mb86a20s: fix demod settings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107 1;
108 #else
109 2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114 randomize_va_space = 0;
115 return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127 static int __init init_zero_pfn(void)
128 {
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
145 }
146 }
147 current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
191 return true;
192 }
193
194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195 return false;
196
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
199 return false;
200
201 tlb->batch_count++;
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
209 return true;
210 }
211
212 /* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219 tlb->mm = mm;
220
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
223 tlb->need_flush_all = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233
234 __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 if (!tlb->end)
240 return;
241
242 tlb_flush(tlb);
243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
246 #endif
247 __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252 struct mmu_gather_batch *batch;
253
254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295 struct mmu_gather_batch *batch;
296
297 VM_BUG_ON(!tlb->end);
298
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
304 batch = tlb->active;
305 }
306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308 return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316 * See the comment near struct mmu_table_batch.
317 */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321 /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
394 {
395 pgtable_t token = pmd_pgtable(*pmd);
396 pmd_clear(pmd);
397 pte_free_tlb(tlb, token, addr);
398 atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
404 {
405 pmd_t *pmd;
406 unsigned long next;
407 unsigned long start;
408
409 start = addr;
410 pmd = pmd_offset(pud, addr);
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
415 free_pte_range(tlb, pmd, addr);
416 } while (pmd++, addr = next, addr != end);
417
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
425 }
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
431 pmd_free_tlb(tlb, pmd, start);
432 mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
438 {
439 pud_t *pud;
440 unsigned long next;
441 unsigned long start;
442
443 start = addr;
444 pud = pud_offset(pgd, addr);
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450 } while (pud++, addr = next, addr != end);
451
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
459 }
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
465 pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469 * This function frees user-level page tables of a process.
470 */
471 void free_pgd_range(struct mmu_gather *tlb,
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
474 {
475 pgd_t *pgd;
476 unsigned long next;
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
503
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
520 pgd = pgd_offset(tlb->mm, addr);
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526 } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530 unsigned long floor, unsigned long ceiling)
531 {
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
536 /*
537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
539 */
540 unlink_anon_vmas(vma);
541 unlink_file_vma(vma);
542
543 if (is_vm_hugetlb_page(vma)) {
544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551 && !is_vm_hugetlb_page(next)) {
552 vma = next;
553 next = vma->vm_next;
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
560 vma = next;
561 }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
566 {
567 spinlock_t *ptl;
568 pgtable_t new = pte_alloc_one(mm, address);
569 int wait_split_huge_page;
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 wait_split_huge_page = 0;
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
591 atomic_long_inc(&mm->nr_ptes);
592 pmd_populate(mm, pmd, new);
593 new = NULL;
594 } else if (unlikely(pmd_trans_splitting(*pmd)))
595 wait_split_huge_page = 1;
596 spin_unlock(ptl);
597 if (new)
598 pte_free(mm, new);
599 if (wait_split_huge_page)
600 wait_split_huge_page(vma->anon_vma, pmd);
601 return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607 if (!new)
608 return -ENOMEM;
609
610 smp_wmb(); /* See comment in __pte_alloc */
611
612 spin_lock(&init_mm.page_table_lock);
613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
614 pmd_populate_kernel(&init_mm, pmd, new);
615 new = NULL;
616 } else
617 VM_BUG_ON(pmd_trans_splitting(*pmd));
618 spin_unlock(&init_mm.page_table_lock);
619 if (new)
620 pte_free_kernel(&init_mm, new);
621 return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631 int i;
632
633 if (current->mm == mm)
634 sync_mm_rss(mm);
635 for (i = 0; i < NR_MM_COUNTERS; i++)
636 if (rss[i])
637 add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
644 *
645 * The calling function must still handle the error.
646 */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte, struct page *page)
649 {
650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651 pud_t *pud = pud_offset(pgd, addr);
652 pmd_t *pmd = pmd_offset(pud, addr);
653 struct address_space *mapping;
654 pgoff_t index;
655 static unsigned long resume;
656 static unsigned long nr_shown;
657 static unsigned long nr_unshown;
658
659 /*
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
662 */
663 if (nr_shown == 60) {
664 if (time_before(jiffies, resume)) {
665 nr_unshown++;
666 return;
667 }
668 if (nr_unshown) {
669 printk(KERN_ALERT
670 "BUG: Bad page map: %lu messages suppressed\n",
671 nr_unshown);
672 nr_unshown = 0;
673 }
674 nr_shown = 0;
675 }
676 if (nr_shown++ == 0)
677 resume = jiffies + 60 * HZ;
678
679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680 index = linear_page_index(vma, addr);
681
682 printk(KERN_ALERT
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
684 current->comm,
685 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686 if (page)
687 dump_page(page, "bad pte");
688 printk(KERN_ALERT
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 /*
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 */
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695 vma->vm_file,
696 vma->vm_ops ? vma->vm_ops->fault : NULL,
697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698 mapping ? mapping->a_ops->readpage : NULL);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
762 if (!is_zero_pfn(pfn))
763 print_bad_pte(vma, addr, pte, NULL);
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
782 }
783
784 if (is_zero_pfn(pfn))
785 return NULL;
786 check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /*
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
795 */
796 out:
797 return pfn_to_page(pfn);
798 }
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802 pmd_t pmd)
803 {
804 unsigned long pfn = pmd_pfn(pmd);
805
806 /*
807 * There is no pmd_special() but there may be special pmds, e.g.
808 * in a direct-access (dax) mapping, so let's just replicate the
809 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810 */
811 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812 if (vma->vm_flags & VM_MIXEDMAP) {
813 if (!pfn_valid(pfn))
814 return NULL;
815 goto out;
816 } else {
817 unsigned long off;
818 off = (addr - vma->vm_start) >> PAGE_SHIFT;
819 if (pfn == vma->vm_pgoff + off)
820 return NULL;
821 if (!is_cow_mapping(vma->vm_flags))
822 return NULL;
823 }
824 }
825
826 if (is_zero_pfn(pfn))
827 return NULL;
828 if (unlikely(pfn > highest_memmap_pfn))
829 return NULL;
830
831 /*
832 * NOTE! We still have PageReserved() pages in the page tables.
833 * eg. VDSO mappings can cause them to exist.
834 */
835 out:
836 return pfn_to_page(pfn);
837 }
838 #endif
839
840 /*
841 * copy one vm_area from one task to the other. Assumes the page tables
842 * already present in the new task to be cleared in the whole range
843 * covered by this vma.
844 */
845
846 static inline unsigned long
847 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
849 unsigned long addr, int *rss)
850 {
851 unsigned long vm_flags = vma->vm_flags;
852 pte_t pte = *src_pte;
853 struct page *page;
854
855 /* pte contains position in swap or file, so copy. */
856 if (unlikely(!pte_present(pte))) {
857 swp_entry_t entry = pte_to_swp_entry(pte);
858
859 if (likely(!non_swap_entry(entry))) {
860 if (swap_duplicate(entry) < 0)
861 return entry.val;
862
863 /* make sure dst_mm is on swapoff's mmlist. */
864 if (unlikely(list_empty(&dst_mm->mmlist))) {
865 spin_lock(&mmlist_lock);
866 if (list_empty(&dst_mm->mmlist))
867 list_add(&dst_mm->mmlist,
868 &src_mm->mmlist);
869 spin_unlock(&mmlist_lock);
870 }
871 rss[MM_SWAPENTS]++;
872 } else if (is_migration_entry(entry)) {
873 page = migration_entry_to_page(entry);
874
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
879
880 if (is_write_migration_entry(entry) &&
881 is_cow_mapping(vm_flags)) {
882 /*
883 * COW mappings require pages in both
884 * parent and child to be set to read.
885 */
886 make_migration_entry_read(&entry);
887 pte = swp_entry_to_pte(entry);
888 if (pte_swp_soft_dirty(*src_pte))
889 pte = pte_swp_mksoft_dirty(pte);
890 set_pte_at(src_mm, addr, src_pte, pte);
891 }
892 }
893 goto out_set_pte;
894 }
895
896 /*
897 * If it's a COW mapping, write protect it both
898 * in the parent and the child
899 */
900 if (is_cow_mapping(vm_flags)) {
901 ptep_set_wrprotect(src_mm, addr, src_pte);
902 pte = pte_wrprotect(pte);
903 }
904
905 /*
906 * If it's a shared mapping, mark it clean in
907 * the child
908 */
909 if (vm_flags & VM_SHARED)
910 pte = pte_mkclean(pte);
911 pte = pte_mkold(pte);
912
913 page = vm_normal_page(vma, addr, pte);
914 if (page) {
915 get_page(page);
916 page_dup_rmap(page);
917 if (PageAnon(page))
918 rss[MM_ANONPAGES]++;
919 else
920 rss[MM_FILEPAGES]++;
921 }
922
923 out_set_pte:
924 set_pte_at(dst_mm, addr, dst_pte, pte);
925 return 0;
926 }
927
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930 unsigned long addr, unsigned long end)
931 {
932 pte_t *orig_src_pte, *orig_dst_pte;
933 pte_t *src_pte, *dst_pte;
934 spinlock_t *src_ptl, *dst_ptl;
935 int progress = 0;
936 int rss[NR_MM_COUNTERS];
937 swp_entry_t entry = (swp_entry_t){0};
938
939 again:
940 init_rss_vec(rss);
941
942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 if (!dst_pte)
944 return -ENOMEM;
945 src_pte = pte_offset_map(src_pmd, addr);
946 src_ptl = pte_lockptr(src_mm, src_pmd);
947 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948 orig_src_pte = src_pte;
949 orig_dst_pte = dst_pte;
950 arch_enter_lazy_mmu_mode();
951
952 do {
953 /*
954 * We are holding two locks at this point - either of them
955 * could generate latencies in another task on another CPU.
956 */
957 if (progress >= 32) {
958 progress = 0;
959 if (need_resched() ||
960 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961 break;
962 }
963 if (pte_none(*src_pte)) {
964 progress++;
965 continue;
966 }
967 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968 vma, addr, rss);
969 if (entry.val)
970 break;
971 progress += 8;
972 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974 arch_leave_lazy_mmu_mode();
975 spin_unlock(src_ptl);
976 pte_unmap(orig_src_pte);
977 add_mm_rss_vec(dst_mm, rss);
978 pte_unmap_unlock(orig_dst_pte, dst_ptl);
979 cond_resched();
980
981 if (entry.val) {
982 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983 return -ENOMEM;
984 progress = 0;
985 }
986 if (addr != end)
987 goto again;
988 return 0;
989 }
990
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993 unsigned long addr, unsigned long end)
994 {
995 pmd_t *src_pmd, *dst_pmd;
996 unsigned long next;
997
998 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999 if (!dst_pmd)
1000 return -ENOMEM;
1001 src_pmd = pmd_offset(src_pud, addr);
1002 do {
1003 next = pmd_addr_end(addr, end);
1004 if (pmd_trans_huge(*src_pmd)) {
1005 int err;
1006 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1007 err = copy_huge_pmd(dst_mm, src_mm,
1008 dst_pmd, src_pmd, addr, vma);
1009 if (err == -ENOMEM)
1010 return -ENOMEM;
1011 if (!err)
1012 continue;
1013 /* fall through */
1014 }
1015 if (pmd_none_or_clear_bad(src_pmd))
1016 continue;
1017 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021 return 0;
1022 }
1023
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026 unsigned long addr, unsigned long end)
1027 {
1028 pud_t *src_pud, *dst_pud;
1029 unsigned long next;
1030
1031 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032 if (!dst_pud)
1033 return -ENOMEM;
1034 src_pud = pud_offset(src_pgd, addr);
1035 do {
1036 next = pud_addr_end(addr, end);
1037 if (pud_none_or_clear_bad(src_pud))
1038 continue;
1039 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040 vma, addr, next))
1041 return -ENOMEM;
1042 } while (dst_pud++, src_pud++, addr = next, addr != end);
1043 return 0;
1044 }
1045
1046 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 struct vm_area_struct *vma)
1048 {
1049 pgd_t *src_pgd, *dst_pgd;
1050 unsigned long next;
1051 unsigned long addr = vma->vm_start;
1052 unsigned long end = vma->vm_end;
1053 unsigned long mmun_start; /* For mmu_notifiers */
1054 unsigned long mmun_end; /* For mmu_notifiers */
1055 bool is_cow;
1056 int ret;
1057
1058 /*
1059 * Don't copy ptes where a page fault will fill them correctly.
1060 * Fork becomes much lighter when there are big shared or private
1061 * readonly mappings. The tradeoff is that copy_page_range is more
1062 * efficient than faulting.
