mm: numa: Add fault driven placement and migration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61
62 #include <asm/io.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/tlb.h>
66 #include <asm/tlbflush.h>
67 #include <asm/pgtable.h>
68
69 #include "internal.h"
70
71 #ifndef CONFIG_NEED_MULTIPLE_NODES
72 /* use the per-pgdat data instead for discontigmem - mbligh */
73 unsigned long max_mapnr;
74 struct page *mem_map;
75
76 EXPORT_SYMBOL(max_mapnr);
77 EXPORT_SYMBOL(mem_map);
78 #endif
79
80 unsigned long num_physpages;
81 /*
82 * A number of key systems in x86 including ioremap() rely on the assumption
83 * that high_memory defines the upper bound on direct map memory, then end
84 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
85 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
86 * and ZONE_HIGHMEM.
87 */
88 void * high_memory;
89
90 EXPORT_SYMBOL(num_physpages);
91 EXPORT_SYMBOL(high_memory);
92
93 /*
94 * Randomize the address space (stacks, mmaps, brk, etc.).
95 *
96 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
97 * as ancient (libc5 based) binaries can segfault. )
98 */
99 int randomize_va_space __read_mostly =
100 #ifdef CONFIG_COMPAT_BRK
101 1;
102 #else
103 2;
104 #endif
105
106 static int __init disable_randmaps(char *s)
107 {
108 randomize_va_space = 0;
109 return 1;
110 }
111 __setup("norandmaps", disable_randmaps);
112
113 unsigned long zero_pfn __read_mostly;
114 unsigned long highest_memmap_pfn __read_mostly;
115
116 /*
117 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 */
119 static int __init init_zero_pfn(void)
120 {
121 zero_pfn = page_to_pfn(ZERO_PAGE(0));
122 return 0;
123 }
124 core_initcall(init_zero_pfn);
125
126
127 #if defined(SPLIT_RSS_COUNTING)
128
129 void sync_mm_rss(struct mm_struct *mm)
130 {
131 int i;
132
133 for (i = 0; i < NR_MM_COUNTERS; i++) {
134 if (current->rss_stat.count[i]) {
135 add_mm_counter(mm, i, current->rss_stat.count[i]);
136 current->rss_stat.count[i] = 0;
137 }
138 }
139 current->rss_stat.events = 0;
140 }
141
142 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 {
144 struct task_struct *task = current;
145
146 if (likely(task->mm == mm))
147 task->rss_stat.count[member] += val;
148 else
149 add_mm_counter(mm, member, val);
150 }
151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153
154 /* sync counter once per 64 page faults */
155 #define TASK_RSS_EVENTS_THRESH (64)
156 static void check_sync_rss_stat(struct task_struct *task)
157 {
158 if (unlikely(task != current))
159 return;
160 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
161 sync_mm_rss(task->mm);
162 }
163 #else /* SPLIT_RSS_COUNTING */
164
165 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
166 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167
168 static void check_sync_rss_stat(struct task_struct *task)
169 {
170 }
171
172 #endif /* SPLIT_RSS_COUNTING */
173
174 #ifdef HAVE_GENERIC_MMU_GATHER
175
176 static int tlb_next_batch(struct mmu_gather *tlb)
177 {
178 struct mmu_gather_batch *batch;
179
180 batch = tlb->active;
181 if (batch->next) {
182 tlb->active = batch->next;
183 return 1;
184 }
185
186 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
187 if (!batch)
188 return 0;
189
190 batch->next = NULL;
191 batch->nr = 0;
192 batch->max = MAX_GATHER_BATCH;
193
194 tlb->active->next = batch;
195 tlb->active = batch;
196
197 return 1;
198 }
199
200 /* tlb_gather_mmu
201 * Called to initialize an (on-stack) mmu_gather structure for page-table
202 * tear-down from @mm. The @fullmm argument is used when @mm is without
203 * users and we're going to destroy the full address space (exit/execve).
204 */
205 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 {
207 tlb->mm = mm;
208
209 tlb->fullmm = fullmm;
210 tlb->start = -1UL;
211 tlb->end = 0;
212 tlb->need_flush = 0;
213 tlb->fast_mode = (num_possible_cpus() == 1);
214 tlb->local.next = NULL;
215 tlb->local.nr = 0;
216 tlb->local.max = ARRAY_SIZE(tlb->__pages);
217 tlb->active = &tlb->local;
218
219 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
220 tlb->batch = NULL;
221 #endif
222 }
223
224 void tlb_flush_mmu(struct mmu_gather *tlb)
225 {
226 struct mmu_gather_batch *batch;
227
228 if (!tlb->need_flush)
229 return;
230 tlb->need_flush = 0;
231 tlb_flush(tlb);
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb_table_flush(tlb);
234 #endif
235
236 if (tlb_fast_mode(tlb))
237 return;
238
239 for (batch = &tlb->local; batch; batch = batch->next) {
240 free_pages_and_swap_cache(batch->pages, batch->nr);
241 batch->nr = 0;
242 }
243 tlb->active = &tlb->local;
244 }
245
246 /* tlb_finish_mmu
247 * Called at the end of the shootdown operation to free up any resources
248 * that were required.
249 */
250 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
251 {
252 struct mmu_gather_batch *batch, *next;
253
254 tlb->start = start;
255 tlb->end = end;
256 tlb_flush_mmu(tlb);
257
258 /* keep the page table cache within bounds */
259 check_pgt_cache();
260
261 for (batch = tlb->local.next; batch; batch = next) {
262 next = batch->next;
263 free_pages((unsigned long)batch, 0);
264 }
265 tlb->local.next = NULL;
266 }
267
268 /* __tlb_remove_page
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
273 */
274 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 {
276 struct mmu_gather_batch *batch;
277
278 VM_BUG_ON(!tlb->need_flush);
279
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
283 }
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
291 }
292 VM_BUG_ON(batch->nr > batch->max);
293
294 return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302 * See the comment near struct mmu_table_batch.
303 */
304
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 /* Simply deliver the interrupt */
308 }
309
310 static void tlb_remove_table_one(void *table)
311 {
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321 }
322
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334 }
335
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344 }
345
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
380 */
381
382 void pgd_clear_bad(pgd_t *pgd)
383 {
384 pgd_ERROR(*pgd);
385 pgd_clear(pgd);
386 }
387
388 void pud_clear_bad(pud_t *pud)
389 {
390 pud_ERROR(*pud);
391 pud_clear(pud);
392 }
393
394 void pmd_clear_bad(pmd_t *pmd)
395 {
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398 }
399
400 /*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
406 {
407 pgtable_t token = pmd_pgtable(*pmd);
408 pmd_clear(pmd);
409 pte_free_tlb(tlb, token, addr);
410 tlb->mm->nr_ptes--;
411 }
412
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
416 {
417 pmd_t *pmd;
418 unsigned long next;
419 unsigned long start;
420
421 start = addr;
422 pmd = pmd_offset(pud, addr);
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
427 free_pte_range(tlb, pmd, addr);
428 } while (pmd++, addr = next, addr != end);
429
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
437 }
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
443 pmd_free_tlb(tlb, pmd, start);
444 }
445
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
449 {
450 pud_t *pud;
451 unsigned long next;
452 unsigned long start;
453
454 start = addr;
455 pud = pud_offset(pgd, addr);
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
462
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
470 }
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
476 pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480 * This function frees user-level page tables of a process.
481 *
482 * Must be called with pagetable lock held.
483 */
484 void free_pgd_range(struct mmu_gather *tlb,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487 {
488 pgd_t *pgd;
489 unsigned long next;
490
491 /*
492 * The next few lines have given us lots of grief...
493 *
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
497 *
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
505 *
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
510 *
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
515 */
516
517 addr &= PMD_MASK;
518 if (addr < floor) {
519 addr += PMD_SIZE;
520 if (!addr)
521 return;
522 }
523 if (ceiling) {
524 ceiling &= PMD_MASK;
525 if (!ceiling)
526 return;
527 }
528 if (end - 1 > ceiling - 1)
529 end -= PMD_SIZE;
530 if (addr > end - 1)
531 return;
532
533 pgd = pgd_offset(tlb->mm, addr);
534 do {
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
537 continue;
538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 } while (pgd++, addr = next, addr != end);
540 }
541
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 unsigned long floor, unsigned long ceiling)
544 {
545 while (vma) {
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
548
549 /*
550 * Hide vma from rmap and truncate_pagecache before freeing
551 * pgtables
552 */
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555
556 if (is_vm_hugetlb_page(vma)) {
557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 } else {
560 /*
561 * Optimization: gather nearby vmas into one call down
562 */
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 && !is_vm_hugetlb_page(next)) {
565 vma = next;
566 next = vma->vm_next;
567 unlink_anon_vmas(vma);
568 unlink_file_vma(vma);
569 }
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
572 }
573 vma = next;
574 }
575 }
576
577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
579 {
580 pgtable_t new = pte_alloc_one(mm, address);
581 int wait_split_huge_page;
582 if (!new)
583 return -ENOMEM;
584
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600 spin_lock(&mm->page_table_lock);
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 mm->nr_ptes++;
604 pmd_populate(mm, pmd, new);
605 new = NULL;
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
608 spin_unlock(&mm->page_table_lock);
609 if (new)
610 pte_free(mm, new);
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
613 return 0;
614 }
615
616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 if (!new)
620 return -ENOMEM;
621
622 smp_wmb(); /* See comment in __pte_alloc */
623
624 spin_lock(&init_mm.page_table_lock);
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 pmd_populate_kernel(&init_mm, pmd, new);
627 new = NULL;
628 } else
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
630 spin_unlock(&init_mm.page_table_lock);
631 if (new)
632 pte_free_kernel(&init_mm, new);
633 return 0;
634 }
635
636 static inline void init_rss_vec(int *rss)
637 {
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643 int i;
644
645 if (current->mm == mm)
646 sync_mm_rss(mm);
647 for (i = 0; i < NR_MM_COUNTERS; i++)
648 if (rss[i])
649 add_mm_counter(mm, i, rss[i]);
650 }
651
652 /*
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
656 *
657 * The calling function must still handle the error.
658 */
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
661 {
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
666 pgoff_t index;
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
670
671 /*
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
674 */
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
677 nr_unshown++;
678 return;
679 }
680 if (nr_unshown) {
681 printk(KERN_ALERT
682 "BUG: Bad page map: %lu messages suppressed\n",
683 nr_unshown);
684 nr_unshown = 0;
685 }
686 nr_shown = 0;
687 }
688 if (nr_shown++ == 0)
689 resume = jiffies + 60 * HZ;
690
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
693
694 printk(KERN_ALERT
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 current->comm,
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
698 if (page)
699 dump_page(page);
700 printk(KERN_ALERT
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 /*
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 */
706 if (vma->vm_ops)
707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 (unsigned long)vma->vm_file->f_op->mmap);
712 dump_stack();
713 add_taint(TAINT_BAD_PAGE);
714 }
715
716 static inline bool is_cow_mapping(vm_flags_t flags)
717 {
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720
721 #ifndef is_zero_pfn
722 static inline int is_zero_pfn(unsigned long pfn)
723 {
724 return pfn == zero_pfn;
725 }
726 #endif
727
728 #ifndef my_zero_pfn
729 static inline unsigned long my_zero_pfn(unsigned long addr)
730 {
731 return zero_pfn;
732 }
733 #endif
734
735 /*
736 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 *
738 * "Special" mappings do not wish to be associated with a "struct page" (either
739 * it doesn't exist, or it exists but they don't want to touch it). In this
740 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 *
742 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743 * pte bit, in which case this function is trivial. Secondly, an architecture
744 * may not have a spare pte bit, which requires a more complicated scheme,
745 * described below.
746 *
747 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748 * special mapping (even if there are underlying and valid "struct pages").
749 * COWed pages of a VM_PFNMAP are always normal.
750 *
751 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
753 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754 * mapping will always honor the rule
755 *
756 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 *
758 * And for normal mappings this is false.
759 *
760 * This restricts such mappings to be a linear translation from virtual address
761 * to pfn. To get around this restriction, we allow arbitrary mappings so long
762 * as the vma is not a COW mapping; in that case, we know that all ptes are
763 * special (because none can have been COWed).
764 *
765 *
766 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 *
768 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769 * page" backing, however the difference is that _all_ pages with a struct
770 * page (that is, those where pfn_valid is true) are refcounted and considered
771 * normal pages by the VM. The disadvantage is that pages are refcounted
772 * (which can be slower and simply not an option for some PFNMAP users). The
773 * advantage is that we don't have to follow the strict linearity rule of
774 * PFNMAP mappings in order to support COWable mappings.
775 *
776 */
777 #ifdef __HAVE_ARCH_PTE_SPECIAL
778 # define HAVE_PTE_SPECIAL 1
779 #else
780 # define HAVE_PTE_SPECIAL 0
781 #endif
782 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
783 pte_t pte)
784 {
785 unsigned long pfn = pte_pfn(pte);
786
787 if (HAVE_PTE_SPECIAL) {
788 if (likely(!pte_special(pte)))
789 goto check_pfn;
790 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 return NULL;
792 if (!is_zero_pfn(pfn))
793 print_bad_pte(vma, addr, pte, NULL);
794 return NULL;
795 }
796
797 /* !HAVE_PTE_SPECIAL case follows: */
798
799 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 if (vma->vm_flags & VM_MIXEDMAP) {
801 if (!pfn_valid(pfn))
802 return NULL;
803 goto out;
804 } else {
805 unsigned long off;
806 off = (addr - vma->vm_start) >> PAGE_SHIFT;
807 if (pfn == vma->vm_pgoff + off)
808 return NULL;
809 if (!is_cow_mapping(vma->vm_flags))
810 return NULL;
811 }
812 }
813
814 if (is_zero_pfn(pfn))
815 return NULL;
816 check_pfn:
817 if (unlikely(pfn > highest_memmap_pfn)) {
818 print_bad_pte(vma, addr, pte, NULL);
819 return NULL;
820 }
821
822 /*
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
825 */
826 out:
827 return pfn_to_page(pfn);
828 }
829
830 /*
831 * copy one vm_area from one task to the other. Assumes the page tables
832 * already present in the new task to be cleared in the whole range
833 * covered by this vma.
834 */
835
836 static inline unsigned long
837 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
839 unsigned long addr, int *rss)
840 {
841 unsigned long vm_flags = vma->vm_flags;
842 pte_t pte = *src_pte;
843 struct page *page;
844
845 /* pte contains position in swap or file, so copy. */
846 if (unlikely(!pte_present(pte))) {
847 if (!pte_file(pte)) {
848 swp_entry_t entry = pte_to_swp_entry(pte);
849
850 if (swap_duplicate(entry) < 0)
851 return entry.val;
852
853 /* make sure dst_mm is on swapoff's mmlist. */
854 if (unlikely(list_empty(&dst_mm->mmlist))) {
855 spin_lock(&mmlist_lock);
856 if (list_empty(&dst_mm->mmlist))
857 list_add(&dst_mm->mmlist,
858 &src_mm->mmlist);
859 spin_unlock(&mmlist_lock);
860 }
861 if (likely(!non_swap_entry(entry)))
862 rss[MM_SWAPENTS]++;
863 else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
865
866 if (PageAnon(page))
867 rss[MM_ANONPAGES]++;
868 else
869 rss[MM_FILEPAGES]++;
870
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 /*
874 * COW mappings require pages in both
875 * parent and child to be set to read.
