Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126 int node;
127
128 if (!pol) {
129 node = numa_node_id();
130 if (node != -1)
131 pol = &preferred_node_policy[node];
132
133 /* preferred_node_policy is not initialised early in boot */
134 if (!pol->mode)
135 pol = NULL;
136 }
137
138 return pol;
139 }
140
141 static const struct mempolicy_operations {
142 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
143 /*
144 * If read-side task has no lock to protect task->mempolicy, write-side
145 * task will rebind the task->mempolicy by two step. The first step is
146 * setting all the newly nodes, and the second step is cleaning all the
147 * disallowed nodes. In this way, we can avoid finding no node to alloc
148 * page.
149 * If we have a lock to protect task->mempolicy in read-side, we do
150 * rebind directly.
151 *
152 * step:
153 * MPOL_REBIND_ONCE - do rebind work at once
154 * MPOL_REBIND_STEP1 - set all the newly nodes
155 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
156 */
157 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
158 enum mpol_rebind_step step);
159 } mpol_ops[MPOL_MAX];
160
161 /* Check that the nodemask contains at least one populated zone */
162 static int is_valid_nodemask(const nodemask_t *nodemask)
163 {
164 int nd, k;
165
166 for_each_node_mask(nd, *nodemask) {
167 struct zone *z;
168
169 for (k = 0; k <= policy_zone; k++) {
170 z = &NODE_DATA(nd)->node_zones[k];
171 if (z->present_pages > 0)
172 return 1;
173 }
174 }
175
176 return 0;
177 }
178
179 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
180 {
181 return pol->flags & MPOL_MODE_FLAGS;
182 }
183
184 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
185 const nodemask_t *rel)
186 {
187 nodemask_t tmp;
188 nodes_fold(tmp, *orig, nodes_weight(*rel));
189 nodes_onto(*ret, tmp, *rel);
190 }
191
192 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 if (nodes_empty(*nodes))
195 return -EINVAL;
196 pol->v.nodes = *nodes;
197 return 0;
198 }
199
200 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
201 {
202 if (!nodes)
203 pol->flags |= MPOL_F_LOCAL; /* local allocation */
204 else if (nodes_empty(*nodes))
205 return -EINVAL; /* no allowed nodes */
206 else
207 pol->v.preferred_node = first_node(*nodes);
208 return 0;
209 }
210
211 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
212 {
213 if (!is_valid_nodemask(nodes))
214 return -EINVAL;
215 pol->v.nodes = *nodes;
216 return 0;
217 }
218
219 /*
220 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
221 * any, for the new policy. mpol_new() has already validated the nodes
222 * parameter with respect to the policy mode and flags. But, we need to
223 * handle an empty nodemask with MPOL_PREFERRED here.
224 *
225 * Must be called holding task's alloc_lock to protect task's mems_allowed
226 * and mempolicy. May also be called holding the mmap_semaphore for write.
227 */
228 static int mpol_set_nodemask(struct mempolicy *pol,
229 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 {
231 int ret;
232
233 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
234 if (pol == NULL)
235 return 0;
236 /* Check N_MEMORY */
237 nodes_and(nsc->mask1,
238 cpuset_current_mems_allowed, node_states[N_MEMORY]);
239
240 VM_BUG_ON(!nodes);
241 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
242 nodes = NULL; /* explicit local allocation */
243 else {
244 if (pol->flags & MPOL_F_RELATIVE_NODES)
245 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
246 else
247 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248
249 if (mpol_store_user_nodemask(pol))
250 pol->w.user_nodemask = *nodes;
251 else
252 pol->w.cpuset_mems_allowed =
253 cpuset_current_mems_allowed;
254 }
255
256 if (nodes)
257 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 else
259 ret = mpol_ops[pol->mode].create(pol, NULL);
260 return ret;
261 }
262
263 /*
264 * This function just creates a new policy, does some check and simple
265 * initialization. You must invoke mpol_set_nodemask() to set nodes.
266 */
267 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
268 nodemask_t *nodes)
269 {
270 struct mempolicy *policy;
271
272 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
273 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
274
275 if (mode == MPOL_DEFAULT) {
276 if (nodes && !nodes_empty(*nodes))
277 return ERR_PTR(-EINVAL);
278 return NULL;
279 }
280 VM_BUG_ON(!nodes);
281
282 /*
283 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
284 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
285 * All other modes require a valid pointer to a non-empty nodemask.
286 */
287 if (mode == MPOL_PREFERRED) {
288 if (nodes_empty(*nodes)) {
289 if (((flags & MPOL_F_STATIC_NODES) ||
290 (flags & MPOL_F_RELATIVE_NODES)))
291 return ERR_PTR(-EINVAL);
292 }
293 } else if (mode == MPOL_LOCAL) {
294 if (!nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 mode = MPOL_PREFERRED;
297 } else if (nodes_empty(*nodes))
298 return ERR_PTR(-EINVAL);
299 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
300 if (!policy)
301 return ERR_PTR(-ENOMEM);
302 atomic_set(&policy->refcnt, 1);
303 policy->mode = mode;
304 policy->flags = flags;
305
306 return policy;
307 }
308
309 /* Slow path of a mpol destructor. */
310 void __mpol_put(struct mempolicy *p)
311 {
312 if (!atomic_dec_and_test(&p->refcnt))
313 return;
314 kmem_cache_free(policy_cache, p);
315 }
316
317 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
318 enum mpol_rebind_step step)
319 {
320 }
321
322 /*
323 * step:
324 * MPOL_REBIND_ONCE - do rebind work at once
325 * MPOL_REBIND_STEP1 - set all the newly nodes
326 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
327 */
328 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
329 enum mpol_rebind_step step)
330 {
331 nodemask_t tmp;
332
333 if (pol->flags & MPOL_F_STATIC_NODES)
334 nodes_and(tmp, pol->w.user_nodemask, *nodes);
335 else if (pol->flags & MPOL_F_RELATIVE_NODES)
336 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
337 else {
338 /*
339 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
340 * result
341 */
342 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
343 nodes_remap(tmp, pol->v.nodes,
344 pol->w.cpuset_mems_allowed, *nodes);
345 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
346 } else if (step == MPOL_REBIND_STEP2) {
347 tmp = pol->w.cpuset_mems_allowed;
348 pol->w.cpuset_mems_allowed = *nodes;
349 } else
350 BUG();
351 }
352
353 if (nodes_empty(tmp))
354 tmp = *nodes;
355
356 if (step == MPOL_REBIND_STEP1)
357 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
358 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
359 pol->v.nodes = tmp;
360 else
361 BUG();
362
363 if (!node_isset(current->il_next, tmp)) {
364 current->il_next = next_node(current->il_next, tmp);
365 if (current->il_next >= MAX_NUMNODES)
366 current->il_next = first_node(tmp);
367 if (current->il_next >= MAX_NUMNODES)
368 current->il_next = numa_node_id();
369 }
370 }
371
372 static void mpol_rebind_preferred(struct mempolicy *pol,
373 const nodemask_t *nodes,
374 enum mpol_rebind_step step)
375 {
376 nodemask_t tmp;
377
378 if (pol->flags & MPOL_F_STATIC_NODES) {
379 int node = first_node(pol->w.user_nodemask);
380
381 if (node_isset(node, *nodes)) {
382 pol->v.preferred_node = node;
383 pol->flags &= ~MPOL_F_LOCAL;
384 } else
385 pol->flags |= MPOL_F_LOCAL;
386 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
387 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
388 pol->v.preferred_node = first_node(tmp);
389 } else if (!(pol->flags & MPOL_F_LOCAL)) {
390 pol->v.preferred_node = node_remap(pol->v.preferred_node,
391 pol->w.cpuset_mems_allowed,
392 *nodes);
393 pol->w.cpuset_mems_allowed = *nodes;
394 }
395 }
396
397 /*
398 * mpol_rebind_policy - Migrate a policy to a different set of nodes
399 *
400 * If read-side task has no lock to protect task->mempolicy, write-side
401 * task will rebind the task->mempolicy by two step. The first step is
402 * setting all the newly nodes, and the second step is cleaning all the
403 * disallowed nodes. In this way, we can avoid finding no node to alloc
404 * page.
405 * If we have a lock to protect task->mempolicy in read-side, we do
406 * rebind directly.
407 *
408 * step:
409 * MPOL_REBIND_ONCE - do rebind work at once
410 * MPOL_REBIND_STEP1 - set all the newly nodes
411 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
412 */
413 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
414 enum mpol_rebind_step step)
415 {
416 if (!pol)
417 return;
418 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
419 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
420 return;
421
422 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
423 return;
424
425 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
426 BUG();
427
428 if (step == MPOL_REBIND_STEP1)
429 pol->flags |= MPOL_F_REBINDING;
430 else if (step == MPOL_REBIND_STEP2)
431 pol->flags &= ~MPOL_F_REBINDING;
432 else if (step >= MPOL_REBIND_NSTEP)
433 BUG();
434
435 mpol_ops[pol->mode].rebind(pol, newmask, step);
436 }
437
438 /*
439 * Wrapper for mpol_rebind_policy() that just requires task
440 * pointer, and updates task mempolicy.
441 *
442 * Called with task's alloc_lock held.
443 */
444
445 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
446 enum mpol_rebind_step step)
447 {
448 mpol_rebind_policy(tsk->mempolicy, new, step);
449 }
450
451 /*
452 * Rebind each vma in mm to new nodemask.
453 *
454 * Call holding a reference to mm. Takes mm->mmap_sem during call.