1063 */
1064 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065 !vma->anon_vma)
1066 return 0;
1067
1068 if (is_vm_hugetlb_page(vma))
1069 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
1071 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1072 /*
1073 * We do not free on error cases below as remove_vma
1074 * gets called on error from higher level routine
1075 */
1076 ret = track_pfn_copy(vma);
1077 if (ret)
1078 return ret;
1079 }
1080
1081 /*
1082 * We need to invalidate the secondary MMU mappings only when
1083 * there could be a permission downgrade on the ptes of the
1084 * parent mm. And a permission downgrade will only happen if
1085 * is_cow_mapping() returns true.
1086 */
1087 is_cow = is_cow_mapping(vma->vm_flags);
1088 mmun_start = addr;
1089 mmun_end = end;
1090 if (is_cow)
1091 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092 mmun_end);
1093
1094 ret = 0;
1095 dst_pgd = pgd_offset(dst_mm, addr);
1096 src_pgd = pgd_offset(src_mm, addr);
1097 do {
1098 next = pgd_addr_end(addr, end);
1099 if (pgd_none_or_clear_bad(src_pgd))
1100 continue;
1101 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102 vma, addr, next))) {
1103 ret = -ENOMEM;
1104 break;
1105 }
1106 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1107
1108 if (is_cow)
1109 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1110 return ret;
1111 }
1112
1113 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114 struct vm_area_struct *vma, pmd_t *pmd,
1115 unsigned long addr, unsigned long end,
1116 struct zap_details *details)
1117 {
1118 struct mm_struct *mm = tlb->mm;
1119 int force_flush = 0;
1120 int rss[NR_MM_COUNTERS];
1121 spinlock_t *ptl;
1122 pte_t *start_pte;
1123 pte_t *pte;
1124 swp_entry_t entry;
1125
1126 again:
1127 init_rss_vec(rss);
1128 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129 pte = start_pte;
1130 arch_enter_lazy_mmu_mode();
1131 do {
1132 pte_t ptent = *pte;
1133 if (pte_none(ptent)) {
1134 continue;
1135 }
1136
1137 if (pte_present(ptent)) {
1138 struct page *page;
1139
1140 page = vm_normal_page(vma, addr, ptent);
1141 if (unlikely(details) && page) {
1142 /*
1143 * unmap_shared_mapping_pages() wants to
1144 * invalidate cache without truncating:
1145 * unmap shared but keep private pages.
1146 */
1147 if (details->check_mapping &&
1148 details->check_mapping != page->mapping)
1149 continue;
1150 }
1151 ptent = ptep_get_and_clear_full(mm, addr, pte,
1152 tlb->fullmm);
1153 tlb_remove_tlb_entry(tlb, pte, addr);
1154 if (unlikely(!page))
1155 continue;
1156 if (PageAnon(page))
1157 rss[MM_ANONPAGES]--;
1158 else {
1159 if (pte_dirty(ptent)) {
1160 force_flush = 1;
1161 set_page_dirty(page);
1162 }
1163 if (pte_young(ptent) &&
1164 likely(!(vma->vm_flags & VM_SEQ_READ)))
1165 mark_page_accessed(page);
1166 rss[MM_FILEPAGES]--;
1167 }
1168 page_remove_rmap(page);
1169 if (unlikely(page_mapcount(page) < 0))
1170 print_bad_pte(vma, addr, ptent, page);
1171 if (unlikely(!__tlb_remove_page(tlb, page))) {
1172 force_flush = 1;
1173 addr += PAGE_SIZE;
1174 break;
1175 }
1176 continue;
1177 }
1178 /* If details->check_mapping, we leave swap entries. */
1179 if (unlikely(details))
1180 continue;
1181
1182 entry = pte_to_swp_entry(ptent);
1183 if (!non_swap_entry(entry))
1184 rss[MM_SWAPENTS]--;
1185 else if (is_migration_entry(entry)) {
1186 struct page *page;
1187
1188 page = migration_entry_to_page(entry);
1189
1190 if (PageAnon(page))
1191 rss[MM_ANONPAGES]--;
1192 else
1193 rss[MM_FILEPAGES]--;
1194 }
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202
1203 /* Do the actual TLB flush before dropping ptl */
1204 if (force_flush)
1205 tlb_flush_mmu_tlbonly(tlb);
1206 pte_unmap_unlock(start_pte, ptl);
1207
1208 /*
1209 * If we forced a TLB flush (either due to running out of
1210 * batch buffers or because we needed to flush dirty TLB
1211 * entries before releasing the ptl), free the batched
1212 * memory too. Restart if we didn't do everything.
1213 */
1214 if (force_flush) {
1215 force_flush = 0;
1216 tlb_flush_mmu_free(tlb);
1217
1218 if (addr != end)
1219 goto again;
1220 }
1221
1222 return addr;
1223 }
1224
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226 struct vm_area_struct *vma, pud_t *pud,
1227 unsigned long addr, unsigned long end,
1228 struct zap_details *details)
1229 {
1230 pmd_t *pmd;
1231 unsigned long next;
1232
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1236 if (pmd_trans_huge(*pmd)) {
1237 if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241 __func__, addr, end,
1242 vma->vm_start,
1243 vma->vm_end);
1244 BUG();
1245 }
1246 #endif
1247 split_huge_page_pmd(vma, addr, pmd);
1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249 goto next;
1250 /* fall through */
1251 }
1252 /*
1253 * Here there can be other concurrent MADV_DONTNEED or
1254 * trans huge page faults running, and if the pmd is
1255 * none or trans huge it can change under us. This is
1256 * because MADV_DONTNEED holds the mmap_sem in read
1257 * mode.
1258 */
1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260 goto next;
1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263 cond_resched();
1264 } while (pmd++, addr = next, addr != end);
1265
1266 return addr;
1267 }
1268
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma, pgd_t *pgd,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1273 {
1274 pud_t *pud;
1275 unsigned long next;
1276
1277 pud = pud_offset(pgd, addr);
1278 do {
1279 next = pud_addr_end(addr, end);
1280 if (pud_none_or_clear_bad(pud))
1281 continue;
1282 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283 } while (pud++, addr = next, addr != end);
1284
1285 return addr;
1286 }
1287
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 pgd_t *pgd;
1294 unsigned long next;
1295
1296 if (details && !details->check_mapping)
1297 details = NULL;
1298
1299 BUG_ON(addr >= end);
1300 tlb_start_vma(tlb, vma);
1301 pgd = pgd_offset(vma->vm_mm, addr);
1302 do {
1303 next = pgd_addr_end(addr, end);
1304 if (pgd_none_or_clear_bad(pgd))
1305 continue;
1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 } while (pgd++, addr = next, addr != end);
1308 tlb_end_vma(tlb, vma);
1309 }
1310
1311
1312 static void unmap_single_vma(struct mmu_gather *tlb,
1313 struct vm_area_struct *vma, unsigned long start_addr,
1314 unsigned long end_addr,
1315 struct zap_details *details)
1316 {
1317 unsigned long start = max(vma->vm_start, start_addr);
1318 unsigned long end;
1319
1320 if (start >= vma->vm_end)
1321 return;
1322 end = min(vma->vm_end, end_addr);
1323 if (end <= vma->vm_start)
1324 return;
1325
1326 if (vma->vm_file)
1327 uprobe_munmap(vma, start, end);
1328
1329 if (unlikely(vma->vm_flags & VM_PFNMAP))
1330 untrack_pfn(vma, 0, 0);
1331
1332 if (start != end) {
1333 if (unlikely(is_vm_hugetlb_page(vma))) {
1334 /*
1335 * It is undesirable to test vma->vm_file as it
1336 * should be non-null for valid hugetlb area.
1337 * However, vm_file will be NULL in the error
1338 * cleanup path of mmap_region. When
1339 * hugetlbfs ->mmap method fails,
1340 * mmap_region() nullifies vma->vm_file
1341 * before calling this function to clean up.
1342 * Since no pte has actually been setup, it is
1343 * safe to do nothing in this case.
1344 */
1345 if (vma->vm_file) {
1346 i_mmap_lock_write(vma->vm_file->f_mapping);
1347 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1348 i_mmap_unlock_write(vma->vm_file->f_mapping);
1349 }
1350 } else
1351 unmap_page_range(tlb, vma, start, end, details);
1352 }
1353 }
1354
1355 /**
1356 * unmap_vmas - unmap a range of memory covered by a list of vma's
1357 * @tlb: address of the caller's struct mmu_gather
1358 * @vma: the starting vma
1359 * @start_addr: virtual address at which to start unmapping
1360 * @end_addr: virtual address at which to end unmapping
1361 *
1362 * Unmap all pages in the vma list.
1363 *
1364 * Only addresses between `start' and `end' will be unmapped.
1365 *
1366 * The VMA list must be sorted in ascending virtual address order.
1367 *
1368 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1369 * range after unmap_vmas() returns. So the only responsibility here is to
1370 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1371 * drops the lock and schedules.
1372 */
1373 void unmap_vmas(struct mmu_gather *tlb,
1374 struct vm_area_struct *vma, unsigned long start_addr,
1375 unsigned long end_addr)
1376 {
1377 struct mm_struct *mm = vma->vm_mm;
1378
1379 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1380 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1381 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1382 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1383 }
1384
1385 /**
1386 * zap_page_range - remove user pages in a given range
1387 * @vma: vm_area_struct holding the applicable pages
1388 * @start: starting address of pages to zap
1389 * @size: number of bytes to zap
1390 * @details: details of shared cache invalidation
1391 *
1392 * Caller must protect the VMA list
1393 */
1394 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1395 unsigned long size, struct zap_details *details)
1396 {
1397 struct mm_struct *mm = vma->vm_mm;
1398 struct mmu_gather tlb;
1399 unsigned long end = start + size;
1400
1401 lru_add_drain();
1402 tlb_gather_mmu(&tlb, mm, start, end);
1403 update_hiwater_rss(mm);
1404 mmu_notifier_invalidate_range_start(mm, start, end);
1405 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1406 unmap_single_vma(&tlb, vma, start, end, details);
1407 mmu_notifier_invalidate_range_end(mm, start, end);
1408 tlb_finish_mmu(&tlb, start, end);
1409 }
1410
1411 /**
1412 * zap_page_range_single - remove user pages in a given range
1413 * @vma: vm_area_struct holding the applicable pages
1414 * @address: starting address of pages to zap
1415 * @size: number of bytes to zap
1416 * @details: details of shared cache invalidation
1417 *
1418 * The range must fit into one VMA.
1419 */
1420 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1421 unsigned long size, struct zap_details *details)
1422 {
1423 struct mm_struct *mm = vma->vm_mm;
1424 struct mmu_gather tlb;
1425 unsigned long end = address + size;
1426
1427 lru_add_drain();
1428 tlb_gather_mmu(&tlb, mm, address, end);
1429 update_hiwater_rss(mm);
1430 mmu_notifier_invalidate_range_start(mm, address, end);
1431 unmap_single_vma(&tlb, vma, address, end, details);
1432 mmu_notifier_invalidate_range_end(mm, address, end);
1433 tlb_finish_mmu(&tlb, address, end);
1434 }
1435
1436 /**
1437 * zap_vma_ptes - remove ptes mapping the vma
1438 * @vma: vm_area_struct holding ptes to be zapped
1439 * @address: starting address of pages to zap
1440 * @size: number of bytes to zap
1441 *
1442 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443 *
1444 * The entire address range must be fully contained within the vma.
1445 *
1446 * Returns 0 if successful.
1447 */
1448 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449 unsigned long size)
1450 {
1451 if (address < vma->vm_start || address + size > vma->vm_end ||
1452 !(vma->vm_flags & VM_PFNMAP))
1453 return -1;
1454 zap_page_range_single(vma, address, size, NULL);
1455 return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
1459 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1460 spinlock_t **ptl)
1461 {
1462 pgd_t * pgd = pgd_offset(mm, addr);
1463 pud_t * pud = pud_alloc(mm, pgd, addr);
1464 if (pud) {
1465 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1466 if (pmd) {
1467 VM_BUG_ON(pmd_trans_huge(*pmd));
1468 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1469 }
1470 }
1471 return NULL;
1472 }
1473
1474 /*
1475 * This is the old fallback for page remapping.
1476 *
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1480 */
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page, pgprot_t prot)
1483 {
1484 struct mm_struct *mm = vma->vm_mm;
1485 int retval;
1486 pte_t *pte;
1487 spinlock_t *ptl;
1488
1489 retval = -EINVAL;
1490 if (PageAnon(page))
1491 goto out;
1492 retval = -ENOMEM;
1493 flush_dcache_page(page);
1494 pte = get_locked_pte(mm, addr, &ptl);
1495 if (!pte)
1496 goto out;
1497 retval = -EBUSY;
1498 if (!pte_none(*pte))
1499 goto out_unlock;
1500
1501 /* Ok, finally just insert the thing.. */
1502 get_page(page);
1503 inc_mm_counter_fast(mm, MM_FILEPAGES);
1504 page_add_file_rmap(page);
1505 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1506
1507 retval = 0;
1508 pte_unmap_unlock(pte, ptl);
1509 return retval;
1510 out_unlock:
1511 pte_unmap_unlock(pte, ptl);
1512 out:
1513 return retval;
1514 }
1515
1516 /**
1517 * vm_insert_page - insert single page into user vma
1518 * @vma: user vma to map to
1519 * @addr: target user address of this page
1520 * @page: source kernel page
1521 *
1522 * This allows drivers to insert individual pages they've allocated
1523 * into a user vma.
