tcp: do_tcp_sendpages() must try to push data out on oom conditions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97
98 #include "internal.h"
99
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156 }
157
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 return pol->flags & MPOL_MODE_FLAGS;
161 }
162
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165 {
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169 }
170
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177 }
178
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188 }
189
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196 }
197
198 /*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240 }
241
242 /*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248 {
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294 {
295 }
296
297 /*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345 }
346
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350 {
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370 }
371
372 /*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390 {
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412
413 /*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422 {
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425
426 /*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440 }
441
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458 };
459
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468 {
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501 }
502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507 {
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522 }
523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528 {
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542 }
543
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548 {
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562 }
563
564 /*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608 }
609
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629 }
630
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634 {
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 pgoff_t pgoff;
640 unsigned long vmstart;
641 unsigned long vmend;
642
643 vma = find_vma(mm, start);
644 if (!vma || vma->vm_start > start)
645 return -EFAULT;
646
647 prev = vma->vm_prev;
648 if (start > vma->vm_start)
649 prev = vma;
650
651 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 next = vma->vm_next;
653 vmstart = max(start, vma->vm_start);
654 vmend = min(end, vma->vm_end);
655
656 if (mpol_equal(vma_policy(vma), new_pol))
657 continue;
658
659 pgoff = vma->vm_pgoff +
660 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 vma->anon_vma, vma->vm_file, pgoff,
663 new_pol);
664 if (prev) {
665 vma = prev;
666 next = vma->vm_next;
667 continue;
668 }
669 if (vma->vm_start != vmstart) {
670 err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 if (err)
672 goto out;
673 }
674 if (vma->vm_end != vmend) {
675 err = split_vma(vma->vm_mm, vma, vmend, 0);
676 if (err)
677 goto out;
678 }
679 err = policy_vma(vma, new_pol);
680 if (err)
681 goto out;
682 }
683
684 out:
685 return err;
686 }
687
688 /*
689 * Update task->flags PF_MEMPOLICY bit: set iff non-default
690 * mempolicy. Allows more rapid checking of this (combined perhaps
691 * with other PF_* flag bits) on memory allocation hot code paths.
692 *
693 * If called from outside this file, the task 'p' should -only- be
694 * a newly forked child not yet visible on the task list, because
695 * manipulating the task flags of a visible task is not safe.
696 *
697 * The above limitation is why this routine has the funny name
698 * mpol_fix_fork_child_flag().
699 *
700 * It is also safe to call this with a task pointer of current,
701 * which the static wrapper mpol_set_task_struct_flag() does,
702 * for use within this file.
703 */
704
705 void mpol_fix_fork_child_flag(struct task_struct *p)
706 {
707 if (p->mempolicy)
708 p->flags |= PF_MEMPOLICY;
709 else
710 p->flags &= ~PF_MEMPOLICY;
711 }
712
713 static void mpol_set_task_struct_flag(void)
714 {
715 mpol_fix_fork_child_flag(current);
716 }
717
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 nodemask_t *nodes)
721 {
722 struct mempolicy *new, *old;
723 struct mm_struct *mm = current->mm;
724 NODEMASK_SCRATCH(scratch);
725 int ret;
726
727 if (!scratch)
728 return -ENOMEM;
729
730 new = mpol_new(mode, flags, nodes);
731 if (IS_ERR(new)) {
732 ret = PTR_ERR(new);
733 goto out;
734 }
735 /*
736 * prevent changing our mempolicy while show_numa_maps()
737 * is using it.
738 * Note: do_set_mempolicy() can be called at init time
739 * with no 'mm'.
740 */
741 if (mm)
742 down_write(&mm->mmap_sem);
743 task_lock(current);
744 ret = mpol_set_nodemask(new, nodes, scratch);
745 if (ret) {
746 task_unlock(current);
747 if (mm)
748 up_write(&mm->mmap_sem);
749 mpol_put(new);
750 goto out;
751 }
752 old = current->mempolicy;
753 current->mempolicy = new;
754 mpol_set_task_struct_flag();
755 if (new && new->mode == MPOL_INTERLEAVE &&
756 nodes_weight(new->v.nodes))
757 current->il_next = first_node(new->v.nodes);
758 task_unlock(current);
759 if (mm)
760 up_write(&mm->mmap_sem);
761
762 mpol_put(old);
763 ret = 0;
764 out:
765 NODEMASK_SCRATCH_FREE(scratch);
766 return ret;
767 }
768
769 /*
770 * Return nodemask for policy for get_mempolicy() query
771 *
772 * Called with task's alloc_lock held
773 */
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
775 {
776 nodes_clear(*nodes);
777 if (p == &default_policy)
778 return;
779
780 switch (p->mode) {
781 case MPOL_BIND:
782 /* Fall through */
783 case MPOL_INTERLEAVE:
784 *nodes = p->v.nodes;
785 break;
786 case MPOL_PREFERRED:
787 if (!(p->flags & MPOL_F_LOCAL))
788 node_set(p->v.preferred_node, *nodes);
789 /* else return empty node mask for local allocation */
790 break;
791 default:
792 BUG();
793 }
794 }
795
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
797 {
798 struct page *p;
799 int err;
800
801 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 if (err >= 0) {
803 err = page_to_nid(p);
804 put_page(p);
805 }
806 return err;
807 }
808
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 unsigned long addr, unsigned long flags)
812 {
813 int err;
814 struct mm_struct *mm = current->mm;
815 struct vm_area_struct *vma = NULL;
816 struct mempolicy *pol = current->mempolicy;
817
818 if (flags &
819 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 return -EINVAL;
821
822 if (flags & MPOL_F_MEMS_ALLOWED) {
823 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 return -EINVAL;
825 *policy = 0; /* just so it's initialized */
826 task_lock(current);
827 *nmask = cpuset_current_mems_allowed;
828 task_unlock(current);
829 return 0;
830 }
831
832 if (flags & MPOL_F_ADDR) {
833 /*
834 * Do NOT fall back to task policy if the
835 * vma/shared policy at addr is NULL. We
836 * want to return MPOL_DEFAULT in this case.
837 */
838 down_read(&mm->mmap_sem);
839 vma = find_vma_intersection(mm, addr, addr+1);
840 if (!vma) {
841 up_read(&mm->mmap_sem);
842 return -EFAULT;
843 }
844 if (vma->vm_ops && vma->vm_ops->get_policy)
845 pol = vma->vm_ops->get_policy(vma, addr);
846 else
847 pol = vma->vm_policy;
848 } else if (addr)
849 return -EINVAL;
850
851 if (!pol)
852 pol = &default_policy; /* indicates default behavior */
853
854 if (flags & MPOL_F_NODE) {
855 if (flags & MPOL_F_ADDR) {
856 err = lookup_node(mm, addr);
857 if (err < 0)
858 goto out;
859 *policy = err;
860 } else if (pol == current->mempolicy &&
861 pol->mode == MPOL_INTERLEAVE) {
862 *policy = current->il_next;
863 } else {
864 err = -EINVAL;
865 goto out;
866 }
867 } else {
868 *policy = pol == &default_policy ? MPOL_DEFAULT :
869 pol->mode;
870 /*
871 * Internal mempolicy flags must be masked off before exposing
872 * the policy to userspace.
