mm/hwpoison: fix wrong num_poisoned_pages accounting
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41
42 #include <asm/tlbflush.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
46
47 #include "internal.h"
48
49 /*
50 * migrate_prep() needs to be called before we start compiling a list of pages
51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52 * undesirable, use migrate_prep_local()
53 */
54 int migrate_prep(void)
55 {
56 /*
57 * Clear the LRU lists so pages can be isolated.
58 * Note that pages may be moved off the LRU after we have
59 * drained them. Those pages will fail to migrate like other
60 * pages that may be busy.
61 */
62 lru_add_drain_all();
63
64 return 0;
65 }
66
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
69 {
70 lru_add_drain();
71
72 return 0;
73 }
74
75 /*
76 * Put previously isolated pages back onto the appropriate lists
77 * from where they were once taken off for compaction/migration.
78 *
79 * This function shall be used whenever the isolated pageset has been
80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81 * and isolate_huge_page().
82 */
83 void putback_movable_pages(struct list_head *l)
84 {
85 struct page *page;
86 struct page *page2;
87
88 list_for_each_entry_safe(page, page2, l, lru) {
89 if (unlikely(PageHuge(page))) {
90 putback_active_hugepage(page);
91 continue;
92 }
93 list_del(&page->lru);
94 dec_zone_page_state(page, NR_ISOLATED_ANON +
95 page_is_file_cache(page));
96 if (unlikely(isolated_balloon_page(page)))
97 balloon_page_putback(page);
98 else
99 putback_lru_page(page);
100 }
101 }
102
103 /*
104 * Restore a potential migration pte to a working pte entry
105 */
106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 unsigned long addr, void *old)
108 {
109 struct mm_struct *mm = vma->vm_mm;
110 swp_entry_t entry;
111 pmd_t *pmd;
112 pte_t *ptep, pte;
113 spinlock_t *ptl;
114
115 if (unlikely(PageHuge(new))) {
116 ptep = huge_pte_offset(mm, addr);
117 if (!ptep)
118 goto out;
119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 } else {
121 pmd = mm_find_pmd(mm, addr);
122 if (!pmd)
123 goto out;
124
125 ptep = pte_offset_map(pmd, addr);
126
127 /*
128 * Peek to check is_swap_pte() before taking ptlock? No, we
129 * can race mremap's move_ptes(), which skips anon_vma lock.
130 */
131
132 ptl = pte_lockptr(mm, pmd);
133 }
134
135 spin_lock(ptl);
136 pte = *ptep;
137 if (!is_swap_pte(pte))
138 goto unlock;
139
140 entry = pte_to_swp_entry(pte);
141
142 if (!is_migration_entry(entry) ||
143 migration_entry_to_page(entry) != old)
144 goto unlock;
145
146 get_page(new);
147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 if (pte_swp_soft_dirty(*ptep))
149 pte = pte_mksoft_dirty(pte);
150
151 /* Recheck VMA as permissions can change since migration started */
152 if (is_write_migration_entry(entry))
153 pte = maybe_mkwrite(pte, vma);
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 if (PageHuge(new)) {
157 pte = pte_mkhuge(pte);
158 pte = arch_make_huge_pte(pte, vma, new, 0);
159 }
160 #endif
161 flush_dcache_page(new);
162 set_pte_at(mm, addr, ptep, pte);
163
164 if (PageHuge(new)) {
165 if (PageAnon(new))
166 hugepage_add_anon_rmap(new, vma, addr);
167 else
168 page_dup_rmap(new);
169 } else if (PageAnon(new))
170 page_add_anon_rmap(new, vma, addr);
171 else
172 page_add_file_rmap(new);
173
174 if (vma->vm_flags & VM_LOCKED)
175 mlock_vma_page(new);
176
177 /* No need to invalidate - it was non-present before */
178 update_mmu_cache(vma, addr, ptep);
179 unlock:
180 pte_unmap_unlock(ptep, ptl);
181 out:
182 return SWAP_AGAIN;
183 }
184
185 /*
186 * Get rid of all migration entries and replace them by
187 * references to the indicated page.
188 */
189 static void remove_migration_ptes(struct page *old, struct page *new)
190 {
191 struct rmap_walk_control rwc = {
192 .rmap_one = remove_migration_pte,
193 .arg = old,
194 };
195
196 rmap_walk(new, &rwc);
197 }
198
199 /*
200 * Something used the pte of a page under migration. We need to
201 * get to the page and wait until migration is finished.
202 * When we return from this function the fault will be retried.
203 */
204 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
205 spinlock_t *ptl)
206 {
207 pte_t pte;
208 swp_entry_t entry;
209 struct page *page;
210
211 spin_lock(ptl);
212 pte = *ptep;
213 if (!is_swap_pte(pte))
214 goto out;
215
216 entry = pte_to_swp_entry(pte);
217 if (!is_migration_entry(entry))
218 goto out;
219
220 page = migration_entry_to_page(entry);
221
222 /*
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 * will occur again.
228 */
229 if (!get_page_unless_zero(page))
230 goto out;
231 pte_unmap_unlock(ptep, ptl);
232 wait_on_page_locked(page);
233 put_page(page);
234 return;
235 out:
236 pte_unmap_unlock(ptep, ptl);
237 }
238
239 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
240 unsigned long address)
241 {
242 spinlock_t *ptl = pte_lockptr(mm, pmd);
243 pte_t *ptep = pte_offset_map(pmd, address);
244 __migration_entry_wait(mm, ptep, ptl);
245 }
246
247 void migration_entry_wait_huge(struct vm_area_struct *vma,
248 struct mm_struct *mm, pte_t *pte)
249 {
250 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
251 __migration_entry_wait(mm, pte, ptl);
252 }
253
254 #ifdef CONFIG_BLOCK
255 /* Returns true if all buffers are successfully locked */
256 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
257 enum migrate_mode mode)
258 {
259 struct buffer_head *bh = head;
260
261 /* Simple case, sync compaction */
262 if (mode != MIGRATE_ASYNC) {
263 do {
264 get_bh(bh);
265 lock_buffer(bh);
266 bh = bh->b_this_page;
267
268 } while (bh != head);
269
270 return true;
271 }
272
273 /* async case, we cannot block on lock_buffer so use trylock_buffer */
274 do {
275 get_bh(bh);
276 if (!trylock_buffer(bh)) {
277 /*
278 * We failed to lock the buffer and cannot stall in
279 * async migration. Release the taken locks
280 */
281 struct buffer_head *failed_bh = bh;
282 put_bh(failed_bh);
283 bh = head;
284 while (bh != failed_bh) {
285 unlock_buffer(bh);
286 put_bh(bh);
287 bh = bh->b_this_page;
288 }
289 return false;
290 }
291
292 bh = bh->b_this_page;
293 } while (bh != head);
294 return true;
295 }
296 #else
297 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
298 enum migrate_mode mode)
299 {
300 return true;
301 }
302 #endif /* CONFIG_BLOCK */
303
304 /*
305 * Replace the page in the mapping.