1524 *
1525 * The page has to be a nice clean _individual_ kernel allocation.
1526 * If you allocate a compound page, you need to have marked it as
1527 * such (__GFP_COMP), or manually just split the page up yourself
1528 * (see split_page()).
1529 *
1530 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1531 * took an arbitrary page protection parameter. This doesn't allow
1532 * that. Your vma protection will have to be set up correctly, which
1533 * means that if you want a shared writable mapping, you'd better
1534 * ask for a shared writable mapping!
1535 *
1536 * The page does not need to be reserved.
1537 *
1538 * Usually this function is called from f_op->mmap() handler
1539 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1540 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1541 * function from other places, for example from page-fault handler.
1542 */
1543 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1544 struct page *page)
1545 {
1546 if (addr < vma->vm_start || addr >= vma->vm_end)
1547 return -EFAULT;
1548 if (!page_count(page))
1549 return -EINVAL;
1550 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1551 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1552 BUG_ON(vma->vm_flags & VM_PFNMAP);
1553 vma->vm_flags |= VM_MIXEDMAP;
1554 }
1555 return insert_page(vma, addr, page, vma->vm_page_prot);
1556 }
1557 EXPORT_SYMBOL(vm_insert_page);
1558
1559 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1560 unsigned long pfn, pgprot_t prot)
1561 {
1562 struct mm_struct *mm = vma->vm_mm;
1563 int retval;
1564 pte_t *pte, entry;
1565 spinlock_t *ptl;
1566
1567 retval = -ENOMEM;
1568 pte = get_locked_pte(mm, addr, &ptl);
1569 if (!pte)
1570 goto out;
1571 retval = -EBUSY;
1572 if (!pte_none(*pte))
1573 goto out_unlock;
1574
1575 /* Ok, finally just insert the thing.. */
1576 entry = pte_mkspecial(pfn_pte(pfn, prot));
1577 set_pte_at(mm, addr, pte, entry);
1578 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1579
1580 retval = 0;
1581 out_unlock:
1582 pte_unmap_unlock(pte, ptl);
1583 out:
1584 return retval;
1585 }
1586
1587 /**
1588 * vm_insert_pfn - insert single pfn into user vma
1589 * @vma: user vma to map to
1590 * @addr: target user address of this page
1591 * @pfn: source kernel pfn
1592 *
1593 * Similar to vm_insert_page, this allows drivers to insert individual pages
1594 * they've allocated into a user vma. Same comments apply.
1595 *
1596 * This function should only be called from a vm_ops->fault handler, and
1597 * in that case the handler should return NULL.
1598 *
1599 * vma cannot be a COW mapping.
1600 *
1601 * As this is called only for pages that do not currently exist, we
1602 * do not need to flush old virtual caches or the TLB.
1603 */
1604 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1605 unsigned long pfn)
1606 {
1607 int ret;
1608 pgprot_t pgprot = vma->vm_page_prot;
1609 /*
1610 * Technically, architectures with pte_special can avoid all these
1611 * restrictions (same for remap_pfn_range). However we would like
1612 * consistency in testing and feature parity among all, so we should
1613 * try to keep these invariants in place for everybody.
1614 */
1615 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1616 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1617 (VM_PFNMAP|VM_MIXEDMAP));
1618 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1619 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1620
1621 if (addr < vma->vm_start || addr >= vma->vm_end)
1622 return -EFAULT;
1623 if (track_pfn_insert(vma, &pgprot, pfn))
1624 return -EINVAL;
1625
1626 ret = insert_pfn(vma, addr, pfn, pgprot);
1627
1628 return ret;
1629 }
1630 EXPORT_SYMBOL(vm_insert_pfn);
1631
1632 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1633 unsigned long pfn)
1634 {
1635 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1636
1637 if (addr < vma->vm_start || addr >= vma->vm_end)
1638 return -EFAULT;
1639
1640 /*
1641 * If we don't have pte special, then we have to use the pfn_valid()
1642 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1643 * refcount the page if pfn_valid is true (hence insert_page rather
1644 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1645 * without pte special, it would there be refcounted as a normal page.
1646 */
1647 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1648 struct page *page;
1649
1650 page = pfn_to_page(pfn);
1651 return insert_page(vma, addr, page, vma->vm_page_prot);
1652 }
1653 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1654 }
1655 EXPORT_SYMBOL(vm_insert_mixed);
1656
1657 /*
1658 * maps a range of physical memory into the requested pages. the old
1659 * mappings are removed. any references to nonexistent pages results
1660 * in null mappings (currently treated as "copy-on-access")
1661 */
1662 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1663 unsigned long addr, unsigned long end,
1664 unsigned long pfn, pgprot_t prot)
1665 {
1666 pte_t *pte;
1667 spinlock_t *ptl;
1668
1669 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1670 if (!pte)
1671 return -ENOMEM;
1672 arch_enter_lazy_mmu_mode();
1673 do {
1674 BUG_ON(!pte_none(*pte));
1675 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1676 pfn++;
1677 } while (pte++, addr += PAGE_SIZE, addr != end);
1678 arch_leave_lazy_mmu_mode();
1679 pte_unmap_unlock(pte - 1, ptl);
1680 return 0;
1681 }
1682
1683 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1684 unsigned long addr, unsigned long end,
1685 unsigned long pfn, pgprot_t prot)
1686 {
1687 pmd_t *pmd;
1688 unsigned long next;
1689
1690 pfn -= addr >> PAGE_SHIFT;
1691 pmd = pmd_alloc(mm, pud, addr);
1692 if (!pmd)
1693 return -ENOMEM;
1694 VM_BUG_ON(pmd_trans_huge(*pmd));
1695 do {
1696 next = pmd_addr_end(addr, end);
1697 if (remap_pte_range(mm, pmd, addr, next,
1698 pfn + (addr >> PAGE_SHIFT), prot))
1699 return -ENOMEM;
1700 } while (pmd++, addr = next, addr != end);
1701 return 0;
1702 }
1703
1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705 unsigned long addr, unsigned long end,
1706 unsigned long pfn, pgprot_t prot)
1707 {
1708 pud_t *pud;
1709 unsigned long next;
1710
1711 pfn -= addr >> PAGE_SHIFT;
1712 pud = pud_alloc(mm, pgd, addr);
1713 if (!pud)
1714 return -ENOMEM;
1715 do {
1716 next = pud_addr_end(addr, end);
1717 if (remap_pmd_range(mm, pud, addr, next,
1718 pfn + (addr >> PAGE_SHIFT), prot))
1719 return -ENOMEM;
1720 } while (pud++, addr = next, addr != end);
1721 return 0;
1722 }
1723
1724 /**
1725 * remap_pfn_range - remap kernel memory to userspace
1726 * @vma: user vma to map to
1727 * @addr: target user address to start at
1728 * @pfn: physical address of kernel memory
1729 * @size: size of map area
1730 * @prot: page protection flags for this mapping
1731 *
1732 * Note: this is only safe if the mm semaphore is held when called.
1733 */
1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735 unsigned long pfn, unsigned long size, pgprot_t prot)
1736 {
1737 pgd_t *pgd;
1738 unsigned long next;
1739 unsigned long end = addr + PAGE_ALIGN(size);
1740 struct mm_struct *mm = vma->vm_mm;
1741 int err;
1742
1743 /*
1744 * Physically remapped pages are special. Tell the
1745 * rest of the world about it:
1746 * VM_IO tells people not to look at these pages
1747 * (accesses can have side effects).
1748 * VM_PFNMAP tells the core MM that the base pages are just
1749 * raw PFN mappings, and do not have a "struct page" associated
1750 * with them.
1751 * VM_DONTEXPAND
1752 * Disable vma merging and expanding with mremap().
1753 * VM_DONTDUMP
1754 * Omit vma from core dump, even when VM_IO turned off.
1755 *
1756 * There's a horrible special case to handle copy-on-write
1757 * behaviour that some programs depend on. We mark the "original"
1758 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1759 * See vm_normal_page() for details.
1760 */
1761 if (is_cow_mapping(vma->vm_flags)) {
1762 if (addr != vma->vm_start || end != vma->vm_end)
1763 return -EINVAL;
1764 vma->vm_pgoff = pfn;
1765 }
1766
1767 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1768 if (err)
1769 return -EINVAL;
1770
1771 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1772
1773 BUG_ON(addr >= end);
1774 pfn -= addr >> PAGE_SHIFT;
1775 pgd = pgd_offset(mm, addr);
1776 flush_cache_range(vma, addr, end);
1777 do {
1778 next = pgd_addr_end(addr, end);
1779 err = remap_pud_range(mm, pgd, addr, next,
1780 pfn + (addr >> PAGE_SHIFT), prot);
1781 if (err)
1782 break;
1783 } while (pgd++, addr = next, addr != end);
1784
1785 if (err)
1786 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1787
1788 return err;
1789 }
1790 EXPORT_SYMBOL(remap_pfn_range);
1791
1792 /**
1793 * vm_iomap_memory - remap memory to userspace
1794 * @vma: user vma to map to
1795 * @start: start of area
1796 * @len: size of area
1797 *
1798 * This is a simplified io_remap_pfn_range() for common driver use. The
1799 * driver just needs to give us the physical memory range to be mapped,
1800 * we'll figure out the rest from the vma information.
1801 *
1802 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1803 * whatever write-combining details or similar.
1804 */
1805 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1806 {
1807 unsigned long vm_len, pfn, pages;
1808
1809 /* Check that the physical memory area passed in looks valid */
1810 if (start + len < start)
1811 return -EINVAL;
1812 /*
1813 * You *really* shouldn't map things that aren't page-aligned,
1814 * but we've historically allowed it because IO memory might
1815 * just have smaller alignment.
1816 */
1817 len += start & ~PAGE_MASK;
1818 pfn = start >> PAGE_SHIFT;
1819 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1820 if (pfn + pages < pfn)
1821 return -EINVAL;
1822
1823 /* We start the mapping 'vm_pgoff' pages into the area */
1824 if (vma->vm_pgoff > pages)
1825 return -EINVAL;
1826 pfn += vma->vm_pgoff;
1827 pages -= vma->vm_pgoff;
1828
1829 /* Can we fit all of the mapping? */
1830 vm_len = vma->vm_end - vma->vm_start;
1831 if (vm_len >> PAGE_SHIFT > pages)
1832 return -EINVAL;
1833
1834 /* Ok, let it rip */
1835 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1836 }
1837 EXPORT_SYMBOL(vm_iomap_memory);
1838
1839 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1840 unsigned long addr, unsigned long end,
1841 pte_fn_t fn, void *data)
1842 {
1843 pte_t *pte;
1844 int err;
1845 pgtable_t token;
1846 spinlock_t *uninitialized_var(ptl);
1847
1848 pte = (mm == &init_mm) ?
1849 pte_alloc_kernel(pmd, addr) :
1850 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1851 if (!pte)
1852 return -ENOMEM;
1853
1854 BUG_ON(pmd_huge(*pmd));
1855
1856 arch_enter_lazy_mmu_mode();
1857
1858 token = pmd_pgtable(*pmd);
1859
1860 do {
1861 err = fn(pte++, token, addr, data);
1862 if (err)
1863 break;
1864 } while (addr += PAGE_SIZE, addr != end);
1865
1866 arch_leave_lazy_mmu_mode();
1867
1868 if (mm != &init_mm)
1869 pte_unmap_unlock(pte-1, ptl);
1870 return err;
1871 }
1872
1873 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1874 unsigned long addr, unsigned long end,
1875 pte_fn_t fn, void *data)
1876 {
1877 pmd_t *pmd;
1878 unsigned long next;
1879 int err;
1880
1881 BUG_ON(pud_huge(*pud));
1882
1883 pmd = pmd_alloc(mm, pud, addr);
1884 if (!pmd)
1885 return -ENOMEM;
1886 do {
1887 next = pmd_addr_end(addr, end);
1888 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1889 if (err)
1890 break;
1891 } while (pmd++, addr = next, addr != end);
1892 return err;
1893 }
1894
1895 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1896 unsigned long addr, unsigned long end,
1897 pte_fn_t fn, void *data)
1898 {
1899 pud_t *pud;
1900 unsigned long next;
1901 int err;
1902
1903 pud = pud_alloc(mm, pgd, addr);
1904 if (!pud)
1905 return -ENOMEM;
1906 do {
1907 next = pud_addr_end(addr, end);
1908 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1909 if (err)
1910 break;
1911 } while (pud++, addr = next, addr != end);
1912 return err;
1913 }
1914
1915 /*
1916 * Scan a region of virtual memory, filling in page tables as necessary
1917 * and calling a provided function on each leaf page table.
