struct page *new)
189 {
190 rmap_walk(new, remove_migration_pte, old);
191 }
192
193 /*
194 * Something used the pte of a page under migration. We need to
195 * get to the page and wait until migration is finished.
196 * When we return from this function the fault will be retried.
197 */
198 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
199 unsigned long address)
200 {
201 pte_t *ptep, pte;
202 spinlock_t *ptl;
203 swp_entry_t entry;
204 struct page *page;
205
206 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
207 pte = *ptep;
208 if (!is_swap_pte(pte))
209 goto out;
210
211 entry = pte_to_swp_entry(pte);
212 if (!is_migration_entry(entry))
213 goto out;
214
215 page = migration_entry_to_page(entry);
216
217 /*
218 * Once radix-tree replacement of page migration started, page_count
219 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 * against a page without get_page().
221 * So, we use get_page_unless_zero(), here. Even failed, page fault
222 * will occur again.
223 */
224 if (!get_page_unless_zero(page))
225 goto out;
226 pte_unmap_unlock(ptep, ptl);
227 wait_on_page_locked(page);
228 put_page(page);
229 return;
230 out:
231 pte_unmap_unlock(ptep, ptl);
232 }
233
234 #ifdef CONFIG_BLOCK
235 /* Returns true if all buffers are successfully locked */
236 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
237 enum migrate_mode mode)
238 {
239 struct buffer_head *bh = head;
240
241 /* Simple case, sync compaction */
242 if (mode != MIGRATE_ASYNC) {
243 do {
244 get_bh(bh);
245 lock_buffer(bh);
246 bh = bh->b_this_page;
247
248 } while (bh != head);
249
250 return true;
251 }
252
253 /* async case, we cannot block on lock_buffer so use trylock_buffer */
254 do {
255 get_bh(bh);
256 if (!trylock_buffer(bh)) {
257 /*
258 * We failed to lock the buffer and cannot stall in
259 * async migration. Release the taken locks
260 */
261 struct buffer_head *failed_bh = bh;
262 put_bh(failed_bh);
263 bh = head;
264 while (bh != failed_bh) {
265 unlock_buffer(bh);
266 put_bh(bh);
267 bh = bh->b_this_page;
268 }
269 return false;
270 }
271
272 bh = bh->b_this_page;
273 } while (bh != head);
274 return true;
275 }
276 #else
277 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
278 enum migrate_mode mode)
279 {
280 return true;
281 }
282 #endif /* CONFIG_BLOCK */
283
284 /*
285 * Replace the page in the mapping.
286 *
287 * The number of remaining references must be:
288 * 1 for anonymous pages without a mapping
289 * 2 for pages with a mapping
290 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
291 */
292 static int migrate_page_move_mapping(struct address_space *mapping,
293 struct page *newpage, struct page *page,
294 struct buffer_head *head, enum migrate_mode mode)
295 {
296 int expected_count;
297 void **pslot;
298
299 if (!mapping) {
300 /* Anonymous page without mapping */
301 if (page_count(page) != 1)
302 return -EAGAIN;
303 return MIGRATEPAGE_SUCCESS;
304 }
305
306 spin_lock_irq(&mapping->tree_lock);
307
308 pslot = radix_tree_lookup_slot(&mapping->page_tree,
309 page_index(page));
310
311 expected_count = 2 + page_has_private(page);
312 if (page_count(page) != expected_count ||
313 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
314 spin_unlock_irq(&mapping->tree_lock);
315 return -EAGAIN;
316 }
317
318 if (!page_freeze_refs(page, expected_count)) {
319 spin_unlock_irq(&mapping->tree_lock);
320 return -EAGAIN;
321 }
322
323 /*
324 * In the async migration case of moving a page with buffers, lock the
325 * buffers using trylock before the mapping is moved. If the mapping
326 * was moved, we later failed to lock the buffers and could not move
327 * the mapping back due to an elevated page count, we would have to
328 * block waiting on other references to be dropped.
329 */
330 if (mode == MIGRATE_ASYNC && head &&
331 !buffer_migrate_lock_buffers(head, mode)) {
332 page_unfreeze_refs(page, expected_count);
333 spin_unlock_irq(&mapping->tree_lock);
334 return -EAGAIN;
335 }
336
337 /*
338 * Now we know that no one else is looking at the page.
339 */
340 get_page(newpage); /* add cache reference */
341 if (PageSwapCache(page)) {
342 SetPageSwapCache(newpage);
343 set_page_private(newpage, page_private(page));
344 }
345
346 radix_tree_replace_slot(pslot, newpage);
347
348 /*
349 * Drop cache reference from old page by unfreezing
350 * to one less reference.