876 */
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
881 }
882 }
883 goto out_set_pte;
884 }
885
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
906 page_dup_rmap(page);
907 if (PageAnon(page))
908 rss[MM_ANONPAGES]++;
909 else
910 rss[MM_FILEPAGES]++;
911 }
912
913 out_set_pte:
914 set_pte_at(dst_mm, addr, dst_pte, pte);
915 return 0;
916 }
917
918 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 unsigned long addr, unsigned long end)
921 {
922 pte_t *orig_src_pte, *orig_dst_pte;
923 pte_t *src_pte, *dst_pte;
924 spinlock_t *src_ptl, *dst_ptl;
925 int progress = 0;
926 int rss[NR_MM_COUNTERS];
927 swp_entry_t entry = (swp_entry_t){0};
928
929 again:
930 init_rss_vec(rss);
931
932 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
933 if (!dst_pte)
934 return -ENOMEM;
935 src_pte = pte_offset_map(src_pmd, addr);
936 src_ptl = pte_lockptr(src_mm, src_pmd);
937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 orig_src_pte = src_pte;
939 orig_dst_pte = dst_pte;
940 arch_enter_lazy_mmu_mode();
941
942 do {
943 /*
944 * We are holding two locks at this point - either of them
945 * could generate latencies in another task on another CPU.
946 */
947 if (progress >= 32) {
948 progress = 0;
949 if (need_resched() ||
950 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
951 break;
952 }
953 if (pte_none(*src_pte)) {
954 progress++;
955 continue;
956 }
957 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
958 vma, addr, rss);
959 if (entry.val)
960 break;
961 progress += 8;
962 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963
964 arch_leave_lazy_mmu_mode();
965 spin_unlock(src_ptl);
966 pte_unmap(orig_src_pte);
967 add_mm_rss_vec(dst_mm, rss);
968 pte_unmap_unlock(orig_dst_pte, dst_ptl);
969 cond_resched();
970
971 if (entry.val) {
972 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
973 return -ENOMEM;
974 progress = 0;
975 }
976 if (addr != end)
977 goto again;
978 return 0;
979 }
980
981 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 unsigned long addr, unsigned long end)
984 {
985 pmd_t *src_pmd, *dst_pmd;
986 unsigned long next;
987
988 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
989 if (!dst_pmd)
990 return -ENOMEM;
991 src_pmd = pmd_offset(src_pud, addr);
992 do {
993 next = pmd_addr_end(addr, end);
994 if (pmd_trans_huge(*src_pmd)) {
995 int err;
996 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
997 err = copy_huge_pmd(dst_mm, src_mm,
998 dst_pmd, src_pmd, addr, vma);
999 if (err == -ENOMEM)
1000 return -ENOMEM;
1001 if (!err)
1002 continue;
1003 /* fall through */
1004 }
1005 if (pmd_none_or_clear_bad(src_pmd))
1006 continue;
1007 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1008 vma, addr, next))
1009 return -ENOMEM;
1010 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1011 return 0;
1012 }
1013
1014 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 unsigned long addr, unsigned long end)
1017 {
1018 pud_t *src_pud, *dst_pud;
1019 unsigned long next;
1020
1021 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1022 if (!dst_pud)
1023 return -ENOMEM;
1024 src_pud = pud_offset(src_pgd, addr);
1025 do {
1026 next = pud_addr_end(addr, end);
1027 if (pud_none_or_clear_bad(src_pud))
1028 continue;
1029 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1030 vma, addr, next))
1031 return -ENOMEM;
1032 } while (dst_pud++, src_pud++, addr = next, addr != end);
1033 return 0;
1034 }
1035
1036 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 struct vm_area_struct *vma)
1038 {
1039 pgd_t *src_pgd, *dst_pgd;
1040 unsigned long next;
1041 unsigned long addr = vma->vm_start;
1042 unsigned long end = vma->vm_end;
1043 unsigned long mmun_start; /* For mmu_notifiers */
1044 unsigned long mmun_end; /* For mmu_notifiers */
1045 bool is_cow;
1046 int ret;
1047
1048 /*
1049 * Don't copy ptes where a page fault will fill them correctly.
1050 * Fork becomes much lighter when there are big shared or private
1051 * readonly mappings. The tradeoff is that copy_page_range is more
1052 * efficient than faulting.
1053 */
1054 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1055 VM_PFNMAP | VM_MIXEDMAP))) {
1056 if (!vma->anon_vma)
1057 return 0;
1058 }
1059
1060 if (is_vm_hugetlb_page(vma))
1061 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1062
1063 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1064 /*
1065 * We do not free on error cases below as remove_vma
1066 * gets called on error from higher level routine
1067 */
1068 ret = track_pfn_copy(vma);
1069 if (ret)
1070 return ret;
1071 }
1072
1073 /*
1074 * We need to invalidate the secondary MMU mappings only when
1075 * there could be a permission downgrade on the ptes of the
1076 * parent mm. And a permission downgrade will only happen if
1077 * is_cow_mapping() returns true.
1078 */
1079 is_cow = is_cow_mapping(vma->vm_flags);
1080 mmun_start = addr;
1081 mmun_end = end;
1082 if (is_cow)
1083 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1084 mmun_end);
1085
1086 ret = 0;
1087 dst_pgd = pgd_offset(dst_mm, addr);
1088 src_pgd = pgd_offset(src_mm, addr);
1089 do {
1090 next = pgd_addr_end(addr, end);
1091 if (pgd_none_or_clear_bad(src_pgd))
1092 continue;
1093 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1094 vma, addr, next))) {
1095 ret = -ENOMEM;
1096 break;
1097 }
1098 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1099
1100 if (is_cow)
1101 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1102 return ret;
1103 }
1104
1105 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1106 struct vm_area_struct *vma, pmd_t *pmd,
1107 unsigned long addr, unsigned long end,
1108 struct zap_details *details)
1109 {
1110 struct mm_struct *mm = tlb->mm;
1111 int force_flush = 0;
1112 int rss[NR_MM_COUNTERS];
1113 spinlock_t *ptl;
1114 pte_t *start_pte;
1115 pte_t *pte;
1116
1117 again:
1118 init_rss_vec(rss);
1119 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 pte = start_pte;
1121 arch_enter_lazy_mmu_mode();
1122 do {
1123 pte_t ptent = *pte;
1124 if (pte_none(ptent)) {
1125 continue;
1126 }
1127
1128 if (pte_present(ptent)) {
1129 struct page *page;
1130
1131 page = vm_normal_page(vma, addr, ptent);
1132 if (unlikely(details) && page) {
1133 /*
1134 * unmap_shared_mapping_pages() wants to
1135 * invalidate cache without truncating:
1136 * unmap shared but keep private pages.
1137 */
1138 if (details->check_mapping &&
1139 details->check_mapping != page->mapping)
1140 continue;
1141 /*
1142 * Each page->index must be checked when
1143 * invalidating or truncating nonlinear.
1144 */
1145 if (details->nonlinear_vma &&
1146 (page->index < details->first_index ||
1147 page->index > details->last_index))
1148 continue;
1149 }
1150 ptent = ptep_get_and_clear_full(mm, addr, pte,
1151 tlb->fullmm);
1152 tlb_remove_tlb_entry(tlb, pte, addr);
1153 if (unlikely(!page))
1154 continue;
1155 if (unlikely(details) && details->nonlinear_vma
1156 && linear_page_index(details->nonlinear_vma,
1157 addr) != page->index)
1158 set_pte_at(mm, addr, pte,
1159 pgoff_to_pte(page->index));
1160 if (PageAnon(page))
1161 rss[MM_ANONPAGES]--;
1162 else {
1163 if (pte_dirty(ptent))
1164 set_page_dirty(page);
1165 if (pte_young(ptent) &&
1166 likely(!VM_SequentialReadHint(vma)))
1167 mark_page_accessed(page);
1168 rss[MM_FILEPAGES]--;
1169 }
1170 page_remove_rmap(page);
1171 if (unlikely(page_mapcount(page) < 0))
1172 print_bad_pte(vma, addr, ptent, page);
1173 force_flush = !__tlb_remove_page(tlb, page);
1174 if (force_flush)
1175 break;
1176 continue;
1177 }
1178 /*
1179 * If details->check_mapping, we leave swap entries;
1180 * if details->nonlinear_vma, we leave file entries.
1181 */
1182 if (unlikely(details))
1183 continue;
1184 if (pte_file(ptent)) {
1185 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1186 print_bad_pte(vma, addr, ptent, NULL);
1187 } else {
1188 swp_entry_t entry = pte_to_swp_entry(ptent);
1189
1190 if (!non_swap_entry(entry))
1191 rss[MM_SWAPENTS]--;
1192 else if (is_migration_entry(entry)) {
1193 struct page *page;
1194
1195 page = migration_entry_to_page(entry);
1196
1197 if (PageAnon(page))
1198 rss[MM_ANONPAGES]--;
1199 else
1200 rss[MM_FILEPAGES]--;
1201 }
1202 if (unlikely(!free_swap_and_cache(entry)))
1203 print_bad_pte(vma, addr, ptent, NULL);
1204 }
1205 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1206 } while (pte++, addr += PAGE_SIZE, addr != end);
1207
1208 add_mm_rss_vec(mm, rss);
1209 arch_leave_lazy_mmu_mode();
1210 pte_unmap_unlock(start_pte, ptl);
1211
1212 /*
1213 * mmu_gather ran out of room to batch pages, we break out of
1214 * the PTE lock to avoid doing the potential expensive TLB invalidate
1215 * and page-free while holding it.
1216 */
1217 if (force_flush) {
1218 force_flush = 0;
1219
1220 #ifdef HAVE_GENERIC_MMU_GATHER
1221 tlb->start = addr;
1222 tlb->end = end;
1223 #endif
1224 tlb_flush_mmu(tlb);
1225 if (addr != end)
1226 goto again;
1227 }
1228
1229 return addr;
1230 }
1231
1232 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pud_t *pud,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236 {
1237 pmd_t *pmd;
1238 unsigned long next;
1239
1240 pmd = pmd_offset(pud, addr);
1241 do {
1242 next = pmd_addr_end(addr, end);
1243 if (pmd_trans_huge(*pmd)) {
1244 if (next - addr != HPAGE_PMD_SIZE) {
1245 #ifdef CONFIG_DEBUG_VM
1246 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1247 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1248 __func__, addr, end,
1249 vma->vm_start,
1250 vma->vm_end);
1251 BUG();
1252 }
1253 #endif
1254 split_huge_page_pmd(vma->vm_mm, pmd);
1255 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1256 goto next;
1257 /* fall through */
1258 }
1259 /*
1260 * Here there can be other concurrent MADV_DONTNEED or
1261 * trans huge page faults running, and if the pmd is
1262 * none or trans huge it can change under us. This is
1263 * because MADV_DONTNEED holds the mmap_sem in read
1264 * mode.
1265 */
1266 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1267 goto next;
1268 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1269 next:
1270 cond_resched();
1271 } while (pmd++, addr = next, addr != end);
1272
1273 return addr;
1274 }
1275
1276 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1277 struct vm_area_struct *vma, pgd_t *pgd,
1278 unsigned long addr, unsigned long end,
1279 struct zap_details *details)
1280 {
1281 pud_t *pud;
1282 unsigned long next;
1283
1284 pud = pud_offset(pgd, addr);
1285 do {
1286 next = pud_addr_end(addr, end);
1287 if (pud_none_or_clear_bad(pud))
1288 continue;
1289 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1290 } while (pud++, addr = next, addr != end);
1291
1292 return addr;
1293 }
1294
1295 static void unmap_page_range(struct mmu_gather *tlb,
1296 struct vm_area_struct *vma,
1297 unsigned long addr, unsigned long end,
1298 struct zap_details *details)
1299 {
1300 pgd_t *pgd;
1301 unsigned long next;
1302
1303 if (details && !details->check_mapping && !details->nonlinear_vma)
1304 details = NULL;
1305
1306 BUG_ON(addr >= end);
1307 mem_cgroup_uncharge_start();
1308 tlb_start_vma(tlb, vma);
1309 pgd = pgd_offset(vma->vm_mm, addr);
1310 do {
1311 next = pgd_addr_end(addr, end);
1312 if (pgd_none_or_clear_bad(pgd))
1313 continue;
1314 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1315 } while (pgd++, addr = next, addr != end);
1316 tlb_end_vma(tlb, vma);
1317 mem_cgroup_uncharge_end();
1318 }
1319
1320
1321 static void unmap_single_vma(struct mmu_gather *tlb,
1322 struct vm_area_struct *vma, unsigned long start_addr,
1323 unsigned long end_addr,
1324 struct zap_details *details)
1325 {
1326 unsigned long start = max(vma->vm_start, start_addr);
1327 unsigned long end;
1328
1329 if (start >= vma->vm_end)
1330 return;
1331 end = min(vma->vm_end, end_addr);
1332 if (end <= vma->vm_start)
1333 return;
1334
1335 if (vma->vm_file)
1336 uprobe_munmap(vma, start, end);
1337
1338 if (unlikely(vma->vm_flags & VM_PFNMAP))
1339 untrack_pfn(vma, 0, 0);
1340
1341 if (start != end) {
1342 if (unlikely(is_vm_hugetlb_page(vma))) {
1343 /*
1344 * It is undesirable to test vma->vm_file as it
1345 * should be non-null for valid hugetlb area.
1346 * However, vm_file will be NULL in the error
1347 * cleanup path of do_mmap_pgoff. When
1348 * hugetlbfs ->mmap method fails,
1349 * do_mmap_pgoff() nullifies vma->vm_file
1350 * before calling this function to clean up.
1351 * Since no pte has actually been setup, it is
1352 * safe to do nothing in this case.
1353 */
1354 if (vma->vm_file) {
1355 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1356 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1357 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1358 }
1359 } else
1360 unmap_page_range(tlb, vma, start, end, details);
1361 }
1362 }
1363
1364 /**
1365 * unmap_vmas - unmap a range of memory covered by a list of vma's
1366 * @tlb: address of the caller's struct mmu_gather
1367 * @vma: the starting vma
1368 * @start_addr: virtual address at which to start unmapping
1369 * @end_addr: virtual address at which to end unmapping
1370 *
1371 * Unmap all pages in the vma list.
1372 *
1373 * Only addresses between `start' and `end' will be unmapped.
1374 *
1375 * The VMA list must be sorted in ascending virtual address order.
1376 *
1377 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1378 * range after unmap_vmas() returns. So the only responsibility here is to
1379 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1380 * drops the lock and schedules.