1918 */
1919 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1920 unsigned long size, pte_fn_t fn, void *data)
1921 {
1922 pgd_t *pgd;
1923 unsigned long next;
1924 unsigned long end = addr + size;
1925 int err;
1926
1927 BUG_ON(addr >= end);
1928 pgd = pgd_offset(mm, addr);
1929 do {
1930 next = pgd_addr_end(addr, end);
1931 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1932 if (err)
1933 break;
1934 } while (pgd++, addr = next, addr != end);
1935
1936 return err;
1937 }
1938 EXPORT_SYMBOL_GPL(apply_to_page_range);
1939
1940 /*
1941 * handle_pte_fault chooses page fault handler according to an entry which was
1942 * read non-atomically. Before making any commitment, on those architectures
1943 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1944 * parts, do_swap_page must check under lock before unmapping the pte and
1945 * proceeding (but do_wp_page is only called after already making such a check;
1946 * and do_anonymous_page can safely check later on).
1947 */
1948 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1949 pte_t *page_table, pte_t orig_pte)
1950 {
1951 int same = 1;
1952 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1953 if (sizeof(pte_t) > sizeof(unsigned long)) {
1954 spinlock_t *ptl = pte_lockptr(mm, pmd);
1955 spin_lock(ptl);
1956 same = pte_same(*page_table, orig_pte);
1957 spin_unlock(ptl);
1958 }
1959 #endif
1960 pte_unmap(page_table);
1961 return same;
1962 }
1963
1964 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1965 {
1966 debug_dma_assert_idle(src);
1967
1968 /*
1969 * If the source page was a PFN mapping, we don't have
1970 * a "struct page" for it. We do a best-effort copy by
1971 * just copying from the original user address. If that
1972 * fails, we just zero-fill it. Live with it.
1973 */
1974 if (unlikely(!src)) {
1975 void *kaddr = kmap_atomic(dst);
1976 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1977
1978 /*
1979 * This really shouldn't fail, because the page is there
1980 * in the page tables. But it might just be unreadable,
1981 * in which case we just give up and fill the result with
1982 * zeroes.
1983 */
1984 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1985 clear_page(kaddr);
1986 kunmap_atomic(kaddr);
1987 flush_dcache_page(dst);
1988 } else
1989 copy_user_highpage(dst, src, va, vma);
1990 }
1991
1992 /*
1993 * Notify the address space that the page is about to become writable so that
1994 * it can prohibit this or wait for the page to get into an appropriate state.
1995 *
1996 * We do this without the lock held, so that it can sleep if it needs to.
1997 */
1998 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1999 unsigned long address)
2000 {
2001 struct vm_fault vmf;
2002 int ret;
2003
2004 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2005 vmf.pgoff = page->index;
2006 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2007 vmf.page = page;
2008 vmf.cow_page = NULL;
2009
2010 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2011 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2012 return ret;
2013 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2014 lock_page(page);
2015 if (!page->mapping) {
2016 unlock_page(page);
2017 return 0; /* retry */
2018 }
2019 ret |= VM_FAULT_LOCKED;
2020 } else
2021 VM_BUG_ON_PAGE(!PageLocked(page), page);
2022 return ret;
2023 }
2024
2025 /*
2026 * Handle write page faults for pages that can be reused in the current vma
2027 *
2028 * This can happen either due to the mapping being with the VM_SHARED flag,
2029 * or due to us being the last reference standing to the page. In either
2030 * case, all we need to do here is to mark the page as writable and update
2031 * any related book-keeping.
2032 */
2033 static inline int wp_page_reuse(struct mm_struct *mm,
2034 struct vm_area_struct *vma, unsigned long address,
2035 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2036 struct page *page, int page_mkwrite,
2037 int dirty_shared)
2038 __releases(ptl)
2039 {
2040 pte_t entry;
2041 /*
2042 * Clear the pages cpupid information as the existing
2043 * information potentially belongs to a now completely
2044 * unrelated process.
2045 */
2046 if (page)
2047 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2048
2049 flush_cache_page(vma, address, pte_pfn(orig_pte));
2050 entry = pte_mkyoung(orig_pte);
2051 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2052 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2053 update_mmu_cache(vma, address, page_table);
2054 pte_unmap_unlock(page_table, ptl);
2055
2056 if (dirty_shared) {
2057 struct address_space *mapping;
2058 int dirtied;
2059
2060 if (!page_mkwrite)
2061 lock_page(page);
2062
2063 dirtied = set_page_dirty(page);
2064 VM_BUG_ON_PAGE(PageAnon(page), page);
2065 mapping = page->mapping;
2066 unlock_page(page);
2067 page_cache_release(page);
2068
2069 if ((dirtied || page_mkwrite) && mapping) {
2070 /*
2071 * Some device drivers do not set page.mapping
2072 * but still dirty their pages
2073 */
2074 balance_dirty_pages_ratelimited(mapping);
2075 }
2076
2077 if (!page_mkwrite)
2078 file_update_time(vma->vm_file);
2079 }
2080
2081 return VM_FAULT_WRITE;
2082 }
2083
2084 /*
2085 * Handle the case of a page which we actually need to copy to a new page.
2086 *
2087 * Called with mmap_sem locked and the old page referenced, but
2088 * without the ptl held.
2089 *
2090 * High level logic flow:
2091 *
2092 * - Allocate a page, copy the content of the old page to the new one.
2093 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2094 * - Take the PTL. If the pte changed, bail out and release the allocated page
2095 * - If the pte is still the way we remember it, update the page table and all
2096 * relevant references. This includes dropping the reference the page-table
2097 * held to the old page, as well as updating the rmap.
2098 * - In any case, unlock the PTL and drop the reference we took to the old page.
2099 */
2100 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2101 unsigned long address, pte_t *page_table, pmd_t *pmd,
2102 pte_t orig_pte, struct page *old_page)
2103 {
2104 struct page *new_page = NULL;
2105 spinlock_t *ptl = NULL;
2106 pte_t entry;
2107 int page_copied = 0;
2108 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2109 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2110 struct mem_cgroup *memcg;
2111
2112 if (unlikely(anon_vma_prepare(vma)))
2113 goto oom;
2114
2115 if (is_zero_pfn(pte_pfn(orig_pte))) {
2116 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2117 if (!new_page)
2118 goto oom;
2119 } else {
2120 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2121 if (!new_page)
2122 goto oom;
2123 cow_user_page(new_page, old_page, address, vma);
2124 }
2125
2126 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2127 goto oom_free_new;
2128
2129 __SetPageUptodate(new_page);
2130
2131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2132
2133 /*
2134 * Re-check the pte - we dropped the lock
2135 */
2136 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2137 if (likely(pte_same(*page_table, orig_pte))) {
2138 if (old_page) {
2139 if (!PageAnon(old_page)) {
2140 dec_mm_counter_fast(mm, MM_FILEPAGES);
2141 inc_mm_counter_fast(mm, MM_ANONPAGES);
2142 }
2143 } else {
2144 inc_mm_counter_fast(mm, MM_ANONPAGES);
2145 }
2146 flush_cache_page(vma, address, pte_pfn(orig_pte));
2147 entry = mk_pte(new_page, vma->vm_page_prot);
2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 /*
2150 * Clear the pte entry and flush it first, before updating the
2151 * pte with the new entry. This will avoid a race condition
2152 * seen in the presence of one thread doing SMC and another
2153 * thread doing COW.
2154 */
2155 ptep_clear_flush_notify(vma, address, page_table);
2156 page_add_new_anon_rmap(new_page, vma, address);
2157 mem_cgroup_commit_charge(new_page, memcg, false);
2158 lru_cache_add_active_or_unevictable(new_page, vma);
2159 /*
2160 * We call the notify macro here because, when using secondary
2161 * mmu page tables (such as kvm shadow page tables), we want the
2162 * new page to be mapped directly into the secondary page table.
2163 */
2164 set_pte_at_notify(mm, address, page_table, entry);
2165 update_mmu_cache(vma, address, page_table);
2166 if (old_page) {
2167 /*
2168 * Only after switching the pte to the new page may
2169 * we remove the mapcount here. Otherwise another
2170 * process may come and find the rmap count decremented
2171 * before the pte is switched to the new page, and
2172 * "reuse" the old page writing into it while our pte
2173 * here still points into it and can be read by other
2174 * threads.
2175 *
2176 * The critical issue is to order this
2177 * page_remove_rmap with the ptp_clear_flush above.
2178 * Those stores are ordered by (if nothing else,)
2179 * the barrier present in the atomic_add_negative
2180 * in page_remove_rmap.
2181 *
2182 * Then the TLB flush in ptep_clear_flush ensures that
2183 * no process can access the old page before the
2184 * decremented mapcount is visible. And the old page
2185 * cannot be reused until after the decremented
2186 * mapcount is visible. So transitively, TLBs to
2187 * old page will be flushed before it can be reused.
2188 */
2189 page_remove_rmap(old_page);
2190 }
2191
2192 /* Free the old page.. */
2193 new_page = old_page;
2194 page_copied = 1;
2195 } else {
2196 mem_cgroup_cancel_charge(new_page, memcg);
2197 }
2198
2199 if (new_page)
2200 page_cache_release(new_page);
2201
2202 pte_unmap_unlock(page_table, ptl);
2203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2204 if (old_page) {
2205 /*
2206 * Don't let another task, with possibly unlocked vma,
2207 * keep the mlocked page.
2208 */
2209 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2210 lock_page(old_page); /* LRU manipulation */
2211 munlock_vma_page(old_page);
2212 unlock_page(old_page);
2213 }
2214 page_cache_release(old_page);
2215 }
2216 return page_copied ? VM_FAULT_WRITE : 0;
2217 oom_free_new:
2218 page_cache_release(new_page);
2219 oom:
2220 if (old_page)
2221 page_cache_release(old_page);
2222 return VM_FAULT_OOM;
2223 }
2224
2225 /*
2226 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2227 * mapping
2228 */
2229 static int wp_pfn_shared(struct mm_struct *mm,
2230 struct vm_area_struct *vma, unsigned long address,
2231 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2232 pmd_t *pmd)
2233 {
2234 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2235 struct vm_fault vmf = {
2236 .page = NULL,
2237 .pgoff = linear_page_index(vma, address),
2238 .virtual_address = (void __user *)(address & PAGE_MASK),
2239 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2240 };
2241 int ret;
2242
2243 pte_unmap_unlock(page_table, ptl);
2244 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2245 if (ret & VM_FAULT_ERROR)
2246 return ret;
2247 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2248 /*
2249 * We might have raced with another page fault while we
2250 * released the pte_offset_map_lock.
2251 */
2252 if (!pte_same(*page_table, orig_pte)) {
2253 pte_unmap_unlock(page_table, ptl);
2254 return 0;
2255 }
2256 }
2257 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2258 NULL, 0, 0);
2259 }
2260
2261 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2262 unsigned long address, pte_t *page_table,
2263 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2264 struct page *old_page)
2265 __releases(ptl)
2266 {
2267 int page_mkwrite = 0;
2268
2269 page_cache_get(old_page);
2270
2271 /*
2272 * Only catch write-faults on shared writable pages,
2273 * read-only shared pages can get COWed by
2274 * get_user_pages(.write=1, .force=1).
2275 */
2276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2277 int tmp;
2278
2279 pte_unmap_unlock(page_table, ptl);
2280 tmp = do_page_mkwrite(vma, old_page, address);
2281 if (unlikely(!tmp || (tmp &
2282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2283 page_cache_release(old_page);
2284 return tmp;
2285 }
2286 /*
2287 * Since we dropped the lock we need to revalidate
2288 * the PTE as someone else may have changed it. If
2289 * they did, we just return, as we can count on the
2290 * MMU to tell us if they didn't also make it writable.
2291 */
2292 page_table = pte_offset_map_lock(mm, pmd, address,
2293 &ptl);
2294 if (!pte_same(*page_table, orig_pte)) {
2295 unlock_page(old_page);
2296 pte_unmap_unlock(page_table, ptl);
2297 page_cache_release(old_page);
2298 return 0;
2299 }
2300 page_mkwrite = 1;
2301 }
2302
2303 return wp_page_reuse(mm, vma, address, page_table, ptl,
2304 orig_pte, old_page, page_mkwrite, 1);
2305 }
2306
2307 /*
2308 * This routine handles present pages, when users try to write
2309 * to a shared page. It is done by copying the page to a new address
2310 * and decrementing the shared-page counter for the old page.
