mm/migrate: remove putback_lru_pages, fix comment on putback_movable_pages
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123 if (pmd_trans_huge(*pmd))
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151 if (is_write_migration_entry(entry))
152 pte = pte_mkwrite(pte);
153 #ifdef CONFIG_HUGETLB_PAGE
154 if (PageHuge(new)) {
155 pte = pte_mkhuge(pte);
156 pte = arch_make_huge_pte(pte, vma, new, 0);
157 }
158 #endif
159 flush_dcache_page(new);
160 set_pte_at(mm, addr, ptep, pte);
161
162 if (PageHuge(new)) {
163 if (PageAnon(new))
164 hugepage_add_anon_rmap(new, vma, addr);
165 else
166 page_dup_rmap(new);
167 } else if (PageAnon(new))
168 page_add_anon_rmap(new, vma, addr);
169 else
170 page_add_file_rmap(new);
171
172 /* No need to invalidate - it was non-present before */
173 update_mmu_cache(vma, addr, ptep);
174 unlock:
175 pte_unmap_unlock(ptep, ptl);
176 out:
177 return SWAP_AGAIN;
178 }
179
180 /*
181 * Get rid of all migration entries and replace them by
182 * references to the indicated page.
183 */
184 static void remove_migration_ptes(struct page *old, struct page *new)
185 {
186 struct rmap_walk_control rwc = {
187 .rmap_one = remove_migration_pte,
188 .arg = old,
189 };
190
191 rmap_walk(new, &rwc);
192 }
193
194 /*
195 * Something used the pte of a page under migration. We need to
196 * get to the page and wait until migration is finished.
197 * When we return from this function the fault will be retried.
198 */
199 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
200 spinlock_t *ptl)
201 {
202 pte_t pte;
203 swp_entry_t entry;
204 struct page *page;
205
206 spin_lock(ptl);
207 pte = *ptep;
208 if (!is_swap_pte(pte))
209 goto out;
210
211 entry = pte_to_swp_entry(pte);
212 if (!is_migration_entry(entry))
213 goto out;
214
215 page = migration_entry_to_page(entry);
216
217 /*
218 * Once radix-tree replacement of page migration started, page_count
219 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 * against a page without get_page().
221 * So, we use get_page_unless_zero(), here. Even failed, page fault
222 * will occur again.
223 */
224 if (!get_page_unless_zero(page))
225 goto out;
226 pte_unmap_unlock(ptep, ptl);
227 wait_on_page_locked(page);
228 put_page(page);
229 return;
230 out:
231 pte_unmap_unlock(ptep, ptl);
232 }
233
234 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
235 unsigned long address)
236 {
237 spinlock_t *ptl = pte_lockptr(mm, pmd);
238 pte_t *ptep = pte_offset_map(pmd, address);
239 __migration_entry_wait(mm, ptep, ptl);
240 }
241
242 void migration_entry_wait_huge(struct vm_area_struct *vma,
243 struct mm_struct *mm, pte_t *pte)
244 {
245 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
246 __migration_entry_wait(mm, pte, ptl);
247 }
248
249 #ifdef CONFIG_BLOCK
250 /* Returns true if all buffers are successfully locked */
251 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
252 enum migrate_mode mode)
253 {
254 struct buffer_head *bh = head;
255
256 /* Simple case, sync compaction */
257 if (mode != MIGRATE_ASYNC) {
258 do {
259 get_bh(bh);
260 lock_buffer(bh);
261 bh = bh->b_this_page;
262
263 } while (bh != head);
264
265 return true;
266 }
267
268 /* async case, we cannot block on lock_buffer so use trylock_buffer */
269 do {
270 get_bh(bh);
271 if (!trylock_buffer(bh)) {
272 /*
273 * We failed to lock the buffer and cannot stall in
274 * async migration. Release the taken locks
275 */
276 struct buffer_head *failed_bh = bh;
277 put_bh(failed_bh);
278 bh = head;
279 while (bh != failed_bh) {
280 unlock_buffer(bh);
281 put_bh(bh);
282 bh = bh->b_this_page;
283 }
284 return false;
285 }
286
287 bh = bh->b_this_page;
288 } while (bh != head);
289 return true;
290 }
291 #else
292 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
293 enum migrate_mode mode)
294 {
295 return true;
296 }
297 #endif /* CONFIG_BLOCK */
298
299 /*
300 * Replace the page in the mapping.
301 *
302 * The number of remaining references must be:
303 * 1 for anonymous pages without a mapping
304 * 2 for pages with a mapping
305 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
306 */
307 int migrate_page_move_mapping(struct address_space *mapping,
308 struct page *newpage, struct page *page,
309 struct buffer_head *head, enum migrate_mode mode,
310 int extra_count)
311 {
312 int expected_count = 1 + extra_count;
313 void **pslot;
314
315 if (!mapping) {
316 /* Anonymous page without mapping */
317 if (page_count(page) != expected_count)
318 return -EAGAIN;
319 return MIGRATEPAGE_SUCCESS;
320 }
321
322 spin_lock_irq(&mapping->tree_lock);
323
324 pslot = radix_tree_lookup_slot(&mapping->page_tree,
325 page_index(page));
326
327 expected_count += 1 + page_has_private(page);
328 if (page_count(page) != expected_count ||
329 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
330 spin_unlock_irq(&mapping->tree_lock);
331 return -EAGAIN;
332 }
333
334 if (!page_freeze_refs(page, expected_count)) {
335 spin_unlock_irq(&mapping->tree_lock);
336 return -EAGAIN;
337 }
338
339 /*
340 * In the async migration case of moving a page with buffers, lock the
341 * buffers using trylock before the mapping is moved. If the mapping
342 * was moved, we later failed to lock the buffers and could not move
343 * the mapping back due to an elevated page count, we would have to
344 * block waiting on other references to be dropped.
345 */
346 if (mode == MIGRATE_ASYNC && head &&
347 !buffer_migrate_lock_buffers(head, mode)) {
348 page_unfreeze_refs(page, expected_count);
349 spin_unlock_irq(&mapping->tree_lock);
350 return -EAGAIN;
351 }
352
353 /*
354 * Now we know that no one else is looking at the page.
355 */
356 get_page(newpage); /* add cache reference */
357 if (PageSwapCache(page)) {
358 SetPageSwapCache(newpage);
359 set_page_private(newpage, page_private(page));
360 }
361
362 radix_tree_replace_slot(pslot, newpage);
363
364 /*
365 * Drop cache reference from old page by unfreezing
366 * to one less reference.
367 * We know this isn't the last reference.