351 * We know this isn't the last reference.
352 */
353 page_unfreeze_refs(page, expected_count - 1);
354
355 /*
356 * If moved to a different zone then also account
357 * the page for that zone. Other VM counters will be
358 * taken care of when we establish references to the
359 * new page and drop references to the old page.
360 *
361 * Note that anonymous pages are accounted for
362 * via NR_FILE_PAGES and NR_ANON_PAGES if they
363 * are mapped to swap space.
364 */
365 __dec_zone_page_state(page, NR_FILE_PAGES);
366 __inc_zone_page_state(newpage, NR_FILE_PAGES);
367 if (!PageSwapCache(page) && PageSwapBacked(page)) {
368 __dec_zone_page_state(page, NR_SHMEM);
369 __inc_zone_page_state(newpage, NR_SHMEM);
370 }
371 spin_unlock_irq(&mapping->tree_lock);
372
373 return MIGRATEPAGE_SUCCESS;
374 }
375
376 /*
377 * The expected number of remaining references is the same as that
378 * of migrate_page_move_mapping().
379 */
380 int migrate_huge_page_move_mapping(struct address_space *mapping,
381 struct page *newpage, struct page *page)
382 {
383 int expected_count;
384 void **pslot;
385
386 if (!mapping) {
387 if (page_count(page) != 1)
388 return -EAGAIN;
389 return MIGRATEPAGE_SUCCESS;
390 }
391
392 spin_lock_irq(&mapping->tree_lock);
393
394 pslot = radix_tree_lookup_slot(&mapping->page_tree,
395 page_index(page));
396
397 expected_count = 2 + page_has_private(page);
398 if (page_count(page) != expected_count ||
399 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
400 spin_unlock_irq(&mapping->tree_lock);
401 return -EAGAIN;
402 }
403
404 if (!page_freeze_refs(page, expected_count)) {
405 spin_unlock_irq(&mapping->tree_lock);
406 return -EAGAIN;
407 }
408
409 get_page(newpage);
410
411 radix_tree_replace_slot(pslot, newpage);
412
413 page_unfreeze_refs(page, expected_count - 1);
414
415 spin_unlock_irq(&mapping->tree_lock);
416 return MIGRATEPAGE_SUCCESS;
417 }
418
419 /*
420 * Copy the page to its new location
421 */
422 void migrate_page_copy(struct page *newpage, struct page *page)
423 {
424 if (PageHuge(page))
425 copy_huge_page(newpage, page);
426 else
427 copy_highpage(newpage, page);
428
429 if (PageError(page))
430 SetPageError(newpage);
431 if (PageReferenced(page))
432 SetPageReferenced(newpage);
433 if (PageUptodate(page))
434 SetPageUptodate(newpage);
435 if (TestClearPageActive(page)) {
436 VM_BUG_ON(PageUnevictable(page));
437 SetPageActive(newpage);
438 } else if (TestClearPageUnevictable(page))
439 SetPageUnevictable(newpage);
440 if (PageChecked(page))
441 SetPageChecked(newpage);
442 if (PageMappedToDisk(page))
443 SetPageMappedToDisk(newpage);
444
445 if (PageDirty(page)) {
446 clear_page_dirty_for_io(page);
447 /*
448 * Want to mark the page and the radix tree as dirty, and
449 * redo the accounting that clear_page_dirty_for_io undid,
450 * but we can't use set_page_dirty because that function
451 * is actually a signal that all of the page has become dirty.
452 * Whereas only part of our page may be dirty.
453 */
454 if (PageSwapBacked(page))
455 SetPageDirty(newpage);
456 else
457 __set_page_dirty_nobuffers(newpage);
458 }
459
460 mlock_migrate_page(newpage, page);
461 ksm_migrate_page(newpage, page);
462
463 ClearPageSwapCache(page);
464 ClearPagePrivate(page);
465 set_page_private(page, 0);
466
467 /*
468 * If any waiters have accumulated on the new page then
469 * wake them up.
470 */
471 if (PageWriteback(newpage))
472 end_page_writeback(newpage);
473 }
474
475 /************************************************************
476 * Migration functions
477 ***********************************************************/
478
479 /* Always fail migration. Used for mappings that are not movable */
480 int fail_migrate_page(struct address_space *mapping,
481 struct page *newpage, struct page *page)
482 {
483 return -EIO;
484 }
485 EXPORT_SYMBOL(fail_migrate_page);
486
487 /*
488 * Common logic to directly migrate a single page suitable for
489 * pages that do not use PagePrivate/PagePrivate2.
490 *
491 * Pages are locked upon entry and exit.