2311 *
2312 * Note that this routine assumes that the protection checks have been
2313 * done by the caller (the low-level page fault routine in most cases).
2314 * Thus we can safely just mark it writable once we've done any necessary
2315 * COW.
2316 *
2317 * We also mark the page dirty at this point even though the page will
2318 * change only once the write actually happens. This avoids a few races,
2319 * and potentially makes it more efficient.
2320 *
2321 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2322 * but allow concurrent faults), with pte both mapped and locked.
2323 * We return with mmap_sem still held, but pte unmapped and unlocked.
2324 */
2325 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2326 unsigned long address, pte_t *page_table, pmd_t *pmd,
2327 spinlock_t *ptl, pte_t orig_pte)
2328 __releases(ptl)
2329 {
2330 struct page *old_page;
2331
2332 old_page = vm_normal_page(vma, address, orig_pte);
2333 if (!old_page) {
2334 /*
2335 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2336 * VM_PFNMAP VMA.
2337 *
2338 * We should not cow pages in a shared writeable mapping.
2339 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2340 */
2341 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342 (VM_WRITE|VM_SHARED))
2343 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2344 orig_pte, pmd);
2345
2346 pte_unmap_unlock(page_table, ptl);
2347 return wp_page_copy(mm, vma, address, page_table, pmd,
2348 orig_pte, old_page);
2349 }
2350
2351 /*
2352 * Take out anonymous pages first, anonymous shared vmas are
2353 * not dirty accountable.
2354 */
2355 if (PageAnon(old_page) && !PageKsm(old_page)) {
2356 if (!trylock_page(old_page)) {
2357 page_cache_get(old_page);
2358 pte_unmap_unlock(page_table, ptl);
2359 lock_page(old_page);
2360 page_table = pte_offset_map_lock(mm, pmd, address,
2361 &ptl);
2362 if (!pte_same(*page_table, orig_pte)) {
2363 unlock_page(old_page);
2364 pte_unmap_unlock(page_table, ptl);
2365 page_cache_release(old_page);
2366 return 0;
2367 }
2368 page_cache_release(old_page);
2369 }
2370 if (reuse_swap_page(old_page)) {
2371 /*
2372 * The page is all ours. Move it to our anon_vma so
2373 * the rmap code will not search our parent or siblings.
2374 * Protected against the rmap code by the page lock.
2375 */
2376 page_move_anon_rmap(old_page, vma, address);
2377 unlock_page(old_page);
2378 return wp_page_reuse(mm, vma, address, page_table, ptl,
2379 orig_pte, old_page, 0, 0);
2380 }
2381 unlock_page(old_page);
2382 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2383 (VM_WRITE|VM_SHARED))) {
2384 return wp_page_shared(mm, vma, address, page_table, pmd,
2385 ptl, orig_pte, old_page);
2386 }
2387
2388 /*
2389 * Ok, we need to copy. Oh, well..
2390 */
2391 page_cache_get(old_page);
2392
2393 pte_unmap_unlock(page_table, ptl);
2394 return wp_page_copy(mm, vma, address, page_table, pmd,
2395 orig_pte, old_page);
2396 }
2397
2398 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2399 unsigned long start_addr, unsigned long end_addr,
2400 struct zap_details *details)
2401 {
2402 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2403 }
2404
2405 static inline void unmap_mapping_range_tree(struct rb_root *root,
2406 struct zap_details *details)
2407 {
2408 struct vm_area_struct *vma;
2409 pgoff_t vba, vea, zba, zea;
2410
2411 vma_interval_tree_foreach(vma, root,
2412 details->first_index, details->last_index) {
2413
2414 vba = vma->vm_pgoff;
2415 vea = vba + vma_pages(vma) - 1;
2416 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2417 zba = details->first_index;
2418 if (zba < vba)
2419 zba = vba;
2420 zea = details->last_index;
2421 if (zea > vea)
2422 zea = vea;
2423
2424 unmap_mapping_range_vma(vma,
2425 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2426 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2427 details);
2428 }
2429 }
2430
2431 /**
2432 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2433 * address_space corresponding to the specified page range in the underlying
2434 * file.
2435 *
2436 * @mapping: the address space containing mmaps to be unmapped.
2437 * @holebegin: byte in first page to unmap, relative to the start of
2438 * the underlying file. This will be rounded down to a PAGE_SIZE
2439 * boundary. Note that this is different from truncate_pagecache(), which
2440 * must keep the partial page. In contrast, we must get rid of
2441 * partial pages.
2442 * @holelen: size of prospective hole in bytes. This will be rounded
2443 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2444 * end of the file.
2445 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2446 * but 0 when invalidating pagecache, don't throw away private data.
2447 */
2448 void unmap_mapping_range(struct address_space *mapping,
2449 loff_t const holebegin, loff_t const holelen, int even_cows)
2450 {
2451 struct zap_details details;
2452 pgoff_t hba = holebegin >> PAGE_SHIFT;
2453 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2454
2455 /* Check for overflow. */
2456 if (sizeof(holelen) > sizeof(hlen)) {
2457 long long holeend =
2458 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2459 if (holeend & ~(long long)ULONG_MAX)
2460 hlen = ULONG_MAX - hba + 1;
2461 }
2462
2463 details.check_mapping = even_cows? NULL: mapping;
2464 details.first_index = hba;
2465 details.last_index = hba + hlen - 1;
2466 if (details.last_index < details.first_index)
2467 details.last_index = ULONG_MAX;
2468
2469
2470 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2471 i_mmap_lock_write(mapping);
2472 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2473 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2474 i_mmap_unlock_write(mapping);
2475 }
2476 EXPORT_SYMBOL(unmap_mapping_range);
2477
2478 /*
2479 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480 * but allow concurrent faults), and pte mapped but not yet locked.
2481 * We return with pte unmapped and unlocked.
2482 *
2483 * We return with the mmap_sem locked or unlocked in the same cases
2484 * as does filemap_fault().
2485 */
2486 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2487 unsigned long address, pte_t *page_table, pmd_t *pmd,
2488 unsigned int flags, pte_t orig_pte)
2489 {
2490 spinlock_t *ptl;
2491 struct page *page, *swapcache;
2492 struct mem_cgroup *memcg;
2493 swp_entry_t entry;
2494 pte_t pte;
2495 int locked;
2496 int exclusive = 0;
2497 int ret = 0;
2498
2499 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2500 goto out;
2501
2502 entry = pte_to_swp_entry(orig_pte);
2503 if (unlikely(non_swap_entry(entry))) {
2504 if (is_migration_entry(entry)) {
2505 migration_entry_wait(mm, pmd, address);
2506 } else if (is_hwpoison_entry(entry)) {
2507 ret = VM_FAULT_HWPOISON;
2508 } else {
2509 print_bad_pte(vma, address, orig_pte, NULL);
2510 ret = VM_FAULT_SIGBUS;
2511 }
2512 goto out;
2513 }
2514 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2515 page = lookup_swap_cache(entry);
2516 if (!page) {
2517 page = swapin_readahead(entry,
2518 GFP_HIGHUSER_MOVABLE, vma, address);
2519 if (!page) {
2520 /*
2521 * Back out if somebody else faulted in this pte
2522 * while we released the pte lock.
2523 */
2524 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2525 if (likely(pte_same(*page_table, orig_pte)))
2526 ret = VM_FAULT_OOM;
2527 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528 goto unlock;
2529 }
2530
2531 /* Had to read the page from swap area: Major fault */
2532 ret = VM_FAULT_MAJOR;
2533 count_vm_event(PGMAJFAULT);
2534 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2535 } else if (PageHWPoison(page)) {
2536 /*
2537 * hwpoisoned dirty swapcache pages are kept for killing
2538 * owner processes (which may be unknown at hwpoison time)
2539 */
2540 ret = VM_FAULT_HWPOISON;
2541 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2542 swapcache = page;
2543 goto out_release;
2544 }
2545
2546 swapcache = page;
2547 locked = lock_page_or_retry(page, mm, flags);
2548
2549 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2550 if (!locked) {
2551 ret |= VM_FAULT_RETRY;
2552 goto out_release;
2553 }
2554
2555 /*
2556 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2557 * release the swapcache from under us. The page pin, and pte_same
2558 * test below, are not enough to exclude that. Even if it is still
2559 * swapcache, we need to check that the page's swap has not changed.
2560 */
2561 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2562 goto out_page;
2563
2564 page = ksm_might_need_to_copy(page, vma, address);
2565 if (unlikely(!page)) {
2566 ret = VM_FAULT_OOM;
2567 page = swapcache;
2568 goto out_page;
2569 }
2570
2571 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2572 ret = VM_FAULT_OOM;
2573 goto out_page;
2574 }
2575
2576 /*
2577 * Back out if somebody else already faulted in this pte.
2578 */
2579 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2580 if (unlikely(!pte_same(*page_table, orig_pte)))
2581 goto out_nomap;
2582
2583 if (unlikely(!PageUptodate(page))) {
2584 ret = VM_FAULT_SIGBUS;
2585 goto out_nomap;
2586 }
2587
2588 /*
2589 * The page isn't present yet, go ahead with the fault.
2590 *
2591 * Be careful about the sequence of operations here.
2592 * To get its accounting right, reuse_swap_page() must be called
2593 * while the page is counted on swap but not yet in mapcount i.e.
2594 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2595 * must be called after the swap_free(), or it will never succeed.
2596 */
2597
2598 inc_mm_counter_fast(mm, MM_ANONPAGES);
2599 dec_mm_counter_fast(mm, MM_SWAPENTS);
2600 pte = mk_pte(page, vma->vm_page_prot);
2601 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2602 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2603 flags &= ~FAULT_FLAG_WRITE;
2604 ret |= VM_FAULT_WRITE;
2605 exclusive = 1;
2606 }
2607 flush_icache_page(vma, page);
2608 if (pte_swp_soft_dirty(orig_pte))
2609 pte = pte_mksoft_dirty(pte);
2610 set_pte_at(mm, address, page_table, pte);
2611 if (page == swapcache) {
2612 do_page_add_anon_rmap(page, vma, address, exclusive);
2613 mem_cgroup_commit_charge(page, memcg, true);
2614 } else { /* ksm created a completely new copy */
2615 page_add_new_anon_rmap(page, vma, address);
2616 mem_cgroup_commit_charge(page, memcg, false);
2617 lru_cache_add_active_or_unevictable(page, vma);
2618 }
2619
2620 swap_free(entry);
2621 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2622 try_to_free_swap(page);
2623 unlock_page(page);
2624 if (page != swapcache) {
2625 /*
2626 * Hold the lock to avoid the swap entry to be reused
2627 * until we take the PT lock for the pte_same() check
2628 * (to avoid false positives from pte_same). For
2629 * further safety release the lock after the swap_free
2630 * so that the swap count won't change under a
2631 * parallel locked swapcache.
2632 */
2633 unlock_page(swapcache);
2634 page_cache_release(swapcache);
2635 }
2636
2637 if (flags & FAULT_FLAG_WRITE) {
2638 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2639 if (ret & VM_FAULT_ERROR)
2640 ret &= VM_FAULT_ERROR;
2641 goto out;
2642 }
2643
2644 /* No need to invalidate - it was non-present before */
2645 update_mmu_cache(vma, address, page_table);
2646 unlock:
2647 pte_unmap_unlock(page_table, ptl);
2648 out:
2649 return ret;
2650 out_nomap:
2651 mem_cgroup_cancel_charge(page, memcg);
2652 pte_unmap_unlock(page_table, ptl);
2653 out_page:
2654 unlock_page(page);
2655 out_release:
2656 page_cache_release(page);
2657 if (page != swapcache) {
2658 unlock_page(swapcache);
2659 page_cache_release(swapcache);
2660 }
2661 return ret;
2662 }
2663
2664 /*
2665 * This is like a special single-page "expand_{down|up}wards()",
2666 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2667 * doesn't hit another vma.
2668 */
2669 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2670 {
2671 address &= PAGE_MASK;
2672 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2673 struct vm_area_struct *prev = vma->vm_prev;
2674
2675 /*
2676 * Is there a mapping abutting this one below?
2677 *
2678 * That's only ok if it's the same stack mapping
2679 * that has gotten split..
2680 */
2681 if (prev && prev->vm_end == address)
2682 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2683
2684 return expand_downwards(vma, address - PAGE_SIZE);
2685 }
2686 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2687 struct vm_area_struct *next = vma->vm_next;
2688
2689 /* As VM_GROWSDOWN but s/below/above/ */
2690 if (next && next->vm_start == address + PAGE_SIZE)
2691 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2692
2693 return expand_upwards(vma, address + PAGE_SIZE);
2694 }
2695 return 0;
2696 }
2697
2698 /*
2699 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2700 * but allow concurrent faults), and pte mapped but not yet locked.
2701 * We return with mmap_sem still held, but pte unmapped and unlocked.
