mm: shrink_inactive_list() nr_scan accounting fix fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34
35 #include "internal.h"
36
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
39 /*
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
42 */
43 int migrate_prep(void)
44 {
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54 }
55
56 /*
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
59 *
60 * returns the number of pages put back.
61 */
62 int putback_lru_pages(struct list_head *l)
63 {
64 struct page *page;
65 struct page *page2;
66 int count = 0;
67
68 list_for_each_entry_safe(page, page2, l, lru) {
69 list_del(&page->lru);
70 putback_lru_page(page);
71 count++;
72 }
73 return count;
74 }
75
76 /*
77 * Restore a potential migration pte to a working pte entry
78 */
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 struct page *old, struct page *new)
81 {
82 struct mm_struct *mm = vma->vm_mm;
83 swp_entry_t entry;
84 pgd_t *pgd;
85 pud_t *pud;
86 pmd_t *pmd;
87 pte_t *ptep, pte;
88 spinlock_t *ptl;
89 unsigned long addr = page_address_in_vma(new, vma);
90
91 if (addr == -EFAULT)
92 return;
93
94 pgd = pgd_offset(mm, addr);
95 if (!pgd_present(*pgd))
96 return;
97
98 pud = pud_offset(pgd, addr);
99 if (!pud_present(*pud))
100 return;
101
102 pmd = pmd_offset(pud, addr);
103 if (!pmd_present(*pmd))
104 return;
105
106 ptep = pte_offset_map(pmd, addr);
107
108 if (!is_swap_pte(*ptep)) {
109 pte_unmap(ptep);
110 return;
111 }
112
113 ptl = pte_lockptr(mm, pmd);
114 spin_lock(ptl);
115 pte = *ptep;
116 if (!is_swap_pte(pte))
117 goto out;
118
119 entry = pte_to_swp_entry(pte);
120
121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 goto out;
123
124 get_page(new);
125 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
126 if (is_write_migration_entry(entry))
127 pte = pte_mkwrite(pte);
128 flush_cache_page(vma, addr, pte_pfn(pte));
129 set_pte_at(mm, addr, ptep, pte);
130
131 if (PageAnon(new))
132 page_add_anon_rmap(new, vma, addr);
133 else
134 page_add_file_rmap(new);
135
136 /* No need to invalidate - it was non-present before */
137 update_mmu_cache(vma, addr, pte);
138
139 out:
140 pte_unmap_unlock(ptep, ptl);
141 }
142
143 /*
144 * Note that remove_file_migration_ptes will only work on regular mappings,
145 * Nonlinear mappings do not use migration entries.
146 */
147 static void remove_file_migration_ptes(struct page *old, struct page *new)
148 {
149 struct vm_area_struct *vma;
150 struct address_space *mapping = new->mapping;
151 struct prio_tree_iter iter;
152 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
153
154 if (!mapping)
155 return;
156
157 spin_lock(&mapping->i_mmap_lock);
158
159 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
160 remove_migration_pte(vma, old, new);
161
162 spin_unlock(&mapping->i_mmap_lock);
163 }
164
165 /*
166 * Must hold mmap_sem lock on at least one of the vmas containing
167 * the page so that the anon_vma cannot vanish.
168 */
169 static void remove_anon_migration_ptes(struct page *old, struct page *new)
170 {
171 struct anon_vma *anon_vma;
172 struct vm_area_struct *vma;
173 unsigned long mapping;
174
175 mapping = (unsigned long)new->mapping;
176
177 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
178 return;
179
180 /*
181 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
182 */
183 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
184 spin_lock(&anon_vma->lock);
185
186 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
187 remove_migration_pte(vma, old, new);
188
189 spin_unlock(&anon_vma->lock);
190 }
191
192 /*
193 * Get rid of all migration entries and replace them by
194 * references to the indicated page.
195 */
196 static void remove_migration_ptes(struct page *old, struct page *new)
197 {
198 if (PageAnon(new))
199 remove_anon_migration_ptes(old, new);
200 else
201 remove_file_migration_ptes(old, new);
202 }
203
204 /*
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
208 *
209 * This function is called from do_swap_page().