492 */
493 int migrate_page(struct address_space *mapping,
494 struct page *newpage, struct page *page,
495 enum migrate_mode mode)
496 {
497 int rc;
498
499 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
500
501 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
502
503 if (rc != MIGRATEPAGE_SUCCESS)
504 return rc;
505
506 migrate_page_copy(newpage, page);
507 return MIGRATEPAGE_SUCCESS;
508 }
509 EXPORT_SYMBOL(migrate_page);
510
511 #ifdef CONFIG_BLOCK
512 /*
513 * Migration function for pages with buffers. This function can only be used
514 * if the underlying filesystem guarantees that no other references to "page"
515 * exist.
516 */
517 int buffer_migrate_page(struct address_space *mapping,
518 struct page *newpage, struct page *page, enum migrate_mode mode)
519 {
520 struct buffer_head *bh, *head;
521 int rc;
522
523 if (!page_has_buffers(page))
524 return migrate_page(mapping, newpage, page, mode);
525
526 head = page_buffers(page);
527
528 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
529
530 if (rc != MIGRATEPAGE_SUCCESS)
531 return rc;
532
533 /*
534 * In the async case, migrate_page_move_mapping locked the buffers
535 * with an IRQ-safe spinlock held. In the sync case, the buffers
536 * need to be locked now
537 */
538 if (mode != MIGRATE_ASYNC)
539 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
540
541 ClearPagePrivate(page);
542 set_page_private(newpage, page_private(page));
543 set_page_private(page, 0);
544 put_page(page);
545 get_page(newpage);
546
547 bh = head;
548 do {
549 set_bh_page(bh, newpage, bh_offset(bh));
550 bh = bh->b_this_page;
551
552 } while (bh != head);
553
554 SetPagePrivate(newpage);
555
556 migrate_page_copy(newpage, page);
557
558 bh = head;
559 do {
560 unlock_buffer(bh);
561 put_bh(bh);
562 bh = bh->b_this_page;
563
564 } while (bh != head);
565
566 return MIGRATEPAGE_SUCCESS;
567 }
568 EXPORT_SYMBOL(buffer_migrate_page);
569 #endif
570
571 /*
572 * Writeback a page to clean the dirty state
573 */
574 static int writeout(struct address_space *mapping, struct page *page)
575 {
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = 1,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1
582 };
583 int rc;
584
585 if (!mapping->a_ops->writepage)
586 /* No write method for the address space */
587 return -EINVAL;
588
589 if (!clear_page_dirty_for_io(page))
590 /* Someone else already triggered a write */
591 return -EAGAIN;
592
593 /*
594 * A dirty page may imply that the underlying filesystem has
595 * the page on some queue. So the page must be clean for
596 * migration. Writeout may mean we loose the lock and the
597 * page state is no longer what we checked for earlier.
598 * At this point we know that the migration attempt cannot
599 * be successful.
600 */
601 remove_migration_ptes(page, page);
602
603 rc = mapping->a_ops->writepage(page, &wbc);
604
605 if (rc != AOP_WRITEPAGE_ACTIVATE)
606 /* unlocked. Relock */
607 lock_page(page);
608
609 return (rc < 0) ? -EIO : -EAGAIN;
610 }
611
612 /*
613 * Default handling if a filesystem does not provide a migration function.
614 */
615 static int fallback_migrate_page(struct address_space *mapping,
616 struct page *newpage, struct page *page, enum migrate_mode mode)
617 {
618 if (PageDirty(page)) {
619 /* Only writeback pages in full synchronous migration */
620 if (mode != MIGRATE_SYNC)
621 return -EBUSY;
622 return writeout(mapping, page);
623 }
624
625 /*
626 * Buffers may be managed in a filesystem specific way.
627 * We must have no buffers or drop them.
628 */
629 if (page_has_private(page) &&
630 !try_to_release_page(page, GFP_KERNEL))
631 return -EAGAIN;
632
633 return migrate_page(mapping, newpage, page, mode);
634 }
635
636 /*
637 * Move a page to a newly allocated page
638 * The page is locked and all ptes have been successfully removed.
639 *
640 * The new page will have replaced the old page if this function
641 * is successful.
642 *
643 * Return value:
644 * < 0 - error code
645 * MIGRATEPAGE_SUCCESS - success
646 */
647 static int move_to_new_page(struct page *newpage, struct page *page,
648 int remap_swapcache, enum migrate_mode mode)
649 {
650 struct address_space *mapping;
651 int rc;
652
653 /*
654 * Block others from accessing the page when we get around to
655 * establishing additional references. We are the only one
656 * holding a reference to the new page at this point.