2702 */
2703 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2704 unsigned long address, pte_t *page_table, pmd_t *pmd,
2705 unsigned int flags)
2706 {
2707 struct mem_cgroup *memcg;
2708 struct page *page;
2709 spinlock_t *ptl;
2710 pte_t entry;
2711
2712 pte_unmap(page_table);
2713
2714 /* File mapping without ->vm_ops ? */
2715 if (vma->vm_flags & VM_SHARED)
2716 return VM_FAULT_SIGBUS;
2717
2718 /* Check if we need to add a guard page to the stack */
2719 if (check_stack_guard_page(vma, address) < 0)
2720 return VM_FAULT_SIGSEGV;
2721
2722 /* Use the zero-page for reads */
2723 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2724 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2725 vma->vm_page_prot));
2726 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727 if (!pte_none(*page_table))
2728 goto unlock;
2729 /* Deliver the page fault to userland, check inside PT lock */
2730 if (userfaultfd_missing(vma)) {
2731 pte_unmap_unlock(page_table, ptl);
2732 return handle_userfault(vma, address, flags,
2733 VM_UFFD_MISSING);
2734 }
2735 goto setpte;
2736 }
2737
2738 /* Allocate our own private page. */
2739 if (unlikely(anon_vma_prepare(vma)))
2740 goto oom;
2741 page = alloc_zeroed_user_highpage_movable(vma, address);
2742 if (!page)
2743 goto oom;
2744
2745 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2746 goto oom_free_page;
2747
2748 /*
2749 * The memory barrier inside __SetPageUptodate makes sure that
2750 * preceeding stores to the page contents become visible before
2751 * the set_pte_at() write.
2752 */
2753 __SetPageUptodate(page);
2754
2755 entry = mk_pte(page, vma->vm_page_prot);
2756 if (vma->vm_flags & VM_WRITE)
2757 entry = pte_mkwrite(pte_mkdirty(entry));
2758
2759 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2760 if (!pte_none(*page_table))
2761 goto release;
2762
2763 /* Deliver the page fault to userland, check inside PT lock */
2764 if (userfaultfd_missing(vma)) {
2765 pte_unmap_unlock(page_table, ptl);
2766 mem_cgroup_cancel_charge(page, memcg);
2767 page_cache_release(page);
2768 return handle_userfault(vma, address, flags,
2769 VM_UFFD_MISSING);
2770 }
2771
2772 inc_mm_counter_fast(mm, MM_ANONPAGES);
2773 page_add_new_anon_rmap(page, vma, address);
2774 mem_cgroup_commit_charge(page, memcg, false);
2775 lru_cache_add_active_or_unevictable(page, vma);
2776 setpte:
2777 set_pte_at(mm, address, page_table, entry);
2778
2779 /* No need to invalidate - it was non-present before */
2780 update_mmu_cache(vma, address, page_table);
2781 unlock:
2782 pte_unmap_unlock(page_table, ptl);
2783 return 0;
2784 release:
2785 mem_cgroup_cancel_charge(page, memcg);
2786 page_cache_release(page);
2787 goto unlock;
2788 oom_free_page:
2789 page_cache_release(page);
2790 oom:
2791 return VM_FAULT_OOM;
2792 }
2793
2794 /*
2795 * The mmap_sem must have been held on entry, and may have been
2796 * released depending on flags and vma->vm_ops->fault() return value.
2797 * See filemap_fault() and __lock_page_retry().
2798 */
2799 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2800 pgoff_t pgoff, unsigned int flags,
2801 struct page *cow_page, struct page **page)
2802 {
2803 struct vm_fault vmf;
2804 int ret;
2805
2806 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2807 vmf.pgoff = pgoff;
2808 vmf.flags = flags;
2809 vmf.page = NULL;
2810 vmf.cow_page = cow_page;
2811
2812 ret = vma->vm_ops->fault(vma, &vmf);
2813 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2814 return ret;
2815 if (!vmf.page)
2816 goto out;
2817
2818 if (unlikely(PageHWPoison(vmf.page))) {
2819 if (ret & VM_FAULT_LOCKED)
2820 unlock_page(vmf.page);
2821 page_cache_release(vmf.page);
2822 return VM_FAULT_HWPOISON;
2823 }
2824
2825 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2826 lock_page(vmf.page);
2827 else
2828 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2829
2830 out:
2831 *page = vmf.page;
2832 return ret;
2833 }
2834
2835 /**
2836 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2837 *
2838 * @vma: virtual memory area
2839 * @address: user virtual address
2840 * @page: page to map
2841 * @pte: pointer to target page table entry
2842 * @write: true, if new entry is writable
2843 * @anon: true, if it's anonymous page
2844 *
2845 * Caller must hold page table lock relevant for @pte.
2846 *
2847 * Target users are page handler itself and implementations of
2848 * vm_ops->map_pages.
2849 */
2850 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2851 struct page *page, pte_t *pte, bool write, bool anon)
2852 {
2853 pte_t entry;
2854
2855 flush_icache_page(vma, page);
2856 entry = mk_pte(page, vma->vm_page_prot);
2857 if (write)
2858 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2859 if (anon) {
2860 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2861 page_add_new_anon_rmap(page, vma, address);
2862 } else {
2863 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2864 page_add_file_rmap(page);
2865 }
2866 set_pte_at(vma->vm_mm, address, pte, entry);
2867
2868 /* no need to invalidate: a not-present page won't be cached */
2869 update_mmu_cache(vma, address, pte);
2870 }
2871
2872 static unsigned long fault_around_bytes __read_mostly =
2873 rounddown_pow_of_two(65536);
2874
2875 #ifdef CONFIG_DEBUG_FS
2876 static int fault_around_bytes_get(void *data, u64 *val)
2877 {
2878 *val = fault_around_bytes;
2879 return 0;
2880 }
2881
2882 /*
2883 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2884 * rounded down to nearest page order. It's what do_fault_around() expects to
2885 * see.
2886 */
2887 static int fault_around_bytes_set(void *data, u64 val)
2888 {
2889 if (val / PAGE_SIZE > PTRS_PER_PTE)
2890 return -EINVAL;
2891 if (val > PAGE_SIZE)
2892 fault_around_bytes = rounddown_pow_of_two(val);
2893 else
2894 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2895 return 0;
2896 }
2897 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2898 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2899
2900 static int __init fault_around_debugfs(void)
2901 {
2902 void *ret;
2903
2904 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2905 &fault_around_bytes_fops);
2906 if (!ret)
2907 pr_warn("Failed to create fault_around_bytes in debugfs");
2908 return 0;
2909 }
2910 late_initcall(fault_around_debugfs);
2911 #endif
2912
2913 /*
2914 * do_fault_around() tries to map few pages around the fault address. The hope
2915 * is that the pages will be needed soon and this will lower the number of
2916 * faults to handle.
2917 *
2918 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2919 * not ready to be mapped: not up-to-date, locked, etc.
2920 *
2921 * This function is called with the page table lock taken. In the split ptlock
2922 * case the page table lock only protects only those entries which belong to
2923 * the page table corresponding to the fault address.
2924 *
2925 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2926 * only once.
2927 *
2928 * fault_around_pages() defines how many pages we'll try to map.
2929 * do_fault_around() expects it to return a power of two less than or equal to
2930 * PTRS_PER_PTE.
2931 *
2932 * The virtual address of the area that we map is naturally aligned to the
2933 * fault_around_pages() value (and therefore to page order). This way it's
2934 * easier to guarantee that we don't cross page table boundaries.
2935 */
2936 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2937 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2938 {
2939 unsigned long start_addr, nr_pages, mask;
2940 pgoff_t max_pgoff;
2941 struct vm_fault vmf;
2942 int off;
2943
2944 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2945 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2946
2947 start_addr = max(address & mask, vma->vm_start);
2948 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2949 pte -= off;
2950 pgoff -= off;
2951
2952 /*
2953 * max_pgoff is either end of page table or end of vma
2954 * or fault_around_pages() from pgoff, depending what is nearest.
2955 */
2956 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2957 PTRS_PER_PTE - 1;
2958 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2959 pgoff + nr_pages - 1);
2960
2961 /* Check if it makes any sense to call ->map_pages */
2962 while (!pte_none(*pte)) {
2963 if (++pgoff > max_pgoff)
2964 return;
2965 start_addr += PAGE_SIZE;
2966 if (start_addr >= vma->vm_end)
2967 return;
2968 pte++;
2969 }
2970
2971 vmf.virtual_address = (void __user *) start_addr;
2972 vmf.pte = pte;
2973 vmf.pgoff = pgoff;
2974 vmf.max_pgoff = max_pgoff;
2975 vmf.flags = flags;
2976 vma->vm_ops->map_pages(vma, &vmf);
2977 }
2978
2979 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2980 unsigned long address, pmd_t *pmd,
2981 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2982 {
2983 struct page *fault_page;
2984 spinlock_t *ptl;
2985 pte_t *pte;
2986 int ret = 0;
2987
2988 /*
2989 * Let's call ->map_pages() first and use ->fault() as fallback
2990 * if page by the offset is not ready to be mapped (cold cache or
2991 * something).
2992 */
2993 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 do_fault_around(vma, address, pte, pgoff, flags);
2996 if (!pte_same(*pte, orig_pte))
2997 goto unlock_out;
2998 pte_unmap_unlock(pte, ptl);
2999 }
3000
3001 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3002 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3003 return ret;
3004
3005 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3006 if (unlikely(!pte_same(*pte, orig_pte))) {
3007 pte_unmap_unlock(pte, ptl);
3008 unlock_page(fault_page);
3009 page_cache_release(fault_page);
3010 return ret;
3011 }
3012 do_set_pte(vma, address, fault_page, pte, false, false);
3013 unlock_page(fault_page);
3014 unlock_out:
3015 pte_unmap_unlock(pte, ptl);
3016 return ret;
3017 }
3018
3019 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020 unsigned long address, pmd_t *pmd,
3021 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3022 {
3023 struct page *fault_page, *new_page;
3024 struct mem_cgroup *memcg;
3025 spinlock_t *ptl;
3026 pte_t *pte;
3027 int ret;
3028
3029 if (unlikely(anon_vma_prepare(vma)))
3030 return VM_FAULT_OOM;
3031
3032 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3033 if (!new_page)
3034 return VM_FAULT_OOM;
3035
3036 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3037 page_cache_release(new_page);
3038 return VM_FAULT_OOM;
3039 }
3040
3041 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3042 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3043 goto uncharge_out;
3044
3045 if (fault_page)
3046 copy_user_highpage(new_page, fault_page, address, vma);
3047 __SetPageUptodate(new_page);
3048
3049 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3050 if (unlikely(!pte_same(*pte, orig_pte))) {
3051 pte_unmap_unlock(pte, ptl);
3052 if (fault_page) {
3053 unlock_page(fault_page);
3054 page_cache_release(fault_page);
3055 } else {
3056 /*
3057 * The fault handler has no page to lock, so it holds
3058 * i_mmap_lock for read to protect against truncate.
3059 */
3060 i_mmap_unlock_read(vma->vm_file->f_mapping);
3061 }
3062 goto uncharge_out;
3063 }
3064 do_set_pte(vma, address, new_page, pte, true, true);
3065 mem_cgroup_commit_charge(new_page, memcg, false);
3066 lru_cache_add_active_or_unevictable(new_page, vma);
3067 pte_unmap_unlock(pte, ptl);
3068 if (fault_page) {
3069 unlock_page(fault_page);
3070 page_cache_release(fault_page);
3071 } else {
3072 /*
3073 * The fault handler has no page to lock, so it holds
3074 * i_mmap_lock for read to protect against truncate.
3075 */
3076 i_mmap_unlock_read(vma->vm_file->f_mapping);
3077 }
3078 return ret;
3079 uncharge_out:
3080 mem_cgroup_cancel_charge(new_page, memcg);
3081 page_cache_release(new_page);
3082 return ret;
3083 }
3084
3085 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3086 unsigned long address, pmd_t *pmd,
3087 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3088 {
3089 struct page *fault_page;
3090 struct address_space *mapping;
3091 spinlock_t *ptl;
3092 pte_t *pte;
3093 int dirtied = 0;
3094 int ret, tmp;
3095
3096 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3097 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3098 return ret;
3099
3100 /*
3101 * Check if the backing address space wants to know that the page is
3102 * about to become writable
3103 */
3104 if (vma->vm_ops->page_mkwrite) {
3105 unlock_page(fault_page);
3106 tmp = do_page_mkwrite(vma, fault_page, address);
3107 if (unlikely(!tmp ||
3108 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3109 page_cache_release(fault_page);
3110 return tmp;
3111 }
3112 }
3113
3114 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3115 if (unlikely(!pte_same(*pte, orig_pte))) {
3116 pte_unmap_unlock(pte, ptl);
3117 unlock_page(fault_page);
3118 page_cache_release(fault_page);
3119 return ret;
3120 }
3121 do_set_pte(vma, address, fault_page, pte, true, false);
3122 pte_unmap_unlock(pte, ptl);
3123
3124 if (set_page_dirty(fault_page))
3125 dirtied = 1;
3126 /*
3127 * Take a local copy of the address_space - page.mapping may be zeroed
3128 * by truncate after unlock_page(). The address_space itself remains
3129 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3130 * release semantics to prevent the compiler from undoing this copying.