455 */
456
457 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
458 {
459 struct vm_area_struct *vma;
460
461 down_write(&mm->mmap_sem);
462 for (vma = mm->mmap; vma; vma = vma->vm_next)
463 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
464 up_write(&mm->mmap_sem);
465 }
466
467 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
468 [MPOL_DEFAULT] = {
469 .rebind = mpol_rebind_default,
470 },
471 [MPOL_INTERLEAVE] = {
472 .create = mpol_new_interleave,
473 .rebind = mpol_rebind_nodemask,
474 },
475 [MPOL_PREFERRED] = {
476 .create = mpol_new_preferred,
477 .rebind = mpol_rebind_preferred,
478 },
479 [MPOL_BIND] = {
480 .create = mpol_new_bind,
481 .rebind = mpol_rebind_nodemask,
482 },
483 };
484
485 static void migrate_page_add(struct page *page, struct list_head *pagelist,
486 unsigned long flags);
487
488 /* Scan through pages checking if pages follow certain conditions. */
489 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
490 unsigned long addr, unsigned long end,
491 const nodemask_t *nodes, unsigned long flags,
492 void *private)
493 {
494 pte_t *orig_pte;
495 pte_t *pte;
496 spinlock_t *ptl;
497
498 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
499 do {
500 struct page *page;
501 int nid;
502
503 if (!pte_present(*pte))
504 continue;
505 page = vm_normal_page(vma, addr, *pte);
506 if (!page)
507 continue;
508 /*
509 * vm_normal_page() filters out zero pages, but there might
510 * still be PageReserved pages to skip, perhaps in a VDSO.
511 * And we cannot move PageKsm pages sensibly or safely yet.
512 */
513 if (PageReserved(page) || PageKsm(page))
514 continue;
515 nid = page_to_nid(page);
516 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
517 continue;
518
519 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
520 migrate_page_add(page, private, flags);
521 else
522 break;
523 } while (pte++, addr += PAGE_SIZE, addr != end);
524 pte_unmap_unlock(orig_pte, ptl);
525 return addr != end;
526 }
527
528 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
529 unsigned long addr, unsigned long end,
530 const nodemask_t *nodes, unsigned long flags,
531 void *private)
532 {
533 pmd_t *pmd;
534 unsigned long next;
535
536 pmd = pmd_offset(pud, addr);
537 do {
538 next = pmd_addr_end(addr, end);
539 split_huge_page_pmd(vma, addr, pmd);
540 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
541 continue;
542 if (check_pte_range(vma, pmd, addr, next, nodes,
543 flags, private))
544 return -EIO;
545 } while (pmd++, addr = next, addr != end);
546 return 0;
547 }
548
549 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
550 unsigned long addr, unsigned long end,
551 const nodemask_t *nodes, unsigned long flags,
552 void *private)
553 {
554 pud_t *pud;
555 unsigned long next;
556
557 pud = pud_offset(pgd, addr);
558 do {
559 next = pud_addr_end(addr, end);
560 if (pud_none_or_clear_bad(pud))
561 continue;
562 if (check_pmd_range(vma, pud, addr, next, nodes,
563 flags, private))
564 return -EIO;
565 } while (pud++, addr = next, addr != end);
566 return 0;
567 }
568
569 static inline int check_pgd_range(struct vm_area_struct *vma,
570 unsigned long addr, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags,
572 void *private)
573 {
574 pgd_t *pgd;
575 unsigned long next;
576
577 pgd = pgd_offset(vma->vm_mm, addr);
578 do {
579 next = pgd_addr_end(addr, end);
580 if (pgd_none_or_clear_bad(pgd))
581 continue;
582 if (check_pud_range(vma, pgd, addr, next, nodes,
583 flags, private))
584 return -EIO;
585 } while (pgd++, addr = next, addr != end);
586 return 0;
587 }
588
589 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
590 /*
591 * This is used to mark a range of virtual addresses to be inaccessible.
592 * These are later cleared by a NUMA hinting fault. Depending on these
593 * faults, pages may be migrated for better NUMA placement.
594 *
595 * This is assuming that NUMA faults are handled using PROT_NONE. If
596 * an architecture makes a different choice, it will need further
597 * changes to the core.
598 */
599 unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
601 {
602 int nr_updated;
603 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
604
605 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
606 if (nr_updated)
607 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
608
609 return nr_updated;
610 }
611 #else
612 static unsigned long change_prot_numa(struct vm_area_struct *vma,
613 unsigned long addr, unsigned long end)
614 {
615 return 0;
616 }
617 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
618
619 /*
620 * Check if all pages in a range are on a set of nodes.
621 * If pagelist != NULL then isolate pages from the LRU and
622 * put them on the pagelist.
623 */
624 static struct vm_area_struct *
625 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
626 const nodemask_t *nodes, unsigned long flags, void *private)
627 {
628 int err;
629 struct vm_area_struct *first, *vma, *prev;
630
631
632 first = find_vma(mm, start);
633 if (!first)
634 return ERR_PTR(-EFAULT);
635 prev = NULL;
636 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
637 unsigned long endvma = vma->vm_end;
638
639 if (endvma > end)
640 endvma = end;
641 if (vma->vm_start > start)
642 start = vma->vm_start;
643
644 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
645 if (!vma->vm_next && vma->vm_end < end)
646 return ERR_PTR(-EFAULT);
647 if (prev && prev->vm_end < vma->vm_start)
648 return ERR_PTR(-EFAULT);
649 }
650
651 if (is_vm_hugetlb_page(vma))
652 goto next;
653
654 if (flags & MPOL_MF_LAZY) {
655 change_prot_numa(vma, start, endvma);
656 goto next;
657 }
658
659 if ((flags & MPOL_MF_STRICT) ||
660 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
661 vma_migratable(vma))) {
662
663 err = check_pgd_range(vma, start, endvma, nodes,
664 flags, private);
665 if (err) {
666 first = ERR_PTR(err);
667 break;
668 }
669 }
670 next:
671 prev = vma;
672 }
673 return first;
674 }
675
676 /*
677 * Apply policy to a single VMA
678 * This must be called with the mmap_sem held for writing.
679 */
680 static int vma_replace_policy(struct vm_area_struct *vma,
681 struct mempolicy *pol)
682 {
683 int err;
684 struct mempolicy *old;
685 struct mempolicy *new;
686
687 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
688 vma->vm_start, vma->vm_end, vma->vm_pgoff,
689 vma->vm_ops, vma->vm_file,
690 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
691
692 new = mpol_dup(pol);
693 if (IS_ERR(new))
694 return PTR_ERR(new);
695
696 if (vma->vm_ops && vma->vm_ops->set_policy) {
697 err = vma->vm_ops->set_policy(vma, new);
698 if (err)
699 goto err_out;
700 }
701
702 old = vma->vm_policy;
703 vma->vm_policy = new; /* protected by mmap_sem */
704 mpol_put(old);
705
706 return 0;
707 err_out:
708 mpol_put(new);
709 return err;
710 }
711
712 /* Step 2: apply policy to a range and do splits. */
713 static int mbind_range(struct mm_struct *mm, unsigned long start,
714 unsigned long end, struct mempolicy *new_pol)
715 {
716 struct vm_area_struct *next;
717 struct vm_area_struct *prev;
718 struct vm_area_struct *vma;
719 int err = 0;
720 pgoff_t pgoff;
721 unsigned long vmstart;
722 unsigned long vmend;
723
724 vma = find_vma(mm, start);
725 if (!vma || vma->vm_start > start)
726 return -EFAULT;
727
728 prev = vma->vm_prev;
729 if (start > vma->vm_start)
730 prev = vma;
731
732 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
733 next = vma->vm_next;
734 vmstart = max(start, vma->vm_start);
735 vmend = min(end, vma->vm_end);
736
737 if (mpol_equal(vma_policy(vma), new_pol))
738 continue;
739
740 pgoff = vma->vm_pgoff +
741 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
742 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
743 vma->anon_vma, vma->vm_file, pgoff,
744 new_pol);
745 if (prev) {
746 vma = prev;
747 next = vma->vm_next;
748 continue;
749 }
750 if (vma->vm_start != vmstart) {
751 err = split_vma(vma->vm_mm, vma, vmstart, 1);
752 if (err)
753 goto out;
754 }
755 if (vma->vm_end != vmend) {
756 err = split_vma(vma->vm_mm, vma, vmend, 0);
757 if (err)
758 goto out;
759 }
760 err = vma_replace_policy(vma, new_pol);
761 if (err)
762 goto out;
763 }
764
765 out:
766 return err;
767 }
768
769 /*
770 * Update task->flags PF_MEMPOLICY bit: set iff non-default
771 * mempolicy. Allows more rapid checking of this (combined perhaps
772 * with other PF_* flag bits) on memory allocation hot code paths.
773 *
774 * If called from outside this file, the task 'p' should -only- be
775 * a newly forked child not yet visible on the task list, because
776 * manipulating the task flags of a visible task is not safe.
777 *
778 * The above limitation is why this routine has the funny name
779 * mpol_fix_fork_child_flag().
780 *
781 * It is also safe to call this with a task pointer of current,
782 * which the static wrapper mpol_set_task_struct_flag() does,
783 * for use within this file.
784 */
785
786 void mpol_fix_fork_child_flag(struct task_struct *p)
787 {
788 if (p->mempolicy)
789 p->flags |= PF_MEMPOLICY;
790 else
791 p->flags &= ~PF_MEMPOLICY;
792 }
793
794 static void mpol_set_task_struct_flag(void)
795 {
796 mpol_fix_fork_child_flag(current);
797 }
798
799 /* Set the process memory policy */
800 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
801 nodemask_t *nodes)
802 {
803 struct mempolicy *new, *old;
804 struct mm_struct *mm = current->mm;
805 NODEMASK_SCRATCH(scratch);
806 int ret;
807
808 if (!scratch)
809 return -ENOMEM;
810
811 new = mpol_new(mode, flags, nodes);
812 if (IS_ERR(new)) {
813 ret = PTR_ERR(new);
814 goto out;
815 }
816 /*
817 * prevent changing our mempolicy while show_numa_maps()
818 * is using it.
819 * Note: do_set_mempolicy() can be called at init time
820 * with no 'mm'.