210 */
211 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
212 unsigned long address)
213 {
214 pte_t *ptep, pte;
215 spinlock_t *ptl;
216 swp_entry_t entry;
217 struct page *page;
218
219 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
220 pte = *ptep;
221 if (!is_swap_pte(pte))
222 goto out;
223
224 entry = pte_to_swp_entry(pte);
225 if (!is_migration_entry(entry))
226 goto out;
227
228 page = migration_entry_to_page(entry);
229
230 /*
231 * Once radix-tree replacement of page migration started, page_count
232 * *must* be zero. And, we don't want to call wait_on_page_locked()
233 * against a page without get_page().
234 * So, we use get_page_unless_zero(), here. Even failed, page fault
235 * will occur again.
236 */
237 if (!get_page_unless_zero(page))
238 goto out;
239 pte_unmap_unlock(ptep, ptl);
240 wait_on_page_locked(page);
241 put_page(page);
242 return;
243 out:
244 pte_unmap_unlock(ptep, ptl);
245 }
246
247 /*
248 * Replace the page in the mapping.
249 *
250 * The number of remaining references must be:
251 * 1 for anonymous pages without a mapping
252 * 2 for pages with a mapping
253 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
254 */
255 static int migrate_page_move_mapping(struct address_space *mapping,
256 struct page *newpage, struct page *page)
257 {
258 int expected_count;
259 void **pslot;
260
261 if (!mapping) {
262 /* Anonymous page without mapping */
263 if (page_count(page) != 1)
264 return -EAGAIN;
265 return 0;
266 }
267
268 spin_lock_irq(&mapping->tree_lock);
269
270 pslot = radix_tree_lookup_slot(&mapping->page_tree,
271 page_index(page));
272
273 expected_count = 2 + !!page_has_private(page);
274 if (page_count(page) != expected_count ||
275 (struct page *)radix_tree_deref_slot(pslot) != page) {
276 spin_unlock_irq(&mapping->tree_lock);
277 return -EAGAIN;
278 }
279
280 if (!page_freeze_refs(page, expected_count)) {
281 spin_unlock_irq(&mapping->tree_lock);
282 return -EAGAIN;
283 }
284
285 /*
286 * Now we know that no one else is looking at the page.
287 */
288 get_page(newpage); /* add cache reference */
289 if (PageSwapCache(page)) {
290 SetPageSwapCache(newpage);
291 set_page_private(newpage, page_private(page));
292 }
293
294 radix_tree_replace_slot(pslot, newpage);
295
296 page_unfreeze_refs(page, expected_count);
297 /*
298 * Drop cache reference from old page.
299 * We know this isn't the last reference.
300 */
301 __put_page(page);
302
303 /*
304 * If moved to a different zone then also account
305 * the page for that zone. Other VM counters will be
306 * taken care of when we establish references to the
307 * new page and drop references to the old page.
308 *
309 * Note that anonymous pages are accounted for
310 * via NR_FILE_PAGES and NR_ANON_PAGES if they
311 * are mapped to swap space.
312 */
313 __dec_zone_page_state(page, NR_FILE_PAGES);
314 __inc_zone_page_state(newpage, NR_FILE_PAGES);
315 if (PageSwapBacked(page)) {
316 __dec_zone_page_state(page, NR_SHMEM);
317 __inc_zone_page_state(newpage, NR_SHMEM);
318 }
319 spin_unlock_irq(&mapping->tree_lock);
320
321 return 0;
322 }
323
324 /*
325 * Copy the page to its new location
326 */
327 static void migrate_page_copy(struct page *newpage, struct page *page)
328 {
329 int anon;
330
331 copy_highpage(newpage, page);
332
333 if (PageError(page))
334 SetPageError(newpage);
335 if (PageReferenced(page))
336 SetPageReferenced(newpage);
337 if (PageUptodate(page))
338 SetPageUptodate(newpage);
339 if (TestClearPageActive(page)) {
340 VM_BUG_ON(PageUnevictable(page));
341 SetPageActive(newpage);
342 } else
343 unevictable_migrate_page(newpage, page);
344 if (PageChecked(page))
345 SetPageChecked(newpage);
346 if (PageMappedToDisk(page))
347 SetPageMappedToDisk(newpage);
348
349 if (PageDirty(page)) {
350 clear_page_dirty_for_io(page);
351 /*
352 * Want to mark the page and the radix tree as dirty, and
353 * redo the accounting that clear_page_dirty_for_io undid,
354 * but we can't use set_page_dirty because that function
355 * is actually a signal that all of the page has become dirty.
356 * Wheras only part of our page may be dirty.