3131 */
3132 mapping = fault_page->mapping;
3133 unlock_page(fault_page);
3134 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3135 /*
3136 * Some device drivers do not set page.mapping but still
3137 * dirty their pages
3138 */
3139 balance_dirty_pages_ratelimited(mapping);
3140 }
3141
3142 if (!vma->vm_ops->page_mkwrite)
3143 file_update_time(vma->vm_file);
3144
3145 return ret;
3146 }
3147
3148 /*
3149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150 * but allow concurrent faults).
3151 * The mmap_sem may have been released depending on flags and our
3152 * return value. See filemap_fault() and __lock_page_or_retry().
3153 */
3154 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3155 unsigned long address, pte_t *page_table, pmd_t *pmd,
3156 unsigned int flags, pte_t orig_pte)
3157 {
3158 pgoff_t pgoff = (((address & PAGE_MASK)
3159 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3160
3161 pte_unmap(page_table);
3162 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3163 if (!vma->vm_ops->fault)
3164 return VM_FAULT_SIGBUS;
3165 if (!(flags & FAULT_FLAG_WRITE))
3166 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3167 orig_pte);
3168 if (!(vma->vm_flags & VM_SHARED))
3169 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3170 orig_pte);
3171 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3172 }
3173
3174 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3175 unsigned long addr, int page_nid,
3176 int *flags)
3177 {
3178 get_page(page);
3179
3180 count_vm_numa_event(NUMA_HINT_FAULTS);
3181 if (page_nid == numa_node_id()) {
3182 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3183 *flags |= TNF_FAULT_LOCAL;
3184 }
3185
3186 return mpol_misplaced(page, vma, addr);
3187 }
3188
3189 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3190 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3191 {
3192 struct page *page = NULL;
3193 spinlock_t *ptl;
3194 int page_nid = -1;
3195 int last_cpupid;
3196 int target_nid;
3197 bool migrated = false;
3198 bool was_writable = pte_write(pte);
3199 int flags = 0;
3200
3201 /* A PROT_NONE fault should not end up here */
3202 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3203
3204 /*
3205 * The "pte" at this point cannot be used safely without
3206 * validation through pte_unmap_same(). It's of NUMA type but
3207 * the pfn may be screwed if the read is non atomic.
3208 *
3209 * We can safely just do a "set_pte_at()", because the old
3210 * page table entry is not accessible, so there would be no
3211 * concurrent hardware modifications to the PTE.
3212 */
3213 ptl = pte_lockptr(mm, pmd);
3214 spin_lock(ptl);
3215 if (unlikely(!pte_same(*ptep, pte))) {
3216 pte_unmap_unlock(ptep, ptl);
3217 goto out;
3218 }
3219
3220 /* Make it present again */
3221 pte = pte_modify(pte, vma->vm_page_prot);
3222 pte = pte_mkyoung(pte);
3223 if (was_writable)
3224 pte = pte_mkwrite(pte);
3225 set_pte_at(mm, addr, ptep, pte);
3226 update_mmu_cache(vma, addr, ptep);
3227
3228 page = vm_normal_page(vma, addr, pte);
3229 if (!page) {
3230 pte_unmap_unlock(ptep, ptl);
3231 return 0;
3232 }
3233
3234 /*
3235 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3236 * much anyway since they can be in shared cache state. This misses
3237 * the case where a mapping is writable but the process never writes
3238 * to it but pte_write gets cleared during protection updates and
3239 * pte_dirty has unpredictable behaviour between PTE scan updates,
3240 * background writeback, dirty balancing and application behaviour.
3241 */
3242 if (!(vma->vm_flags & VM_WRITE))
3243 flags |= TNF_NO_GROUP;
3244
3245 /*
3246 * Flag if the page is shared between multiple address spaces. This
3247 * is later used when determining whether to group tasks together
3248 */
3249 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3250 flags |= TNF_SHARED;
3251
3252 last_cpupid = page_cpupid_last(page);
3253 page_nid = page_to_nid(page);
3254 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3255 pte_unmap_unlock(ptep, ptl);
3256 if (target_nid == -1) {
3257 put_page(page);
3258 goto out;
3259 }
3260
3261 /* Migrate to the requested node */
3262 migrated = migrate_misplaced_page(page, vma, target_nid);
3263 if (migrated) {
3264 page_nid = target_nid;
3265 flags |= TNF_MIGRATED;
3266 } else
3267 flags |= TNF_MIGRATE_FAIL;
3268
3269 out:
3270 if (page_nid != -1)
3271 task_numa_fault(last_cpupid, page_nid, 1, flags);
3272 return 0;
3273 }
3274
3275 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3276 unsigned long address, pmd_t *pmd, unsigned int flags)
3277 {
3278 if (vma_is_anonymous(vma))
3279 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3280 if (vma->vm_ops->pmd_fault)
3281 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3282 return VM_FAULT_FALLBACK;
3283 }
3284
3285 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3286 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3287 unsigned int flags)
3288 {
3289 if (vma_is_anonymous(vma))
3290 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3291 if (vma->vm_ops->pmd_fault)
3292 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3293 return VM_FAULT_FALLBACK;
3294 }
3295
3296 /*
3297 * These routines also need to handle stuff like marking pages dirty
3298 * and/or accessed for architectures that don't do it in hardware (most
3299 * RISC architectures). The early dirtying is also good on the i386.
3300 *
3301 * There is also a hook called "update_mmu_cache()" that architectures
3302 * with external mmu caches can use to update those (ie the Sparc or
3303 * PowerPC hashed page tables that act as extended TLBs).
3304 *
3305 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3306 * but allow concurrent faults), and pte mapped but not yet locked.
3307 * We return with pte unmapped and unlocked.
3308 *
3309 * The mmap_sem may have been released depending on flags and our
3310 * return value. See filemap_fault() and __lock_page_or_retry().
3311 */
3312 static int handle_pte_fault(struct mm_struct *mm,
3313 struct vm_area_struct *vma, unsigned long address,
3314 pte_t *pte, pmd_t *pmd, unsigned int flags)
3315 {
3316 pte_t entry;
3317 spinlock_t *ptl;
3318
3319 /*
3320 * some architectures can have larger ptes than wordsize,
3321 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3322 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3323 * The code below just needs a consistent view for the ifs and
3324 * we later double check anyway with the ptl lock held. So here
3325 * a barrier will do.
3326 */
3327 entry = *pte;
3328 barrier();
3329 if (!pte_present(entry)) {
3330 if (pte_none(entry)) {
3331 if (vma_is_anonymous(vma))
3332 return do_anonymous_page(mm, vma, address,
3333 pte, pmd, flags);
3334 else
3335 return do_fault(mm, vma, address, pte, pmd,
3336 flags, entry);
3337 }
3338 return do_swap_page(mm, vma, address,
3339 pte, pmd, flags, entry);
3340 }
3341
3342 if (pte_protnone(entry))
3343 return do_numa_page(mm, vma, address, entry, pte, pmd);
3344
3345 ptl = pte_lockptr(mm, pmd);
3346 spin_lock(ptl);
3347 if (unlikely(!pte_same(*pte, entry)))
3348 goto unlock;
3349 if (flags & FAULT_FLAG_WRITE) {
3350 if (!pte_write(entry))
3351 return do_wp_page(mm, vma, address,
3352 pte, pmd, ptl, entry);
3353 entry = pte_mkdirty(entry);
3354 }
3355 entry = pte_mkyoung(entry);
3356 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3357 update_mmu_cache(vma, address, pte);
3358 } else {
3359 /*
3360 * This is needed only for protection faults but the arch code
3361 * is not yet telling us if this is a protection fault or not.
3362 * This still avoids useless tlb flushes for .text page faults
3363 * with threads.
3364 */
3365 if (flags & FAULT_FLAG_WRITE)
3366 flush_tlb_fix_spurious_fault(vma, address);
3367 }
3368 unlock:
3369 pte_unmap_unlock(pte, ptl);
3370 return 0;
3371 }
3372
3373 /*
3374 * By the time we get here, we already hold the mm semaphore
3375 *
3376 * The mmap_sem may have been released depending on flags and our
3377 * return value. See filemap_fault() and __lock_page_or_retry().
3378 */
3379 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3380 unsigned long address, unsigned int flags)
3381 {
3382 pgd_t *pgd;
3383 pud_t *pud;
3384 pmd_t *pmd;
3385 pte_t *pte;
3386
3387 if (unlikely(is_vm_hugetlb_page(vma)))
3388 return hugetlb_fault(mm, vma, address, flags);
3389
3390 pgd = pgd_offset(mm, address);
3391 pud = pud_alloc(mm, pgd, address);
3392 if (!pud)
3393 return VM_FAULT_OOM;
3394 pmd = pmd_alloc(mm, pud, address);
3395 if (!pmd)
3396 return VM_FAULT_OOM;
3397 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3398 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3399 if (!(ret & VM_FAULT_FALLBACK))
3400 return ret;
3401 } else {
3402 pmd_t orig_pmd = *pmd;
3403 int ret;
3404
3405 barrier();
3406 if (pmd_trans_huge(orig_pmd)) {
3407 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3408
3409 /*
3410 * If the pmd is splitting, return and retry the
3411 * the fault. Alternative: wait until the split
3412 * is done, and goto retry.
3413 */
3414 if (pmd_trans_splitting(orig_pmd))
3415 return 0;
3416
3417 if (pmd_protnone(orig_pmd))
3418 return do_huge_pmd_numa_page(mm, vma, address,
3419 orig_pmd, pmd);
3420
3421 if (dirty && !pmd_write(orig_pmd)) {
3422 ret = wp_huge_pmd(mm, vma, address, pmd,
3423 orig_pmd, flags);
3424 if (!(ret & VM_FAULT_FALLBACK))
3425 return ret;
3426 } else {
3427 huge_pmd_set_accessed(mm, vma, address, pmd,
3428 orig_pmd, dirty);
3429 return 0;
3430 }
3431 }
3432 }
3433
3434 /*
3435 * Use __pte_alloc instead of pte_alloc_map, because we can't
3436 * run pte_offset_map on the pmd, if an huge pmd could
3437 * materialize from under us from a different thread.
3438 */
3439 if (unlikely(pmd_none(*pmd)) &&
3440 unlikely(__pte_alloc(mm, vma, pmd, address)))
3441 return VM_FAULT_OOM;
3442 /*
3443 * If a huge pmd materialized under us just retry later. Use
3444 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3445 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3446 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3447 * in a different thread of this mm, in turn leading to a misleading
3448 * pmd_trans_huge() retval. All we have to ensure is that it is a
3449 * regular pmd that we can walk with pte_offset_map() and we can do that
3450 * through an atomic read in C, which is what pmd_trans_unstable()
3451 * provides.
3452 */
3453 if (unlikely(pmd_trans_unstable(pmd)))
3454 return 0;
3455 /*
3456 * A regular pmd is established and it can't morph into a huge pmd
3457 * from under us anymore at this point because we hold the mmap_sem
3458 * read mode and khugepaged takes it in write mode. So now it's
3459 * safe to run pte_offset_map().
3460 */
3461 pte = pte_offset_map(pmd, address);
3462
3463 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3464 }
3465
3466 /*
3467 * By the time we get here, we already hold the mm semaphore
3468 *
3469 * The mmap_sem may have been released depending on flags and our
3470 * return value. See filemap_fault() and __lock_page_or_retry().
3471 */
3472 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3473 unsigned long address, unsigned int flags)
3474 {
3475 int ret;
3476
3477 __set_current_state(TASK_RUNNING);
3478
3479 count_vm_event(PGFAULT);
3480 mem_cgroup_count_vm_event(mm, PGFAULT);
3481
3482 /* do counter updates before entering really critical section. */
3483 check_sync_rss_stat(current);
3484
3485 /*
3486 * Enable the memcg OOM handling for faults triggered in user
3487 * space. Kernel faults are handled more gracefully.
3488 */
3489 if (flags & FAULT_FLAG_USER)
3490 mem_cgroup_oom_enable();
3491
3492 ret = __handle_mm_fault(mm, vma, address, flags);
3493
3494 if (flags & FAULT_FLAG_USER) {
3495 mem_cgroup_oom_disable();
3496 /*
3497 * The task may have entered a memcg OOM situation but
3498 * if the allocation error was handled gracefully (no
3499 * VM_FAULT_OOM), there is no need to kill anything.