368 */
369 page_unfreeze_refs(page, expected_count - 1);
370
371 /*
372 * If moved to a different zone then also account
373 * the page for that zone. Other VM counters will be
374 * taken care of when we establish references to the
375 * new page and drop references to the old page.
376 *
377 * Note that anonymous pages are accounted for
378 * via NR_FILE_PAGES and NR_ANON_PAGES if they
379 * are mapped to swap space.
380 */
381 __dec_zone_page_state(page, NR_FILE_PAGES);
382 __inc_zone_page_state(newpage, NR_FILE_PAGES);
383 if (!PageSwapCache(page) && PageSwapBacked(page)) {
384 __dec_zone_page_state(page, NR_SHMEM);
385 __inc_zone_page_state(newpage, NR_SHMEM);
386 }
387 spin_unlock_irq(&mapping->tree_lock);
388
389 return MIGRATEPAGE_SUCCESS;
390 }
391
392 /*
393 * The expected number of remaining references is the same as that
394 * of migrate_page_move_mapping().
395 */
396 int migrate_huge_page_move_mapping(struct address_space *mapping,
397 struct page *newpage, struct page *page)
398 {
399 int expected_count;
400 void **pslot;
401
402 if (!mapping) {
403 if (page_count(page) != 1)
404 return -EAGAIN;
405 return MIGRATEPAGE_SUCCESS;
406 }
407
408 spin_lock_irq(&mapping->tree_lock);
409
410 pslot = radix_tree_lookup_slot(&mapping->page_tree,
411 page_index(page));
412
413 expected_count = 2 + page_has_private(page);
414 if (page_count(page) != expected_count ||
415 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
416 spin_unlock_irq(&mapping->tree_lock);
417 return -EAGAIN;
418 }
419
420 if (!page_freeze_refs(page, expected_count)) {
421 spin_unlock_irq(&mapping->tree_lock);
422 return -EAGAIN;
423 }
424
425 get_page(newpage);
426
427 radix_tree_replace_slot(pslot, newpage);
428
429 page_unfreeze_refs(page, expected_count - 1);
430
431 spin_unlock_irq(&mapping->tree_lock);
432 return MIGRATEPAGE_SUCCESS;
433 }
434
435 /*
436 * Gigantic pages are so large that we do not guarantee that page++ pointer
437 * arithmetic will work across the entire page. We need something more
438 * specialized.
439 */
440 static void __copy_gigantic_page(struct page *dst, struct page *src,
441 int nr_pages)
442 {
443 int i;
444 struct page *dst_base = dst;
445 struct page *src_base = src;
446
447 for (i = 0; i < nr_pages; ) {
448 cond_resched();
449 copy_highpage(dst, src);
450
451 i++;
452 dst = mem_map_next(dst, dst_base, i);
453 src = mem_map_next(src, src_base, i);
454 }
455 }
456
457 static void copy_huge_page(struct page *dst, struct page *src)
458 {
459 int i;
460 int nr_pages;
461
462 if (PageHuge(src)) {
463 /* hugetlbfs page */
464 struct hstate *h = page_hstate(src);
465 nr_pages = pages_per_huge_page(h);
466
467 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
468 __copy_gigantic_page(dst, src, nr_pages);
469 return;
470 }
471 } else {
472 /* thp page */
473 BUG_ON(!PageTransHuge(src));
474 nr_pages = hpage_nr_pages(src);
475 }
476
477 for (i = 0; i < nr_pages; i++) {
478 cond_resched();
479 copy_highpage(dst + i, src + i);
480 }
481 }
482
483 /*
484 * Copy the page to its new location
485 */
486 void migrate_page_copy(struct page *newpage, struct page *page)
487 {
488 int cpupid;
489
490 if (PageHuge(page) || PageTransHuge(page))
491 copy_huge_page(newpage, page);
492 else
493 copy_highpage(newpage, page);
494
495 if (PageError(page))
496 SetPageError(newpage);
497 if (PageReferenced(page))
498 SetPageReferenced(newpage);
499 if (PageUptodate(page))
500 SetPageUptodate(newpage);
501 if (TestClearPageActive(page)) {
502 VM_BUG_ON(PageUnevictable(page));
503 SetPageActive(newpage);
504 } else if (TestClearPageUnevictable(page))
505 SetPageUnevictable(newpage);
506 if (PageChecked(page))
507 SetPageChecked(newpage);
508 if (PageMappedToDisk(page))
509 SetPageMappedToDisk(newpage);
510
511 if (PageDirty(page)) {
512 clear_page_dirty_for_io(page);
513 /*
514 * Want to mark the page and the radix tree as dirty, and
515 * redo the accounting that clear_page_dirty_for_io undid,
516 * but we can't use set_page_dirty because that function
517 * is actually a signal that all of the page has become dirty.
518 * Whereas only part of our page may be dirty.
519 */
520 if (PageSwapBacked(page))
521 SetPageDirty(newpage);
522 else
523 __set_page_dirty_nobuffers(newpage);
524 }
525
526 /*
527 * Copy NUMA information to the new page, to prevent over-eager
528 * future migrations of this same page.
529 */
530 cpupid = page_cpupid_xchg_last(page, -1);
531 page_cpupid_xchg_last(newpage, cpupid);
532
533 mlock_migrate_page(newpage, page);
534 ksm_migrate_page(newpage, page);
535 /*
536 * Please do not reorder this without considering how mm/ksm.c's
537 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
538 */
539 ClearPageSwapCache(page);
540 ClearPagePrivate(page);
541 set_page_private(page, 0);
542
543 /*
544 * If any waiters have accumulated on the new page then
545 * wake them up.
546 */
547 if (PageWriteback(newpage))
548 end_page_writeback(newpage);
549 }
550
551 /************************************************************
552 * Migration functions
553 ***********************************************************/
554
555 /* Always fail migration. Used for mappings that are not movable */
556 int fail_migrate_page(struct address_space *mapping,
557 struct page *newpage, struct page *page)
558 {
559 return -EIO;
560 }
561 EXPORT_SYMBOL(fail_migrate_page);
562
563 /*
564 * Common logic to directly migrate a single page suitable for
565 * pages that do not use PagePrivate/PagePrivate2.
566 *
567 * Pages are locked upon entry and exit.
568 */
569 int migrate_page(struct address_space *mapping,
570 struct page *newpage, struct page *page,
571 enum migrate_mode mode)
572 {
573 int rc;
574
575 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
576
577 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
578
579 if (rc != MIGRATEPAGE_SUCCESS)
580 return rc;
581
582 migrate_page_copy(newpage, page);
583 return MIGRATEPAGE_SUCCESS;
584 }
585 EXPORT_SYMBOL(migrate_page);
586
587 #ifdef CONFIG_BLOCK
588 /*
589 * Migration function for pages with buffers. This function can only be used
590 * if the underlying filesystem guarantees that no other references to "page"
591 * exist.