357 */
358 __set_page_dirty_nobuffers(newpage);
359 }
360
361 mlock_migrate_page(newpage, page);
362
363 ClearPageSwapCache(page);
364 ClearPagePrivate(page);
365 set_page_private(page, 0);
366 /* page->mapping contains a flag for PageAnon() */
367 anon = PageAnon(page);
368 page->mapping = NULL;
369
370 /*
371 * If any waiters have accumulated on the new page then
372 * wake them up.
373 */
374 if (PageWriteback(newpage))
375 end_page_writeback(newpage);
376 }
377
378 /************************************************************
379 * Migration functions
380 ***********************************************************/
381
382 /* Always fail migration. Used for mappings that are not movable */
383 int fail_migrate_page(struct address_space *mapping,
384 struct page *newpage, struct page *page)
385 {
386 return -EIO;
387 }
388 EXPORT_SYMBOL(fail_migrate_page);
389
390 /*
391 * Common logic to directly migrate a single page suitable for
392 * pages that do not use PagePrivate/PagePrivate2.
393 *
394 * Pages are locked upon entry and exit.
395 */
396 int migrate_page(struct address_space *mapping,
397 struct page *newpage, struct page *page)
398 {
399 int rc;
400
401 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
402
403 rc = migrate_page_move_mapping(mapping, newpage, page);
404
405 if (rc)
406 return rc;
407
408 migrate_page_copy(newpage, page);
409 return 0;
410 }
411 EXPORT_SYMBOL(migrate_page);
412
413 #ifdef CONFIG_BLOCK
414 /*
415 * Migration function for pages with buffers. This function can only be used
416 * if the underlying filesystem guarantees that no other references to "page"
417 * exist.
418 */
419 int buffer_migrate_page(struct address_space *mapping,
420 struct page *newpage, struct page *page)
421 {
422 struct buffer_head *bh, *head;
423 int rc;
424
425 if (!page_has_buffers(page))
426 return migrate_page(mapping, newpage, page);
427
428 head = page_buffers(page);
429
430 rc = migrate_page_move_mapping(mapping, newpage, page);
431
432 if (rc)
433 return rc;
434
435 bh = head;
436 do {
437 get_bh(bh);
438 lock_buffer(bh);
439 bh = bh->b_this_page;
440
441 } while (bh != head);
442
443 ClearPagePrivate(page);
444 set_page_private(newpage, page_private(page));
445 set_page_private(page, 0);
446 put_page(page);
447 get_page(newpage);
448
449 bh = head;
450 do {
451 set_bh_page(bh, newpage, bh_offset(bh));
452 bh = bh->b_this_page;
453
454 } while (bh != head);
455
456 SetPagePrivate(newpage);
457
458 migrate_page_copy(newpage, page);
459
460 bh = head;
461 do {
462 unlock_buffer(bh);
463 put_bh(bh);
464 bh = bh->b_this_page;
465
466 } while (bh != head);
467
468 return 0;
469 }
470 EXPORT_SYMBOL(buffer_migrate_page);
471 #endif
472
473 /*
474 * Writeback a page to clean the dirty state
475 */
476 static int writeout(struct address_space *mapping, struct page *page)
477 {
478 struct writeback_control wbc = {
479 .sync_mode = WB_SYNC_NONE,
480 .nr_to_write = 1,
481 .range_start = 0,
482 .range_end = LLONG_MAX,
483 .nonblocking = 1,
484 .for_reclaim = 1
485 };
486 int rc;
487
488 if (!mapping->a_ops->writepage)
489 /* No write method for the address space */
490 return -EINVAL;
491
492 if (!clear_page_dirty_for_io(page))
493 /* Someone else already triggered a write */
494 return -EAGAIN;
495
496 /*
497 * A dirty page may imply that the underlying filesystem has
498 * the page on some queue. So the page must be clean for
499 * migration. Writeout may mean we loose the lock and the
500 * page state is no longer what we checked for earlier.
501 * At this point we know that the migration attempt cannot
502 * be successful.
503 */
504 remove_migration_ptes(page, page);
505
506 rc = mapping->a_ops->writepage(page, &wbc);
507
508 if (rc != AOP_WRITEPAGE_ACTIVATE)
509 /* unlocked. Relock */
510 lock_page(page);
511
512 return (rc < 0) ? -EIO : -EAGAIN;
513 }
514
515 /*
516 * Default handling if a filesystem does not provide a migration function.
