Merge commit 'v2.6.27-rc3' into x86/urgent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
100
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103
104 /* Highest zone. An specific allocation for a zone below that is not
105 policied. */
106 enum zone_type policy_zone = 0;
107
108 /*
109 * run-time system-wide default policy => local allocation
110 */
111 struct mempolicy default_policy = {
112 .refcnt = ATOMIC_INIT(1), /* never free it */
113 .mode = MPOL_PREFERRED,
114 .flags = MPOL_F_LOCAL,
115 };
116
117 static const struct mempolicy_operations {
118 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
119 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
120 } mpol_ops[MPOL_MAX];
121
122 /* Check that the nodemask contains at least one populated zone */
123 static int is_valid_nodemask(const nodemask_t *nodemask)
124 {
125 int nd, k;
126
127 /* Check that there is something useful in this mask */
128 k = policy_zone;
129
130 for_each_node_mask(nd, *nodemask) {
131 struct zone *z;
132
133 for (k = 0; k <= policy_zone; k++) {
134 z = &NODE_DATA(nd)->node_zones[k];
135 if (z->present_pages > 0)
136 return 1;
137 }
138 }
139
140 return 0;
141 }
142
143 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
144 {
145 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
146 }
147
148 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
149 const nodemask_t *rel)
150 {
151 nodemask_t tmp;
152 nodes_fold(tmp, *orig, nodes_weight(*rel));
153 nodes_onto(*ret, tmp, *rel);
154 }
155
156 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
157 {
158 if (nodes_empty(*nodes))
159 return -EINVAL;
160 pol->v.nodes = *nodes;
161 return 0;
162 }
163
164 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
165 {
166 if (!nodes)
167 pol->flags |= MPOL_F_LOCAL; /* local allocation */
168 else if (nodes_empty(*nodes))
169 return -EINVAL; /* no allowed nodes */
170 else
171 pol->v.preferred_node = first_node(*nodes);
172 return 0;
173 }
174
175 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!is_valid_nodemask(nodes))
178 return -EINVAL;
179 pol->v.nodes = *nodes;
180 return 0;
181 }
182
183 /* Create a new policy */
184 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
185 nodemask_t *nodes)
186 {
187 struct mempolicy *policy;
188 nodemask_t cpuset_context_nmask;
189 int ret;
190
191 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
192 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
193
194 if (mode == MPOL_DEFAULT) {
195 if (nodes && !nodes_empty(*nodes))
196 return ERR_PTR(-EINVAL);
197 return NULL; /* simply delete any existing policy */
198 }
199 VM_BUG_ON(!nodes);
200
201 /*
202 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
203 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
204 * All other modes require a valid pointer to a non-empty nodemask.
205 */
206 if (mode == MPOL_PREFERRED) {
207 if (nodes_empty(*nodes)) {
208 if (((flags & MPOL_F_STATIC_NODES) ||
209 (flags & MPOL_F_RELATIVE_NODES)))
210 return ERR_PTR(-EINVAL);
211 nodes = NULL; /* flag local alloc */
212 }
213 } else if (nodes_empty(*nodes))
214 return ERR_PTR(-EINVAL);
215 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
216 if (!policy)
217 return ERR_PTR(-ENOMEM);
218 atomic_set(&policy->refcnt, 1);
219 policy->mode = mode;
220 policy->flags = flags;
221
222 if (nodes) {
223 /*
224 * cpuset related setup doesn't apply to local allocation
225 */
226 cpuset_update_task_memory_state();
227 if (flags & MPOL_F_RELATIVE_NODES)
228 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
229 &cpuset_current_mems_allowed);
230 else
231 nodes_and(cpuset_context_nmask, *nodes,
232 cpuset_current_mems_allowed);
233 if (mpol_store_user_nodemask(policy))
234 policy->w.user_nodemask = *nodes;
235 else
236 policy->w.cpuset_mems_allowed =
237 cpuset_mems_allowed(current);
238 }
239
240 ret = mpol_ops[mode].create(policy,
241 nodes ? &cpuset_context_nmask : NULL);
242 if (ret < 0) {
243 kmem_cache_free(policy_cache, policy);
244 return ERR_PTR(ret);
245 }
246 return policy;
247 }
248
249 /* Slow path of a mpol destructor. */
250 void __mpol_put(struct mempolicy *p)
251 {
252 if (!atomic_dec_and_test(&p->refcnt))
253 return;
254 kmem_cache_free(policy_cache, p);
255 }
256
257 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
258 {
259 }
260
261 static void mpol_rebind_nodemask(struct mempolicy *pol,
262 const nodemask_t *nodes)
263 {
264 nodemask_t tmp;
265
266 if (pol->flags & MPOL_F_STATIC_NODES)
267 nodes_and(tmp, pol->w.user_nodemask, *nodes);
268 else if (pol->flags & MPOL_F_RELATIVE_NODES)
269 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
270 else {
271 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
272 *nodes);
273 pol->w.cpuset_mems_allowed = *nodes;
274 }
275
276 pol->v.nodes = tmp;
277 if (!node_isset(current->il_next, tmp)) {
278 current->il_next = next_node(current->il_next, tmp);
279 if (current->il_next >= MAX_NUMNODES)
280 current->il_next = first_node(tmp);
281 if (current->il_next >= MAX_NUMNODES)
282 current->il_next = numa_node_id();
283 }
284 }
285
286 static void mpol_rebind_preferred(struct mempolicy *pol,
287 const nodemask_t *nodes)
288 {
289 nodemask_t tmp;
290
291 if (pol->flags & MPOL_F_STATIC_NODES) {
292 int node = first_node(pol->w.user_nodemask);
293
294 if (node_isset(node, *nodes)) {
295 pol->v.preferred_node = node;
296 pol->flags &= ~MPOL_F_LOCAL;
297 } else
298 pol->flags |= MPOL_F_LOCAL;
299 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
300 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
301 pol->v.preferred_node = first_node(tmp);
302 } else if (!(pol->flags & MPOL_F_LOCAL)) {
303 pol->v.preferred_node = node_remap(pol->v.preferred_node,
304 pol->w.cpuset_mems_allowed,
305 *nodes);
306 pol->w.cpuset_mems_allowed = *nodes;
307 }
308 }
309
310 /* Migrate a policy to a different set of nodes */
311 static void mpol_rebind_policy(struct mempolicy *pol,
312 const nodemask_t *newmask)
313 {
314 if (!pol)
315 return;
316 if (!mpol_store_user_nodemask(pol) &&
317 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
318 return;
319 mpol_ops[pol->mode].rebind(pol, newmask);
320 }
321
322 /*
323 * Wrapper for mpol_rebind_policy() that just requires task
324 * pointer, and updates task mempolicy.
325 */
326
327 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
328 {
329 mpol_rebind_policy(tsk->mempolicy, new);
330 }
331
332 /*
333 * Rebind each vma in mm to new nodemask.
334 *
335 * Call holding a reference to mm. Takes mm->mmap_sem during call.
336 */
337
338 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
339 {
340 struct vm_area_struct *vma;
341
342 down_write(&mm->mmap_sem);
343 for (vma = mm->mmap; vma; vma = vma->vm_next)
344 mpol_rebind_policy(vma->vm_policy, new);
345 up_write(&mm->mmap_sem);
346 }
347
348 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
349 [MPOL_DEFAULT] = {
350 .rebind = mpol_rebind_default,
351 },
352 [MPOL_INTERLEAVE] = {
353 .create = mpol_new_interleave,
354 .rebind = mpol_rebind_nodemask,
355 },
356 [MPOL_PREFERRED] = {
357 .create = mpol_new_preferred,
358 .rebind = mpol_rebind_preferred,
359 },
360 [MPOL_BIND] = {
361 .create = mpol_new_bind,
362 .rebind = mpol_rebind_nodemask,
363 },
364 };
365
366 static void gather_stats(struct page *, void *, int pte_dirty);
367 static void migrate_page_add(struct page *page, struct list_head *pagelist,
368 unsigned long flags);
369
370 /* Scan through pages checking if pages follow certain conditions. */
371 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
372 unsigned long addr, unsigned long end,
373 const nodemask_t *nodes, unsigned long flags,
374 void *private)
375 {
376 pte_t *orig_pte;
377 pte_t *pte;
378 spinlock_t *ptl;
379
380 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
381 do {
382 struct page *page;
383 int nid;
384
385 if (!pte_present(*pte))
386 continue;
387 page = vm_normal_page(vma, addr, *pte);
388 if (!page)
389 continue;
390 /*
391 * The check for PageReserved here is important to avoid
392 * handling zero pages and other pages that may have been
393 * marked special by the system.