592 */
593 int buffer_migrate_page(struct address_space *mapping,
594 struct page *newpage, struct page *page, enum migrate_mode mode)
595 {
596 struct buffer_head *bh, *head;
597 int rc;
598
599 if (!page_has_buffers(page))
600 return migrate_page(mapping, newpage, page, mode);
601
602 head = page_buffers(page);
603
604 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
605
606 if (rc != MIGRATEPAGE_SUCCESS)
607 return rc;
608
609 /*
610 * In the async case, migrate_page_move_mapping locked the buffers
611 * with an IRQ-safe spinlock held. In the sync case, the buffers
612 * need to be locked now
613 */
614 if (mode != MIGRATE_ASYNC)
615 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
616
617 ClearPagePrivate(page);
618 set_page_private(newpage, page_private(page));
619 set_page_private(page, 0);
620 put_page(page);
621 get_page(newpage);
622
623 bh = head;
624 do {
625 set_bh_page(bh, newpage, bh_offset(bh));
626 bh = bh->b_this_page;
627
628 } while (bh != head);
629
630 SetPagePrivate(newpage);
631
632 migrate_page_copy(newpage, page);
633
634 bh = head;
635 do {
636 unlock_buffer(bh);
637 put_bh(bh);
638 bh = bh->b_this_page;
639
640 } while (bh != head);
641
642 return MIGRATEPAGE_SUCCESS;
643 }
644 EXPORT_SYMBOL(buffer_migrate_page);
645 #endif
646
647 /*
648 * Writeback a page to clean the dirty state
649 */
650 static int writeout(struct address_space *mapping, struct page *page)
651 {
652 struct writeback_control wbc = {
653 .sync_mode = WB_SYNC_NONE,
654 .nr_to_write = 1,
655 .range_start = 0,
656 .range_end = LLONG_MAX,
657 .for_reclaim = 1
658 };
659 int rc;
660
661 if (!mapping->a_ops->writepage)
662 /* No write method for the address space */
663 return -EINVAL;
664
665 if (!clear_page_dirty_for_io(page))
666 /* Someone else already triggered a write */
667 return -EAGAIN;
668
669 /*
670 * A dirty page may imply that the underlying filesystem has
671 * the page on some queue. So the page must be clean for
672 * migration. Writeout may mean we loose the lock and the
673 * page state is no longer what we checked for earlier.
674 * At this point we know that the migration attempt cannot
675 * be successful.
676 */
677 remove_migration_ptes(page, page);
678
679 rc = mapping->a_ops->writepage(page, &wbc);
680
681 if (rc != AOP_WRITEPAGE_ACTIVATE)
682 /* unlocked. Relock */
683 lock_page(page);
684
685 return (rc < 0) ? -EIO : -EAGAIN;
686 }
687
688 /*
689 * Default handling if a filesystem does not provide a migration function.
690 */
691 static int fallback_migrate_page(struct address_space *mapping,
692 struct page *newpage, struct page *page, enum migrate_mode mode)
693 {
694 if (PageDirty(page)) {
695 /* Only writeback pages in full synchronous migration */
696 if (mode != MIGRATE_SYNC)
697 return -EBUSY;
698 return writeout(mapping, page);
699 }
700
701 /*
702 * Buffers may be managed in a filesystem specific way.
703 * We must have no buffers or drop them.
704 */
705 if (page_has_private(page) &&
706 !try_to_release_page(page, GFP_KERNEL))
707 return -EAGAIN;
708
709 return migrate_page(mapping, newpage, page, mode);
710 }
711
712 /*
713 * Move a page to a newly allocated page
714 * The page is locked and all ptes have been successfully removed.
715 *
716 * The new page will have replaced the old page if this function
717 * is successful.
718 *
719 * Return value:
720 * < 0 - error code
721 * MIGRATEPAGE_SUCCESS - success
722 */
723 static int move_to_new_page(struct page *newpage, struct page *page,
724 int remap_swapcache, enum migrate_mode mode)
725 {
726 struct address_space *mapping;
727 int rc;
728
729 /*
730 * Block others from accessing the page when we get around to
731 * establishing additional references. We are the only one
732 * holding a reference to the new page at this point.
733 */
734 if (!trylock_page(newpage))
735 BUG();
736
737 /* Prepare mapping for the new page.*/
738 newpage->index = page->index;
739 newpage->mapping = page->mapping;
740 if (PageSwapBacked(page))
741 SetPageSwapBacked(newpage);
742
743 mapping = page_mapping(page);
744 if (!mapping)
745 rc = migrate_page(mapping, newpage, page, mode);
746 else if (mapping->a_ops->migratepage)
747 /*
748 * Most pages have a mapping and most filesystems provide a
749 * migratepage callback. Anonymous pages are part of swap
750 * space which also has its own migratepage callback. This
751 * is the most common path for page migration.
752 */
753 rc = mapping->a_ops->migratepage(mapping,
754 newpage, page, mode);
755 else
756 rc = fallback_migrate_page(mapping, newpage, page, mode);
757
758 if (rc != MIGRATEPAGE_SUCCESS) {
759 newpage->mapping = NULL;
760 } else {
761 if (remap_swapcache)
762 remove_migration_ptes(page, newpage);
763 page->mapping = NULL;
764 }
765
766 unlock_page(newpage);
767
768 return rc;
769 }
770
771 static int __unmap_and_move(struct page *page, struct page *newpage,
772 int force, enum migrate_mode mode)
773 {
774 int rc = -EAGAIN;
775 int remap_swapcache = 1;
776 struct mem_cgroup *mem;
777 struct anon_vma *anon_vma = NULL;
778
779 if (!trylock_page(page)) {
780 if (!force || mode == MIGRATE_ASYNC)
781 goto out;
782
783 /*
784 * It's not safe for direct compaction to call lock_page.
785 * For example, during page readahead pages are added locked
786 * to the LRU. Later, when the IO completes the pages are
787 * marked uptodate and unlocked. However, the queueing
788 * could be merging multiple pages for one bio (e.g.
789 * mpage_readpages). If an allocation happens for the
790 * second or third page, the process can end up locking
791 * the same page twice and deadlocking. Rather than
792 * trying to be clever about what pages can be locked,
793 * avoid the use of lock_page for direct compaction
794 * altogether.