517 */
518 static int fallback_migrate_page(struct address_space *mapping,
519 struct page *newpage, struct page *page)
520 {
521 if (PageDirty(page))
522 return writeout(mapping, page);
523
524 /*
525 * Buffers may be managed in a filesystem specific way.
526 * We must have no buffers or drop them.
527 */
528 if (page_has_private(page) &&
529 !try_to_release_page(page, GFP_KERNEL))
530 return -EAGAIN;
531
532 return migrate_page(mapping, newpage, page);
533 }
534
535 /*
536 * Move a page to a newly allocated page
537 * The page is locked and all ptes have been successfully removed.
538 *
539 * The new page will have replaced the old page if this function
540 * is successful.
541 *
542 * Return value:
543 * < 0 - error code
544 * == 0 - success
545 */
546 static int move_to_new_page(struct page *newpage, struct page *page)
547 {
548 struct address_space *mapping;
549 int rc;
550
551 /*
552 * Block others from accessing the page when we get around to
553 * establishing additional references. We are the only one
554 * holding a reference to the new page at this point.
555 */
556 if (!trylock_page(newpage))
557 BUG();
558
559 /* Prepare mapping for the new page.*/
560 newpage->index = page->index;
561 newpage->mapping = page->mapping;
562 if (PageSwapBacked(page))
563 SetPageSwapBacked(newpage);
564
565 mapping = page_mapping(page);
566 if (!mapping)
567 rc = migrate_page(mapping, newpage, page);
568 else if (mapping->a_ops->migratepage)
569 /*
570 * Most pages have a mapping and most filesystems
571 * should provide a migration function. Anonymous
572 * pages are part of swap space which also has its
573 * own migration function. This is the most common
574 * path for page migration.
575 */
576 rc = mapping->a_ops->migratepage(mapping,
577 newpage, page);
578 else
579 rc = fallback_migrate_page(mapping, newpage, page);
580
581 if (!rc) {
582 remove_migration_ptes(page, newpage);
583 } else
584 newpage->mapping = NULL;
585
586 unlock_page(newpage);
587
588 return rc;
589 }
590
591 /*
592 * Obtain the lock on page, remove all ptes and migrate the page
593 * to the newly allocated page in newpage.
594 */
595 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
596 struct page *page, int force)
597 {
598 int rc = 0;
599 int *result = NULL;
600 struct page *newpage = get_new_page(page, private, &result);
601 int rcu_locked = 0;
602 int charge = 0;
603 struct mem_cgroup *mem;
604
605 if (!newpage)
606 return -ENOMEM;
607
608 if (page_count(page) == 1) {
609 /* page was freed from under us. So we are done. */
610 goto move_newpage;
611 }
612
613 /* prepare cgroup just returns 0 or -ENOMEM */
614 rc = -EAGAIN;
615
616 if (!trylock_page(page)) {
617 if (!force)
618 goto move_newpage;
619 lock_page(page);
620 }
621
622 /* charge against new page */
623 charge = mem_cgroup_prepare_migration(page, &mem);
624 if (charge == -ENOMEM) {
625 rc = -ENOMEM;
626 goto unlock;
627 }
628 BUG_ON(charge);
629
630 if (PageWriteback(page)) {
631 if (!force)
632 goto uncharge;
633 wait_on_page_writeback(page);
634 }
635 /*
636 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
637 * we cannot notice that anon_vma is freed while we migrates a page.
638 * This rcu_read_lock() delays freeing anon_vma pointer until the end
639 * of migration. File cache pages are no problem because of page_lock()
640 * File Caches may use write_page() or lock_page() in migration, then,
641 * just care Anon page here.
642 */
643 if (PageAnon(page)) {
644 rcu_read_lock();
645 rcu_locked = 1;
646 }
647
648 /*
649 * Corner case handling:
650 * 1. When a new swap-cache page is read into, it is added to the LRU
651 * and treated as swapcache but it has no rmap yet.
652 * Calling try_to_unmap() against a page->mapping==NULL page will
653 * trigger a BUG. So handle it here.
654 * 2. An orphaned page (see truncate_complete_page) might have
655 * fs-private metadata. The page can be picked up due to memory
656 * offlining. Everywhere else except page reclaim, the page is
657 * invisible to the vm, so the page can not be migrated. So try to
658 * free the metadata, so the page can be freed.