394 *
395 * If the PageReserved would not be checked here then f.e.
396 * the location of the zero page could have an influence
397 * on MPOL_MF_STRICT, zero pages would be counted for
398 * the per node stats, and there would be useless attempts
399 * to put zero pages on the migration list.
400 */
401 if (PageReserved(page))
402 continue;
403 nid = page_to_nid(page);
404 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
405 continue;
406
407 if (flags & MPOL_MF_STATS)
408 gather_stats(page, private, pte_dirty(*pte));
409 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
410 migrate_page_add(page, private, flags);
411 else
412 break;
413 } while (pte++, addr += PAGE_SIZE, addr != end);
414 pte_unmap_unlock(orig_pte, ptl);
415 return addr != end;
416 }
417
418 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
419 unsigned long addr, unsigned long end,
420 const nodemask_t *nodes, unsigned long flags,
421 void *private)
422 {
423 pmd_t *pmd;
424 unsigned long next;
425
426 pmd = pmd_offset(pud, addr);
427 do {
428 next = pmd_addr_end(addr, end);
429 if (pmd_none_or_clear_bad(pmd))
430 continue;
431 if (check_pte_range(vma, pmd, addr, next, nodes,
432 flags, private))
433 return -EIO;
434 } while (pmd++, addr = next, addr != end);
435 return 0;
436 }
437
438 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
439 unsigned long addr, unsigned long end,
440 const nodemask_t *nodes, unsigned long flags,
441 void *private)
442 {
443 pud_t *pud;
444 unsigned long next;
445
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 if (check_pmd_range(vma, pud, addr, next, nodes,
452 flags, private))
453 return -EIO;
454 } while (pud++, addr = next, addr != end);
455 return 0;
456 }
457
458 static inline int check_pgd_range(struct vm_area_struct *vma,
459 unsigned long addr, unsigned long end,
460 const nodemask_t *nodes, unsigned long flags,
461 void *private)
462 {
463 pgd_t *pgd;
464 unsigned long next;
465
466 pgd = pgd_offset(vma->vm_mm, addr);
467 do {
468 next = pgd_addr_end(addr, end);
469 if (pgd_none_or_clear_bad(pgd))
470 continue;
471 if (check_pud_range(vma, pgd, addr, next, nodes,
472 flags, private))
473 return -EIO;
474 } while (pgd++, addr = next, addr != end);
475 return 0;
476 }
477
478 /*
479 * Check if all pages in a range are on a set of nodes.
480 * If pagelist != NULL then isolate pages from the LRU and
481 * put them on the pagelist.
482 */
483 static struct vm_area_struct *
484 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
485 const nodemask_t *nodes, unsigned long flags, void *private)
486 {
487 int err;
488 struct vm_area_struct *first, *vma, *prev;
489
490 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
491
492 err = migrate_prep();
493 if (err)
494 return ERR_PTR(err);
495 }
496
497 first = find_vma(mm, start);
498 if (!first)
499 return ERR_PTR(-EFAULT);
500 prev = NULL;
501 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
502 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
503 if (!vma->vm_next && vma->vm_end < end)
504 return ERR_PTR(-EFAULT);
505 if (prev && prev->vm_end < vma->vm_start)
506 return ERR_PTR(-EFAULT);
507 }
508 if (!is_vm_hugetlb_page(vma) &&
509 ((flags & MPOL_MF_STRICT) ||
510 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
511 vma_migratable(vma)))) {
512 unsigned long endvma = vma->vm_end;
513
514 if (endvma > end)
515 endvma = end;
516 if (vma->vm_start > start)
517 start = vma->vm_start;
518 err = check_pgd_range(vma, start, endvma, nodes,
519 flags, private);
520 if (err) {
521 first = ERR_PTR(err);
522 break;
523 }
524 }
525 prev = vma;
526 }
527 return first;
528 }
529
530 /* Apply policy to a single VMA */
531 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
532 {
533 int err = 0;
534 struct mempolicy *old = vma->vm_policy;
535
536 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
537 vma->vm_start, vma->vm_end, vma->vm_pgoff,
538 vma->vm_ops, vma->vm_file,
539 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
540
541 if (vma->vm_ops && vma->vm_ops->set_policy)
542 err = vma->vm_ops->set_policy(vma, new);
543 if (!err) {
544 mpol_get(new);
545 vma->vm_policy = new;
546 mpol_put(old);
547 }
548 return err;
549 }
550
551 /* Step 2: apply policy to a range and do splits. */
552 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
553 unsigned long end, struct mempolicy *new)
554 {
555 struct vm_area_struct *next;
556 int err;
557
558 err = 0;
559 for (; vma && vma->vm_start < end; vma = next) {
560 next = vma->vm_next;
561 if (vma->vm_start < start)
562 err = split_vma(vma->vm_mm, vma, start, 1);
563 if (!err && vma->vm_end > end)
564 err = split_vma(vma->vm_mm, vma, end, 0);
565 if (!err)
566 err = policy_vma(vma, new);
567 if (err)
568 break;
569 }
570 return err;
571 }
572
573 /*
574 * Update task->flags PF_MEMPOLICY bit: set iff non-default
575 * mempolicy. Allows more rapid checking of this (combined perhaps
576 * with other PF_* flag bits) on memory allocation hot code paths.
577 *
578 * If called from outside this file, the task 'p' should -only- be
579 * a newly forked child not yet visible on the task list, because
580 * manipulating the task flags of a visible task is not safe.
581 *
582 * The above limitation is why this routine has the funny name
583 * mpol_fix_fork_child_flag().
584 *
585 * It is also safe to call this with a task pointer of current,
586 * which the static wrapper mpol_set_task_struct_flag() does,
587 * for use within this file.
588 */
589
590 void mpol_fix_fork_child_flag(struct task_struct *p)
591 {
592 if (p->mempolicy)
593 p->flags |= PF_MEMPOLICY;
594 else
595 p->flags &= ~PF_MEMPOLICY;
596 }
597
598 static void mpol_set_task_struct_flag(void)
599 {
600 mpol_fix_fork_child_flag(current);
601 }
602
603 /* Set the process memory policy */
604 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
605 nodemask_t *nodes)
606 {
607 struct mempolicy *new;
608 struct mm_struct *mm = current->mm;
609
610 new = mpol_new(mode, flags, nodes);
611 if (IS_ERR(new))
612 return PTR_ERR(new);
613
614 /*
615 * prevent changing our mempolicy while show_numa_maps()
616 * is using it.
617 * Note: do_set_mempolicy() can be called at init time
618 * with no 'mm'.
619 */
620 if (mm)
621 down_write(&mm->mmap_sem);
622 mpol_put(current->mempolicy);
623 current->mempolicy = new;
624 mpol_set_task_struct_flag();
625 if (new && new->mode == MPOL_INTERLEAVE &&
626 nodes_weight(new->v.nodes))
627 current->il_next = first_node(new->v.nodes);
628 if (mm)
629 up_write(&mm->mmap_sem);
630
631 return 0;
632 }
633
634 /*
635 * Return nodemask for policy for get_mempolicy() query
636 */
637 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
638 {
639 nodes_clear(*nodes);
640 if (p == &default_policy)
641 return;
642
643 switch (p->mode) {
644 case MPOL_BIND:
645 /* Fall through */
646 case MPOL_INTERLEAVE:
647 *nodes = p->v.nodes;
648 break;
649 case MPOL_PREFERRED:
650 if (!(p->flags & MPOL_F_LOCAL))
651 node_set(p->v.preferred_node, *nodes);
652 /* else return empty node mask for local allocation */
653 break;
654 default:
655 BUG();
656 }
657 }
658
659 static int lookup_node(struct mm_struct *mm, unsigned long addr)
660 {
661 struct page *p;
662 int err;
663
664 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
665 if (err >= 0) {
666 err = page_to_nid(p);
667 put_page(p);
668 }
669 return err;
670 }
671
672 /* Retrieve NUMA policy */
673 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
674 unsigned long addr, unsigned long flags)
675 {
676 int err;
677 struct mm_struct *mm = current->mm;
678 struct vm_area_struct *vma = NULL;
679 struct mempolicy *pol = current->mempolicy;
680
681 cpuset_update_task_memory_state();
682 if (flags &
683 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
684 return -EINVAL;
685
686 if (flags & MPOL_F_MEMS_ALLOWED) {
687 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
688 return -EINVAL;
689 *policy = 0; /* just so it's initialized */
690 *nmask = cpuset_current_mems_allowed;
691 return 0;
692 }
693
694 if (flags & MPOL_F_ADDR) {
695 /*
696 * Do NOT fall back to task policy if the
697 * vma/shared policy at addr is NULL. We
698 * want to return MPOL_DEFAULT in this case.