795 */
796 if (current->flags & PF_MEMALLOC)
797 goto out;
798
799 lock_page(page);
800 }
801
802 /* charge against new page */
803 mem_cgroup_prepare_migration(page, newpage, &mem);
804
805 if (PageWriteback(page)) {
806 /*
807 * Only in the case of a full synchronous migration is it
808 * necessary to wait for PageWriteback. In the async case,
809 * the retry loop is too short and in the sync-light case,
810 * the overhead of stalling is too much
811 */
812 if (mode != MIGRATE_SYNC) {
813 rc = -EBUSY;
814 goto uncharge;
815 }
816 if (!force)
817 goto uncharge;
818 wait_on_page_writeback(page);
819 }
820 /*
821 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
822 * we cannot notice that anon_vma is freed while we migrates a page.
823 * This get_anon_vma() delays freeing anon_vma pointer until the end
824 * of migration. File cache pages are no problem because of page_lock()
825 * File Caches may use write_page() or lock_page() in migration, then,
826 * just care Anon page here.
827 */
828 if (PageAnon(page) && !PageKsm(page)) {
829 /*
830 * Only page_lock_anon_vma_read() understands the subtleties of
831 * getting a hold on an anon_vma from outside one of its mms.
832 */
833 anon_vma = page_get_anon_vma(page);
834 if (anon_vma) {
835 /*
836 * Anon page
837 */
838 } else if (PageSwapCache(page)) {
839 /*
840 * We cannot be sure that the anon_vma of an unmapped
841 * swapcache page is safe to use because we don't
842 * know in advance if the VMA that this page belonged
843 * to still exists. If the VMA and others sharing the
844 * data have been freed, then the anon_vma could
845 * already be invalid.
846 *
847 * To avoid this possibility, swapcache pages get
848 * migrated but are not remapped when migration
849 * completes
850 */
851 remap_swapcache = 0;
852 } else {
853 goto uncharge;
854 }
855 }
856
857 if (unlikely(balloon_page_movable(page))) {
858 /*
859 * A ballooned page does not need any special attention from
860 * physical to virtual reverse mapping procedures.
861 * Skip any attempt to unmap PTEs or to remap swap cache,
862 * in order to avoid burning cycles at rmap level, and perform
863 * the page migration right away (proteced by page lock).
864 */
865 rc = balloon_page_migrate(newpage, page, mode);
866 goto uncharge;
867 }
868
869 /*
870 * Corner case handling:
871 * 1. When a new swap-cache page is read into, it is added to the LRU
872 * and treated as swapcache but it has no rmap yet.
873 * Calling try_to_unmap() against a page->mapping==NULL page will
874 * trigger a BUG. So handle it here.
875 * 2. An orphaned page (see truncate_complete_page) might have
876 * fs-private metadata. The page can be picked up due to memory
877 * offlining. Everywhere else except page reclaim, the page is
878 * invisible to the vm, so the page can not be migrated. So try to
879 * free the metadata, so the page can be freed.
880 */
881 if (!page->mapping) {
882 VM_BUG_ON(PageAnon(page));
883 if (page_has_private(page)) {
884 try_to_free_buffers(page);
885 goto uncharge;
886 }
887 goto skip_unmap;
888 }
889
890 /* Establish migration ptes or remove ptes */
891 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
892
893 skip_unmap:
894 if (!page_mapped(page))
895 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
896
897 if (rc && remap_swapcache)
898 remove_migration_ptes(page, page);
899
900 /* Drop an anon_vma reference if we took one */
901 if (anon_vma)
902 put_anon_vma(anon_vma);
903
904 uncharge:
905 mem_cgroup_end_migration(mem, page, newpage,
906 (rc == MIGRATEPAGE_SUCCESS ||
907 rc == MIGRATEPAGE_BALLOON_SUCCESS));
908 unlock_page(page);
909 out:
910 return rc;
911 }
912
913 /*
914 * Obtain the lock on page, remove all ptes and migrate the page
915 * to the newly allocated page in newpage.
916 */
917 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
918 struct page *page, int force, enum migrate_mode mode)
919 {
920 int rc = 0;
921 int *result = NULL;
922 struct page *newpage = get_new_page(page, private, &result);
923
924 if (!newpage)
925 return -ENOMEM;
926
927 if (page_count(page) == 1) {
928 /* page was freed from under us. So we are done. */
929 goto out;
930 }
931
932 if (unlikely(PageTransHuge(page)))
933 if (unlikely(split_huge_page(page)))
934 goto out;
935
936 rc = __unmap_and_move(page, newpage, force, mode);
937
938 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
939 /*
940 * A ballooned page has been migrated already.
941 * Now, it's the time to wrap-up counters,
942 * handle the page back to Buddy and return.
943 */
944 dec_zone_page_state(page, NR_ISOLATED_ANON +
945 page_is_file_cache(page));
946 balloon_page_free(page);
947 return MIGRATEPAGE_SUCCESS;
948 }
949 out:
950 if (rc != -EAGAIN) {
951 /*
952 * A page that has been migrated has all references
953 * removed and will be freed. A page that has not been
954 * migrated will have kepts its references and be
955 * restored.
956 */
957 list_del(&page->lru);
958 dec_zone_page_state(page, NR_ISOLATED_ANON +
959 page_is_file_cache(page));
960 putback_lru_page(page);
961 }
962 /*
963 * Move the new page to the LRU. If migration was not successful
964 * then this will free the page.
965 */
966 putback_lru_page(newpage);
967 if (result) {
968 if (rc)
969 *result = rc;
970 else
971 *result = page_to_nid(newpage);
972 }
973 return rc;
974 }
975
976 /*
977 * Counterpart of unmap_and_move_page() for hugepage migration.
978 *
979 * This function doesn't wait the completion of hugepage I/O
980 * because there is no race between I/O and migration for hugepage.
981 * Note that currently hugepage I/O occurs only in direct I/O
982 * where no lock is held and PG_writeback is irrelevant,
983 * and writeback status of all subpages are counted in the reference
984 * count of the head page (i.e. if all subpages of a 2MB hugepage are
985 * under direct I/O, the reference of the head page is 512 and a bit more.)
986 * This means that when we try to migrate hugepage whose subpages are
987 * doing direct I/O, some references remain after try_to_unmap() and
988 * hugepage migration fails without data corruption.
989 *
990 * There is also no race when direct I/O is issued on the page under migration,
991 * because then pte is replaced with migration swap entry and direct I/O code
992 * will wait in the page fault for migration to complete.