657 */
658 if (!trylock_page(newpage))
659 BUG();
660
661 /* Prepare mapping for the new page.*/
662 newpage->index = page->index;
663 newpage->mapping = page->mapping;
664 if (PageSwapBacked(page))
665 SetPageSwapBacked(newpage);
666
667 mapping = page_mapping(page);
668 if (!mapping)
669 rc = migrate_page(mapping, newpage, page, mode);
670 else if (mapping->a_ops->migratepage)
671 /*
672 * Most pages have a mapping and most filesystems provide a
673 * migratepage callback. Anonymous pages are part of swap
674 * space which also has its own migratepage callback. This
675 * is the most common path for page migration.
676 */
677 rc = mapping->a_ops->migratepage(mapping,
678 newpage, page, mode);
679 else
680 rc = fallback_migrate_page(mapping, newpage, page, mode);
681
682 if (rc != MIGRATEPAGE_SUCCESS) {
683 newpage->mapping = NULL;
684 } else {
685 if (remap_swapcache)
686 remove_migration_ptes(page, newpage);
687 page->mapping = NULL;
688 }
689
690 unlock_page(newpage);
691
692 return rc;
693 }
694
695 static int __unmap_and_move(struct page *page, struct page *newpage,
696 int force, bool offlining, enum migrate_mode mode)
697 {
698 int rc = -EAGAIN;
699 int remap_swapcache = 1;
700 struct mem_cgroup *mem;
701 struct anon_vma *anon_vma = NULL;
702
703 if (!trylock_page(page)) {
704 if (!force || mode == MIGRATE_ASYNC)
705 goto out;
706
707 /*
708 * It's not safe for direct compaction to call lock_page.
709 * For example, during page readahead pages are added locked
710 * to the LRU. Later, when the IO completes the pages are
711 * marked uptodate and unlocked. However, the queueing
712 * could be merging multiple pages for one bio (e.g.
713 * mpage_readpages). If an allocation happens for the
714 * second or third page, the process can end up locking
715 * the same page twice and deadlocking. Rather than
716 * trying to be clever about what pages can be locked,
717 * avoid the use of lock_page for direct compaction
718 * altogether.
719 */
720 if (current->flags & PF_MEMALLOC)
721 goto out;
722
723 lock_page(page);
724 }
725
726 /*
727 * Only memory hotplug's offline_pages() caller has locked out KSM,
728 * and can safely migrate a KSM page. The other cases have skipped
729 * PageKsm along with PageReserved - but it is only now when we have
730 * the page lock that we can be certain it will not go KSM beneath us
731 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
732 * its pagecount raised, but only here do we take the page lock which
733 * serializes that).
734 */
735 if (PageKsm(page) && !offlining) {
736 rc = -EBUSY;
737 goto unlock;
738 }
739
740 /* charge against new page */
741 mem_cgroup_prepare_migration(page, newpage, &mem);
742
743 if (PageWriteback(page)) {
744 /*
745 * Only in the case of a full syncronous migration is it
746 * necessary to wait for PageWriteback. In the async case,
747 * the retry loop is too short and in the sync-light case,
748 * the overhead of stalling is too much
749 */
750 if (mode != MIGRATE_SYNC) {
751 rc = -EBUSY;
752 goto uncharge;
753 }
754 if (!force)
755 goto uncharge;
756 wait_on_page_writeback(page);
757 }
758 /*
759 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
760 * we cannot notice that anon_vma is freed while we migrates a page.
761 * This get_anon_vma() delays freeing anon_vma pointer until the end
762 * of migration. File cache pages are no problem because of page_lock()
763 * File Caches may use write_page() or lock_page() in migration, then,
764 * just care Anon page here.
765 */
766 if (PageAnon(page)) {
767 /*
768 * Only page_lock_anon_vma() understands the subtleties of
769 * getting a hold on an anon_vma from outside one of its mms.
770 */
771 anon_vma = page_get_anon_vma(page);
772 if (anon_vma) {
773 /*
774 * Anon page
775 */
776 } else if (PageSwapCache(page)) {
777 /*
778 * We cannot be sure that the anon_vma of an unmapped
779 * swapcache page is safe to use because we don't
780 * know in advance if the VMA that this page belonged
781 * to still exists. If the VMA and others sharing the
782 * data have been freed, then the anon_vma could
783 * already be invalid.
784 *
785 * To avoid this possibility, swapcache pages get
786 * migrated but are not remapped when migration
787 * completes
788 */
789 remap_swapcache = 0;
790 } else {
791 goto uncharge;
792 }
793 }
794
795 if (unlikely(balloon_page_movable(page))) {
796 /*
797 * A ballooned page does not need any special attention from
798 * physical to virtual reverse mapping procedures.
