mm: remove MPOL_MF_STATS
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96
97 #include "internal.h"
98
99 /* Internal flags */
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
102
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
109
110 /*
111 * run-time system-wide default policy => local allocation
112 */
113 struct mempolicy default_policy = {
114 .refcnt = ATOMIC_INIT(1), /* never free it */
115 .mode = MPOL_PREFERRED,
116 .flags = MPOL_F_LOCAL,
117 };
118
119 static const struct mempolicy_operations {
120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
121 /*
122 * If read-side task has no lock to protect task->mempolicy, write-side
123 * task will rebind the task->mempolicy by two step. The first step is
124 * setting all the newly nodes, and the second step is cleaning all the
125 * disallowed nodes. In this way, we can avoid finding no node to alloc
126 * page.
127 * If we have a lock to protect task->mempolicy in read-side, we do
128 * rebind directly.
129 *
130 * step:
131 * MPOL_REBIND_ONCE - do rebind work at once
132 * MPOL_REBIND_STEP1 - set all the newly nodes
133 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
134 */
135 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
136 enum mpol_rebind_step step);
137 } mpol_ops[MPOL_MAX];
138
139 /* Check that the nodemask contains at least one populated zone */
140 static int is_valid_nodemask(const nodemask_t *nodemask)
141 {
142 int nd, k;
143
144 for_each_node_mask(nd, *nodemask) {
145 struct zone *z;
146
147 for (k = 0; k <= policy_zone; k++) {
148 z = &NODE_DATA(nd)->node_zones[k];
149 if (z->present_pages > 0)
150 return 1;
151 }
152 }
153
154 return 0;
155 }
156
157 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
158 {
159 return pol->flags & MPOL_MODE_FLAGS;
160 }
161
162 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
163 const nodemask_t *rel)
164 {
165 nodemask_t tmp;
166 nodes_fold(tmp, *orig, nodes_weight(*rel));
167 nodes_onto(*ret, tmp, *rel);
168 }
169
170 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
171 {
172 if (nodes_empty(*nodes))
173 return -EINVAL;
174 pol->v.nodes = *nodes;
175 return 0;
176 }
177
178 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (!nodes)
181 pol->flags |= MPOL_F_LOCAL; /* local allocation */
182 else if (nodes_empty(*nodes))
183 return -EINVAL; /* no allowed nodes */
184 else
185 pol->v.preferred_node = first_node(*nodes);
186 return 0;
187 }
188
189 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
190 {
191 if (!is_valid_nodemask(nodes))
192 return -EINVAL;
193 pol->v.nodes = *nodes;
194 return 0;
195 }
196
197 /*
198 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
199 * any, for the new policy. mpol_new() has already validated the nodes
200 * parameter with respect to the policy mode and flags. But, we need to
201 * handle an empty nodemask with MPOL_PREFERRED here.
202 *
203 * Must be called holding task's alloc_lock to protect task's mems_allowed
204 * and mempolicy. May also be called holding the mmap_semaphore for write.
205 */
206 static int mpol_set_nodemask(struct mempolicy *pol,
207 const nodemask_t *nodes, struct nodemask_scratch *nsc)
208 {
209 int ret;
210
211 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 if (pol == NULL)
213 return 0;
214 /* Check N_HIGH_MEMORY */
215 nodes_and(nsc->mask1,
216 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
217
218 VM_BUG_ON(!nodes);
219 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
220 nodes = NULL; /* explicit local allocation */
221 else {
222 if (pol->flags & MPOL_F_RELATIVE_NODES)
223 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
224 else
225 nodes_and(nsc->mask2, *nodes, nsc->mask1);
226
227 if (mpol_store_user_nodemask(pol))
228 pol->w.user_nodemask = *nodes;
229 else
230 pol->w.cpuset_mems_allowed =
231 cpuset_current_mems_allowed;
232 }
233
234 if (nodes)
235 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
236 else
237 ret = mpol_ops[pol->mode].create(pol, NULL);
238 return ret;
239 }
240
241 /*
242 * This function just creates a new policy, does some check and simple
243 * initialization. You must invoke mpol_set_nodemask() to set nodes.
244 */
245 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
246 nodemask_t *nodes)
247 {
248 struct mempolicy *policy;
249
250 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
251 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
252
253 if (mode == MPOL_DEFAULT) {
254 if (nodes && !nodes_empty(*nodes))
255 return ERR_PTR(-EINVAL);
256 return NULL; /* simply delete any existing policy */
257 }
258 VM_BUG_ON(!nodes);
259
260 /*
261 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
262 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
263 * All other modes require a valid pointer to a non-empty nodemask.
264 */
265 if (mode == MPOL_PREFERRED) {
266 if (nodes_empty(*nodes)) {
267 if (((flags & MPOL_F_STATIC_NODES) ||
268 (flags & MPOL_F_RELATIVE_NODES)))
269 return ERR_PTR(-EINVAL);
270 }
271 } else if (nodes_empty(*nodes))
272 return ERR_PTR(-EINVAL);
273 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
274 if (!policy)
275 return ERR_PTR(-ENOMEM);
276 atomic_set(&policy->refcnt, 1);
277 policy->mode = mode;
278 policy->flags = flags;
279
280 return policy;
281 }
282
283 /* Slow path of a mpol destructor. */
284 void __mpol_put(struct mempolicy *p)
285 {
286 if (!atomic_dec_and_test(&p->refcnt))
287 return;
288 kmem_cache_free(policy_cache, p);
289 }
290
291 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
292 enum mpol_rebind_step step)
293 {
294 }
295
296 /*
297 * step:
298 * MPOL_REBIND_ONCE - do rebind work at once
299 * MPOL_REBIND_STEP1 - set all the newly nodes
300 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
301 */
302 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
304 {
305 nodemask_t tmp;
306
307 if (pol->flags & MPOL_F_STATIC_NODES)
308 nodes_and(tmp, pol->w.user_nodemask, *nodes);
309 else if (pol->flags & MPOL_F_RELATIVE_NODES)
310 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
311 else {
312 /*
313 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
314 * result
315 */
316 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
317 nodes_remap(tmp, pol->v.nodes,
318 pol->w.cpuset_mems_allowed, *nodes);
319 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
320 } else if (step == MPOL_REBIND_STEP2) {
321 tmp = pol->w.cpuset_mems_allowed;
322 pol->w.cpuset_mems_allowed = *nodes;
323 } else
324 BUG();
325 }
326
327 if (nodes_empty(tmp))
328 tmp = *nodes;
329
330 if (step == MPOL_REBIND_STEP1)
331 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
332 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
333 pol->v.nodes = tmp;
334 else
335 BUG();
336
337 if (!node_isset(current->il_next, tmp)) {
338 current->il_next = next_node(current->il_next, tmp);
339 if (current->il_next >= MAX_NUMNODES)
340 current->il_next = first_node(tmp);
341 if (current->il_next >= MAX_NUMNODES)
342 current->il_next = numa_node_id();
343 }
344 }
345
346 static void mpol_rebind_preferred(struct mempolicy *pol,
347 const nodemask_t *nodes,
348 enum mpol_rebind_step step)
349 {
350 nodemask_t tmp;
351
352 if (pol->flags & MPOL_F_STATIC_NODES) {
353 int node = first_node(pol->w.user_nodemask);
354
355 if (node_isset(node, *nodes)) {
356 pol->v.preferred_node = node;
357 pol->flags &= ~MPOL_F_LOCAL;
358 } else
359 pol->flags |= MPOL_F_LOCAL;
360 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
361 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
362 pol->v.preferred_node = first_node(tmp);
363 } else if (!(pol->flags & MPOL_F_LOCAL)) {
364 pol->v.preferred_node = node_remap(pol->v.preferred_node,
365 pol->w.cpuset_mems_allowed,
366 *nodes);
367 pol->w.cpuset_mems_allowed = *nodes;
368 }
369 }
370
371 /*
372 * mpol_rebind_policy - Migrate a policy to a different set of nodes
373 *
374 * If read-side task has no lock to protect task->mempolicy, write-side
375 * task will rebind the task->mempolicy by two step. The first step is
376 * setting all the newly nodes, and the second step is cleaning all the
377 * disallowed nodes. In this way, we can avoid finding no node to alloc
378 * page.
379 * If we have a lock to protect task->mempolicy in read-side, we do
380 * rebind directly.
381 *
382 * step:
383 * MPOL_REBIND_ONCE - do rebind work at once
384 * MPOL_REBIND_STEP1 - set all the newly nodes
385 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
386 */
387 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
388 enum mpol_rebind_step step)
389 {
390 if (!pol)
391 return;
392 if (!mpol_store_user_nodemask(pol) && step == 0 &&
393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 return;
395
396 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
397 return;
398
399 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
400 BUG();
401
402 if (step == MPOL_REBIND_STEP1)
403 pol->flags |= MPOL_F_REBINDING;
404 else if (step == MPOL_REBIND_STEP2)
405 pol->flags &= ~MPOL_F_REBINDING;
406 else if (step >= MPOL_REBIND_NSTEP)
407 BUG();
408
409 mpol_ops[pol->mode].rebind(pol, newmask, step);
410 }
411
412 /*
413 * Wrapper for mpol_rebind_policy() that just requires task
414 * pointer, and updates task mempolicy.