699 */
700 down_read(&mm->mmap_sem);
701 vma = find_vma_intersection(mm, addr, addr+1);
702 if (!vma) {
703 up_read(&mm->mmap_sem);
704 return -EFAULT;
705 }
706 if (vma->vm_ops && vma->vm_ops->get_policy)
707 pol = vma->vm_ops->get_policy(vma, addr);
708 else
709 pol = vma->vm_policy;
710 } else if (addr)
711 return -EINVAL;
712
713 if (!pol)
714 pol = &default_policy; /* indicates default behavior */
715
716 if (flags & MPOL_F_NODE) {
717 if (flags & MPOL_F_ADDR) {
718 err = lookup_node(mm, addr);
719 if (err < 0)
720 goto out;
721 *policy = err;
722 } else if (pol == current->mempolicy &&
723 pol->mode == MPOL_INTERLEAVE) {
724 *policy = current->il_next;
725 } else {
726 err = -EINVAL;
727 goto out;
728 }
729 } else {
730 *policy = pol == &default_policy ? MPOL_DEFAULT :
731 pol->mode;
732 /*
733 * Internal mempolicy flags must be masked off before exposing
734 * the policy to userspace.
735 */
736 *policy |= (pol->flags & MPOL_MODE_FLAGS);
737 }
738
739 if (vma) {
740 up_read(&current->mm->mmap_sem);
741 vma = NULL;
742 }
743
744 err = 0;
745 if (nmask)
746 get_policy_nodemask(pol, nmask);
747
748 out:
749 mpol_cond_put(pol);
750 if (vma)
751 up_read(&current->mm->mmap_sem);
752 return err;
753 }
754
755 #ifdef CONFIG_MIGRATION
756 /*
757 * page migration
758 */
759 static void migrate_page_add(struct page *page, struct list_head *pagelist,
760 unsigned long flags)
761 {
762 /*
763 * Avoid migrating a page that is shared with others.
764 */
765 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
766 isolate_lru_page(page, pagelist);
767 }
768
769 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
770 {
771 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
772 }
773
774 /*
775 * Migrate pages from one node to a target node.
776 * Returns error or the number of pages not migrated.
777 */
778 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
779 int flags)
780 {
781 nodemask_t nmask;
782 LIST_HEAD(pagelist);
783 int err = 0;
784
785 nodes_clear(nmask);
786 node_set(source, nmask);
787
788 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
789 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
790
791 if (!list_empty(&pagelist))
792 err = migrate_pages(&pagelist, new_node_page, dest);
793
794 return err;
795 }
796
797 /*
798 * Move pages between the two nodesets so as to preserve the physical
799 * layout as much as possible.
800 *
801 * Returns the number of page that could not be moved.
802 */
803 int do_migrate_pages(struct mm_struct *mm,
804 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
805 {
806 int busy = 0;
807 int err = 0;
808 nodemask_t tmp;
809
810 down_read(&mm->mmap_sem);
811
812 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
813 if (err)
814 goto out;
815
816 /*
817 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
818 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
819 * bit in 'tmp', and return that <source, dest> pair for migration.
820 * The pair of nodemasks 'to' and 'from' define the map.
821 *
822 * If no pair of bits is found that way, fallback to picking some
823 * pair of 'source' and 'dest' bits that are not the same. If the
824 * 'source' and 'dest' bits are the same, this represents a node
825 * that will be migrating to itself, so no pages need move.
826 *
827 * If no bits are left in 'tmp', or if all remaining bits left
828 * in 'tmp' correspond to the same bit in 'to', return false
829 * (nothing left to migrate).
830 *
831 * This lets us pick a pair of nodes to migrate between, such that
832 * if possible the dest node is not already occupied by some other
833 * source node, minimizing the risk of overloading the memory on a
834 * node that would happen if we migrated incoming memory to a node
835 * before migrating outgoing memory source that same node.
836 *
837 * A single scan of tmp is sufficient. As we go, we remember the
838 * most recent <s, d> pair that moved (s != d). If we find a pair
839 * that not only moved, but what's better, moved to an empty slot
840 * (d is not set in tmp), then we break out then, with that pair.
841 * Otherwise when we finish scannng from_tmp, we at least have the
842 * most recent <s, d> pair that moved. If we get all the way through
843 * the scan of tmp without finding any node that moved, much less
844 * moved to an empty node, then there is nothing left worth migrating.
845 */
846
847 tmp = *from_nodes;
848 while (!nodes_empty(tmp)) {
849 int s,d;
850 int source = -1;
851 int dest = 0;
852
853 for_each_node_mask(s, tmp) {
854 d = node_remap(s, *from_nodes, *to_nodes);
855 if (s == d)
856 continue;
857
858 source = s; /* Node moved. Memorize */
859 dest = d;
860
861 /* dest not in remaining from nodes? */
862 if (!node_isset(dest, tmp))
863 break;
864 }
865 if (source == -1)
866 break;
867
868 node_clear(source, tmp);
869 err = migrate_to_node(mm, source, dest, flags);
870 if (err > 0)
871 busy += err;
872 if (err < 0)
873 break;
874 }
875 out:
876 up_read(&mm->mmap_sem);
877 if (err < 0)
878 return err;
879 return busy;
880
881 }
882
883 /*
884 * Allocate a new page for page migration based on vma policy.
885 * Start assuming that page is mapped by vma pointed to by @private.
886 * Search forward from there, if not. N.B., this assumes that the
887 * list of pages handed to migrate_pages()--which is how we get here--
888 * is in virtual address order.
889 */
890 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
891 {
892 struct vm_area_struct *vma = (struct vm_area_struct *)private;
893 unsigned long uninitialized_var(address);
894
895 while (vma) {
896 address = page_address_in_vma(page, vma);
897 if (address != -EFAULT)
898 break;
899 vma = vma->vm_next;
900 }
901
902 /*
903 * if !vma, alloc_page_vma() will use task or system default policy
904 */
905 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
906 }
907 #else
908
909 static void migrate_page_add(struct page *page, struct list_head *pagelist,
910 unsigned long flags)
911 {
912 }
913
914 int do_migrate_pages(struct mm_struct *mm,
915 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
916 {
917 return -ENOSYS;
918 }
919
920 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
921 {
922 return NULL;
923 }
924 #endif
925
926 static long do_mbind(unsigned long start, unsigned long len,
927 unsigned short mode, unsigned short mode_flags,
928 nodemask_t *nmask, unsigned long flags)
929 {
930 struct vm_area_struct *vma;
931 struct mm_struct *mm = current->mm;
932 struct mempolicy *new;
933 unsigned long end;
934 int err;
935 LIST_HEAD(pagelist);
936
937 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
938 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
939 return -EINVAL;
940 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
941 return -EPERM;
942
943 if (start & ~PAGE_MASK)
944 return -EINVAL;
945
946 if (mode == MPOL_DEFAULT)
947 flags &= ~MPOL_MF_STRICT;
948
949 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
950 end = start + len;
951
952 if (end < start)
953 return -EINVAL;
954 if (end == start)
955 return 0;
956
957 new = mpol_new(mode, mode_flags, nmask);
958 if (IS_ERR(new))
959 return PTR_ERR(new);
960
961 /*
962 * If we are using the default policy then operation
963 * on discontinuous address spaces is okay after all
964 */
965 if (!new)
966 flags |= MPOL_MF_DISCONTIG_OK;
967
968 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
969 start, start + len, mode, mode_flags,
970 nmask ? nodes_addr(*nmask)[0] : -1);
971
972 down_write(&mm->mmap_sem);
973 vma = check_range(mm, start, end, nmask,
974 flags | MPOL_MF_INVERT, &pagelist);
975
976 err = PTR_ERR(vma);
977 if (!IS_ERR(vma)) {
978 int nr_failed = 0;
979
980 err = mbind_range(vma, start, end, new);
981
982 if (!list_empty(&pagelist))
983 nr_failed = migrate_pages(&pagelist, new_vma_page,
984 (unsigned long)vma);
985
986 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
987 err = -EIO;
988 }
989
990 up_write(&mm->mmap_sem);
991 mpol_put(new);
992 return err;
993 }
994
995 /*
996 * User space interface with variable sized bitmaps for nodelists.