306 *
307 * The number of remaining references must be:
308 * 1 for anonymous pages without a mapping
309 * 2 for pages with a mapping
310 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
311 */
312 int migrate_page_move_mapping(struct address_space *mapping,
313 struct page *newpage, struct page *page,
314 struct buffer_head *head, enum migrate_mode mode,
315 int extra_count)
316 {
317 struct zone *oldzone, *newzone;
318 int dirty;
319 int expected_count = 1 + extra_count;
320 void **pslot;
321
322 if (!mapping) {
323 /* Anonymous page without mapping */
324 if (page_count(page) != expected_count)
325 return -EAGAIN;
326
327 /* No turning back from here */
328 set_page_memcg(newpage, page_memcg(page));
329 newpage->index = page->index;
330 newpage->mapping = page->mapping;
331 if (PageSwapBacked(page))
332 SetPageSwapBacked(newpage);
333
334 return MIGRATEPAGE_SUCCESS;
335 }
336
337 oldzone = page_zone(page);
338 newzone = page_zone(newpage);
339
340 spin_lock_irq(&mapping->tree_lock);
341
342 pslot = radix_tree_lookup_slot(&mapping->page_tree,
343 page_index(page));
344
345 expected_count += 1 + page_has_private(page);
346 if (page_count(page) != expected_count ||
347 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
348 spin_unlock_irq(&mapping->tree_lock);
349 return -EAGAIN;
350 }
351
352 if (!page_freeze_refs(page, expected_count)) {
353 spin_unlock_irq(&mapping->tree_lock);
354 return -EAGAIN;
355 }
356
357 /*
358 * In the async migration case of moving a page with buffers, lock the
359 * buffers using trylock before the mapping is moved. If the mapping
360 * was moved, we later failed to lock the buffers and could not move
361 * the mapping back due to an elevated page count, we would have to
362 * block waiting on other references to be dropped.
363 */
364 if (mode == MIGRATE_ASYNC && head &&
365 !buffer_migrate_lock_buffers(head, mode)) {
366 page_unfreeze_refs(page, expected_count);
367 spin_unlock_irq(&mapping->tree_lock);
368 return -EAGAIN;
369 }
370
371 /*
372 * Now we know that no one else is looking at the page:
373 * no turning back from here.
374 */
375 set_page_memcg(newpage, page_memcg(page));
376 newpage->index = page->index;
377 newpage->mapping = page->mapping;
378 if (PageSwapBacked(page))
379 SetPageSwapBacked(newpage);
380
381 get_page(newpage); /* add cache reference */
382 if (PageSwapCache(page)) {
383 SetPageSwapCache(newpage);
384 set_page_private(newpage, page_private(page));
385 }
386
387 /* Move dirty while page refs frozen and newpage not yet exposed */
388 dirty = PageDirty(page);
389 if (dirty) {
390 ClearPageDirty(page);
391 SetPageDirty(newpage);
392 }
393
394 radix_tree_replace_slot(pslot, newpage);
395
396 /*
397 * Drop cache reference from old page by unfreezing
398 * to one less reference.
399 * We know this isn't the last reference.
400 */
401 page_unfreeze_refs(page, expected_count - 1);
402
403 spin_unlock(&mapping->tree_lock);
404 /* Leave irq disabled to prevent preemption while updating stats */
405
406 /*
407 * If moved to a different zone then also account
408 * the page for that zone. Other VM counters will be
409 * taken care of when we establish references to the
410 * new page and drop references to the old page.
411 *
412 * Note that anonymous pages are accounted for
413 * via NR_FILE_PAGES and NR_ANON_PAGES if they
414 * are mapped to swap space.
415 */
416 if (newzone != oldzone) {
417 __dec_zone_state(oldzone, NR_FILE_PAGES);
418 __inc_zone_state(newzone, NR_FILE_PAGES);
419 if (PageSwapBacked(page) && !PageSwapCache(page)) {
420 __dec_zone_state(oldzone, NR_SHMEM);
421 __inc_zone_state(newzone, NR_SHMEM);
422 }
423 if (dirty && mapping_cap_account_dirty(mapping)) {
424 __dec_zone_state(oldzone, NR_FILE_DIRTY);
425 __inc_zone_state(newzone, NR_FILE_DIRTY);
426 }
427 }
428 local_irq_enable();
429
430 return MIGRATEPAGE_SUCCESS;
431 }
432
433 /*
434 * The expected number of remaining references is the same as that
435 * of migrate_page_move_mapping().
436 */
437 int migrate_huge_page_move_mapping(struct address_space *mapping,
438 struct page *newpage, struct page *page)
439 {
440 int expected_count;
441 void **pslot;
442
443 spin_lock_irq(&mapping->tree_lock);
444
445 pslot = radix_tree_lookup_slot(&mapping->page_tree,
446 page_index(page));
447
448 expected_count = 2 + page_has_private(page);
449 if (page_count(page) != expected_count ||
450 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
451 spin_unlock_irq(&mapping->tree_lock);
452 return -EAGAIN;
453 }
454
455 if (!page_freeze_refs(page, expected_count)) {
456 spin_unlock_irq(&mapping->tree_lock);
457 return -EAGAIN;
458 }
459
460 set_page_memcg(newpage, page_memcg(page));
461 newpage->index = page->index;
462 newpage->mapping = page->mapping;
463 get_page(newpage);
464
465 radix_tree_replace_slot(pslot, newpage);
466
467 page_unfreeze_refs(page, expected_count - 1);
468
469 spin_unlock_irq(&mapping->tree_lock);
470 return MIGRATEPAGE_SUCCESS;
471 }
472
473 /*
474 * Gigantic pages are so large that we do not guarantee that page++ pointer
475 * arithmetic will work across the entire page. We need something more
476 * specialized.