799 * Skip any attempt to unmap PTEs or to remap swap cache,
800 * in order to avoid burning cycles at rmap level, and perform
801 * the page migration right away (proteced by page lock).
802 */
803 rc = balloon_page_migrate(newpage, page, mode);
804 goto uncharge;
805 }
806
807 /*
808 * Corner case handling:
809 * 1. When a new swap-cache page is read into, it is added to the LRU
810 * and treated as swapcache but it has no rmap yet.
811 * Calling try_to_unmap() against a page->mapping==NULL page will
812 * trigger a BUG. So handle it here.
813 * 2. An orphaned page (see truncate_complete_page) might have
814 * fs-private metadata. The page can be picked up due to memory
815 * offlining. Everywhere else except page reclaim, the page is
816 * invisible to the vm, so the page can not be migrated. So try to
817 * free the metadata, so the page can be freed.
818 */
819 if (!page->mapping) {
820 VM_BUG_ON(PageAnon(page));
821 if (page_has_private(page)) {
822 try_to_free_buffers(page);
823 goto uncharge;
824 }
825 goto skip_unmap;
826 }
827
828 /* Establish migration ptes or remove ptes */
829 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
830
831 skip_unmap:
832 if (!page_mapped(page))
833 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
834
835 if (rc && remap_swapcache)
836 remove_migration_ptes(page, page);
837
838 /* Drop an anon_vma reference if we took one */
839 if (anon_vma)
840 put_anon_vma(anon_vma);
841
842 uncharge:
843 mem_cgroup_end_migration(mem, page, newpage,
844 (rc == MIGRATEPAGE_SUCCESS ||
845 rc == MIGRATEPAGE_BALLOON_SUCCESS));
846 unlock:
847 unlock_page(page);
848 out:
849 return rc;
850 }
851
852 /*
853 * Obtain the lock on page, remove all ptes and migrate the page
854 * to the newly allocated page in newpage.
855 */
856 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
857 struct page *page, int force, bool offlining,
858 enum migrate_mode mode)
859 {
860 int rc = 0;
861 int *result = NULL;
862 struct page *newpage = get_new_page(page, private, &result);
863
864 if (!newpage)
865 return -ENOMEM;
866
867 if (page_count(page) == 1) {
868 /* page was freed from under us. So we are done. */
869 goto out;
870 }
871
872 if (unlikely(PageTransHuge(page)))
873 if (unlikely(split_huge_page(page)))
874 goto out;
875
876 rc = __unmap_and_move(page, newpage, force, offlining, mode);
877
878 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
879 /*
880 * A ballooned page has been migrated already.
881 * Now, it's the time to wrap-up counters,
882 * handle the page back to Buddy and return.
883 */
884 dec_zone_page_state(page, NR_ISOLATED_ANON +
885 page_is_file_cache(page));
886 balloon_page_free(page);
887 return MIGRATEPAGE_SUCCESS;
888 }
889 out:
890 if (rc != -EAGAIN) {
891 /*
892 * A page that has been migrated has all references
893 * removed and will be freed. A page that has not been
894 * migrated will have kepts its references and be
895 * restored.
896 */
897 list_del(&page->lru);
898 dec_zone_page_state(page, NR_ISOLATED_ANON +
899 page_is_file_cache(page));
900 putback_lru_page(page);
901 }
902 /*
903 * Move the new page to the LRU. If migration was not successful
904 * then this will free the page.
905 */
906 putback_lru_page(newpage);
907 if (result) {
908 if (rc)
909 *result = rc;
910 else
911 *result = page_to_nid(newpage);
912 }
913 return rc;
914 }
915
916 /*
917 * Counterpart of unmap_and_move_page() for hugepage migration.
918 *
919 * This function doesn't wait the completion of hugepage I/O
920 * because there is no race between I/O and migration for hugepage.
921 * Note that currently hugepage I/O occurs only in direct I/O
922 * where no lock is held and PG_writeback is irrelevant,
923 * and writeback status of all subpages are counted in the reference
924 * count of the head page (i.e. if all subpages of a 2MB hugepage are
925 * under direct I/O, the reference of the head page is 512 and a bit more.)
926 * This means that when we try to migrate hugepage whose subpages are
927 * doing direct I/O, some references remain after try_to_unmap() and
928 * hugepage migration fails without data corruption.
929 *
930 * There is also no race when direct I/O is issued on the page under migration,
931 * because then pte is replaced with migration swap entry and direct I/O code
932 * will wait in the page fault for migration to complete.
