CHROMIUM: remove Android's cgroup generic permissions checks
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
479 };
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
487 {
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
495
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
499
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
507 /*
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
510 */
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
516
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
519 }
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
523 }
524
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
536
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
555 }
556
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
562 *
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
566 */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
569 {
570 int nr_updated;
571
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575
576 return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
593
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
596
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
601
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
607 }
608
609 qp->prev = vma;
610
611 if (flags & MPOL_MF_LAZY) {
612 /* Similar to task_numa_work, skip inaccessible VMAs */
613 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
614 change_prot_numa(vma, start, endvma);
615 return 1;
616 }
617
618 if ((flags & MPOL_MF_STRICT) ||
619 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
620 vma_migratable(vma)))
621 /* queue pages from current vma */
622 return 0;
623 return 1;
624 }
625
626 /*
627 * Walk through page tables and collect pages to be migrated.
628 *
629 * If pages found in a given range are on a set of nodes (determined by
630 * @nodes and @flags,) it's isolated and queued to the pagelist which is
631 * passed via @private.)
632 */
633 static int
634 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
635 nodemask_t *nodes, unsigned long flags,
636 struct list_head *pagelist)
637 {
638 struct queue_pages qp = {
639 .pagelist = pagelist,
640 .flags = flags,
641 .nmask = nodes,
642 .prev = NULL,
643 };
644 struct mm_walk queue_pages_walk = {
645 .hugetlb_entry = queue_pages_hugetlb,
646 .pmd_entry = queue_pages_pte_range,
647 .test_walk = queue_pages_test_walk,
648 .mm = mm,
649 .private = &qp,
650 };
651
652 return walk_page_range(start, end, &queue_pages_walk);
653 }
654
655 /*
656 * Apply policy to a single VMA
657 * This must be called with the mmap_sem held for writing.
658 */
659 static int vma_replace_policy(struct vm_area_struct *vma,
660 struct mempolicy *pol)
661 {
662 int err;
663 struct mempolicy *old;
664 struct mempolicy *new;
665
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670
671 new = mpol_dup(pol);
672 if (IS_ERR(new))
673 return PTR_ERR(new);
674
675 if (vma->vm_ops && vma->vm_ops->set_policy) {
676 err = vma->vm_ops->set_policy(vma, new);
677 if (err)
678 goto err_out;
679 }
680
681 old = vma->vm_policy;
682 vma->vm_policy = new; /* protected by mmap_sem */
683 mpol_put(old);
684
685 return 0;
686 err_out:
687 mpol_put(new);
688 return err;
689 }
690
691 /* Step 2: apply policy to a range and do splits. */
692 static int mbind_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, struct mempolicy *new_pol)
694 {
695 struct vm_area_struct *next;
696 struct vm_area_struct *prev;
697 struct vm_area_struct *vma;
698 int err = 0;
699 pgoff_t pgoff;
700 unsigned long vmstart;
701 unsigned long vmend;
702
703 vma = find_vma(mm, start);
704 if (!vma || vma->vm_start > start)
705 return -EFAULT;
706
707 prev = vma->vm_prev;
708 if (start > vma->vm_start)
709 prev = vma;
710
711 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
712 next = vma->vm_next;
713 vmstart = max(start, vma->vm_start);
714 vmend = min(end, vma->vm_end);
715
716 if (mpol_equal(vma_policy(vma), new_pol))
717 continue;
718
719 pgoff = vma->vm_pgoff +
720 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
721 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
722 vma->anon_vma, vma->vm_file, pgoff,
723 new_pol, vma->vm_userfaultfd_ctx,
724 vma_get_anon_name(vma));
725 if (prev) {
726 vma = prev;
727 next = vma->vm_next;
728 if (mpol_equal(vma_policy(vma), new_pol))
729 continue;
730 /* vma_merge() joined vma && vma->next, case 8 */
731 goto replace;
732 }
733 if (vma->vm_start != vmstart) {
734 err = split_vma(vma->vm_mm, vma, vmstart, 1);
735 if (err)
736 goto out;
737 }
738 if (vma->vm_end != vmend) {
739 err = split_vma(vma->vm_mm, vma, vmend, 0);
740 if (err)
741 goto out;
742 }
743 replace:
744 err = vma_replace_policy(vma, new_pol);
745 if (err)
746 goto out;
747 }
748
749 out:
750 return err;
751 }
752
753 /* Set the process memory policy */
754 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
755 nodemask_t *nodes)
756 {
757 struct mempolicy *new, *old;
758 NODEMASK_SCRATCH(scratch);
759 int ret;
760
761 if (!scratch)
762 return -ENOMEM;
763
764 new = mpol_new(mode, flags, nodes);
765 if (IS_ERR(new)) {
766 ret = PTR_ERR(new);
767 goto out;
768 }
769
770 task_lock(current);
771 ret = mpol_set_nodemask(new, nodes, scratch);
772 if (ret) {
773 task_unlock(current);
774 mpol_put(new);
775 goto out;
776 }
777 old = current->mempolicy;
778 current->mempolicy = new;
779 if (new && new->mode == MPOL_INTERLEAVE &&
780 nodes_weight(new->v.nodes))
781 current->il_next = first_node(new->v.nodes);
782 task_unlock(current);
783 mpol_put(old);
784 ret = 0;
785 out:
786 NODEMASK_SCRATCH_FREE(scratch);
787 return ret;
788 }
789
790 /*
791 * Return nodemask for policy for get_mempolicy() query
792 *
793 * Called with task's alloc_lock held
794 */
795 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
796 {
797 nodes_clear(*nodes);
798 if (p == &default_policy)
799 return;
800
801 switch (p->mode) {
802 case MPOL_BIND:
803 /* Fall through */
804 case MPOL_INTERLEAVE:
805 *nodes = p->v.nodes;
806 break;
807 case MPOL_PREFERRED:
808 if (!(p->flags & MPOL_F_LOCAL))
809 node_set(p->v.preferred_node, *nodes);
810 /* else return empty node mask for local allocation */
811 break;
812 default:
813 BUG();
814 }
815 }
816
817 static int lookup_node(struct mm_struct *mm, unsigned long addr)
818 {
819 struct page *p;
820 int err;
821
822 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
823 if (err >= 0) {
824 err = page_to_nid(p);
825 put_page(p);
826 }
827 return err;
828 }
829
830 /* Retrieve NUMA policy */
831 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
832 unsigned long addr, unsigned long flags)
833 {
834 int err;
835 struct mm_struct *mm = current->mm;
836 struct vm_area_struct *vma = NULL;
837 struct mempolicy *pol = current->mempolicy;
838
839 if (flags &
840 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
841 return -EINVAL;
842
843 if (flags & MPOL_F_MEMS_ALLOWED) {
844 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
845 return -EINVAL;
846 *policy = 0; /* just so it's initialized */
847 task_lock(current);
848 *nmask = cpuset_current_mems_allowed;
849 task_unlock(current);
850 return 0;
851 }
852
853 if (flags & MPOL_F_ADDR) {
854 /*
855 * Do NOT fall back to task policy if the
856 * vma/shared policy at addr is NULL. We
857 * want to return MPOL_DEFAULT in this case.
858 */
859 down_read(&mm->mmap_sem);
860 vma = find_vma_intersection(mm, addr, addr+1);
861 if (!vma) {
862 up_read(&mm->mmap_sem);
863 return -EFAULT;
864 }
865 if (vma->vm_ops && vma->vm_ops->get_policy)
866 pol = vma->vm_ops->get_policy(vma, addr);
867 else
868 pol = vma->vm_policy;
869 } else if (addr)
870 return -EINVAL;
871
872 if (!pol)
873 pol = &default_policy; /* indicates default behavior */
874
875 if (flags & MPOL_F_NODE) {
876 if (flags & MPOL_F_ADDR) {
877 err = lookup_node(mm, addr);
878 if (err < 0)
879 goto out;
880 *policy = err;
881 } else if (pol == current->mempolicy &&
882 pol->mode == MPOL_INTERLEAVE) {
883 *policy = current->il_next;
884 } else {
885 err = -EINVAL;
886 goto out;
887 }
888 } else {
889 *policy = pol == &default_policy ? MPOL_DEFAULT :
890 pol->mode;
891 /*
892 * Internal mempolicy flags must be masked off before exposing
893 * the policy to userspace.