477 */
478 static void __copy_gigantic_page(struct page *dst, struct page *src,
479 int nr_pages)
480 {
481 int i;
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < nr_pages; ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493 }
494
495 static void copy_huge_page(struct page *dst, struct page *src)
496 {
497 int i;
498 int nr_pages;
499
500 if (PageHuge(src)) {
501 /* hugetlbfs page */
502 struct hstate *h = page_hstate(src);
503 nr_pages = pages_per_huge_page(h);
504
505 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
506 __copy_gigantic_page(dst, src, nr_pages);
507 return;
508 }
509 } else {
510 /* thp page */
511 BUG_ON(!PageTransHuge(src));
512 nr_pages = hpage_nr_pages(src);
513 }
514
515 for (i = 0; i < nr_pages; i++) {
516 cond_resched();
517 copy_highpage(dst + i, src + i);
518 }
519 }
520
521 /*
522 * Copy the page to its new location
523 */
524 void migrate_page_copy(struct page *newpage, struct page *page)
525 {
526 int cpupid;
527
528 if (PageHuge(page) || PageTransHuge(page))
529 copy_huge_page(newpage, page);
530 else
531 copy_highpage(newpage, page);
532
533 if (PageError(page))
534 SetPageError(newpage);
535 if (PageReferenced(page))
536 SetPageReferenced(newpage);
537 if (PageUptodate(page))
538 SetPageUptodate(newpage);
539 if (TestClearPageActive(page)) {
540 VM_BUG_ON_PAGE(PageUnevictable(page), page);
541 SetPageActive(newpage);
542 } else if (TestClearPageUnevictable(page))
543 SetPageUnevictable(newpage);
544 if (PageChecked(page))
545 SetPageChecked(newpage);
546 if (PageMappedToDisk(page))
547 SetPageMappedToDisk(newpage);
548
549 /* Move dirty on pages not done by migrate_page_move_mapping() */
550 if (PageDirty(page))
551 SetPageDirty(newpage);
552
553 if (page_is_young(page))
554 set_page_young(newpage);
555 if (page_is_idle(page))
556 set_page_idle(newpage);
557
558 /*
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
561 */
562 cpupid = page_cpupid_xchg_last(page, -1);
563 page_cpupid_xchg_last(newpage, cpupid);
564
565 ksm_migrate_page(newpage, page);
566 /*
567 * Please do not reorder this without considering how mm/ksm.c's
568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 */
570 if (PageSwapCache(page))
571 ClearPageSwapCache(page);
572 ClearPagePrivate(page);
573 set_page_private(page, 0);
574
575 /*
576 * If any waiters have accumulated on the new page then
577 * wake them up.
578 */
579 if (PageWriteback(newpage))
580 end_page_writeback(newpage);
581 }
582
583 /************************************************************
584 * Migration functions
585 ***********************************************************/
586
587 /*
588 * Common logic to directly migrate a single page suitable for
589 * pages that do not use PagePrivate/PagePrivate2.
590 *
591 * Pages are locked upon entry and exit.
592 */
593 int migrate_page(struct address_space *mapping,
594 struct page *newpage, struct page *page,
595 enum migrate_mode mode)
596 {
597 int rc;
598
599 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
600
601 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
602
603 if (rc != MIGRATEPAGE_SUCCESS)
604 return rc;
605
606 migrate_page_copy(newpage, page);
607 return MIGRATEPAGE_SUCCESS;
608 }
609 EXPORT_SYMBOL(migrate_page);
610
611 #ifdef CONFIG_BLOCK
612 /*
613 * Migration function for pages with buffers. This function can only be used
614 * if the underlying filesystem guarantees that no other references to "page"
615 * exist.
616 */
617 int buffer_migrate_page(struct address_space *mapping,
618 struct page *newpage, struct page *page, enum migrate_mode mode)
619 {
620 struct buffer_head *bh, *head;
621 int rc;
622
623 if (!page_has_buffers(page))
624 return migrate_page(mapping, newpage, page, mode);
625
626 head = page_buffers(page);
627
628 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
629
630 if (rc != MIGRATEPAGE_SUCCESS)
631 return rc;
632
633 /*
634 * In the async case, migrate_page_move_mapping locked the buffers
635 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 * need to be locked now
637 */
638 if (mode != MIGRATE_ASYNC)
639 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
640
641 ClearPagePrivate(page);
642 set_page_private(newpage, page_private(page));
643 set_page_private(page, 0);
644 put_page(page);
645 get_page(newpage);
646
647 bh = head;
648 do {
649 set_bh_page(bh, newpage, bh_offset(bh));
650 bh = bh->b_this_page;
651
652 } while (bh != head);
653
654 SetPagePrivate(newpage);
655
656 migrate_page_copy(newpage, page);
657
658 bh = head;
659 do {
660 unlock_buffer(bh);
661 put_bh(bh);
662 bh = bh->b_this_page;
663
664 } while (bh != head);
665
666 return MIGRATEPAGE_SUCCESS;
667 }
668 EXPORT_SYMBOL(buffer_migrate_page);
669 #endif
670
671 /*
672 * Writeback a page to clean the dirty state
673 */
674 static int writeout(struct address_space *mapping, struct page *page)
675 {
676 struct writeback_control wbc = {
677 .sync_mode = WB_SYNC_NONE,
678 .nr_to_write = 1,
679 .range_start = 0,
680 .range_end = LLONG_MAX,
681 .for_reclaim = 1
682 };
683 int rc;
684
685 if (!mapping->a_ops->writepage)
686 /* No write method for the address space */
687 return -EINVAL;
688
689 if (!clear_page_dirty_for_io(page))
690 /* Someone else already triggered a write */
691 return -EAGAIN;
692
693 /*
694 * A dirty page may imply that the underlying filesystem has
695 * the page on some queue. So the page must be clean for
696 * migration. Writeout may mean we loose the lock and the
697 * page state is no longer what we checked for earlier.
698 * At this point we know that the migration attempt cannot
699 * be successful.
700 */
701 remove_migration_ptes(page, page);
702
703 rc = mapping->a_ops->writepage(page, &wbc);
704
705 if (rc != AOP_WRITEPAGE_ACTIVATE)
706 /* unlocked. Relock */
707 lock_page(page);
708
709 return (rc < 0) ? -EIO : -EAGAIN;
710 }
711
712 /*
713 * Default handling if a filesystem does not provide a migration function.
714 */
715 static int fallback_migrate_page(struct address_space *mapping,
716 struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718 if (PageDirty(page)) {
719 /* Only writeback pages in full synchronous migration */
720 if (mode != MIGRATE_SYNC)
721 return -EBUSY;
722 return writeout(mapping, page);
723 }
724
725 /*
726 * Buffers may be managed in a filesystem specific way.
727 * We must have no buffers or drop them.
728 */
729 if (page_has_private(page) &&
730 !try_to_release_page(page, GFP_KERNEL))
731 return -EAGAIN;
732
733 return migrate_page(mapping, newpage, page, mode);
734 }
735
736 /*
737 * Move a page to a newly allocated page
738 * The page is locked and all ptes have been successfully removed.
739 *
740 * The new page will have replaced the old page if this function
741 * is successful.
742 *
743 * Return value:
744 * < 0 - error code
745 * MIGRATEPAGE_SUCCESS - success
746 */
747 static int move_to_new_page(struct page *newpage, struct page *page,
748 enum migrate_mode mode)
749 {
750 struct address_space *mapping;
751 int rc;
752
753 VM_BUG_ON_PAGE(!PageLocked(page), page);
754 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
755
756 mapping = page_mapping(page);
757 if (!mapping)
758 rc = migrate_page(mapping, newpage, page, mode);
759 else if (mapping->a_ops->migratepage)
760 /*
761 * Most pages have a mapping and most filesystems provide a
762 * migratepage callback. Anonymous pages are part of swap
763 * space which also has its own migratepage callback. This
764 * is the most common path for page migration.