1381 */
1382 void unmap_vmas(struct mmu_gather *tlb,
1383 struct vm_area_struct *vma, unsigned long start_addr,
1384 unsigned long end_addr)
1385 {
1386 struct mm_struct *mm = vma->vm_mm;
1387
1388 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1389 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1390 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1391 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1392 }
1393
1394 /**
1395 * zap_page_range - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @start: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1400 *
1401 * Caller must protect the VMA list
1402 */
1403 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1404 unsigned long size, struct zap_details *details)
1405 {
1406 struct mm_struct *mm = vma->vm_mm;
1407 struct mmu_gather tlb;
1408 unsigned long end = start + size;
1409
1410 lru_add_drain();
1411 tlb_gather_mmu(&tlb, mm, 0);
1412 update_hiwater_rss(mm);
1413 mmu_notifier_invalidate_range_start(mm, start, end);
1414 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1415 unmap_single_vma(&tlb, vma, start, end, details);
1416 mmu_notifier_invalidate_range_end(mm, start, end);
1417 tlb_finish_mmu(&tlb, start, end);
1418 }
1419
1420 /**
1421 * zap_page_range_single - remove user pages in a given range
1422 * @vma: vm_area_struct holding the applicable pages
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1425 * @details: details of nonlinear truncation or shared cache invalidation
1426 *
1427 * The range must fit into one VMA.
1428 */
1429 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1430 unsigned long size, struct zap_details *details)
1431 {
1432 struct mm_struct *mm = vma->vm_mm;
1433 struct mmu_gather tlb;
1434 unsigned long end = address + size;
1435
1436 lru_add_drain();
1437 tlb_gather_mmu(&tlb, mm, 0);
1438 update_hiwater_rss(mm);
1439 mmu_notifier_invalidate_range_start(mm, address, end);
1440 unmap_single_vma(&tlb, vma, address, end, details);
1441 mmu_notifier_invalidate_range_end(mm, address, end);
1442 tlb_finish_mmu(&tlb, address, end);
1443 }
1444
1445 /**
1446 * zap_vma_ptes - remove ptes mapping the vma
1447 * @vma: vm_area_struct holding ptes to be zapped
1448 * @address: starting address of pages to zap
1449 * @size: number of bytes to zap
1450 *
1451 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1452 *
1453 * The entire address range must be fully contained within the vma.
1454 *
1455 * Returns 0 if successful.
1456 */
1457 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1458 unsigned long size)
1459 {
1460 if (address < vma->vm_start || address + size > vma->vm_end ||
1461 !(vma->vm_flags & VM_PFNMAP))
1462 return -1;
1463 zap_page_range_single(vma, address, size, NULL);
1464 return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1467
1468 /**
1469 * follow_page - look up a page descriptor from a user-virtual address
1470 * @vma: vm_area_struct mapping @address
1471 * @address: virtual address to look up
1472 * @flags: flags modifying lookup behaviour
1473 *
1474 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1475 *
1476 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1477 * an error pointer if there is a mapping to something not represented
1478 * by a page descriptor (see also vm_normal_page()).
1479 */
1480 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1481 unsigned int flags)
1482 {
1483 pgd_t *pgd;
1484 pud_t *pud;
1485 pmd_t *pmd;
1486 pte_t *ptep, pte;
1487 spinlock_t *ptl;
1488 struct page *page;
1489 struct mm_struct *mm = vma->vm_mm;
1490
1491 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1492 if (!IS_ERR(page)) {
1493 BUG_ON(flags & FOLL_GET);
1494 goto out;
1495 }
1496
1497 page = NULL;
1498 pgd = pgd_offset(mm, address);
1499 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1500 goto no_page_table;
1501
1502 pud = pud_offset(pgd, address);
1503 if (pud_none(*pud))
1504 goto no_page_table;
1505 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1506 BUG_ON(flags & FOLL_GET);
1507 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1508 goto out;
1509 }
1510 if (unlikely(pud_bad(*pud)))
1511 goto no_page_table;
1512
1513 pmd = pmd_offset(pud, address);
1514 if (pmd_none(*pmd))
1515 goto no_page_table;
1516 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1517 BUG_ON(flags & FOLL_GET);
1518 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1519 goto out;
1520 }
1521 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1522 goto no_page_table;
1523 if (pmd_trans_huge(*pmd)) {
1524 if (flags & FOLL_SPLIT) {
1525 split_huge_page_pmd(mm, pmd);
1526 goto split_fallthrough;
1527 }
1528 spin_lock(&mm->page_table_lock);
1529 if (likely(pmd_trans_huge(*pmd))) {
1530 if (unlikely(pmd_trans_splitting(*pmd))) {
1531 spin_unlock(&mm->page_table_lock);
1532 wait_split_huge_page(vma->anon_vma, pmd);
1533 } else {
1534 page = follow_trans_huge_pmd(vma, address,
1535 pmd, flags);
1536 spin_unlock(&mm->page_table_lock);
1537 goto out;
1538 }
1539 } else
1540 spin_unlock(&mm->page_table_lock);
1541 /* fall through */
1542 }
1543 split_fallthrough:
1544 if (unlikely(pmd_bad(*pmd)))
1545 goto no_page_table;
1546
1547 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1548
1549 pte = *ptep;
1550 if (!pte_present(pte))
1551 goto no_page;
1552 if ((flags & FOLL_NUMA) && pte_numa(pte))
1553 goto no_page;
1554 if ((flags & FOLL_WRITE) && !pte_write(pte))
1555 goto unlock;
1556
1557 page = vm_normal_page(vma, address, pte);
1558 if (unlikely(!page)) {
1559 if ((flags & FOLL_DUMP) ||
1560 !is_zero_pfn(pte_pfn(pte)))
1561 goto bad_page;
1562 page = pte_page(pte);
1563 }
1564
1565 if (flags & FOLL_GET)
1566 get_page_foll(page);
1567 if (flags & FOLL_TOUCH) {
1568 if ((flags & FOLL_WRITE) &&
1569 !pte_dirty(pte) && !PageDirty(page))
1570 set_page_dirty(page);
1571 /*
1572 * pte_mkyoung() would be more correct here, but atomic care
1573 * is needed to avoid losing the dirty bit: it is easier to use
1574 * mark_page_accessed().
1575 */
1576 mark_page_accessed(page);
1577 }
1578 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1579 /*
1580 * The preliminary mapping check is mainly to avoid the
1581 * pointless overhead of lock_page on the ZERO_PAGE
1582 * which might bounce very badly if there is contention.
1583 *
1584 * If the page is already locked, we don't need to
1585 * handle it now - vmscan will handle it later if and
1586 * when it attempts to reclaim the page.
1587 */
1588 if (page->mapping && trylock_page(page)) {
1589 lru_add_drain(); /* push cached pages to LRU */
1590 /*
1591 * Because we lock page here, and migration is
1592 * blocked by the pte's page reference, and we
1593 * know the page is still mapped, we don't even
1594 * need to check for file-cache page truncation.
1595 */
1596 mlock_vma_page(page);
1597 unlock_page(page);
1598 }
1599 }
1600 unlock:
1601 pte_unmap_unlock(ptep, ptl);
1602 out:
1603 return page;
1604
1605 bad_page:
1606 pte_unmap_unlock(ptep, ptl);
1607 return ERR_PTR(-EFAULT);
1608
1609 no_page:
1610 pte_unmap_unlock(ptep, ptl);
1611 if (!pte_none(pte))
1612 return page;
1613
1614 no_page_table:
1615 /*
1616 * When core dumping an enormous anonymous area that nobody
1617 * has touched so far, we don't want to allocate unnecessary pages or
1618 * page tables. Return error instead of NULL to skip handle_mm_fault,
1619 * then get_dump_page() will return NULL to leave a hole in the dump.
1620 * But we can only make this optimization where a hole would surely
1621 * be zero-filled if handle_mm_fault() actually did handle it.
1622 */
1623 if ((flags & FOLL_DUMP) &&
1624 (!vma->vm_ops || !vma->vm_ops->fault))
1625 return ERR_PTR(-EFAULT);
1626 return page;
1627 }
1628
1629 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1630 {
1631 return stack_guard_page_start(vma, addr) ||
1632 stack_guard_page_end(vma, addr+PAGE_SIZE);
1633 }
1634
1635 /**
1636 * __get_user_pages() - pin user pages in memory
1637 * @tsk: task_struct of target task
1638 * @mm: mm_struct of target mm
1639 * @start: starting user address
1640 * @nr_pages: number of pages from start to pin
1641 * @gup_flags: flags modifying pin behaviour
1642 * @pages: array that receives pointers to the pages pinned.
1643 * Should be at least nr_pages long. Or NULL, if caller
1644 * only intends to ensure the pages are faulted in.
1645 * @vmas: array of pointers to vmas corresponding to each page.
1646 * Or NULL if the caller does not require them.
1647 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1648 *
1649 * Returns number of pages pinned. This may be fewer than the number
1650 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1651 * were pinned, returns -errno. Each page returned must be released
1652 * with a put_page() call when it is finished with. vmas will only
1653 * remain valid while mmap_sem is held.
1654 *
1655 * Must be called with mmap_sem held for read or write.
1656 *
1657 * __get_user_pages walks a process's page tables and takes a reference to
1658 * each struct page that each user address corresponds to at a given
1659 * instant. That is, it takes the page that would be accessed if a user
1660 * thread accesses the given user virtual address at that instant.
1661 *
1662 * This does not guarantee that the page exists in the user mappings when
1663 * __get_user_pages returns, and there may even be a completely different
1664 * page there in some cases (eg. if mmapped pagecache has been invalidated
1665 * and subsequently re faulted). However it does guarantee that the page
1666 * won't be freed completely. And mostly callers simply care that the page
1667 * contains data that was valid *at some point in time*. Typically, an IO
1668 * or similar operation cannot guarantee anything stronger anyway because
1669 * locks can't be held over the syscall boundary.
1670 *
1671 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1672 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1673 * appropriate) must be called after the page is finished with, and
1674 * before put_page is called.
1675 *
1676 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1677 * or mmap_sem contention, and if waiting is needed to pin all pages,
1678 * *@nonblocking will be set to 0.
1679 *
1680 * In most cases, get_user_pages or get_user_pages_fast should be used
1681 * instead of __get_user_pages. __get_user_pages should be used only if
1682 * you need some special @gup_flags.
1683 */
1684 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1685 unsigned long start, int nr_pages, unsigned int gup_flags,
1686 struct page **pages, struct vm_area_struct **vmas,
1687 int *nonblocking)
1688 {
1689 int i;
1690 unsigned long vm_flags;
1691
1692 if (nr_pages <= 0)
1693 return 0;
1694
1695 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1696
1697 /*
1698 * Require read or write permissions.
1699 * If FOLL_FORCE is set, we only require the "MAY" flags.
1700 */
1701 vm_flags = (gup_flags & FOLL_WRITE) ?
1702 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1703 vm_flags &= (gup_flags & FOLL_FORCE) ?
1704 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1705
1706 /*
1707 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1708 * would be called on PROT_NONE ranges. We must never invoke
1709 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1710 * page faults would unprotect the PROT_NONE ranges if
1711 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1712 * bitflag. So to avoid that, don't set FOLL_NUMA if
1713 * FOLL_FORCE is set.
1714 */
1715 if (!(gup_flags & FOLL_FORCE))
1716 gup_flags |= FOLL_NUMA;
1717
1718 i = 0;
1719
1720 do {
1721 struct vm_area_struct *vma;
1722
1723 vma = find_extend_vma(mm, start);
1724 if (!vma && in_gate_area(mm, start)) {
1725 unsigned long pg = start & PAGE_MASK;
1726 pgd_t *pgd;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729 pte_t *pte;
1730
1731 /* user gate pages are read-only */
1732 if (gup_flags & FOLL_WRITE)
1733 return i ? : -EFAULT;
1734 if (pg > TASK_SIZE)
1735 pgd = pgd_offset_k(pg);
1736 else
1737 pgd = pgd_offset_gate(mm, pg);
1738 BUG_ON(pgd_none(*pgd));
1739 pud = pud_offset(pgd, pg);
1740 BUG_ON(pud_none(*pud));
1741 pmd = pmd_offset(pud, pg);
1742 if (pmd_none(*pmd))
1743 return i ? : -EFAULT;
1744 VM_BUG_ON(pmd_trans_huge(*pmd));
1745 pte = pte_offset_map(pmd, pg);
1746 if (pte_none(*pte)) {
1747 pte_unmap(pte);
1748 return i ? : -EFAULT;
1749 }
1750 vma = get_gate_vma(mm);
1751 if (pages) {
1752 struct page *page;
1753
1754 page = vm_normal_page(vma, start, *pte);
1755 if (!page) {
1756 if (!(gup_flags & FOLL_DUMP) &&
1757 is_zero_pfn(pte_pfn(*pte)))
1758 page = pte_page(*pte);
1759 else {
1760 pte_unmap(pte);
1761 return i ? : -EFAULT;
1762 }
1763 }
1764 pages[i] = page;
1765 get_page(page);
1766 }
1767 pte_unmap(pte);
1768 goto next_page;
1769 }
1770
1771 if (!vma ||
1772 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1773 !(vm_flags & vma->vm_flags))
1774 return i ? : -EFAULT;
1775
1776 if (is_vm_hugetlb_page(vma)) {
1777 i = follow_hugetlb_page(mm, vma, pages, vmas,
1778 &start, &nr_pages, i, gup_flags);
1779 continue;
1780 }
1781
1782 do {
1783 struct page *page;
1784 unsigned int foll_flags = gup_flags;
1785
1786 /*
1787 * If we have a pending SIGKILL, don't keep faulting
1788 * pages and potentially allocating memory.
1789 */
1790 if (unlikely(fatal_signal_pending(current)))
1791 return i ? i : -ERESTARTSYS;
1792
1793 cond_resched();
1794 while (!(page = follow_page(vma, start, foll_flags))) {
1795 int ret;
1796 unsigned int fault_flags = 0;
1797
1798 /* For mlock, just skip the stack guard page. */
1799 if (foll_flags & FOLL_MLOCK) {
1800 if (stack_guard_page(vma, start))
1801 goto next_page;
1802 }
1803 if (foll_flags & FOLL_WRITE)
1804 fault_flags |= FAULT_FLAG_WRITE;
1805 if (nonblocking)
1806 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1807 if (foll_flags & FOLL_NOWAIT)
1808 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1809
1810 ret = handle_mm_fault(mm, vma, start,
1811 fault_flags);
1812
1813 if (ret & VM_FAULT_ERROR) {
1814 if (ret & VM_FAULT_OOM)
1815 return i ? i : -ENOMEM;
1816 if (ret & (VM_FAULT_HWPOISON |
1817 VM_FAULT_HWPOISON_LARGE)) {
1818 if (i)
1819 return i;
1820 else if (gup_flags & FOLL_HWPOISON)
1821 return -EHWPOISON;
1822 else
1823 return -EFAULT;
1824 }
1825 if (ret & VM_FAULT_SIGBUS)
1826 return i ? i : -EFAULT;
1827 BUG();
1828 }
1829
1830 if (tsk) {
1831 if (ret & VM_FAULT_MAJOR)
1832 tsk->maj_flt++;
1833 else
1834 tsk->min_flt++;
1835 }
1836
1837 if (ret & VM_FAULT_RETRY) {
1838 if (nonblocking)
1839 *nonblocking = 0;
1840 return i;
1841 }
1842
1843 /*
1844 * The VM_FAULT_WRITE bit tells us that
1845 * do_wp_page has broken COW when necessary,
1846 * even if maybe_mkwrite decided not to set
1847 * pte_write. We can thus safely do subsequent
1848 * page lookups as if they were reads. But only
1849 * do so when looping for pte_write is futile:
1850 * in some cases userspace may also be wanting
1851 * to write to the gotten user page, which a
1852 * read fault here might prevent (a readonly
1853 * page might get reCOWed by userspace write).