997 */
998
999 /* Copy a node mask from user space. */
1000 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1001 unsigned long maxnode)
1002 {
1003 unsigned long k;
1004 unsigned long nlongs;
1005 unsigned long endmask;
1006
1007 --maxnode;
1008 nodes_clear(*nodes);
1009 if (maxnode == 0 || !nmask)
1010 return 0;
1011 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1012 return -EINVAL;
1013
1014 nlongs = BITS_TO_LONGS(maxnode);
1015 if ((maxnode % BITS_PER_LONG) == 0)
1016 endmask = ~0UL;
1017 else
1018 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1019
1020 /* When the user specified more nodes than supported just check
1021 if the non supported part is all zero. */
1022 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1023 if (nlongs > PAGE_SIZE/sizeof(long))
1024 return -EINVAL;
1025 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1026 unsigned long t;
1027 if (get_user(t, nmask + k))
1028 return -EFAULT;
1029 if (k == nlongs - 1) {
1030 if (t & endmask)
1031 return -EINVAL;
1032 } else if (t)
1033 return -EINVAL;
1034 }
1035 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1036 endmask = ~0UL;
1037 }
1038
1039 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1040 return -EFAULT;
1041 nodes_addr(*nodes)[nlongs-1] &= endmask;
1042 return 0;
1043 }
1044
1045 /* Copy a kernel node mask to user space */
1046 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1047 nodemask_t *nodes)
1048 {
1049 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1050 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1051
1052 if (copy > nbytes) {
1053 if (copy > PAGE_SIZE)
1054 return -EINVAL;
1055 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1056 return -EFAULT;
1057 copy = nbytes;
1058 }
1059 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1060 }
1061
1062 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1063 unsigned long mode,
1064 unsigned long __user *nmask, unsigned long maxnode,
1065 unsigned flags)
1066 {
1067 nodemask_t nodes;
1068 int err;
1069 unsigned short mode_flags;
1070
1071 mode_flags = mode & MPOL_MODE_FLAGS;
1072 mode &= ~MPOL_MODE_FLAGS;
1073 if (mode >= MPOL_MAX)
1074 return -EINVAL;
1075 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1076 (mode_flags & MPOL_F_RELATIVE_NODES))
1077 return -EINVAL;
1078 err = get_nodes(&nodes, nmask, maxnode);
1079 if (err)
1080 return err;
1081 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1082 }
1083
1084 /* Set the process memory policy */
1085 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1086 unsigned long maxnode)
1087 {
1088 int err;
1089 nodemask_t nodes;
1090 unsigned short flags;
1091
1092 flags = mode & MPOL_MODE_FLAGS;
1093 mode &= ~MPOL_MODE_FLAGS;
1094 if ((unsigned int)mode >= MPOL_MAX)
1095 return -EINVAL;
1096 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1097 return -EINVAL;
1098 err = get_nodes(&nodes, nmask, maxnode);
1099 if (err)
1100 return err;
1101 return do_set_mempolicy(mode, flags, &nodes);
1102 }
1103
1104 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1105 const unsigned long __user *old_nodes,
1106 const unsigned long __user *new_nodes)
1107 {
1108 struct mm_struct *mm;
1109 struct task_struct *task;
1110 nodemask_t old;
1111 nodemask_t new;
1112 nodemask_t task_nodes;
1113 int err;
1114
1115 err = get_nodes(&old, old_nodes, maxnode);
1116 if (err)
1117 return err;
1118
1119 err = get_nodes(&new, new_nodes, maxnode);
1120 if (err)
1121 return err;
1122
1123 /* Find the mm_struct */
1124 read_lock(&tasklist_lock);
1125 task = pid ? find_task_by_vpid(pid) : current;
1126 if (!task) {
1127 read_unlock(&tasklist_lock);
1128 return -ESRCH;
1129 }
1130 mm = get_task_mm(task);
1131 read_unlock(&tasklist_lock);
1132
1133 if (!mm)
1134 return -EINVAL;
1135
1136 /*
1137 * Check if this process has the right to modify the specified
1138 * process. The right exists if the process has administrative
1139 * capabilities, superuser privileges or the same
1140 * userid as the target process.
1141 */
1142 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1143 (current->uid != task->suid) && (current->uid != task->uid) &&
1144 !capable(CAP_SYS_NICE)) {
1145 err = -EPERM;
1146 goto out;
1147 }
1148
1149 task_nodes = cpuset_mems_allowed(task);
1150 /* Is the user allowed to access the target nodes? */
1151 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1152 err = -EPERM;
1153 goto out;
1154 }
1155
1156 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1157 err = -EINVAL;
1158 goto out;
1159 }
1160
1161 err = security_task_movememory(task);
1162 if (err)
1163 goto out;
1164
1165 err = do_migrate_pages(mm, &old, &new,
1166 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1167 out:
1168 mmput(mm);
1169 return err;
1170 }
1171
1172
1173 /* Retrieve NUMA policy */
1174 asmlinkage long sys_get_mempolicy(int __user *policy,
1175 unsigned long __user *nmask,
1176 unsigned long maxnode,
1177 unsigned long addr, unsigned long flags)
1178 {
1179 int err;
1180 int uninitialized_var(pval);
1181 nodemask_t nodes;
1182
1183 if (nmask != NULL && maxnode < MAX_NUMNODES)
1184 return -EINVAL;
1185
1186 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1187
1188 if (err)
1189 return err;
1190
1191 if (policy && put_user(pval, policy))
1192 return -EFAULT;
1193
1194 if (nmask)
1195 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1196
1197 return err;
1198 }
1199
1200 #ifdef CONFIG_COMPAT
1201
1202 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1203 compat_ulong_t __user *nmask,
1204 compat_ulong_t maxnode,
1205 compat_ulong_t addr, compat_ulong_t flags)
1206 {
1207 long err;
1208 unsigned long __user *nm = NULL;
1209 unsigned long nr_bits, alloc_size;
1210 DECLARE_BITMAP(bm, MAX_NUMNODES);
1211
1212 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1213 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1214
1215 if (nmask)
1216 nm = compat_alloc_user_space(alloc_size);
1217
1218 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1219
1220 if (!err && nmask) {
1221 err = copy_from_user(bm, nm, alloc_size);
1222 /* ensure entire bitmap is zeroed */
1223 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1224 err |= compat_put_bitmap(nmask, bm, nr_bits);
1225 }
1226
1227 return err;
1228 }
1229
1230 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1231 compat_ulong_t maxnode)
1232 {
1233 long err = 0;
1234 unsigned long __user *nm = NULL;
1235 unsigned long nr_bits, alloc_size;
1236 DECLARE_BITMAP(bm, MAX_NUMNODES);
1237
1238 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1239 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1240
1241 if (nmask) {
1242 err = compat_get_bitmap(bm, nmask, nr_bits);
1243 nm = compat_alloc_user_space(alloc_size);
1244 err |= copy_to_user(nm, bm, alloc_size);
1245 }
1246
1247 if (err)
1248 return -EFAULT;
1249
1250 return sys_set_mempolicy(mode, nm, nr_bits+1);
1251 }
1252
1253 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1254 compat_ulong_t mode, compat_ulong_t __user *nmask,
1255 compat_ulong_t maxnode, compat_ulong_t flags)
1256 {
1257 long err = 0;
1258 unsigned long __user *nm = NULL;
1259 unsigned long nr_bits, alloc_size;
1260 nodemask_t bm;
1261
1262 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1263 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1264
1265 if (nmask) {
1266 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1267 nm = compat_alloc_user_space(alloc_size);
1268 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1269 }
1270
1271 if (err)
1272 return -EFAULT;
1273
1274 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1275 }
1276
1277 #endif
1278
1279 /*
1280 * get_vma_policy(@task, @vma, @addr)
1281 * @task - task for fallback if vma policy == default
1282 * @vma - virtual memory area whose policy is sought
1283 * @addr - address in @vma for shared policy lookup
1284 *
1285 * Returns effective policy for a VMA at specified address.