873 */
874 *policy |= (pol->flags & MPOL_MODE_FLAGS);
875 }
876
877 if (vma) {
878 up_read(&current->mm->mmap_sem);
879 vma = NULL;
880 }
881
882 err = 0;
883 if (nmask) {
884 if (mpol_store_user_nodemask(pol)) {
885 *nmask = pol->w.user_nodemask;
886 } else {
887 task_lock(current);
888 get_policy_nodemask(pol, nmask);
889 task_unlock(current);
890 }
891 }
892
893 out:
894 mpol_cond_put(pol);
895 if (vma)
896 up_read(&current->mm->mmap_sem);
897 return err;
898 }
899
900 #ifdef CONFIG_MIGRATION
901 /*
902 * page migration
903 */
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 unsigned long flags)
906 {
907 /*
908 * Avoid migrating a page that is shared with others.
909 */
910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 if (!isolate_lru_page(page)) {
912 list_add_tail(&page->lru, pagelist);
913 inc_zone_page_state(page, NR_ISOLATED_ANON +
914 page_is_file_cache(page));
915 }
916 }
917 }
918
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
920 {
921 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
922 }
923
924 /*
925 * Migrate pages from one node to a target node.
926 * Returns error or the number of pages not migrated.
927 */
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 int flags)
930 {
931 nodemask_t nmask;
932 LIST_HEAD(pagelist);
933 int err = 0;
934 struct vm_area_struct *vma;
935
936 nodes_clear(nmask);
937 node_set(source, nmask);
938
939 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 if (IS_ERR(vma))
942 return PTR_ERR(vma);
943
944 if (!list_empty(&pagelist)) {
945 err = migrate_pages(&pagelist, new_node_page, dest,
946 false, MIGRATE_SYNC);
947 if (err)
948 putback_lru_pages(&pagelist);
949 }
950
951 return err;
952 }
953
954 /*
955 * Move pages between the two nodesets so as to preserve the physical
956 * layout as much as possible.
957 *
958 * Returns the number of page that could not be moved.
959 */
960 int do_migrate_pages(struct mm_struct *mm,
961 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
962 {
963 int busy = 0;
964 int err;
965 nodemask_t tmp;
966
967 err = migrate_prep();
968 if (err)
969 return err;
970
971 down_read(&mm->mmap_sem);
972
973 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
974 if (err)
975 goto out;
976
977 /*
978 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
980 * bit in 'tmp', and return that <source, dest> pair for migration.
981 * The pair of nodemasks 'to' and 'from' define the map.
982 *
983 * If no pair of bits is found that way, fallback to picking some
984 * pair of 'source' and 'dest' bits that are not the same. If the
985 * 'source' and 'dest' bits are the same, this represents a node
986 * that will be migrating to itself, so no pages need move.
987 *
988 * If no bits are left in 'tmp', or if all remaining bits left
989 * in 'tmp' correspond to the same bit in 'to', return false
990 * (nothing left to migrate).
991 *
992 * This lets us pick a pair of nodes to migrate between, such that
993 * if possible the dest node is not already occupied by some other
994 * source node, minimizing the risk of overloading the memory on a
995 * node that would happen if we migrated incoming memory to a node
996 * before migrating outgoing memory source that same node.
997 *
998 * A single scan of tmp is sufficient. As we go, we remember the
999 * most recent <s, d> pair that moved (s != d). If we find a pair
1000 * that not only moved, but what's better, moved to an empty slot
1001 * (d is not set in tmp), then we break out then, with that pair.
1002 * Otherwise when we finish scanning from_tmp, we at least have the
1003 * most recent <s, d> pair that moved. If we get all the way through
1004 * the scan of tmp without finding any node that moved, much less
1005 * moved to an empty node, then there is nothing left worth migrating.
1006 */
1007
1008 tmp = *from_nodes;
1009 while (!nodes_empty(tmp)) {
1010 int s,d;
1011 int source = -1;
1012 int dest = 0;
1013
1014 for_each_node_mask(s, tmp) {
1015 d = node_remap(s, *from_nodes, *to_nodes);
1016 if (s == d)
1017 continue;
1018
1019 source = s; /* Node moved. Memorize */
1020 dest = d;
1021
1022 /* dest not in remaining from nodes? */
1023 if (!node_isset(dest, tmp))
1024 break;
1025 }
1026 if (source == -1)
1027 break;
1028
1029 node_clear(source, tmp);
1030 err = migrate_to_node(mm, source, dest, flags);
1031 if (err > 0)
1032 busy += err;
1033 if (err < 0)
1034 break;
1035 }
1036 out:
1037 up_read(&mm->mmap_sem);
1038 if (err < 0)
1039 return err;
1040 return busy;
1041
1042 }
1043
1044 /*
1045 * Allocate a new page for page migration based on vma policy.
1046 * Start assuming that page is mapped by vma pointed to by @private.
1047 * Search forward from there, if not. N.B., this assumes that the
1048 * list of pages handed to migrate_pages()--which is how we get here--
1049 * is in virtual address order.
1050 */
1051 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1052 {
1053 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054 unsigned long uninitialized_var(address);
1055
1056 while (vma) {
1057 address = page_address_in_vma(page, vma);
1058 if (address != -EFAULT)
1059 break;
1060 vma = vma->vm_next;
1061 }
1062
1063 /*
1064 * if !vma, alloc_page_vma() will use task or system default policy
1065 */
1066 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1067 }
1068 #else
1069
1070 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071 unsigned long flags)
1072 {
1073 }
1074
1075 int do_migrate_pages(struct mm_struct *mm,
1076 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1077 {
1078 return -ENOSYS;
1079 }
1080
1081 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1082 {
1083 return NULL;
1084 }
1085 #endif
1086
1087 static long do_mbind(unsigned long start, unsigned long len,
1088 unsigned short mode, unsigned short mode_flags,
1089 nodemask_t *nmask, unsigned long flags)
1090 {
1091 struct vm_area_struct *vma;
1092 struct mm_struct *mm = current->mm;
1093 struct mempolicy *new;
1094 unsigned long end;
1095 int err;
1096 LIST_HEAD(pagelist);
1097
1098 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100 return -EINVAL;
1101 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102 return -EPERM;
1103
1104 if (start & ~PAGE_MASK)
1105 return -EINVAL;
1106
1107 if (mode == MPOL_DEFAULT)
1108 flags &= ~MPOL_MF_STRICT;
1109
1110 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 end = start + len;
1112
1113 if (end < start)
1114 return -EINVAL;
1115 if (end == start)
1116 return 0;
1117
1118 new = mpol_new(mode, mode_flags, nmask);
1119 if (IS_ERR(new))
1120 return PTR_ERR(new);
1121
1122 /*
1123 * If we are using the default policy then operation
1124 * on discontinuous address spaces is okay after all
1125 */
1126 if (!new)
1127 flags |= MPOL_MF_DISCONTIG_OK;
1128
1129 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130 start, start + len, mode, mode_flags,
1131 nmask ? nodes_addr(*nmask)[0] : -1);
1132
1133 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1134
1135 err = migrate_prep();
1136 if (err)
1137 goto mpol_out;
1138 }
1139 {
1140 NODEMASK_SCRATCH(scratch);
1141 if (scratch) {
1142 down_write(&mm->mmap_sem);
1143 task_lock(current);
1144 err = mpol_set_nodemask(new, nmask, scratch);
1145 task_unlock(current);
1146 if (err)
1147 up_write(&mm->mmap_sem);
1148 } else
1149 err = -ENOMEM;
1150 NODEMASK_SCRATCH_FREE(scratch);
1151 }
1152 if (err)
1153 goto mpol_out;
1154
1155 vma = check_range(mm, start, end, nmask,
1156 flags | MPOL_MF_INVERT, &pagelist);
1157
1158 err = PTR_ERR(vma);
1159 if (!IS_ERR(vma)) {
1160 int nr_failed = 0;
1161
1162 err = mbind_range(mm, start, end, new);
1163
1164 if (!list_empty(&pagelist)) {
1165 nr_failed = migrate_pages(&pagelist, new_vma_page,
1166 (unsigned long)vma,
1167 false, true);
1168 if (nr_failed)
1169 putback_lru_pages(&pagelist);
1170 }
1171
1172 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173 err = -EIO;
1174 } else
1175 putback_lru_pages(&pagelist);
1176
1177 up_write(&mm->mmap_sem);
1178 mpol_out:
1179 mpol_put(new);
1180 return err;
1181 }
1182
1183 /*
1184 * User space interface with variable sized bitmaps for nodelists.