3500 * Just clean up the OOM state peacefully.
3501 */
3502 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3503 mem_cgroup_oom_synchronize(false);
3504 }
3505
3506 return ret;
3507 }
3508 EXPORT_SYMBOL_GPL(handle_mm_fault);
3509
3510 #ifndef __PAGETABLE_PUD_FOLDED
3511 /*
3512 * Allocate page upper directory.
3513 * We've already handled the fast-path in-line.
3514 */
3515 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3516 {
3517 pud_t *new = pud_alloc_one(mm, address);
3518 if (!new)
3519 return -ENOMEM;
3520
3521 smp_wmb(); /* See comment in __pte_alloc */
3522
3523 spin_lock(&mm->page_table_lock);
3524 if (pgd_present(*pgd)) /* Another has populated it */
3525 pud_free(mm, new);
3526 else
3527 pgd_populate(mm, pgd, new);
3528 spin_unlock(&mm->page_table_lock);
3529 return 0;
3530 }
3531 #endif /* __PAGETABLE_PUD_FOLDED */
3532
3533 #ifndef __PAGETABLE_PMD_FOLDED
3534 /*
3535 * Allocate page middle directory.
3536 * We've already handled the fast-path in-line.
3537 */
3538 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3539 {
3540 pmd_t *new = pmd_alloc_one(mm, address);
3541 if (!new)
3542 return -ENOMEM;
3543
3544 smp_wmb(); /* See comment in __pte_alloc */
3545
3546 spin_lock(&mm->page_table_lock);
3547 #ifndef __ARCH_HAS_4LEVEL_HACK
3548 if (!pud_present(*pud)) {
3549 mm_inc_nr_pmds(mm);
3550 pud_populate(mm, pud, new);
3551 } else /* Another has populated it */
3552 pmd_free(mm, new);
3553 #else
3554 if (!pgd_present(*pud)) {
3555 mm_inc_nr_pmds(mm);
3556 pgd_populate(mm, pud, new);
3557 } else /* Another has populated it */
3558 pmd_free(mm, new);
3559 #endif /* __ARCH_HAS_4LEVEL_HACK */
3560 spin_unlock(&mm->page_table_lock);
3561 return 0;
3562 }
3563 #endif /* __PAGETABLE_PMD_FOLDED */
3564
3565 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3566 pte_t **ptepp, spinlock_t **ptlp)
3567 {
3568 pgd_t *pgd;
3569 pud_t *pud;
3570 pmd_t *pmd;
3571 pte_t *ptep;
3572
3573 pgd = pgd_offset(mm, address);
3574 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3575 goto out;
3576
3577 pud = pud_offset(pgd, address);
3578 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3579 goto out;
3580
3581 pmd = pmd_offset(pud, address);
3582 VM_BUG_ON(pmd_trans_huge(*pmd));
3583 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3584 goto out;
3585
3586 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3587 if (pmd_huge(*pmd))
3588 goto out;
3589
3590 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3591 if (!ptep)
3592 goto out;
3593 if (!pte_present(*ptep))
3594 goto unlock;
3595 *ptepp = ptep;
3596 return 0;
3597 unlock:
3598 pte_unmap_unlock(ptep, *ptlp);
3599 out:
3600 return -EINVAL;
3601 }
3602
3603 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3604 pte_t **ptepp, spinlock_t **ptlp)
3605 {
3606 int res;
3607
3608 /* (void) is needed to make gcc happy */
3609 (void) __cond_lock(*ptlp,
3610 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3611 return res;
3612 }
3613
3614 /**
3615 * follow_pfn - look up PFN at a user virtual address
3616 * @vma: memory mapping
3617 * @address: user virtual address
3618 * @pfn: location to store found PFN
3619 *
3620 * Only IO mappings and raw PFN mappings are allowed.
3621 *
3622 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3623 */
3624 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3625 unsigned long *pfn)
3626 {
3627 int ret = -EINVAL;
3628 spinlock_t *ptl;
3629 pte_t *ptep;
3630
3631 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3632 return ret;
3633
3634 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3635 if (ret)
3636 return ret;
3637 *pfn = pte_pfn(*ptep);
3638 pte_unmap_unlock(ptep, ptl);
3639 return 0;
3640 }
3641 EXPORT_SYMBOL(follow_pfn);
3642
3643 #ifdef CONFIG_HAVE_IOREMAP_PROT
3644 int follow_phys(struct vm_area_struct *vma,
3645 unsigned long address, unsigned int flags,
3646 unsigned long *prot, resource_size_t *phys)
3647 {
3648 int ret = -EINVAL;
3649 pte_t *ptep, pte;
3650 spinlock_t *ptl;
3651
3652 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3653 goto out;
3654
3655 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3656 goto out;
3657 pte = *ptep;
3658
3659 if ((flags & FOLL_WRITE) && !pte_write(pte))
3660 goto unlock;
3661
3662 *prot = pgprot_val(pte_pgprot(pte));
3663 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3664
3665 ret = 0;
3666 unlock:
3667 pte_unmap_unlock(ptep, ptl);
3668 out:
3669 return ret;
3670 }
3671
3672 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3673 void *buf, int len, int write)
3674 {
3675 resource_size_t phys_addr;
3676 unsigned long prot = 0;
3677 void __iomem *maddr;
3678 int offset = addr & (PAGE_SIZE-1);
3679
3680 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3681 return -EINVAL;
3682
3683 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3684 if (write)
3685 memcpy_toio(maddr + offset, buf, len);
3686 else
3687 memcpy_fromio(buf, maddr + offset, len);
3688 iounmap(maddr);
3689
3690 return len;
3691 }
3692 EXPORT_SYMBOL_GPL(generic_access_phys);
3693 #endif
3694
3695 /*
3696 * Access another process' address space as given in mm. If non-NULL, use the
3697 * given task for page fault accounting.
3698 */
3699 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3700 unsigned long addr, void *buf, int len, int write)
3701 {
3702 struct vm_area_struct *vma;
3703 void *old_buf = buf;
3704
3705 down_read(&mm->mmap_sem);
3706 /* ignore errors, just check how much was successfully transferred */
3707 while (len) {
3708 int bytes, ret, offset;
3709 void *maddr;
3710 struct page *page = NULL;
3711
3712 ret = get_user_pages(tsk, mm, addr, 1,
3713 write, 1, &page, &vma);
3714 if (ret <= 0) {
3715 #ifndef CONFIG_HAVE_IOREMAP_PROT
3716 break;
3717 #else
3718 /*
3719 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3720 * we can access using slightly different code.
3721 */
3722 vma = find_vma(mm, addr);
3723 if (!vma || vma->vm_start > addr)
3724 break;
3725 if (vma->vm_ops && vma->vm_ops->access)
3726 ret = vma->vm_ops->access(vma, addr, buf,
3727 len, write);
3728 if (ret <= 0)
3729 break;
3730 bytes = ret;
3731 #endif
3732 } else {
3733 bytes = len;
3734 offset = addr & (PAGE_SIZE-1);
3735 if (bytes > PAGE_SIZE-offset)
3736 bytes = PAGE_SIZE-offset;
3737
3738 maddr = kmap(page);
3739 if (write) {
3740 copy_to_user_page(vma, page, addr,
3741 maddr + offset, buf, bytes);
3742 set_page_dirty_lock(page);
3743 } else {
3744 copy_from_user_page(vma, page, addr,
3745 buf, maddr + offset, bytes);
3746 }
3747 kunmap(page);
3748 page_cache_release(page);
3749 }
3750 len -= bytes;
3751 buf += bytes;
3752 addr += bytes;
3753 }
3754 up_read(&mm->mmap_sem);
3755
3756 return buf - old_buf;
3757 }
3758
3759 /**
3760 * access_remote_vm - access another process' address space
3761 * @mm: the mm_struct of the target address space
3762 * @addr: start address to access
3763 * @buf: source or destination buffer
3764 * @len: number of bytes to transfer
3765 * @write: whether the access is a write
3766 *
3767 * The caller must hold a reference on @mm.
3768 */
3769 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3770 void *buf, int len, int write)
3771 {
3772 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3773 }
3774
3775 /*
3776 * Access another process' address space.
3777 * Source/target buffer must be kernel space,
3778 * Do not walk the page table directly, use get_user_pages
3779 */
3780 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3781 void *buf, int len, int write)
3782 {
3783 struct mm_struct *mm;
3784 int ret;
3785
3786 mm = get_task_mm(tsk);
3787 if (!mm)
3788 return 0;
3789
3790 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3791 mmput(mm);
3792
3793 return ret;
3794 }
3795
3796 /*
3797 * Print the name of a VMA.
3798 */
3799 void print_vma_addr(char *prefix, unsigned long ip)
3800 {
3801 struct mm_struct *mm = current->mm;
3802 struct vm_area_struct *vma;
3803
3804 /*
3805 * Do not print if we are in atomic
3806 * contexts (in exception stacks, etc.):
3807 */
3808 if (preempt_count())
3809 return;
3810
3811 down_read(&mm->mmap_sem);
3812 vma = find_vma(mm, ip);
3813 if (vma && vma->vm_file) {
3814 struct file *f = vma->vm_file;
3815 char *buf = (char *)__get_free_page(GFP_KERNEL);
3816 if (buf) {
3817 char *p;
3818
3819 p = file_path(f, buf, PAGE_SIZE);
3820 if (IS_ERR(p))
3821 p = "?";
3822 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3823 vma->vm_start,
3824 vma->vm_end - vma->vm_start);
3825 free_page((unsigned long)buf);
3826 }
3827 }
3828 up_read(&mm->mmap_sem);
3829 }
3830
3831 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3832 void __might_fault(const char *file, int line)
3833 {
3834 /*
3835 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3836 * holding the mmap_sem, this is safe because kernel memory doesn't
3837 * get paged out, therefore we'll never actually fault, and the
3838 * below annotations will generate false positives.
3839 */
3840 if (segment_eq(get_fs(), KERNEL_DS))
3841 return;
3842 if (pagefault_disabled())
3843 return;
3844 __might_sleep(file, line, 0);
3845 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3846 if (current->mm)
3847 might_lock_read(&current->mm->mmap_sem);
3848 #endif
3849 }
3850 EXPORT_SYMBOL(__might_fault);
3851 #endif
3852
3853 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3854 static void clear_gigantic_page(struct page *page,
3855 unsigned long addr,
3856 unsigned int pages_per_huge_page)
3857 {
3858 int i;
3859 struct page *p = page;
3860
3861 might_sleep();
3862 for (i = 0; i < pages_per_huge_page;
3863 i++, p = mem_map_next(p, page, i)) {
3864 cond_resched();
3865 clear_user_highpage(p, addr + i * PAGE_SIZE);
3866 }
3867 }
3868 void clear_huge_page(struct page *page,
3869 unsigned long addr, unsigned int pages_per_huge_page)
3870 {
3871 int i;
3872
3873 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3874 clear_gigantic_page(page, addr, pages_per_huge_page);
3875 return;
3876 }
3877
3878 might_sleep();
3879 for (i = 0; i < pages_per_huge_page; i++) {
3880 cond_resched();
3881 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3882 }
3883 }
3884
3885 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3886 unsigned long addr,
3887 struct vm_area_struct *vma,
3888 unsigned int pages_per_huge_page)
3889 {
3890 int i;
3891 struct page *dst_base = dst;
3892 struct page *src_base = src;
3893
3894 for (i = 0; i < pages_per_huge_page; ) {
3895 cond_resched();
3896 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3897
3898 i++;
3899 dst = mem_map_next(dst, dst_base, i);
3900 src = mem_map_next(src, src_base, i);
3901 }
3902 }
3903
3904 void copy_user_huge_page(struct page *dst, struct page *src,
3905 unsigned long addr, struct vm_area_struct *vma,
3906 unsigned int pages_per_huge_page)
3907 {
3908 int i;
3909
3910 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3911 copy_user_gigantic_page(dst, src, addr, vma,
3912 pages_per_huge_page);
3913 return;
3914 }
3915
3916 might_sleep();
3917 for (i = 0; i < pages_per_huge_page; i++) {
3918 cond_resched();
3919 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3920 }
3921 }
3922 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3923
3924 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3925
3926 static struct kmem_cache *page_ptl_cachep;
3927
3928 void __init ptlock_cache_init(void)
3929 {
3930 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3931 SLAB_PANIC, NULL);
3932 }
3933
3934 bool ptlock_alloc(struct page *page)
3935 {
3936 spinlock_t *ptl;
3937
3938 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3939 if (!ptl)
3940 return false;
3941 page->ptl = ptl;
3942 return true;
3943 }
3944
3945 void ptlock_free(struct page *page)
3946 {
3947 kmem_cache_free(page_ptl_cachep, page->ptl);
3948 }
3949 #endif