765 */
766 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
767 else
768 rc = fallback_migrate_page(mapping, newpage, page, mode);
769
770 /*
771 * When successful, old pagecache page->mapping must be cleared before
772 * page is freed; but stats require that PageAnon be left as PageAnon.
773 */
774 if (rc == MIGRATEPAGE_SUCCESS) {
775 set_page_memcg(page, NULL);
776 if (!PageAnon(page))
777 page->mapping = NULL;
778 }
779 return rc;
780 }
781
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 int force, enum migrate_mode mode)
784 {
785 int rc = -EAGAIN;
786 int page_was_mapped = 0;
787 struct anon_vma *anon_vma = NULL;
788
789 if (!trylock_page(page)) {
790 if (!force || mode == MIGRATE_ASYNC)
791 goto out;
792
793 /*
794 * It's not safe for direct compaction to call lock_page.
795 * For example, during page readahead pages are added locked
796 * to the LRU. Later, when the IO completes the pages are
797 * marked uptodate and unlocked. However, the queueing
798 * could be merging multiple pages for one bio (e.g.
799 * mpage_readpages). If an allocation happens for the
800 * second or third page, the process can end up locking
801 * the same page twice and deadlocking. Rather than
802 * trying to be clever about what pages can be locked,
803 * avoid the use of lock_page for direct compaction
804 * altogether.
805 */
806 if (current->flags & PF_MEMALLOC)
807 goto out;
808
809 lock_page(page);
810 }
811
812 if (PageWriteback(page)) {
813 /*
814 * Only in the case of a full synchronous migration is it
815 * necessary to wait for PageWriteback. In the async case,
816 * the retry loop is too short and in the sync-light case,
817 * the overhead of stalling is too much
818 */
819 if (mode != MIGRATE_SYNC) {
820 rc = -EBUSY;
821 goto out_unlock;
822 }
823 if (!force)
824 goto out_unlock;
825 wait_on_page_writeback(page);
826 }
827
828 /*
829 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
830 * we cannot notice that anon_vma is freed while we migrates a page.
831 * This get_anon_vma() delays freeing anon_vma pointer until the end
832 * of migration. File cache pages are no problem because of page_lock()
833 * File Caches may use write_page() or lock_page() in migration, then,
834 * just care Anon page here.
835 *
836 * Only page_get_anon_vma() understands the subtleties of
837 * getting a hold on an anon_vma from outside one of its mms.
838 * But if we cannot get anon_vma, then we won't need it anyway,
839 * because that implies that the anon page is no longer mapped
840 * (and cannot be remapped so long as we hold the page lock).
841 */
842 if (PageAnon(page) && !PageKsm(page))
843 anon_vma = page_get_anon_vma(page);
844
845 /*
846 * Block others from accessing the new page when we get around to
847 * establishing additional references. We are usually the only one
848 * holding a reference to newpage at this point. We used to have a BUG
849 * here if trylock_page(newpage) fails, but would like to allow for
850 * cases where there might be a race with the previous use of newpage.
851 * This is much like races on refcount of oldpage: just don't BUG().
852 */
853 if (unlikely(!trylock_page(newpage)))
854 goto out_unlock;
855
856 if (unlikely(isolated_balloon_page(page))) {
857 /*
858 * A ballooned page does not need any special attention from
859 * physical to virtual reverse mapping procedures.
860 * Skip any attempt to unmap PTEs or to remap swap cache,
861 * in order to avoid burning cycles at rmap level, and perform
862 * the page migration right away (proteced by page lock).
863 */
864 rc = balloon_page_migrate(newpage, page, mode);
865 goto out_unlock_both;
866 }
867
868 /*
869 * Corner case handling:
870 * 1. When a new swap-cache page is read into, it is added to the LRU
871 * and treated as swapcache but it has no rmap yet.
872 * Calling try_to_unmap() against a page->mapping==NULL page will
873 * trigger a BUG. So handle it here.
874 * 2. An orphaned page (see truncate_complete_page) might have
875 * fs-private metadata. The page can be picked up due to memory
876 * offlining. Everywhere else except page reclaim, the page is
877 * invisible to the vm, so the page can not be migrated. So try to
878 * free the metadata, so the page can be freed.
879 */
880 if (!page->mapping) {
881 VM_BUG_ON_PAGE(PageAnon(page), page);
882 if (page_has_private(page)) {
883 try_to_free_buffers(page);
884 goto out_unlock_both;
885 }
886 } else if (page_mapped(page)) {
887 /* Establish migration ptes */
888 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
889 page);
890 try_to_unmap(page,
891 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
892 page_was_mapped = 1;
893 }
894
895 if (!page_mapped(page))
896 rc = move_to_new_page(newpage, page, mode);
897
898 if (page_was_mapped)
899 remove_migration_ptes(page,
900 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
901
902 out_unlock_both:
903 unlock_page(newpage);
904 out_unlock:
905 /* Drop an anon_vma reference if we took one */
906 if (anon_vma)
907 put_anon_vma(anon_vma);
908 unlock_page(page);
909 out:
910 return rc;
911 }
912
913 /*
914 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
915 * around it.
916 */
917 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
918 #define ICE_noinline noinline
919 #else
920 #define ICE_noinline
921 #endif
922
923 /*
924 * Obtain the lock on page, remove all ptes and migrate the page
925 * to the newly allocated page in newpage.
926 */
927 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
928 free_page_t put_new_page,
929 unsigned long private, struct page *page,
930 int force, enum migrate_mode mode,
931 enum migrate_reason reason)
932 {
933 int rc = MIGRATEPAGE_SUCCESS;
934 int *result = NULL;
935 struct page *newpage;
936
937 newpage = get_new_page(page, private, &result);
938 if (!newpage)
939 return -ENOMEM;
940
941 if (page_count(page) == 1) {
942 /* page was freed from under us. So we are done. */
943 goto out;
944 }
945
946 if (unlikely(PageTransHuge(page)))
947 if (unlikely(split_huge_page(page)))
948 goto out;
949
950 rc = __unmap_and_move(page, newpage, force, mode);
951 if (rc == MIGRATEPAGE_SUCCESS)
952 put_new_page = NULL;
953
954 out:
955 if (rc != -EAGAIN) {
956 /*
957 * A page that has been migrated has all references
958 * removed and will be freed. A page that has not been
959 * migrated will have kepts its references and be
960 * restored.
961 */
962 list_del(&page->lru);
963 dec_zone_page_state(page, NR_ISOLATED_ANON +
964 page_is_file_cache(page));
965 /* Soft-offlined page shouldn't go through lru cache list */
966 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
967 /*
968 * With this release, we free successfully migrated
969 * page and set PG_HWPoison on just freed page
970 * intentionally. Although it's rather weird, it's how
971 * HWPoison flag works at the moment.