821 */
822 if (mm)
823 down_write(&mm->mmap_sem);
824 task_lock(current);
825 ret = mpol_set_nodemask(new, nodes, scratch);
826 if (ret) {
827 task_unlock(current);
828 if (mm)
829 up_write(&mm->mmap_sem);
830 mpol_put(new);
831 goto out;
832 }
833 old = current->mempolicy;
834 current->mempolicy = new;
835 mpol_set_task_struct_flag();
836 if (new && new->mode == MPOL_INTERLEAVE &&
837 nodes_weight(new->v.nodes))
838 current->il_next = first_node(new->v.nodes);
839 task_unlock(current);
840 if (mm)
841 up_write(&mm->mmap_sem);
842
843 mpol_put(old);
844 ret = 0;
845 out:
846 NODEMASK_SCRATCH_FREE(scratch);
847 return ret;
848 }
849
850 /*
851 * Return nodemask for policy for get_mempolicy() query
852 *
853 * Called with task's alloc_lock held
854 */
855 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
856 {
857 nodes_clear(*nodes);
858 if (p == &default_policy)
859 return;
860
861 switch (p->mode) {
862 case MPOL_BIND:
863 /* Fall through */
864 case MPOL_INTERLEAVE:
865 *nodes = p->v.nodes;
866 break;
867 case MPOL_PREFERRED:
868 if (!(p->flags & MPOL_F_LOCAL))
869 node_set(p->v.preferred_node, *nodes);
870 /* else return empty node mask for local allocation */
871 break;
872 default:
873 BUG();
874 }
875 }
876
877 static int lookup_node(struct mm_struct *mm, unsigned long addr)
878 {
879 struct page *p;
880 int err;
881
882 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
883 if (err >= 0) {
884 err = page_to_nid(p);
885 put_page(p);
886 }
887 return err;
888 }
889
890 /* Retrieve NUMA policy */
891 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
892 unsigned long addr, unsigned long flags)
893 {
894 int err;
895 struct mm_struct *mm = current->mm;
896 struct vm_area_struct *vma = NULL;
897 struct mempolicy *pol = current->mempolicy;
898
899 if (flags &
900 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
901 return -EINVAL;
902
903 if (flags & MPOL_F_MEMS_ALLOWED) {
904 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
905 return -EINVAL;
906 *policy = 0; /* just so it's initialized */
907 task_lock(current);
908 *nmask = cpuset_current_mems_allowed;
909 task_unlock(current);
910 return 0;
911 }
912
913 if (flags & MPOL_F_ADDR) {
914 /*
915 * Do NOT fall back to task policy if the
916 * vma/shared policy at addr is NULL. We
917 * want to return MPOL_DEFAULT in this case.
918 */
919 down_read(&mm->mmap_sem);
920 vma = find_vma_intersection(mm, addr, addr+1);
921 if (!vma) {
922 up_read(&mm->mmap_sem);
923 return -EFAULT;
924 }
925 if (vma->vm_ops && vma->vm_ops->get_policy)
926 pol = vma->vm_ops->get_policy(vma, addr);
927 else
928 pol = vma->vm_policy;
929 } else if (addr)
930 return -EINVAL;
931
932 if (!pol)
933 pol = &default_policy; /* indicates default behavior */
934
935 if (flags & MPOL_F_NODE) {
936 if (flags & MPOL_F_ADDR) {
937 err = lookup_node(mm, addr);
938 if (err < 0)
939 goto out;
940 *policy = err;
941 } else if (pol == current->mempolicy &&
942 pol->mode == MPOL_INTERLEAVE) {
943 *policy = current->il_next;
944 } else {
945 err = -EINVAL;
946 goto out;
947 }
948 } else {
949 *policy = pol == &default_policy ? MPOL_DEFAULT :
950 pol->mode;
951 /*
952 * Internal mempolicy flags must be masked off before exposing
953 * the policy to userspace.
954 */
955 *policy |= (pol->flags & MPOL_MODE_FLAGS);
956 }
957
958 if (vma) {
959 up_read(&current->mm->mmap_sem);
960 vma = NULL;
961 }
962
963 err = 0;
964 if (nmask) {
965 if (mpol_store_user_nodemask(pol)) {
966 *nmask = pol->w.user_nodemask;
967 } else {
968 task_lock(current);
969 get_policy_nodemask(pol, nmask);
970 task_unlock(current);
971 }
972 }
973
974 out:
975 mpol_cond_put(pol);
976 if (vma)
977 up_read(&current->mm->mmap_sem);
978 return err;
979 }
980
981 #ifdef CONFIG_MIGRATION
982 /*
983 * page migration
984 */
985 static void migrate_page_add(struct page *page, struct list_head *pagelist,
986 unsigned long flags)
987 {
988 /*
989 * Avoid migrating a page that is shared with others.
990 */
991 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
992 if (!isolate_lru_page(page)) {
993 list_add_tail(&page->lru, pagelist);
994 inc_zone_page_state(page, NR_ISOLATED_ANON +
995 page_is_file_cache(page));
996 }
997 }
998 }
999
1000 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1001 {
1002 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1003 }
1004
1005 /*
1006 * Migrate pages from one node to a target node.
1007 * Returns error or the number of pages not migrated.
1008 */
1009 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1010 int flags)
1011 {
1012 nodemask_t nmask;
1013 LIST_HEAD(pagelist);
1014 int err = 0;
1015
1016 nodes_clear(nmask);
1017 node_set(source, nmask);
1018
1019 /*
1020 * This does not "check" the range but isolates all pages that
1021 * need migration. Between passing in the full user address
1022 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1023 */
1024 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1025 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1026 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1027
1028 if (!list_empty(&pagelist)) {
1029 err = migrate_pages(&pagelist, new_node_page, dest,
1030 false, MIGRATE_SYNC,
1031 MR_SYSCALL);
1032 if (err)
1033 putback_lru_pages(&pagelist);
1034 }
1035
1036 return err;
1037 }
1038
1039 /*
1040 * Move pages between the two nodesets so as to preserve the physical
1041 * layout as much as possible.
1042 *
1043 * Returns the number of page that could not be moved.
1044 */
1045 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1046 const nodemask_t *to, int flags)
1047 {
1048 int busy = 0;
1049 int err;
1050 nodemask_t tmp;
1051
1052 err = migrate_prep();
1053 if (err)
1054 return err;
1055
1056 down_read(&mm->mmap_sem);
1057
1058 err = migrate_vmas(mm, from, to, flags);
1059 if (err)
1060 goto out;
1061
1062 /*
1063 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1064 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1065 * bit in 'tmp', and return that <source, dest> pair for migration.
1066 * The pair of nodemasks 'to' and 'from' define the map.
1067 *
1068 * If no pair of bits is found that way, fallback to picking some
1069 * pair of 'source' and 'dest' bits that are not the same. If the
1070 * 'source' and 'dest' bits are the same, this represents a node
1071 * that will be migrating to itself, so no pages need move.
1072 *
1073 * If no bits are left in 'tmp', or if all remaining bits left
1074 * in 'tmp' correspond to the same bit in 'to', return false
1075 * (nothing left to migrate).
1076 *
1077 * This lets us pick a pair of nodes to migrate between, such that
1078 * if possible the dest node is not already occupied by some other
1079 * source node, minimizing the risk of overloading the memory on a
1080 * node that would happen if we migrated incoming memory to a node
1081 * before migrating outgoing memory source that same node.
1082 *
1083 * A single scan of tmp is sufficient. As we go, we remember the
1084 * most recent <s, d> pair that moved (s != d). If we find a pair
1085 * that not only moved, but what's better, moved to an empty slot
1086 * (d is not set in tmp), then we break out then, with that pair.
1087 * Otherwise when we finish scanning from_tmp, we at least have the
1088 * most recent <s, d> pair that moved. If we get all the way through
1089 * the scan of tmp without finding any node that moved, much less
1090 * moved to an empty node, then there is nothing left worth migrating.
1091 */
1092
1093 tmp = *from;
1094 while (!nodes_empty(tmp)) {
1095 int s,d;
1096 int source = -1;
1097 int dest = 0;
1098
1099 for_each_node_mask(s, tmp) {
1100
1101 /*
1102 * do_migrate_pages() tries to maintain the relative
1103 * node relationship of the pages established between
1104 * threads and memory areas.
1105 *
1106 * However if the number of source nodes is not equal to
1107 * the number of destination nodes we can not preserve
1108 * this node relative relationship. In that case, skip
1109 * copying memory from a node that is in the destination
1110 * mask.
1111 *
1112 * Example: [2,3,4] -> [3,4,5] moves everything.
1113 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1114 */
1115
1116 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1117 (node_isset(s, *to)))
1118 continue;
1119
1120 d = node_remap(s, *from, *to);
1121 if (s == d)
1122 continue;
1123
1124 source = s; /* Node moved. Memorize */
1125 dest = d;
1126
1127 /* dest not in remaining from nodes? */
1128 if (!node_isset(dest, tmp))
1129 break;
1130 }
1131 if (source == -1)
1132 break;
1133
1134 node_clear(source, tmp);
1135 err = migrate_to_node(mm, source, dest, flags);
1136 if (err > 0)
1137 busy += err;
1138 if (err < 0)
1139 break;
1140 }
1141 out:
1142 up_read(&mm->mmap_sem);
1143 if (err < 0)
1144 return err;
1145 return busy;
1146
1147 }
1148
1149 /*
1150 * Allocate a new page for page migration based on vma policy.
1151 * Start assuming that page is mapped by vma pointed to by @private.
1152 * Search forward from there, if not. N.B., this assumes that the
1153 * list of pages handed to migrate_pages()--which is how we get here--
1154 * is in virtual address order.