659 */
660 if (!page->mapping) {
661 if (!PageAnon(page) && page_has_private(page)) {
662 /*
663 * Go direct to try_to_free_buffers() here because
664 * a) that's what try_to_release_page() would do anyway
665 * b) we may be under rcu_read_lock() here, so we can't
666 * use GFP_KERNEL which is what try_to_release_page()
667 * needs to be effective.
668 */
669 try_to_free_buffers(page);
670 goto rcu_unlock;
671 }
672 goto skip_unmap;
673 }
674
675 /* Establish migration ptes or remove ptes */
676 try_to_unmap(page, 1);
677
678 skip_unmap:
679 if (!page_mapped(page))
680 rc = move_to_new_page(newpage, page);
681
682 if (rc)
683 remove_migration_ptes(page, page);
684 rcu_unlock:
685 if (rcu_locked)
686 rcu_read_unlock();
687 uncharge:
688 if (!charge)
689 mem_cgroup_end_migration(mem, page, newpage);
690 unlock:
691 unlock_page(page);
692
693 if (rc != -EAGAIN) {
694 /*
695 * A page that has been migrated has all references
696 * removed and will be freed. A page that has not been
697 * migrated will have kepts its references and be
698 * restored.
699 */
700 list_del(&page->lru);
701 putback_lru_page(page);
702 }
703
704 move_newpage:
705
706 /*
707 * Move the new page to the LRU. If migration was not successful
708 * then this will free the page.
709 */
710 putback_lru_page(newpage);
711
712 if (result) {
713 if (rc)
714 *result = rc;
715 else
716 *result = page_to_nid(newpage);
717 }
718 return rc;
719 }
720
721 /*
722 * migrate_pages
723 *
724 * The function takes one list of pages to migrate and a function
725 * that determines from the page to be migrated and the private data
726 * the target of the move and allocates the page.
727 *
728 * The function returns after 10 attempts or if no pages
729 * are movable anymore because to has become empty
730 * or no retryable pages exist anymore. All pages will be
731 * returned to the LRU or freed.
732 *
733 * Return: Number of pages not migrated or error code.
734 */
735 int migrate_pages(struct list_head *from,
736 new_page_t get_new_page, unsigned long private)
737 {
738 int retry = 1;
739 int nr_failed = 0;
740 int pass = 0;
741 struct page *page;
742 struct page *page2;
743 int swapwrite = current->flags & PF_SWAPWRITE;
744 int rc;
745
746 if (!swapwrite)
747 current->flags |= PF_SWAPWRITE;
748
749 for(pass = 0; pass < 10 && retry; pass++) {
750 retry = 0;
751
752 list_for_each_entry_safe(page, page2, from, lru) {
753 cond_resched();
754
755 rc = unmap_and_move(get_new_page, private,
756 page, pass > 2);
757
758 switch(rc) {
759 case -ENOMEM:
760 goto out;
761 case -EAGAIN:
762 retry++;
763 break;
764 case 0:
765 break;
766 default:
767 /* Permanent failure */
768 nr_failed++;
769 break;
770 }
771 }
772 }
773 rc = 0;
774 out:
775 if (!swapwrite)
776 current->flags &= ~PF_SWAPWRITE;
777
778 putback_lru_pages(from);
779
780 if (rc)
781 return rc;
782
783 return nr_failed + retry;
784 }
785
786 #ifdef CONFIG_NUMA
787 /*
788 * Move a list of individual pages
789 */
790 struct page_to_node {
791 unsigned long addr;
792 struct page *page;
793 int node;
794 int status;
795 };
796
797 static struct page *new_page_node(struct page *p, unsigned long private,
798 int **result)
799 {
800 struct page_to_node *pm = (struct page_to_node *)private;
801
802 while (pm->node != MAX_NUMNODES && pm->page != p)
803 pm++;
804
805 if (pm->node == MAX_NUMNODES)
806 return NULL;
807
808 *result = &pm->status;
809
810 return alloc_pages_exact_node(pm->node,
811 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
812 }
813
814 /*
815 * Move a set of pages as indicated in the pm array. The addr
816 * field must be set to the virtual address of the page to be moved
817 * and the node number must contain a valid target node.
818 * The pm array ends with node = MAX_NUMNODES.