993 */
994 static int unmap_and_move_huge_page(new_page_t get_new_page,
995 unsigned long private, struct page *hpage,
996 int force, enum migrate_mode mode)
997 {
998 int rc = 0;
999 int *result = NULL;
1000 struct page *new_hpage;
1001 struct anon_vma *anon_vma = NULL;
1002
1003 /*
1004 * Movability of hugepages depends on architectures and hugepage size.
1005 * This check is necessary because some callers of hugepage migration
1006 * like soft offline and memory hotremove don't walk through page
1007 * tables or check whether the hugepage is pmd-based or not before
1008 * kicking migration.
1009 */
1010 if (!hugepage_migration_support(page_hstate(hpage))) {
1011 putback_active_hugepage(hpage);
1012 return -ENOSYS;
1013 }
1014
1015 new_hpage = get_new_page(hpage, private, &result);
1016 if (!new_hpage)
1017 return -ENOMEM;
1018
1019 rc = -EAGAIN;
1020
1021 if (!trylock_page(hpage)) {
1022 if (!force || mode != MIGRATE_SYNC)
1023 goto out;
1024 lock_page(hpage);
1025 }
1026
1027 if (PageAnon(hpage))
1028 anon_vma = page_get_anon_vma(hpage);
1029
1030 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1031
1032 if (!page_mapped(hpage))
1033 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1034
1035 if (rc)
1036 remove_migration_ptes(hpage, hpage);
1037
1038 if (anon_vma)
1039 put_anon_vma(anon_vma);
1040
1041 if (!rc)
1042 hugetlb_cgroup_migrate(hpage, new_hpage);
1043
1044 unlock_page(hpage);
1045 out:
1046 if (rc != -EAGAIN)
1047 putback_active_hugepage(hpage);
1048 put_page(new_hpage);
1049 if (result) {
1050 if (rc)
1051 *result = rc;
1052 else
1053 *result = page_to_nid(new_hpage);
1054 }
1055 return rc;
1056 }
1057
1058 /*
1059 * migrate_pages - migrate the pages specified in a list, to the free pages
1060 * supplied as the target for the page migration
1061 *
1062 * @from: The list of pages to be migrated.
1063 * @get_new_page: The function used to allocate free pages to be used
1064 * as the target of the page migration.
1065 * @private: Private data to be passed on to get_new_page()
1066 * @mode: The migration mode that specifies the constraints for
1067 * page migration, if any.
1068 * @reason: The reason for page migration.
1069 *
1070 * The function returns after 10 attempts or if no pages are movable any more
1071 * because the list has become empty or no retryable pages exist any more.
1072 * The caller should call putback_lru_pages() to return pages to the LRU
1073 * or free list only if ret != 0.
1074 *
1075 * Returns the number of pages that were not migrated, or an error code.
1076 */
1077 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1078 unsigned long private, enum migrate_mode mode, int reason)
1079 {
1080 int retry = 1;
1081 int nr_failed = 0;
1082 int nr_succeeded = 0;
1083 int pass = 0;
1084 struct page *page;
1085 struct page *page2;
1086 int swapwrite = current->flags & PF_SWAPWRITE;
1087 int rc;
1088
1089 if (!swapwrite)
1090 current->flags |= PF_SWAPWRITE;
1091
1092 for(pass = 0; pass < 10 && retry; pass++) {
1093 retry = 0;
1094
1095 list_for_each_entry_safe(page, page2, from, lru) {
1096 cond_resched();
1097
1098 if (PageHuge(page))
1099 rc = unmap_and_move_huge_page(get_new_page,
1100 private, page, pass > 2, mode);
1101 else
1102 rc = unmap_and_move(get_new_page, private,
1103 page, pass > 2, mode);
1104
1105 switch(rc) {
1106 case -ENOMEM:
1107 goto out;
1108 case -EAGAIN:
1109 retry++;
1110 break;
1111 case MIGRATEPAGE_SUCCESS:
1112 nr_succeeded++;
1113 break;
1114 default:
1115 /*
1116 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1117 * unlike -EAGAIN case, the failed page is
1118 * removed from migration page list and not
1119 * retried in the next outer loop.
1120 */
1121 nr_failed++;
1122 break;
1123 }
1124 }
1125 }
1126 rc = nr_failed + retry;
1127 out:
1128 if (nr_succeeded)
1129 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1130 if (nr_failed)
1131 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1132 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1133
1134 if (!swapwrite)
1135 current->flags &= ~PF_SWAPWRITE;
1136
1137 return rc;
1138 }
1139
1140 #ifdef CONFIG_NUMA
1141 /*
1142 * Move a list of individual pages
1143 */
1144 struct page_to_node {
1145 unsigned long addr;
1146 struct page *page;
1147 int node;
1148 int status;
1149 };
1150
1151 static struct page *new_page_node(struct page *p, unsigned long private,
1152 int **result)
1153 {
1154 struct page_to_node *pm = (struct page_to_node *)private;
1155
1156 while (pm->node != MAX_NUMNODES && pm->page != p)
1157 pm++;
1158
1159 if (pm->node == MAX_NUMNODES)
1160 return NULL;
1161
1162 *result = &pm->status;
1163
1164 if (PageHuge(p))
1165 return alloc_huge_page_node(page_hstate(compound_head(p)),
1166 pm->node);
1167 else
1168 return alloc_pages_exact_node(pm->node,
1169 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1170 }
1171
1172 /*
1173 * Move a set of pages as indicated in the pm array. The addr
1174 * field must be set to the virtual address of the page to be moved
1175 * and the node number must contain a valid target node.
1176 * The pm array ends with node = MAX_NUMNODES.
1177 */
1178 static int do_move_page_to_node_array(struct mm_struct *mm,
1179 struct page_to_node *pm,
1180 int migrate_all)
1181 {
1182 int err;
1183 struct page_to_node *pp;
1184 LIST_HEAD(pagelist);
1185
1186 down_read(&mm->mmap_sem);
1187
1188 /*
1189 * Build a list of pages to migrate
1190 */
1191 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1192 struct vm_area_struct *vma;
1193 struct page *page;
1194
1195 err = -EFAULT;
1196 vma = find_vma(mm, pp->addr);
1197 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1198 goto set_status;
1199
1200 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1201
1202 err = PTR_ERR(page);
1203 if (IS_ERR(page))
1204 goto set_status;
1205
1206 err = -ENOENT;
1207 if (!page)
1208 goto set_status;
1209
1210 /* Use PageReserved to check for zero page */
1211 if (PageReserved(page))
1212 goto put_and_set;
1213
1214 pp->page = page;
1215 err = page_to_nid(page);
1216
1217 if (err == pp->node)
1218 /*
1219 * Node already in the right place
1220 */
1221 goto put_and_set;
1222
1223 err = -EACCES;
1224 if (page_mapcount(page) > 1 &&
1225 !migrate_all)
1226 goto put_and_set;
1227
1228 if (PageHuge(page)) {
1229 isolate_huge_page(page, &pagelist);
1230 goto put_and_set;
1231 }
1232
1233 err = isolate_lru_page(page);
1234 if (!err) {
1235 list_add_tail(&page->lru, &pagelist);
1236 inc_zone_page_state(page, NR_ISOLATED_ANON +
1237 page_is_file_cache(page));
1238 }
1239 put_and_set:
1240 /*
1241 * Either remove the duplicate refcount from
1242 * isolate_lru_page() or drop the page ref if it was
1243 * not isolated.