972 */
973 put_page(page);
974 if (!test_set_page_hwpoison(page))
975 num_poisoned_pages_inc();
976 } else
977 putback_lru_page(page);
978 }
979
980 /*
981 * If migration was not successful and there's a freeing callback, use
982 * it. Otherwise, putback_lru_page() will drop the reference grabbed
983 * during isolation.
984 */
985 if (put_new_page)
986 put_new_page(newpage, private);
987 else if (unlikely(__is_movable_balloon_page(newpage))) {
988 /* drop our reference, page already in the balloon */
989 put_page(newpage);
990 } else
991 putback_lru_page(newpage);
992
993 if (result) {
994 if (rc)
995 *result = rc;
996 else
997 *result = page_to_nid(newpage);
998 }
999 return rc;
1000 }
1001
1002 /*
1003 * Counterpart of unmap_and_move_page() for hugepage migration.
1004 *
1005 * This function doesn't wait the completion of hugepage I/O
1006 * because there is no race between I/O and migration for hugepage.
1007 * Note that currently hugepage I/O occurs only in direct I/O
1008 * where no lock is held and PG_writeback is irrelevant,
1009 * and writeback status of all subpages are counted in the reference
1010 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1011 * under direct I/O, the reference of the head page is 512 and a bit more.)
1012 * This means that when we try to migrate hugepage whose subpages are
1013 * doing direct I/O, some references remain after try_to_unmap() and
1014 * hugepage migration fails without data corruption.
1015 *
1016 * There is also no race when direct I/O is issued on the page under migration,
1017 * because then pte is replaced with migration swap entry and direct I/O code
1018 * will wait in the page fault for migration to complete.
1019 */
1020 static int unmap_and_move_huge_page(new_page_t get_new_page,
1021 free_page_t put_new_page, unsigned long private,
1022 struct page *hpage, int force,
1023 enum migrate_mode mode)
1024 {
1025 int rc = -EAGAIN;
1026 int *result = NULL;
1027 int page_was_mapped = 0;
1028 struct page *new_hpage;
1029 struct anon_vma *anon_vma = NULL;
1030
1031 /*
1032 * Movability of hugepages depends on architectures and hugepage size.
1033 * This check is necessary because some callers of hugepage migration
1034 * like soft offline and memory hotremove don't walk through page
1035 * tables or check whether the hugepage is pmd-based or not before
1036 * kicking migration.
1037 */
1038 if (!hugepage_migration_supported(page_hstate(hpage))) {
1039 putback_active_hugepage(hpage);
1040 return -ENOSYS;
1041 }
1042
1043 new_hpage = get_new_page(hpage, private, &result);
1044 if (!new_hpage)
1045 return -ENOMEM;
1046
1047 if (!trylock_page(hpage)) {
1048 if (!force || mode != MIGRATE_SYNC)
1049 goto out;
1050 lock_page(hpage);
1051 }
1052
1053 if (PageAnon(hpage))
1054 anon_vma = page_get_anon_vma(hpage);
1055
1056 if (unlikely(!trylock_page(new_hpage)))
1057 goto put_anon;
1058
1059 if (page_mapped(hpage)) {
1060 try_to_unmap(hpage,
1061 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1062 page_was_mapped = 1;
1063 }
1064
1065 if (!page_mapped(hpage))
1066 rc = move_to_new_page(new_hpage, hpage, mode);
1067
1068 if (page_was_mapped)
1069 remove_migration_ptes(hpage,
1070 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1071
1072 unlock_page(new_hpage);
1073
1074 put_anon:
1075 if (anon_vma)
1076 put_anon_vma(anon_vma);
1077
1078 if (rc == MIGRATEPAGE_SUCCESS) {
1079 hugetlb_cgroup_migrate(hpage, new_hpage);
1080 put_new_page = NULL;
1081 }
1082
1083 unlock_page(hpage);
1084 out:
1085 if (rc != -EAGAIN)
1086 putback_active_hugepage(hpage);
1087
1088 /*
1089 * If migration was not successful and there's a freeing callback, use
1090 * it. Otherwise, put_page() will drop the reference grabbed during
1091 * isolation.
1092 */
1093 if (put_new_page)
1094 put_new_page(new_hpage, private);
1095 else
1096 putback_active_hugepage(new_hpage);
1097
1098 if (result) {
1099 if (rc)
1100 *result = rc;
1101 else
1102 *result = page_to_nid(new_hpage);
1103 }
1104 return rc;
1105 }
1106
1107 /*
1108 * migrate_pages - migrate the pages specified in a list, to the free pages
1109 * supplied as the target for the page migration
1110 *
1111 * @from: The list of pages to be migrated.
1112 * @get_new_page: The function used to allocate free pages to be used
1113 * as the target of the page migration.
1114 * @put_new_page: The function used to free target pages if migration
1115 * fails, or NULL if no special handling is necessary.
1116 * @private: Private data to be passed on to get_new_page()
1117 * @mode: The migration mode that specifies the constraints for
1118 * page migration, if any.
1119 * @reason: The reason for page migration.
1120 *
1121 * The function returns after 10 attempts or if no pages are movable any more
1122 * because the list has become empty or no retryable pages exist any more.
1123 * The caller should call putback_movable_pages() to return pages to the LRU
1124 * or free list only if ret != 0.
1125 *
1126 * Returns the number of pages that were not migrated, or an error code.
1127 */
1128 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1129 free_page_t put_new_page, unsigned long private,
1130 enum migrate_mode mode, int reason)
1131 {
1132 int retry = 1;
1133 int nr_failed = 0;
1134 int nr_succeeded = 0;
1135 int pass = 0;
1136 struct page *page;
1137 struct page *page2;
1138 int swapwrite = current->flags & PF_SWAPWRITE;
1139 int rc;
1140
1141 if (!swapwrite)
1142 current->flags |= PF_SWAPWRITE;
1143
1144 for(pass = 0; pass < 10 && retry; pass++) {
1145 retry = 0;
1146
1147 list_for_each_entry_safe(page, page2, from, lru) {
1148 cond_resched();
1149
1150 if (PageHuge(page))
1151 rc = unmap_and_move_huge_page(get_new_page,
1152 put_new_page, private, page,
1153 pass > 2, mode);
1154 else
1155 rc = unmap_and_move(get_new_page, put_new_page,
1156 private, page, pass > 2, mode,
1157 reason);
1158
1159 switch(rc) {
1160 case -ENOMEM:
1161 goto out;
1162 case -EAGAIN:
1163 retry++;
1164 break;
1165 case MIGRATEPAGE_SUCCESS:
1166 nr_succeeded++;
1167 break;
1168 default:
1169 /*
1170 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1171 * unlike -EAGAIN case, the failed page is
1172 * removed from migration page list and not
1173 * retried in the next outer loop.