1155 */
1156 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1157 {
1158 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1159 unsigned long uninitialized_var(address);
1160
1161 while (vma) {
1162 address = page_address_in_vma(page, vma);
1163 if (address != -EFAULT)
1164 break;
1165 vma = vma->vm_next;
1166 }
1167
1168 /*
1169 * if !vma, alloc_page_vma() will use task or system default policy
1170 */
1171 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1172 }
1173 #else
1174
1175 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1176 unsigned long flags)
1177 {
1178 }
1179
1180 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1181 const nodemask_t *to, int flags)
1182 {
1183 return -ENOSYS;
1184 }
1185
1186 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1187 {
1188 return NULL;
1189 }
1190 #endif
1191
1192 static long do_mbind(unsigned long start, unsigned long len,
1193 unsigned short mode, unsigned short mode_flags,
1194 nodemask_t *nmask, unsigned long flags)
1195 {
1196 struct vm_area_struct *vma;
1197 struct mm_struct *mm = current->mm;
1198 struct mempolicy *new;
1199 unsigned long end;
1200 int err;
1201 LIST_HEAD(pagelist);
1202
1203 if (flags & ~(unsigned long)MPOL_MF_VALID)
1204 return -EINVAL;
1205 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1206 return -EPERM;
1207
1208 if (start & ~PAGE_MASK)
1209 return -EINVAL;
1210
1211 if (mode == MPOL_DEFAULT)
1212 flags &= ~MPOL_MF_STRICT;
1213
1214 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1215 end = start + len;
1216
1217 if (end < start)
1218 return -EINVAL;
1219 if (end == start)
1220 return 0;
1221
1222 new = mpol_new(mode, mode_flags, nmask);
1223 if (IS_ERR(new))
1224 return PTR_ERR(new);
1225
1226 if (flags & MPOL_MF_LAZY)
1227 new->flags |= MPOL_F_MOF;
1228
1229 /*
1230 * If we are using the default policy then operation
1231 * on discontinuous address spaces is okay after all
1232 */
1233 if (!new)
1234 flags |= MPOL_MF_DISCONTIG_OK;
1235
1236 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1237 start, start + len, mode, mode_flags,
1238 nmask ? nodes_addr(*nmask)[0] : -1);
1239
1240 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1241
1242 err = migrate_prep();
1243 if (err)
1244 goto mpol_out;
1245 }
1246 {
1247 NODEMASK_SCRATCH(scratch);
1248 if (scratch) {
1249 down_write(&mm->mmap_sem);
1250 task_lock(current);
1251 err = mpol_set_nodemask(new, nmask, scratch);
1252 task_unlock(current);
1253 if (err)
1254 up_write(&mm->mmap_sem);
1255 } else
1256 err = -ENOMEM;
1257 NODEMASK_SCRATCH_FREE(scratch);
1258 }
1259 if (err)
1260 goto mpol_out;
1261
1262 vma = check_range(mm, start, end, nmask,
1263 flags | MPOL_MF_INVERT, &pagelist);
1264
1265 err = PTR_ERR(vma); /* maybe ... */
1266 if (!IS_ERR(vma))
1267 err = mbind_range(mm, start, end, new);
1268
1269 if (!err) {
1270 int nr_failed = 0;
1271
1272 if (!list_empty(&pagelist)) {
1273 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1274 nr_failed = migrate_pages(&pagelist, new_vma_page,
1275 (unsigned long)vma,
1276 false, MIGRATE_SYNC,
1277 MR_MEMPOLICY_MBIND);
1278 if (nr_failed)
1279 putback_lru_pages(&pagelist);
1280 }
1281
1282 if (nr_failed && (flags & MPOL_MF_STRICT))
1283 err = -EIO;
1284 } else
1285 putback_lru_pages(&pagelist);
1286
1287 up_write(&mm->mmap_sem);
1288 mpol_out:
1289 mpol_put(new);
1290 return err;
1291 }
1292
1293 /*
1294 * User space interface with variable sized bitmaps for nodelists.
1295 */
1296
1297 /* Copy a node mask from user space. */
1298 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1299 unsigned long maxnode)
1300 {
1301 unsigned long k;
1302 unsigned long nlongs;
1303 unsigned long endmask;
1304
1305 --maxnode;
1306 nodes_clear(*nodes);
1307 if (maxnode == 0 || !nmask)
1308 return 0;
1309 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1310 return -EINVAL;
1311
1312 nlongs = BITS_TO_LONGS(maxnode);
1313 if ((maxnode % BITS_PER_LONG) == 0)
1314 endmask = ~0UL;
1315 else
1316 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1317
1318 /* When the user specified more nodes than supported just check
1319 if the non supported part is all zero. */
1320 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1321 if (nlongs > PAGE_SIZE/sizeof(long))
1322 return -EINVAL;
1323 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1324 unsigned long t;
1325 if (get_user(t, nmask + k))
1326 return -EFAULT;
1327 if (k == nlongs - 1) {
1328 if (t & endmask)
1329 return -EINVAL;
1330 } else if (t)
1331 return -EINVAL;
1332 }
1333 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1334 endmask = ~0UL;
1335 }
1336
1337 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1338 return -EFAULT;
1339 nodes_addr(*nodes)[nlongs-1] &= endmask;
1340 return 0;
1341 }
1342
1343 /* Copy a kernel node mask to user space */
1344 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1345 nodemask_t *nodes)
1346 {
1347 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1348 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1349
1350 if (copy > nbytes) {
1351 if (copy > PAGE_SIZE)
1352 return -EINVAL;
1353 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1354 return -EFAULT;
1355 copy = nbytes;
1356 }
1357 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1358 }
1359
1360 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1361 unsigned long, mode, unsigned long __user *, nmask,
1362 unsigned long, maxnode, unsigned, flags)
1363 {
1364 nodemask_t nodes;
1365 int err;
1366 unsigned short mode_flags;
1367
1368 mode_flags = mode & MPOL_MODE_FLAGS;
1369 mode &= ~MPOL_MODE_FLAGS;
1370 if (mode >= MPOL_MAX)
1371 return -EINVAL;
1372 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1373 (mode_flags & MPOL_F_RELATIVE_NODES))
1374 return -EINVAL;
1375 err = get_nodes(&nodes, nmask, maxnode);
1376 if (err)
1377 return err;
1378 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1379 }
1380
1381 /* Set the process memory policy */
1382 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1383 unsigned long, maxnode)
1384 {
1385 int err;
1386 nodemask_t nodes;
1387 unsigned short flags;
1388
1389 flags = mode & MPOL_MODE_FLAGS;
1390 mode &= ~MPOL_MODE_FLAGS;
1391 if ((unsigned int)mode >= MPOL_MAX)
1392 return -EINVAL;
1393 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1394 return -EINVAL;
1395 err = get_nodes(&nodes, nmask, maxnode);
1396 if (err)
1397 return err;
1398 return do_set_mempolicy(mode, flags, &nodes);
1399 }
1400
1401 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1402 const unsigned long __user *, old_nodes,
1403 const unsigned long __user *, new_nodes)
1404 {
1405 const struct cred *cred = current_cred(), *tcred;
1406 struct mm_struct *mm = NULL;
1407 struct task_struct *task;
1408 nodemask_t task_nodes;
1409 int err;
1410 nodemask_t *old;
1411 nodemask_t *new;
1412 NODEMASK_SCRATCH(scratch);
1413
1414 if (!scratch)
1415 return -ENOMEM;
1416
1417 old = &scratch->mask1;
1418 new = &scratch->mask2;
1419
1420 err = get_nodes(old, old_nodes, maxnode);
1421 if (err)
1422 goto out;
1423
1424 err = get_nodes(new, new_nodes, maxnode);
1425 if (err)
1426 goto out;
1427
1428 /* Find the mm_struct */
1429 rcu_read_lock();
1430 task = pid ? find_task_by_vpid(pid) : current;
1431 if (!task) {
1432 rcu_read_unlock();
1433 err = -ESRCH;
1434 goto out;
1435 }
1436 get_task_struct(task);
1437
1438 err = -EINVAL;
1439
1440 /*
1441 * Check if this process has the right to modify the specified
1442 * process. The right exists if the process has administrative
1443 * capabilities, superuser privileges or the same
1444 * userid as the target process.
1445 */
1446 tcred = __task_cred(task);
1447 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1448 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1449 !capable(CAP_SYS_NICE)) {
1450 rcu_read_unlock();
1451 err = -EPERM;
1452 goto out_put;
1453 }
1454 rcu_read_unlock();
1455
1456 task_nodes = cpuset_mems_allowed(task);
1457 /* Is the user allowed to access the target nodes? */
1458 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1459 err = -EPERM;
1460 goto out_put;
1461 }
1462
1463 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1464 err = -EINVAL;
1465 goto out_put;
1466 }
1467
1468 err = security_task_movememory(task);
1469 if (err)
1470 goto out_put;
1471
1472 mm = get_task_mm(task);
1473 put_task_struct(task);
1474
1475 if (!mm) {
1476 err = -EINVAL;
1477 goto out;
1478 }
1479
1480 err = do_migrate_pages(mm, old, new,
1481 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1482
1483 mmput(mm);
1484 out:
1485 NODEMASK_SCRATCH_FREE(scratch);
1486
1487 return err;
1488
1489 out_put:
1490 put_task_struct(task);
1491 goto out;
1492
1493 }
1494
1495
1496 /* Retrieve NUMA policy */
1497 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498 unsigned long __user *, nmask, unsigned long, maxnode,
1499 unsigned long, addr, unsigned long, flags)
1500 {
1501 int err;
1502 int uninitialized_var(pval);
1503 nodemask_t nodes;
1504
1505 if (nmask != NULL && maxnode < MAX_NUMNODES)
1506 return -EINVAL;
1507
1508 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1509
1510 if (err)
1511 return err;
1512
1513 if (policy && put_user(pval, policy))
1514 return -EFAULT;
1515
1516 if (nmask)
1517 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1518
1519 return err;
1520 }
1521
1522 #ifdef CONFIG_COMPAT
1523
1524 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1525 compat_ulong_t __user *nmask,
1526 compat_ulong_t maxnode,
1527 compat_ulong_t addr, compat_ulong_t flags)
1528 {
1529 long err;
1530 unsigned long __user *nm = NULL;
1531 unsigned long nr_bits, alloc_size;
1532 DECLARE_BITMAP(bm, MAX_NUMNODES);
1533
1534 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1535 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1536
1537 if (nmask)
1538 nm = compat_alloc_user_space(alloc_size);
1539
1540 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1541
1542 if (!err && nmask) {
1543 unsigned long copy_size;
1544 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1545 err = copy_from_user(bm, nm, copy_size);
1546 /* ensure entire bitmap is zeroed */
1547 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1548 err |= compat_put_bitmap(nmask, bm, nr_bits);
1549 }
1550
1551 return err;
1552 }
1553
1554 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1555 compat_ulong_t maxnode)
1556 {
1557 long err = 0;
1558 unsigned long __user *nm = NULL;
1559 unsigned long nr_bits, alloc_size;
1560 DECLARE_BITMAP(bm, MAX_NUMNODES);
1561
1562 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1563 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1564
1565 if (nmask) {
1566 err = compat_get_bitmap(bm, nmask, nr_bits);
1567 nm = compat_alloc_user_space(alloc_size);
1568 err |= copy_to_user(nm, bm, alloc_size);
1569 }
1570
1571 if (err)
1572 return -EFAULT;
1573
1574 return sys_set_mempolicy(mode, nm, nr_bits+1);
1575 }
1576
1577 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1578 compat_ulong_t mode, compat_ulong_t __user *nmask,
1579 compat_ulong_t maxnode, compat_ulong_t flags)
1580 {
1581 long err = 0;
1582 unsigned long __user *nm = NULL;
1583 unsigned long nr_bits, alloc_size;
1584 nodemask_t bm;
1585
1586 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1587 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1588
1589 if (nmask) {
1590 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1591 nm = compat_alloc_user_space(alloc_size);
1592 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1593 }
1594
1595 if (err)
1596 return -EFAULT;
1597
1598 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1599 }
1600
1601 #endif
1602
1603 /*
1604 * get_vma_policy(@task, @vma, @addr)
1605 * @task - task for fallback if vma policy == default
1606 * @vma - virtual memory area whose policy is sought
1607 * @addr - address in @vma for shared policy lookup
1608 *
1609 * Returns effective policy for a VMA at specified address.