415 *
416 * Called with task's alloc_lock held.
417 */
418
419 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
420 enum mpol_rebind_step step)
421 {
422 mpol_rebind_policy(tsk->mempolicy, new, step);
423 }
424
425 /*
426 * Rebind each vma in mm to new nodemask.
427 *
428 * Call holding a reference to mm. Takes mm->mmap_sem during call.
429 */
430
431 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
432 {
433 struct vm_area_struct *vma;
434
435 down_write(&mm->mmap_sem);
436 for (vma = mm->mmap; vma; vma = vma->vm_next)
437 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
438 up_write(&mm->mmap_sem);
439 }
440
441 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
442 [MPOL_DEFAULT] = {
443 .rebind = mpol_rebind_default,
444 },
445 [MPOL_INTERLEAVE] = {
446 .create = mpol_new_interleave,
447 .rebind = mpol_rebind_nodemask,
448 },
449 [MPOL_PREFERRED] = {
450 .create = mpol_new_preferred,
451 .rebind = mpol_rebind_preferred,
452 },
453 [MPOL_BIND] = {
454 .create = mpol_new_bind,
455 .rebind = mpol_rebind_nodemask,
456 },
457 };
458
459 static void gather_stats(struct page *, void *, int pte_dirty);
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468 {
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501 }
502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507 {
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522 }
523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528 {
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542 }
543
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548 {
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562 }
563
564 /*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608 }
609
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629 }
630
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634 {
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 pgoff_t pgoff;
640 unsigned long vmstart;
641 unsigned long vmend;
642
643 vma = find_vma_prev(mm, start, &prev);
644 if (!vma || vma->vm_start > start)
645 return -EFAULT;
646
647 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
648 next = vma->vm_next;
649 vmstart = max(start, vma->vm_start);
650 vmend = min(end, vma->vm_end);
651
652 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
653 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
654 vma->anon_vma, vma->vm_file, pgoff, new_pol);
655 if (prev) {
656 vma = prev;
657 next = vma->vm_next;
658 continue;
659 }
660 if (vma->vm_start != vmstart) {
661 err = split_vma(vma->vm_mm, vma, vmstart, 1);
662 if (err)
663 goto out;
664 }
665 if (vma->vm_end != vmend) {
666 err = split_vma(vma->vm_mm, vma, vmend, 0);
667 if (err)
668 goto out;
669 }
670 err = policy_vma(vma, new_pol);
671 if (err)
672 goto out;
673 }
674
675 out:
676 return err;
677 }
678
679 /*
680 * Update task->flags PF_MEMPOLICY bit: set iff non-default
681 * mempolicy. Allows more rapid checking of this (combined perhaps
682 * with other PF_* flag bits) on memory allocation hot code paths.
683 *
684 * If called from outside this file, the task 'p' should -only- be
685 * a newly forked child not yet visible on the task list, because
686 * manipulating the task flags of a visible task is not safe.
687 *
688 * The above limitation is why this routine has the funny name
689 * mpol_fix_fork_child_flag().
690 *
691 * It is also safe to call this with a task pointer of current,
692 * which the static wrapper mpol_set_task_struct_flag() does,
693 * for use within this file.
694 */
695
696 void mpol_fix_fork_child_flag(struct task_struct *p)
697 {
698 if (p->mempolicy)
699 p->flags |= PF_MEMPOLICY;
700 else
701 p->flags &= ~PF_MEMPOLICY;
702 }
703
704 static void mpol_set_task_struct_flag(void)
705 {
706 mpol_fix_fork_child_flag(current);
707 }
708
709 /* Set the process memory policy */
710 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
711 nodemask_t *nodes)
712 {
713 struct mempolicy *new, *old;
714 struct mm_struct *mm = current->mm;
715 NODEMASK_SCRATCH(scratch);
716 int ret;
717
718 if (!scratch)
719 return -ENOMEM;
720
721 new = mpol_new(mode, flags, nodes);
722 if (IS_ERR(new)) {
723 ret = PTR_ERR(new);
724 goto out;
725 }
726 /*
727 * prevent changing our mempolicy while show_numa_maps()
728 * is using it.
729 * Note: do_set_mempolicy() can be called at init time
730 * with no 'mm'.
731 */
732 if (mm)
733 down_write(&mm->mmap_sem);
734 task_lock(current);
735 ret = mpol_set_nodemask(new, nodes, scratch);
736 if (ret) {
737 task_unlock(current);
738 if (mm)
739 up_write(&mm->mmap_sem);
740 mpol_put(new);
741 goto out;
742 }
743 old = current->mempolicy;
744 current->mempolicy = new;
745 mpol_set_task_struct_flag();
746 if (new && new->mode == MPOL_INTERLEAVE &&
747 nodes_weight(new->v.nodes))
748 current->il_next = first_node(new->v.nodes);
749 task_unlock(current);
750 if (mm)
751 up_write(&mm->mmap_sem);
752
753 mpol_put(old);
754 ret = 0;
755 out:
756 NODEMASK_SCRATCH_FREE(scratch);
757 return ret;
758 }
759
760 /*
761 * Return nodemask for policy for get_mempolicy() query
762 *
763 * Called with task's alloc_lock held
764 */
765 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
766 {
767 nodes_clear(*nodes);
768 if (p == &default_policy)
769 return;
770
771 switch (p->mode) {
772 case MPOL_BIND:
773 /* Fall through */
774 case MPOL_INTERLEAVE:
775 *nodes = p->v.nodes;
776 break;
777 case MPOL_PREFERRED:
778 if (!(p->flags & MPOL_F_LOCAL))
779 node_set(p->v.preferred_node, *nodes);
780 /* else return empty node mask for local allocation */
781 break;
782 default:
783 BUG();
784 }
785 }
786
787 static int lookup_node(struct mm_struct *mm, unsigned long addr)
788 {
789 struct page *p;
790 int err;
791
792 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
793 if (err >= 0) {
794 err = page_to_nid(p);
795 put_page(p);
796 }
797 return err;
798 }
799
800 /* Retrieve NUMA policy */
801 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
802 unsigned long addr, unsigned long flags)
803 {
804 int err;
805 struct mm_struct *mm = current->mm;
806 struct vm_area_struct *vma = NULL;
807 struct mempolicy *pol = current->mempolicy;
808
809 if (flags &
810 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
811 return -EINVAL;
812
813 if (flags & MPOL_F_MEMS_ALLOWED) {
814 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
815 return -EINVAL;
816 *policy = 0; /* just so it's initialized */
817 task_lock(current);
818 *nmask = cpuset_current_mems_allowed;
819 task_unlock(current);
820 return 0;
821 }
822
823 if (flags & MPOL_F_ADDR) {
824 /*
825 * Do NOT fall back to task policy if the
826 * vma/shared policy at addr is NULL. We
827 * want to return MPOL_DEFAULT in this case.
828 */
829 down_read(&mm->mmap_sem);
830 vma = find_vma_intersection(mm, addr, addr+1);
831 if (!vma) {
832 up_read(&mm->mmap_sem);
833 return -EFAULT;
834 }
835 if (vma->vm_ops && vma->vm_ops->get_policy)
836 pol = vma->vm_ops->get_policy(vma, addr);
837 else
838 pol = vma->vm_policy;
839 } else if (addr)
840 return -EINVAL;
841
842 if (!pol)
843 pol = &default_policy; /* indicates default behavior */
844
845 if (flags & MPOL_F_NODE) {
846 if (flags & MPOL_F_ADDR) {
847 err = lookup_node(mm, addr);
848 if (err < 0)
849 goto out;
850 *policy = err;
851 } else if (pol == current->mempolicy &&
852 pol->mode == MPOL_INTERLEAVE) {
853 *policy = current->il_next;
854 } else {
855 err = -EINVAL;
856 goto out;
857 }
858 } else {
859 *policy = pol == &default_policy ? MPOL_DEFAULT :
860 pol->mode;
861 /*
862 * Internal mempolicy flags must be masked off before exposing
863 * the policy to userspace.
864 */
865 *policy |= (pol->flags & MPOL_MODE_FLAGS);
866 }
867
868 if (vma) {
869 up_read(&current->mm->mmap_sem);
870 vma = NULL;
871 }
872
873 err = 0;
874 if (nmask) {
875 if (mpol_store_user_nodemask(pol)) {
876 *nmask = pol->w.user_nodemask;
877 } else {
878 task_lock(current);
879 get_policy_nodemask(pol, nmask);
880 task_unlock(current);
881 }
882 }
883
884 out:
885 mpol_cond_put(pol);
886 if (vma)
887 up_read(&current->mm->mmap_sem);
888 return err;
889 }
890
891 #ifdef CONFIG_MIGRATION
892 /*
893 * page migration
894 */
895 static void migrate_page_add(struct page *page, struct list_head *pagelist,
896 unsigned long flags)
897 {
898 /*
899 * Avoid migrating a page that is shared with others.