1174 */
1175 nr_failed++;
1176 break;
1177 }
1178 }
1179 }
1180 nr_failed += retry;
1181 rc = nr_failed;
1182 out:
1183 if (nr_succeeded)
1184 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1185 if (nr_failed)
1186 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1187 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1188
1189 if (!swapwrite)
1190 current->flags &= ~PF_SWAPWRITE;
1191
1192 return rc;
1193 }
1194
1195 #ifdef CONFIG_NUMA
1196 /*
1197 * Move a list of individual pages
1198 */
1199 struct page_to_node {
1200 unsigned long addr;
1201 struct page *page;
1202 int node;
1203 int status;
1204 };
1205
1206 static struct page *new_page_node(struct page *p, unsigned long private,
1207 int **result)
1208 {
1209 struct page_to_node *pm = (struct page_to_node *)private;
1210
1211 while (pm->node != MAX_NUMNODES && pm->page != p)
1212 pm++;
1213
1214 if (pm->node == MAX_NUMNODES)
1215 return NULL;
1216
1217 *result = &pm->status;
1218
1219 if (PageHuge(p))
1220 return alloc_huge_page_node(page_hstate(compound_head(p)),
1221 pm->node);
1222 else
1223 return __alloc_pages_node(pm->node,
1224 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1225 }
1226
1227 /*
1228 * Move a set of pages as indicated in the pm array. The addr
1229 * field must be set to the virtual address of the page to be moved
1230 * and the node number must contain a valid target node.
1231 * The pm array ends with node = MAX_NUMNODES.
1232 */
1233 static int do_move_page_to_node_array(struct mm_struct *mm,
1234 struct page_to_node *pm,
1235 int migrate_all)
1236 {
1237 int err;
1238 struct page_to_node *pp;
1239 LIST_HEAD(pagelist);
1240
1241 down_read(&mm->mmap_sem);
1242
1243 /*
1244 * Build a list of pages to migrate
1245 */
1246 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1247 struct vm_area_struct *vma;
1248 struct page *page;
1249
1250 err = -EFAULT;
1251 vma = find_vma(mm, pp->addr);
1252 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1253 goto set_status;
1254
1255 /* FOLL_DUMP to ignore special (like zero) pages */
1256 page = follow_page(vma, pp->addr,
1257 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1258
1259 err = PTR_ERR(page);
1260 if (IS_ERR(page))
1261 goto set_status;
1262
1263 err = -ENOENT;
1264 if (!page)
1265 goto set_status;
1266
1267 pp->page = page;
1268 err = page_to_nid(page);
1269
1270 if (err == pp->node)
1271 /*
1272 * Node already in the right place
1273 */
1274 goto put_and_set;
1275
1276 err = -EACCES;
1277 if (page_mapcount(page) > 1 &&
1278 !migrate_all)
1279 goto put_and_set;
1280
1281 if (PageHuge(page)) {
1282 if (PageHead(page))
1283 isolate_huge_page(page, &pagelist);
1284 goto put_and_set;
1285 }
1286
1287 err = isolate_lru_page(page);
1288 if (!err) {
1289 list_add_tail(&page->lru, &pagelist);
1290 inc_zone_page_state(page, NR_ISOLATED_ANON +
1291 page_is_file_cache(page));
1292 }
1293 put_and_set:
1294 /*
1295 * Either remove the duplicate refcount from
1296 * isolate_lru_page() or drop the page ref if it was
1297 * not isolated.
1298 */
1299 put_page(page);
1300 set_status:
1301 pp->status = err;
1302 }
1303
1304 err = 0;
1305 if (!list_empty(&pagelist)) {
1306 err = migrate_pages(&pagelist, new_page_node, NULL,
1307 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1308 if (err)
1309 putback_movable_pages(&pagelist);
1310 }
1311
1312 up_read(&mm->mmap_sem);
1313 return err;
1314 }
1315
1316 /*
1317 * Migrate an array of page address onto an array of nodes and fill
1318 * the corresponding array of status.
1319 */
1320 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1321 unsigned long nr_pages,
1322 const void __user * __user *pages,
1323 const int __user *nodes,
1324 int __user *status, int flags)
1325 {
1326 struct page_to_node *pm;
1327 unsigned long chunk_nr_pages;
1328 unsigned long chunk_start;
1329 int err;
1330
1331 err = -ENOMEM;
1332 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1333 if (!pm)
1334 goto out;
1335
1336 migrate_prep();
1337
1338 /*
1339 * Store a chunk of page_to_node array in a page,
1340 * but keep the last one as a marker
1341 */
1342 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1343
1344 for (chunk_start = 0;
1345 chunk_start < nr_pages;
1346 chunk_start += chunk_nr_pages) {
1347 int j;
1348
1349 if (chunk_start + chunk_nr_pages > nr_pages)
1350 chunk_nr_pages = nr_pages - chunk_start;
1351
1352 /* fill the chunk pm with addrs and nodes from user-space */
1353 for (j = 0; j < chunk_nr_pages; j++) {
1354 const void __user *p;
1355 int node;
1356
1357 err = -EFAULT;
1358 if (get_user(p, pages + j + chunk_start))
1359 goto out_pm;
1360 pm[j].addr = (unsigned long) p;
1361
1362 if (get_user(node, nodes + j + chunk_start))
1363 goto out_pm;
1364
1365 err = -ENODEV;
1366 if (node < 0 || node >= MAX_NUMNODES)
1367 goto out_pm;
1368
1369 if (!node_state(node, N_MEMORY))
1370 goto out_pm;
1371
1372 err = -EACCES;
1373 if (!node_isset(node, task_nodes))
1374 goto out_pm;
1375
1376 pm[j].node = node;
1377 }
1378
1379 /* End marker for this chunk */
1380 pm[chunk_nr_pages].node = MAX_NUMNODES;
1381
1382 /* Migrate this chunk */
1383 err = do_move_page_to_node_array(mm, pm,
1384 flags & MPOL_MF_MOVE_ALL);
1385 if (err < 0)
1386 goto out_pm;
1387
1388 /* Return status information */
1389 for (j = 0; j < chunk_nr_pages; j++)
1390 if (put_user(pm[j].status, status + j + chunk_start)) {
1391 err = -EFAULT;
1392 goto out_pm;
1393 }
1394 }
1395 err = 0;
1396
1397 out_pm:
1398 free_page((unsigned long)pm);
1399 out:
1400 return err;
1401 }
1402
1403 /*
1404 * Determine the nodes of an array of pages and store it in an array of status.