1610 * Falls back to @task or system default policy, as necessary.
1611 * Current or other task's task mempolicy and non-shared vma policies must be
1612 * protected by task_lock(task) by the caller.
1613 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1614 * count--added by the get_policy() vm_op, as appropriate--to protect against
1615 * freeing by another task. It is the caller's responsibility to free the
1616 * extra reference for shared policies.
1617 */
1618 struct mempolicy *get_vma_policy(struct task_struct *task,
1619 struct vm_area_struct *vma, unsigned long addr)
1620 {
1621 struct mempolicy *pol = get_task_policy(task);
1622
1623 if (vma) {
1624 if (vma->vm_ops && vma->vm_ops->get_policy) {
1625 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1626 addr);
1627 if (vpol)
1628 pol = vpol;
1629 } else if (vma->vm_policy) {
1630 pol = vma->vm_policy;
1631
1632 /*
1633 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1634 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1635 * count on these policies which will be dropped by
1636 * mpol_cond_put() later
1637 */
1638 if (mpol_needs_cond_ref(pol))
1639 mpol_get(pol);
1640 }
1641 }
1642 if (!pol)
1643 pol = &default_policy;
1644 return pol;
1645 }
1646
1647 /*
1648 * Return a nodemask representing a mempolicy for filtering nodes for
1649 * page allocation
1650 */
1651 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1652 {
1653 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1654 if (unlikely(policy->mode == MPOL_BIND) &&
1655 gfp_zone(gfp) >= policy_zone &&
1656 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1657 return &policy->v.nodes;
1658
1659 return NULL;
1660 }
1661
1662 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1663 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1664 int nd)
1665 {
1666 switch (policy->mode) {
1667 case MPOL_PREFERRED:
1668 if (!(policy->flags & MPOL_F_LOCAL))
1669 nd = policy->v.preferred_node;
1670 break;
1671 case MPOL_BIND:
1672 /*
1673 * Normally, MPOL_BIND allocations are node-local within the
1674 * allowed nodemask. However, if __GFP_THISNODE is set and the
1675 * current node isn't part of the mask, we use the zonelist for
1676 * the first node in the mask instead.
1677 */
1678 if (unlikely(gfp & __GFP_THISNODE) &&
1679 unlikely(!node_isset(nd, policy->v.nodes)))
1680 nd = first_node(policy->v.nodes);
1681 break;
1682 default:
1683 BUG();
1684 }
1685 return node_zonelist(nd, gfp);
1686 }
1687
1688 /* Do dynamic interleaving for a process */
1689 static unsigned interleave_nodes(struct mempolicy *policy)
1690 {
1691 unsigned nid, next;
1692 struct task_struct *me = current;
1693
1694 nid = me->il_next;
1695 next = next_node(nid, policy->v.nodes);
1696 if (next >= MAX_NUMNODES)
1697 next = first_node(policy->v.nodes);
1698 if (next < MAX_NUMNODES)
1699 me->il_next = next;
1700 return nid;
1701 }
1702
1703 /*
1704 * Depending on the memory policy provide a node from which to allocate the
1705 * next slab entry.
1706 * @policy must be protected by freeing by the caller. If @policy is
1707 * the current task's mempolicy, this protection is implicit, as only the
1708 * task can change it's policy. The system default policy requires no
1709 * such protection.
1710 */
1711 unsigned slab_node(void)
1712 {
1713 struct mempolicy *policy;
1714
1715 if (in_interrupt())
1716 return numa_node_id();
1717
1718 policy = current->mempolicy;
1719 if (!policy || policy->flags & MPOL_F_LOCAL)
1720 return numa_node_id();
1721
1722 switch (policy->mode) {
1723 case MPOL_PREFERRED:
1724 /*
1725 * handled MPOL_F_LOCAL above
1726 */
1727 return policy->v.preferred_node;
1728
1729 case MPOL_INTERLEAVE:
1730 return interleave_nodes(policy);
1731
1732 case MPOL_BIND: {
1733 /*
1734 * Follow bind policy behavior and start allocation at the
1735 * first node.
1736 */
1737 struct zonelist *zonelist;
1738 struct zone *zone;
1739 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1740 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1741 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1742 &policy->v.nodes,
1743 &zone);
1744 return zone ? zone->node : numa_node_id();
1745 }
1746
1747 default:
1748 BUG();
1749 }
1750 }
1751
1752 /* Do static interleaving for a VMA with known offset. */
1753 static unsigned offset_il_node(struct mempolicy *pol,
1754 struct vm_area_struct *vma, unsigned long off)
1755 {
1756 unsigned nnodes = nodes_weight(pol->v.nodes);
1757 unsigned target;
1758 int c;
1759 int nid = -1;
1760
1761 if (!nnodes)
1762 return numa_node_id();
1763 target = (unsigned int)off % nnodes;
1764 c = 0;
1765 do {
1766 nid = next_node(nid, pol->v.nodes);
1767 c++;
1768 } while (c <= target);
1769 return nid;
1770 }
1771
1772 /* Determine a node number for interleave */
1773 static inline unsigned interleave_nid(struct mempolicy *pol,
1774 struct vm_area_struct *vma, unsigned long addr, int shift)
1775 {
1776 if (vma) {
1777 unsigned long off;
1778
1779 /*
1780 * for small pages, there is no difference between
1781 * shift and PAGE_SHIFT, so the bit-shift is safe.
1782 * for huge pages, since vm_pgoff is in units of small
1783 * pages, we need to shift off the always 0 bits to get
1784 * a useful offset.
1785 */
1786 BUG_ON(shift < PAGE_SHIFT);
1787 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1788 off += (addr - vma->vm_start) >> shift;
1789 return offset_il_node(pol, vma, off);
1790 } else
1791 return interleave_nodes(pol);
1792 }
1793
1794 /*
1795 * Return the bit number of a random bit set in the nodemask.
1796 * (returns -1 if nodemask is empty)
1797 */
1798 int node_random(const nodemask_t *maskp)
1799 {
1800 int w, bit = -1;
1801
1802 w = nodes_weight(*maskp);
1803 if (w)
1804 bit = bitmap_ord_to_pos(maskp->bits,
1805 get_random_int() % w, MAX_NUMNODES);
1806 return bit;
1807 }
1808
1809 #ifdef CONFIG_HUGETLBFS
1810 /*
1811 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1812 * @vma = virtual memory area whose policy is sought
1813 * @addr = address in @vma for shared policy lookup and interleave policy
1814 * @gfp_flags = for requested zone
1815 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1816 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1817 *
1818 * Returns a zonelist suitable for a huge page allocation and a pointer
1819 * to the struct mempolicy for conditional unref after allocation.
1820 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1821 * @nodemask for filtering the zonelist.
1822 *
1823 * Must be protected by get_mems_allowed()
1824 */
1825 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1826 gfp_t gfp_flags, struct mempolicy **mpol,
1827 nodemask_t **nodemask)
1828 {
1829 struct zonelist *zl;
1830
1831 *mpol = get_vma_policy(current, vma, addr);
1832 *nodemask = NULL; /* assume !MPOL_BIND */
1833
1834 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1835 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1836 huge_page_shift(hstate_vma(vma))), gfp_flags);
1837 } else {
1838 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1839 if ((*mpol)->mode == MPOL_BIND)
1840 *nodemask = &(*mpol)->v.nodes;
1841 }
1842 return zl;
1843 }
1844
1845 /*
1846 * init_nodemask_of_mempolicy
1847 *
1848 * If the current task's mempolicy is "default" [NULL], return 'false'
1849 * to indicate default policy. Otherwise, extract the policy nodemask
1850 * for 'bind' or 'interleave' policy into the argument nodemask, or
1851 * initialize the argument nodemask to contain the single node for
1852 * 'preferred' or 'local' policy and return 'true' to indicate presence
1853 * of non-default mempolicy.