1286 * Falls back to @task or system default policy, as necessary.
1287 * Current or other task's task mempolicy and non-shared vma policies
1288 * are protected by the task's mmap_sem, which must be held for read by
1289 * the caller.
1290 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1291 * count--added by the get_policy() vm_op, as appropriate--to protect against
1292 * freeing by another task. It is the caller's responsibility to free the
1293 * extra reference for shared policies.
1294 */
1295 static struct mempolicy *get_vma_policy(struct task_struct *task,
1296 struct vm_area_struct *vma, unsigned long addr)
1297 {
1298 struct mempolicy *pol = task->mempolicy;
1299
1300 if (vma) {
1301 if (vma->vm_ops && vma->vm_ops->get_policy) {
1302 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1303 addr);
1304 if (vpol)
1305 pol = vpol;
1306 } else if (vma->vm_policy)
1307 pol = vma->vm_policy;
1308 }
1309 if (!pol)
1310 pol = &default_policy;
1311 return pol;
1312 }
1313
1314 /*
1315 * Return a nodemask representing a mempolicy for filtering nodes for
1316 * page allocation
1317 */
1318 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1319 {
1320 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1321 if (unlikely(policy->mode == MPOL_BIND) &&
1322 gfp_zone(gfp) >= policy_zone &&
1323 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1324 return &policy->v.nodes;
1325
1326 return NULL;
1327 }
1328
1329 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1330 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1331 {
1332 int nd = numa_node_id();
1333
1334 switch (policy->mode) {
1335 case MPOL_PREFERRED:
1336 if (!(policy->flags & MPOL_F_LOCAL))
1337 nd = policy->v.preferred_node;
1338 break;
1339 case MPOL_BIND:
1340 /*
1341 * Normally, MPOL_BIND allocations are node-local within the
1342 * allowed nodemask. However, if __GFP_THISNODE is set and the
1343 * current node is part of the mask, we use the zonelist for
1344 * the first node in the mask instead.
1345 */
1346 if (unlikely(gfp & __GFP_THISNODE) &&
1347 unlikely(!node_isset(nd, policy->v.nodes)))
1348 nd = first_node(policy->v.nodes);
1349 break;
1350 case MPOL_INTERLEAVE: /* should not happen */
1351 break;
1352 default:
1353 BUG();
1354 }
1355 return node_zonelist(nd, gfp);
1356 }
1357
1358 /* Do dynamic interleaving for a process */
1359 static unsigned interleave_nodes(struct mempolicy *policy)
1360 {
1361 unsigned nid, next;
1362 struct task_struct *me = current;
1363
1364 nid = me->il_next;
1365 next = next_node(nid, policy->v.nodes);
1366 if (next >= MAX_NUMNODES)
1367 next = first_node(policy->v.nodes);
1368 if (next < MAX_NUMNODES)
1369 me->il_next = next;
1370 return nid;
1371 }
1372
1373 /*
1374 * Depending on the memory policy provide a node from which to allocate the
1375 * next slab entry.
1376 * @policy must be protected by freeing by the caller. If @policy is
1377 * the current task's mempolicy, this protection is implicit, as only the
1378 * task can change it's policy. The system default policy requires no
1379 * such protection.
1380 */
1381 unsigned slab_node(struct mempolicy *policy)
1382 {
1383 if (!policy || policy->flags & MPOL_F_LOCAL)
1384 return numa_node_id();
1385
1386 switch (policy->mode) {
1387 case MPOL_PREFERRED:
1388 /*
1389 * handled MPOL_F_LOCAL above
1390 */
1391 return policy->v.preferred_node;
1392
1393 case MPOL_INTERLEAVE:
1394 return interleave_nodes(policy);
1395
1396 case MPOL_BIND: {
1397 /*
1398 * Follow bind policy behavior and start allocation at the
1399 * first node.
1400 */
1401 struct zonelist *zonelist;
1402 struct zone *zone;
1403 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1404 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1405 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1406 &policy->v.nodes,
1407 &zone);
1408 return zone->node;
1409 }
1410
1411 default:
1412 BUG();
1413 }
1414 }
1415
1416 /* Do static interleaving for a VMA with known offset. */
1417 static unsigned offset_il_node(struct mempolicy *pol,
1418 struct vm_area_struct *vma, unsigned long off)
1419 {
1420 unsigned nnodes = nodes_weight(pol->v.nodes);
1421 unsigned target;
1422 int c;
1423 int nid = -1;
1424
1425 if (!nnodes)
1426 return numa_node_id();
1427 target = (unsigned int)off % nnodes;
1428 c = 0;
1429 do {
1430 nid = next_node(nid, pol->v.nodes);
1431 c++;
1432 } while (c <= target);
1433 return nid;
1434 }
1435
1436 /* Determine a node number for interleave */
1437 static inline unsigned interleave_nid(struct mempolicy *pol,
1438 struct vm_area_struct *vma, unsigned long addr, int shift)
1439 {
1440 if (vma) {
1441 unsigned long off;
1442
1443 /*
1444 * for small pages, there is no difference between
1445 * shift and PAGE_SHIFT, so the bit-shift is safe.
1446 * for huge pages, since vm_pgoff is in units of small
1447 * pages, we need to shift off the always 0 bits to get
1448 * a useful offset.
1449 */
1450 BUG_ON(shift < PAGE_SHIFT);
1451 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1452 off += (addr - vma->vm_start) >> shift;
1453 return offset_il_node(pol, vma, off);
1454 } else
1455 return interleave_nodes(pol);
1456 }
1457
1458 #ifdef CONFIG_HUGETLBFS
1459 /*
1460 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1461 * @vma = virtual memory area whose policy is sought
1462 * @addr = address in @vma for shared policy lookup and interleave policy
1463 * @gfp_flags = for requested zone
1464 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1465 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1466 *
1467 * Returns a zonelist suitable for a huge page allocation and a pointer
1468 * to the struct mempolicy for conditional unref after allocation.
1469 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1470 * @nodemask for filtering the zonelist.
1471 */
1472 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1473 gfp_t gfp_flags, struct mempolicy **mpol,
1474 nodemask_t **nodemask)
1475 {
1476 struct zonelist *zl;
1477
1478 *mpol = get_vma_policy(current, vma, addr);
1479 *nodemask = NULL; /* assume !MPOL_BIND */
1480
1481 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1482 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1483 huge_page_shift(hstate_vma(vma))), gfp_flags);
1484 } else {
1485 zl = policy_zonelist(gfp_flags, *mpol);
1486 if ((*mpol)->mode == MPOL_BIND)
1487 *nodemask = &(*mpol)->v.nodes;
1488 }
1489 return zl;
1490 }
1491 #endif
1492
1493 /* Allocate a page in interleaved policy.
1494 Own path because it needs to do special accounting. */
1495 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1496 unsigned nid)
1497 {
1498 struct zonelist *zl;
1499 struct page *page;
1500
1501 zl = node_zonelist(nid, gfp);
1502 page = __alloc_pages(gfp, order, zl);
1503 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1504 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1505 return page;
1506 }
1507
1508 /**
1509 * alloc_page_vma - Allocate a page for a VMA.
1510 *
1511 * @gfp:
1512 * %GFP_USER user allocation.
1513 * %GFP_KERNEL kernel allocations,
1514 * %GFP_HIGHMEM highmem/user allocations,
1515 * %GFP_FS allocation should not call back into a file system.