1405 */
1406 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1407 const void __user **pages, int *status)
1408 {
1409 unsigned long i;
1410
1411 down_read(&mm->mmap_sem);
1412
1413 for (i = 0; i < nr_pages; i++) {
1414 unsigned long addr = (unsigned long)(*pages);
1415 struct vm_area_struct *vma;
1416 struct page *page;
1417 int err = -EFAULT;
1418
1419 vma = find_vma(mm, addr);
1420 if (!vma || addr < vma->vm_start)
1421 goto set_status;
1422
1423 /* FOLL_DUMP to ignore special (like zero) pages */
1424 page = follow_page(vma, addr, FOLL_DUMP);
1425
1426 err = PTR_ERR(page);
1427 if (IS_ERR(page))
1428 goto set_status;
1429
1430 err = page ? page_to_nid(page) : -ENOENT;
1431 set_status:
1432 *status = err;
1433
1434 pages++;
1435 status++;
1436 }
1437
1438 up_read(&mm->mmap_sem);
1439 }
1440
1441 /*
1442 * Determine the nodes of a user array of pages and store it in
1443 * a user array of status.
1444 */
1445 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1446 const void __user * __user *pages,
1447 int __user *status)
1448 {
1449 #define DO_PAGES_STAT_CHUNK_NR 16
1450 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1451 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1452
1453 while (nr_pages) {
1454 unsigned long chunk_nr;
1455
1456 chunk_nr = nr_pages;
1457 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1458 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1459
1460 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1461 break;
1462
1463 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1464
1465 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1466 break;
1467
1468 pages += chunk_nr;
1469 status += chunk_nr;
1470 nr_pages -= chunk_nr;
1471 }
1472 return nr_pages ? -EFAULT : 0;
1473 }
1474
1475 /*
1476 * Move a list of pages in the address space of the currently executing
1477 * process.
1478 */
1479 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1480 const void __user * __user *, pages,
1481 const int __user *, nodes,
1482 int __user *, status, int, flags)
1483 {
1484 const struct cred *cred = current_cred(), *tcred;
1485 struct task_struct *task;
1486 struct mm_struct *mm;
1487 int err;
1488 nodemask_t task_nodes;
1489
1490 /* Check flags */
1491 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1492 return -EINVAL;
1493
1494 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1495 return -EPERM;
1496
1497 /* Find the mm_struct */
1498 rcu_read_lock();
1499 task = pid ? find_task_by_vpid(pid) : current;
1500 if (!task) {
1501 rcu_read_unlock();
1502 return -ESRCH;
1503 }
1504 get_task_struct(task);
1505
1506 /*
1507 * Check if this process has the right to modify the specified
1508 * process. The right exists if the process has administrative
1509 * capabilities, superuser privileges or the same
1510 * userid as the target process.
1511 */
1512 tcred = __task_cred(task);
1513 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1514 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1515 !capable(CAP_SYS_NICE)) {
1516 rcu_read_unlock();
1517 err = -EPERM;
1518 goto out;
1519 }
1520 rcu_read_unlock();
1521
1522 err = security_task_movememory(task);
1523 if (err)
1524 goto out;
1525
1526 task_nodes = cpuset_mems_allowed(task);
1527 mm = get_task_mm(task);
1528 put_task_struct(task);
1529
1530 if (!mm)
1531 return -EINVAL;
1532
1533 if (nodes)
1534 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1535 nodes, status, flags);
1536 else
1537 err = do_pages_stat(mm, nr_pages, pages, status);
1538
1539 mmput(mm);
1540 return err;
1541
1542 out:
1543 put_task_struct(task);
1544 return err;
1545 }
1546
1547 #ifdef CONFIG_NUMA_BALANCING
1548 /*
1549 * Returns true if this is a safe migration target node for misplaced NUMA
1550 * pages. Currently it only checks the watermarks which crude
1551 */
1552 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1553 unsigned long nr_migrate_pages)
1554 {
1555 int z;
1556 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1557 struct zone *zone = pgdat->node_zones + z;
1558
1559 if (!populated_zone(zone))
1560 continue;
1561
1562 if (!zone_reclaimable(zone))
1563 continue;
1564
1565 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1566 if (!zone_watermark_ok(zone, 0,
1567 high_wmark_pages(zone) +
1568 nr_migrate_pages,
1569 0, 0))
1570 continue;
1571 return true;
1572 }
1573 return false;
1574 }
1575
1576 static struct page *alloc_misplaced_dst_page(struct page *page,
1577 unsigned long data,
1578 int **result)
1579 {
1580 int nid = (int) data;
1581 struct page *newpage;
1582
1583 newpage = __alloc_pages_node(nid,
1584 (GFP_HIGHUSER_MOVABLE |
1585 __GFP_THISNODE | __GFP_NOMEMALLOC |
1586 __GFP_NORETRY | __GFP_NOWARN) &
1587 ~__GFP_RECLAIM, 0);
1588
1589 return newpage;
1590 }
1591
1592 /*
1593 * page migration rate limiting control.
1594 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1595 * window of time. Default here says do not migrate more than 1280M per second.
1596 */
1597 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1598 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600 /* Returns true if the node is migrate rate-limited after the update */
1601 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1602 unsigned long nr_pages)
1603 {
1604 /*
1605 * Rate-limit the amount of data that is being migrated to a node.
1606 * Optimal placement is no good if the memory bus is saturated and
1607 * all the time is being spent migrating!
1608 */
1609 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1610 spin_lock(&pgdat->numabalancing_migrate_lock);
1611 pgdat->numabalancing_migrate_nr_pages = 0;
1612 pgdat->numabalancing_migrate_next_window = jiffies +
1613 msecs_to_jiffies(migrate_interval_millisecs);
1614 spin_unlock(&pgdat->numabalancing_migrate_lock);
1615 }
1616 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1617 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1618 nr_pages);
1619 return true;
1620 }
1621
1622 /*
1623 * This is an unlocked non-atomic update so errors are possible.
1624 * The consequences are failing to migrate when we potentiall should
1625 * have which is not severe enough to warrant locking. If it is ever
1626 * a problem, it can be converted to a per-cpu counter.
1627 */
1628 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1629 return false;
1630 }
1631
1632 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1633 {
1634 int page_lru;
1635
1636 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1637
1638 /* Avoid migrating to a node that is nearly full */
1639 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1640 return 0;
1641
1642 if (isolate_lru_page(page))
1643 return 0;
1644
1645 /*
1646 * migrate_misplaced_transhuge_page() skips page migration's usual
1647 * check on page_count(), so we must do it here, now that the page
1648 * has been isolated: a GUP pin, or any other pin, prevents migration.
1649 * The expected page count is 3: 1 for page's mapcount and 1 for the
1650 * caller's pin and 1 for the reference taken by isolate_lru_page().
1651 */
1652 if (PageTransHuge(page) && page_count(page) != 3) {
1653 putback_lru_page(page);
1654 return 0;
1655 }
1656
1657 page_lru = page_is_file_cache(page);
1658 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1659 hpage_nr_pages(page));
1660
1661 /*
1662 * Isolating the page has taken another reference, so the
1663 * caller's reference can be safely dropped without the page
1664 * disappearing underneath us during migration.