894 */
895 *policy |= (pol->flags & MPOL_MODE_FLAGS);
896 }
897
898 if (vma) {
899 up_read(&current->mm->mmap_sem);
900 vma = NULL;
901 }
902
903 err = 0;
904 if (nmask) {
905 if (mpol_store_user_nodemask(pol)) {
906 *nmask = pol->w.user_nodemask;
907 } else {
908 task_lock(current);
909 get_policy_nodemask(pol, nmask);
910 task_unlock(current);
911 }
912 }
913
914 out:
915 mpol_cond_put(pol);
916 if (vma)
917 up_read(&current->mm->mmap_sem);
918 return err;
919 }
920
921 #ifdef CONFIG_MIGRATION
922 /*
923 * page migration
924 */
925 static void migrate_page_add(struct page *page, struct list_head *pagelist,
926 unsigned long flags)
927 {
928 /*
929 * Avoid migrating a page that is shared with others.
930 */
931 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
932 if (!isolate_lru_page(page)) {
933 list_add_tail(&page->lru, pagelist);
934 inc_zone_page_state(page, NR_ISOLATED_ANON +
935 page_is_file_cache(page));
936 }
937 }
938 }
939
940 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
941 {
942 if (PageHuge(page))
943 return alloc_huge_page_node(page_hstate(compound_head(page)),
944 node);
945 else
946 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
947 __GFP_THISNODE, 0);
948 }
949
950 /*
951 * Migrate pages from one node to a target node.
952 * Returns error or the number of pages not migrated.
953 */
954 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
955 int flags)
956 {
957 nodemask_t nmask;
958 LIST_HEAD(pagelist);
959 int err = 0;
960
961 nodes_clear(nmask);
962 node_set(source, nmask);
963
964 /*
965 * This does not "check" the range but isolates all pages that
966 * need migration. Between passing in the full user address
967 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
968 */
969 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
970 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
971 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
972
973 if (!list_empty(&pagelist)) {
974 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
975 MIGRATE_SYNC, MR_SYSCALL);
976 if (err)
977 putback_movable_pages(&pagelist);
978 }
979
980 return err;
981 }
982
983 /*
984 * Move pages between the two nodesets so as to preserve the physical
985 * layout as much as possible.
986 *
987 * Returns the number of page that could not be moved.
988 */
989 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
990 const nodemask_t *to, int flags)
991 {
992 int busy = 0;
993 int err;
994 nodemask_t tmp;
995
996 err = migrate_prep();
997 if (err)
998 return err;
999
1000 down_read(&mm->mmap_sem);
1001
1002 /*
1003 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1004 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1005 * bit in 'tmp', and return that <source, dest> pair for migration.
1006 * The pair of nodemasks 'to' and 'from' define the map.
1007 *
1008 * If no pair of bits is found that way, fallback to picking some
1009 * pair of 'source' and 'dest' bits that are not the same. If the
1010 * 'source' and 'dest' bits are the same, this represents a node
1011 * that will be migrating to itself, so no pages need move.
1012 *
1013 * If no bits are left in 'tmp', or if all remaining bits left
1014 * in 'tmp' correspond to the same bit in 'to', return false
1015 * (nothing left to migrate).
1016 *
1017 * This lets us pick a pair of nodes to migrate between, such that
1018 * if possible the dest node is not already occupied by some other
1019 * source node, minimizing the risk of overloading the memory on a
1020 * node that would happen if we migrated incoming memory to a node
1021 * before migrating outgoing memory source that same node.
1022 *
1023 * A single scan of tmp is sufficient. As we go, we remember the
1024 * most recent <s, d> pair that moved (s != d). If we find a pair
1025 * that not only moved, but what's better, moved to an empty slot
1026 * (d is not set in tmp), then we break out then, with that pair.
1027 * Otherwise when we finish scanning from_tmp, we at least have the
1028 * most recent <s, d> pair that moved. If we get all the way through
1029 * the scan of tmp without finding any node that moved, much less
1030 * moved to an empty node, then there is nothing left worth migrating.
1031 */
1032
1033 tmp = *from;
1034 while (!nodes_empty(tmp)) {
1035 int s,d;
1036 int source = NUMA_NO_NODE;
1037 int dest = 0;
1038
1039 for_each_node_mask(s, tmp) {
1040
1041 /*
1042 * do_migrate_pages() tries to maintain the relative
1043 * node relationship of the pages established between
1044 * threads and memory areas.
1045 *
1046 * However if the number of source nodes is not equal to
1047 * the number of destination nodes we can not preserve
1048 * this node relative relationship. In that case, skip
1049 * copying memory from a node that is in the destination
1050 * mask.
1051 *
1052 * Example: [2,3,4] -> [3,4,5] moves everything.
1053 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1054 */
1055
1056 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1057 (node_isset(s, *to)))
1058 continue;
1059
1060 d = node_remap(s, *from, *to);
1061 if (s == d)
1062 continue;
1063
1064 source = s; /* Node moved. Memorize */
1065 dest = d;
1066
1067 /* dest not in remaining from nodes? */
1068 if (!node_isset(dest, tmp))
1069 break;
1070 }
1071 if (source == NUMA_NO_NODE)
1072 break;
1073
1074 node_clear(source, tmp);
1075 err = migrate_to_node(mm, source, dest, flags);
1076 if (err > 0)
1077 busy += err;
1078 if (err < 0)
1079 break;
1080 }
1081 up_read(&mm->mmap_sem);
1082 if (err < 0)
1083 return err;
1084 return busy;
1085
1086 }
1087
1088 /*
1089 * Allocate a new page for page migration based on vma policy.
1090 * Start by assuming the page is mapped by the same vma as contains @start.
1091 * Search forward from there, if not. N.B., this assumes that the
1092 * list of pages handed to migrate_pages()--which is how we get here--
1093 * is in virtual address order.
1094 */
1095 static struct page *new_page(struct page *page, unsigned long start, int **x)
1096 {
1097 struct vm_area_struct *vma;
1098 unsigned long uninitialized_var(address);
1099
1100 vma = find_vma(current->mm, start);
1101 while (vma) {
1102 address = page_address_in_vma(page, vma);
1103 if (address != -EFAULT)
1104 break;
1105 vma = vma->vm_next;
1106 }
1107
1108 if (PageHuge(page)) {
1109 BUG_ON(!vma);
1110 return alloc_huge_page_noerr(vma, address, 1);
1111 }
1112 /*
1113 * if !vma, alloc_page_vma() will use task or system default policy
1114 */
1115 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1116 }
1117 #else
1118
1119 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1120 unsigned long flags)
1121 {
1122 }
1123
1124 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1125 const nodemask_t *to, int flags)
1126 {
1127 return -ENOSYS;
1128 }
1129
1130 static struct page *new_page(struct page *page, unsigned long start, int **x)
1131 {
1132 return NULL;
1133 }
1134 #endif
1135
1136 static long do_mbind(unsigned long start, unsigned long len,
1137 unsigned short mode, unsigned short mode_flags,
1138 nodemask_t *nmask, unsigned long flags)
1139 {
1140 struct mm_struct *mm = current->mm;
1141 struct mempolicy *new;
1142 unsigned long end;
1143 int err;
1144 LIST_HEAD(pagelist);
1145
1146 if (flags & ~(unsigned long)MPOL_MF_VALID)
1147 return -EINVAL;
1148 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1149 return -EPERM;
1150
1151 if (start & ~PAGE_MASK)
1152 return -EINVAL;
1153
1154 if (mode == MPOL_DEFAULT)
1155 flags &= ~MPOL_MF_STRICT;
1156
1157 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1158 end = start + len;
1159
1160 if (end < start)
1161 return -EINVAL;
1162 if (end == start)
1163 return 0;
1164
1165 new = mpol_new(mode, mode_flags, nmask);
1166 if (IS_ERR(new))
1167 return PTR_ERR(new);
1168
1169 if (flags & MPOL_MF_LAZY)
1170 new->flags |= MPOL_F_MOF;
1171
1172 /*
1173 * If we are using the default policy then operation
1174 * on discontinuous address spaces is okay after all
1175 */
1176 if (!new)
1177 flags |= MPOL_MF_DISCONTIG_OK;
1178
1179 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1180 start, start + len, mode, mode_flags,
1181 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1182
1183 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1184
1185 err = migrate_prep();
1186 if (err)
1187 goto mpol_out;
1188 }
1189 {
1190 NODEMASK_SCRATCH(scratch);
1191 if (scratch) {
1192 down_write(&mm->mmap_sem);
1193 task_lock(current);
1194 err = mpol_set_nodemask(new, nmask, scratch);
1195 task_unlock(current);
1196 if (err)
1197 up_write(&mm->mmap_sem);
1198 } else
1199 err = -ENOMEM;
1200 NODEMASK_SCRATCH_FREE(scratch);
1201 }
1202 if (err)
1203 goto mpol_out;
1204
1205 err = queue_pages_range(mm, start, end, nmask,
1206 flags | MPOL_MF_INVERT, &pagelist);
1207 if (!err)
1208 err = mbind_range(mm, start, end, new);
1209
1210 if (!err) {
1211 int nr_failed = 0;
1212
1213 if (!list_empty(&pagelist)) {
1214 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1215 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1216 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1217 if (nr_failed)
1218 putback_movable_pages(&pagelist);
1219 }
1220
1221 if (nr_failed && (flags & MPOL_MF_STRICT))
1222 err = -EIO;
1223 } else
1224 putback_movable_pages(&pagelist);
1225
1226 up_write(&mm->mmap_sem);
1227 mpol_out:
1228 mpol_put(new);
1229 return err;
1230 }
1231
1232 /*
1233 * User space interface with variable sized bitmaps for nodelists.