933 */
934 static int unmap_and_move_huge_page(new_page_t get_new_page,
935 unsigned long private, struct page *hpage,
936 int force, bool offlining,
937 enum migrate_mode mode)
938 {
939 int rc = 0;
940 int *result = NULL;
941 struct page *new_hpage = get_new_page(hpage, private, &result);
942 struct anon_vma *anon_vma = NULL;
943
944 if (!new_hpage)
945 return -ENOMEM;
946
947 rc = -EAGAIN;
948
949 if (!trylock_page(hpage)) {
950 if (!force || mode != MIGRATE_SYNC)
951 goto out;
952 lock_page(hpage);
953 }
954
955 if (PageAnon(hpage))
956 anon_vma = page_get_anon_vma(hpage);
957
958 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
959
960 if (!page_mapped(hpage))
961 rc = move_to_new_page(new_hpage, hpage, 1, mode);
962
963 if (rc)
964 remove_migration_ptes(hpage, hpage);
965
966 if (anon_vma)
967 put_anon_vma(anon_vma);
968
969 if (!rc)
970 hugetlb_cgroup_migrate(hpage, new_hpage);
971
972 unlock_page(hpage);
973 out:
974 put_page(new_hpage);
975 if (result) {
976 if (rc)
977 *result = rc;
978 else
979 *result = page_to_nid(new_hpage);
980 }
981 return rc;
982 }
983
984 /*
985 * migrate_pages
986 *
987 * The function takes one list of pages to migrate and a function
988 * that determines from the page to be migrated and the private data
989 * the target of the move and allocates the page.
990 *
991 * The function returns after 10 attempts or if no pages
992 * are movable anymore because to has become empty
993 * or no retryable pages exist anymore.
994 * Caller should call putback_lru_pages to return pages to the LRU
995 * or free list only if ret != 0.
996 *
997 * Return: Number of pages not migrated or error code.
998 */
999 int migrate_pages(struct list_head *from,
1000 new_page_t get_new_page, unsigned long private, bool offlining,
1001 enum migrate_mode mode)
1002 {
1003 int retry = 1;
1004 int nr_failed = 0;
1005 int pass = 0;
1006 struct page *page;
1007 struct page *page2;
1008 int swapwrite = current->flags & PF_SWAPWRITE;
1009 int rc;
1010
1011 if (!swapwrite)
1012 current->flags |= PF_SWAPWRITE;
1013
1014 for(pass = 0; pass < 10 && retry; pass++) {
1015 retry = 0;
1016
1017 list_for_each_entry_safe(page, page2, from, lru) {
1018 cond_resched();
1019
1020 rc = unmap_and_move(get_new_page, private,
1021 page, pass > 2, offlining,
1022 mode);
1023
1024 switch(rc) {
1025 case -ENOMEM:
1026 goto out;
1027 case -EAGAIN:
1028 retry++;
1029 break;
1030 case MIGRATEPAGE_SUCCESS:
1031 break;
1032 default:
1033 /* Permanent failure */
1034 nr_failed++;
1035 break;
1036 }
1037 }
1038 }
1039 rc = nr_failed + retry;
1040 out:
1041 if (!swapwrite)
1042 current->flags &= ~PF_SWAPWRITE;
1043
1044 return rc;
1045 }
1046
1047 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1048 unsigned long private, bool offlining,
1049 enum migrate_mode mode)
1050 {
1051 int pass, rc;
1052
1053 for (pass = 0; pass < 10; pass++) {
1054 rc = unmap_and_move_huge_page(get_new_page,
1055 private, hpage, pass > 2, offlining,
1056 mode);
1057 switch (rc) {
1058 case -ENOMEM:
1059 goto out;
1060 case -EAGAIN:
1061 /* try again */
1062 cond_resched();
1063 break;
1064 case MIGRATEPAGE_SUCCESS:
1065 goto out;
1066 default:
1067 rc = -EIO;
1068 goto out;
1069 }
1070 }
1071 out:
1072 return rc;
1073 }
1074
1075 #ifdef CONFIG_NUMA
1076 /*
1077 * Move a list of individual pages
1078 */
1079 struct page_to_node {
1080 unsigned long addr;
1081 struct page *page;
1082 int node;
1083 int status;
1084 };
1085
1086 static struct page *new_page_node(struct page *p, unsigned long private,
1087 int **result)
1088 {
1089 struct page_to_node *pm = (struct page_to_node *)private;
1090
1091 while (pm->node != MAX_NUMNODES && pm->page != p)
1092 pm++;
1093
1094 if (pm->node == MAX_NUMNODES)
1095 return NULL;
1096
1097 *result = &pm->status;
1098
1099 return alloc_pages_exact_node(pm->node,
1100 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1101 }
1102
1103 /*
1104 * Move a set of pages as indicated in the pm array. The addr
1105 * field must be set to the virtual address of the page to be moved
1106 * and the node number must contain a valid target node.