1854 *
1855 * We don't bother with reference counting the mempolicy [mpol_get/put]
1856 * because the current task is examining it's own mempolicy and a task's
1857 * mempolicy is only ever changed by the task itself.
1858 *
1859 * N.B., it is the caller's responsibility to free a returned nodemask.
1860 */
1861 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1862 {
1863 struct mempolicy *mempolicy;
1864 int nid;
1865
1866 if (!(mask && current->mempolicy))
1867 return false;
1868
1869 task_lock(current);
1870 mempolicy = current->mempolicy;
1871 switch (mempolicy->mode) {
1872 case MPOL_PREFERRED:
1873 if (mempolicy->flags & MPOL_F_LOCAL)
1874 nid = numa_node_id();
1875 else
1876 nid = mempolicy->v.preferred_node;
1877 init_nodemask_of_node(mask, nid);
1878 break;
1879
1880 case MPOL_BIND:
1881 /* Fall through */
1882 case MPOL_INTERLEAVE:
1883 *mask = mempolicy->v.nodes;
1884 break;
1885
1886 default:
1887 BUG();
1888 }
1889 task_unlock(current);
1890
1891 return true;
1892 }
1893 #endif
1894
1895 /*
1896 * mempolicy_nodemask_intersects
1897 *
1898 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1899 * policy. Otherwise, check for intersection between mask and the policy
1900 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1901 * policy, always return true since it may allocate elsewhere on fallback.
1902 *
1903 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1904 */
1905 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1906 const nodemask_t *mask)
1907 {
1908 struct mempolicy *mempolicy;
1909 bool ret = true;
1910
1911 if (!mask)
1912 return ret;
1913 task_lock(tsk);
1914 mempolicy = tsk->mempolicy;
1915 if (!mempolicy)
1916 goto out;
1917
1918 switch (mempolicy->mode) {
1919 case MPOL_PREFERRED:
1920 /*
1921 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1922 * allocate from, they may fallback to other nodes when oom.
1923 * Thus, it's possible for tsk to have allocated memory from
1924 * nodes in mask.
1925 */
1926 break;
1927 case MPOL_BIND:
1928 case MPOL_INTERLEAVE:
1929 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1930 break;
1931 default:
1932 BUG();
1933 }
1934 out:
1935 task_unlock(tsk);
1936 return ret;
1937 }
1938
1939 /* Allocate a page in interleaved policy.
1940 Own path because it needs to do special accounting. */
1941 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1942 unsigned nid)
1943 {
1944 struct zonelist *zl;
1945 struct page *page;
1946
1947 zl = node_zonelist(nid, gfp);
1948 page = __alloc_pages(gfp, order, zl);
1949 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1950 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1951 return page;
1952 }
1953
1954 /**
1955 * alloc_pages_vma - Allocate a page for a VMA.
1956 *
1957 * @gfp:
1958 * %GFP_USER user allocation.
1959 * %GFP_KERNEL kernel allocations,
1960 * %GFP_HIGHMEM highmem/user allocations,
1961 * %GFP_FS allocation should not call back into a file system.
1962 * %GFP_ATOMIC don't sleep.
1963 *
1964 * @order:Order of the GFP allocation.
1965 * @vma: Pointer to VMA or NULL if not available.
1966 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1967 *
1968 * This function allocates a page from the kernel page pool and applies
1969 * a NUMA policy associated with the VMA or the current process.
1970 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1971 * mm_struct of the VMA to prevent it from going away. Should be used for
1972 * all allocations for pages that will be mapped into
1973 * user space. Returns NULL when no page can be allocated.
1974 *
1975 * Should be called with the mm_sem of the vma hold.
1976 */
1977 struct page *
1978 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1979 unsigned long addr, int node)
1980 {
1981 struct mempolicy *pol;
1982 struct page *page;
1983 unsigned int cpuset_mems_cookie;
1984
1985 retry_cpuset:
1986 pol = get_vma_policy(current, vma, addr);
1987 cpuset_mems_cookie = get_mems_allowed();
1988
1989 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1990 unsigned nid;
1991
1992 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1993 mpol_cond_put(pol);
1994 page = alloc_page_interleave(gfp, order, nid);
1995 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1996 goto retry_cpuset;
1997
1998 return page;
1999 }
2000 page = __alloc_pages_nodemask(gfp, order,
2001 policy_zonelist(gfp, pol, node),
2002 policy_nodemask(gfp, pol));
2003 if (unlikely(mpol_needs_cond_ref(pol)))
2004 __mpol_put(pol);
2005 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2006 goto retry_cpuset;
2007 return page;
2008 }
2009
2010 /**
2011 * alloc_pages_current - Allocate pages.
2012 *
2013 * @gfp:
2014 * %GFP_USER user allocation,
2015 * %GFP_KERNEL kernel allocation,
2016 * %GFP_HIGHMEM highmem allocation,
2017 * %GFP_FS don't call back into a file system.
2018 * %GFP_ATOMIC don't sleep.
2019 * @order: Power of two of allocation size in pages. 0 is a single page.
2020 *
2021 * Allocate a page from the kernel page pool. When not in
2022 * interrupt context and apply the current process NUMA policy.
2023 * Returns NULL when no page can be allocated.
2024 *
2025 * Don't call cpuset_update_task_memory_state() unless
2026 * 1) it's ok to take cpuset_sem (can WAIT), and
2027 * 2) allocating for current task (not interrupt).
2028 */
2029 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2030 {
2031 struct mempolicy *pol = get_task_policy(current);
2032 struct page *page;
2033 unsigned int cpuset_mems_cookie;
2034
2035 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2036 pol = &default_policy;
2037
2038 retry_cpuset:
2039 cpuset_mems_cookie = get_mems_allowed();
2040
2041 /*
2042 * No reference counting needed for current->mempolicy
2043 * nor system default_policy
2044 */
2045 if (pol->mode == MPOL_INTERLEAVE)
2046 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2047 else
2048 page = __alloc_pages_nodemask(gfp, order,
2049 policy_zonelist(gfp, pol, numa_node_id()),
2050 policy_nodemask(gfp, pol));
2051
2052 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2053 goto retry_cpuset;
2054
2055 return page;
2056 }
2057 EXPORT_SYMBOL(alloc_pages_current);
2058
2059 /*
2060 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2061 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2062 * with the mems_allowed returned by cpuset_mems_allowed(). This
2063 * keeps mempolicies cpuset relative after its cpuset moves. See
2064 * further kernel/cpuset.c update_nodemask().
2065 *
2066 * current's mempolicy may be rebinded by the other task(the task that changes
2067 * cpuset's mems), so we needn't do rebind work for current task.
2068 */
2069
2070 /* Slow path of a mempolicy duplicate */
2071 struct mempolicy *__mpol_dup(struct mempolicy *old)
2072 {
2073 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2074
2075 if (!new)
2076 return ERR_PTR(-ENOMEM);
2077
2078 /* task's mempolicy is protected by alloc_lock */
2079 if (old == current->mempolicy) {
2080 task_lock(current);
2081 *new = *old;
2082 task_unlock(current);
2083 } else
2084 *new = *old;
2085
2086 rcu_read_lock();
2087 if (current_cpuset_is_being_rebound()) {
2088 nodemask_t mems = cpuset_mems_allowed(current);
2089 if (new->flags & MPOL_F_REBINDING)
2090 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2091 else
2092 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2093 }
2094 rcu_read_unlock();
2095 atomic_set(&new->refcnt, 1);
2096 return new;
2097 }
2098
2099 /* Slow path of a mempolicy comparison */
2100 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2101 {
2102 if (!a || !b)
2103 return false;
2104 if (a->mode != b->mode)
2105 return false;
2106 if (a->flags != b->flags)
2107 return false;
2108 if (mpol_store_user_nodemask(a))
2109 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2110 return false;
2111
2112 switch (a->mode) {
2113 case MPOL_BIND:
2114 /* Fall through */
2115 case MPOL_INTERLEAVE:
2116 return !!nodes_equal(a->v.nodes, b->v.nodes);
2117 case MPOL_PREFERRED:
2118 return a->v.preferred_node == b->v.preferred_node;
2119 default:
2120 BUG();
2121 return false;
2122 }
2123 }
2124
2125 /*
2126 * Shared memory backing store policy support.
2127 *
2128 * Remember policies even when nobody has shared memory mapped.
2129 * The policies are kept in Red-Black tree linked from the inode.
2130 * They are protected by the sp->lock spinlock, which should be held
2131 * for any accesses to the tree.
2132 */
2133
2134 /* lookup first element intersecting start-end */
2135 /* Caller holds sp->lock */
2136 static struct sp_node *
2137 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2138 {
2139 struct rb_node *n = sp->root.rb_node;
2140
2141 while (n) {
2142 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2143
2144 if (start >= p->end)
2145 n = n->rb_right;
2146 else if (end <= p->start)
2147 n = n->rb_left;
2148 else
2149 break;
2150 }
2151 if (!n)
2152 return NULL;
2153 for (;;) {
2154 struct sp_node *w = NULL;
2155 struct rb_node *prev = rb_prev(n);
2156 if (!prev)
2157 break;
2158 w = rb_entry(prev, struct sp_node, nd);
2159 if (w->end <= start)
2160 break;
2161 n = prev;
2162 }
2163 return rb_entry(n, struct sp_node, nd);
2164 }
2165
2166 /* Insert a new shared policy into the list. */
2167 /* Caller holds sp->lock */
2168 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2169 {
2170 struct rb_node **p = &sp->root.rb_node;
2171 struct rb_node *parent = NULL;
2172 struct sp_node *nd;
2173
2174 while (*p) {
2175 parent = *p;
2176 nd = rb_entry(parent, struct sp_node, nd);
2177 if (new->start < nd->start)
2178 p = &(*p)->rb_left;
2179 else if (new->end > nd->end)
2180 p = &(*p)->rb_right;
2181 else
2182 BUG();
2183 }
2184 rb_link_node(&new->nd, parent, p);
2185 rb_insert_color(&new->nd, &sp->root);
2186 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2187 new->policy ? new->policy->mode : 0);
2188 }
2189
2190 /* Find shared policy intersecting idx */
2191 struct mempolicy *
2192 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2193 {
2194 struct mempolicy *pol = NULL;
2195 struct sp_node *sn;
2196
2197 if (!sp->root.rb_node)
2198 return NULL;
2199 spin_lock(&sp->lock);
2200 sn = sp_lookup(sp, idx, idx+1);
2201 if (sn) {
2202 mpol_get(sn->policy);
2203 pol = sn->policy;
2204 }
2205 spin_unlock(&sp->lock);
2206 return pol;
2207 }
2208
2209 static void sp_free(struct sp_node *n)
2210 {
2211 mpol_put(n->policy);
2212 kmem_cache_free(sn_cache, n);
2213 }
2214
2215 /**
2216 * mpol_misplaced - check whether current page node is valid in policy
2217 *
2218 * @page - page to be checked
2219 * @vma - vm area where page mapped
2220 * @addr - virtual address where page mapped
2221 *
2222 * Lookup current policy node id for vma,addr and "compare to" page's
2223 * node id.