1516 * %GFP_ATOMIC don't sleep.
1517 *
1518 * @vma: Pointer to VMA or NULL if not available.
1519 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1520 *
1521 * This function allocates a page from the kernel page pool and applies
1522 * a NUMA policy associated with the VMA or the current process.
1523 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1524 * mm_struct of the VMA to prevent it from going away. Should be used for
1525 * all allocations for pages that will be mapped into
1526 * user space. Returns NULL when no page can be allocated.
1527 *
1528 * Should be called with the mm_sem of the vma hold.
1529 */
1530 struct page *
1531 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1532 {
1533 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1534 struct zonelist *zl;
1535
1536 cpuset_update_task_memory_state();
1537
1538 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1539 unsigned nid;
1540
1541 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1542 mpol_cond_put(pol);
1543 return alloc_page_interleave(gfp, 0, nid);
1544 }
1545 zl = policy_zonelist(gfp, pol);
1546 if (unlikely(mpol_needs_cond_ref(pol))) {
1547 /*
1548 * slow path: ref counted shared policy
1549 */
1550 struct page *page = __alloc_pages_nodemask(gfp, 0,
1551 zl, policy_nodemask(gfp, pol));
1552 __mpol_put(pol);
1553 return page;
1554 }
1555 /*
1556 * fast path: default or task policy
1557 */
1558 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1559 }
1560
1561 /**
1562 * alloc_pages_current - Allocate pages.
1563 *
1564 * @gfp:
1565 * %GFP_USER user allocation,
1566 * %GFP_KERNEL kernel allocation,
1567 * %GFP_HIGHMEM highmem allocation,
1568 * %GFP_FS don't call back into a file system.
1569 * %GFP_ATOMIC don't sleep.
1570 * @order: Power of two of allocation size in pages. 0 is a single page.
1571 *
1572 * Allocate a page from the kernel page pool. When not in
1573 * interrupt context and apply the current process NUMA policy.
1574 * Returns NULL when no page can be allocated.
1575 *
1576 * Don't call cpuset_update_task_memory_state() unless
1577 * 1) it's ok to take cpuset_sem (can WAIT), and
1578 * 2) allocating for current task (not interrupt).
1579 */
1580 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1581 {
1582 struct mempolicy *pol = current->mempolicy;
1583
1584 if ((gfp & __GFP_WAIT) && !in_interrupt())
1585 cpuset_update_task_memory_state();
1586 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1587 pol = &default_policy;
1588
1589 /*
1590 * No reference counting needed for current->mempolicy
1591 * nor system default_policy
1592 */
1593 if (pol->mode == MPOL_INTERLEAVE)
1594 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1595 return __alloc_pages_nodemask(gfp, order,
1596 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1597 }
1598 EXPORT_SYMBOL(alloc_pages_current);
1599
1600 /*
1601 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1602 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1603 * with the mems_allowed returned by cpuset_mems_allowed(). This
1604 * keeps mempolicies cpuset relative after its cpuset moves. See
1605 * further kernel/cpuset.c update_nodemask().
1606 */
1607
1608 /* Slow path of a mempolicy duplicate */
1609 struct mempolicy *__mpol_dup(struct mempolicy *old)
1610 {
1611 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1612
1613 if (!new)
1614 return ERR_PTR(-ENOMEM);
1615 if (current_cpuset_is_being_rebound()) {
1616 nodemask_t mems = cpuset_mems_allowed(current);
1617 mpol_rebind_policy(old, &mems);
1618 }
1619 *new = *old;
1620 atomic_set(&new->refcnt, 1);
1621 return new;
1622 }
1623
1624 /*
1625 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1626 * eliminate the * MPOL_F_* flags that require conditional ref and
1627 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1628 * after return. Use the returned value.
1629 *
1630 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1631 * policy lookup, even if the policy needs/has extra ref on lookup.
1632 * shmem_readahead needs this.
1633 */
1634 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1635 struct mempolicy *frompol)
1636 {
1637 if (!mpol_needs_cond_ref(frompol))
1638 return frompol;
1639
1640 *tompol = *frompol;
1641 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1642 __mpol_put(frompol);
1643 return tompol;
1644 }
1645
1646 static int mpol_match_intent(const struct mempolicy *a,
1647 const struct mempolicy *b)
1648 {
1649 if (a->flags != b->flags)
1650 return 0;
1651 if (!mpol_store_user_nodemask(a))
1652 return 1;
1653 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1654 }
1655
1656 /* Slow path of a mempolicy comparison */
1657 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1658 {
1659 if (!a || !b)
1660 return 0;
1661 if (a->mode != b->mode)
1662 return 0;
1663 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1664 return 0;
1665 switch (a->mode) {
1666 case MPOL_BIND:
1667 /* Fall through */
1668 case MPOL_INTERLEAVE:
1669 return nodes_equal(a->v.nodes, b->v.nodes);
1670 case MPOL_PREFERRED:
1671 return a->v.preferred_node == b->v.preferred_node &&
1672 a->flags == b->flags;
1673 default:
1674 BUG();
1675 return 0;
1676 }
1677 }
1678
1679 /*
1680 * Shared memory backing store policy support.
1681 *
1682 * Remember policies even when nobody has shared memory mapped.
1683 * The policies are kept in Red-Black tree linked from the inode.
1684 * They are protected by the sp->lock spinlock, which should be held
1685 * for any accesses to the tree.
1686 */
1687
1688 /* lookup first element intersecting start-end */
1689 /* Caller holds sp->lock */
1690 static struct sp_node *
1691 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1692 {
1693 struct rb_node *n = sp->root.rb_node;
1694
1695 while (n) {
1696 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1697
1698 if (start >= p->end)
1699 n = n->rb_right;
1700 else if (end <= p->start)
1701 n = n->rb_left;
1702 else
1703 break;
1704 }
1705 if (!n)
1706 return NULL;
1707 for (;;) {
1708 struct sp_node *w = NULL;
1709 struct rb_node *prev = rb_prev(n);
1710 if (!prev)
1711 break;
1712 w = rb_entry(prev, struct sp_node, nd);
1713 if (w->end <= start)
1714 break;
1715 n = prev;
1716 }
1717 return rb_entry(n, struct sp_node, nd);
1718 }
1719
1720 /* Insert a new shared policy into the list. */
1721 /* Caller holds sp->lock */
1722 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1723 {
1724 struct rb_node **p = &sp->root.rb_node;
1725 struct rb_node *parent = NULL;
1726 struct sp_node *nd;
1727
1728 while (*p) {
1729 parent = *p;
1730 nd = rb_entry(parent, struct sp_node, nd);
1731 if (new->start < nd->start)
1732 p = &(*p)->rb_left;
1733 else if (new->end > nd->end)
1734 p = &(*p)->rb_right;
1735 else
1736 BUG();
1737 }
1738 rb_link_node(&new->nd, parent, p);
1739 rb_insert_color(&new->nd, &sp->root);
1740 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1741 new->policy ? new->policy->mode : 0);
1742 }
1743
1744 /* Find shared policy intersecting idx */
1745 struct mempolicy *
1746 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1747 {
1748 struct mempolicy *pol = NULL;
1749 struct sp_node *sn;
1750
1751 if (!sp->root.rb_node)
1752 return NULL;
1753 spin_lock(&sp->lock);
1754 sn = sp_lookup(sp, idx, idx+1);
1755 if (sn) {
1756 mpol_get(sn->policy);
1757 pol = sn->policy;
1758 }
1759 spin_unlock(&sp->lock);
1760 return pol;
1761 }
1762
1763 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1764 {
1765 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1766 rb_erase(&n->nd, &sp->root);
1767 mpol_put(n->policy);
1768 kmem_cache_free(sn_cache, n);
1769 }
1770
1771 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1772 struct mempolicy *pol)
1773 {
1774 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1775
1776 if (!n)
1777 return NULL;
1778 n->start = start;
1779 n->end = end;
1780 mpol_get(pol);
1781 pol->flags |= MPOL_F_SHARED; /* for unref */
1782 n->policy = pol;
1783 return n;
1784 }
1785
1786 /* Replace a policy range. */
1787 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1788 unsigned long end, struct sp_node *new)
1789 {
1790 struct sp_node *n, *new2 = NULL;
1791
1792 restart:
1793 spin_lock(&sp->lock);
1794 n = sp_lookup(sp, start, end);
1795 /* Take care of old policies in the same range. */
1796 while (n && n->start < end) {
1797 struct rb_node *next = rb_next(&n->nd);
1798 if (n->start >= start) {
1799 if (n->end <= end)
1800 sp_delete(sp, n);
1801 else
1802 n->start = end;
1803 } else {
1804 /* Old policy spanning whole new range. */
1805 if (n->end > end) {
1806 if (!new2) {
1807 spin_unlock(&sp->lock);
1808 new2 = sp_alloc(end, n->end, n->policy);
1809 if (!new2)
1810 return -ENOMEM;
1811 goto restart;
1812 }
1813 n->end = start;
1814 sp_insert(sp, new2);
1815 new2 = NULL;
1816 break;
1817 } else
1818 n->end = start;
1819 }
1820 if (!next)
1821 break;
1822 n = rb_entry(next, struct sp_node, nd);
1823 }
1824 if (new)
1825 sp_insert(sp, new);
1826 spin_unlock(&sp->lock);
1827 if (new2) {
1828 mpol_put(new2->policy);
1829 kmem_cache_free(sn_cache, new2);
1830 }
1831 return 0;
1832 }
1833
1834 /**
1835 * mpol_shared_policy_init - initialize shared policy for inode
1836 * @sp: pointer to inode shared policy
1837 * @mpol: struct mempolicy to install
1838 *
1839 * Install non-NULL @mpol in inode's shared policy rb-tree.