1185 */
1186
1187 /* Copy a node mask from user space. */
1188 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189 unsigned long maxnode)
1190 {
1191 unsigned long k;
1192 unsigned long nlongs;
1193 unsigned long endmask;
1194
1195 --maxnode;
1196 nodes_clear(*nodes);
1197 if (maxnode == 0 || !nmask)
1198 return 0;
1199 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200 return -EINVAL;
1201
1202 nlongs = BITS_TO_LONGS(maxnode);
1203 if ((maxnode % BITS_PER_LONG) == 0)
1204 endmask = ~0UL;
1205 else
1206 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1207
1208 /* When the user specified more nodes than supported just check
1209 if the non supported part is all zero. */
1210 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211 if (nlongs > PAGE_SIZE/sizeof(long))
1212 return -EINVAL;
1213 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214 unsigned long t;
1215 if (get_user(t, nmask + k))
1216 return -EFAULT;
1217 if (k == nlongs - 1) {
1218 if (t & endmask)
1219 return -EINVAL;
1220 } else if (t)
1221 return -EINVAL;
1222 }
1223 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224 endmask = ~0UL;
1225 }
1226
1227 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228 return -EFAULT;
1229 nodes_addr(*nodes)[nlongs-1] &= endmask;
1230 return 0;
1231 }
1232
1233 /* Copy a kernel node mask to user space */
1234 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235 nodemask_t *nodes)
1236 {
1237 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1239
1240 if (copy > nbytes) {
1241 if (copy > PAGE_SIZE)
1242 return -EINVAL;
1243 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244 return -EFAULT;
1245 copy = nbytes;
1246 }
1247 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1248 }
1249
1250 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251 unsigned long, mode, unsigned long __user *, nmask,
1252 unsigned long, maxnode, unsigned, flags)
1253 {
1254 nodemask_t nodes;
1255 int err;
1256 unsigned short mode_flags;
1257
1258 mode_flags = mode & MPOL_MODE_FLAGS;
1259 mode &= ~MPOL_MODE_FLAGS;
1260 if (mode >= MPOL_MAX)
1261 return -EINVAL;
1262 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263 (mode_flags & MPOL_F_RELATIVE_NODES))
1264 return -EINVAL;
1265 err = get_nodes(&nodes, nmask, maxnode);
1266 if (err)
1267 return err;
1268 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1269 }
1270
1271 /* Set the process memory policy */
1272 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273 unsigned long, maxnode)
1274 {
1275 int err;
1276 nodemask_t nodes;
1277 unsigned short flags;
1278
1279 flags = mode & MPOL_MODE_FLAGS;
1280 mode &= ~MPOL_MODE_FLAGS;
1281 if ((unsigned int)mode >= MPOL_MAX)
1282 return -EINVAL;
1283 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284 return -EINVAL;
1285 err = get_nodes(&nodes, nmask, maxnode);
1286 if (err)
1287 return err;
1288 return do_set_mempolicy(mode, flags, &nodes);
1289 }
1290
1291 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292 const unsigned long __user *, old_nodes,
1293 const unsigned long __user *, new_nodes)
1294 {
1295 const struct cred *cred = current_cred(), *tcred;
1296 struct mm_struct *mm = NULL;
1297 struct task_struct *task;
1298 nodemask_t task_nodes;
1299 int err;
1300 nodemask_t *old;
1301 nodemask_t *new;
1302 NODEMASK_SCRATCH(scratch);
1303
1304 if (!scratch)
1305 return -ENOMEM;
1306
1307 old = &scratch->mask1;
1308 new = &scratch->mask2;
1309
1310 err = get_nodes(old, old_nodes, maxnode);
1311 if (err)
1312 goto out;
1313
1314 err = get_nodes(new, new_nodes, maxnode);
1315 if (err)
1316 goto out;
1317
1318 /* Find the mm_struct */
1319 rcu_read_lock();
1320 task = pid ? find_task_by_vpid(pid) : current;
1321 if (!task) {
1322 rcu_read_unlock();
1323 err = -ESRCH;
1324 goto out;
1325 }
1326 get_task_struct(task);
1327
1328 err = -EINVAL;
1329
1330 /*
1331 * Check if this process has the right to modify the specified
1332 * process. The right exists if the process has administrative
1333 * capabilities, superuser privileges or the same
1334 * userid as the target process.
1335 */
1336 tcred = __task_cred(task);
1337 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1338 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1339 !capable(CAP_SYS_NICE)) {
1340 rcu_read_unlock();
1341 err = -EPERM;
1342 goto out_put;
1343 }
1344 rcu_read_unlock();
1345
1346 task_nodes = cpuset_mems_allowed(task);
1347 /* Is the user allowed to access the target nodes? */
1348 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1349 err = -EPERM;
1350 goto out_put;
1351 }
1352
1353 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1354 err = -EINVAL;
1355 goto out_put;
1356 }
1357
1358 err = security_task_movememory(task);
1359 if (err)
1360 goto out_put;
1361
1362 mm = get_task_mm(task);
1363 put_task_struct(task);
1364
1365 if (!mm) {
1366 err = -EINVAL;
1367 goto out;
1368 }
1369
1370 err = do_migrate_pages(mm, old, new,
1371 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1372
1373 mmput(mm);
1374 out:
1375 NODEMASK_SCRATCH_FREE(scratch);
1376
1377 return err;
1378
1379 out_put:
1380 put_task_struct(task);
1381 goto out;
1382
1383 }
1384
1385
1386 /* Retrieve NUMA policy */
1387 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1388 unsigned long __user *, nmask, unsigned long, maxnode,
1389 unsigned long, addr, unsigned long, flags)
1390 {
1391 int err;
1392 int uninitialized_var(pval);
1393 nodemask_t nodes;
1394
1395 if (nmask != NULL && maxnode < MAX_NUMNODES)
1396 return -EINVAL;
1397
1398 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1399
1400 if (err)
1401 return err;
1402
1403 if (policy && put_user(pval, policy))
1404 return -EFAULT;
1405
1406 if (nmask)
1407 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1408
1409 return err;
1410 }
1411
1412 #ifdef CONFIG_COMPAT
1413
1414 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1415 compat_ulong_t __user *nmask,
1416 compat_ulong_t maxnode,
1417 compat_ulong_t addr, compat_ulong_t flags)
1418 {
1419 long err;
1420 unsigned long __user *nm = NULL;
1421 unsigned long nr_bits, alloc_size;
1422 DECLARE_BITMAP(bm, MAX_NUMNODES);
1423
1424 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1425 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1426
1427 if (nmask)
1428 nm = compat_alloc_user_space(alloc_size);
1429
1430 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1431
1432 if (!err && nmask) {
1433 unsigned long copy_size;
1434 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1435 err = copy_from_user(bm, nm, copy_size);
1436 /* ensure entire bitmap is zeroed */
1437 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1438 err |= compat_put_bitmap(nmask, bm, nr_bits);
1439 }
1440
1441 return err;
1442 }
1443
1444 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1445 compat_ulong_t maxnode)
1446 {
1447 long err = 0;
1448 unsigned long __user *nm = NULL;
1449 unsigned long nr_bits, alloc_size;
1450 DECLARE_BITMAP(bm, MAX_NUMNODES);
1451
1452 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1453 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1454
1455 if (nmask) {
1456 err = compat_get_bitmap(bm, nmask, nr_bits);
1457 nm = compat_alloc_user_space(alloc_size);
1458 err |= copy_to_user(nm, bm, alloc_size);
1459 }
1460
1461 if (err)
1462 return -EFAULT;
1463
1464 return sys_set_mempolicy(mode, nm, nr_bits+1);
1465 }
1466
1467 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1468 compat_ulong_t mode, compat_ulong_t __user *nmask,
1469 compat_ulong_t maxnode, compat_ulong_t flags)
1470 {
1471 long err = 0;
1472 unsigned long __user *nm = NULL;
1473 unsigned long nr_bits, alloc_size;
1474 nodemask_t bm;
1475
1476 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1477 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1478
1479 if (nmask) {
1480 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1481 nm = compat_alloc_user_space(alloc_size);
1482 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1483 }
1484
1485 if (err)
1486 return -EFAULT;
1487
1488 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1489 }
1490
1491 #endif
1492
1493 /*
1494 * get_vma_policy(@task, @vma, @addr)
1495 * @task - task for fallback if vma policy == default
1496 * @vma - virtual memory area whose policy is sought
1497 * @addr - address in @vma for shared policy lookup
1498 *
1499 * Returns effective policy for a VMA at specified address.
1500 * Falls back to @task or system default policy, as necessary.
1501 * Current or other task's task mempolicy and non-shared vma policies
1502 * are protected by the task's mmap_sem, which must be held for read by
1503 * the caller.
1504 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1505 * count--added by the get_policy() vm_op, as appropriate--to protect against
1506 * freeing by another task. It is the caller's responsibility to free the
1507 * extra reference for shared policies.
1508 */
1509 struct mempolicy *get_vma_policy(struct task_struct *task,
1510 struct vm_area_struct *vma, unsigned long addr)
1511 {
1512 struct mempolicy *pol = task->mempolicy;
1513
1514 if (vma) {
1515 if (vma->vm_ops && vma->vm_ops->get_policy) {
1516 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1517 addr);
1518 if (vpol)
1519 pol = vpol;
1520 } else if (vma->vm_policy)
1521 pol = vma->vm_policy;
1522 }
1523 if (!pol)
1524 pol = &default_policy;
1525 return pol;
1526 }
1527
1528 /*
1529 * Return a nodemask representing a mempolicy for filtering nodes for
1530 * page allocation
1531 */
1532 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1533 {
1534 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1535 if (unlikely(policy->mode == MPOL_BIND) &&
1536 gfp_zone(gfp) >= policy_zone &&
1537 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1538 return &policy->v.nodes;
1539
1540 return NULL;
1541 }
1542
1543 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1544 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1545 int nd)
1546 {
1547 switch (policy->mode) {
1548 case MPOL_PREFERRED:
1549 if (!(policy->flags & MPOL_F_LOCAL))
1550 nd = policy->v.preferred_node;
1551 break;
1552 case MPOL_BIND:
1553 /*
1554 * Normally, MPOL_BIND allocations are node-local within the
1555 * allowed nodemask. However, if __GFP_THISNODE is set and the
1556 * current node isn't part of the mask, we use the zonelist for
1557 * the first node in the mask instead.
1558 */
1559 if (unlikely(gfp & __GFP_THISNODE) &&
1560 unlikely(!node_isset(nd, policy->v.nodes)))
1561 nd = first_node(policy->v.nodes);
1562 break;
1563 default:
1564 BUG();
1565 }
1566 return node_zonelist(nd, gfp);
1567 }
1568
1569 /* Do dynamic interleaving for a process */
1570 static unsigned interleave_nodes(struct mempolicy *policy)
1571 {
1572 unsigned nid, next;
1573 struct task_struct *me = current;
1574
1575 nid = me->il_next;
1576 next = next_node(nid, policy->v.nodes);
1577 if (next >= MAX_NUMNODES)
1578 next = first_node(policy->v.nodes);
1579 if (next < MAX_NUMNODES)
1580 me->il_next = next;
1581 return nid;
1582 }
1583
1584 /*
1585 * Depending on the memory policy provide a node from which to allocate the
1586 * next slab entry.
1587 * @policy must be protected by freeing by the caller. If @policy is
1588 * the current task's mempolicy, this protection is implicit, as only the
1589 * task can change it's policy. The system default policy requires no
1590 * such protection.
1591 */
1592 unsigned slab_node(struct mempolicy *policy)
1593 {
1594 if (!policy || policy->flags & MPOL_F_LOCAL)
1595 return numa_node_id();
1596
1597 switch (policy->mode) {
1598 case MPOL_PREFERRED:
1599 /*
1600 * handled MPOL_F_LOCAL above
1601 */
1602 return policy->v.preferred_node;
1603
1604 case MPOL_INTERLEAVE:
1605 return interleave_nodes(policy);
1606
1607 case MPOL_BIND: {
1608 /*
1609 * Follow bind policy behavior and start allocation at the
1610 * first node.
1611 */
1612 struct zonelist *zonelist;
1613 struct zone *zone;
1614 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1615 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1616 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1617 &policy->v.nodes,
1618 &zone);
1619 return zone ? zone->node : numa_node_id();
1620 }
1621
1622 default:
1623 BUG();
1624 }
1625 }
1626
1627 /* Do static interleaving for a VMA with known offset. */
1628 static unsigned offset_il_node(struct mempolicy *pol,
1629 struct vm_area_struct *vma, unsigned long off)
1630 {
1631 unsigned nnodes = nodes_weight(pol->v.nodes);
1632 unsigned target;
1633 int c;
1634 int nid = -1;
1635
1636 if (!nnodes)
1637 return numa_node_id();
1638 target = (unsigned int)off % nnodes;
1639 c = 0;
1640 do {
1641 nid = next_node(nid, pol->v.nodes);
1642 c++;
1643 } while (c <= target);
1644 return nid;
1645 }
1646
1647 /* Determine a node number for interleave */
1648 static inline unsigned interleave_nid(struct mempolicy *pol,
1649 struct vm_area_struct *vma, unsigned long addr, int shift)
1650 {
1651 if (vma) {
1652 unsigned long off;
1653
1654 /*
1655 * for small pages, there is no difference between
1656 * shift and PAGE_SHIFT, so the bit-shift is safe.
1657 * for huge pages, since vm_pgoff is in units of small
1658 * pages, we need to shift off the always 0 bits to get
1659 * a useful offset.
1660 */
1661 BUG_ON(shift < PAGE_SHIFT);
1662 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1663 off += (addr - vma->vm_start) >> shift;
1664 return offset_il_node(pol, vma, off);
1665 } else
1666 return interleave_nodes(pol);
1667 }
1668
1669 /*
1670 * Return the bit number of a random bit set in the nodemask.
1671 * (returns -1 if nodemask is empty)
1672 */
1673 int node_random(const nodemask_t *maskp)
1674 {
1675 int w, bit = -1;
1676
1677 w = nodes_weight(*maskp);
1678 if (w)
1679 bit = bitmap_ord_to_pos(maskp->bits,
1680 get_random_int() % w, MAX_NUMNODES);
1681 return bit;
1682 }
1683
1684 #ifdef CONFIG_HUGETLBFS
1685 /*
1686 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1687 * @vma = virtual memory area whose policy is sought
1688 * @addr = address in @vma for shared policy lookup and interleave policy
1689 * @gfp_flags = for requested zone
1690 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1691 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1692 *
1693 * Returns a zonelist suitable for a huge page allocation and a pointer
1694 * to the struct mempolicy for conditional unref after allocation.
1695 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1696 * @nodemask for filtering the zonelist.
1697 *
1698 * Must be protected by get_mems_allowed()
1699 */
1700 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1701 gfp_t gfp_flags, struct mempolicy **mpol,
1702 nodemask_t **nodemask)
1703 {
1704 struct zonelist *zl;
1705
1706 *mpol = get_vma_policy(current, vma, addr);
1707 *nodemask = NULL; /* assume !MPOL_BIND */
1708
1709 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1710 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1711 huge_page_shift(hstate_vma(vma))), gfp_flags);
1712 } else {
1713 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1714 if ((*mpol)->mode == MPOL_BIND)
1715 *nodemask = &(*mpol)->v.nodes;
1716 }
1717 return zl;
1718 }
1719
1720 /*
1721 * init_nodemask_of_mempolicy
1722 *
1723 * If the current task's mempolicy is "default" [NULL], return 'false'
1724 * to indicate default policy. Otherwise, extract the policy nodemask
1725 * for 'bind' or 'interleave' policy into the argument nodemask, or
1726 * initialize the argument nodemask to contain the single node for
1727 * 'preferred' or 'local' policy and return 'true' to indicate presence
1728 * of non-default mempolicy.
1729 *
1730 * We don't bother with reference counting the mempolicy [mpol_get/put]
1731 * because the current task is examining it's own mempolicy and a task's
1732 * mempolicy is only ever changed by the task itself.
1733 *
1734 * N.B., it is the caller's responsibility to free a returned nodemask.
1735 */
1736 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1737 {
1738 struct mempolicy *mempolicy;
1739 int nid;
1740
1741 if (!(mask && current->mempolicy))
1742 return false;
1743
1744 task_lock(current);
1745 mempolicy = current->mempolicy;
1746 switch (mempolicy->mode) {
1747 case MPOL_PREFERRED:
1748 if (mempolicy->flags & MPOL_F_LOCAL)
1749 nid = numa_node_id();
1750 else
1751 nid = mempolicy->v.preferred_node;
1752 init_nodemask_of_node(mask, nid);
1753 break;
1754
1755 case MPOL_BIND:
1756 /* Fall through */
1757 case MPOL_INTERLEAVE:
1758 *mask = mempolicy->v.nodes;
1759 break;
1760
1761 default:
1762 BUG();
1763 }
1764 task_unlock(current);
1765
1766 return true;
1767 }
1768 #endif
1769
1770 /*
1771 * mempolicy_nodemask_intersects
1772 *
1773 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1774 * policy. Otherwise, check for intersection between mask and the policy
1775 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1776 * policy, always return true since it may allocate elsewhere on fallback.
1777 *
1778 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1779 */
1780 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1781 const nodemask_t *mask)
1782 {
1783 struct mempolicy *mempolicy;
1784 bool ret = true;
1785
1786 if (!mask)
1787 return ret;
1788 task_lock(tsk);
1789 mempolicy = tsk->mempolicy;
1790 if (!mempolicy)
1791 goto out;
1792
1793 switch (mempolicy->mode) {
1794 case MPOL_PREFERRED:
1795 /*
1796 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1797 * allocate from, they may fallback to other nodes when oom.
1798 * Thus, it's possible for tsk to have allocated memory from
1799 * nodes in mask.
1800 */
1801 break;
1802 case MPOL_BIND:
1803 case MPOL_INTERLEAVE:
1804 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1805 break;
1806 default:
1807 BUG();
1808 }
1809 out:
1810 task_unlock(tsk);
1811 return ret;
1812 }
1813
1814 /* Allocate a page in interleaved policy.
1815 Own path because it needs to do special accounting. */
1816 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1817 unsigned nid)
1818 {
1819 struct zonelist *zl;
1820 struct page *page;
1821
1822 zl = node_zonelist(nid, gfp);
1823 page = __alloc_pages(gfp, order, zl);
1824 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1825 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1826 return page;
1827 }
1828
1829 /**
1830 * alloc_pages_vma - Allocate a page for a VMA.
1831 *
1832 * @gfp:
1833 * %GFP_USER user allocation.
1834 * %GFP_KERNEL kernel allocations,
1835 * %GFP_HIGHMEM highmem/user allocations,
1836 * %GFP_FS allocation should not call back into a file system.
1837 * %GFP_ATOMIC don't sleep.
1838 *
1839 * @order:Order of the GFP allocation.
1840 * @vma: Pointer to VMA or NULL if not available.
1841 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1842 *
1843 * This function allocates a page from the kernel page pool and applies
1844 * a NUMA policy associated with the VMA or the current process.
1845 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1846 * mm_struct of the VMA to prevent it from going away. Should be used for
1847 * all allocations for pages that will be mapped into
1848 * user space. Returns NULL when no page can be allocated.
1849 *
1850 * Should be called with the mm_sem of the vma hold.
1851 */
1852 struct page *
1853 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1854 unsigned long addr, int node)
1855 {
1856 struct mempolicy *pol;
1857 struct zonelist *zl;
1858 struct page *page;
1859 unsigned int cpuset_mems_cookie;
1860
1861 retry_cpuset:
1862 pol = get_vma_policy(current, vma, addr);
1863 cpuset_mems_cookie = get_mems_allowed();
1864
1865 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1866 unsigned nid;
1867
1868 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1869 mpol_cond_put(pol);
1870 page = alloc_page_interleave(gfp, order, nid);
1871 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1872 goto retry_cpuset;
1873
1874 return page;
1875 }
1876 zl = policy_zonelist(gfp, pol, node);
1877 if (unlikely(mpol_needs_cond_ref(pol))) {
1878 /*
1879 * slow path: ref counted shared policy
1880 */
1881 struct page *page = __alloc_pages_nodemask(gfp, order,
1882 zl, policy_nodemask(gfp, pol));
1883 __mpol_put(pol);
1884 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1885 goto retry_cpuset;
1886 return page;
1887 }
1888 /*
1889 * fast path: default or task policy
1890 */
1891 page = __alloc_pages_nodemask(gfp, order, zl,
1892 policy_nodemask(gfp, pol));
1893 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1894 goto retry_cpuset;
1895 return page;
1896 }
1897
1898 /**
1899 * alloc_pages_current - Allocate pages.
1900 *
1901 * @gfp:
1902 * %GFP_USER user allocation,
1903 * %GFP_KERNEL kernel allocation,
1904 * %GFP_HIGHMEM highmem allocation,
1905 * %GFP_FS don't call back into a file system.
1906 * %GFP_ATOMIC don't sleep.
1907 * @order: Power of two of allocation size in pages. 0 is a single page.
1908 *
1909 * Allocate a page from the kernel page pool. When not in
1910 * interrupt context and apply the current process NUMA policy.
1911 * Returns NULL when no page can be allocated.
1912 *
1913 * Don't call cpuset_update_task_memory_state() unless
1914 * 1) it's ok to take cpuset_sem (can WAIT), and
1915 * 2) allocating for current task (not interrupt).
1916 */
1917 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1918 {
1919 struct mempolicy *pol = current->mempolicy;
1920 struct page *page;
1921 unsigned int cpuset_mems_cookie;
1922
1923 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1924 pol = &default_policy;
1925
1926 retry_cpuset:
1927 cpuset_mems_cookie = get_mems_allowed();
1928
1929 /*
1930 * No reference counting needed for current->mempolicy
1931 * nor system default_policy
1932 */
1933 if (pol->mode == MPOL_INTERLEAVE)
1934 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1935 else
1936 page = __alloc_pages_nodemask(gfp, order,
1937 policy_zonelist(gfp, pol, numa_node_id()),
1938 policy_nodemask(gfp, pol));
1939
1940 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1941 goto retry_cpuset;
1942
1943 return page;
1944 }
1945 EXPORT_SYMBOL(alloc_pages_current);
1946
1947 /*
1948 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1949 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1950 * with the mems_allowed returned by cpuset_mems_allowed(). This
1951 * keeps mempolicies cpuset relative after its cpuset moves. See
1952 * further kernel/cpuset.c update_nodemask().
1953 *
1954 * current's mempolicy may be rebinded by the other task(the task that changes
1955 * cpuset's mems), so we needn't do rebind work for current task.
1956 */
1957
1958 /* Slow path of a mempolicy duplicate */
1959 struct mempolicy *__mpol_dup(struct mempolicy *old)
1960 {
1961 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1962
1963 if (!new)
1964 return ERR_PTR(-ENOMEM);
1965
1966 /* task's mempolicy is protected by alloc_lock */
1967 if (old == current->mempolicy) {
1968 task_lock(current);
1969 *new = *old;
1970 task_unlock(current);
1971 } else
1972 *new = *old;
1973
1974 rcu_read_lock();
1975 if (current_cpuset_is_being_rebound()) {
1976 nodemask_t mems = cpuset_mems_allowed(current);
1977 if (new->flags & MPOL_F_REBINDING)
1978 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1979 else
1980 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1981 }
1982 rcu_read_unlock();
1983 atomic_set(&new->refcnt, 1);
1984 return new;
1985 }
1986
1987 /*
1988 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1989 * eliminate the * MPOL_F_* flags that require conditional ref and
1990 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1991 * after return. Use the returned value.
1992 *
1993 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1994 * policy lookup, even if the policy needs/has extra ref on lookup.
1995 * shmem_readahead needs this.
1996 */
1997 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1998 struct mempolicy *frompol)
1999 {
2000 if (!mpol_needs_cond_ref(frompol))
2001 return frompol;
2002
2003 *tompol = *frompol;
2004 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2005 __mpol_put(frompol);
2006 return tompol;
2007 }
2008
2009 /* Slow path of a mempolicy comparison */
2010 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2011 {
2012 if (!a || !b)
2013 return false;
2014 if (a->mode != b->mode)
2015 return false;
2016 if (a->flags != b->flags)
2017 return false;
2018 if (mpol_store_user_nodemask(a))
2019 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2020 return false;
2021
2022 switch (a->mode) {
2023 case MPOL_BIND:
2024 /* Fall through */
2025 case MPOL_INTERLEAVE:
2026 return !!nodes_equal(a->v.nodes, b->v.nodes);
2027 case MPOL_PREFERRED:
2028 return a->v.preferred_node == b->v.preferred_node;
2029 default:
2030 BUG();
2031 return false;
2032 }
2033 }
2034
2035 /*
2036 * Shared memory backing store policy support.
2037 *
2038 * Remember policies even when nobody has shared memory mapped.
2039 * The policies are kept in Red-Black tree linked from the inode.
2040 * They are protected by the sp->lock spinlock, which should be held
2041 * for any accesses to the tree.
2042 */
2043
2044 /* lookup first element intersecting start-end */
2045 /* Caller holds sp->lock */
2046 static struct sp_node *
2047 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2048 {
2049 struct rb_node *n = sp->root.rb_node;
2050
2051 while (n) {
2052 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2053
2054 if (start >= p->end)
2055 n = n->rb_right;
2056 else if (end <= p->start)
2057 n = n->rb_left;
2058 else
2059 break;
2060 }
2061 if (!n)
2062 return NULL;
2063 for (;;) {
2064 struct sp_node *w = NULL;
2065 struct rb_node *prev = rb_prev(n);
2066 if (!prev)
2067 break;
2068 w = rb_entry(prev, struct sp_node, nd);
2069 if (w->end <= start)
2070 break;
2071 n = prev;
2072 }
2073 return rb_entry(n, struct sp_node, nd);
2074 }
2075
2076 /* Insert a new shared policy into the list. */
2077 /* Caller holds sp->lock */
2078 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2079 {
2080 struct rb_node **p = &sp->root.rb_node;
2081 struct rb_node *parent = NULL;
2082 struct sp_node *nd;
2083
2084 while (*p) {
2085 parent = *p;
2086 nd = rb_entry(parent, struct sp_node, nd);
2087 if (new->start < nd->start)
2088 p = &(*p)->rb_left;
2089 else if (new->end > nd->end)
2090 p = &(*p)->rb_right;
2091 else
2092 BUG();
2093 }
2094 rb_link_node(&new->nd, parent, p);
2095 rb_insert_color(&new->nd, &sp->root);
2096 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2097 new->policy ? new->policy->mode : 0);
2098 }
2099
2100 /* Find shared policy intersecting idx */
2101 struct mempolicy *
2102 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2103 {
2104 struct mempolicy *pol = NULL;
2105 struct sp_node *sn;
2106
2107 if (!sp->root.rb_node)
2108 return NULL;
2109 spin_lock(&sp->lock);
2110 sn = sp_lookup(sp, idx, idx+1);
2111 if (sn) {
2112 mpol_get(sn->policy);
2113 pol = sn->policy;
2114 }
2115 spin_unlock(&sp->lock);
2116 return pol;
2117 }
2118
2119 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2120 {
2121 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2122 rb_erase(&n->nd, &sp->root);
2123 mpol_put(n->policy);
2124 kmem_cache_free(sn_cache, n);
2125 }
2126
2127 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2128 struct mempolicy *pol)
2129 {
2130 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2131
2132 if (!n)
2133 return NULL;
2134 n->start = start;
2135 n->end = end;
2136 mpol_get(pol);
2137 pol->flags |= MPOL_F_SHARED; /* for unref */
2138 n->policy = pol;
2139 return n;
2140 }
2141
2142 /* Replace a policy range. */
2143 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2144 unsigned long end, struct sp_node *new)
2145 {
2146 struct sp_node *n, *new2 = NULL;
2147
2148 restart:
2149 spin_lock(&sp->lock);
2150 n = sp_lookup(sp, start, end);
2151 /* Take care of old policies in the same range. */
2152 while (n && n->start < end) {
2153 struct rb_node *next = rb_next(&n->nd);
2154 if (n->start >= start) {
2155 if (n->end <= end)
2156 sp_delete(sp, n);
2157 else
2158 n->start = end;
2159 } else {
2160 /* Old policy spanning whole new range. */
2161 if (n->end > end) {
2162 if (!new2) {
2163 spin_unlock(&sp->lock);
2164 new2 = sp_alloc(end, n->end, n->policy);
2165 if (!new2)
2166 return -ENOMEM;
2167 goto restart;
2168 }
2169 n->end = start;
2170 sp_insert(sp, new2);
2171 new2 = NULL;
2172 break;
2173 } else
2174 n->end = start;
2175 }
2176 if (!next)
2177 break;
2178 n = rb_entry(next, struct sp_node, nd);
2179 }
2180 if (new)
2181 sp_insert(sp, new);
2182 spin_unlock(&sp->lock);
2183 if (new2) {
2184 mpol_put(new2->policy);
2185 kmem_cache_free(sn_cache, new2);
2186 }
2187 return 0;
2188 }
2189
2190 /**
2191 * mpol_shared_policy_init - initialize shared policy for inode
2192 * @sp: pointer to inode shared policy
2193 * @mpol: struct mempolicy to install
2194 *
2195 * Install non-NULL @mpol in inode's shared policy rb-tree.
2196 * On entry, the current task has a reference on a non-NULL @mpol.
2197 * This must be released on exit.
2198 * This is called at get_inode() calls and we can use GFP_KERNEL.
2199 */
2200 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2201 {
2202 int ret;
2203
2204 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2205 spin_lock_init(&sp->lock);
2206
2207 if (mpol) {
2208 struct vm_area_struct pvma;
2209 struct mempolicy *new;
2210 NODEMASK_SCRATCH(scratch);
2211
2212 if (!scratch)
2213 goto put_mpol;
2214 /* contextualize the tmpfs mount point mempolicy */
2215 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2216 if (IS_ERR(new))
2217 goto free_scratch; /* no valid nodemask intersection */
2218
2219 task_lock(current);
2220 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2221 task_unlock(current);
2222 if (ret)
2223 goto put_new;
2224
2225 /* Create pseudo-vma that contains just the policy */
2226 memset(&pvma, 0, sizeof(struct vm_area_struct));
2227 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2228 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2229
2230 put_new:
2231 mpol_put(new); /* drop initial ref */
2232 free_scratch:
2233 NODEMASK_SCRATCH_FREE(scratch);
2234 put_mpol:
2235 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2236 }
2237 }
2238
2239 int mpol_set_shared_policy(struct shared_policy *info,
2240 struct vm_area_struct *vma, struct mempolicy *npol)
2241 {
2242 int err;
2243 struct sp_node *new = NULL;
2244 unsigned long sz = vma_pages(vma);
2245
2246 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2247 vma->vm_pgoff,
2248 sz, npol ? npol->mode : -1,
2249 npol ? npol->flags : -1,
2250 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2251
2252 if (npol) {
2253 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2254 if (!new)
2255 return -ENOMEM;
2256 }
2257 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2258 if (err && new)
2259 kmem_cache_free(sn_cache, new);
2260 return err;
2261 }
2262
2263 /* Free a backing policy store on inode delete. */
2264 void mpol_free_shared_policy(struct shared_policy *p)
2265 {
2266 struct sp_node *n;
2267 struct rb_node *next;
2268
2269 if (!p->root.rb_node)
2270 return;
2271 spin_lock(&p->lock);
2272 next = rb_first(&p->root);
2273 while (next) {
2274 n = rb_entry(next, struct sp_node, nd);
2275 next = rb_next(&n->nd);
2276 rb_erase(&n->nd, &p->root);
2277 mpol_put(n->policy);
2278 kmem_cache_free(sn_cache, n);
2279 }
2280 spin_unlock(&p->lock);
2281 }
2282
2283 /* assumes fs == KERNEL_DS */
2284 void __init numa_policy_init(void)
2285 {
2286 nodemask_t interleave_nodes;
2287 unsigned long largest = 0;
2288 int nid, prefer = 0;
2289
2290 policy_cache = kmem_cache_create("numa_policy",
2291 sizeof(struct mempolicy),
2292 0, SLAB_PANIC, NULL);
2293
2294 sn_cache = kmem_cache_create("shared_policy_node",
2295 sizeof(struct sp_node),
2296 0, SLAB_PANIC, NULL);
2297
2298 /*
2299 * Set interleaving policy for system init. Interleaving is only
2300 * enabled across suitably sized nodes (default is >= 16MB), or
2301 * fall back to the largest node if they're all smaller.
2302 */
2303 nodes_clear(interleave_nodes);
2304 for_each_node_state(nid, N_HIGH_MEMORY) {
2305 unsigned long total_pages = node_present_pages(nid);
2306
2307 /* Preserve the largest node */
2308 if (largest < total_pages) {
2309 largest = total_pages;
2310 prefer = nid;
2311 }
2312
2313 /* Interleave this node? */
2314 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2315 node_set(nid, interleave_nodes);
2316 }
2317
2318 /* All too small, use the largest */
2319 if (unlikely(nodes_empty(interleave_nodes)))
2320 node_set(prefer, interleave_nodes);
2321
2322 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2323 printk("numa_policy_init: interleaving failed\n");
2324 }
2325
2326 /* Reset policy of current process to default */
2327 void numa_default_policy(void)
2328 {
2329 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2330 }
2331
2332 /*
2333 * Parse and format mempolicy from/to strings
2334 */
2335
2336 /*
2337 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2338 * Used only for mpol_parse_str() and mpol_to_str()
2339 */
2340 #define MPOL_LOCAL MPOL_MAX
2341 static const char * const policy_modes[] =
2342 {
2343 [MPOL_DEFAULT] = "default",
2344 [MPOL_PREFERRED] = "prefer",
2345 [MPOL_BIND] = "bind",
2346 [MPOL_INTERLEAVE] = "interleave",
2347 [MPOL_LOCAL] = "local"
2348 };
2349
2350
2351 #ifdef CONFIG_TMPFS
2352 /**
2353 * mpol_parse_str - parse string to mempolicy
2354 * @str: string containing mempolicy to parse
2355 * @mpol: pointer to struct mempolicy pointer, returned on success.
2356 * @no_context: flag whether to "contextualize" the mempolicy
2357 *
2358 * Format of input:
2359 * <mode>[=<flags>][:<nodelist>]
2360 *
2361 * if @no_context is true, save the input nodemask in w.user_nodemask in
2362 * the returned mempolicy. This will be used to "clone" the mempolicy in
2363 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2364 * mount option. Note that if 'static' or 'relative' mode flags were
2365 * specified, the input nodemask will already have been saved. Saving
2366 * it again is redundant, but safe.
2367 *
2368 * On success, returns 0, else 1
2369 */
2370 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2371 {
2372 struct mempolicy *new = NULL;
2373 unsigned short mode;
2374 unsigned short uninitialized_var(mode_flags);
2375 nodemask_t nodes;
2376 char *nodelist = strchr(str, ':');
2377 char *flags = strchr(str, '=');
2378 int err = 1;
2379
2380 if (nodelist) {
2381 /* NUL-terminate mode or flags string */
2382 *nodelist++ = '\0';
2383 if (nodelist_parse(nodelist, nodes))
2384 goto out;
2385 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2386 goto out;
2387 } else
2388 nodes_clear(nodes);
2389
2390 if (flags)
2391 *flags++ = '\0'; /* terminate mode string */
2392
2393 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2394 if (!strcmp(str, policy_modes[mode])) {
2395 break;
2396 }
2397 }
2398 if (mode > MPOL_LOCAL)
2399 goto out;
2400
2401 switch (mode) {
2402 case MPOL_PREFERRED:
2403 /*
2404 * Insist on a nodelist of one node only
2405 */
2406 if (nodelist) {
2407 char *rest = nodelist;
2408 while (isdigit(*rest))
2409 rest++;
2410 if (*rest)
2411 goto out;
2412 }
2413 break;
2414 case MPOL_INTERLEAVE:
2415 /*
2416 * Default to online nodes with memory if no nodelist
2417 */
2418 if (!nodelist)
2419 nodes = node_states[N_HIGH_MEMORY];
2420 break;
2421 case MPOL_LOCAL:
2422 /*
2423 * Don't allow a nodelist; mpol_new() checks flags
2424 */
2425 if (nodelist)
2426 goto out;
2427 mode = MPOL_PREFERRED;
2428 break;
2429 case MPOL_DEFAULT:
2430 /*
2431 * Insist on a empty nodelist
2432 */
2433 if (!nodelist)
2434 err = 0;
2435 goto out;
2436 case MPOL_BIND:
2437 /*
2438 * Insist on a nodelist
2439 */
2440 if (!nodelist)
2441 goto out;
2442 }
2443
2444 mode_flags = 0;
2445 if (flags) {
2446 /*
2447 * Currently, we only support two mutually exclusive
2448 * mode flags.
2449 */
2450 if (!strcmp(flags, "static"))
2451 mode_flags |= MPOL_F_STATIC_NODES;
2452 else if (!strcmp(flags, "relative"))
2453 mode_flags |= MPOL_F_RELATIVE_NODES;
2454 else
2455 goto out;
2456 }
2457
2458 new = mpol_new(mode, mode_flags, &nodes);
2459 if (IS_ERR(new))
2460 goto out;
2461
2462 if (no_context) {
2463 /* save for contextualization */
2464 new->w.user_nodemask = nodes;
2465 } else {
2466 int ret;
2467 NODEMASK_SCRATCH(scratch);
2468 if (scratch) {
2469 task_lock(current);
2470 ret = mpol_set_nodemask(new, &nodes, scratch);
2471 task_unlock(current);
2472 } else
2473 ret = -ENOMEM;
2474 NODEMASK_SCRATCH_FREE(scratch);
2475 if (ret) {
2476 mpol_put(new);
2477 goto out;
2478 }
2479 }
2480 err = 0;
2481
2482 out:
2483 /* Restore string for error message */
2484 if (nodelist)
2485 *--nodelist = ':';
2486 if (flags)
2487 *--flags = '=';
2488 if (!err)
2489 *mpol = new;
2490 return err;
2491 }
2492 #endif /* CONFIG_TMPFS */
2493
2494 /**
2495 * mpol_to_str - format a mempolicy structure for printing
2496 * @buffer: to contain formatted mempolicy string
2497 * @maxlen: length of @buffer
2498 * @pol: pointer to mempolicy to be formatted
2499 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2500 *
2501 * Convert a mempolicy into a string.
2502 * Returns the number of characters in buffer (if positive)
2503 * or an error (negative)
2504 */
2505 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2506 {
2507 char *p = buffer;
2508 int l;
2509 nodemask_t nodes;
2510 unsigned short mode;
2511 unsigned short flags = pol ? pol->flags : 0;
2512
2513 /*
2514 * Sanity check: room for longest mode, flag and some nodes
2515 */
2516 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2517
2518 if (!pol || pol == &default_policy)
2519 mode = MPOL_DEFAULT;
2520 else
2521 mode = pol->mode;
2522
2523 switch (mode) {
2524 case MPOL_DEFAULT:
2525 nodes_clear(nodes);
2526 break;
2527
2528 case MPOL_PREFERRED:
2529 nodes_clear(nodes);
2530 if (flags & MPOL_F_LOCAL)
2531 mode = MPOL_LOCAL; /* pseudo-policy */
2532 else
2533 node_set(pol->v.preferred_node, nodes);
2534 break;
2535
2536 case MPOL_BIND:
2537 /* Fall through */
2538 case MPOL_INTERLEAVE:
2539 if (no_context)
2540 nodes = pol->w.user_nodemask;
2541 else
2542 nodes = pol->v.nodes;
2543 break;
2544
2545 default:
2546 BUG();
2547 }
2548
2549 l = strlen(policy_modes[mode]);
2550 if (buffer + maxlen < p + l + 1)
2551 return -ENOSPC;
2552
2553 strcpy(p, policy_modes[mode]);
2554 p += l;
2555
2556 if (flags & MPOL_MODE_FLAGS) {
2557 if (buffer + maxlen < p + 2)
2558 return -ENOSPC;
2559 *p++ = '=';
2560
2561 /*
2562 * Currently, the only defined flags are mutually exclusive
2563 */
2564 if (flags & MPOL_F_STATIC_NODES)
2565 p += snprintf(p, buffer + maxlen - p, "static");
2566 else if (flags & MPOL_F_RELATIVE_NODES)
2567 p += snprintf(p, buffer + maxlen - p, "relative");
2568 }
2569
2570 if (!nodes_empty(nodes)) {
2571 if (buffer + maxlen < p + 2)
2572 return -ENOSPC;
2573 *p++ = ':';
2574 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2575 }
2576 return p - buffer;
2577 }