1107 * The pm array ends with node = MAX_NUMNODES.
1108 */
1109 static int do_move_page_to_node_array(struct mm_struct *mm,
1110 struct page_to_node *pm,
1111 int migrate_all)
1112 {
1113 int err;
1114 struct page_to_node *pp;
1115 LIST_HEAD(pagelist);
1116
1117 down_read(&mm->mmap_sem);
1118
1119 /*
1120 * Build a list of pages to migrate
1121 */
1122 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1123 struct vm_area_struct *vma;
1124 struct page *page;
1125
1126 err = -EFAULT;
1127 vma = find_vma(mm, pp->addr);
1128 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1129 goto set_status;
1130
1131 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1132
1133 err = PTR_ERR(page);
1134 if (IS_ERR(page))
1135 goto set_status;
1136
1137 err = -ENOENT;
1138 if (!page)
1139 goto set_status;
1140
1141 /* Use PageReserved to check for zero page */
1142 if (PageReserved(page) || PageKsm(page))
1143 goto put_and_set;
1144
1145 pp->page = page;
1146 err = page_to_nid(page);
1147
1148 if (err == pp->node)
1149 /*
1150 * Node already in the right place
1151 */
1152 goto put_and_set;
1153
1154 err = -EACCES;
1155 if (page_mapcount(page) > 1 &&
1156 !migrate_all)
1157 goto put_and_set;
1158
1159 err = isolate_lru_page(page);
1160 if (!err) {
1161 list_add_tail(&page->lru, &pagelist);
1162 inc_zone_page_state(page, NR_ISOLATED_ANON +
1163 page_is_file_cache(page));
1164 }
1165 put_and_set:
1166 /*
1167 * Either remove the duplicate refcount from
1168 * isolate_lru_page() or drop the page ref if it was
1169 * not isolated.
1170 */
1171 put_page(page);
1172 set_status:
1173 pp->status = err;
1174 }
1175
1176 err = 0;
1177 if (!list_empty(&pagelist)) {
1178 err = migrate_pages(&pagelist, new_page_node,
1179 (unsigned long)pm, 0, MIGRATE_SYNC);
1180 if (err)
1181 putback_lru_pages(&pagelist);
1182 }
1183
1184 up_read(&mm->mmap_sem);
1185 return err;
1186 }
1187
1188 /*
1189 * Migrate an array of page address onto an array of nodes and fill
1190 * the corresponding array of status.
1191 */
1192 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1193 unsigned long nr_pages,
1194 const void __user * __user *pages,
1195 const int __user *nodes,
1196 int __user *status, int flags)
1197 {
1198 struct page_to_node *pm;
1199 unsigned long chunk_nr_pages;
1200 unsigned long chunk_start;
1201 int err;
1202
1203 err = -ENOMEM;
1204 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1205 if (!pm)
1206 goto out;
1207
1208 migrate_prep();
1209
1210 /*
1211 * Store a chunk of page_to_node array in a page,
1212 * but keep the last one as a marker
1213 */
1214 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1215
1216 for (chunk_start = 0;
1217 chunk_start < nr_pages;
1218 chunk_start += chunk_nr_pages) {
1219 int j;
1220
1221 if (chunk_start + chunk_nr_pages > nr_pages)
1222 chunk_nr_pages = nr_pages - chunk_start;
1223
1224 /* fill the chunk pm with addrs and nodes from user-space */
1225 for (j = 0; j < chunk_nr_pages; j++) {
1226 const void __user *p;
1227 int node;
1228
1229 err = -EFAULT;
1230 if (get_user(p, pages + j + chunk_start))
1231 goto out_pm;
1232 pm[j].addr = (unsigned long) p;
1233
1234 if (get_user(node, nodes + j + chunk_start))
1235 goto out_pm;
1236
1237 err = -ENODEV;
1238 if (node < 0 || node >= MAX_NUMNODES)
1239 goto out_pm;
1240
1241 if (!node_state(node, N_MEMORY))
1242 goto out_pm;
1243
1244 err = -EACCES;
1245 if (!node_isset(node, task_nodes))
1246 goto out_pm;
1247
1248 pm[j].node = node;
1249 }
1250
1251 /* End marker for this chunk */
1252 pm[chunk_nr_pages].node = MAX_NUMNODES;
1253
1254 /* Migrate this chunk */
1255 err = do_move_page_to_node_array(mm, pm,
1256 flags & MPOL_MF_MOVE_ALL);
1257 if (err < 0)
1258 goto out_pm;
1259
1260 /* Return status information */
1261 for (j = 0; j < chunk_nr_pages; j++)
1262 if (put_user(pm[j].status, status + j + chunk_start)) {
1263 err = -EFAULT;
1264 goto out_pm;
1265 }
1266 }
1267 err = 0;
1268
1269 out_pm:
1270 free_page((unsigned long)pm);
1271 out:
1272 return err;
1273 }
1274
1275 /*
1276 * Determine the nodes of an array of pages and store it in an array of status.