819 */
820 static int do_move_page_to_node_array(struct mm_struct *mm,
821 struct page_to_node *pm,
822 int migrate_all)
823 {
824 int err;
825 struct page_to_node *pp;
826 LIST_HEAD(pagelist);
827
828 down_read(&mm->mmap_sem);
829
830 /*
831 * Build a list of pages to migrate
832 */
833 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
834 struct vm_area_struct *vma;
835 struct page *page;
836
837 err = -EFAULT;
838 vma = find_vma(mm, pp->addr);
839 if (!vma || !vma_migratable(vma))
840 goto set_status;
841
842 page = follow_page(vma, pp->addr, FOLL_GET);
843
844 err = PTR_ERR(page);
845 if (IS_ERR(page))
846 goto set_status;
847
848 err = -ENOENT;
849 if (!page)
850 goto set_status;
851
852 if (PageReserved(page)) /* Check for zero page */
853 goto put_and_set;
854
855 pp->page = page;
856 err = page_to_nid(page);
857
858 if (err == pp->node)
859 /*
860 * Node already in the right place
861 */
862 goto put_and_set;
863
864 err = -EACCES;
865 if (page_mapcount(page) > 1 &&
866 !migrate_all)
867 goto put_and_set;
868
869 err = isolate_lru_page(page);
870 if (!err)
871 list_add_tail(&page->lru, &pagelist);
872 put_and_set:
873 /*
874 * Either remove the duplicate refcount from
875 * isolate_lru_page() or drop the page ref if it was
876 * not isolated.
877 */
878 put_page(page);
879 set_status:
880 pp->status = err;
881 }
882
883 err = 0;
884 if (!list_empty(&pagelist))
885 err = migrate_pages(&pagelist, new_page_node,
886 (unsigned long)pm);
887
888 up_read(&mm->mmap_sem);
889 return err;
890 }
891
892 /*
893 * Migrate an array of page address onto an array of nodes and fill
894 * the corresponding array of status.
895 */
896 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
897 unsigned long nr_pages,
898 const void __user * __user *pages,
899 const int __user *nodes,
900 int __user *status, int flags)
901 {
902 struct page_to_node *pm;
903 nodemask_t task_nodes;
904 unsigned long chunk_nr_pages;
905 unsigned long chunk_start;
906 int err;
907
908 task_nodes = cpuset_mems_allowed(task);
909
910 err = -ENOMEM;
911 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
912 if (!pm)
913 goto out;
914
915 migrate_prep();
916
917 /*
918 * Store a chunk of page_to_node array in a page,
919 * but keep the last one as a marker
920 */
921 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
922
923 for (chunk_start = 0;
924 chunk_start < nr_pages;
925 chunk_start += chunk_nr_pages) {
926 int j;
927
928 if (chunk_start + chunk_nr_pages > nr_pages)
929 chunk_nr_pages = nr_pages - chunk_start;
930
931 /* fill the chunk pm with addrs and nodes from user-space */
932 for (j = 0; j < chunk_nr_pages; j++) {
933 const void __user *p;
934 int node;
935
936 err = -EFAULT;
937 if (get_user(p, pages + j + chunk_start))
938 goto out_pm;
939 pm[j].addr = (unsigned long) p;
940
941 if (get_user(node, nodes + j + chunk_start))
942 goto out_pm;
943
944 err = -ENODEV;
945 if (!node_state(node, N_HIGH_MEMORY))
946 goto out_pm;
947
948 err = -EACCES;
949 if (!node_isset(node, task_nodes))
950 goto out_pm;
951
952 pm[j].node = node;
953 }
954
955 /* End marker for this chunk */
956 pm[chunk_nr_pages].node = MAX_NUMNODES;
957
958 /* Migrate this chunk */
959 err = do_move_page_to_node_array(mm, pm,
960 flags & MPOL_MF_MOVE_ALL);
961 if (err < 0)
962 goto out_pm;
963
964 /* Return status information */
965 for (j = 0; j < chunk_nr_pages; j++)
966 if (put_user(pm[j].status, status + j + chunk_start)) {
967 err = -EFAULT;
968 goto out_pm;
969 }
970 }
971 err = 0;
972
973 out_pm:
974 free_page((unsigned long)pm);
975 out:
976 return err;
977 }
978
979 /*
980 * Determine the nodes of an array of pages and store it in an array of status.