1234 */
1235
1236 /* Copy a node mask from user space. */
1237 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1238 unsigned long maxnode)
1239 {
1240 unsigned long k;
1241 unsigned long nlongs;
1242 unsigned long endmask;
1243
1244 --maxnode;
1245 nodes_clear(*nodes);
1246 if (maxnode == 0 || !nmask)
1247 return 0;
1248 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1249 return -EINVAL;
1250
1251 nlongs = BITS_TO_LONGS(maxnode);
1252 if ((maxnode % BITS_PER_LONG) == 0)
1253 endmask = ~0UL;
1254 else
1255 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1256
1257 /* When the user specified more nodes than supported just check
1258 if the non supported part is all zero. */
1259 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1260 if (nlongs > PAGE_SIZE/sizeof(long))
1261 return -EINVAL;
1262 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1263 unsigned long t;
1264 if (get_user(t, nmask + k))
1265 return -EFAULT;
1266 if (k == nlongs - 1) {
1267 if (t & endmask)
1268 return -EINVAL;
1269 } else if (t)
1270 return -EINVAL;
1271 }
1272 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1273 endmask = ~0UL;
1274 }
1275
1276 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1277 return -EFAULT;
1278 nodes_addr(*nodes)[nlongs-1] &= endmask;
1279 return 0;
1280 }
1281
1282 /* Copy a kernel node mask to user space */
1283 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1284 nodemask_t *nodes)
1285 {
1286 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1287 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1288
1289 if (copy > nbytes) {
1290 if (copy > PAGE_SIZE)
1291 return -EINVAL;
1292 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1293 return -EFAULT;
1294 copy = nbytes;
1295 }
1296 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1297 }
1298
1299 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1300 unsigned long, mode, const unsigned long __user *, nmask,
1301 unsigned long, maxnode, unsigned, flags)
1302 {
1303 nodemask_t nodes;
1304 int err;
1305 unsigned short mode_flags;
1306
1307 mode_flags = mode & MPOL_MODE_FLAGS;
1308 mode &= ~MPOL_MODE_FLAGS;
1309 if (mode >= MPOL_MAX)
1310 return -EINVAL;
1311 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1312 (mode_flags & MPOL_F_RELATIVE_NODES))
1313 return -EINVAL;
1314 err = get_nodes(&nodes, nmask, maxnode);
1315 if (err)
1316 return err;
1317 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1318 }
1319
1320 /* Set the process memory policy */
1321 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1322 unsigned long, maxnode)
1323 {
1324 int err;
1325 nodemask_t nodes;
1326 unsigned short flags;
1327
1328 flags = mode & MPOL_MODE_FLAGS;
1329 mode &= ~MPOL_MODE_FLAGS;
1330 if ((unsigned int)mode >= MPOL_MAX)
1331 return -EINVAL;
1332 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1333 return -EINVAL;
1334 err = get_nodes(&nodes, nmask, maxnode);
1335 if (err)
1336 return err;
1337 return do_set_mempolicy(mode, flags, &nodes);
1338 }
1339
1340 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1341 const unsigned long __user *, old_nodes,
1342 const unsigned long __user *, new_nodes)
1343 {
1344 const struct cred *cred = current_cred(), *tcred;
1345 struct mm_struct *mm = NULL;
1346 struct task_struct *task;
1347 nodemask_t task_nodes;
1348 int err;
1349 nodemask_t *old;
1350 nodemask_t *new;
1351 NODEMASK_SCRATCH(scratch);
1352
1353 if (!scratch)
1354 return -ENOMEM;
1355
1356 old = &scratch->mask1;
1357 new = &scratch->mask2;
1358
1359 err = get_nodes(old, old_nodes, maxnode);
1360 if (err)
1361 goto out;
1362
1363 err = get_nodes(new, new_nodes, maxnode);
1364 if (err)
1365 goto out;
1366
1367 /* Find the mm_struct */
1368 rcu_read_lock();
1369 task = pid ? find_task_by_vpid(pid) : current;
1370 if (!task) {
1371 rcu_read_unlock();
1372 err = -ESRCH;
1373 goto out;
1374 }
1375 get_task_struct(task);
1376
1377 err = -EINVAL;
1378
1379 /*
1380 * Check if this process has the right to modify the specified
1381 * process. The right exists if the process has administrative
1382 * capabilities, superuser privileges or the same
1383 * userid as the target process.