900 */
901 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
902 if (!isolate_lru_page(page)) {
903 list_add_tail(&page->lru, pagelist);
904 inc_zone_page_state(page, NR_ISOLATED_ANON +
905 page_is_file_cache(page));
906 }
907 }
908 }
909
910 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
911 {
912 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
913 }
914
915 /*
916 * Migrate pages from one node to a target node.
917 * Returns error or the number of pages not migrated.
918 */
919 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
920 int flags)
921 {
922 nodemask_t nmask;
923 LIST_HEAD(pagelist);
924 int err = 0;
925 struct vm_area_struct *vma;
926
927 nodes_clear(nmask);
928 node_set(source, nmask);
929
930 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
931 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
932 if (IS_ERR(vma))
933 return PTR_ERR(vma);
934
935 if (!list_empty(&pagelist)) {
936 err = migrate_pages(&pagelist, new_node_page, dest,
937 false, true);
938 if (err)
939 putback_lru_pages(&pagelist);
940 }
941
942 return err;
943 }
944
945 /*
946 * Move pages between the two nodesets so as to preserve the physical
947 * layout as much as possible.
948 *
949 * Returns the number of page that could not be moved.
950 */
951 int do_migrate_pages(struct mm_struct *mm,
952 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
953 {
954 int busy = 0;
955 int err;
956 nodemask_t tmp;
957
958 err = migrate_prep();
959 if (err)
960 return err;
961
962 down_read(&mm->mmap_sem);
963
964 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
965 if (err)
966 goto out;
967
968 /*
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
973 *
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
978 *
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
982 *
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
988 *
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
997 */
998
999 tmp = *from_nodes;
1000 while (!nodes_empty(tmp)) {
1001 int s,d;
1002 int source = -1;
1003 int dest = 0;
1004
1005 for_each_node_mask(s, tmp) {
1006 d = node_remap(s, *from_nodes, *to_nodes);
1007 if (s == d)
1008 continue;
1009
1010 source = s; /* Node moved. Memorize */
1011 dest = d;
1012
1013 /* dest not in remaining from nodes? */
1014 if (!node_isset(dest, tmp))
1015 break;
1016 }
1017 if (source == -1)
1018 break;
1019
1020 node_clear(source, tmp);
1021 err = migrate_to_node(mm, source, dest, flags);
1022 if (err > 0)
1023 busy += err;
1024 if (err < 0)
1025 break;
1026 }
1027 out:
1028 up_read(&mm->mmap_sem);
1029 if (err < 0)
1030 return err;
1031 return busy;
1032
1033 }
1034
1035 /*
1036 * Allocate a new page for page migration based on vma policy.
1037 * Start assuming that page is mapped by vma pointed to by @private.
1038 * Search forward from there, if not. N.B., this assumes that the
1039 * list of pages handed to migrate_pages()--which is how we get here--
1040 * is in virtual address order.
1041 */
1042 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1043 {
1044 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1045 unsigned long uninitialized_var(address);
1046
1047 while (vma) {
1048 address = page_address_in_vma(page, vma);
1049 if (address != -EFAULT)
1050 break;
1051 vma = vma->vm_next;
1052 }
1053
1054 /*
1055 * if !vma, alloc_page_vma() will use task or system default policy
1056 */
1057 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1058 }
1059 #else
1060
1061 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1062 unsigned long flags)
1063 {
1064 }
1065
1066 int do_migrate_pages(struct mm_struct *mm,
1067 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1068 {
1069 return -ENOSYS;
1070 }
1071
1072 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1073 {
1074 return NULL;
1075 }
1076 #endif
1077
1078 static long do_mbind(unsigned long start, unsigned long len,
1079 unsigned short mode, unsigned short mode_flags,
1080 nodemask_t *nmask, unsigned long flags)
1081 {
1082 struct vm_area_struct *vma;
1083 struct mm_struct *mm = current->mm;
1084 struct mempolicy *new;
1085 unsigned long end;
1086 int err;
1087 LIST_HEAD(pagelist);
1088
1089 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1090 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1091 return -EINVAL;
1092 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1093 return -EPERM;
1094
1095 if (start & ~PAGE_MASK)
1096 return -EINVAL;
1097
1098 if (mode == MPOL_DEFAULT)
1099 flags &= ~MPOL_MF_STRICT;
1100
1101 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1102 end = start + len;
1103
1104 if (end < start)
1105 return -EINVAL;
1106 if (end == start)
1107 return 0;
1108
1109 new = mpol_new(mode, mode_flags, nmask);
1110 if (IS_ERR(new))
1111 return PTR_ERR(new);
1112
1113 /*
1114 * If we are using the default policy then operation
1115 * on discontinuous address spaces is okay after all
1116 */
1117 if (!new)
1118 flags |= MPOL_MF_DISCONTIG_OK;
1119
1120 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1121 start, start + len, mode, mode_flags,
1122 nmask ? nodes_addr(*nmask)[0] : -1);
1123
1124 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1125
1126 err = migrate_prep();
1127 if (err)
1128 goto mpol_out;
1129 }
1130 {
1131 NODEMASK_SCRATCH(scratch);
1132 if (scratch) {
1133 down_write(&mm->mmap_sem);
1134 task_lock(current);
1135 err = mpol_set_nodemask(new, nmask, scratch);
1136 task_unlock(current);
1137 if (err)
1138 up_write(&mm->mmap_sem);
1139 } else
1140 err = -ENOMEM;
1141 NODEMASK_SCRATCH_FREE(scratch);
1142 }
1143 if (err)
1144 goto mpol_out;
1145
1146 vma = check_range(mm, start, end, nmask,
1147 flags | MPOL_MF_INVERT, &pagelist);
1148
1149 err = PTR_ERR(vma);
1150 if (!IS_ERR(vma)) {
1151 int nr_failed = 0;
1152
1153 err = mbind_range(mm, start, end, new);
1154
1155 if (!list_empty(&pagelist)) {
1156 nr_failed = migrate_pages(&pagelist, new_vma_page,
1157 (unsigned long)vma,
1158 false, true);
1159 if (nr_failed)
1160 putback_lru_pages(&pagelist);
1161 }
1162
1163 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1164 err = -EIO;
1165 } else
1166 putback_lru_pages(&pagelist);
1167
1168 up_write(&mm->mmap_sem);
1169 mpol_out:
1170 mpol_put(new);
1171 return err;
1172 }
1173
1174 /*
1175 * User space interface with variable sized bitmaps for nodelists.