981 */
982 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
983 const void __user **pages, int *status)
984 {
985 unsigned long i;
986
987 down_read(&mm->mmap_sem);
988
989 for (i = 0; i < nr_pages; i++) {
990 unsigned long addr = (unsigned long)(*pages);
991 struct vm_area_struct *vma;
992 struct page *page;
993 int err = -EFAULT;
994
995 vma = find_vma(mm, addr);
996 if (!vma)
997 goto set_status;
998
999 page = follow_page(vma, addr, 0);
1000
1001 err = PTR_ERR(page);
1002 if (IS_ERR(page))
1003 goto set_status;
1004
1005 err = -ENOENT;
1006 /* Use PageReserved to check for zero page */
1007 if (!page || PageReserved(page))
1008 goto set_status;
1009
1010 err = page_to_nid(page);
1011 set_status:
1012 *status = err;
1013
1014 pages++;
1015 status++;
1016 }
1017
1018 up_read(&mm->mmap_sem);
1019 }
1020
1021 /*
1022 * Determine the nodes of a user array of pages and store it in
1023 * a user array of status.
1024 */
1025 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1026 const void __user * __user *pages,
1027 int __user *status)
1028 {
1029 #define DO_PAGES_STAT_CHUNK_NR 16
1030 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1031 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1032 unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1033 int err;
1034
1035 for (i = 0; i < nr_pages; i += chunk_nr) {
1036 if (chunk_nr + i > nr_pages)
1037 chunk_nr = nr_pages - i;
1038
1039 err = copy_from_user(chunk_pages, &pages[i],
1040 chunk_nr * sizeof(*chunk_pages));
1041 if (err) {
1042 err = -EFAULT;
1043 goto out;
1044 }
1045
1046 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1047
1048 err = copy_to_user(&status[i], chunk_status,
1049 chunk_nr * sizeof(*chunk_status));
1050 if (err) {
1051 err = -EFAULT;
1052 goto out;
1053 }
1054 }
1055 err = 0;
1056
1057 out:
1058 return err;
1059 }
1060
1061 /*
1062 * Move a list of pages in the address space of the currently executing
1063 * process.
1064 */
1065 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1066 const void __user * __user *, pages,
1067 const int __user *, nodes,
1068 int __user *, status, int, flags)
1069 {
1070 const struct cred *cred = current_cred(), *tcred;
1071 struct task_struct *task;
1072 struct mm_struct *mm;
1073 int err;
1074
1075 /* Check flags */
1076 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1077 return -EINVAL;
1078
1079 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1080 return -EPERM;
1081
1082 /* Find the mm_struct */
1083 read_lock(&tasklist_lock);
1084 task = pid ? find_task_by_vpid(pid) : current;
1085 if (!task) {
1086 read_unlock(&tasklist_lock);
1087 return -ESRCH;
1088 }
1089 mm = get_task_mm(task);
1090 read_unlock(&tasklist_lock);
1091
1092 if (!mm)
1093 return -EINVAL;
1094
1095 /*
1096 * Check if this process has the right to modify the specified
1097 * process. The right exists if the process has administrative
1098 * capabilities, superuser privileges or the same
1099 * userid as the target process.
1100 */
1101 rcu_read_lock();
1102 tcred = __task_cred(task);
1103 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1104 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1105 !capable(CAP_SYS_NICE)) {
1106 rcu_read_unlock();
1107 err = -EPERM;
1108 goto out;
1109 }
1110 rcu_read_unlock();
1111
1112 err = security_task_movememory(task);
1113 if (err)
1114 goto out;
1115
1116 if (nodes) {
1117 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1118 flags);
1119 } else {
1120 err = do_pages_stat(mm, nr_pages, pages, status);
1121 }
1122
1123 out:
1124 mmput(mm);
1125 return err;
1126 }
1127
1128 /*
1129 * Call migration functions in the vma_ops that may prepare
1130 * memory in a vm for migration. migration functions may perform
1131 * the migration for vmas that do not have an underlying page struct.
1132 */
1133 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1134 const nodemask_t *from, unsigned long flags)
1135 {
1136 struct vm_area_struct *vma;
1137 int err = 0;
1138
1139 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1140 if (vma->vm_ops && vma->vm_ops->migrate) {
1141 err = vma->vm_ops->migrate(vma, to, from, flags);
1142 if (err)
1143 break;
1144 }
1145 }
1146 return err;
1147 }
1148 #endif