1665 */
1666 put_page(page);
1667 return 1;
1668 }
1669
1670 bool pmd_trans_migrating(pmd_t pmd)
1671 {
1672 struct page *page = pmd_page(pmd);
1673 return PageLocked(page);
1674 }
1675
1676 /*
1677 * Attempt to migrate a misplaced page to the specified destination
1678 * node. Caller is expected to have an elevated reference count on
1679 * the page that will be dropped by this function before returning.
1680 */
1681 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1682 int node)
1683 {
1684 pg_data_t *pgdat = NODE_DATA(node);
1685 int isolated;
1686 int nr_remaining;
1687 LIST_HEAD(migratepages);
1688
1689 /*
1690 * Don't migrate file pages that are mapped in multiple processes
1691 * with execute permissions as they are probably shared libraries.
1692 */
1693 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1694 (vma->vm_flags & VM_EXEC))
1695 goto out;
1696
1697 /*
1698 * Rate-limit the amount of data that is being migrated to a node.
1699 * Optimal placement is no good if the memory bus is saturated and
1700 * all the time is being spent migrating!
1701 */
1702 if (numamigrate_update_ratelimit(pgdat, 1))
1703 goto out;
1704
1705 isolated = numamigrate_isolate_page(pgdat, page);
1706 if (!isolated)
1707 goto out;
1708
1709 list_add(&page->lru, &migratepages);
1710 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1711 NULL, node, MIGRATE_ASYNC,
1712 MR_NUMA_MISPLACED);
1713 if (nr_remaining) {
1714 if (!list_empty(&migratepages)) {
1715 list_del(&page->lru);
1716 dec_zone_page_state(page, NR_ISOLATED_ANON +
1717 page_is_file_cache(page));
1718 putback_lru_page(page);
1719 }
1720 isolated = 0;
1721 } else
1722 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1723 BUG_ON(!list_empty(&migratepages));
1724 return isolated;
1725
1726 out:
1727 put_page(page);
1728 return 0;
1729 }
1730 #endif /* CONFIG_NUMA_BALANCING */
1731
1732 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1733 /*
1734 * Migrates a THP to a given target node. page must be locked and is unlocked
1735 * before returning.
1736 */
1737 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1738 struct vm_area_struct *vma,
1739 pmd_t *pmd, pmd_t entry,
1740 unsigned long address,
1741 struct page *page, int node)
1742 {
1743 spinlock_t *ptl;
1744 pg_data_t *pgdat = NODE_DATA(node);
1745 int isolated = 0;
1746 struct page *new_page = NULL;
1747 int page_lru = page_is_file_cache(page);
1748 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1749 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1750 pmd_t orig_entry;
1751
1752 /*
1753 * Rate-limit the amount of data that is being migrated to a node.
1754 * Optimal placement is no good if the memory bus is saturated and
1755 * all the time is being spent migrating!
1756 */
1757 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1758 goto out_dropref;
1759
1760 new_page = alloc_pages_node(node,
1761 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1762 HPAGE_PMD_ORDER);
1763 if (!new_page)
1764 goto out_fail;
1765
1766 isolated = numamigrate_isolate_page(pgdat, page);
1767 if (!isolated) {
1768 put_page(new_page);
1769 goto out_fail;
1770 }
1771
1772 if (mm_tlb_flush_pending(mm))
1773 flush_tlb_range(vma, mmun_start, mmun_end);
1774
1775 /* Prepare a page as a migration target */
1776 __set_page_locked(new_page);
1777 SetPageSwapBacked(new_page);
1778
1779 /* anon mapping, we can simply copy page->mapping to the new page: */
1780 new_page->mapping = page->mapping;
1781 new_page->index = page->index;
1782 migrate_page_copy(new_page, page);
1783 WARN_ON(PageLRU(new_page));
1784
1785 /* Recheck the target PMD */
1786 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1787 ptl = pmd_lock(mm, pmd);
1788 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1789 fail_putback:
1790 spin_unlock(ptl);
1791 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1792
1793 /* Reverse changes made by migrate_page_copy() */
1794 if (TestClearPageActive(new_page))
1795 SetPageActive(page);
1796 if (TestClearPageUnevictable(new_page))
1797 SetPageUnevictable(page);
1798
1799 unlock_page(new_page);
1800 put_page(new_page); /* Free it */
1801
1802 /* Retake the callers reference and putback on LRU */
1803 get_page(page);
1804 putback_lru_page(page);
1805 mod_zone_page_state(page_zone(page),
1806 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1807
1808 goto out_unlock;
1809 }
1810
1811 orig_entry = *pmd;
1812 entry = mk_pmd(new_page, vma->vm_page_prot);
1813 entry = pmd_mkhuge(entry);
1814 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1815
1816 /*
1817 * Clear the old entry under pagetable lock and establish the new PTE.
1818 * Any parallel GUP will either observe the old page blocking on the
1819 * page lock, block on the page table lock or observe the new page.
1820 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1821 * guarantee the copy is visible before the pagetable update.
1822 */
1823 flush_cache_range(vma, mmun_start, mmun_end);
1824 page_add_anon_rmap(new_page, vma, mmun_start);
1825 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1826 set_pmd_at(mm, mmun_start, pmd, entry);
1827 flush_tlb_range(vma, mmun_start, mmun_end);
1828 update_mmu_cache_pmd(vma, address, &entry);
1829
1830 if (page_count(page) != 2) {
1831 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1832 flush_tlb_range(vma, mmun_start, mmun_end);
1833 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1834 update_mmu_cache_pmd(vma, address, &entry);
1835 page_remove_rmap(new_page);
1836 goto fail_putback;
1837 }
1838
1839 mlock_migrate_page(new_page, page);
1840 set_page_memcg(new_page, page_memcg(page));
1841 set_page_memcg(page, NULL);
1842 page_remove_rmap(page);
1843
1844 spin_unlock(ptl);
1845 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1846
1847 /* Take an "isolate" reference and put new page on the LRU. */
1848 get_page(new_page);
1849 putback_lru_page(new_page);
1850
1851 unlock_page(new_page);
1852 unlock_page(page);
1853 put_page(page); /* Drop the rmap reference */
1854 put_page(page); /* Drop the LRU isolation reference */
1855
1856 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1857 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1858
1859 mod_zone_page_state(page_zone(page),
1860 NR_ISOLATED_ANON + page_lru,
1861 -HPAGE_PMD_NR);
1862 return isolated;
1863
1864 out_fail:
1865 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1866 out_dropref:
1867 ptl = pmd_lock(mm, pmd);
1868 if (pmd_same(*pmd, entry)) {
1869 entry = pmd_modify(entry, vma->vm_page_prot);
1870 set_pmd_at(mm, mmun_start, pmd, entry);
1871 update_mmu_cache_pmd(vma, address, &entry);
1872 }
1873 spin_unlock(ptl);
1874
1875 out_unlock:
1876 unlock_page(page);
1877 put_page(page);
1878 return 0;
1879 }
1880 #endif /* CONFIG_NUMA_BALANCING */
1881
1882 #endif /* CONFIG_NUMA */