1176 */
1177
1178 /* Copy a node mask from user space. */
1179 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1180 unsigned long maxnode)
1181 {
1182 unsigned long k;
1183 unsigned long nlongs;
1184 unsigned long endmask;
1185
1186 --maxnode;
1187 nodes_clear(*nodes);
1188 if (maxnode == 0 || !nmask)
1189 return 0;
1190 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1191 return -EINVAL;
1192
1193 nlongs = BITS_TO_LONGS(maxnode);
1194 if ((maxnode % BITS_PER_LONG) == 0)
1195 endmask = ~0UL;
1196 else
1197 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1198
1199 /* When the user specified more nodes than supported just check
1200 if the non supported part is all zero. */
1201 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1202 if (nlongs > PAGE_SIZE/sizeof(long))
1203 return -EINVAL;
1204 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1205 unsigned long t;
1206 if (get_user(t, nmask + k))
1207 return -EFAULT;
1208 if (k == nlongs - 1) {
1209 if (t & endmask)
1210 return -EINVAL;
1211 } else if (t)
1212 return -EINVAL;
1213 }
1214 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1215 endmask = ~0UL;
1216 }
1217
1218 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1219 return -EFAULT;
1220 nodes_addr(*nodes)[nlongs-1] &= endmask;
1221 return 0;
1222 }
1223
1224 /* Copy a kernel node mask to user space */
1225 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1226 nodemask_t *nodes)
1227 {
1228 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1229 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1230
1231 if (copy > nbytes) {
1232 if (copy > PAGE_SIZE)
1233 return -EINVAL;
1234 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1235 return -EFAULT;
1236 copy = nbytes;
1237 }
1238 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1239 }
1240
1241 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1242 unsigned long, mode, unsigned long __user *, nmask,
1243 unsigned long, maxnode, unsigned, flags)
1244 {
1245 nodemask_t nodes;
1246 int err;
1247 unsigned short mode_flags;
1248
1249 mode_flags = mode & MPOL_MODE_FLAGS;
1250 mode &= ~MPOL_MODE_FLAGS;
1251 if (mode >= MPOL_MAX)
1252 return -EINVAL;
1253 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1254 (mode_flags & MPOL_F_RELATIVE_NODES))
1255 return -EINVAL;
1256 err = get_nodes(&nodes, nmask, maxnode);
1257 if (err)
1258 return err;
1259 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1260 }
1261
1262 /* Set the process memory policy */
1263 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1264 unsigned long, maxnode)
1265 {
1266 int err;
1267 nodemask_t nodes;
1268 unsigned short flags;
1269
1270 flags = mode & MPOL_MODE_FLAGS;
1271 mode &= ~MPOL_MODE_FLAGS;
1272 if ((unsigned int)mode >= MPOL_MAX)
1273 return -EINVAL;
1274 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1275 return -EINVAL;
1276 err = get_nodes(&nodes, nmask, maxnode);
1277 if (err)
1278 return err;
1279 return do_set_mempolicy(mode, flags, &nodes);
1280 }
1281
1282 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1283 const unsigned long __user *, old_nodes,
1284 const unsigned long __user *, new_nodes)
1285 {
1286 const struct cred *cred = current_cred(), *tcred;
1287 struct mm_struct *mm = NULL;
1288 struct task_struct *task;
1289 nodemask_t task_nodes;
1290 int err;
1291 nodemask_t *old;
1292 nodemask_t *new;
1293 NODEMASK_SCRATCH(scratch);
1294
1295 if (!scratch)
1296 return -ENOMEM;
1297
1298 old = &scratch->mask1;
1299 new = &scratch->mask2;
1300
1301 err = get_nodes(old, old_nodes, maxnode);
1302 if (err)
1303 goto out;
1304
1305 err = get_nodes(new, new_nodes, maxnode);
1306 if (err)
1307 goto out;
1308
1309 /* Find the mm_struct */
1310 rcu_read_lock();
1311 task = pid ? find_task_by_vpid(pid) : current;
1312 if (!task) {
1313 rcu_read_unlock();
1314 err = -ESRCH;
1315 goto out;
1316 }
1317 mm = get_task_mm(task);
1318 rcu_read_unlock();
1319
1320 err = -EINVAL;
1321 if (!mm)
1322 goto out;
1323
1324 /*
1325 * Check if this process has the right to modify the specified
1326 * process. The right exists if the process has administrative
1327 * capabilities, superuser privileges or the same
1328 * userid as the target process.
1329 */
1330 rcu_read_lock();
1331 tcred = __task_cred(task);
1332 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1333 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1334 !capable(CAP_SYS_NICE)) {
1335 rcu_read_unlock();
1336 err = -EPERM;
1337 goto out;
1338 }
1339 rcu_read_unlock();
1340
1341 task_nodes = cpuset_mems_allowed(task);
1342 /* Is the user allowed to access the target nodes? */
1343 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1344 err = -EPERM;
1345 goto out;
1346 }
1347
1348 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1349 err = -EINVAL;
1350 goto out;
1351 }
1352
1353 err = security_task_movememory(task);
1354 if (err)
1355 goto out;
1356
1357 err = do_migrate_pages(mm, old, new,
1358 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1359 out:
1360 if (mm)
1361 mmput(mm);
1362 NODEMASK_SCRATCH_FREE(scratch);
1363
1364 return err;
1365 }
1366
1367
1368 /* Retrieve NUMA policy */
1369 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1370 unsigned long __user *, nmask, unsigned long, maxnode,
1371 unsigned long, addr, unsigned long, flags)
1372 {
1373 int err;
1374 int uninitialized_var(pval);
1375 nodemask_t nodes;
1376
1377 if (nmask != NULL && maxnode < MAX_NUMNODES)
1378 return -EINVAL;
1379
1380 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1381
1382 if (err)
1383 return err;
1384
1385 if (policy && put_user(pval, policy))
1386 return -EFAULT;
1387
1388 if (nmask)
1389 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1390
1391 return err;
1392 }
1393
1394 #ifdef CONFIG_COMPAT
1395
1396 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1397 compat_ulong_t __user *nmask,
1398 compat_ulong_t maxnode,
1399 compat_ulong_t addr, compat_ulong_t flags)
1400 {
1401 long err;
1402 unsigned long __user *nm = NULL;
1403 unsigned long nr_bits, alloc_size;
1404 DECLARE_BITMAP(bm, MAX_NUMNODES);
1405
1406 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1407 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1408
1409 if (nmask)
1410 nm = compat_alloc_user_space(alloc_size);
1411
1412 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1413
1414 if (!err && nmask) {
1415 err = copy_from_user(bm, nm, alloc_size);
1416 /* ensure entire bitmap is zeroed */
1417 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1418 err |= compat_put_bitmap(nmask, bm, nr_bits);
1419 }
1420
1421 return err;
1422 }
1423
1424 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1425 compat_ulong_t maxnode)
1426 {
1427 long err = 0;
1428 unsigned long __user *nm = NULL;
1429 unsigned long nr_bits, alloc_size;
1430 DECLARE_BITMAP(bm, MAX_NUMNODES);
1431
1432 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1433 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1434
1435 if (nmask) {
1436 err = compat_get_bitmap(bm, nmask, nr_bits);
1437 nm = compat_alloc_user_space(alloc_size);
1438 err |= copy_to_user(nm, bm, alloc_size);
1439 }
1440
1441 if (err)
1442 return -EFAULT;
1443
1444 return sys_set_mempolicy(mode, nm, nr_bits+1);
1445 }
1446
1447 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1448 compat_ulong_t mode, compat_ulong_t __user *nmask,
1449 compat_ulong_t maxnode, compat_ulong_t flags)
1450 {
1451 long err = 0;
1452 unsigned long __user *nm = NULL;
1453 unsigned long nr_bits, alloc_size;
1454 nodemask_t bm;
1455
1456 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1457 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1458
1459 if (nmask) {
1460 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1461 nm = compat_alloc_user_space(alloc_size);
1462 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1463 }
1464
1465 if (err)
1466 return -EFAULT;
1467
1468 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1469 }
1470
1471 #endif
1472
1473 /*
1474 * get_vma_policy(@task, @vma, @addr)
1475 * @task - task for fallback if vma policy == default
1476 * @vma - virtual memory area whose policy is sought
1477 * @addr - address in @vma for shared policy lookup
1478 *
1479 * Returns effective policy for a VMA at specified address.
1480 * Falls back to @task or system default policy, as necessary.
1481 * Current or other task's task mempolicy and non-shared vma policies
1482 * are protected by the task's mmap_sem, which must be held for read by
1483 * the caller.
1484 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1485 * count--added by the get_policy() vm_op, as appropriate--to protect against
1486 * freeing by another task. It is the caller's responsibility to free the
1487 * extra reference for shared policies.
1488 */
1489 struct mempolicy *get_vma_policy(struct task_struct *task,
1490 struct vm_area_struct *vma, unsigned long addr)
1491 {
1492 struct mempolicy *pol = task->mempolicy;
1493
1494 if (vma) {
1495 if (vma->vm_ops && vma->vm_ops->get_policy) {
1496 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1497 addr);
1498 if (vpol)
1499 pol = vpol;
1500 } else if (vma->vm_policy)
1501 pol = vma->vm_policy;
1502 }
1503 if (!pol)
1504 pol = &default_policy;
1505 return pol;
1506 }
1507
1508 /*
1509 * Return a nodemask representing a mempolicy for filtering nodes for
1510 * page allocation
1511 */
1512 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1513 {
1514 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1515 if (unlikely(policy->mode == MPOL_BIND) &&
1516 gfp_zone(gfp) >= policy_zone &&
1517 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1518 return &policy->v.nodes;
1519
1520 return NULL;
1521 }
1522
1523 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1524 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1525 int nd)
1526 {
1527 switch (policy->mode) {
1528 case MPOL_PREFERRED:
1529 if (!(policy->flags & MPOL_F_LOCAL))
1530 nd = policy->v.preferred_node;
1531 break;
1532 case MPOL_BIND:
1533 /*
1534 * Normally, MPOL_BIND allocations are node-local within the
1535 * allowed nodemask. However, if __GFP_THISNODE is set and the
1536 * current node isn't part of the mask, we use the zonelist for
1537 * the first node in the mask instead.
1538 */
1539 if (unlikely(gfp & __GFP_THISNODE) &&
1540 unlikely(!node_isset(nd, policy->v.nodes)))
1541 nd = first_node(policy->v.nodes);
1542 break;
1543 default:
1544 BUG();
1545 }
1546 return node_zonelist(nd, gfp);
1547 }
1548
1549 /* Do dynamic interleaving for a process */
1550 static unsigned interleave_nodes(struct mempolicy *policy)
1551 {
1552 unsigned nid, next;
1553 struct task_struct *me = current;
1554
1555 nid = me->il_next;
1556 next = next_node(nid, policy->v.nodes);
1557 if (next >= MAX_NUMNODES)
1558 next = first_node(policy->v.nodes);
1559 if (next < MAX_NUMNODES)
1560 me->il_next = next;
1561 return nid;
1562 }
1563
1564 /*
1565 * Depending on the memory policy provide a node from which to allocate the
1566 * next slab entry.