1854 */
1855 if ((ret & VM_FAULT_WRITE) &&
1856 !(vma->vm_flags & VM_WRITE))
1857 foll_flags &= ~FOLL_WRITE;
1858
1859 cond_resched();
1860 }
1861 if (IS_ERR(page))
1862 return i ? i : PTR_ERR(page);
1863 if (pages) {
1864 pages[i] = page;
1865
1866 flush_anon_page(vma, page, start);
1867 flush_dcache_page(page);
1868 }
1869 next_page:
1870 if (vmas)
1871 vmas[i] = vma;
1872 i++;
1873 start += PAGE_SIZE;
1874 nr_pages--;
1875 } while (nr_pages && start < vma->vm_end);
1876 } while (nr_pages);
1877 return i;
1878 }
1879 EXPORT_SYMBOL(__get_user_pages);
1880
1881 /*
1882 * fixup_user_fault() - manually resolve a user page fault
1883 * @tsk: the task_struct to use for page fault accounting, or
1884 * NULL if faults are not to be recorded.
1885 * @mm: mm_struct of target mm
1886 * @address: user address
1887 * @fault_flags:flags to pass down to handle_mm_fault()
1888 *
1889 * This is meant to be called in the specific scenario where for locking reasons
1890 * we try to access user memory in atomic context (within a pagefault_disable()
1891 * section), this returns -EFAULT, and we want to resolve the user fault before
1892 * trying again.
1893 *
1894 * Typically this is meant to be used by the futex code.
1895 *
1896 * The main difference with get_user_pages() is that this function will
1897 * unconditionally call handle_mm_fault() which will in turn perform all the
1898 * necessary SW fixup of the dirty and young bits in the PTE, while
1899 * handle_mm_fault() only guarantees to update these in the struct page.
1900 *
1901 * This is important for some architectures where those bits also gate the
1902 * access permission to the page because they are maintained in software. On
1903 * such architectures, gup() will not be enough to make a subsequent access
1904 * succeed.
1905 *
1906 * This should be called with the mm_sem held for read.
1907 */
1908 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1909 unsigned long address, unsigned int fault_flags)
1910 {
1911 struct vm_area_struct *vma;
1912 int ret;
1913
1914 vma = find_extend_vma(mm, address);
1915 if (!vma || address < vma->vm_start)
1916 return -EFAULT;
1917
1918 ret = handle_mm_fault(mm, vma, address, fault_flags);
1919 if (ret & VM_FAULT_ERROR) {
1920 if (ret & VM_FAULT_OOM)
1921 return -ENOMEM;
1922 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1923 return -EHWPOISON;
1924 if (ret & VM_FAULT_SIGBUS)
1925 return -EFAULT;
1926 BUG();
1927 }
1928 if (tsk) {
1929 if (ret & VM_FAULT_MAJOR)
1930 tsk->maj_flt++;
1931 else
1932 tsk->min_flt++;
1933 }
1934 return 0;
1935 }
1936
1937 /*
1938 * get_user_pages() - pin user pages in memory
1939 * @tsk: the task_struct to use for page fault accounting, or
1940 * NULL if faults are not to be recorded.
1941 * @mm: mm_struct of target mm
1942 * @start: starting user address
1943 * @nr_pages: number of pages from start to pin
1944 * @write: whether pages will be written to by the caller
1945 * @force: whether to force write access even if user mapping is
1946 * readonly. This will result in the page being COWed even
1947 * in MAP_SHARED mappings. You do not want this.
1948 * @pages: array that receives pointers to the pages pinned.
1949 * Should be at least nr_pages long. Or NULL, if caller
1950 * only intends to ensure the pages are faulted in.
1951 * @vmas: array of pointers to vmas corresponding to each page.
1952 * Or NULL if the caller does not require them.
1953 *
1954 * Returns number of pages pinned. This may be fewer than the number
1955 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1956 * were pinned, returns -errno. Each page returned must be released
1957 * with a put_page() call when it is finished with. vmas will only
1958 * remain valid while mmap_sem is held.
1959 *
1960 * Must be called with mmap_sem held for read or write.
1961 *
1962 * get_user_pages walks a process's page tables and takes a reference to
1963 * each struct page that each user address corresponds to at a given
1964 * instant. That is, it takes the page that would be accessed if a user
1965 * thread accesses the given user virtual address at that instant.
1966 *
1967 * This does not guarantee that the page exists in the user mappings when
1968 * get_user_pages returns, and there may even be a completely different
1969 * page there in some cases (eg. if mmapped pagecache has been invalidated
1970 * and subsequently re faulted). However it does guarantee that the page
1971 * won't be freed completely. And mostly callers simply care that the page
1972 * contains data that was valid *at some point in time*. Typically, an IO
1973 * or similar operation cannot guarantee anything stronger anyway because
1974 * locks can't be held over the syscall boundary.
1975 *
1976 * If write=0, the page must not be written to. If the page is written to,
1977 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1978 * after the page is finished with, and before put_page is called.
1979 *
1980 * get_user_pages is typically used for fewer-copy IO operations, to get a
1981 * handle on the memory by some means other than accesses via the user virtual
1982 * addresses. The pages may be submitted for DMA to devices or accessed via
1983 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1984 * use the correct cache flushing APIs.
1985 *
1986 * See also get_user_pages_fast, for performance critical applications.
1987 */
1988 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1989 unsigned long start, int nr_pages, int write, int force,
1990 struct page **pages, struct vm_area_struct **vmas)
1991 {
1992 int flags = FOLL_TOUCH;
1993
1994 if (pages)
1995 flags |= FOLL_GET;
1996 if (write)
1997 flags |= FOLL_WRITE;
1998 if (force)
1999 flags |= FOLL_FORCE;
2000
2001 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2002 NULL);
2003 }
2004 EXPORT_SYMBOL(get_user_pages);
2005
2006 /**
2007 * get_dump_page() - pin user page in memory while writing it to core dump
2008 * @addr: user address
2009 *
2010 * Returns struct page pointer of user page pinned for dump,
2011 * to be freed afterwards by page_cache_release() or put_page().
2012 *
2013 * Returns NULL on any kind of failure - a hole must then be inserted into
2014 * the corefile, to preserve alignment with its headers; and also returns
2015 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2016 * allowing a hole to be left in the corefile to save diskspace.
2017 *
2018 * Called without mmap_sem, but after all other threads have been killed.
2019 */
2020 #ifdef CONFIG_ELF_CORE
2021 struct page *get_dump_page(unsigned long addr)
2022 {
2023 struct vm_area_struct *vma;
2024 struct page *page;
2025
2026 if (__get_user_pages(current, current->mm, addr, 1,
2027 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2028 NULL) < 1)
2029 return NULL;
2030 flush_cache_page(vma, addr, page_to_pfn(page));
2031 return page;
2032 }
2033 #endif /* CONFIG_ELF_CORE */
2034
2035 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2036 spinlock_t **ptl)
2037 {
2038 pgd_t * pgd = pgd_offset(mm, addr);
2039 pud_t * pud = pud_alloc(mm, pgd, addr);
2040 if (pud) {
2041 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2042 if (pmd) {
2043 VM_BUG_ON(pmd_trans_huge(*pmd));
2044 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2045 }
2046 }
2047 return NULL;
2048 }
2049
2050 /*
2051 * This is the old fallback for page remapping.
2052 *
2053 * For historical reasons, it only allows reserved pages. Only
2054 * old drivers should use this, and they needed to mark their
2055 * pages reserved for the old functions anyway.
2056 */
2057 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2058 struct page *page, pgprot_t prot)
2059 {
2060 struct mm_struct *mm = vma->vm_mm;
2061 int retval;
2062 pte_t *pte;
2063 spinlock_t *ptl;
2064
2065 retval = -EINVAL;
2066 if (PageAnon(page))
2067 goto out;
2068 retval = -ENOMEM;
2069 flush_dcache_page(page);
2070 pte = get_locked_pte(mm, addr, &ptl);
2071 if (!pte)
2072 goto out;
2073 retval = -EBUSY;
2074 if (!pte_none(*pte))
2075 goto out_unlock;
2076
2077 /* Ok, finally just insert the thing.. */
2078 get_page(page);
2079 inc_mm_counter_fast(mm, MM_FILEPAGES);
2080 page_add_file_rmap(page);
2081 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2082
2083 retval = 0;
2084 pte_unmap_unlock(pte, ptl);
2085 return retval;
2086 out_unlock:
2087 pte_unmap_unlock(pte, ptl);
2088 out:
2089 return retval;
2090 }
2091
2092 /**
2093 * vm_insert_page - insert single page into user vma
2094 * @vma: user vma to map to
2095 * @addr: target user address of this page
2096 * @page: source kernel page
2097 *
2098 * This allows drivers to insert individual pages they've allocated
2099 * into a user vma.
2100 *
2101 * The page has to be a nice clean _individual_ kernel allocation.
2102 * If you allocate a compound page, you need to have marked it as
2103 * such (__GFP_COMP), or manually just split the page up yourself
2104 * (see split_page()).
2105 *
2106 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2107 * took an arbitrary page protection parameter. This doesn't allow
2108 * that. Your vma protection will have to be set up correctly, which
2109 * means that if you want a shared writable mapping, you'd better
2110 * ask for a shared writable mapping!
2111 *
2112 * The page does not need to be reserved.
2113 *
2114 * Usually this function is called from f_op->mmap() handler
2115 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2116 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2117 * function from other places, for example from page-fault handler.
2118 */
2119 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2120 struct page *page)
2121 {
2122 if (addr < vma->vm_start || addr >= vma->vm_end)
2123 return -EFAULT;
2124 if (!page_count(page))
2125 return -EINVAL;
2126 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2127 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2128 BUG_ON(vma->vm_flags & VM_PFNMAP);
2129 vma->vm_flags |= VM_MIXEDMAP;
2130 }
2131 return insert_page(vma, addr, page, vma->vm_page_prot);
2132 }
2133 EXPORT_SYMBOL(vm_insert_page);
2134
2135 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2136 unsigned long pfn, pgprot_t prot)
2137 {
2138 struct mm_struct *mm = vma->vm_mm;
2139 int retval;
2140 pte_t *pte, entry;
2141 spinlock_t *ptl;
2142
2143 retval = -ENOMEM;
2144 pte = get_locked_pte(mm, addr, &ptl);
2145 if (!pte)
2146 goto out;
2147 retval = -EBUSY;
2148 if (!pte_none(*pte))
2149 goto out_unlock;
2150
2151 /* Ok, finally just insert the thing.. */
2152 entry = pte_mkspecial(pfn_pte(pfn, prot));
2153 set_pte_at(mm, addr, pte, entry);
2154 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2155
2156 retval = 0;
2157 out_unlock:
2158 pte_unmap_unlock(pte, ptl);
2159 out:
2160 return retval;
2161 }
2162
2163 /**
2164 * vm_insert_pfn - insert single pfn into user vma
2165 * @vma: user vma to map to
2166 * @addr: target user address of this page
2167 * @pfn: source kernel pfn
2168 *
2169 * Similar to vm_insert_page, this allows drivers to insert individual pages
2170 * they've allocated into a user vma. Same comments apply.
2171 *
2172 * This function should only be called from a vm_ops->fault handler, and
2173 * in that case the handler should return NULL.
2174 *
2175 * vma cannot be a COW mapping.
2176 *
2177 * As this is called only for pages that do not currently exist, we
2178 * do not need to flush old virtual caches or the TLB.
2179 */
2180 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2181 unsigned long pfn)
2182 {
2183 int ret;
2184 pgprot_t pgprot = vma->vm_page_prot;
2185 /*
2186 * Technically, architectures with pte_special can avoid all these
2187 * restrictions (same for remap_pfn_range). However we would like
2188 * consistency in testing and feature parity among all, so we should
2189 * try to keep these invariants in place for everybody.
2190 */
2191 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2192 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2193 (VM_PFNMAP|VM_MIXEDMAP));
2194 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2195 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2196
2197 if (addr < vma->vm_start || addr >= vma->vm_end)
2198 return -EFAULT;
2199 if (track_pfn_insert(vma, &pgprot, pfn))
2200 return -EINVAL;
2201
2202 ret = insert_pfn(vma, addr, pfn, pgprot);
2203
2204 return ret;
2205 }
2206 EXPORT_SYMBOL(vm_insert_pfn);
2207
2208 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2209 unsigned long pfn)
2210 {
2211 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2212
2213 if (addr < vma->vm_start || addr >= vma->vm_end)
2214 return -EFAULT;
2215
2216 /*
2217 * If we don't have pte special, then we have to use the pfn_valid()
2218 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2219 * refcount the page if pfn_valid is true (hence insert_page rather
2220 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2221 * without pte special, it would there be refcounted as a normal page.
2222 */
2223 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2224 struct page *page;
2225
2226 page = pfn_to_page(pfn);
2227 return insert_page(vma, addr, page, vma->vm_page_prot);
2228 }
2229 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2230 }
2231 EXPORT_SYMBOL(vm_insert_mixed);
2232
2233 /*
2234 * maps a range of physical memory into the requested pages. the old
2235 * mappings are removed. any references to nonexistent pages results
2236 * in null mappings (currently treated as "copy-on-access")
2237 */
2238 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2239 unsigned long addr, unsigned long end,
2240 unsigned long pfn, pgprot_t prot)
2241 {
2242 pte_t *pte;
2243 spinlock_t *ptl;
2244
2245 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2246 if (!pte)
2247 return -ENOMEM;
2248 arch_enter_lazy_mmu_mode();
2249 do {
2250 BUG_ON(!pte_none(*pte));
2251 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2252 pfn++;
2253 } while (pte++, addr += PAGE_SIZE, addr != end);
2254 arch_leave_lazy_mmu_mode();
2255 pte_unmap_unlock(pte - 1, ptl);
2256 return 0;
2257 }
2258
2259 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2260 unsigned long addr, unsigned long end,
2261 unsigned long pfn, pgprot_t prot)
2262 {
2263 pmd_t *pmd;
2264 unsigned long next;
2265
2266 pfn -= addr >> PAGE_SHIFT;
2267 pmd = pmd_alloc(mm, pud, addr);
2268 if (!pmd)
2269 return -ENOMEM;
2270 VM_BUG_ON(pmd_trans_huge(*pmd));
2271 do {
2272 next = pmd_addr_end(addr, end);
2273 if (remap_pte_range(mm, pmd, addr, next,
2274 pfn + (addr >> PAGE_SHIFT), prot))
2275 return -ENOMEM;
2276 } while (pmd++, addr = next, addr != end);
2277 return 0;
2278 }
2279
2280 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2281 unsigned long addr, unsigned long end,
2282 unsigned long pfn, pgprot_t prot)
2283 {
2284 pud_t *pud;
2285 unsigned long next;
2286
2287 pfn -= addr >> PAGE_SHIFT;
2288 pud = pud_alloc(mm, pgd, addr);
2289 if (!pud)
2290 return -ENOMEM;
2291 do {
2292 next = pud_addr_end(addr, end);
2293 if (remap_pmd_range(mm, pud, addr, next,
2294 pfn + (addr >> PAGE_SHIFT), prot))
2295 return -ENOMEM;
2296 } while (pud++, addr = next, addr != end);
2297 return 0;
2298 }
2299
2300 /**
2301 * remap_pfn_range - remap kernel memory to userspace
2302 * @vma: user vma to map to
2303 * @addr: target user address to start at
2304 * @pfn: physical address of kernel memory
2305 * @size: size of map area
2306 * @prot: page protection flags for this mapping
2307 *
2308 * Note: this is only safe if the mm semaphore is held when called.