1244 */
1245 put_page(page);
1246 set_status:
1247 pp->status = err;
1248 }
1249
1250 err = 0;
1251 if (!list_empty(&pagelist)) {
1252 err = migrate_pages(&pagelist, new_page_node,
1253 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1254 if (err)
1255 putback_movable_pages(&pagelist);
1256 }
1257
1258 up_read(&mm->mmap_sem);
1259 return err;
1260 }
1261
1262 /*
1263 * Migrate an array of page address onto an array of nodes and fill
1264 * the corresponding array of status.
1265 */
1266 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1267 unsigned long nr_pages,
1268 const void __user * __user *pages,
1269 const int __user *nodes,
1270 int __user *status, int flags)
1271 {
1272 struct page_to_node *pm;
1273 unsigned long chunk_nr_pages;
1274 unsigned long chunk_start;
1275 int err;
1276
1277 err = -ENOMEM;
1278 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1279 if (!pm)
1280 goto out;
1281
1282 migrate_prep();
1283
1284 /*
1285 * Store a chunk of page_to_node array in a page,
1286 * but keep the last one as a marker
1287 */
1288 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1289
1290 for (chunk_start = 0;
1291 chunk_start < nr_pages;
1292 chunk_start += chunk_nr_pages) {
1293 int j;
1294
1295 if (chunk_start + chunk_nr_pages > nr_pages)
1296 chunk_nr_pages = nr_pages - chunk_start;
1297
1298 /* fill the chunk pm with addrs and nodes from user-space */
1299 for (j = 0; j < chunk_nr_pages; j++) {
1300 const void __user *p;
1301 int node;
1302
1303 err = -EFAULT;
1304 if (get_user(p, pages + j + chunk_start))
1305 goto out_pm;
1306 pm[j].addr = (unsigned long) p;
1307
1308 if (get_user(node, nodes + j + chunk_start))
1309 goto out_pm;
1310
1311 err = -ENODEV;
1312 if (node < 0 || node >= MAX_NUMNODES)
1313 goto out_pm;
1314
1315 if (!node_state(node, N_MEMORY))
1316 goto out_pm;
1317
1318 err = -EACCES;
1319 if (!node_isset(node, task_nodes))
1320 goto out_pm;
1321
1322 pm[j].node = node;
1323 }
1324
1325 /* End marker for this chunk */
1326 pm[chunk_nr_pages].node = MAX_NUMNODES;
1327
1328 /* Migrate this chunk */
1329 err = do_move_page_to_node_array(mm, pm,
1330 flags & MPOL_MF_MOVE_ALL);
1331 if (err < 0)
1332 goto out_pm;
1333
1334 /* Return status information */
1335 for (j = 0; j < chunk_nr_pages; j++)
1336 if (put_user(pm[j].status, status + j + chunk_start)) {
1337 err = -EFAULT;
1338 goto out_pm;
1339 }
1340 }
1341 err = 0;
1342
1343 out_pm:
1344 free_page((unsigned long)pm);
1345 out:
1346 return err;
1347 }
1348
1349 /*
1350 * Determine the nodes of an array of pages and store it in an array of status.
1351 */
1352 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1353 const void __user **pages, int *status)
1354 {
1355 unsigned long i;
1356
1357 down_read(&mm->mmap_sem);
1358
1359 for (i = 0; i < nr_pages; i++) {
1360 unsigned long addr = (unsigned long)(*pages);
1361 struct vm_area_struct *vma;
1362 struct page *page;
1363 int err = -EFAULT;
1364
1365 vma = find_vma(mm, addr);
1366 if (!vma || addr < vma->vm_start)
1367 goto set_status;
1368
1369 page = follow_page(vma, addr, 0);
1370
1371 err = PTR_ERR(page);
1372 if (IS_ERR(page))
1373 goto set_status;
1374
1375 err = -ENOENT;
1376 /* Use PageReserved to check for zero page */
1377 if (!page || PageReserved(page))
1378 goto set_status;
1379
1380 err = page_to_nid(page);
1381 set_status:
1382 *status = err;
1383
1384 pages++;
1385 status++;
1386 }
1387
1388 up_read(&mm->mmap_sem);
1389 }
1390
1391 /*
1392 * Determine the nodes of a user array of pages and store it in
1393 * a user array of status.
1394 */
1395 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1396 const void __user * __user *pages,
1397 int __user *status)
1398 {
1399 #define DO_PAGES_STAT_CHUNK_NR 16
1400 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1401 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1402
1403 while (nr_pages) {
1404 unsigned long chunk_nr;
1405
1406 chunk_nr = nr_pages;
1407 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1408 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1409
1410 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1411 break;
1412
1413 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1414
1415 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1416 break;
1417
1418 pages += chunk_nr;
1419 status += chunk_nr;
1420 nr_pages -= chunk_nr;
1421 }
1422 return nr_pages ? -EFAULT : 0;
1423 }
1424
1425 /*
1426 * Move a list of pages in the address space of the currently executing
1427 * process.
1428 */
1429 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1430 const void __user * __user *, pages,
1431 const int __user *, nodes,
1432 int __user *, status, int, flags)
1433 {
1434 const struct cred *cred = current_cred(), *tcred;
1435 struct task_struct *task;
1436 struct mm_struct *mm;
1437 int err;
1438 nodemask_t task_nodes;
1439
1440 /* Check flags */
1441 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1442 return -EINVAL;
1443
1444 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1445 return -EPERM;
1446
1447 /* Find the mm_struct */
1448 rcu_read_lock();
1449 task = pid ? find_task_by_vpid(pid) : current;
1450 if (!task) {
1451 rcu_read_unlock();
1452 return -ESRCH;
1453 }
1454 get_task_struct(task);
1455
1456 /*
1457 * Check if this process has the right to modify the specified
1458 * process. The right exists if the process has administrative
1459 * capabilities, superuser privileges or the same
1460 * userid as the target process.
1461 */
1462 tcred = __task_cred(task);
1463 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1464 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1465 !capable(CAP_SYS_NICE)) {
1466 rcu_read_unlock();
1467 err = -EPERM;
1468 goto out;
1469 }
1470 rcu_read_unlock();
1471
1472 err = security_task_movememory(task);
1473 if (err)
1474 goto out;
1475
1476 task_nodes = cpuset_mems_allowed(task);
1477 mm = get_task_mm(task);
1478 put_task_struct(task);
1479
1480 if (!mm)
1481 return -EINVAL;
1482
1483 if (nodes)
1484 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1485 nodes, status, flags);
1486 else
1487 err = do_pages_stat(mm, nr_pages, pages, status);
1488
1489 mmput(mm);
1490 return err;
1491
1492 out:
1493 put_task_struct(task);
1494 return err;
1495 }
1496
1497 /*
1498 * Call migration functions in the vma_ops that may prepare
1499 * memory in a vm for migration. migration functions may perform
1500 * the migration for vmas that do not have an underlying page struct.
1501 */
1502 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1503 const nodemask_t *from, unsigned long flags)
1504 {
1505 struct vm_area_struct *vma;
1506 int err = 0;
1507
1508 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1509 if (vma->vm_ops && vma->vm_ops->migrate) {
1510 err = vma->vm_ops->migrate(vma, to, from, flags);
1511 if (err)
1512 break;
1513 }
1514 }
1515 return err;
1516 }
1517
1518 #ifdef CONFIG_NUMA_BALANCING
1519 /*
1520 * Returns true if this is a safe migration target node for misplaced NUMA
1521 * pages. Currently it only checks the watermarks which crude
1522 */
1523 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1524 unsigned long nr_migrate_pages)
1525 {
1526 int z;
1527 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1528 struct zone *zone = pgdat->node_zones + z;
1529
1530 if (!populated_zone(zone))
1531 continue;
1532
1533 if (!zone_reclaimable(zone))
1534 continue;
1535
1536 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1537 if (!zone_watermark_ok(zone, 0,
1538 high_wmark_pages(zone) +
1539 nr_migrate_pages,
1540 0, 0))
1541 continue;
1542 return true;
1543 }
1544 return false;
1545 }
1546
1547 static struct page *alloc_misplaced_dst_page(struct page *page,
1548 unsigned long data,
1549 int **result)
1550 {
1551 int nid = (int) data;
1552 struct page *newpage;
1553
1554 newpage = alloc_pages_exact_node(nid,
1555 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1556 __GFP_NOMEMALLOC | __GFP_NORETRY |
1557 __GFP_NOWARN) &
1558 ~GFP_IOFS, 0);
1559 if (newpage)
1560 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1561
1562 return newpage;
1563 }
1564
1565 /*
1566 * page migration rate limiting control.
1567 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1568 * window of time. Default here says do not migrate more than 1280M per second.
1569 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1570 * as it is faults that reset the window, pte updates will happen unconditionally
1571 * if there has not been a fault since @pteupdate_interval_millisecs after the
1572 * throttle window closed.
1573 */
1574 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1575 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1576 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1577
1578 /* Returns true if NUMA migration is currently rate limited */
1579 bool migrate_ratelimited(int node)
1580 {
1581 pg_data_t *pgdat = NODE_DATA(node);
1582
1583 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1584 msecs_to_jiffies(pteupdate_interval_millisecs)))
1585 return false;
1586
1587 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1588 return false;
1589
1590 return true;
1591 }
1592
1593 /* Returns true if the node is migrate rate-limited after the update */
1594 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1595 unsigned long nr_pages)
1596 {
1597 /*
1598 * Rate-limit the amount of data that is being migrated to a node.
1599 * Optimal placement is no good if the memory bus is saturated and
1600 * all the time is being spent migrating!
1601 */
1602 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1603 spin_lock(&pgdat->numabalancing_migrate_lock);
1604 pgdat->numabalancing_migrate_nr_pages = 0;
1605 pgdat->numabalancing_migrate_next_window = jiffies +
1606 msecs_to_jiffies(migrate_interval_millisecs);
1607 spin_unlock(&pgdat->numabalancing_migrate_lock);
1608 }
1609 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1610 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1611 nr_pages);
1612 return true;
1613 }
1614
1615 /*
1616 * This is an unlocked non-atomic update so errors are possible.
1617 * The consequences are failing to migrate when we potentiall should
1618 * have which is not severe enough to warrant locking. If it is ever
1619 * a problem, it can be converted to a per-cpu counter.
1620 */
1621 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1622 return false;
1623 }
1624
1625 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1626 {
1627 int page_lru;
1628
1629 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1630
1631 /* Avoid migrating to a node that is nearly full */
1632 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1633 return 0;
1634
1635 if (isolate_lru_page(page))
1636 return 0;
1637
1638 /*
1639 * migrate_misplaced_transhuge_page() skips page migration's usual
1640 * check on page_count(), so we must do it here, now that the page
1641 * has been isolated: a GUP pin, or any other pin, prevents migration.
1642 * The expected page count is 3: 1 for page's mapcount and 1 for the
1643 * caller's pin and 1 for the reference taken by isolate_lru_page().
1644 */
1645 if (PageTransHuge(page) && page_count(page) != 3) {
1646 putback_lru_page(page);
1647 return 0;
1648 }
1649
1650 page_lru = page_is_file_cache(page);
1651 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1652 hpage_nr_pages(page));
1653
1654 /*
1655 * Isolating the page has taken another reference, so the
1656 * caller's reference can be safely dropped without the page
1657 * disappearing underneath us during migration.
1658 */
1659 put_page(page);
1660 return 1;
1661 }
1662
1663 bool pmd_trans_migrating(pmd_t pmd)
1664 {
1665 struct page *page = pmd_page(pmd);
1666 return PageLocked(page);
1667 }
1668
1669 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1670 {
1671 struct page *page = pmd_page(*pmd);
1672 wait_on_page_locked(page);
1673 }
1674
1675 /*
1676 * Attempt to migrate a misplaced page to the specified destination
1677 * node. Caller is expected to have an elevated reference count on
1678 * the page that will be dropped by this function before returning.
1679 */
1680 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1681 int node)
1682 {
1683 pg_data_t *pgdat = NODE_DATA(node);
1684 int isolated;
1685 int nr_remaining;
1686 LIST_HEAD(migratepages);
1687
1688 /*
1689 * Don't migrate file pages that are mapped in multiple processes
1690 * with execute permissions as they are probably shared libraries.