1567 * @policy must be protected by freeing by the caller. If @policy is
1568 * the current task's mempolicy, this protection is implicit, as only the
1569 * task can change it's policy. The system default policy requires no
1570 * such protection.
1571 */
1572 unsigned slab_node(struct mempolicy *policy)
1573 {
1574 if (!policy || policy->flags & MPOL_F_LOCAL)
1575 return numa_node_id();
1576
1577 switch (policy->mode) {
1578 case MPOL_PREFERRED:
1579 /*
1580 * handled MPOL_F_LOCAL above
1581 */
1582 return policy->v.preferred_node;
1583
1584 case MPOL_INTERLEAVE:
1585 return interleave_nodes(policy);
1586
1587 case MPOL_BIND: {
1588 /*
1589 * Follow bind policy behavior and start allocation at the
1590 * first node.
1591 */
1592 struct zonelist *zonelist;
1593 struct zone *zone;
1594 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1595 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1596 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1597 &policy->v.nodes,
1598 &zone);
1599 return zone ? zone->node : numa_node_id();
1600 }
1601
1602 default:
1603 BUG();
1604 }
1605 }
1606
1607 /* Do static interleaving for a VMA with known offset. */
1608 static unsigned offset_il_node(struct mempolicy *pol,
1609 struct vm_area_struct *vma, unsigned long off)
1610 {
1611 unsigned nnodes = nodes_weight(pol->v.nodes);
1612 unsigned target;
1613 int c;
1614 int nid = -1;
1615
1616 if (!nnodes)
1617 return numa_node_id();
1618 target = (unsigned int)off % nnodes;
1619 c = 0;
1620 do {
1621 nid = next_node(nid, pol->v.nodes);
1622 c++;
1623 } while (c <= target);
1624 return nid;
1625 }
1626
1627 /* Determine a node number for interleave */
1628 static inline unsigned interleave_nid(struct mempolicy *pol,
1629 struct vm_area_struct *vma, unsigned long addr, int shift)
1630 {
1631 if (vma) {
1632 unsigned long off;
1633
1634 /*
1635 * for small pages, there is no difference between
1636 * shift and PAGE_SHIFT, so the bit-shift is safe.
1637 * for huge pages, since vm_pgoff is in units of small
1638 * pages, we need to shift off the always 0 bits to get
1639 * a useful offset.
1640 */
1641 BUG_ON(shift < PAGE_SHIFT);
1642 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1643 off += (addr - vma->vm_start) >> shift;
1644 return offset_il_node(pol, vma, off);
1645 } else
1646 return interleave_nodes(pol);
1647 }
1648
1649 #ifdef CONFIG_HUGETLBFS
1650 /*
1651 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1652 * @vma = virtual memory area whose policy is sought
1653 * @addr = address in @vma for shared policy lookup and interleave policy
1654 * @gfp_flags = for requested zone
1655 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1656 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1657 *
1658 * Returns a zonelist suitable for a huge page allocation and a pointer
1659 * to the struct mempolicy for conditional unref after allocation.
1660 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1661 * @nodemask for filtering the zonelist.
1662 *
1663 * Must be protected by get_mems_allowed()
1664 */
1665 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1666 gfp_t gfp_flags, struct mempolicy **mpol,
1667 nodemask_t **nodemask)
1668 {
1669 struct zonelist *zl;
1670
1671 *mpol = get_vma_policy(current, vma, addr);
1672 *nodemask = NULL; /* assume !MPOL_BIND */
1673
1674 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1675 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1676 huge_page_shift(hstate_vma(vma))), gfp_flags);
1677 } else {
1678 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1679 if ((*mpol)->mode == MPOL_BIND)
1680 *nodemask = &(*mpol)->v.nodes;
1681 }
1682 return zl;
1683 }
1684
1685 /*
1686 * init_nodemask_of_mempolicy
1687 *
1688 * If the current task's mempolicy is "default" [NULL], return 'false'
1689 * to indicate default policy. Otherwise, extract the policy nodemask
1690 * for 'bind' or 'interleave' policy into the argument nodemask, or
1691 * initialize the argument nodemask to contain the single node for
1692 * 'preferred' or 'local' policy and return 'true' to indicate presence
1693 * of non-default mempolicy.
1694 *
1695 * We don't bother with reference counting the mempolicy [mpol_get/put]
1696 * because the current task is examining it's own mempolicy and a task's
1697 * mempolicy is only ever changed by the task itself.
1698 *
1699 * N.B., it is the caller's responsibility to free a returned nodemask.
1700 */
1701 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1702 {
1703 struct mempolicy *mempolicy;
1704 int nid;
1705
1706 if (!(mask && current->mempolicy))
1707 return false;
1708
1709 task_lock(current);
1710 mempolicy = current->mempolicy;
1711 switch (mempolicy->mode) {
1712 case MPOL_PREFERRED:
1713 if (mempolicy->flags & MPOL_F_LOCAL)
1714 nid = numa_node_id();
1715 else
1716 nid = mempolicy->v.preferred_node;
1717 init_nodemask_of_node(mask, nid);
1718 break;
1719
1720 case MPOL_BIND:
1721 /* Fall through */
1722 case MPOL_INTERLEAVE:
1723 *mask = mempolicy->v.nodes;
1724 break;
1725
1726 default:
1727 BUG();
1728 }
1729 task_unlock(current);
1730
1731 return true;
1732 }
1733 #endif
1734
1735 /*
1736 * mempolicy_nodemask_intersects
1737 *
1738 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1739 * policy. Otherwise, check for intersection between mask and the policy
1740 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1741 * policy, always return true since it may allocate elsewhere on fallback.
1742 *
1743 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1744 */
1745 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1746 const nodemask_t *mask)
1747 {
1748 struct mempolicy *mempolicy;
1749 bool ret = true;
1750
1751 if (!mask)
1752 return ret;
1753 task_lock(tsk);
1754 mempolicy = tsk->mempolicy;
1755 if (!mempolicy)
1756 goto out;
1757
1758 switch (mempolicy->mode) {
1759 case MPOL_PREFERRED:
1760 /*
1761 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1762 * allocate from, they may fallback to other nodes when oom.
1763 * Thus, it's possible for tsk to have allocated memory from
1764 * nodes in mask.
1765 */
1766 break;
1767 case MPOL_BIND:
1768 case MPOL_INTERLEAVE:
1769 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1770 break;
1771 default:
1772 BUG();
1773 }
1774 out:
1775 task_unlock(tsk);
1776 return ret;
1777 }
1778
1779 /* Allocate a page in interleaved policy.
1780 Own path because it needs to do special accounting. */
1781 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1782 unsigned nid)
1783 {
1784 struct zonelist *zl;
1785 struct page *page;
1786
1787 zl = node_zonelist(nid, gfp);
1788 page = __alloc_pages(gfp, order, zl);
1789 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1790 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1791 return page;
1792 }
1793
1794 /**
1795 * alloc_pages_vma - Allocate a page for a VMA.
1796 *
1797 * @gfp:
1798 * %GFP_USER user allocation.
1799 * %GFP_KERNEL kernel allocations,
1800 * %GFP_HIGHMEM highmem/user allocations,
1801 * %GFP_FS allocation should not call back into a file system.
1802 * %GFP_ATOMIC don't sleep.
1803 *
1804 * @order:Order of the GFP allocation.
1805 * @vma: Pointer to VMA or NULL if not available.
1806 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1807 *
1808 * This function allocates a page from the kernel page pool and applies
1809 * a NUMA policy associated with the VMA or the current process.
1810 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1811 * mm_struct of the VMA to prevent it from going away. Should be used for
1812 * all allocations for pages that will be mapped into
1813 * user space. Returns NULL when no page can be allocated.
1814 *
1815 * Should be called with the mm_sem of the vma hold.
1816 */
1817 struct page *
1818 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1819 unsigned long addr, int node)
1820 {
1821 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1822 struct zonelist *zl;
1823 struct page *page;
1824
1825 get_mems_allowed();
1826 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1827 unsigned nid;
1828
1829 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1830 mpol_cond_put(pol);
1831 page = alloc_page_interleave(gfp, order, nid);
1832 put_mems_allowed();
1833 return page;
1834 }
1835 zl = policy_zonelist(gfp, pol, node);
1836 if (unlikely(mpol_needs_cond_ref(pol))) {
1837 /*
1838 * slow path: ref counted shared policy
1839 */
1840 struct page *page = __alloc_pages_nodemask(gfp, order,
1841 zl, policy_nodemask(gfp, pol));
1842 __mpol_put(pol);
1843 put_mems_allowed();
1844 return page;
1845 }
1846 /*
1847 * fast path: default or task policy
1848 */
1849 page = __alloc_pages_nodemask(gfp, order, zl,
1850 policy_nodemask(gfp, pol));
1851 put_mems_allowed();
1852 return page;
1853 }
1854
1855 /**
1856 * alloc_pages_current - Allocate pages.