1840 * On entry, the current task has a reference on a non-NULL @mpol.
1841 * This must be released on exit.
1842 */
1843 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1844 {
1845 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1846 spin_lock_init(&sp->lock);
1847
1848 if (mpol) {
1849 struct vm_area_struct pvma;
1850 struct mempolicy *new;
1851
1852 /* contextualize the tmpfs mount point mempolicy */
1853 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1854 mpol_put(mpol); /* drop our ref on sb mpol */
1855 if (IS_ERR(new))
1856 return; /* no valid nodemask intersection */
1857
1858 /* Create pseudo-vma that contains just the policy */
1859 memset(&pvma, 0, sizeof(struct vm_area_struct));
1860 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
1861 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1862 mpol_put(new); /* drop initial ref */
1863 }
1864 }
1865
1866 int mpol_set_shared_policy(struct shared_policy *info,
1867 struct vm_area_struct *vma, struct mempolicy *npol)
1868 {
1869 int err;
1870 struct sp_node *new = NULL;
1871 unsigned long sz = vma_pages(vma);
1872
1873 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1874 vma->vm_pgoff,
1875 sz, npol ? npol->mode : -1,
1876 npol ? npol->flags : -1,
1877 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1878
1879 if (npol) {
1880 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1881 if (!new)
1882 return -ENOMEM;
1883 }
1884 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1885 if (err && new)
1886 kmem_cache_free(sn_cache, new);
1887 return err;
1888 }
1889
1890 /* Free a backing policy store on inode delete. */
1891 void mpol_free_shared_policy(struct shared_policy *p)
1892 {
1893 struct sp_node *n;
1894 struct rb_node *next;
1895
1896 if (!p->root.rb_node)
1897 return;
1898 spin_lock(&p->lock);
1899 next = rb_first(&p->root);
1900 while (next) {
1901 n = rb_entry(next, struct sp_node, nd);
1902 next = rb_next(&n->nd);
1903 rb_erase(&n->nd, &p->root);
1904 mpol_put(n->policy);
1905 kmem_cache_free(sn_cache, n);
1906 }
1907 spin_unlock(&p->lock);
1908 }
1909
1910 /* assumes fs == KERNEL_DS */
1911 void __init numa_policy_init(void)
1912 {
1913 nodemask_t interleave_nodes;
1914 unsigned long largest = 0;
1915 int nid, prefer = 0;
1916
1917 policy_cache = kmem_cache_create("numa_policy",
1918 sizeof(struct mempolicy),
1919 0, SLAB_PANIC, NULL);
1920
1921 sn_cache = kmem_cache_create("shared_policy_node",
1922 sizeof(struct sp_node),
1923 0, SLAB_PANIC, NULL);
1924
1925 /*
1926 * Set interleaving policy for system init. Interleaving is only
1927 * enabled across suitably sized nodes (default is >= 16MB), or
1928 * fall back to the largest node if they're all smaller.
1929 */
1930 nodes_clear(interleave_nodes);
1931 for_each_node_state(nid, N_HIGH_MEMORY) {
1932 unsigned long total_pages = node_present_pages(nid);
1933
1934 /* Preserve the largest node */
1935 if (largest < total_pages) {
1936 largest = total_pages;
1937 prefer = nid;
1938 }
1939
1940 /* Interleave this node? */
1941 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1942 node_set(nid, interleave_nodes);
1943 }
1944
1945 /* All too small, use the largest */
1946 if (unlikely(nodes_empty(interleave_nodes)))
1947 node_set(prefer, interleave_nodes);
1948
1949 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1950 printk("numa_policy_init: interleaving failed\n");
1951 }
1952
1953 /* Reset policy of current process to default */
1954 void numa_default_policy(void)
1955 {
1956 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1957 }
1958
1959 /*
1960 * Parse and format mempolicy from/to strings
1961 */
1962
1963 /*
1964 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
1965 * Used only for mpol_parse_str() and mpol_to_str()
1966 */
1967 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1968 static const char * const policy_types[] =
1969 { "default", "prefer", "bind", "interleave", "local" };
1970
1971
1972 #ifdef CONFIG_TMPFS
1973 /**
1974 * mpol_parse_str - parse string to mempolicy
1975 * @str: string containing mempolicy to parse
1976 * @mpol: pointer to struct mempolicy pointer, returned on success.
1977 * @no_context: flag whether to "contextualize" the mempolicy
1978 *
1979 * Format of input:
1980 * <mode>[=<flags>][:<nodelist>]
1981 *
1982 * if @no_context is true, save the input nodemask in w.user_nodemask in
1983 * the returned mempolicy. This will be used to "clone" the mempolicy in
1984 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
1985 * mount option. Note that if 'static' or 'relative' mode flags were
1986 * specified, the input nodemask will already have been saved. Saving
1987 * it again is redundant, but safe.
1988 *
1989 * On success, returns 0, else 1
1990 */
1991 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
1992 {
1993 struct mempolicy *new = NULL;
1994 unsigned short uninitialized_var(mode);
1995 unsigned short uninitialized_var(mode_flags);
1996 nodemask_t nodes;
1997 char *nodelist = strchr(str, ':');
1998 char *flags = strchr(str, '=');
1999 int i;
2000 int err = 1;
2001
2002 if (nodelist) {
2003 /* NUL-terminate mode or flags string */
2004 *nodelist++ = '\0';
2005 if (nodelist_parse(nodelist, nodes))
2006 goto out;
2007 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2008 goto out;
2009 } else
2010 nodes_clear(nodes);
2011
2012 if (flags)
2013 *flags++ = '\0'; /* terminate mode string */
2014
2015 for (i = 0; i <= MPOL_LOCAL; i++) {
2016 if (!strcmp(str, policy_types[i])) {
2017 mode = i;
2018 break;
2019 }
2020 }
2021 if (i > MPOL_LOCAL)
2022 goto out;
2023
2024 switch (mode) {
2025 case MPOL_PREFERRED:
2026 /*
2027 * Insist on a nodelist of one node only
2028 */
2029 if (nodelist) {
2030 char *rest = nodelist;
2031 while (isdigit(*rest))
2032 rest++;
2033 if (!*rest)
2034 err = 0;
2035 }
2036 break;
2037 case MPOL_INTERLEAVE:
2038 /*
2039 * Default to online nodes with memory if no nodelist
2040 */
2041 if (!nodelist)
2042 nodes = node_states[N_HIGH_MEMORY];
2043 err = 0;
2044 break;
2045 case MPOL_LOCAL:
2046 /*
2047 * Don't allow a nodelist; mpol_new() checks flags
2048 */
2049 if (nodelist)
2050 goto out;
2051 mode = MPOL_PREFERRED;
2052 break;
2053
2054 /*
2055 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2056 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2057 */
2058 }
2059
2060 mode_flags = 0;
2061 if (flags) {
2062 /*
2063 * Currently, we only support two mutually exclusive
2064 * mode flags.