2309 */
2310 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2311 unsigned long pfn, unsigned long size, pgprot_t prot)
2312 {
2313 pgd_t *pgd;
2314 unsigned long next;
2315 unsigned long end = addr + PAGE_ALIGN(size);
2316 struct mm_struct *mm = vma->vm_mm;
2317 int err;
2318
2319 /*
2320 * Physically remapped pages are special. Tell the
2321 * rest of the world about it:
2322 * VM_IO tells people not to look at these pages
2323 * (accesses can have side effects).
2324 * VM_PFNMAP tells the core MM that the base pages are just
2325 * raw PFN mappings, and do not have a "struct page" associated
2326 * with them.
2327 * VM_DONTEXPAND
2328 * Disable vma merging and expanding with mremap().
2329 * VM_DONTDUMP
2330 * Omit vma from core dump, even when VM_IO turned off.
2331 *
2332 * There's a horrible special case to handle copy-on-write
2333 * behaviour that some programs depend on. We mark the "original"
2334 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2335 * See vm_normal_page() for details.
2336 */
2337 if (is_cow_mapping(vma->vm_flags)) {
2338 if (addr != vma->vm_start || end != vma->vm_end)
2339 return -EINVAL;
2340 vma->vm_pgoff = pfn;
2341 }
2342
2343 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2344 if (err)
2345 return -EINVAL;
2346
2347 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2348
2349 BUG_ON(addr >= end);
2350 pfn -= addr >> PAGE_SHIFT;
2351 pgd = pgd_offset(mm, addr);
2352 flush_cache_range(vma, addr, end);
2353 do {
2354 next = pgd_addr_end(addr, end);
2355 err = remap_pud_range(mm, pgd, addr, next,
2356 pfn + (addr >> PAGE_SHIFT), prot);
2357 if (err)
2358 break;
2359 } while (pgd++, addr = next, addr != end);
2360
2361 if (err)
2362 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2363
2364 return err;
2365 }
2366 EXPORT_SYMBOL(remap_pfn_range);
2367
2368 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2369 unsigned long addr, unsigned long end,
2370 pte_fn_t fn, void *data)
2371 {
2372 pte_t *pte;
2373 int err;
2374 pgtable_t token;
2375 spinlock_t *uninitialized_var(ptl);
2376
2377 pte = (mm == &init_mm) ?
2378 pte_alloc_kernel(pmd, addr) :
2379 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2380 if (!pte)
2381 return -ENOMEM;
2382
2383 BUG_ON(pmd_huge(*pmd));
2384
2385 arch_enter_lazy_mmu_mode();
2386
2387 token = pmd_pgtable(*pmd);
2388
2389 do {
2390 err = fn(pte++, token, addr, data);
2391 if (err)
2392 break;
2393 } while (addr += PAGE_SIZE, addr != end);
2394
2395 arch_leave_lazy_mmu_mode();
2396
2397 if (mm != &init_mm)
2398 pte_unmap_unlock(pte-1, ptl);
2399 return err;
2400 }
2401
2402 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2403 unsigned long addr, unsigned long end,
2404 pte_fn_t fn, void *data)
2405 {
2406 pmd_t *pmd;
2407 unsigned long next;
2408 int err;
2409
2410 BUG_ON(pud_huge(*pud));
2411
2412 pmd = pmd_alloc(mm, pud, addr);
2413 if (!pmd)
2414 return -ENOMEM;
2415 do {
2416 next = pmd_addr_end(addr, end);
2417 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2418 if (err)
2419 break;
2420 } while (pmd++, addr = next, addr != end);
2421 return err;
2422 }
2423
2424 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2425 unsigned long addr, unsigned long end,
2426 pte_fn_t fn, void *data)
2427 {
2428 pud_t *pud;
2429 unsigned long next;
2430 int err;
2431
2432 pud = pud_alloc(mm, pgd, addr);
2433 if (!pud)
2434 return -ENOMEM;
2435 do {
2436 next = pud_addr_end(addr, end);
2437 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2438 if (err)
2439 break;
2440 } while (pud++, addr = next, addr != end);
2441 return err;
2442 }
2443
2444 /*
2445 * Scan a region of virtual memory, filling in page tables as necessary
2446 * and calling a provided function on each leaf page table.
2447 */
2448 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2449 unsigned long size, pte_fn_t fn, void *data)
2450 {
2451 pgd_t *pgd;
2452 unsigned long next;
2453 unsigned long end = addr + size;
2454 int err;
2455
2456 BUG_ON(addr >= end);
2457 pgd = pgd_offset(mm, addr);
2458 do {
2459 next = pgd_addr_end(addr, end);
2460 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2461 if (err)
2462 break;
2463 } while (pgd++, addr = next, addr != end);
2464
2465 return err;
2466 }
2467 EXPORT_SYMBOL_GPL(apply_to_page_range);
2468
2469 /*
2470 * handle_pte_fault chooses page fault handler according to an entry
2471 * which was read non-atomically. Before making any commitment, on
2472 * those architectures or configurations (e.g. i386 with PAE) which
2473 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2474 * must check under lock before unmapping the pte and proceeding
2475 * (but do_wp_page is only called after already making such a check;
2476 * and do_anonymous_page can safely check later on).
2477 */
2478 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2479 pte_t *page_table, pte_t orig_pte)
2480 {
2481 int same = 1;
2482 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2483 if (sizeof(pte_t) > sizeof(unsigned long)) {
2484 spinlock_t *ptl = pte_lockptr(mm, pmd);
2485 spin_lock(ptl);
2486 same = pte_same(*page_table, orig_pte);
2487 spin_unlock(ptl);
2488 }
2489 #endif
2490 pte_unmap(page_table);
2491 return same;
2492 }
2493
2494 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2495 {
2496 /*
2497 * If the source page was a PFN mapping, we don't have
2498 * a "struct page" for it. We do a best-effort copy by
2499 * just copying from the original user address. If that
2500 * fails, we just zero-fill it. Live with it.
2501 */
2502 if (unlikely(!src)) {
2503 void *kaddr = kmap_atomic(dst);
2504 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2505
2506 /*
2507 * This really shouldn't fail, because the page is there
2508 * in the page tables. But it might just be unreadable,
2509 * in which case we just give up and fill the result with
2510 * zeroes.
2511 */
2512 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2513 clear_page(kaddr);
2514 kunmap_atomic(kaddr);
2515 flush_dcache_page(dst);
2516 } else
2517 copy_user_highpage(dst, src, va, vma);
2518 }
2519
2520 /*
2521 * This routine handles present pages, when users try to write
2522 * to a shared page. It is done by copying the page to a new address
2523 * and decrementing the shared-page counter for the old page.
2524 *
2525 * Note that this routine assumes that the protection checks have been
2526 * done by the caller (the low-level page fault routine in most cases).
2527 * Thus we can safely just mark it writable once we've done any necessary
2528 * COW.
2529 *
2530 * We also mark the page dirty at this point even though the page will
2531 * change only once the write actually happens. This avoids a few races,
2532 * and potentially makes it more efficient.
2533 *
2534 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535 * but allow concurrent faults), with pte both mapped and locked.
2536 * We return with mmap_sem still held, but pte unmapped and unlocked.
2537 */
2538 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2539 unsigned long address, pte_t *page_table, pmd_t *pmd,
2540 spinlock_t *ptl, pte_t orig_pte)
2541 __releases(ptl)
2542 {
2543 struct page *old_page, *new_page = NULL;
2544 pte_t entry;
2545 int ret = 0;
2546 int page_mkwrite = 0;
2547 struct page *dirty_page = NULL;
2548 unsigned long mmun_start = 0; /* For mmu_notifiers */
2549 unsigned long mmun_end = 0; /* For mmu_notifiers */
2550
2551 old_page = vm_normal_page(vma, address, orig_pte);
2552 if (!old_page) {
2553 /*
2554 * VM_MIXEDMAP !pfn_valid() case
2555 *
2556 * We should not cow pages in a shared writeable mapping.
2557 * Just mark the pages writable as we can't do any dirty
2558 * accounting on raw pfn maps.
2559 */
2560 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2561 (VM_WRITE|VM_SHARED))
2562 goto reuse;
2563 goto gotten;
2564 }
2565
2566 /*
2567 * Take out anonymous pages first, anonymous shared vmas are
2568 * not dirty accountable.
2569 */
2570 if (PageAnon(old_page) && !PageKsm(old_page)) {
2571 if (!trylock_page(old_page)) {
2572 page_cache_get(old_page);
2573 pte_unmap_unlock(page_table, ptl);
2574 lock_page(old_page);
2575 page_table = pte_offset_map_lock(mm, pmd, address,
2576 &ptl);
2577 if (!pte_same(*page_table, orig_pte)) {
2578 unlock_page(old_page);
2579 goto unlock;
2580 }
2581 page_cache_release(old_page);
2582 }
2583 if (reuse_swap_page(old_page)) {
2584 /*
2585 * The page is all ours. Move it to our anon_vma so
2586 * the rmap code will not search our parent or siblings.
2587 * Protected against the rmap code by the page lock.
2588 */
2589 page_move_anon_rmap(old_page, vma, address);
2590 unlock_page(old_page);
2591 goto reuse;
2592 }
2593 unlock_page(old_page);
2594 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2595 (VM_WRITE|VM_SHARED))) {
2596 /*
2597 * Only catch write-faults on shared writable pages,
2598 * read-only shared pages can get COWed by
2599 * get_user_pages(.write=1, .force=1).
2600 */
2601 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2602 struct vm_fault vmf;
2603 int tmp;
2604
2605 vmf.virtual_address = (void __user *)(address &
2606 PAGE_MASK);
2607 vmf.pgoff = old_page->index;
2608 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2609 vmf.page = old_page;
2610
2611 /*
2612 * Notify the address space that the page is about to
2613 * become writable so that it can prohibit this or wait
2614 * for the page to get into an appropriate state.
2615 *
2616 * We do this without the lock held, so that it can
2617 * sleep if it needs to.
2618 */
2619 page_cache_get(old_page);
2620 pte_unmap_unlock(page_table, ptl);
2621
2622 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2623 if (unlikely(tmp &
2624 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2625 ret = tmp;
2626 goto unwritable_page;
2627 }
2628 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2629 lock_page(old_page);
2630 if (!old_page->mapping) {
2631 ret = 0; /* retry the fault */
2632 unlock_page(old_page);
2633 goto unwritable_page;
2634 }
2635 } else
2636 VM_BUG_ON(!PageLocked(old_page));
2637
2638 /*
2639 * Since we dropped the lock we need to revalidate
2640 * the PTE as someone else may have changed it. If
2641 * they did, we just return, as we can count on the
2642 * MMU to tell us if they didn't also make it writable.
2643 */
2644 page_table = pte_offset_map_lock(mm, pmd, address,
2645 &ptl);
2646 if (!pte_same(*page_table, orig_pte)) {
2647 unlock_page(old_page);
2648 goto unlock;
2649 }
2650
2651 page_mkwrite = 1;
2652 }
2653 dirty_page = old_page;
2654 get_page(dirty_page);
2655
2656 reuse:
2657 flush_cache_page(vma, address, pte_pfn(orig_pte));
2658 entry = pte_mkyoung(orig_pte);
2659 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2660 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2661 update_mmu_cache(vma, address, page_table);
2662 pte_unmap_unlock(page_table, ptl);
2663 ret |= VM_FAULT_WRITE;
2664
2665 if (!dirty_page)
2666 return ret;
2667
2668 /*
2669 * Yes, Virginia, this is actually required to prevent a race
2670 * with clear_page_dirty_for_io() from clearing the page dirty
2671 * bit after it clear all dirty ptes, but before a racing
2672 * do_wp_page installs a dirty pte.
2673 *
2674 * __do_fault is protected similarly.
2675 */
2676 if (!page_mkwrite) {
2677 wait_on_page_locked(dirty_page);
2678 set_page_dirty_balance(dirty_page, page_mkwrite);
2679 /* file_update_time outside page_lock */
2680 if (vma->vm_file)
2681 file_update_time(vma->vm_file);
2682 }
2683 put_page(dirty_page);
2684 if (page_mkwrite) {
2685 struct address_space *mapping = dirty_page->mapping;
2686
2687 set_page_dirty(dirty_page);
2688 unlock_page(dirty_page);
2689 page_cache_release(dirty_page);
2690 if (mapping) {
2691 /*
2692 * Some device drivers do not set page.mapping
2693 * but still dirty their pages
2694 */
2695 balance_dirty_pages_ratelimited(mapping);
2696 }
2697 }
2698
2699 return ret;
2700 }
2701
2702 /*
2703 * Ok, we need to copy. Oh, well..
2704 */
2705 page_cache_get(old_page);
2706 gotten:
2707 pte_unmap_unlock(page_table, ptl);
2708
2709 if (unlikely(anon_vma_prepare(vma)))
2710 goto oom;
2711
2712 if (is_zero_pfn(pte_pfn(orig_pte))) {
2713 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2714 if (!new_page)
2715 goto oom;
2716 } else {
2717 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2718 if (!new_page)
2719 goto oom;
2720 cow_user_page(new_page, old_page, address, vma);
2721 }
2722 __SetPageUptodate(new_page);
2723
2724 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2725 goto oom_free_new;
2726
2727 mmun_start = address & PAGE_MASK;
2728 mmun_end = mmun_start + PAGE_SIZE;
2729 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2730
2731 /*
2732 * Re-check the pte - we dropped the lock
2733 */
2734 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2735 if (likely(pte_same(*page_table, orig_pte))) {
2736 if (old_page) {
2737 if (!PageAnon(old_page)) {
2738 dec_mm_counter_fast(mm, MM_FILEPAGES);
2739 inc_mm_counter_fast(mm, MM_ANONPAGES);
2740 }
2741 } else
2742 inc_mm_counter_fast(mm, MM_ANONPAGES);
2743 flush_cache_page(vma, address, pte_pfn(orig_pte));
2744 entry = mk_pte(new_page, vma->vm_page_prot);
2745 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746 /*
2747 * Clear the pte entry and flush it first, before updating the
2748 * pte with the new entry. This will avoid a race condition
2749 * seen in the presence of one thread doing SMC and another
2750 * thread doing COW.