2224 *
2225 * Returns:
2226 * -1 - not misplaced, page is in the right node
2227 * node - node id where the page should be
2228 *
2229 * Policy determination "mimics" alloc_page_vma().
2230 * Called from fault path where we know the vma and faulting address.
2231 */
2232 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2233 {
2234 struct mempolicy *pol;
2235 struct zone *zone;
2236 int curnid = page_to_nid(page);
2237 unsigned long pgoff;
2238 int polnid = -1;
2239 int ret = -1;
2240
2241 BUG_ON(!vma);
2242
2243 pol = get_vma_policy(current, vma, addr);
2244 if (!(pol->flags & MPOL_F_MOF))
2245 goto out;
2246
2247 switch (pol->mode) {
2248 case MPOL_INTERLEAVE:
2249 BUG_ON(addr >= vma->vm_end);
2250 BUG_ON(addr < vma->vm_start);
2251
2252 pgoff = vma->vm_pgoff;
2253 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2254 polnid = offset_il_node(pol, vma, pgoff);
2255 break;
2256
2257 case MPOL_PREFERRED:
2258 if (pol->flags & MPOL_F_LOCAL)
2259 polnid = numa_node_id();
2260 else
2261 polnid = pol->v.preferred_node;
2262 break;
2263
2264 case MPOL_BIND:
2265 /*
2266 * allows binding to multiple nodes.
2267 * use current page if in policy nodemask,
2268 * else select nearest allowed node, if any.
2269 * If no allowed nodes, use current [!misplaced].
2270 */
2271 if (node_isset(curnid, pol->v.nodes))
2272 goto out;
2273 (void)first_zones_zonelist(
2274 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2275 gfp_zone(GFP_HIGHUSER),
2276 &pol->v.nodes, &zone);
2277 polnid = zone->node;
2278 break;
2279
2280 default:
2281 BUG();
2282 }
2283
2284 /* Migrate the page towards the node whose CPU is referencing it */
2285 if (pol->flags & MPOL_F_MORON) {
2286 int last_nid;
2287
2288 polnid = numa_node_id();
2289
2290 /*
2291 * Multi-stage node selection is used in conjunction
2292 * with a periodic migration fault to build a temporal
2293 * task<->page relation. By using a two-stage filter we
2294 * remove short/unlikely relations.
2295 *
2296 * Using P(p) ~ n_p / n_t as per frequentist
2297 * probability, we can equate a task's usage of a
2298 * particular page (n_p) per total usage of this
2299 * page (n_t) (in a given time-span) to a probability.
2300 *
2301 * Our periodic faults will sample this probability and
2302 * getting the same result twice in a row, given these
2303 * samples are fully independent, is then given by
2304 * P(n)^2, provided our sample period is sufficiently
2305 * short compared to the usage pattern.
2306 *
2307 * This quadric squishes small probabilities, making
2308 * it less likely we act on an unlikely task<->page
2309 * relation.
2310 */
2311 last_nid = page_xchg_last_nid(page, polnid);
2312 if (last_nid != polnid)
2313 goto out;
2314 }
2315
2316 if (curnid != polnid)
2317 ret = polnid;
2318 out:
2319 mpol_cond_put(pol);
2320
2321 return ret;
2322 }
2323
2324 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2325 {
2326 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2327 rb_erase(&n->nd, &sp->root);
2328 sp_free(n);
2329 }
2330
2331 static void sp_node_init(struct sp_node *node, unsigned long start,
2332 unsigned long end, struct mempolicy *pol)
2333 {
2334 node->start = start;
2335 node->end = end;
2336 node->policy = pol;
2337 }
2338
2339 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2340 struct mempolicy *pol)
2341 {
2342 struct sp_node *n;
2343 struct mempolicy *newpol;
2344
2345 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2346 if (!n)
2347 return NULL;
2348
2349 newpol = mpol_dup(pol);
2350 if (IS_ERR(newpol)) {
2351 kmem_cache_free(sn_cache, n);
2352 return NULL;
2353 }
2354 newpol->flags |= MPOL_F_SHARED;
2355 sp_node_init(n, start, end, newpol);
2356
2357 return n;
2358 }
2359
2360 /* Replace a policy range. */
2361 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2362 unsigned long end, struct sp_node *new)
2363 {
2364 struct sp_node *n;
2365 struct sp_node *n_new = NULL;
2366 struct mempolicy *mpol_new = NULL;
2367 int ret = 0;
2368
2369 restart:
2370 spin_lock(&sp->lock);
2371 n = sp_lookup(sp, start, end);
2372 /* Take care of old policies in the same range. */
2373 while (n && n->start < end) {
2374 struct rb_node *next = rb_next(&n->nd);
2375 if (n->start >= start) {
2376 if (n->end <= end)
2377 sp_delete(sp, n);
2378 else
2379 n->start = end;
2380 } else {
2381 /* Old policy spanning whole new range. */
2382 if (n->end > end) {
2383 if (!n_new)
2384 goto alloc_new;
2385
2386 *mpol_new = *n->policy;
2387 atomic_set(&mpol_new->refcnt, 1);
2388 sp_node_init(n_new, n->end, end, mpol_new);
2389 sp_insert(sp, n_new);
2390 n->end = start;
2391 n_new = NULL;
2392 mpol_new = NULL;
2393 break;
2394 } else
2395 n->end = start;
2396 }
2397 if (!next)
2398 break;
2399 n = rb_entry(next, struct sp_node, nd);
2400 }
2401 if (new)
2402 sp_insert(sp, new);
2403 spin_unlock(&sp->lock);
2404 ret = 0;
2405
2406 err_out:
2407 if (mpol_new)
2408 mpol_put(mpol_new);
2409 if (n_new)
2410 kmem_cache_free(sn_cache, n_new);
2411
2412 return ret;
2413
2414 alloc_new:
2415 spin_unlock(&sp->lock);
2416 ret = -ENOMEM;
2417 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2418 if (!n_new)
2419 goto err_out;
2420 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2421 if (!mpol_new)
2422 goto err_out;
2423 goto restart;
2424 }
2425
2426 /**
2427 * mpol_shared_policy_init - initialize shared policy for inode
2428 * @sp: pointer to inode shared policy
2429 * @mpol: struct mempolicy to install
2430 *
2431 * Install non-NULL @mpol in inode's shared policy rb-tree.
2432 * On entry, the current task has a reference on a non-NULL @mpol.
2433 * This must be released on exit.
2434 * This is called at get_inode() calls and we can use GFP_KERNEL.
2435 */
2436 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2437 {
2438 int ret;
2439
2440 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2441 spin_lock_init(&sp->lock);
2442
2443 if (mpol) {
2444 struct vm_area_struct pvma;
2445 struct mempolicy *new;
2446 NODEMASK_SCRATCH(scratch);
2447
2448 if (!scratch)
2449 goto put_mpol;
2450 /* contextualize the tmpfs mount point mempolicy */
2451 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2452 if (IS_ERR(new))
2453 goto free_scratch; /* no valid nodemask intersection */
2454
2455 task_lock(current);
2456 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2457 task_unlock(current);
2458 if (ret)
2459 goto put_new;
2460
2461 /* Create pseudo-vma that contains just the policy */
2462 memset(&pvma, 0, sizeof(struct vm_area_struct));
2463 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2464 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2465
2466 put_new:
2467 mpol_put(new); /* drop initial ref */
2468 free_scratch:
2469 NODEMASK_SCRATCH_FREE(scratch);
2470 put_mpol:
2471 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2472 }
2473 }
2474
2475 int mpol_set_shared_policy(struct shared_policy *info,
2476 struct vm_area_struct *vma, struct mempolicy *npol)
2477 {
2478 int err;
2479 struct sp_node *new = NULL;
2480 unsigned long sz = vma_pages(vma);
2481
2482 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2483 vma->vm_pgoff,
2484 sz, npol ? npol->mode : -1,
2485 npol ? npol->flags : -1,
2486 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2487
2488 if (npol) {
2489 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2490 if (!new)
2491 return -ENOMEM;
2492 }
2493 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2494 if (err && new)
2495 sp_free(new);
2496 return err;
2497 }
2498
2499 /* Free a backing policy store on inode delete. */
2500 void mpol_free_shared_policy(struct shared_policy *p)
2501 {
2502 struct sp_node *n;
2503 struct rb_node *next;
2504
2505 if (!p->root.rb_node)
2506 return;
2507 spin_lock(&p->lock);
2508 next = rb_first(&p->root);
2509 while (next) {
2510 n = rb_entry(next, struct sp_node, nd);
2511 next = rb_next(&n->nd);
2512 sp_delete(p, n);
2513 }
2514 spin_unlock(&p->lock);
2515 }
2516
2517 #ifdef CONFIG_NUMA_BALANCING
2518 static bool __initdata numabalancing_override;
2519
2520 static void __init check_numabalancing_enable(void)
2521 {
2522 bool numabalancing_default = false;
2523
2524 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2525 numabalancing_default = true;
2526
2527 if (nr_node_ids > 1 && !numabalancing_override) {
2528 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2529 "Configure with numa_balancing= or sysctl");
2530 set_numabalancing_state(numabalancing_default);
2531 }
2532 }
2533
2534 static int __init setup_numabalancing(char *str)
2535 {
2536 int ret = 0;
2537 if (!str)
2538 goto out;
2539 numabalancing_override = true;
2540
2541 if (!strcmp(str, "enable")) {
2542 set_numabalancing_state(true);
2543 ret = 1;
2544 } else if (!strcmp(str, "disable")) {
2545 set_numabalancing_state(false);
2546 ret = 1;
2547 }
2548 out:
2549 if (!ret)
2550 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2551
2552 return ret;
2553 }
2554 __setup("numa_balancing=", setup_numabalancing);
2555 #else
2556 static inline void __init check_numabalancing_enable(void)
2557 {
2558 }
2559 #endif /* CONFIG_NUMA_BALANCING */
2560
2561 /* assumes fs == KERNEL_DS */
2562 void __init numa_policy_init(void)
2563 {
2564 nodemask_t interleave_nodes;
2565 unsigned long largest = 0;
2566 int nid, prefer = 0;
2567
2568 policy_cache = kmem_cache_create("numa_policy",
2569 sizeof(struct mempolicy),
2570 0, SLAB_PANIC, NULL);
2571
2572 sn_cache = kmem_cache_create("shared_policy_node",
2573 sizeof(struct sp_node),
2574 0, SLAB_PANIC, NULL);
2575
2576 for_each_node(nid) {
2577 preferred_node_policy[nid] = (struct mempolicy) {
2578 .refcnt = ATOMIC_INIT(1),
2579 .mode = MPOL_PREFERRED,
2580 .flags = MPOL_F_MOF | MPOL_F_MORON,
2581 .v = { .preferred_node = nid, },
2582 };
2583 }
2584
2585 /*
2586 * Set interleaving policy for system init. Interleaving is only
2587 * enabled across suitably sized nodes (default is >= 16MB), or
2588 * fall back to the largest node if they're all smaller.