2065 */
2066 if (!strcmp(flags, "static"))
2067 mode_flags |= MPOL_F_STATIC_NODES;
2068 else if (!strcmp(flags, "relative"))
2069 mode_flags |= MPOL_F_RELATIVE_NODES;
2070 else
2071 err = 1;
2072 }
2073
2074 new = mpol_new(mode, mode_flags, &nodes);
2075 if (IS_ERR(new))
2076 err = 1;
2077 else if (no_context)
2078 new->w.user_nodemask = nodes; /* save for contextualization */
2079
2080 out:
2081 /* Restore string for error message */
2082 if (nodelist)
2083 *--nodelist = ':';
2084 if (flags)
2085 *--flags = '=';
2086 if (!err)
2087 *mpol = new;
2088 return err;
2089 }
2090 #endif /* CONFIG_TMPFS */
2091
2092 /**
2093 * mpol_to_str - format a mempolicy structure for printing
2094 * @buffer: to contain formatted mempolicy string
2095 * @maxlen: length of @buffer
2096 * @pol: pointer to mempolicy to be formatted
2097 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2098 *
2099 * Convert a mempolicy into a string.
2100 * Returns the number of characters in buffer (if positive)
2101 * or an error (negative)
2102 */
2103 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2104 {
2105 char *p = buffer;
2106 int l;
2107 nodemask_t nodes;
2108 unsigned short mode;
2109 unsigned short flags = pol ? pol->flags : 0;
2110
2111 /*
2112 * Sanity check: room for longest mode, flag and some nodes
2113 */
2114 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2115
2116 if (!pol || pol == &default_policy)
2117 mode = MPOL_DEFAULT;
2118 else
2119 mode = pol->mode;
2120
2121 switch (mode) {
2122 case MPOL_DEFAULT:
2123 nodes_clear(nodes);
2124 break;
2125
2126 case MPOL_PREFERRED:
2127 nodes_clear(nodes);
2128 if (flags & MPOL_F_LOCAL)
2129 mode = MPOL_LOCAL; /* pseudo-policy */
2130 else
2131 node_set(pol->v.preferred_node, nodes);
2132 break;
2133
2134 case MPOL_BIND:
2135 /* Fall through */
2136 case MPOL_INTERLEAVE:
2137 if (no_context)
2138 nodes = pol->w.user_nodemask;
2139 else
2140 nodes = pol->v.nodes;
2141 break;
2142
2143 default:
2144 BUG();
2145 }
2146
2147 l = strlen(policy_types[mode]);
2148 if (buffer + maxlen < p + l + 1)
2149 return -ENOSPC;
2150
2151 strcpy(p, policy_types[mode]);
2152 p += l;
2153
2154 if (flags & MPOL_MODE_FLAGS) {
2155 if (buffer + maxlen < p + 2)
2156 return -ENOSPC;
2157 *p++ = '=';
2158
2159 /*
2160 * Currently, the only defined flags are mutually exclusive
2161 */
2162 if (flags & MPOL_F_STATIC_NODES)
2163 p += snprintf(p, buffer + maxlen - p, "static");
2164 else if (flags & MPOL_F_RELATIVE_NODES)
2165 p += snprintf(p, buffer + maxlen - p, "relative");
2166 }
2167
2168 if (!nodes_empty(nodes)) {
2169 if (buffer + maxlen < p + 2)
2170 return -ENOSPC;
2171 *p++ = ':';
2172 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2173 }
2174 return p - buffer;
2175 }
2176
2177 struct numa_maps {
2178 unsigned long pages;
2179 unsigned long anon;
2180 unsigned long active;
2181 unsigned long writeback;
2182 unsigned long mapcount_max;
2183 unsigned long dirty;
2184 unsigned long swapcache;
2185 unsigned long node[MAX_NUMNODES];
2186 };
2187
2188 static void gather_stats(struct page *page, void *private, int pte_dirty)
2189 {
2190 struct numa_maps *md = private;
2191 int count = page_mapcount(page);
2192
2193 md->pages++;
2194 if (pte_dirty || PageDirty(page))
2195 md->dirty++;
2196
2197 if (PageSwapCache(page))
2198 md->swapcache++;
2199
2200 if (PageActive(page))
2201 md->active++;
2202
2203 if (PageWriteback(page))
2204 md->writeback++;
2205
2206 if (PageAnon(page))
2207 md->anon++;
2208
2209 if (count > md->mapcount_max)
2210 md->mapcount_max = count;
2211
2212 md->node[page_to_nid(page)]++;
2213 }
2214
2215 #ifdef CONFIG_HUGETLB_PAGE
2216 static void check_huge_range(struct vm_area_struct *vma,
2217 unsigned long start, unsigned long end,
2218 struct numa_maps *md)
2219 {
2220 unsigned long addr;
2221 struct page *page;
2222 struct hstate *h = hstate_vma(vma);
2223 unsigned long sz = huge_page_size(h);
2224
2225 for (addr = start; addr < end; addr += sz) {
2226 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2227 addr & huge_page_mask(h));
2228 pte_t pte;
2229
2230 if (!ptep)
2231 continue;
2232
2233 pte = *ptep;
2234 if (pte_none(pte))
2235 continue;
2236
2237 page = pte_page(pte);
2238 if (!page)
2239 continue;
2240
2241 gather_stats(page, md, pte_dirty(*ptep));
2242 }
2243 }
2244 #else
2245 static inline void check_huge_range(struct vm_area_struct *vma,
2246 unsigned long start, unsigned long end,
2247 struct numa_maps *md)
2248 {
2249 }
2250 #endif
2251
2252 /*
2253 * Display pages allocated per node and memory policy via /proc.
2254 */
2255 int show_numa_map(struct seq_file *m, void *v)
2256 {
2257 struct proc_maps_private *priv = m->private;
2258 struct vm_area_struct *vma = v;
2259 struct numa_maps *md;
2260 struct file *file = vma->vm_file;
2261 struct mm_struct *mm = vma->vm_mm;
2262 struct mempolicy *pol;
2263 int n;
2264 char buffer[50];
2265
2266 if (!mm)
2267 return 0;
2268
2269 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2270 if (!md)
2271 return 0;
2272
2273 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2274 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2275 mpol_cond_put(pol);
2276
2277 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2278
2279 if (file) {
2280 seq_printf(m, " file=");
2281 seq_path(m, &file->f_path, "\n\t= ");
2282 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2283 seq_printf(m, " heap");
2284 } else if (vma->vm_start <= mm->start_stack &&
2285 vma->vm_end >= mm->start_stack) {
2286 seq_printf(m, " stack");
2287 }
2288
2289 if (is_vm_hugetlb_page(vma)) {
2290 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2291 seq_printf(m, " huge");
2292 } else {
2293 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2294 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2295 }
2296
2297 if (!md->pages)
2298 goto out;
2299
2300 if (md->anon)
2301 seq_printf(m," anon=%lu",md->anon);
2302
2303 if (md->dirty)
2304 seq_printf(m," dirty=%lu",md->dirty);
2305
2306 if (md->pages != md->anon && md->pages != md->dirty)
2307 seq_printf(m, " mapped=%lu", md->pages);
2308
2309 if (md->mapcount_max > 1)
2310 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2311
2312 if (md->swapcache)
2313 seq_printf(m," swapcache=%lu", md->swapcache);
2314
2315 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2316 seq_printf(m," active=%lu", md->active);
2317
2318 if (md->writeback)
2319 seq_printf(m," writeback=%lu", md->writeback);
2320
2321 for_each_node_state(n, N_HIGH_MEMORY)
2322 if (md->node[n])
2323 seq_printf(m, " N%d=%lu", n, md->node[n]);
2324 out:
2325 seq_putc(m, '\n');
2326 kfree(md);
2327
2328 if (m->count < m->size)
2329 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2330 return 0;
2331 }