1384 */
1385 tcred = __task_cred(task);
1386 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1387 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1388 !capable(CAP_SYS_NICE)) {
1389 rcu_read_unlock();
1390 err = -EPERM;
1391 goto out_put;
1392 }
1393 rcu_read_unlock();
1394
1395 task_nodes = cpuset_mems_allowed(task);
1396 /* Is the user allowed to access the target nodes? */
1397 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1398 err = -EPERM;
1399 goto out_put;
1400 }
1401
1402 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1403 err = -EINVAL;
1404 goto out_put;
1405 }
1406
1407 err = security_task_movememory(task);
1408 if (err)
1409 goto out_put;
1410
1411 mm = get_task_mm(task);
1412 put_task_struct(task);
1413
1414 if (!mm) {
1415 err = -EINVAL;
1416 goto out;
1417 }
1418
1419 err = do_migrate_pages(mm, old, new,
1420 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1421
1422 mmput(mm);
1423 out:
1424 NODEMASK_SCRATCH_FREE(scratch);
1425
1426 return err;
1427
1428 out_put:
1429 put_task_struct(task);
1430 goto out;
1431
1432 }
1433
1434
1435 /* Retrieve NUMA policy */
1436 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1437 unsigned long __user *, nmask, unsigned long, maxnode,
1438 unsigned long, addr, unsigned long, flags)
1439 {
1440 int err;
1441 int uninitialized_var(pval);
1442 nodemask_t nodes;
1443
1444 if (nmask != NULL && maxnode < MAX_NUMNODES)
1445 return -EINVAL;
1446
1447 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1448
1449 if (err)
1450 return err;
1451
1452 if (policy && put_user(pval, policy))
1453 return -EFAULT;
1454
1455 if (nmask)
1456 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1457
1458 return err;
1459 }
1460
1461 #ifdef CONFIG_COMPAT
1462
1463 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1464 compat_ulong_t __user *, nmask,
1465 compat_ulong_t, maxnode,
1466 compat_ulong_t, addr, compat_ulong_t, flags)
1467 {
1468 long err;
1469 unsigned long __user *nm = NULL;
1470 unsigned long nr_bits, alloc_size;
1471 DECLARE_BITMAP(bm, MAX_NUMNODES);
1472
1473 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1474 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1475
1476 if (nmask)
1477 nm = compat_alloc_user_space(alloc_size);
1478
1479 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1480
1481 if (!err && nmask) {
1482 unsigned long copy_size;
1483 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1484 err = copy_from_user(bm, nm, copy_size);
1485 /* ensure entire bitmap is zeroed */
1486 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1487 err |= compat_put_bitmap(nmask, bm, nr_bits);
1488 }
1489
1490 return err;
1491 }
1492
1493 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1494 compat_ulong_t, maxnode)
1495 {
1496 long err = 0;
1497 unsigned long __user *nm = NULL;
1498 unsigned long nr_bits, alloc_size;
1499 DECLARE_BITMAP(bm, MAX_NUMNODES);
1500
1501 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1502 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1503
1504 if (nmask) {
1505 err = compat_get_bitmap(bm, nmask, nr_bits);
1506 nm = compat_alloc_user_space(alloc_size);
1507 err |= copy_to_user(nm, bm, alloc_size);
1508 }
1509
1510 if (err)
1511 return -EFAULT;
1512
1513 return sys_set_mempolicy(mode, nm, nr_bits+1);
1514 }
1515
1516 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1517 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1518 compat_ulong_t, maxnode, compat_ulong_t, flags)
1519 {
1520 long err = 0;
1521 unsigned long __user *nm = NULL;
1522 unsigned long nr_bits, alloc_size;
1523 nodemask_t bm;
1524
1525 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1526 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1527
1528 if (nmask) {
1529 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1530 nm = compat_alloc_user_space(alloc_size);
1531 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1532 }
1533
1534 if (err)
1535 return -EFAULT;
1536
1537 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1538 }
1539
1540 #endif
1541
1542 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1543 unsigned long addr)
1544 {
1545 struct mempolicy *pol = NULL;
1546
1547 if (vma) {
1548 if (vma->vm_ops && vma->vm_ops->get_policy) {
1549 pol = vma->vm_ops->get_policy(vma, addr);
1550 } else if (vma->vm_policy) {
1551 pol = vma->vm_policy;
1552
1553 /*
1554 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1555 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1556 * count on these policies which will be dropped by
1557 * mpol_cond_put() later
1558 */
1559 if (mpol_needs_cond_ref(pol))
1560 mpol_get(pol);
1561 }
1562 }
1563
1564 return pol;
1565 }
1566
1567 /*
1568 * get_vma_policy(@vma, @addr)
1569 * @vma: virtual memory area whose policy is sought
1570 * @addr: address in @vma for shared policy lookup
1571 *
1572 * Returns effective policy for a VMA at specified address.
1573 * Falls back to current->mempolicy or system default policy, as necessary.
1574 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1575 * count--added by the get_policy() vm_op, as appropriate--to protect against
1576 * freeing by another task. It is the caller's responsibility to free the
1577 * extra reference for shared policies.
1578 */
1579 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1580 unsigned long addr)
1581 {
1582 struct mempolicy *pol = __get_vma_policy(vma, addr);
1583
1584 if (!pol)
1585 pol = get_task_policy(current);
1586
1587 return pol;
1588 }
1589
1590 bool vma_policy_mof(struct vm_area_struct *vma)
1591 {
1592 struct mempolicy *pol;
1593
1594 if (vma->vm_ops && vma->vm_ops->get_policy) {
1595 bool ret = false;
1596
1597 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1598 if (pol && (pol->flags & MPOL_F_MOF))
1599 ret = true;
1600 mpol_cond_put(pol);
1601
1602 return ret;
1603 }
1604
1605 pol = vma->vm_policy;
1606 if (!pol)
1607 pol = get_task_policy(current);
1608
1609 return pol->flags & MPOL_F_MOF;
1610 }
1611
1612 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1613 {
1614 enum zone_type dynamic_policy_zone = policy_zone;
1615
1616 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1617
1618 /*
1619 * if policy->v.nodes has movable memory only,
1620 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1621 *
1622 * policy->v.nodes is intersect with node_states[N_MEMORY].
1623 * so if the following test faile, it implies
1624 * policy->v.nodes has movable memory only.
1625 */
1626 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1627 dynamic_policy_zone = ZONE_MOVABLE;
1628
1629 return zone >= dynamic_policy_zone;
1630 }
1631
1632 /*
1633 * Return a nodemask representing a mempolicy for filtering nodes for
1634 * page allocation
1635 */
1636 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1637 {
1638 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1639 if (unlikely(policy->mode == MPOL_BIND) &&
1640 apply_policy_zone(policy, gfp_zone(gfp)) &&
1641 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1642 return &policy->v.nodes;
1643
1644 return NULL;
1645 }
1646
1647 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1648 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1649 int nd)
1650 {
1651 switch (policy->mode) {
1652 case MPOL_PREFERRED:
1653 if (!(policy->flags & MPOL_F_LOCAL))
1654 nd = policy->v.preferred_node;
1655 break;
1656 case MPOL_BIND:
1657 /*
1658 * Normally, MPOL_BIND allocations are node-local within the
1659 * allowed nodemask. However, if __GFP_THISNODE is set and the
1660 * current node isn't part of the mask, we use the zonelist for
1661 * the first node in the mask instead.
1662 */
1663 if (unlikely(gfp & __GFP_THISNODE) &&
1664 unlikely(!node_isset(nd, policy->v.nodes)))
1665 nd = first_node(policy->v.nodes);
1666 break;
1667 default:
1668 BUG();
1669 }
1670 return node_zonelist(nd, gfp);
1671 }
1672
1673 /* Do dynamic interleaving for a process */
1674 static unsigned interleave_nodes(struct mempolicy *policy)
1675 {
1676 unsigned nid, next;
1677 struct task_struct *me = current;
1678
1679 nid = me->il_next;
1680 next = next_node(nid, policy->v.nodes);
1681 if (next >= MAX_NUMNODES)
1682 next = first_node(policy->v.nodes);
1683 if (next < MAX_NUMNODES)
1684 me->il_next = next;
1685 return nid;
1686 }
1687
1688 /*
1689 * Depending on the memory policy provide a node from which to allocate the
1690 * next slab entry.
1691 */
1692 unsigned int mempolicy_slab_node(void)
1693 {
1694 struct mempolicy *policy;
1695 int node = numa_mem_id();
1696
1697 if (in_interrupt())
1698 return node;
1699
1700 policy = current->mempolicy;
1701 if (!policy || policy->flags & MPOL_F_LOCAL)
1702 return node;
1703
1704 switch (policy->mode) {
1705 case MPOL_PREFERRED:
1706 /*
1707 * handled MPOL_F_LOCAL above
1708 */
1709 return policy->v.preferred_node;
1710
1711 case MPOL_INTERLEAVE:
1712 return interleave_nodes(policy);
1713
1714 case MPOL_BIND: {
1715 /*
1716 * Follow bind policy behavior and start allocation at the
1717 * first node.
1718 */
1719 struct zonelist *zonelist;
1720 struct zone *zone;
1721 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1722 zonelist = &NODE_DATA(node)->node_zonelists[0];
1723 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1724 &policy->v.nodes,
1725 &zone);
1726 return zone ? zone->node : node;
1727 }
1728
1729 default:
1730 BUG();
1731 }
1732 }
1733
1734 /* Do static interleaving for a VMA with known offset. */
1735 static unsigned offset_il_node(struct mempolicy *pol,
1736 struct vm_area_struct *vma, unsigned long off)
1737 {
1738 unsigned nnodes = nodes_weight(pol->v.nodes);
1739 unsigned target;
1740 int c;
1741 int nid = NUMA_NO_NODE;
1742
1743 if (!nnodes)
1744 return numa_node_id();
1745 target = (unsigned int)off % nnodes;
1746 c = 0;
1747 do {
1748 nid = next_node(nid, pol->v.nodes);
1749 c++;
1750 } while (c <= target);
1751 return nid;
1752 }
1753
1754 /* Determine a node number for interleave */
1755 static inline unsigned interleave_nid(struct mempolicy *pol,
1756 struct vm_area_struct *vma, unsigned long addr, int shift)
1757 {
1758 if (vma) {
1759 unsigned long off;
1760
1761 /*
1762 * for small pages, there is no difference between
1763 * shift and PAGE_SHIFT, so the bit-shift is safe.