1857 *
1858 * @gfp:
1859 * %GFP_USER user allocation,
1860 * %GFP_KERNEL kernel allocation,
1861 * %GFP_HIGHMEM highmem allocation,
1862 * %GFP_FS don't call back into a file system.
1863 * %GFP_ATOMIC don't sleep.
1864 * @order: Power of two of allocation size in pages. 0 is a single page.
1865 *
1866 * Allocate a page from the kernel page pool. When not in
1867 * interrupt context and apply the current process NUMA policy.
1868 * Returns NULL when no page can be allocated.
1869 *
1870 * Don't call cpuset_update_task_memory_state() unless
1871 * 1) it's ok to take cpuset_sem (can WAIT), and
1872 * 2) allocating for current task (not interrupt).
1873 */
1874 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1875 {
1876 struct mempolicy *pol = current->mempolicy;
1877 struct page *page;
1878
1879 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1880 pol = &default_policy;
1881
1882 get_mems_allowed();
1883 /*
1884 * No reference counting needed for current->mempolicy
1885 * nor system default_policy
1886 */
1887 if (pol->mode == MPOL_INTERLEAVE)
1888 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1889 else
1890 page = __alloc_pages_nodemask(gfp, order,
1891 policy_zonelist(gfp, pol, numa_node_id()),
1892 policy_nodemask(gfp, pol));
1893 put_mems_allowed();
1894 return page;
1895 }
1896 EXPORT_SYMBOL(alloc_pages_current);
1897
1898 /*
1899 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1900 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1901 * with the mems_allowed returned by cpuset_mems_allowed(). This
1902 * keeps mempolicies cpuset relative after its cpuset moves. See
1903 * further kernel/cpuset.c update_nodemask().
1904 *
1905 * current's mempolicy may be rebinded by the other task(the task that changes
1906 * cpuset's mems), so we needn't do rebind work for current task.
1907 */
1908
1909 /* Slow path of a mempolicy duplicate */
1910 struct mempolicy *__mpol_dup(struct mempolicy *old)
1911 {
1912 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1913
1914 if (!new)
1915 return ERR_PTR(-ENOMEM);
1916
1917 /* task's mempolicy is protected by alloc_lock */
1918 if (old == current->mempolicy) {
1919 task_lock(current);
1920 *new = *old;
1921 task_unlock(current);
1922 } else
1923 *new = *old;
1924
1925 rcu_read_lock();
1926 if (current_cpuset_is_being_rebound()) {
1927 nodemask_t mems = cpuset_mems_allowed(current);
1928 if (new->flags & MPOL_F_REBINDING)
1929 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1930 else
1931 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1932 }
1933 rcu_read_unlock();
1934 atomic_set(&new->refcnt, 1);
1935 return new;
1936 }
1937
1938 /*
1939 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1940 * eliminate the * MPOL_F_* flags that require conditional ref and
1941 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1942 * after return. Use the returned value.
1943 *
1944 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1945 * policy lookup, even if the policy needs/has extra ref on lookup.
1946 * shmem_readahead needs this.
1947 */
1948 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1949 struct mempolicy *frompol)
1950 {
1951 if (!mpol_needs_cond_ref(frompol))
1952 return frompol;
1953
1954 *tompol = *frompol;
1955 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1956 __mpol_put(frompol);
1957 return tompol;
1958 }
1959
1960 /* Slow path of a mempolicy comparison */
1961 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1962 {
1963 if (!a || !b)
1964 return 0;
1965 if (a->mode != b->mode)
1966 return 0;
1967 if (a->flags != b->flags)
1968 return 0;
1969 if (mpol_store_user_nodemask(a))
1970 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1971 return 0;
1972
1973 switch (a->mode) {
1974 case MPOL_BIND:
1975 /* Fall through */
1976 case MPOL_INTERLEAVE:
1977 return nodes_equal(a->v.nodes, b->v.nodes);
1978 case MPOL_PREFERRED:
1979 return a->v.preferred_node == b->v.preferred_node;
1980 default:
1981 BUG();
1982 return 0;
1983 }
1984 }
1985
1986 /*
1987 * Shared memory backing store policy support.
1988 *
1989 * Remember policies even when nobody has shared memory mapped.
1990 * The policies are kept in Red-Black tree linked from the inode.
1991 * They are protected by the sp->lock spinlock, which should be held
1992 * for any accesses to the tree.
1993 */
1994
1995 /* lookup first element intersecting start-end */
1996 /* Caller holds sp->lock */
1997 static struct sp_node *
1998 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1999 {
2000 struct rb_node *n = sp->root.rb_node;
2001
2002 while (n) {
2003 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2004
2005 if (start >= p->end)
2006 n = n->rb_right;
2007 else if (end <= p->start)
2008 n = n->rb_left;
2009 else
2010 break;
2011 }
2012 if (!n)
2013 return NULL;
2014 for (;;) {
2015 struct sp_node *w = NULL;
2016 struct rb_node *prev = rb_prev(n);
2017 if (!prev)
2018 break;
2019 w = rb_entry(prev, struct sp_node, nd);
2020 if (w->end <= start)
2021 break;
2022 n = prev;
2023 }
2024 return rb_entry(n, struct sp_node, nd);
2025 }
2026
2027 /* Insert a new shared policy into the list. */
2028 /* Caller holds sp->lock */
2029 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2030 {
2031 struct rb_node **p = &sp->root.rb_node;
2032 struct rb_node *parent = NULL;
2033 struct sp_node *nd;
2034
2035 while (*p) {
2036 parent = *p;
2037 nd = rb_entry(parent, struct sp_node, nd);
2038 if (new->start < nd->start)
2039 p = &(*p)->rb_left;
2040 else if (new->end > nd->end)
2041 p = &(*p)->rb_right;
2042 else
2043 BUG();
2044 }
2045 rb_link_node(&new->nd, parent, p);
2046 rb_insert_color(&new->nd, &sp->root);
2047 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2048 new->policy ? new->policy->mode : 0);
2049 }
2050
2051 /* Find shared policy intersecting idx */
2052 struct mempolicy *
2053 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2054 {
2055 struct mempolicy *pol = NULL;
2056 struct sp_node *sn;
2057
2058 if (!sp->root.rb_node)
2059 return NULL;
2060 spin_lock(&sp->lock);
2061 sn = sp_lookup(sp, idx, idx+1);
2062 if (sn) {
2063 mpol_get(sn->policy);
2064 pol = sn->policy;
2065 }
2066 spin_unlock(&sp->lock);
2067 return pol;
2068 }
2069
2070 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2071 {
2072 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2073 rb_erase(&n->nd, &sp->root);
2074 mpol_put(n->policy);
2075 kmem_cache_free(sn_cache, n);
2076 }
2077
2078 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2079 struct mempolicy *pol)
2080 {
2081 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2082
2083 if (!n)
2084 return NULL;
2085 n->start = start;
2086 n->end = end;
2087 mpol_get(pol);
2088 pol->flags |= MPOL_F_SHARED; /* for unref */
2089 n->policy = pol;
2090 return n;
2091 }
2092
2093 /* Replace a policy range. */
2094 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2095 unsigned long end, struct sp_node *new)
2096 {
2097 struct sp_node *n, *new2 = NULL;
2098
2099 restart:
2100 spin_lock(&sp->lock);
2101 n = sp_lookup(sp, start, end);
2102 /* Take care of old policies in the same range. */
2103 while (n && n->start < end) {
2104 struct rb_node *next = rb_next(&n->nd);
2105 if (n->start >= start) {
2106 if (n->end <= end)
2107 sp_delete(sp, n);
2108 else
2109 n->start = end;
2110 } else {
2111 /* Old policy spanning whole new range. */
2112 if (n->end > end) {
2113 if (!new2) {
2114 spin_unlock(&sp->lock);
2115 new2 = sp_alloc(end, n->end, n->policy);
2116 if (!new2)
2117 return -ENOMEM;
2118 goto restart;
2119 }
2120 n->end = start;
2121 sp_insert(sp, new2);
2122 new2 = NULL;
2123 break;
2124 } else
2125 n->end = start;
2126 }
2127 if (!next)
2128 break;
2129 n = rb_entry(next, struct sp_node, nd);
2130 }
2131 if (new)
2132 sp_insert(sp, new);
2133 spin_unlock(&sp->lock);
2134 if (new2) {
2135 mpol_put(new2->policy);
2136 kmem_cache_free(sn_cache, new2);
2137 }
2138 return 0;
2139 }
2140
2141 /**
2142 * mpol_shared_policy_init - initialize shared policy for inode
2143 * @sp: pointer to inode shared policy
2144 * @mpol: struct mempolicy to install
2145 *
2146 * Install non-NULL @mpol in inode's shared policy rb-tree.