1691 */
1692 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1693 (vma->vm_flags & VM_EXEC))
1694 goto out;
1695
1696 /*
1697 * Rate-limit the amount of data that is being migrated to a node.
1698 * Optimal placement is no good if the memory bus is saturated and
1699 * all the time is being spent migrating!
1700 */
1701 if (numamigrate_update_ratelimit(pgdat, 1))
1702 goto out;
1703
1704 isolated = numamigrate_isolate_page(pgdat, page);
1705 if (!isolated)
1706 goto out;
1707
1708 list_add(&page->lru, &migratepages);
1709 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1710 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1711 if (nr_remaining) {
1712 if (!list_empty(&migratepages)) {
1713 list_del(&page->lru);
1714 dec_zone_page_state(page, NR_ISOLATED_ANON +
1715 page_is_file_cache(page));
1716 putback_lru_page(page);
1717 }
1718 isolated = 0;
1719 } else
1720 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1721 BUG_ON(!list_empty(&migratepages));
1722 return isolated;
1723
1724 out:
1725 put_page(page);
1726 return 0;
1727 }
1728 #endif /* CONFIG_NUMA_BALANCING */
1729
1730 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1731 /*
1732 * Migrates a THP to a given target node. page must be locked and is unlocked
1733 * before returning.
1734 */
1735 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1736 struct vm_area_struct *vma,
1737 pmd_t *pmd, pmd_t entry,
1738 unsigned long address,
1739 struct page *page, int node)
1740 {
1741 spinlock_t *ptl;
1742 pg_data_t *pgdat = NODE_DATA(node);
1743 int isolated = 0;
1744 struct page *new_page = NULL;
1745 struct mem_cgroup *memcg = NULL;
1746 int page_lru = page_is_file_cache(page);
1747 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1748 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1749 pmd_t orig_entry;
1750
1751 /*
1752 * Rate-limit the amount of data that is being migrated to a node.
1753 * Optimal placement is no good if the memory bus is saturated and
1754 * all the time is being spent migrating!
1755 */
1756 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1757 goto out_dropref;
1758
1759 new_page = alloc_pages_node(node,
1760 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1761 if (!new_page)
1762 goto out_fail;
1763
1764 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1765
1766 isolated = numamigrate_isolate_page(pgdat, page);
1767 if (!isolated) {
1768 put_page(new_page);
1769 goto out_fail;
1770 }
1771
1772 if (mm_tlb_flush_pending(mm))
1773 flush_tlb_range(vma, mmun_start, mmun_end);
1774
1775 /* Prepare a page as a migration target */
1776 __set_page_locked(new_page);
1777 SetPageSwapBacked(new_page);
1778
1779 /* anon mapping, we can simply copy page->mapping to the new page: */
1780 new_page->mapping = page->mapping;
1781 new_page->index = page->index;
1782 migrate_page_copy(new_page, page);
1783 WARN_ON(PageLRU(new_page));
1784
1785 /* Recheck the target PMD */
1786 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1787 ptl = pmd_lock(mm, pmd);
1788 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1789 fail_putback:
1790 spin_unlock(ptl);
1791 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1792
1793 /* Reverse changes made by migrate_page_copy() */
1794 if (TestClearPageActive(new_page))
1795 SetPageActive(page);
1796 if (TestClearPageUnevictable(new_page))
1797 SetPageUnevictable(page);
1798 mlock_migrate_page(page, new_page);
1799
1800 unlock_page(new_page);
1801 put_page(new_page); /* Free it */
1802
1803 /* Retake the callers reference and putback on LRU */
1804 get_page(page);
1805 putback_lru_page(page);
1806 mod_zone_page_state(page_zone(page),
1807 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1808
1809 goto out_unlock;
1810 }
1811
1812 /*
1813 * Traditional migration needs to prepare the memcg charge
1814 * transaction early to prevent the old page from being
1815 * uncharged when installing migration entries. Here we can
1816 * save the potential rollback and start the charge transfer
1817 * only when migration is already known to end successfully.
1818 */
1819 mem_cgroup_prepare_migration(page, new_page, &memcg);
1820
1821 orig_entry = *pmd;
1822 entry = mk_pmd(new_page, vma->vm_page_prot);
1823 entry = pmd_mkhuge(entry);
1824 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1825
1826 /*
1827 * Clear the old entry under pagetable lock and establish the new PTE.
1828 * Any parallel GUP will either observe the old page blocking on the
1829 * page lock, block on the page table lock or observe the new page.
1830 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1831 * guarantee the copy is visible before the pagetable update.
1832 */
1833 flush_cache_range(vma, mmun_start, mmun_end);
1834 page_add_new_anon_rmap(new_page, vma, mmun_start);
1835 pmdp_clear_flush(vma, mmun_start, pmd);
1836 set_pmd_at(mm, mmun_start, pmd, entry);
1837 flush_tlb_range(vma, mmun_start, mmun_end);
1838 update_mmu_cache_pmd(vma, address, &entry);
1839
1840 if (page_count(page) != 2) {
1841 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1842 flush_tlb_range(vma, mmun_start, mmun_end);
1843 update_mmu_cache_pmd(vma, address, &entry);
1844 page_remove_rmap(new_page);
1845 goto fail_putback;
1846 }
1847
1848 page_remove_rmap(page);
1849
1850 /*
1851 * Finish the charge transaction under the page table lock to
1852 * prevent split_huge_page() from dividing up the charge
1853 * before it's fully transferred to the new page.
1854 */
1855 mem_cgroup_end_migration(memcg, page, new_page, true);
1856 spin_unlock(ptl);
1857 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1858
1859 unlock_page(new_page);
1860 unlock_page(page);
1861 put_page(page); /* Drop the rmap reference */
1862 put_page(page); /* Drop the LRU isolation reference */
1863
1864 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1865 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1866
1867 mod_zone_page_state(page_zone(page),
1868 NR_ISOLATED_ANON + page_lru,
1869 -HPAGE_PMD_NR);
1870 return isolated;
1871
1872 out_fail:
1873 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1874 out_dropref:
1875 ptl = pmd_lock(mm, pmd);
1876 if (pmd_same(*pmd, entry)) {
1877 entry = pmd_mknonnuma(entry);
1878 set_pmd_at(mm, mmun_start, pmd, entry);
1879 update_mmu_cache_pmd(vma, address, &entry);
1880 }
1881 spin_unlock(ptl);
1882
1883 out_unlock:
1884 unlock_page(page);
1885 put_page(page);
1886 return 0;
1887 }
1888 #endif /* CONFIG_NUMA_BALANCING */
1889
1890 #endif /* CONFIG_NUMA */