1764 * for huge pages, since vm_pgoff is in units of small
1765 * pages, we need to shift off the always 0 bits to get
1766 * a useful offset.
1767 */
1768 BUG_ON(shift < PAGE_SHIFT);
1769 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1770 off += (addr - vma->vm_start) >> shift;
1771 return offset_il_node(pol, vma, off);
1772 } else
1773 return interleave_nodes(pol);
1774 }
1775
1776 /*
1777 * Return the bit number of a random bit set in the nodemask.
1778 * (returns NUMA_NO_NODE if nodemask is empty)
1779 */
1780 int node_random(const nodemask_t *maskp)
1781 {
1782 int w, bit = NUMA_NO_NODE;
1783
1784 w = nodes_weight(*maskp);
1785 if (w)
1786 bit = bitmap_ord_to_pos(maskp->bits,
1787 get_random_int() % w, MAX_NUMNODES);
1788 return bit;
1789 }
1790
1791 #ifdef CONFIG_HUGETLBFS
1792 /*
1793 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1794 * @vma: virtual memory area whose policy is sought
1795 * @addr: address in @vma for shared policy lookup and interleave policy
1796 * @gfp_flags: for requested zone
1797 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1798 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1799 *
1800 * Returns a zonelist suitable for a huge page allocation and a pointer
1801 * to the struct mempolicy for conditional unref after allocation.
1802 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1803 * @nodemask for filtering the zonelist.
1804 *
1805 * Must be protected by read_mems_allowed_begin()
1806 */
1807 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1808 gfp_t gfp_flags, struct mempolicy **mpol,
1809 nodemask_t **nodemask)
1810 {
1811 struct zonelist *zl;
1812
1813 *mpol = get_vma_policy(vma, addr);
1814 *nodemask = NULL; /* assume !MPOL_BIND */
1815
1816 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1817 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1818 huge_page_shift(hstate_vma(vma))), gfp_flags);
1819 } else {
1820 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1821 if ((*mpol)->mode == MPOL_BIND)
1822 *nodemask = &(*mpol)->v.nodes;
1823 }
1824 return zl;
1825 }
1826
1827 /*
1828 * init_nodemask_of_mempolicy
1829 *
1830 * If the current task's mempolicy is "default" [NULL], return 'false'
1831 * to indicate default policy. Otherwise, extract the policy nodemask
1832 * for 'bind' or 'interleave' policy into the argument nodemask, or
1833 * initialize the argument nodemask to contain the single node for
1834 * 'preferred' or 'local' policy and return 'true' to indicate presence
1835 * of non-default mempolicy.
1836 *
1837 * We don't bother with reference counting the mempolicy [mpol_get/put]
1838 * because the current task is examining it's own mempolicy and a task's
1839 * mempolicy is only ever changed by the task itself.
1840 *
1841 * N.B., it is the caller's responsibility to free a returned nodemask.
1842 */
1843 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1844 {
1845 struct mempolicy *mempolicy;
1846 int nid;
1847
1848 if (!(mask && current->mempolicy))
1849 return false;
1850
1851 task_lock(current);
1852 mempolicy = current->mempolicy;
1853 switch (mempolicy->mode) {
1854 case MPOL_PREFERRED:
1855 if (mempolicy->flags & MPOL_F_LOCAL)
1856 nid = numa_node_id();
1857 else
1858 nid = mempolicy->v.preferred_node;
1859 init_nodemask_of_node(mask, nid);
1860 break;
1861
1862 case MPOL_BIND:
1863 /* Fall through */
1864 case MPOL_INTERLEAVE:
1865 *mask = mempolicy->v.nodes;
1866 break;
1867
1868 default:
1869 BUG();
1870 }
1871 task_unlock(current);
1872
1873 return true;
1874 }
1875 #endif
1876
1877 /*
1878 * mempolicy_nodemask_intersects
1879 *
1880 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1881 * policy. Otherwise, check for intersection between mask and the policy
1882 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1883 * policy, always return true since it may allocate elsewhere on fallback.
1884 *
1885 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1886 */
1887 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1888 const nodemask_t *mask)
1889 {
1890 struct mempolicy *mempolicy;
1891 bool ret = true;
1892
1893 if (!mask)
1894 return ret;
1895 task_lock(tsk);
1896 mempolicy = tsk->mempolicy;
1897 if (!mempolicy)
1898 goto out;
1899
1900 switch (mempolicy->mode) {
1901 case MPOL_PREFERRED:
1902 /*
1903 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1904 * allocate from, they may fallback to other nodes when oom.
1905 * Thus, it's possible for tsk to have allocated memory from
1906 * nodes in mask.
1907 */
1908 break;
1909 case MPOL_BIND:
1910 case MPOL_INTERLEAVE:
1911 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1912 break;
1913 default:
1914 BUG();
1915 }
1916 out:
1917 task_unlock(tsk);
1918 return ret;
1919 }
1920
1921 /* Allocate a page in interleaved policy.
1922 Own path because it needs to do special accounting. */
1923 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1924 unsigned nid)
1925 {
1926 struct zonelist *zl;
1927 struct page *page;
1928
1929 zl = node_zonelist(nid, gfp);
1930 page = __alloc_pages(gfp, order, zl);
1931 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1932 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1933 return page;
1934 }
1935
1936 /**
1937 * alloc_pages_vma - Allocate a page for a VMA.
1938 *
1939 * @gfp:
1940 * %GFP_USER user allocation.
1941 * %GFP_KERNEL kernel allocations,
1942 * %GFP_HIGHMEM highmem/user allocations,
1943 * %GFP_FS allocation should not call back into a file system.
1944 * %GFP_ATOMIC don't sleep.
1945 *
1946 * @order:Order of the GFP allocation.
1947 * @vma: Pointer to VMA or NULL if not available.
1948 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1949 * @node: Which node to prefer for allocation (modulo policy).
1950 * @hugepage: for hugepages try only the preferred node if possible
1951 *
1952 * This function allocates a page from the kernel page pool and applies
1953 * a NUMA policy associated with the VMA or the current process.
1954 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1955 * mm_struct of the VMA to prevent it from going away. Should be used for
1956 * all allocations for pages that will be mapped into user space. Returns
1957 * NULL when no page can be allocated.
1958 */
1959 struct page *
1960 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1961 unsigned long addr, int node, bool hugepage)
1962 {
1963 struct mempolicy *pol;
1964 struct page *page;
1965 unsigned int cpuset_mems_cookie;
1966 struct zonelist *zl;
1967 nodemask_t *nmask;
1968
1969 retry_cpuset:
1970 pol = get_vma_policy(vma, addr);
1971 cpuset_mems_cookie = read_mems_allowed_begin();
1972
1973 if (pol->mode == MPOL_INTERLEAVE) {
1974 unsigned nid;
1975
1976 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1977 mpol_cond_put(pol);
1978 page = alloc_page_interleave(gfp, order, nid);
1979 goto out;
1980 }
1981
1982 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1983 int hpage_node = node;
1984
1985 /*
1986 * For hugepage allocation and non-interleave policy which
1987 * allows the current node (or other explicitly preferred
1988 * node) we only try to allocate from the current/preferred
1989 * node and don't fall back to other nodes, as the cost of
1990 * remote accesses would likely offset THP benefits.
1991 *
1992 * If the policy is interleave, or does not allow the current
1993 * node in its nodemask, we allocate the standard way.
1994 */
1995 if (pol->mode == MPOL_PREFERRED &&
1996 !(pol->flags & MPOL_F_LOCAL))
1997 hpage_node = pol->v.preferred_node;
1998
1999 nmask = policy_nodemask(gfp, pol);
2000 if (!nmask || node_isset(hpage_node, *nmask)) {
2001 mpol_cond_put(pol);
2002 page = __alloc_pages_node(hpage_node,
2003 gfp | __GFP_THISNODE, order);
2004 goto out;
2005 }
2006 }
2007
2008 nmask = policy_nodemask(gfp, pol);
2009 zl = policy_zonelist(gfp, pol, node);
2010 mpol_cond_put(pol);
2011 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2012 out:
2013 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2014 goto retry_cpuset;
2015 return page;
2016 }
2017
2018 /**
2019 * alloc_pages_current - Allocate pages.