1277 */
1278 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1279 const void __user **pages, int *status)
1280 {
1281 unsigned long i;
1282
1283 down_read(&mm->mmap_sem);
1284
1285 for (i = 0; i < nr_pages; i++) {
1286 unsigned long addr = (unsigned long)(*pages);
1287 struct vm_area_struct *vma;
1288 struct page *page;
1289 int err = -EFAULT;
1290
1291 vma = find_vma(mm, addr);
1292 if (!vma || addr < vma->vm_start)
1293 goto set_status;
1294
1295 page = follow_page(vma, addr, 0);
1296
1297 err = PTR_ERR(page);
1298 if (IS_ERR(page))
1299 goto set_status;
1300
1301 err = -ENOENT;
1302 /* Use PageReserved to check for zero page */
1303 if (!page || PageReserved(page) || PageKsm(page))
1304 goto set_status;
1305
1306 err = page_to_nid(page);
1307 set_status:
1308 *status = err;
1309
1310 pages++;
1311 status++;
1312 }
1313
1314 up_read(&mm->mmap_sem);
1315 }
1316
1317 /*
1318 * Determine the nodes of a user array of pages and store it in
1319 * a user array of status.
1320 */
1321 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1322 const void __user * __user *pages,
1323 int __user *status)
1324 {
1325 #define DO_PAGES_STAT_CHUNK_NR 16
1326 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1327 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1328
1329 while (nr_pages) {
1330 unsigned long chunk_nr;
1331
1332 chunk_nr = nr_pages;
1333 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1334 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1335
1336 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1337 break;
1338
1339 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1340
1341 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1342 break;
1343
1344 pages += chunk_nr;
1345 status += chunk_nr;
1346 nr_pages -= chunk_nr;
1347 }
1348 return nr_pages ? -EFAULT : 0;
1349 }
1350
1351 /*
1352 * Move a list of pages in the address space of the currently executing
1353 * process.
1354 */
1355 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1356 const void __user * __user *, pages,
1357 const int __user *, nodes,
1358 int __user *, status, int, flags)
1359 {
1360 const struct cred *cred = current_cred(), *tcred;
1361 struct task_struct *task;
1362 struct mm_struct *mm;
1363 int err;
1364 nodemask_t task_nodes;
1365
1366 /* Check flags */
1367 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1368 return -EINVAL;
1369
1370 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1371 return -EPERM;
1372
1373 /* Find the mm_struct */
1374 rcu_read_lock();
1375 task = pid ? find_task_by_vpid(pid) : current;
1376 if (!task) {
1377 rcu_read_unlock();
1378 return -ESRCH;
1379 }
1380 get_task_struct(task);
1381
1382 /*
1383 * Check if this process has the right to modify the specified
1384 * process. The right exists if the process has administrative
1385 * capabilities, superuser privileges or the same
1386 * userid as the target process.
1387 */
1388 tcred = __task_cred(task);
1389 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1390 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1391 !capable(CAP_SYS_NICE)) {
1392 rcu_read_unlock();
1393 err = -EPERM;
1394 goto out;
1395 }
1396 rcu_read_unlock();
1397
1398 err = security_task_movememory(task);
1399 if (err)
1400 goto out;
1401
1402 task_nodes = cpuset_mems_allowed(task);
1403 mm = get_task_mm(task);
1404 put_task_struct(task);
1405
1406 if (!mm)
1407 return -EINVAL;
1408
1409 if (nodes)
1410 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1411 nodes, status, flags);
1412 else
1413 err = do_pages_stat(mm, nr_pages, pages, status);
1414
1415 mmput(mm);
1416 return err;
1417
1418 out:
1419 put_task_struct(task);
1420 return err;
1421 }
1422
1423 /*
1424 * Call migration functions in the vma_ops that may prepare
1425 * memory in a vm for migration. migration functions may perform
1426 * the migration for vmas that do not have an underlying page struct.
1427 */
1428 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1429 const nodemask_t *from, unsigned long flags)
1430 {
1431 struct vm_area_struct *vma;
1432 int err = 0;
1433
1434 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1435 if (vma->vm_ops && vma->vm_ops->migrate) {
1436 err = vma->vm_ops->migrate(vma, to, from, flags);
1437 if (err)
1438 break;
1439 }
1440 }
1441 return err;
1442 }
1443 #endif