2589 */
2590 nodes_clear(interleave_nodes);
2591 for_each_node_state(nid, N_MEMORY) {
2592 unsigned long total_pages = node_present_pages(nid);
2593
2594 /* Preserve the largest node */
2595 if (largest < total_pages) {
2596 largest = total_pages;
2597 prefer = nid;
2598 }
2599
2600 /* Interleave this node? */
2601 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2602 node_set(nid, interleave_nodes);
2603 }
2604
2605 /* All too small, use the largest */
2606 if (unlikely(nodes_empty(interleave_nodes)))
2607 node_set(prefer, interleave_nodes);
2608
2609 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2610 printk("numa_policy_init: interleaving failed\n");
2611
2612 check_numabalancing_enable();
2613 }
2614
2615 /* Reset policy of current process to default */
2616 void numa_default_policy(void)
2617 {
2618 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2619 }
2620
2621 /*
2622 * Parse and format mempolicy from/to strings
2623 */
2624
2625 /*
2626 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2627 */
2628 static const char * const policy_modes[] =
2629 {
2630 [MPOL_DEFAULT] = "default",
2631 [MPOL_PREFERRED] = "prefer",
2632 [MPOL_BIND] = "bind",
2633 [MPOL_INTERLEAVE] = "interleave",
2634 [MPOL_LOCAL] = "local",
2635 };
2636
2637
2638 #ifdef CONFIG_TMPFS
2639 /**
2640 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2641 * @str: string containing mempolicy to parse
2642 * @mpol: pointer to struct mempolicy pointer, returned on success.
2643 *
2644 * Format of input:
2645 * <mode>[=<flags>][:<nodelist>]
2646 *
2647 * On success, returns 0, else 1
2648 */
2649 int mpol_parse_str(char *str, struct mempolicy **mpol)
2650 {
2651 struct mempolicy *new = NULL;
2652 unsigned short mode;
2653 unsigned short mode_flags;
2654 nodemask_t nodes;
2655 char *nodelist = strchr(str, ':');
2656 char *flags = strchr(str, '=');
2657 int err = 1;
2658
2659 if (nodelist) {
2660 /* NUL-terminate mode or flags string */
2661 *nodelist++ = '\0';
2662 if (nodelist_parse(nodelist, nodes))
2663 goto out;
2664 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2665 goto out;
2666 } else
2667 nodes_clear(nodes);
2668
2669 if (flags)
2670 *flags++ = '\0'; /* terminate mode string */
2671
2672 for (mode = 0; mode < MPOL_MAX; mode++) {
2673 if (!strcmp(str, policy_modes[mode])) {
2674 break;
2675 }
2676 }
2677 if (mode >= MPOL_MAX)
2678 goto out;
2679
2680 switch (mode) {
2681 case MPOL_PREFERRED:
2682 /*
2683 * Insist on a nodelist of one node only
2684 */
2685 if (nodelist) {
2686 char *rest = nodelist;
2687 while (isdigit(*rest))
2688 rest++;
2689 if (*rest)
2690 goto out;
2691 }
2692 break;
2693 case MPOL_INTERLEAVE:
2694 /*
2695 * Default to online nodes with memory if no nodelist
2696 */
2697 if (!nodelist)
2698 nodes = node_states[N_MEMORY];
2699 break;
2700 case MPOL_LOCAL:
2701 /*
2702 * Don't allow a nodelist; mpol_new() checks flags
2703 */
2704 if (nodelist)
2705 goto out;
2706 mode = MPOL_PREFERRED;
2707 break;
2708 case MPOL_DEFAULT:
2709 /*
2710 * Insist on a empty nodelist
2711 */
2712 if (!nodelist)
2713 err = 0;
2714 goto out;
2715 case MPOL_BIND:
2716 /*
2717 * Insist on a nodelist
2718 */
2719 if (!nodelist)
2720 goto out;
2721 }
2722
2723 mode_flags = 0;
2724 if (flags) {
2725 /*
2726 * Currently, we only support two mutually exclusive
2727 * mode flags.
2728 */
2729 if (!strcmp(flags, "static"))
2730 mode_flags |= MPOL_F_STATIC_NODES;
2731 else if (!strcmp(flags, "relative"))
2732 mode_flags |= MPOL_F_RELATIVE_NODES;
2733 else
2734 goto out;
2735 }
2736
2737 new = mpol_new(mode, mode_flags, &nodes);
2738 if (IS_ERR(new))
2739 goto out;
2740
2741 /*
2742 * Save nodes for mpol_to_str() to show the tmpfs mount options
2743 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2744 */
2745 if (mode != MPOL_PREFERRED)
2746 new->v.nodes = nodes;
2747 else if (nodelist)
2748 new->v.preferred_node = first_node(nodes);
2749 else
2750 new->flags |= MPOL_F_LOCAL;
2751
2752 /*
2753 * Save nodes for contextualization: this will be used to "clone"
2754 * the mempolicy in a specific context [cpuset] at a later time.
2755 */
2756 new->w.user_nodemask = nodes;
2757
2758 err = 0;
2759
2760 out:
2761 /* Restore string for error message */
2762 if (nodelist)
2763 *--nodelist = ':';
2764 if (flags)
2765 *--flags = '=';
2766 if (!err)
2767 *mpol = new;
2768 return err;
2769 }
2770 #endif /* CONFIG_TMPFS */
2771
2772 /**
2773 * mpol_to_str - format a mempolicy structure for printing
2774 * @buffer: to contain formatted mempolicy string
2775 * @maxlen: length of @buffer
2776 * @pol: pointer to mempolicy to be formatted
2777 *
2778 * Convert a mempolicy into a string.
2779 * Returns the number of characters in buffer (if positive)
2780 * or an error (negative)
2781 */
2782 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2783 {
2784 char *p = buffer;
2785 int l;
2786 nodemask_t nodes;
2787 unsigned short mode;
2788 unsigned short flags = pol ? pol->flags : 0;
2789
2790 /*
2791 * Sanity check: room for longest mode, flag and some nodes
2792 */
2793 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2794
2795 if (!pol || pol == &default_policy)
2796 mode = MPOL_DEFAULT;
2797 else
2798 mode = pol->mode;
2799
2800 switch (mode) {
2801 case MPOL_DEFAULT:
2802 nodes_clear(nodes);
2803 break;
2804
2805 case MPOL_PREFERRED:
2806 nodes_clear(nodes);
2807 if (flags & MPOL_F_LOCAL)
2808 mode = MPOL_LOCAL;
2809 else
2810 node_set(pol->v.preferred_node, nodes);
2811 break;
2812
2813 case MPOL_BIND:
2814 /* Fall through */
2815 case MPOL_INTERLEAVE:
2816 nodes = pol->v.nodes;
2817 break;
2818
2819 default:
2820 return -EINVAL;
2821 }
2822
2823 l = strlen(policy_modes[mode]);
2824 if (buffer + maxlen < p + l + 1)
2825 return -ENOSPC;
2826
2827 strcpy(p, policy_modes[mode]);
2828 p += l;
2829
2830 if (flags & MPOL_MODE_FLAGS) {
2831 if (buffer + maxlen < p + 2)
2832 return -ENOSPC;
2833 *p++ = '=';
2834
2835 /*
2836 * Currently, the only defined flags are mutually exclusive
2837 */
2838 if (flags & MPOL_F_STATIC_NODES)
2839 p += snprintf(p, buffer + maxlen - p, "static");
2840 else if (flags & MPOL_F_RELATIVE_NODES)
2841 p += snprintf(p, buffer + maxlen - p, "relative");
2842 }
2843
2844 if (!nodes_empty(nodes)) {
2845 if (buffer + maxlen < p + 2)
2846 return -ENOSPC;
2847 *p++ = ':';
2848 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2849 }
2850 return p - buffer;
2851 }