2751 */
2752 ptep_clear_flush(vma, address, page_table);
2753 page_add_new_anon_rmap(new_page, vma, address);
2754 /*
2755 * We call the notify macro here because, when using secondary
2756 * mmu page tables (such as kvm shadow page tables), we want the
2757 * new page to be mapped directly into the secondary page table.
2758 */
2759 set_pte_at_notify(mm, address, page_table, entry);
2760 update_mmu_cache(vma, address, page_table);
2761 if (old_page) {
2762 /*
2763 * Only after switching the pte to the new page may
2764 * we remove the mapcount here. Otherwise another
2765 * process may come and find the rmap count decremented
2766 * before the pte is switched to the new page, and
2767 * "reuse" the old page writing into it while our pte
2768 * here still points into it and can be read by other
2769 * threads.
2770 *
2771 * The critical issue is to order this
2772 * page_remove_rmap with the ptp_clear_flush above.
2773 * Those stores are ordered by (if nothing else,)
2774 * the barrier present in the atomic_add_negative
2775 * in page_remove_rmap.
2776 *
2777 * Then the TLB flush in ptep_clear_flush ensures that
2778 * no process can access the old page before the
2779 * decremented mapcount is visible. And the old page
2780 * cannot be reused until after the decremented
2781 * mapcount is visible. So transitively, TLBs to
2782 * old page will be flushed before it can be reused.
2783 */
2784 page_remove_rmap(old_page);
2785 }
2786
2787 /* Free the old page.. */
2788 new_page = old_page;
2789 ret |= VM_FAULT_WRITE;
2790 } else
2791 mem_cgroup_uncharge_page(new_page);
2792
2793 if (new_page)
2794 page_cache_release(new_page);
2795 unlock:
2796 pte_unmap_unlock(page_table, ptl);
2797 if (mmun_end > mmun_start)
2798 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2799 if (old_page) {
2800 /*
2801 * Don't let another task, with possibly unlocked vma,
2802 * keep the mlocked page.
2803 */
2804 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2805 lock_page(old_page); /* LRU manipulation */
2806 munlock_vma_page(old_page);
2807 unlock_page(old_page);
2808 }
2809 page_cache_release(old_page);
2810 }
2811 return ret;
2812 oom_free_new:
2813 page_cache_release(new_page);
2814 oom:
2815 if (old_page) {
2816 if (page_mkwrite) {
2817 unlock_page(old_page);
2818 page_cache_release(old_page);
2819 }
2820 page_cache_release(old_page);
2821 }
2822 return VM_FAULT_OOM;
2823
2824 unwritable_page:
2825 page_cache_release(old_page);
2826 return ret;
2827 }
2828
2829 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2830 unsigned long start_addr, unsigned long end_addr,
2831 struct zap_details *details)
2832 {
2833 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2834 }
2835
2836 static inline void unmap_mapping_range_tree(struct rb_root *root,
2837 struct zap_details *details)
2838 {
2839 struct vm_area_struct *vma;
2840 pgoff_t vba, vea, zba, zea;
2841
2842 vma_interval_tree_foreach(vma, root,
2843 details->first_index, details->last_index) {
2844
2845 vba = vma->vm_pgoff;
2846 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2847 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2848 zba = details->first_index;
2849 if (zba < vba)
2850 zba = vba;
2851 zea = details->last_index;
2852 if (zea > vea)
2853 zea = vea;
2854
2855 unmap_mapping_range_vma(vma,
2856 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2857 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2858 details);
2859 }
2860 }
2861
2862 static inline void unmap_mapping_range_list(struct list_head *head,
2863 struct zap_details *details)
2864 {
2865 struct vm_area_struct *vma;
2866
2867 /*
2868 * In nonlinear VMAs there is no correspondence between virtual address
2869 * offset and file offset. So we must perform an exhaustive search
2870 * across *all* the pages in each nonlinear VMA, not just the pages
2871 * whose virtual address lies outside the file truncation point.
2872 */
2873 list_for_each_entry(vma, head, shared.nonlinear) {
2874 details->nonlinear_vma = vma;
2875 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2876 }
2877 }
2878
2879 /**
2880 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2881 * @mapping: the address space containing mmaps to be unmapped.
2882 * @holebegin: byte in first page to unmap, relative to the start of
2883 * the underlying file. This will be rounded down to a PAGE_SIZE
2884 * boundary. Note that this is different from truncate_pagecache(), which
2885 * must keep the partial page. In contrast, we must get rid of
2886 * partial pages.
2887 * @holelen: size of prospective hole in bytes. This will be rounded
2888 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2889 * end of the file.
2890 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2891 * but 0 when invalidating pagecache, don't throw away private data.
2892 */
2893 void unmap_mapping_range(struct address_space *mapping,
2894 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 {
2896 struct zap_details details;
2897 pgoff_t hba = holebegin >> PAGE_SHIFT;
2898 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899
2900 /* Check for overflow. */
2901 if (sizeof(holelen) > sizeof(hlen)) {
2902 long long holeend =
2903 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2904 if (holeend & ~(long long)ULONG_MAX)
2905 hlen = ULONG_MAX - hba + 1;
2906 }
2907
2908 details.check_mapping = even_cows? NULL: mapping;
2909 details.nonlinear_vma = NULL;
2910 details.first_index = hba;
2911 details.last_index = hba + hlen - 1;
2912 if (details.last_index < details.first_index)
2913 details.last_index = ULONG_MAX;
2914
2915
2916 mutex_lock(&mapping->i_mmap_mutex);
2917 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2918 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2919 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2920 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2921 mutex_unlock(&mapping->i_mmap_mutex);
2922 }
2923 EXPORT_SYMBOL(unmap_mapping_range);
2924
2925 /*
2926 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2927 * but allow concurrent faults), and pte mapped but not yet locked.
2928 * We return with mmap_sem still held, but pte unmapped and unlocked.
2929 */
2930 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2931 unsigned long address, pte_t *page_table, pmd_t *pmd,
2932 unsigned int flags, pte_t orig_pte)
2933 {
2934 spinlock_t *ptl;
2935 struct page *page, *swapcache = NULL;
2936 swp_entry_t entry;
2937 pte_t pte;
2938 int locked;
2939 struct mem_cgroup *ptr;
2940 int exclusive = 0;
2941 int ret = 0;
2942
2943 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2944 goto out;
2945
2946 entry = pte_to_swp_entry(orig_pte);
2947 if (unlikely(non_swap_entry(entry))) {
2948 if (is_migration_entry(entry)) {
2949 migration_entry_wait(mm, pmd, address);
2950 } else if (is_hwpoison_entry(entry)) {
2951 ret = VM_FAULT_HWPOISON;
2952 } else {
2953 print_bad_pte(vma, address, orig_pte, NULL);
2954 ret = VM_FAULT_SIGBUS;
2955 }
2956 goto out;
2957 }
2958 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2959 page = lookup_swap_cache(entry);
2960 if (!page) {
2961 page = swapin_readahead(entry,
2962 GFP_HIGHUSER_MOVABLE, vma, address);
2963 if (!page) {
2964 /*
2965 * Back out if somebody else faulted in this pte
2966 * while we released the pte lock.
2967 */
2968 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2969 if (likely(pte_same(*page_table, orig_pte)))
2970 ret = VM_FAULT_OOM;
2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972 goto unlock;
2973 }
2974
2975 /* Had to read the page from swap area: Major fault */
2976 ret = VM_FAULT_MAJOR;
2977 count_vm_event(PGMAJFAULT);
2978 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2979 } else if (PageHWPoison(page)) {
2980 /*
2981 * hwpoisoned dirty swapcache pages are kept for killing
2982 * owner processes (which may be unknown at hwpoison time)
2983 */
2984 ret = VM_FAULT_HWPOISON;
2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986 goto out_release;
2987 }
2988
2989 locked = lock_page_or_retry(page, mm, flags);
2990
2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 if (!locked) {
2993 ret |= VM_FAULT_RETRY;
2994 goto out_release;
2995 }
2996
2997 /*
2998 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999 * release the swapcache from under us. The page pin, and pte_same
3000 * test below, are not enough to exclude that. Even if it is still
3001 * swapcache, we need to check that the page's swap has not changed.
3002 */
3003 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3004 goto out_page;
3005
3006 if (ksm_might_need_to_copy(page, vma, address)) {
3007 swapcache = page;
3008 page = ksm_does_need_to_copy(page, vma, address);
3009
3010 if (unlikely(!page)) {
3011 ret = VM_FAULT_OOM;
3012 page = swapcache;
3013 swapcache = NULL;
3014 goto out_page;
3015 }
3016 }
3017
3018 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3019 ret = VM_FAULT_OOM;
3020 goto out_page;
3021 }
3022
3023 /*
3024 * Back out if somebody else already faulted in this pte.
3025 */
3026 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3027 if (unlikely(!pte_same(*page_table, orig_pte)))
3028 goto out_nomap;
3029
3030 if (unlikely(!PageUptodate(page))) {
3031 ret = VM_FAULT_SIGBUS;
3032 goto out_nomap;
3033 }
3034
3035 /*
3036 * The page isn't present yet, go ahead with the fault.
3037 *
3038 * Be careful about the sequence of operations here.
3039 * To get its accounting right, reuse_swap_page() must be called
3040 * while the page is counted on swap but not yet in mapcount i.e.
3041 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3042 * must be called after the swap_free(), or it will never succeed.
3043 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3044 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3045 * in page->private. In this case, a record in swap_cgroup is silently
3046 * discarded at swap_free().
3047 */
3048
3049 inc_mm_counter_fast(mm, MM_ANONPAGES);
3050 dec_mm_counter_fast(mm, MM_SWAPENTS);
3051 pte = mk_pte(page, vma->vm_page_prot);
3052 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3053 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3054 flags &= ~FAULT_FLAG_WRITE;
3055 ret |= VM_FAULT_WRITE;
3056 exclusive = 1;
3057 }
3058 flush_icache_page(vma, page);
3059 set_pte_at(mm, address, page_table, pte);
3060 do_page_add_anon_rmap(page, vma, address, exclusive);
3061 /* It's better to call commit-charge after rmap is established */
3062 mem_cgroup_commit_charge_swapin(page, ptr);
3063
3064 swap_free(entry);
3065 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3066 try_to_free_swap(page);
3067 unlock_page(page);
3068 if (swapcache) {
3069 /*
3070 * Hold the lock to avoid the swap entry to be reused
3071 * until we take the PT lock for the pte_same() check
3072 * (to avoid false positives from pte_same). For
3073 * further safety release the lock after the swap_free
3074 * so that the swap count won't change under a
3075 * parallel locked swapcache.
3076 */
3077 unlock_page(swapcache);
3078 page_cache_release(swapcache);
3079 }
3080
3081 if (flags & FAULT_FLAG_WRITE) {
3082 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3083 if (ret & VM_FAULT_ERROR)
3084 ret &= VM_FAULT_ERROR;
3085 goto out;
3086 }
3087
3088 /* No need to invalidate - it was non-present before */
3089 update_mmu_cache(vma, address, page_table);
3090 unlock:
3091 pte_unmap_unlock(page_table, ptl);
3092 out:
3093 return ret;
3094 out_nomap:
3095 mem_cgroup_cancel_charge_swapin(ptr);
3096 pte_unmap_unlock(page_table, ptl);
3097 out_page:
3098 unlock_page(page);
3099 out_release:
3100 page_cache_release(page);
3101 if (swapcache) {
3102 unlock_page(swapcache);
3103 page_cache_release(swapcache);
3104 }
3105 return ret;
3106 }
3107
3108 /*
3109 * This is like a special single-page "expand_{down|up}wards()",
3110 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3111 * doesn't hit another vma.
3112 */
3113 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3114 {
3115 address &= PAGE_MASK;
3116 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3117 struct vm_area_struct *prev = vma->vm_prev;
3118
3119 /*
3120 * Is there a mapping abutting this one below?
3121 *
3122 * That's only ok if it's the same stack mapping
3123 * that has gotten split..
3124 */
3125 if (prev && prev->vm_end == address)
3126 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3127
3128 expand_downwards(vma, address - PAGE_SIZE);
3129 }
3130 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3131 struct vm_area_struct *next = vma->vm_next;
3132
3133 /* As VM_GROWSDOWN but s/below/above/ */
3134 if (next && next->vm_start == address + PAGE_SIZE)
3135 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3136
3137 expand_upwards(vma, address + PAGE_SIZE);
3138 }
3139 return 0;
3140 }
3141
3142 /*
3143 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3144 * but allow concurrent faults), and pte mapped but not yet locked.
3145 * We return with mmap_sem still held, but pte unmapped and unlocked.
3146 */
3147 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3148 unsigned long address, pte_t *page_table, pmd_t *pmd,
3149 unsigned int flags)
3150 {
3151 struct page *page;
3152 spinlock_t *ptl;
3153 pte_t entry;
3154
3155 pte_unmap(page_table);
3156
3157 /* Check if we need to add a guard page to the stack */
3158 if (check_stack_guard_page(vma, address) < 0)
3159 return VM_FAULT_SIGBUS;
3160
3161 /* Use the zero-page for reads */
3162 if (!(flags & FAULT_FLAG_WRITE)) {
3163 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3164 vma->vm_page_prot));
3165 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3166 if (!pte_none(*page_table))
3167 goto unlock;
3168 goto setpte;
3169 }
3170
3171 /* Allocate our own private page. */
3172 if (unlikely(anon_vma_prepare(vma)))
3173 goto oom;
3174 page = alloc_zeroed_user_highpage_movable(vma, address);
3175 if (!page)
3176 goto oom;
3177 __SetPageUptodate(page);
3178
3179 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3180 goto oom_free_page;
3181
3182 entry = mk_pte(page, vma->vm_page_prot);
3183 if (vma->vm_flags & VM_WRITE)
3184 entry = pte_mkwrite(pte_mkdirty(entry));
3185
3186 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3187 if (!pte_none(*page_table))
3188 goto release;
3189
3190 inc_mm_counter_fast(mm, MM_ANONPAGES);
3191 page_add_new_anon_rmap(page, vma, address);
3192 setpte:
3193 set_pte_at(mm, address, page_table, entry);
3194
3195 /* No need to invalidate - it was non-present before */
3196 update_mmu_cache(vma, address, page_table);
3197 unlock:
3198 pte_unmap_unlock(page_table, ptl);
3199 return 0;
3200 release:
3201 mem_cgroup_uncharge_page(page);
3202 page_cache_release(page);
3203 goto unlock;
3204 oom_free_page:
3205 page_cache_release(page);
3206 oom:
3207 return VM_FAULT_OOM;
3208 }
3209
3210 /*
3211 * __do_fault() tries to create a new page mapping. It aggressively
3212 * tries to share with existing pages, but makes a separate copy if
3213 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3214 * the next page fault.
3215 *
3216 * As this is called only for pages that do not currently exist, we
3217 * do not need to flush old virtual caches or the TLB.
3218 *
3219 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3220 * but allow concurrent faults), and pte neither mapped nor locked.
3221 * We return with mmap_sem still held, but pte unmapped and unlocked.