2020 *
2021 * @gfp:
2022 * %GFP_USER user allocation,
2023 * %GFP_KERNEL kernel allocation,
2024 * %GFP_HIGHMEM highmem allocation,
2025 * %GFP_FS don't call back into a file system.
2026 * %GFP_ATOMIC don't sleep.
2027 * @order: Power of two of allocation size in pages. 0 is a single page.
2028 *
2029 * Allocate a page from the kernel page pool. When not in
2030 * interrupt context and apply the current process NUMA policy.
2031 * Returns NULL when no page can be allocated.
2032 *
2033 * Don't call cpuset_update_task_memory_state() unless
2034 * 1) it's ok to take cpuset_sem (can WAIT), and
2035 * 2) allocating for current task (not interrupt).
2036 */
2037 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2038 {
2039 struct mempolicy *pol = &default_policy;
2040 struct page *page;
2041 unsigned int cpuset_mems_cookie;
2042
2043 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2044 pol = get_task_policy(current);
2045
2046 retry_cpuset:
2047 cpuset_mems_cookie = read_mems_allowed_begin();
2048
2049 /*
2050 * No reference counting needed for current->mempolicy
2051 * nor system default_policy
2052 */
2053 if (pol->mode == MPOL_INTERLEAVE)
2054 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2055 else
2056 page = __alloc_pages_nodemask(gfp, order,
2057 policy_zonelist(gfp, pol, numa_node_id()),
2058 policy_nodemask(gfp, pol));
2059
2060 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2061 goto retry_cpuset;
2062
2063 return page;
2064 }
2065 EXPORT_SYMBOL(alloc_pages_current);
2066
2067 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2068 {
2069 struct mempolicy *pol = mpol_dup(vma_policy(src));
2070
2071 if (IS_ERR(pol))
2072 return PTR_ERR(pol);
2073 dst->vm_policy = pol;
2074 return 0;
2075 }
2076
2077 /*
2078 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2079 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2080 * with the mems_allowed returned by cpuset_mems_allowed(). This
2081 * keeps mempolicies cpuset relative after its cpuset moves. See
2082 * further kernel/cpuset.c update_nodemask().
2083 *
2084 * current's mempolicy may be rebinded by the other task(the task that changes
2085 * cpuset's mems), so we needn't do rebind work for current task.
2086 */
2087
2088 /* Slow path of a mempolicy duplicate */
2089 struct mempolicy *__mpol_dup(struct mempolicy *old)
2090 {
2091 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2092
2093 if (!new)
2094 return ERR_PTR(-ENOMEM);
2095
2096 /* task's mempolicy is protected by alloc_lock */
2097 if (old == current->mempolicy) {
2098 task_lock(current);
2099 *new = *old;
2100 task_unlock(current);
2101 } else
2102 *new = *old;
2103
2104 if (current_cpuset_is_being_rebound()) {
2105 nodemask_t mems = cpuset_mems_allowed(current);
2106 if (new->flags & MPOL_F_REBINDING)
2107 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2108 else
2109 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2110 }
2111 atomic_set(&new->refcnt, 1);
2112 return new;
2113 }
2114
2115 /* Slow path of a mempolicy comparison */
2116 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2117 {
2118 if (!a || !b)
2119 return false;
2120 if (a->mode != b->mode)
2121 return false;
2122 if (a->flags != b->flags)
2123 return false;
2124 if (mpol_store_user_nodemask(a))
2125 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2126 return false;
2127
2128 switch (a->mode) {
2129 case MPOL_BIND:
2130 /* Fall through */
2131 case MPOL_INTERLEAVE:
2132 return !!nodes_equal(a->v.nodes, b->v.nodes);
2133 case MPOL_PREFERRED:
2134 return a->v.preferred_node == b->v.preferred_node;
2135 default:
2136 BUG();
2137 return false;
2138 }
2139 }
2140
2141 /*
2142 * Shared memory backing store policy support.
2143 *
2144 * Remember policies even when nobody has shared memory mapped.
2145 * The policies are kept in Red-Black tree linked from the inode.
2146 * They are protected by the sp->lock spinlock, which should be held
2147 * for any accesses to the tree.
2148 */
2149
2150 /* lookup first element intersecting start-end */
2151 /* Caller holds sp->lock */
2152 static struct sp_node *
2153 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2154 {
2155 struct rb_node *n = sp->root.rb_node;
2156
2157 while (n) {
2158 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2159
2160 if (start >= p->end)
2161 n = n->rb_right;
2162 else if (end <= p->start)
2163 n = n->rb_left;
2164 else
2165 break;
2166 }
2167 if (!n)
2168 return NULL;
2169 for (;;) {
2170 struct sp_node *w = NULL;
2171 struct rb_node *prev = rb_prev(n);
2172 if (!prev)
2173 break;
2174 w = rb_entry(prev, struct sp_node, nd);
2175 if (w->end <= start)
2176 break;
2177 n = prev;
2178 }
2179 return rb_entry(n, struct sp_node, nd);
2180 }
2181
2182 /* Insert a new shared policy into the list. */
2183 /* Caller holds sp->lock */
2184 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2185 {
2186 struct rb_node **p = &sp->root.rb_node;
2187 struct rb_node *parent = NULL;
2188 struct sp_node *nd;
2189
2190 while (*p) {
2191 parent = *p;
2192 nd = rb_entry(parent, struct sp_node, nd);
2193 if (new->start < nd->start)
2194 p = &(*p)->rb_left;
2195 else if (new->end > nd->end)
2196 p = &(*p)->rb_right;
2197 else
2198 BUG();
2199 }
2200 rb_link_node(&new->nd, parent, p);
2201 rb_insert_color(&new->nd, &sp->root);
2202 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2203 new->policy ? new->policy->mode : 0);
2204 }
2205
2206 /* Find shared policy intersecting idx */
2207 struct mempolicy *
2208 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2209 {
2210 struct mempolicy *pol = NULL;
2211 struct sp_node *sn;
2212
2213 if (!sp->root.rb_node)
2214 return NULL;
2215 spin_lock(&sp->lock);
2216 sn = sp_lookup(sp, idx, idx+1);
2217 if (sn) {
2218 mpol_get(sn->policy);
2219 pol = sn->policy;
2220 }
2221 spin_unlock(&sp->lock);
2222 return pol;
2223 }
2224
2225 static void sp_free(struct sp_node *n)
2226 {
2227 mpol_put(n->policy);
2228 kmem_cache_free(sn_cache, n);
2229 }
2230
2231 /**
2232 * mpol_misplaced - check whether current page node is valid in policy
2233 *
2234 * @page: page to be checked
2235 * @vma: vm area where page mapped
2236 * @addr: virtual address where page mapped
2237 *
2238 * Lookup current policy node id for vma,addr and "compare to" page's
2239 * node id.
2240 *
2241 * Returns:
2242 * -1 - not misplaced, page is in the right node
2243 * node - node id where the page should be
2244 *
2245 * Policy determination "mimics" alloc_page_vma().
2246 * Called from fault path where we know the vma and faulting address.
2247 */
2248 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2249 {
2250 struct mempolicy *pol;
2251 struct zone *zone;
2252 int curnid = page_to_nid(page);
2253 unsigned long pgoff;
2254 int thiscpu = raw_smp_processor_id();
2255 int thisnid = cpu_to_node(thiscpu);
2256 int polnid = -1;
2257 int ret = -1;
2258
2259 BUG_ON(!vma);
2260
2261 pol = get_vma_policy(vma, addr);
2262 if (!(pol->flags & MPOL_F_MOF))
2263 goto out;
2264
2265 switch (pol->mode) {
2266 case MPOL_INTERLEAVE:
2267 BUG_ON(addr >= vma->vm_end);
2268 BUG_ON(addr < vma->vm_start);
2269
2270 pgoff = vma->vm_pgoff;
2271 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2272 polnid = offset_il_node(pol, vma, pgoff);
2273 break;
2274
2275 case MPOL_PREFERRED:
2276 if (pol->flags & MPOL_F_LOCAL)
2277 polnid = numa_node_id();
2278 else
2279 polnid = pol->v.preferred_node;
2280 break;
2281
2282 case MPOL_BIND:
2283 /*
2284 * allows binding to multiple nodes.
2285 * use current page if in policy nodemask,
2286 * else select nearest allowed node, if any.
2287 * If no allowed nodes, use current [!misplaced].
2288 */
2289 if (node_isset(curnid, pol->v.nodes))
2290 goto out;
2291 (void)first_zones_zonelist(
2292 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2293 gfp_zone(GFP_HIGHUSER),
2294 &pol->v.nodes, &zone);
2295 polnid = zone->node;
2296 break;
2297
2298 default:
2299 BUG();
2300 }
2301
2302 /* Migrate the page towards the node whose CPU is referencing it */
2303 if (pol->flags & MPOL_F_MORON) {
2304 polnid = thisnid;
2305
2306 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2307 goto out;
2308 }
2309
2310 if (curnid != polnid)
2311 ret = polnid;
2312 out:
2313 mpol_cond_put(pol);
2314
2315 return ret;
2316 }
2317
2318 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2319 {
2320 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2321 rb_erase(&n->nd, &sp->root);
2322 sp_free(n);
2323 }
2324
2325 static void sp_node_init(struct sp_node *node, unsigned long start,
2326 unsigned long end, struct mempolicy *pol)
2327 {
2328 node->start = start;
2329 node->end = end;
2330 node->policy = pol;
2331 }
2332
2333 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2334 struct mempolicy *pol)
2335 {
2336 struct sp_node *n;
2337 struct mempolicy *newpol;
2338
2339 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2340 if (!n)
2341 return NULL;
2342
2343 newpol = mpol_dup(pol);
2344 if (IS_ERR(newpol)) {
2345 kmem_cache_free(sn_cache, n);
2346 return NULL;
2347 }
2348 newpol->flags |= MPOL_F_SHARED;
2349 sp_node_init(n, start, end, newpol);
2350
2351 return n;
2352 }
2353
2354 /* Replace a policy range. */
2355 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2356 unsigned long end, struct sp_node *new)
2357 {
2358 struct sp_node *n;
2359 struct sp_node *n_new = NULL;
2360 struct mempolicy *mpol_new = NULL;
2361 int ret = 0;
2362
2363 restart:
2364 spin_lock(&sp->lock);
2365 n = sp_lookup(sp, start, end);
2366 /* Take care of old policies in the same range. */
2367 while (n && n->start < end) {
2368 struct rb_node *next = rb_next(&n->nd);
2369 if (n->start >= start) {
2370 if (n->end <= end)
2371 sp_delete(sp, n);
2372 else
2373 n->start = end;
2374 } else {
2375 /* Old policy spanning whole new range. */
2376 if (n->end > end) {
2377 if (!n_new)
2378 goto alloc_new;
2379
2380 *mpol_new = *n->policy;
2381 atomic_set(&mpol_new->refcnt, 1);
2382 sp_node_init(n_new, end, n->end, mpol_new);
2383 n->end = start;
2384 sp_insert(sp, n_new);
2385 n_new = NULL;
2386 mpol_new = NULL;
2387 break;
2388 } else
2389 n->end = start;
2390 }
2391 if (!next)
2392 break;
2393 n = rb_entry(next, struct sp_node, nd);
2394 }
2395 if (new)
2396 sp_insert(sp, new);
2397 spin_unlock(&sp->lock);
2398 ret = 0;
2399
2400 err_out:
2401 if (mpol_new)
2402 mpol_put(mpol_new);
2403 if (n_new)
2404 kmem_cache_free(sn_cache, n_new);
2405
2406 return ret;
2407
2408 alloc_new:
2409 spin_unlock(&sp->lock);
2410 ret = -ENOMEM;
2411 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2412 if (!n_new)
2413 goto err_out;
2414 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2415 if (!mpol_new)
2416 goto err_out;
2417 goto restart;
2418 }
2419
2420 /**
2421 * mpol_shared_policy_init - initialize shared policy for inode
2422 * @sp: pointer to inode shared policy
2423 * @mpol: struct mempolicy to install
2424 *
2425 * Install non-NULL @mpol in inode's shared policy rb-tree.
2426 * On entry, the current task has a reference on a non-NULL @mpol.
2427 * This must be released on exit.
2428 * This is called at get_inode() calls and we can use GFP_KERNEL.
2429 */
2430 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2431 {
2432 int ret;
2433
2434 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2435 spin_lock_init(&sp->lock);
2436
2437 if (mpol) {
2438 struct vm_area_struct pvma;
2439 struct mempolicy *new;
2440 NODEMASK_SCRATCH(scratch);
2441
2442 if (!scratch)
2443 goto put_mpol;
2444 /* contextualize the tmpfs mount point mempolicy */
2445 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2446 if (IS_ERR(new))
2447 goto free_scratch; /* no valid nodemask intersection */
2448
2449 task_lock(current);
2450 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2451 task_unlock(current);
2452 if (ret)
2453 goto put_new;
2454
2455 /* Create pseudo-vma that contains just the policy */
2456 memset(&pvma, 0, sizeof(struct vm_area_struct));
2457 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2458 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2459
2460 put_new:
2461 mpol_put(new); /* drop initial ref */
2462 free_scratch:
2463 NODEMASK_SCRATCH_FREE(scratch);
2464 put_mpol:
2465 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2466 }
2467 }
2468
2469 int mpol_set_shared_policy(struct shared_policy *info,
2470 struct vm_area_struct *vma, struct mempolicy *npol)
2471 {
2472 int err;
2473 struct sp_node *new = NULL;
2474 unsigned long sz = vma_pages(vma);
2475
2476 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2477 vma->vm_pgoff,
2478 sz, npol ? npol->mode : -1,
2479 npol ? npol->flags : -1,
2480 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2481
2482 if (npol) {
2483 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2484 if (!new)
2485 return -ENOMEM;
2486 }
2487 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2488 if (err && new)
2489 sp_free(new);
2490 return err;
2491 }
2492
2493 /* Free a backing policy store on inode delete. */
2494 void mpol_free_shared_policy(struct shared_policy *p)
2495 {
2496 struct sp_node *n;
2497 struct rb_node *next;
2498
2499 if (!p->root.rb_node)
2500 return;
2501 spin_lock(&p->lock);
2502 next = rb_first(&p->root);
2503 while (next) {
2504 n = rb_entry(next, struct sp_node, nd);
2505 next = rb_next(&n->nd);
2506 sp_delete(p, n);
2507 }
2508 spin_unlock(&p->lock);
2509 }
2510
2511 #ifdef CONFIG_NUMA_BALANCING
2512 static int __initdata numabalancing_override;
2513
2514 static void __init check_numabalancing_enable(void)
2515 {
2516 bool numabalancing_default = false;
2517
2518 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2519 numabalancing_default = true;
2520
2521 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2522 if (numabalancing_override)
2523 set_numabalancing_state(numabalancing_override == 1);
2524
2525 if (num_online_nodes() > 1 && !numabalancing_override) {
2526 pr_info("%s automatic NUMA balancing. "
2527 "Configure with numa_balancing= or the "
2528 "kernel.numa_balancing sysctl",
2529 numabalancing_default ? "Enabling" : "Disabling");
2530 set_numabalancing_state(numabalancing_default);
2531 }
2532 }
2533
2534 static int __init setup_numabalancing(char *str)
2535 {
2536 int ret = 0;
2537 if (!str)
2538 goto out;
2539
2540 if (!strcmp(str, "enable")) {
2541 numabalancing_override = 1;
2542 ret = 1;
2543 } else if (!strcmp(str, "disable")) {
2544 numabalancing_override = -1;
2545 ret = 1;
2546 }
2547 out:
2548 if (!ret)
2549 pr_warn("Unable to parse numa_balancing=\n");
2550
2551 return ret;
2552 }
2553 __setup("numa_balancing=", setup_numabalancing);
2554 #else
2555 static inline void __init check_numabalancing_enable(void)
2556 {
2557 }
2558 #endif /* CONFIG_NUMA_BALANCING */
2559
2560 /* assumes fs == KERNEL_DS */
2561 void __init numa_policy_init(void)
2562 {
2563 nodemask_t interleave_nodes;
2564 unsigned long largest = 0;
2565 int nid, prefer = 0;
2566
2567 policy_cache = kmem_cache_create("numa_policy",
2568 sizeof(struct mempolicy),
2569 0, SLAB_PANIC, NULL);
2570
2571 sn_cache = kmem_cache_create("shared_policy_node",
2572 sizeof(struct sp_node),
2573 0, SLAB_PANIC, NULL);
2574
2575 for_each_node(nid) {
2576 preferred_node_policy[nid] = (struct mempolicy) {
2577 .refcnt = ATOMIC_INIT(1),
2578 .mode = MPOL_PREFERRED,
2579 .flags = MPOL_F_MOF | MPOL_F_MORON,
2580 .v = { .preferred_node = nid, },
2581 };
2582 }
2583
2584 /*
2585 * Set interleaving policy for system init. Interleaving is only
2586 * enabled across suitably sized nodes (default is >= 16MB), or
2587 * fall back to the largest node if they're all smaller.
2588 */
2589 nodes_clear(interleave_nodes);
2590 for_each_node_state(nid, N_MEMORY) {
2591 unsigned long total_pages = node_present_pages(nid);
2592
2593 /* Preserve the largest node */
2594 if (largest < total_pages) {
2595 largest = total_pages;
2596 prefer = nid;
2597 }
2598
2599 /* Interleave this node? */
2600 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2601 node_set(nid, interleave_nodes);
2602 }
2603
2604 /* All too small, use the largest */
2605 if (unlikely(nodes_empty(interleave_nodes)))
2606 node_set(prefer, interleave_nodes);
2607
2608 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2609 pr_err("%s: interleaving failed\n", __func__);
2610
2611 check_numabalancing_enable();
2612 }
2613
2614 /* Reset policy of current process to default */
2615 void numa_default_policy(void)
2616 {
2617 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2618 }
2619
2620 /*
2621 * Parse and format mempolicy from/to strings
2622 */
2623
2624 /*
2625 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2626 */
2627 static const char * const policy_modes[] =
2628 {
2629 [MPOL_DEFAULT] = "default",
2630 [MPOL_PREFERRED] = "prefer",
2631 [MPOL_BIND] = "bind",
2632 [MPOL_INTERLEAVE] = "interleave",
2633 [MPOL_LOCAL] = "local",
2634 };
2635
2636
2637 #ifdef CONFIG_TMPFS
2638 /**
2639 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2640 * @str: string containing mempolicy to parse
2641 * @mpol: pointer to struct mempolicy pointer, returned on success.
2642 *
2643 * Format of input:
2644 * <mode>[=<flags>][:<nodelist>]
2645 *
2646 * On success, returns 0, else 1
2647 */
2648 int mpol_parse_str(char *str, struct mempolicy **mpol)
2649 {
2650 struct mempolicy *new = NULL;
2651 unsigned short mode;
2652 unsigned short mode_flags;
2653 nodemask_t nodes;
2654 char *nodelist = strchr(str, ':');
2655 char *flags = strchr(str, '=');
2656 int err = 1;
2657
2658 if (nodelist) {
2659 /* NUL-terminate mode or flags string */
2660 *nodelist++ = '\0';
2661 if (nodelist_parse(nodelist, nodes))
2662 goto out;
2663 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2664 goto out;
2665 } else
2666 nodes_clear(nodes);
2667
2668 if (flags)
2669 *flags++ = '\0'; /* terminate mode string */
2670
2671 for (mode = 0; mode < MPOL_MAX; mode++) {
2672 if (!strcmp(str, policy_modes[mode])) {
2673 break;
2674 }
2675 }
2676 if (mode >= MPOL_MAX)
2677 goto out;
2678
2679 switch (mode) {
2680 case MPOL_PREFERRED:
2681 /*
2682 * Insist on a nodelist of one node only
2683 */
2684 if (nodelist) {
2685 char *rest = nodelist;
2686 while (isdigit(*rest))
2687 rest++;
2688 if (*rest)
2689 goto out;
2690 }
2691 break;
2692 case MPOL_INTERLEAVE:
2693 /*
2694 * Default to online nodes with memory if no nodelist
2695 */
2696 if (!nodelist)
2697 nodes = node_states[N_MEMORY];
2698 break;
2699 case MPOL_LOCAL:
2700 /*
2701 * Don't allow a nodelist; mpol_new() checks flags
2702 */
2703 if (nodelist)
2704 goto out;
2705 mode = MPOL_PREFERRED;
2706 break;
2707 case MPOL_DEFAULT:
2708 /*
2709 * Insist on a empty nodelist
2710 */
2711 if (!nodelist)
2712 err = 0;
2713 goto out;
2714 case MPOL_BIND:
2715 /*
2716 * Insist on a nodelist
2717 */
2718 if (!nodelist)
2719 goto out;
2720 }
2721
2722 mode_flags = 0;
2723 if (flags) {
2724 /*
2725 * Currently, we only support two mutually exclusive
2726 * mode flags.
2727 */
2728 if (!strcmp(flags, "static"))
2729 mode_flags |= MPOL_F_STATIC_NODES;
2730 else if (!strcmp(flags, "relative"))
2731 mode_flags |= MPOL_F_RELATIVE_NODES;
2732 else
2733 goto out;
2734 }
2735
2736 new = mpol_new(mode, mode_flags, &nodes);
2737 if (IS_ERR(new))
2738 goto out;
2739
2740 /*
2741 * Save nodes for mpol_to_str() to show the tmpfs mount options
2742 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2743 */
2744 if (mode != MPOL_PREFERRED)
2745 new->v.nodes = nodes;
2746 else if (nodelist)
2747 new->v.preferred_node = first_node(nodes);
2748 else
2749 new->flags |= MPOL_F_LOCAL;
2750
2751 /*
2752 * Save nodes for contextualization: this will be used to "clone"
2753 * the mempolicy in a specific context [cpuset] at a later time.
2754 */
2755 new->w.user_nodemask = nodes;
2756
2757 err = 0;
2758
2759 out:
2760 /* Restore string for error message */
2761 if (nodelist)
2762 *--nodelist = ':';
2763 if (flags)
2764 *--flags = '=';
2765 if (!err)
2766 *mpol = new;
2767 return err;
2768 }
2769 #endif /* CONFIG_TMPFS */
2770
2771 /**
2772 * mpol_to_str - format a mempolicy structure for printing
2773 * @buffer: to contain formatted mempolicy string
2774 * @maxlen: length of @buffer
2775 * @pol: pointer to mempolicy to be formatted
2776 *
2777 * Convert @pol into a string. If @buffer is too short, truncate the string.
2778 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2779 * longest flag, "relative", and to display at least a few node ids.
2780 */
2781 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2782 {
2783 char *p = buffer;
2784 nodemask_t nodes = NODE_MASK_NONE;
2785 unsigned short mode = MPOL_DEFAULT;
2786 unsigned short flags = 0;
2787
2788 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2789 mode = pol->mode;
2790 flags = pol->flags;
2791 }
2792
2793 switch (mode) {
2794 case MPOL_DEFAULT:
2795 break;
2796 case MPOL_PREFERRED:
2797 if (flags & MPOL_F_LOCAL)
2798 mode = MPOL_LOCAL;
2799 else
2800 node_set(pol->v.preferred_node, nodes);
2801 break;
2802 case MPOL_BIND:
2803 case MPOL_INTERLEAVE:
2804 nodes = pol->v.nodes;
2805 break;
2806 default:
2807 WARN_ON_ONCE(1);
2808 snprintf(p, maxlen, "unknown");
2809 return;
2810 }
2811
2812 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2813
2814 if (flags & MPOL_MODE_FLAGS) {
2815 p += snprintf(p, buffer + maxlen - p, "=");
2816
2817 /*
2818 * Currently, the only defined flags are mutually exclusive
2819 */
2820 if (flags & MPOL_F_STATIC_NODES)
2821 p += snprintf(p, buffer + maxlen - p, "static");
2822 else if (flags & MPOL_F_RELATIVE_NODES)
2823 p += snprintf(p, buffer + maxlen - p, "relative");
2824 }
2825
2826 if (!nodes_empty(nodes))
2827 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2828 nodemask_pr_args(&nodes));
2829 }