2147 * On entry, the current task has a reference on a non-NULL @mpol.
2148 * This must be released on exit.
2149 * This is called at get_inode() calls and we can use GFP_KERNEL.
2150 */
2151 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2152 {
2153 int ret;
2154
2155 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2156 spin_lock_init(&sp->lock);
2157
2158 if (mpol) {
2159 struct vm_area_struct pvma;
2160 struct mempolicy *new;
2161 NODEMASK_SCRATCH(scratch);
2162
2163 if (!scratch)
2164 goto put_mpol;
2165 /* contextualize the tmpfs mount point mempolicy */
2166 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2167 if (IS_ERR(new))
2168 goto free_scratch; /* no valid nodemask intersection */
2169
2170 task_lock(current);
2171 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2172 task_unlock(current);
2173 if (ret)
2174 goto put_new;
2175
2176 /* Create pseudo-vma that contains just the policy */
2177 memset(&pvma, 0, sizeof(struct vm_area_struct));
2178 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2179 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2180
2181 put_new:
2182 mpol_put(new); /* drop initial ref */
2183 free_scratch:
2184 NODEMASK_SCRATCH_FREE(scratch);
2185 put_mpol:
2186 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2187 }
2188 }
2189
2190 int mpol_set_shared_policy(struct shared_policy *info,
2191 struct vm_area_struct *vma, struct mempolicy *npol)
2192 {
2193 int err;
2194 struct sp_node *new = NULL;
2195 unsigned long sz = vma_pages(vma);
2196
2197 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2198 vma->vm_pgoff,
2199 sz, npol ? npol->mode : -1,
2200 npol ? npol->flags : -1,
2201 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2202
2203 if (npol) {
2204 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2205 if (!new)
2206 return -ENOMEM;
2207 }
2208 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2209 if (err && new)
2210 kmem_cache_free(sn_cache, new);
2211 return err;
2212 }
2213
2214 /* Free a backing policy store on inode delete. */
2215 void mpol_free_shared_policy(struct shared_policy *p)
2216 {
2217 struct sp_node *n;
2218 struct rb_node *next;
2219
2220 if (!p->root.rb_node)
2221 return;
2222 spin_lock(&p->lock);
2223 next = rb_first(&p->root);
2224 while (next) {
2225 n = rb_entry(next, struct sp_node, nd);
2226 next = rb_next(&n->nd);
2227 rb_erase(&n->nd, &p->root);
2228 mpol_put(n->policy);
2229 kmem_cache_free(sn_cache, n);
2230 }
2231 spin_unlock(&p->lock);
2232 }
2233
2234 /* assumes fs == KERNEL_DS */
2235 void __init numa_policy_init(void)
2236 {
2237 nodemask_t interleave_nodes;
2238 unsigned long largest = 0;
2239 int nid, prefer = 0;
2240
2241 policy_cache = kmem_cache_create("numa_policy",
2242 sizeof(struct mempolicy),
2243 0, SLAB_PANIC, NULL);
2244
2245 sn_cache = kmem_cache_create("shared_policy_node",
2246 sizeof(struct sp_node),
2247 0, SLAB_PANIC, NULL);
2248
2249 /*
2250 * Set interleaving policy for system init. Interleaving is only
2251 * enabled across suitably sized nodes (default is >= 16MB), or
2252 * fall back to the largest node if they're all smaller.
2253 */
2254 nodes_clear(interleave_nodes);
2255 for_each_node_state(nid, N_HIGH_MEMORY) {
2256 unsigned long total_pages = node_present_pages(nid);
2257
2258 /* Preserve the largest node */
2259 if (largest < total_pages) {
2260 largest = total_pages;
2261 prefer = nid;
2262 }
2263
2264 /* Interleave this node? */
2265 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2266 node_set(nid, interleave_nodes);
2267 }
2268
2269 /* All too small, use the largest */
2270 if (unlikely(nodes_empty(interleave_nodes)))
2271 node_set(prefer, interleave_nodes);
2272
2273 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2274 printk("numa_policy_init: interleaving failed\n");
2275 }
2276
2277 /* Reset policy of current process to default */
2278 void numa_default_policy(void)
2279 {
2280 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2281 }
2282
2283 /*
2284 * Parse and format mempolicy from/to strings
2285 */
2286
2287 /*
2288 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2289 * Used only for mpol_parse_str() and mpol_to_str()
2290 */
2291 #define MPOL_LOCAL MPOL_MAX
2292 static const char * const policy_modes[] =
2293 {
2294 [MPOL_DEFAULT] = "default",
2295 [MPOL_PREFERRED] = "prefer",
2296 [MPOL_BIND] = "bind",
2297 [MPOL_INTERLEAVE] = "interleave",
2298 [MPOL_LOCAL] = "local"
2299 };
2300
2301
2302 #ifdef CONFIG_TMPFS
2303 /**
2304 * mpol_parse_str - parse string to mempolicy
2305 * @str: string containing mempolicy to parse
2306 * @mpol: pointer to struct mempolicy pointer, returned on success.
2307 * @no_context: flag whether to "contextualize" the mempolicy
2308 *
2309 * Format of input:
2310 * <mode>[=<flags>][:<nodelist>]
2311 *
2312 * if @no_context is true, save the input nodemask in w.user_nodemask in
2313 * the returned mempolicy. This will be used to "clone" the mempolicy in
2314 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2315 * mount option. Note that if 'static' or 'relative' mode flags were
2316 * specified, the input nodemask will already have been saved. Saving
2317 * it again is redundant, but safe.
2318 *
2319 * On success, returns 0, else 1
2320 */
2321 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2322 {
2323 struct mempolicy *new = NULL;
2324 unsigned short mode;
2325 unsigned short uninitialized_var(mode_flags);
2326 nodemask_t nodes;
2327 char *nodelist = strchr(str, ':');
2328 char *flags = strchr(str, '=');
2329 int err = 1;
2330
2331 if (nodelist) {
2332 /* NUL-terminate mode or flags string */
2333 *nodelist++ = '\0';
2334 if (nodelist_parse(nodelist, nodes))
2335 goto out;
2336 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2337 goto out;
2338 } else
2339 nodes_clear(nodes);
2340
2341 if (flags)
2342 *flags++ = '\0'; /* terminate mode string */
2343
2344 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2345 if (!strcmp(str, policy_modes[mode])) {
2346 break;
2347 }
2348 }
2349 if (mode > MPOL_LOCAL)
2350 goto out;
2351
2352 switch (mode) {
2353 case MPOL_PREFERRED:
2354 /*
2355 * Insist on a nodelist of one node only
2356 */
2357 if (nodelist) {
2358 char *rest = nodelist;
2359 while (isdigit(*rest))
2360 rest++;
2361 if (*rest)
2362 goto out;
2363 }
2364 break;
2365 case MPOL_INTERLEAVE:
2366 /*
2367 * Default to online nodes with memory if no nodelist
2368 */
2369 if (!nodelist)
2370 nodes = node_states[N_HIGH_MEMORY];
2371 break;
2372 case MPOL_LOCAL:
2373 /*
2374 * Don't allow a nodelist; mpol_new() checks flags
2375 */
2376 if (nodelist)
2377 goto out;
2378 mode = MPOL_PREFERRED;
2379 break;
2380 case MPOL_DEFAULT:
2381 /*
2382 * Insist on a empty nodelist
2383 */
2384 if (!nodelist)
2385 err = 0;
2386 goto out;
2387 case MPOL_BIND:
2388 /*
2389 * Insist on a nodelist
2390 */
2391 if (!nodelist)
2392 goto out;
2393 }
2394
2395 mode_flags = 0;
2396 if (flags) {
2397 /*
2398 * Currently, we only support two mutually exclusive
2399 * mode flags.
2400 */
2401 if (!strcmp(flags, "static"))
2402 mode_flags |= MPOL_F_STATIC_NODES;
2403 else if (!strcmp(flags, "relative"))
2404 mode_flags |= MPOL_F_RELATIVE_NODES;
2405 else
2406 goto out;
2407 }
2408
2409 new = mpol_new(mode, mode_flags, &nodes);
2410 if (IS_ERR(new))
2411 goto out;
2412
2413 if (no_context) {
2414 /* save for contextualization */
2415 new->w.user_nodemask = nodes;
2416 } else {
2417 int ret;
2418 NODEMASK_SCRATCH(scratch);
2419 if (scratch) {
2420 task_lock(current);
2421 ret = mpol_set_nodemask(new, &nodes, scratch);
2422 task_unlock(current);
2423 } else
2424 ret = -ENOMEM;
2425 NODEMASK_SCRATCH_FREE(scratch);
2426 if (ret) {
2427 mpol_put(new);
2428 goto out;
2429 }
2430 }
2431 err = 0;
2432
2433 out:
2434 /* Restore string for error message */
2435 if (nodelist)
2436 *--nodelist = ':';
2437 if (flags)
2438 *--flags = '=';
2439 if (!err)
2440 *mpol = new;
2441 return err;
2442 }
2443 #endif /* CONFIG_TMPFS */
2444
2445 /**
2446 * mpol_to_str - format a mempolicy structure for printing
2447 * @buffer: to contain formatted mempolicy string
2448 * @maxlen: length of @buffer
2449 * @pol: pointer to mempolicy to be formatted
2450 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2451 *
2452 * Convert a mempolicy into a string.