3222 */
3223 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3224 unsigned long address, pmd_t *pmd,
3225 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3226 {
3227 pte_t *page_table;
3228 spinlock_t *ptl;
3229 struct page *page;
3230 struct page *cow_page;
3231 pte_t entry;
3232 int anon = 0;
3233 struct page *dirty_page = NULL;
3234 struct vm_fault vmf;
3235 int ret;
3236 int page_mkwrite = 0;
3237
3238 /*
3239 * If we do COW later, allocate page befor taking lock_page()
3240 * on the file cache page. This will reduce lock holding time.
3241 */
3242 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3243
3244 if (unlikely(anon_vma_prepare(vma)))
3245 return VM_FAULT_OOM;
3246
3247 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3248 if (!cow_page)
3249 return VM_FAULT_OOM;
3250
3251 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3252 page_cache_release(cow_page);
3253 return VM_FAULT_OOM;
3254 }
3255 } else
3256 cow_page = NULL;
3257
3258 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3259 vmf.pgoff = pgoff;
3260 vmf.flags = flags;
3261 vmf.page = NULL;
3262
3263 ret = vma->vm_ops->fault(vma, &vmf);
3264 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3265 VM_FAULT_RETRY)))
3266 goto uncharge_out;
3267
3268 if (unlikely(PageHWPoison(vmf.page))) {
3269 if (ret & VM_FAULT_LOCKED)
3270 unlock_page(vmf.page);
3271 ret = VM_FAULT_HWPOISON;
3272 goto uncharge_out;
3273 }
3274
3275 /*
3276 * For consistency in subsequent calls, make the faulted page always
3277 * locked.
3278 */
3279 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3280 lock_page(vmf.page);
3281 else
3282 VM_BUG_ON(!PageLocked(vmf.page));
3283
3284 /*
3285 * Should we do an early C-O-W break?
3286 */
3287 page = vmf.page;
3288 if (flags & FAULT_FLAG_WRITE) {
3289 if (!(vma->vm_flags & VM_SHARED)) {
3290 page = cow_page;
3291 anon = 1;
3292 copy_user_highpage(page, vmf.page, address, vma);
3293 __SetPageUptodate(page);
3294 } else {
3295 /*
3296 * If the page will be shareable, see if the backing
3297 * address space wants to know that the page is about
3298 * to become writable
3299 */
3300 if (vma->vm_ops->page_mkwrite) {
3301 int tmp;
3302
3303 unlock_page(page);
3304 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3305 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3306 if (unlikely(tmp &
3307 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3308 ret = tmp;
3309 goto unwritable_page;
3310 }
3311 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3312 lock_page(page);
3313 if (!page->mapping) {
3314 ret = 0; /* retry the fault */
3315 unlock_page(page);
3316 goto unwritable_page;
3317 }
3318 } else
3319 VM_BUG_ON(!PageLocked(page));
3320 page_mkwrite = 1;
3321 }
3322 }
3323
3324 }
3325
3326 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3327
3328 /*
3329 * This silly early PAGE_DIRTY setting removes a race
3330 * due to the bad i386 page protection. But it's valid
3331 * for other architectures too.
3332 *
3333 * Note that if FAULT_FLAG_WRITE is set, we either now have
3334 * an exclusive copy of the page, or this is a shared mapping,
3335 * so we can make it writable and dirty to avoid having to
3336 * handle that later.
3337 */
3338 /* Only go through if we didn't race with anybody else... */
3339 if (likely(pte_same(*page_table, orig_pte))) {
3340 flush_icache_page(vma, page);
3341 entry = mk_pte(page, vma->vm_page_prot);
3342 if (flags & FAULT_FLAG_WRITE)
3343 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3344 if (anon) {
3345 inc_mm_counter_fast(mm, MM_ANONPAGES);
3346 page_add_new_anon_rmap(page, vma, address);
3347 } else {
3348 inc_mm_counter_fast(mm, MM_FILEPAGES);
3349 page_add_file_rmap(page);
3350 if (flags & FAULT_FLAG_WRITE) {
3351 dirty_page = page;
3352 get_page(dirty_page);
3353 }
3354 }
3355 set_pte_at(mm, address, page_table, entry);
3356
3357 /* no need to invalidate: a not-present page won't be cached */
3358 update_mmu_cache(vma, address, page_table);
3359 } else {
3360 if (cow_page)
3361 mem_cgroup_uncharge_page(cow_page);
3362 if (anon)
3363 page_cache_release(page);
3364 else
3365 anon = 1; /* no anon but release faulted_page */
3366 }
3367
3368 pte_unmap_unlock(page_table, ptl);
3369
3370 if (dirty_page) {
3371 struct address_space *mapping = page->mapping;
3372 int dirtied = 0;
3373
3374 if (set_page_dirty(dirty_page))
3375 dirtied = 1;
3376 unlock_page(dirty_page);
3377 put_page(dirty_page);
3378 if ((dirtied || page_mkwrite) && mapping) {
3379 /*
3380 * Some device drivers do not set page.mapping but still
3381 * dirty their pages
3382 */
3383 balance_dirty_pages_ratelimited(mapping);
3384 }
3385
3386 /* file_update_time outside page_lock */
3387 if (vma->vm_file && !page_mkwrite)
3388 file_update_time(vma->vm_file);
3389 } else {
3390 unlock_page(vmf.page);
3391 if (anon)
3392 page_cache_release(vmf.page);
3393 }
3394
3395 return ret;
3396
3397 unwritable_page:
3398 page_cache_release(page);
3399 return ret;
3400 uncharge_out:
3401 /* fs's fault handler get error */
3402 if (cow_page) {
3403 mem_cgroup_uncharge_page(cow_page);
3404 page_cache_release(cow_page);
3405 }
3406 return ret;
3407 }
3408
3409 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3410 unsigned long address, pte_t *page_table, pmd_t *pmd,
3411 unsigned int flags, pte_t orig_pte)
3412 {
3413 pgoff_t pgoff = (((address & PAGE_MASK)
3414 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3415
3416 pte_unmap(page_table);
3417 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3418 }
3419
3420 /*
3421 * Fault of a previously existing named mapping. Repopulate the pte
3422 * from the encoded file_pte if possible. This enables swappable
3423 * nonlinear vmas.
3424 *
3425 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3426 * but allow concurrent faults), and pte mapped but not yet locked.
3427 * We return with mmap_sem still held, but pte unmapped and unlocked.
3428 */
3429 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3430 unsigned long address, pte_t *page_table, pmd_t *pmd,
3431 unsigned int flags, pte_t orig_pte)
3432 {
3433 pgoff_t pgoff;
3434
3435 flags |= FAULT_FLAG_NONLINEAR;
3436
3437 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3438 return 0;
3439
3440 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3441 /*
3442 * Page table corrupted: show pte and kill process.
3443 */
3444 print_bad_pte(vma, address, orig_pte, NULL);
3445 return VM_FAULT_SIGBUS;
3446 }
3447
3448 pgoff = pte_to_pgoff(orig_pte);
3449 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3450 }
3451
3452 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3453 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3454 {
3455 struct page *page = NULL;
3456 spinlock_t *ptl;
3457 int current_nid = -1;
3458 int target_nid;
3459
3460 /*
3461 * The "pte" at this point cannot be used safely without
3462 * validation through pte_unmap_same(). It's of NUMA type but
3463 * the pfn may be screwed if the read is non atomic.
3464 *
3465 * ptep_modify_prot_start is not called as this is clearing
3466 * the _PAGE_NUMA bit and it is not really expected that there
3467 * would be concurrent hardware modifications to the PTE.
3468 */
3469 ptl = pte_lockptr(mm, pmd);
3470 spin_lock(ptl);
3471 if (unlikely(!pte_same(*ptep, pte))) {
3472 pte_unmap_unlock(ptep, ptl);
3473 goto out;
3474 }
3475
3476 pte = pte_mknonnuma(pte);
3477 set_pte_at(mm, addr, ptep, pte);
3478 update_mmu_cache(vma, addr, ptep);
3479
3480 page = vm_normal_page(vma, addr, pte);
3481 if (!page) {
3482 pte_unmap_unlock(ptep, ptl);
3483 return 0;
3484 }
3485
3486 get_page(page);
3487 current_nid = page_to_nid(page);
3488 target_nid = mpol_misplaced(page, vma, addr);
3489 pte_unmap_unlock(ptep, ptl);
3490 if (target_nid == -1) {
3491 /*
3492 * Account for the fault against the current node if it not
3493 * being replaced regardless of where the page is located.
3494 */
3495 current_nid = numa_node_id();
3496 put_page(page);
3497 goto out;
3498 }
3499
3500 /* Migrate to the requested node */
3501 if (migrate_misplaced_page(page, target_nid))
3502 current_nid = target_nid;
3503
3504 out:
3505 task_numa_fault(current_nid, 1);
3506 return 0;
3507 }
3508
3509 /* NUMA hinting page fault entry point for regular pmds */
3510 #ifdef CONFIG_NUMA_BALANCING
3511 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3512 unsigned long addr, pmd_t *pmdp)
3513 {
3514 pmd_t pmd;
3515 pte_t *pte, *orig_pte;
3516 unsigned long _addr = addr & PMD_MASK;
3517 unsigned long offset;
3518 spinlock_t *ptl;
3519 bool numa = false;
3520
3521 spin_lock(&mm->page_table_lock);
3522 pmd = *pmdp;
3523 if (pmd_numa(pmd)) {
3524 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3525 numa = true;
3526 }
3527 spin_unlock(&mm->page_table_lock);
3528
3529 if (!numa)
3530 return 0;
3531
3532 /* we're in a page fault so some vma must be in the range */
3533 BUG_ON(!vma);
3534 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3535 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3536 VM_BUG_ON(offset >= PMD_SIZE);
3537 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3538 pte += offset >> PAGE_SHIFT;
3539 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3540 pte_t pteval = *pte;
3541 struct page *page;
3542 int curr_nid;
3543 if (!pte_present(pteval))
3544 continue;
3545 if (!pte_numa(pteval))
3546 continue;
3547 if (addr >= vma->vm_end) {
3548 vma = find_vma(mm, addr);
3549 /* there's a pte present so there must be a vma */
3550 BUG_ON(!vma);
3551 BUG_ON(addr < vma->vm_start);
3552 }
3553 if (pte_numa(pteval)) {
3554 pteval = pte_mknonnuma(pteval);
3555 set_pte_at(mm, addr, pte, pteval);
3556 }
3557 page = vm_normal_page(vma, addr, pteval);
3558 if (unlikely(!page))
3559 continue;
3560 /* only check non-shared pages */
3561 if (unlikely(page_mapcount(page) != 1))
3562 continue;
3563 pte_unmap_unlock(pte, ptl);
3564
3565 curr_nid = page_to_nid(page);
3566 task_numa_fault(curr_nid, 1);
3567
3568 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3569 }
3570 pte_unmap_unlock(orig_pte, ptl);
3571
3572 return 0;
3573 }
3574 #else
3575 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3576 unsigned long addr, pmd_t *pmdp)
3577 {
3578 BUG();
3579 }
3580 #endif /* CONFIG_NUMA_BALANCING */
3581
3582 /*
3583 * These routines also need to handle stuff like marking pages dirty
3584 * and/or accessed for architectures that don't do it in hardware (most
3585 * RISC architectures). The early dirtying is also good on the i386.
3586 *
3587 * There is also a hook called "update_mmu_cache()" that architectures
3588 * with external mmu caches can use to update those (ie the Sparc or
3589 * PowerPC hashed page tables that act as extended TLBs).
3590 *
3591 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3592 * but allow concurrent faults), and pte mapped but not yet locked.
3593 * We return with mmap_sem still held, but pte unmapped and unlocked.
3594 */
3595 int handle_pte_fault(struct mm_struct *mm,
3596 struct vm_area_struct *vma, unsigned long address,
3597 pte_t *pte, pmd_t *pmd, unsigned int flags)
3598 {
3599 pte_t entry;
3600 spinlock_t *ptl;
3601
3602 entry = *pte;
3603 if (!pte_present(entry)) {
3604 if (pte_none(entry)) {
3605 if (vma->vm_ops) {
3606 if (likely(vma->vm_ops->fault))
3607 return do_linear_fault(mm, vma, address,
3608 pte, pmd, flags, entry);
3609 }
3610 return do_anonymous_page(mm, vma, address,
3611 pte, pmd, flags);
3612 }
3613 if (pte_file(entry))
3614 return do_nonlinear_fault(mm, vma, address,
3615 pte, pmd, flags, entry);
3616 return do_swap_page(mm, vma, address,
3617 pte, pmd, flags, entry);
3618 }
3619
3620 if (pte_numa(entry))
3621 return do_numa_page(mm, vma, address, entry, pte, pmd);
3622
3623 ptl = pte_lockptr(mm, pmd);
3624 spin_lock(ptl);
3625 if (unlikely(!pte_same(*pte, entry)))
3626 goto unlock;
3627 if (flags & FAULT_FLAG_WRITE) {
3628 if (!pte_write(entry))
3629 return do_wp_page(mm, vma, address,
3630 pte, pmd, ptl, entry);
3631 entry = pte_mkdirty(entry);
3632 }
3633 entry = pte_mkyoung(entry);
3634 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3635 update_mmu_cache(vma, address, pte);
3636 } else {
3637 /*
3638 * This is needed only for protection faults but the arch code
3639 * is not yet telling us if this is a protection fault or not.
3640 * This still avoids useless tlb flushes for .text page faults
3641 * with threads.
3642 */
3643 if (flags & FAULT_FLAG_WRITE)
3644 flush_tlb_fix_spurious_fault(vma, address);
3645 }
3646 unlock:
3647 pte_unmap_unlock(pte, ptl);
3648 return 0;
3649 }
3650
3651 /*
3652 * By the time we get here, we already hold the mm semaphore
3653 */
3654 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3655 unsigned long address, unsigned int flags)
3656 {
3657 pgd_t *pgd;
3658 pud_t *pud;
3659 pmd_t *pmd;
3660 pte_t *pte;
3661
3662 __set_current_state(TASK_RUNNING);
3663
3664 count_vm_event(PGFAULT);
3665 mem_cgroup_count_vm_event(mm, PGFAULT);
3666
3667 /* do counter updates before entering really critical section. */
3668 check_sync_rss_stat(current);
3669
3670 if (unlikely(is_vm_hugetlb_page(vma)))
3671 return hugetlb_fault(mm, vma, address, flags);
3672
3673 retry:
3674 pgd = pgd_offset(mm, address);
3675 pud = pud_alloc(mm, pgd, address);
3676 if (!pud)
3677 return VM_FAULT_OOM;
3678 pmd = pmd_alloc(mm, pud, address);
3679 if (!pmd)
3680 return VM_FAULT_OOM;
3681 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3682 if (!vma->vm_ops)
3683 return do_huge_pmd_anonymous_page(mm, vma, address,
3684 pmd, flags);
3685 } else {
3686 pmd_t orig_pmd = *pmd;
3687 int ret;
3688
3689 barrier();
3690 if (pmd_trans_huge(orig_pmd)) {
3691 if (pmd_numa(*pmd))
3692 return do_huge_pmd_numa_page(mm, vma, address,
3693 orig_pmd, pmd);
3694
3695 if ((flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) {
3696 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3697 orig_pmd);
3698 /*
3699 * If COW results in an oom, the huge pmd will
3700 * have been split, so retry the fault on the
3701 * pte for a smaller charge.