2453 * Returns the number of characters in buffer (if positive)
2454 * or an error (negative)
2455 */
2456 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2457 {
2458 char *p = buffer;
2459 int l;
2460 nodemask_t nodes;
2461 unsigned short mode;
2462 unsigned short flags = pol ? pol->flags : 0;
2463
2464 /*
2465 * Sanity check: room for longest mode, flag and some nodes
2466 */
2467 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2468
2469 if (!pol || pol == &default_policy)
2470 mode = MPOL_DEFAULT;
2471 else
2472 mode = pol->mode;
2473
2474 switch (mode) {
2475 case MPOL_DEFAULT:
2476 nodes_clear(nodes);
2477 break;
2478
2479 case MPOL_PREFERRED:
2480 nodes_clear(nodes);
2481 if (flags & MPOL_F_LOCAL)
2482 mode = MPOL_LOCAL; /* pseudo-policy */
2483 else
2484 node_set(pol->v.preferred_node, nodes);
2485 break;
2486
2487 case MPOL_BIND:
2488 /* Fall through */
2489 case MPOL_INTERLEAVE:
2490 if (no_context)
2491 nodes = pol->w.user_nodemask;
2492 else
2493 nodes = pol->v.nodes;
2494 break;
2495
2496 default:
2497 BUG();
2498 }
2499
2500 l = strlen(policy_modes[mode]);
2501 if (buffer + maxlen < p + l + 1)
2502 return -ENOSPC;
2503
2504 strcpy(p, policy_modes[mode]);
2505 p += l;
2506
2507 if (flags & MPOL_MODE_FLAGS) {
2508 if (buffer + maxlen < p + 2)
2509 return -ENOSPC;
2510 *p++ = '=';
2511
2512 /*
2513 * Currently, the only defined flags are mutually exclusive
2514 */
2515 if (flags & MPOL_F_STATIC_NODES)
2516 p += snprintf(p, buffer + maxlen - p, "static");
2517 else if (flags & MPOL_F_RELATIVE_NODES)
2518 p += snprintf(p, buffer + maxlen - p, "relative");
2519 }
2520
2521 if (!nodes_empty(nodes)) {
2522 if (buffer + maxlen < p + 2)
2523 return -ENOSPC;
2524 *p++ = ':';
2525 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2526 }
2527 return p - buffer;
2528 }
2529
2530 struct numa_maps {
2531 struct vm_area_struct *vma;
2532 unsigned long pages;
2533 unsigned long anon;
2534 unsigned long active;
2535 unsigned long writeback;
2536 unsigned long mapcount_max;
2537 unsigned long dirty;
2538 unsigned long swapcache;
2539 unsigned long node[MAX_NUMNODES];
2540 };
2541
2542 static void gather_stats(struct page *page, void *private, int pte_dirty)
2543 {
2544 struct numa_maps *md = private;
2545 int count = page_mapcount(page);
2546
2547 md->pages++;
2548 if (pte_dirty || PageDirty(page))
2549 md->dirty++;
2550
2551 if (PageSwapCache(page))
2552 md->swapcache++;
2553
2554 if (PageActive(page) || PageUnevictable(page))
2555 md->active++;
2556
2557 if (PageWriteback(page))
2558 md->writeback++;
2559
2560 if (PageAnon(page))
2561 md->anon++;
2562
2563 if (count > md->mapcount_max)
2564 md->mapcount_max = count;
2565
2566 md->node[page_to_nid(page)]++;
2567 }
2568
2569 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2570 unsigned long end, struct mm_walk *walk)
2571 {
2572 struct numa_maps *md;
2573 spinlock_t *ptl;
2574 pte_t *orig_pte;
2575 pte_t *pte;
2576
2577 md = walk->private;
2578 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2579 do {
2580 struct page *page;
2581 int nid;
2582
2583 if (!pte_present(*pte))
2584 continue;
2585
2586 page = vm_normal_page(md->vma, addr, *pte);
2587 if (!page)
2588 continue;
2589
2590 if (PageReserved(page))
2591 continue;
2592
2593 nid = page_to_nid(page);
2594 if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
2595 continue;
2596
2597 gather_stats(page, md, pte_dirty(*pte));
2598
2599 } while (pte++, addr += PAGE_SIZE, addr != end);
2600 pte_unmap_unlock(orig_pte, ptl);
2601 return 0;
2602 }
2603
2604 #ifdef CONFIG_HUGETLB_PAGE
2605 static void check_huge_range(struct vm_area_struct *vma,
2606 unsigned long start, unsigned long end,
2607 struct numa_maps *md)
2608 {
2609 unsigned long addr;
2610 struct page *page;
2611 struct hstate *h = hstate_vma(vma);
2612 unsigned long sz = huge_page_size(h);
2613
2614 for (addr = start; addr < end; addr += sz) {
2615 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2616 addr & huge_page_mask(h));
2617 pte_t pte;
2618
2619 if (!ptep)
2620 continue;
2621
2622 pte = *ptep;
2623 if (pte_none(pte))
2624 continue;
2625
2626 page = pte_page(pte);
2627 if (!page)
2628 continue;
2629
2630 gather_stats(page, md, pte_dirty(*ptep));
2631 }
2632 }
2633
2634 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
2635 unsigned long addr, unsigned long end, struct mm_walk *walk)
2636 {
2637 struct page *page;
2638
2639 if (pte_none(*pte))
2640 return 0;
2641
2642 page = pte_page(*pte);
2643 if (!page)
2644 return 0;
2645
2646 gather_stats(page, walk->private, pte_dirty(*pte));
2647 return 0;
2648 }
2649
2650 #else
2651 static inline void check_huge_range(struct vm_area_struct *vma,
2652 unsigned long start, unsigned long end,
2653 struct numa_maps *md)
2654 {
2655 }
2656
2657 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
2658 unsigned long addr, unsigned long end, struct mm_walk *walk)
2659 {
2660 return 0;
2661 }
2662 #endif
2663
2664 /*
2665 * Display pages allocated per node and memory policy via /proc.
2666 */
2667 int show_numa_map(struct seq_file *m, void *v)
2668 {
2669 struct proc_maps_private *priv = m->private;
2670 struct vm_area_struct *vma = v;
2671 struct numa_maps *md;
2672 struct file *file = vma->vm_file;
2673 struct mm_struct *mm = vma->vm_mm;
2674 struct mm_walk walk = {};
2675 struct mempolicy *pol;
2676 int n;
2677 char buffer[50];
2678
2679 if (!mm)
2680 return 0;
2681
2682 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2683 if (!md)
2684 return 0;
2685
2686 md->vma = vma;
2687
2688 walk.hugetlb_entry = gather_hugetbl_stats;
2689 walk.pmd_entry = gather_pte_stats;
2690 walk.private = md;
2691 walk.mm = mm;
2692
2693 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2694 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2695 mpol_cond_put(pol);
2696
2697 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2698
2699 if (file) {
2700 seq_printf(m, " file=");
2701 seq_path(m, &file->f_path, "\n\t= ");
2702 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2703 seq_printf(m, " heap");
2704 } else if (vma->vm_start <= mm->start_stack &&
2705 vma->vm_end >= mm->start_stack) {
2706 seq_printf(m, " stack");
2707 }
2708
2709 walk_page_range(vma->vm_start, vma->vm_end, &walk);
2710
2711 if (!md->pages)
2712 goto out;
2713
2714 if (md->anon)
2715 seq_printf(m," anon=%lu",md->anon);
2716
2717 if (md->dirty)
2718 seq_printf(m," dirty=%lu",md->dirty);
2719
2720 if (md->pages != md->anon && md->pages != md->dirty)
2721 seq_printf(m, " mapped=%lu", md->pages);
2722
2723 if (md->mapcount_max > 1)
2724 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2725
2726 if (md->swapcache)
2727 seq_printf(m," swapcache=%lu", md->swapcache);
2728
2729 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2730 seq_printf(m," active=%lu", md->active);
2731
2732 if (md->writeback)
2733 seq_printf(m," writeback=%lu", md->writeback);
2734
2735 for_each_node_state(n, N_HIGH_MEMORY)
2736 if (md->node[n])
2737 seq_printf(m, " N%d=%lu", n, md->node[n]);
2738 out:
2739 seq_putc(m, '\n');
2740 kfree(md);
2741
2742 if (m->count < m->size)
2743 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2744 return 0;
2745 }