3702 */
3703 if (unlikely(ret & VM_FAULT_OOM))
3704 goto retry;
3705 return ret;
3706 }
3707
3708 return 0;
3709 }
3710 }
3711
3712 if (pmd_numa(*pmd))
3713 return do_pmd_numa_page(mm, vma, address, pmd);
3714
3715 /*
3716 * Use __pte_alloc instead of pte_alloc_map, because we can't
3717 * run pte_offset_map on the pmd, if an huge pmd could
3718 * materialize from under us from a different thread.
3719 */
3720 if (unlikely(pmd_none(*pmd)) &&
3721 unlikely(__pte_alloc(mm, vma, pmd, address)))
3722 return VM_FAULT_OOM;
3723 /* if an huge pmd materialized from under us just retry later */
3724 if (unlikely(pmd_trans_huge(*pmd)))
3725 return 0;
3726 /*
3727 * A regular pmd is established and it can't morph into a huge pmd
3728 * from under us anymore at this point because we hold the mmap_sem
3729 * read mode and khugepaged takes it in write mode. So now it's
3730 * safe to run pte_offset_map().
3731 */
3732 pte = pte_offset_map(pmd, address);
3733
3734 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3735 }
3736
3737 #ifndef __PAGETABLE_PUD_FOLDED
3738 /*
3739 * Allocate page upper directory.
3740 * We've already handled the fast-path in-line.
3741 */
3742 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3743 {
3744 pud_t *new = pud_alloc_one(mm, address);
3745 if (!new)
3746 return -ENOMEM;
3747
3748 smp_wmb(); /* See comment in __pte_alloc */
3749
3750 spin_lock(&mm->page_table_lock);
3751 if (pgd_present(*pgd)) /* Another has populated it */
3752 pud_free(mm, new);
3753 else
3754 pgd_populate(mm, pgd, new);
3755 spin_unlock(&mm->page_table_lock);
3756 return 0;
3757 }
3758 #endif /* __PAGETABLE_PUD_FOLDED */
3759
3760 #ifndef __PAGETABLE_PMD_FOLDED
3761 /*
3762 * Allocate page middle directory.
3763 * We've already handled the fast-path in-line.
3764 */
3765 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3766 {
3767 pmd_t *new = pmd_alloc_one(mm, address);
3768 if (!new)
3769 return -ENOMEM;
3770
3771 smp_wmb(); /* See comment in __pte_alloc */
3772
3773 spin_lock(&mm->page_table_lock);
3774 #ifndef __ARCH_HAS_4LEVEL_HACK
3775 if (pud_present(*pud)) /* Another has populated it */
3776 pmd_free(mm, new);
3777 else
3778 pud_populate(mm, pud, new);
3779 #else
3780 if (pgd_present(*pud)) /* Another has populated it */
3781 pmd_free(mm, new);
3782 else
3783 pgd_populate(mm, pud, new);
3784 #endif /* __ARCH_HAS_4LEVEL_HACK */
3785 spin_unlock(&mm->page_table_lock);
3786 return 0;
3787 }
3788 #endif /* __PAGETABLE_PMD_FOLDED */
3789
3790 int make_pages_present(unsigned long addr, unsigned long end)
3791 {
3792 int ret, len, write;
3793 struct vm_area_struct * vma;
3794
3795 vma = find_vma(current->mm, addr);
3796 if (!vma)
3797 return -ENOMEM;
3798 /*
3799 * We want to touch writable mappings with a write fault in order
3800 * to break COW, except for shared mappings because these don't COW
3801 * and we would not want to dirty them for nothing.
3802 */
3803 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3804 BUG_ON(addr >= end);
3805 BUG_ON(end > vma->vm_end);
3806 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3807 ret = get_user_pages(current, current->mm, addr,
3808 len, write, 0, NULL, NULL);
3809 if (ret < 0)
3810 return ret;
3811 return ret == len ? 0 : -EFAULT;
3812 }
3813
3814 #if !defined(__HAVE_ARCH_GATE_AREA)
3815
3816 #if defined(AT_SYSINFO_EHDR)
3817 static struct vm_area_struct gate_vma;
3818
3819 static int __init gate_vma_init(void)
3820 {
3821 gate_vma.vm_mm = NULL;
3822 gate_vma.vm_start = FIXADDR_USER_START;
3823 gate_vma.vm_end = FIXADDR_USER_END;
3824 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3825 gate_vma.vm_page_prot = __P101;
3826
3827 return 0;
3828 }
3829 __initcall(gate_vma_init);
3830 #endif
3831
3832 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3833 {
3834 #ifdef AT_SYSINFO_EHDR
3835 return &gate_vma;
3836 #else
3837 return NULL;
3838 #endif
3839 }
3840
3841 int in_gate_area_no_mm(unsigned long addr)
3842 {
3843 #ifdef AT_SYSINFO_EHDR
3844 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3845 return 1;
3846 #endif
3847 return 0;
3848 }
3849
3850 #endif /* __HAVE_ARCH_GATE_AREA */
3851
3852 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3853 pte_t **ptepp, spinlock_t **ptlp)
3854 {
3855 pgd_t *pgd;
3856 pud_t *pud;
3857 pmd_t *pmd;
3858 pte_t *ptep;
3859
3860 pgd = pgd_offset(mm, address);
3861 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3862 goto out;
3863
3864 pud = pud_offset(pgd, address);
3865 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3866 goto out;
3867
3868 pmd = pmd_offset(pud, address);
3869 VM_BUG_ON(pmd_trans_huge(*pmd));
3870 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3871 goto out;
3872
3873 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3874 if (pmd_huge(*pmd))
3875 goto out;
3876
3877 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3878 if (!ptep)
3879 goto out;
3880 if (!pte_present(*ptep))
3881 goto unlock;
3882 *ptepp = ptep;
3883 return 0;
3884 unlock:
3885 pte_unmap_unlock(ptep, *ptlp);
3886 out:
3887 return -EINVAL;
3888 }
3889
3890 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3891 pte_t **ptepp, spinlock_t **ptlp)
3892 {
3893 int res;
3894
3895 /* (void) is needed to make gcc happy */
3896 (void) __cond_lock(*ptlp,
3897 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3898 return res;
3899 }
3900
3901 /**
3902 * follow_pfn - look up PFN at a user virtual address
3903 * @vma: memory mapping
3904 * @address: user virtual address
3905 * @pfn: location to store found PFN
3906 *
3907 * Only IO mappings and raw PFN mappings are allowed.
3908 *
3909 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3910 */
3911 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3912 unsigned long *pfn)
3913 {
3914 int ret = -EINVAL;
3915 spinlock_t *ptl;
3916 pte_t *ptep;
3917
3918 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3919 return ret;
3920
3921 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3922 if (ret)
3923 return ret;
3924 *pfn = pte_pfn(*ptep);
3925 pte_unmap_unlock(ptep, ptl);
3926 return 0;
3927 }
3928 EXPORT_SYMBOL(follow_pfn);
3929
3930 #ifdef CONFIG_HAVE_IOREMAP_PROT
3931 int follow_phys(struct vm_area_struct *vma,
3932 unsigned long address, unsigned int flags,
3933 unsigned long *prot, resource_size_t *phys)
3934 {
3935 int ret = -EINVAL;
3936 pte_t *ptep, pte;
3937 spinlock_t *ptl;
3938
3939 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3940 goto out;
3941
3942 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3943 goto out;
3944 pte = *ptep;
3945
3946 if ((flags & FOLL_WRITE) && !pte_write(pte))
3947 goto unlock;
3948
3949 *prot = pgprot_val(pte_pgprot(pte));
3950 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3951
3952 ret = 0;
3953 unlock:
3954 pte_unmap_unlock(ptep, ptl);
3955 out:
3956 return ret;
3957 }
3958
3959 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3960 void *buf, int len, int write)
3961 {
3962 resource_size_t phys_addr;
3963 unsigned long prot = 0;
3964 void __iomem *maddr;
3965 int offset = addr & (PAGE_SIZE-1);
3966
3967 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3968 return -EINVAL;
3969
3970 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3971 if (write)
3972 memcpy_toio(maddr + offset, buf, len);
3973 else
3974 memcpy_fromio(buf, maddr + offset, len);
3975 iounmap(maddr);
3976
3977 return len;
3978 }
3979 #endif
3980
3981 /*
3982 * Access another process' address space as given in mm. If non-NULL, use the
3983 * given task for page fault accounting.
3984 */
3985 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3986 unsigned long addr, void *buf, int len, int write)
3987 {
3988 struct vm_area_struct *vma;
3989 void *old_buf = buf;
3990
3991 down_read(&mm->mmap_sem);
3992 /* ignore errors, just check how much was successfully transferred */
3993 while (len) {
3994 int bytes, ret, offset;
3995 void *maddr;
3996 struct page *page = NULL;
3997
3998 ret = get_user_pages(tsk, mm, addr, 1,
3999 write, 1, &page, &vma);
4000 if (ret <= 0) {
4001 /*
4002 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4003 * we can access using slightly different code.
4004 */
4005 #ifdef CONFIG_HAVE_IOREMAP_PROT
4006 vma = find_vma(mm, addr);
4007 if (!vma || vma->vm_start > addr)
4008 break;
4009 if (vma->vm_ops && vma->vm_ops->access)
4010 ret = vma->vm_ops->access(vma, addr, buf,
4011 len, write);
4012 if (ret <= 0)
4013 #endif
4014 break;
4015 bytes = ret;
4016 } else {
4017 bytes = len;
4018 offset = addr & (PAGE_SIZE-1);
4019 if (bytes > PAGE_SIZE-offset)
4020 bytes = PAGE_SIZE-offset;
4021
4022 maddr = kmap(page);
4023 if (write) {
4024 copy_to_user_page(vma, page, addr,
4025 maddr + offset, buf, bytes);
4026 set_page_dirty_lock(page);
4027 } else {
4028 copy_from_user_page(vma, page, addr,
4029 buf, maddr + offset, bytes);
4030 }
4031 kunmap(page);
4032 page_cache_release(page);
4033 }
4034 len -= bytes;
4035 buf += bytes;
4036 addr += bytes;
4037 }
4038 up_read(&mm->mmap_sem);
4039
4040 return buf - old_buf;
4041 }
4042
4043 /**
4044 * access_remote_vm - access another process' address space
4045 * @mm: the mm_struct of the target address space
4046 * @addr: start address to access
4047 * @buf: source or destination buffer
4048 * @len: number of bytes to transfer
4049 * @write: whether the access is a write
4050 *
4051 * The caller must hold a reference on @mm.
4052 */
4053 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4054 void *buf, int len, int write)
4055 {
4056 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4057 }
4058
4059 /*
4060 * Access another process' address space.
4061 * Source/target buffer must be kernel space,
4062 * Do not walk the page table directly, use get_user_pages
4063 */
4064 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4065 void *buf, int len, int write)
4066 {
4067 struct mm_struct *mm;
4068 int ret;
4069
4070 mm = get_task_mm(tsk);
4071 if (!mm)
4072 return 0;
4073
4074 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4075 mmput(mm);
4076
4077 return ret;
4078 }
4079
4080 /*
4081 * Print the name of a VMA.
4082 */
4083 void print_vma_addr(char *prefix, unsigned long ip)
4084 {
4085 struct mm_struct *mm = current->mm;
4086 struct vm_area_struct *vma;
4087
4088 /*
4089 * Do not print if we are in atomic
4090 * contexts (in exception stacks, etc.):
4091 */
4092 if (preempt_count())
4093 return;
4094
4095 down_read(&mm->mmap_sem);
4096 vma = find_vma(mm, ip);
4097 if (vma && vma->vm_file) {
4098 struct file *f = vma->vm_file;
4099 char *buf = (char *)__get_free_page(GFP_KERNEL);
4100 if (buf) {
4101 char *p, *s;
4102
4103 p = d_path(&f->f_path, buf, PAGE_SIZE);
4104 if (IS_ERR(p))
4105 p = "?";
4106 s = strrchr(p, '/');
4107 if (s)
4108 p = s+1;
4109 printk("%s%s[%lx+%lx]", prefix, p,
4110 vma->vm_start,
4111 vma->vm_end - vma->vm_start);
4112 free_page((unsigned long)buf);
4113 }
4114 }
4115 up_read(&mm->mmap_sem);
4116 }
4117
4118 #ifdef CONFIG_PROVE_LOCKING
4119 void might_fault(void)
4120 {
4121 /*
4122 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4123 * holding the mmap_sem, this is safe because kernel memory doesn't
4124 * get paged out, therefore we'll never actually fault, and the
4125 * below annotations will generate false positives.
4126 */
4127 if (segment_eq(get_fs(), KERNEL_DS))
4128 return;
4129
4130 might_sleep();
4131 /*
4132 * it would be nicer only to annotate paths which are not under
4133 * pagefault_disable, however that requires a larger audit and
4134 * providing helpers like get_user_atomic.
4135 */
4136 if (!in_atomic() && current->mm)
4137 might_lock_read(&current->mm->mmap_sem);
4138 }
4139 EXPORT_SYMBOL(might_fault);
4140 #endif
4141
4142 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4143 static void clear_gigantic_page(struct page *page,
4144 unsigned long addr,
4145 unsigned int pages_per_huge_page)
4146 {
4147 int i;
4148 struct page *p = page;
4149
4150 might_sleep();
4151 for (i = 0; i < pages_per_huge_page;
4152 i++, p = mem_map_next(p, page, i)) {
4153 cond_resched();
4154 clear_user_highpage(p, addr + i * PAGE_SIZE);
4155 }
4156 }
4157 void clear_huge_page(struct page *page,
4158 unsigned long addr, unsigned int pages_per_huge_page)
4159 {
4160 int i;
4161
4162 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4163 clear_gigantic_page(page, addr, pages_per_huge_page);
4164 return;
4165 }
4166
4167 might_sleep();
4168 for (i = 0; i < pages_per_huge_page; i++) {
4169 cond_resched();
4170 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4171 }
4172 }
4173
4174 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4175 unsigned long addr,
4176 struct vm_area_struct *vma,
4177 unsigned int pages_per_huge_page)
4178 {
4179 int i;
4180 struct page *dst_base = dst;
4181 struct page *src_base = src;
4182
4183 for (i = 0; i < pages_per_huge_page; ) {
4184 cond_resched();
4185 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4186
4187 i++;
4188 dst = mem_map_next(dst, dst_base, i);
4189 src = mem_map_next(src, src_base, i);
4190 }
4191 }
4192
4193 void copy_user_huge_page(struct page *dst, struct page *src,
4194 unsigned long addr, struct vm_area_struct *vma,
4195 unsigned int pages_per_huge_page)
4196 {
4197 int i;
4198
4199 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4200 copy_user_gigantic_page(dst, src, addr, vma,
4201 pages_per_huge_page);
4202 return;
4203 }
4204
4205 might_sleep();
4206 for (i = 0; i < pages_per_huge_page; i++) {
4207 cond_resched();
4208 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4209 }
4210 }
4211 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */