mm/memory.c: share the i_mmap_rwsem
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232
233 __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 if (!tlb->end)
239 return;
240
241 tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
244 #endif
245 __tlb_reset_range(tlb);
246 }
247
248 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
249 {
250 struct mmu_gather_batch *batch;
251
252 for (batch = &tlb->local; batch; batch = batch->next) {
253 free_pages_and_swap_cache(batch->pages, batch->nr);
254 batch->nr = 0;
255 }
256 tlb->active = &tlb->local;
257 }
258
259 void tlb_flush_mmu(struct mmu_gather *tlb)
260 {
261 tlb_flush_mmu_tlbonly(tlb);
262 tlb_flush_mmu_free(tlb);
263 }
264
265 /* tlb_finish_mmu
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
268 */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 struct mmu_gather_batch *batch, *next;
272
273 tlb_flush_mmu(tlb);
274
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
277
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
281 }
282 tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 struct mmu_gather_batch *batch;
294
295 VM_BUG_ON(!tlb->end);
296
297 batch = tlb->active;
298 batch->pages[batch->nr++] = page;
299 if (batch->nr == batch->max) {
300 if (!tlb_next_batch(tlb))
301 return 0;
302 batch = tlb->active;
303 }
304 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305
306 return batch->max - batch->nr;
307 }
308
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313 /*
314 * See the comment near struct mmu_table_batch.
315 */
316
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 /* Simply deliver the interrupt */
320 }
321
322 static void tlb_remove_table_one(void *table)
323 {
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333 }
334
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346 }
347
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356 }
357
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 struct mmu_table_batch **batch = &tlb->batch;
361
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
389 */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
392 {
393 pgtable_t token = pmd_pgtable(*pmd);
394 pmd_clear(pmd);
395 pte_free_tlb(tlb, token, addr);
396 atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
402 {
403 pmd_t *pmd;
404 unsigned long next;
405 unsigned long start;
406
407 start = addr;
408 pmd = pmd_offset(pud, addr);
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
413 free_pte_range(tlb, pmd, addr);
414 } while (pmd++, addr = next, addr != end);
415
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
423 }
424 if (end - 1 > ceiling - 1)
425 return;
426
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
429 pmd_free_tlb(tlb, pmd, start);
430 }
431
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
435 {
436 pud_t *pud;
437 unsigned long next;
438 unsigned long start;
439
440 start = addr;
441 pud = pud_offset(pgd, addr);
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 } while (pud++, addr = next, addr != end);
448
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
456 }
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
462 pud_free_tlb(tlb, pud, start);
463 }
464
465 /*
466 * This function frees user-level page tables of a process.
467 */
468 void free_pgd_range(struct mmu_gather *tlb,
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
471 {
472 pgd_t *pgd;
473 unsigned long next;
474
475 /*
476 * The next few lines have given us lots of grief...
477 *
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
481 *
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
489 *
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
494 *
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
499 */
500
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
506 }
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
516
517 pgd = pgd_offset(tlb->mm, addr);
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 } while (pgd++, addr = next, addr != end);
524 }
525
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 unsigned long floor, unsigned long ceiling)
528 {
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
532
533 /*
534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
536 */
537 unlink_anon_vmas(vma);
538 unlink_file_vma(vma);
539
540 if (is_vm_hugetlb_page(vma)) {
541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 floor, next? next->vm_start: ceiling);
543 } else {
544 /*
545 * Optimization: gather nearby vmas into one call down
546 */
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 && !is_vm_hugetlb_page(next)) {
549 vma = next;
550 next = vma->vm_next;
551 unlink_anon_vmas(vma);
552 unlink_file_vma(vma);
553 }
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
556 }
557 vma = next;
558 }
559 }
560
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
563 {
564 spinlock_t *ptl;
565 pgtable_t new = pte_alloc_one(mm, address);
566 int wait_split_huge_page;
567 if (!new)
568 return -ENOMEM;
569
570 /*
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
574 *
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
582 */
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
585 ptl = pmd_lock(mm, pmd);
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
588 atomic_long_inc(&mm->nr_ptes);
589 pmd_populate(mm, pmd, new);
590 new = NULL;
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
593 spin_unlock(ptl);
594 if (new)
595 pte_free(mm, new);
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
598 return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
607 smp_wmb(); /* See comment in __pte_alloc */
608
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
615 spin_unlock(&init_mm.page_table_lock);
616 if (new)
617 pte_free_kernel(&init_mm, new);
618 return 0;
619 }
620
621 static inline void init_rss_vec(int *rss)
622 {
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628 int i;
629
630 if (current->mm == mm)
631 sync_mm_rss(mm);
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
635 }
636
637 /*
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
641 *
642 * The calling function must still handle the error.
643 */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
646 {
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
668 nr_unshown);
669 nr_unshown = 0;
670 }
671 nr_shown = 0;
672 }
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
675
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
678
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683 if (page)
684 dump_page(page, "bad pte");
685 printk(KERN_ALERT
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 /*
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 */
691 if (vma->vm_ops)
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
694 if (vma->vm_file)
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
697 dump_stack();
698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700
701 /*
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
703 *
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
707 *
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
712 *
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
716 *
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
721 *
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723 *
724 * And for normal mappings this is false.
725 *
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
730 *
731 *
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733 *
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
741 *
742 */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
750 {
751 unsigned long pfn = pte_pfn(pte);
752
753 if (HAVE_PTE_SPECIAL) {
754 if (likely(!pte_special(pte)))
755 goto check_pfn;
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
758 if (!is_zero_pfn(pfn))
759 print_bad_pte(vma, addr, pte, NULL);
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
778 }
779
780 if (is_zero_pfn(pfn))
781 return NULL;
782 check_pfn:
783 if (unlikely(pfn > highest_memmap_pfn)) {
784 print_bad_pte(vma, addr, pte, NULL);
785 return NULL;
786 }
787
788 /*
789 * NOTE! We still have PageReserved() pages in the page tables.
790 * eg. VDSO mappings can cause them to exist.
791 */
792 out:
793 return pfn_to_page(pfn);
794 }
795
796 /*
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
800 */
801
802 static inline unsigned long
803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
805 unsigned long addr, int *rss)
806 {
807 unsigned long vm_flags = vma->vm_flags;
808 pte_t pte = *src_pte;
809 struct page *page;
810
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte))) {
813 if (!pte_file(pte)) {
814 swp_entry_t entry = pte_to_swp_entry(pte);
815
816 if (likely(!non_swap_entry(entry))) {
817 if (swap_duplicate(entry) < 0)
818 return entry.val;
819
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm->mmlist))) {
822 spin_lock(&mmlist_lock);
823 if (list_empty(&dst_mm->mmlist))
824 list_add(&dst_mm->mmlist,
825 &src_mm->mmlist);
826 spin_unlock(&mmlist_lock);
827 }
828 rss[MM_SWAPENTS]++;
829 } else if (is_migration_entry(entry)) {
830 page = migration_entry_to_page(entry);
831
832 if (PageAnon(page))
833 rss[MM_ANONPAGES]++;
834 else
835 rss[MM_FILEPAGES]++;
836
837 if (is_write_migration_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 /*
840 * COW mappings require pages in both
841 * parent and child to be set to read.
842 */
843 make_migration_entry_read(&entry);
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_soft_dirty(*src_pte))
846 pte = pte_swp_mksoft_dirty(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
848 }
849 }
850 }
851 goto out_set_pte;
852 }
853
854 /*
855 * If it's a COW mapping, write protect it both
856 * in the parent and the child
857 */
858 if (is_cow_mapping(vm_flags)) {
859 ptep_set_wrprotect(src_mm, addr, src_pte);
860 pte = pte_wrprotect(pte);
861 }
862
863 /*
864 * If it's a shared mapping, mark it clean in
865 * the child
866 */
867 if (vm_flags & VM_SHARED)
868 pte = pte_mkclean(pte);
869 pte = pte_mkold(pte);
870
871 page = vm_normal_page(vma, addr, pte);
872 if (page) {
873 get_page(page);
874 page_dup_rmap(page);
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
879 }
880
881 out_set_pte:
882 set_pte_at(dst_mm, addr, dst_pte, pte);
883 return 0;
884 }
885
886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888 unsigned long addr, unsigned long end)
889 {
890 pte_t *orig_src_pte, *orig_dst_pte;
891 pte_t *src_pte, *dst_pte;
892 spinlock_t *src_ptl, *dst_ptl;
893 int progress = 0;
894 int rss[NR_MM_COUNTERS];
895 swp_entry_t entry = (swp_entry_t){0};
896
897 again:
898 init_rss_vec(rss);
899
900 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
901 if (!dst_pte)
902 return -ENOMEM;
903 src_pte = pte_offset_map(src_pmd, addr);
904 src_ptl = pte_lockptr(src_mm, src_pmd);
905 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
906 orig_src_pte = src_pte;
907 orig_dst_pte = dst_pte;
908 arch_enter_lazy_mmu_mode();
909
910 do {
911 /*
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
914 */
915 if (progress >= 32) {
916 progress = 0;
917 if (need_resched() ||
918 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
919 break;
920 }
921 if (pte_none(*src_pte)) {
922 progress++;
923 continue;
924 }
925 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926 vma, addr, rss);
927 if (entry.val)
928 break;
929 progress += 8;
930 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
931
932 arch_leave_lazy_mmu_mode();
933 spin_unlock(src_ptl);
934 pte_unmap(orig_src_pte);
935 add_mm_rss_vec(dst_mm, rss);
936 pte_unmap_unlock(orig_dst_pte, dst_ptl);
937 cond_resched();
938
939 if (entry.val) {
940 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941 return -ENOMEM;
942 progress = 0;
943 }
944 if (addr != end)
945 goto again;
946 return 0;
947 }
948
949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952 {
953 pmd_t *src_pmd, *dst_pmd;
954 unsigned long next;
955
956 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957 if (!dst_pmd)
958 return -ENOMEM;
959 src_pmd = pmd_offset(src_pud, addr);
960 do {
961 next = pmd_addr_end(addr, end);
962 if (pmd_trans_huge(*src_pmd)) {
963 int err;
964 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
965 err = copy_huge_pmd(dst_mm, src_mm,
966 dst_pmd, src_pmd, addr, vma);
967 if (err == -ENOMEM)
968 return -ENOMEM;
969 if (!err)
970 continue;
971 /* fall through */
972 }
973 if (pmd_none_or_clear_bad(src_pmd))
974 continue;
975 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976 vma, addr, next))
977 return -ENOMEM;
978 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
979 return 0;
980 }
981
982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984 unsigned long addr, unsigned long end)
985 {
986 pud_t *src_pud, *dst_pud;
987 unsigned long next;
988
989 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990 if (!dst_pud)
991 return -ENOMEM;
992 src_pud = pud_offset(src_pgd, addr);
993 do {
994 next = pud_addr_end(addr, end);
995 if (pud_none_or_clear_bad(src_pud))
996 continue;
997 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998 vma, addr, next))
999 return -ENOMEM;
1000 } while (dst_pud++, src_pud++, addr = next, addr != end);
1001 return 0;
1002 }
1003
1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005 struct vm_area_struct *vma)
1006 {
1007 pgd_t *src_pgd, *dst_pgd;
1008 unsigned long next;
1009 unsigned long addr = vma->vm_start;
1010 unsigned long end = vma->vm_end;
1011 unsigned long mmun_start; /* For mmu_notifiers */
1012 unsigned long mmun_end; /* For mmu_notifiers */
1013 bool is_cow;
1014 int ret;
1015
1016 /*
1017 * Don't copy ptes where a page fault will fill them correctly.
1018 * Fork becomes much lighter when there are big shared or private
1019 * readonly mappings. The tradeoff is that copy_page_range is more
1020 * efficient than faulting.
1021 */
1022 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023 VM_PFNMAP | VM_MIXEDMAP))) {
1024 if (!vma->anon_vma)
1025 return 0;
1026 }
1027
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032 /*
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1035 */
1036 ret = track_pfn_copy(vma);
1037 if (ret)
1038 return ret;
1039 }
1040
1041 /*
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1046 */
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
1053
1054 ret = 0;
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1065 }
1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 struct vm_area_struct *vma, pmd_t *pmd,
1075 unsigned long addr, unsigned long end,
1076 struct zap_details *details)
1077 {
1078 struct mm_struct *mm = tlb->mm;
1079 int force_flush = 0;
1080 int rss[NR_MM_COUNTERS];
1081 spinlock_t *ptl;
1082 pte_t *start_pte;
1083 pte_t *pte;
1084
1085 again:
1086 init_rss_vec(rss);
1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 pte = start_pte;
1089 arch_enter_lazy_mmu_mode();
1090 do {
1091 pte_t ptent = *pte;
1092 if (pte_none(ptent)) {
1093 continue;
1094 }
1095
1096 if (pte_present(ptent)) {
1097 struct page *page;
1098
1099 page = vm_normal_page(vma, addr, ptent);
1100 if (unlikely(details) && page) {
1101 /*
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1105 */
1106 if (details->check_mapping &&
1107 details->check_mapping != page->mapping)
1108 continue;
1109 /*
1110 * Each page->index must be checked when
1111 * invalidating or truncating nonlinear.
1112 */
1113 if (details->nonlinear_vma &&
1114 (page->index < details->first_index ||
1115 page->index > details->last_index))
1116 continue;
1117 }
1118 ptent = ptep_get_and_clear_full(mm, addr, pte,
1119 tlb->fullmm);
1120 tlb_remove_tlb_entry(tlb, pte, addr);
1121 if (unlikely(!page))
1122 continue;
1123 if (unlikely(details) && details->nonlinear_vma
1124 && linear_page_index(details->nonlinear_vma,
1125 addr) != page->index) {
1126 pte_t ptfile = pgoff_to_pte(page->index);
1127 if (pte_soft_dirty(ptent))
1128 ptfile = pte_file_mksoft_dirty(ptfile);
1129 set_pte_at(mm, addr, pte, ptfile);
1130 }
1131 if (PageAnon(page))
1132 rss[MM_ANONPAGES]--;
1133 else {
1134 if (pte_dirty(ptent)) {
1135 force_flush = 1;
1136 set_page_dirty(page);
1137 }
1138 if (pte_young(ptent) &&
1139 likely(!(vma->vm_flags & VM_SEQ_READ)))
1140 mark_page_accessed(page);
1141 rss[MM_FILEPAGES]--;
1142 }
1143 page_remove_rmap(page);
1144 if (unlikely(page_mapcount(page) < 0))
1145 print_bad_pte(vma, addr, ptent, page);
1146 if (unlikely(!__tlb_remove_page(tlb, page))) {
1147 force_flush = 1;
1148 addr += PAGE_SIZE;
1149 break;
1150 }
1151 continue;
1152 }
1153 /*
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1156 */
1157 if (unlikely(details))
1158 continue;
1159 if (pte_file(ptent)) {
1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 print_bad_pte(vma, addr, ptent, NULL);
1162 } else {
1163 swp_entry_t entry = pte_to_swp_entry(ptent);
1164
1165 if (!non_swap_entry(entry))
1166 rss[MM_SWAPENTS]--;
1167 else if (is_migration_entry(entry)) {
1168 struct page *page;
1169
1170 page = migration_entry_to_page(entry);
1171
1172 if (PageAnon(page))
1173 rss[MM_ANONPAGES]--;
1174 else
1175 rss[MM_FILEPAGES]--;
1176 }
1177 if (unlikely(!free_swap_and_cache(entry)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 }
1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1181 } while (pte++, addr += PAGE_SIZE, addr != end);
1182
1183 add_mm_rss_vec(mm, rss);
1184 arch_leave_lazy_mmu_mode();
1185
1186 /* Do the actual TLB flush before dropping ptl */
1187 if (force_flush)
1188 tlb_flush_mmu_tlbonly(tlb);
1189 pte_unmap_unlock(start_pte, ptl);
1190
1191 /*
1192 * If we forced a TLB flush (either due to running out of
1193 * batch buffers or because we needed to flush dirty TLB
1194 * entries before releasing the ptl), free the batched
1195 * memory too. Restart if we didn't do everything.
1196 */
1197 if (force_flush) {
1198 force_flush = 0;
1199 tlb_flush_mmu_free(tlb);
1200
1201 if (addr != end)
1202 goto again;
1203 }
1204
1205 return addr;
1206 }
1207
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 struct vm_area_struct *vma, pud_t *pud,
1210 unsigned long addr, unsigned long end,
1211 struct zap_details *details)
1212 {
1213 pmd_t *pmd;
1214 unsigned long next;
1215
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
1219 if (pmd_trans_huge(*pmd)) {
1220 if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1228 }
1229 #endif
1230 split_huge_page_pmd(vma, addr, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 goto next;
1233 /* fall through */
1234 }
1235 /*
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1241 */
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
1248
1249 return addr;
1250 }
1251
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, pgd_t *pgd,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1256 {
1257 pud_t *pud;
1258 unsigned long next;
1259
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
1263 if (pud_none_or_clear_bad(pud))
1264 continue;
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
1267
1268 return addr;
1269 }
1270
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1275 {
1276 pgd_t *pgd;
1277 unsigned long next;
1278
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1281
1282 BUG_ON(addr >= end);
1283 tlb_start_vma(tlb, vma);
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
1287 if (pgd_none_or_clear_bad(pgd))
1288 continue;
1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 } while (pgd++, addr = next, addr != end);
1291 tlb_end_vma(tlb, vma);
1292 }
1293
1294
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296 struct vm_area_struct *vma, unsigned long start_addr,
1297 unsigned long end_addr,
1298 struct zap_details *details)
1299 {
1300 unsigned long start = max(vma->vm_start, start_addr);
1301 unsigned long end;
1302
1303 if (start >= vma->vm_end)
1304 return;
1305 end = min(vma->vm_end, end_addr);
1306 if (end <= vma->vm_start)
1307 return;
1308
1309 if (vma->vm_file)
1310 uprobe_munmap(vma, start, end);
1311
1312 if (unlikely(vma->vm_flags & VM_PFNMAP))
1313 untrack_pfn(vma, 0, 0);
1314
1315 if (start != end) {
1316 if (unlikely(is_vm_hugetlb_page(vma))) {
1317 /*
1318 * It is undesirable to test vma->vm_file as it
1319 * should be non-null for valid hugetlb area.
1320 * However, vm_file will be NULL in the error
1321 * cleanup path of mmap_region. When
1322 * hugetlbfs ->mmap method fails,
1323 * mmap_region() nullifies vma->vm_file
1324 * before calling this function to clean up.
1325 * Since no pte has actually been setup, it is
1326 * safe to do nothing in this case.
1327 */
1328 if (vma->vm_file) {
1329 i_mmap_lock_write(vma->vm_file->f_mapping);
1330 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331 i_mmap_unlock_write(vma->vm_file->f_mapping);
1332 }
1333 } else
1334 unmap_page_range(tlb, vma, start, end, details);
1335 }
1336 }
1337
1338 /**
1339 * unmap_vmas - unmap a range of memory covered by a list of vma's
1340 * @tlb: address of the caller's struct mmu_gather
1341 * @vma: the starting vma
1342 * @start_addr: virtual address at which to start unmapping
1343 * @end_addr: virtual address at which to end unmapping
1344 *
1345 * Unmap all pages in the vma list.
1346 *
1347 * Only addresses between `start' and `end' will be unmapped.
1348 *
1349 * The VMA list must be sorted in ascending virtual address order.
1350 *
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1355 */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357 struct vm_area_struct *vma, unsigned long start_addr,
1358 unsigned long end_addr)
1359 {
1360 struct mm_struct *mm = vma->vm_mm;
1361
1362 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367
1368 /**
1369 * zap_page_range - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @start: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of nonlinear truncation or shared cache invalidation
1374 *
1375 * Caller must protect the VMA list
1376 */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378 unsigned long size, struct zap_details *details)
1379 {
1380 struct mm_struct *mm = vma->vm_mm;
1381 struct mmu_gather tlb;
1382 unsigned long end = start + size;
1383
1384 lru_add_drain();
1385 tlb_gather_mmu(&tlb, mm, start, end);
1386 update_hiwater_rss(mm);
1387 mmu_notifier_invalidate_range_start(mm, start, end);
1388 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389 unmap_single_vma(&tlb, vma, start, end, details);
1390 mmu_notifier_invalidate_range_end(mm, start, end);
1391 tlb_finish_mmu(&tlb, start, end);
1392 }
1393
1394 /**
1395 * zap_page_range_single - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1400 *
1401 * The range must fit into one VMA.
1402 */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404 unsigned long size, struct zap_details *details)
1405 {
1406 struct mm_struct *mm = vma->vm_mm;
1407 struct mmu_gather tlb;
1408 unsigned long end = address + size;
1409
1410 lru_add_drain();
1411 tlb_gather_mmu(&tlb, mm, address, end);
1412 update_hiwater_rss(mm);
1413 mmu_notifier_invalidate_range_start(mm, address, end);
1414 unmap_single_vma(&tlb, vma, address, end, details);
1415 mmu_notifier_invalidate_range_end(mm, address, end);
1416 tlb_finish_mmu(&tlb, address, end);
1417 }
1418
1419 /**
1420 * zap_vma_ptes - remove ptes mapping the vma
1421 * @vma: vm_area_struct holding ptes to be zapped
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 *
1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426 *
1427 * The entire address range must be fully contained within the vma.
1428 *
1429 * Returns 0 if successful.
1430 */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size)
1433 {
1434 if (address < vma->vm_start || address + size > vma->vm_end ||
1435 !(vma->vm_flags & VM_PFNMAP))
1436 return -1;
1437 zap_page_range_single(vma, address, size, NULL);
1438 return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 spinlock_t **ptl)
1444 {
1445 pgd_t * pgd = pgd_offset(mm, addr);
1446 pud_t * pud = pud_alloc(mm, pgd, addr);
1447 if (pud) {
1448 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1449 if (pmd) {
1450 VM_BUG_ON(pmd_trans_huge(*pmd));
1451 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1452 }
1453 }
1454 return NULL;
1455 }
1456
1457 /*
1458 * This is the old fallback for page remapping.
1459 *
1460 * For historical reasons, it only allows reserved pages. Only
1461 * old drivers should use this, and they needed to mark their
1462 * pages reserved for the old functions anyway.
1463 */
1464 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1465 struct page *page, pgprot_t prot)
1466 {
1467 struct mm_struct *mm = vma->vm_mm;
1468 int retval;
1469 pte_t *pte;
1470 spinlock_t *ptl;
1471
1472 retval = -EINVAL;
1473 if (PageAnon(page))
1474 goto out;
1475 retval = -ENOMEM;
1476 flush_dcache_page(page);
1477 pte = get_locked_pte(mm, addr, &ptl);
1478 if (!pte)
1479 goto out;
1480 retval = -EBUSY;
1481 if (!pte_none(*pte))
1482 goto out_unlock;
1483
1484 /* Ok, finally just insert the thing.. */
1485 get_page(page);
1486 inc_mm_counter_fast(mm, MM_FILEPAGES);
1487 page_add_file_rmap(page);
1488 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1489
1490 retval = 0;
1491 pte_unmap_unlock(pte, ptl);
1492 return retval;
1493 out_unlock:
1494 pte_unmap_unlock(pte, ptl);
1495 out:
1496 return retval;
1497 }
1498
1499 /**
1500 * vm_insert_page - insert single page into user vma
1501 * @vma: user vma to map to
1502 * @addr: target user address of this page
1503 * @page: source kernel page
1504 *
1505 * This allows drivers to insert individual pages they've allocated
1506 * into a user vma.
1507 *
1508 * The page has to be a nice clean _individual_ kernel allocation.
1509 * If you allocate a compound page, you need to have marked it as
1510 * such (__GFP_COMP), or manually just split the page up yourself
1511 * (see split_page()).
1512 *
1513 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1514 * took an arbitrary page protection parameter. This doesn't allow
1515 * that. Your vma protection will have to be set up correctly, which
1516 * means that if you want a shared writable mapping, you'd better
1517 * ask for a shared writable mapping!
1518 *
1519 * The page does not need to be reserved.
1520 *
1521 * Usually this function is called from f_op->mmap() handler
1522 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1523 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1524 * function from other places, for example from page-fault handler.
1525 */
1526 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1527 struct page *page)
1528 {
1529 if (addr < vma->vm_start || addr >= vma->vm_end)
1530 return -EFAULT;
1531 if (!page_count(page))
1532 return -EINVAL;
1533 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1534 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1535 BUG_ON(vma->vm_flags & VM_PFNMAP);
1536 vma->vm_flags |= VM_MIXEDMAP;
1537 }
1538 return insert_page(vma, addr, page, vma->vm_page_prot);
1539 }
1540 EXPORT_SYMBOL(vm_insert_page);
1541
1542 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1543 unsigned long pfn, pgprot_t prot)
1544 {
1545 struct mm_struct *mm = vma->vm_mm;
1546 int retval;
1547 pte_t *pte, entry;
1548 spinlock_t *ptl;
1549
1550 retval = -ENOMEM;
1551 pte = get_locked_pte(mm, addr, &ptl);
1552 if (!pte)
1553 goto out;
1554 retval = -EBUSY;
1555 if (!pte_none(*pte))
1556 goto out_unlock;
1557
1558 /* Ok, finally just insert the thing.. */
1559 entry = pte_mkspecial(pfn_pte(pfn, prot));
1560 set_pte_at(mm, addr, pte, entry);
1561 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1562
1563 retval = 0;
1564 out_unlock:
1565 pte_unmap_unlock(pte, ptl);
1566 out:
1567 return retval;
1568 }
1569
1570 /**
1571 * vm_insert_pfn - insert single pfn into user vma
1572 * @vma: user vma to map to
1573 * @addr: target user address of this page
1574 * @pfn: source kernel pfn
1575 *
1576 * Similar to vm_insert_page, this allows drivers to insert individual pages
1577 * they've allocated into a user vma. Same comments apply.
1578 *
1579 * This function should only be called from a vm_ops->fault handler, and
1580 * in that case the handler should return NULL.
1581 *
1582 * vma cannot be a COW mapping.
1583 *
1584 * As this is called only for pages that do not currently exist, we
1585 * do not need to flush old virtual caches or the TLB.
1586 */
1587 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1588 unsigned long pfn)
1589 {
1590 int ret;
1591 pgprot_t pgprot = vma->vm_page_prot;
1592 /*
1593 * Technically, architectures with pte_special can avoid all these
1594 * restrictions (same for remap_pfn_range). However we would like
1595 * consistency in testing and feature parity among all, so we should
1596 * try to keep these invariants in place for everybody.
1597 */
1598 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1599 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1600 (VM_PFNMAP|VM_MIXEDMAP));
1601 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1602 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1603
1604 if (addr < vma->vm_start || addr >= vma->vm_end)
1605 return -EFAULT;
1606 if (track_pfn_insert(vma, &pgprot, pfn))
1607 return -EINVAL;
1608
1609 ret = insert_pfn(vma, addr, pfn, pgprot);
1610
1611 return ret;
1612 }
1613 EXPORT_SYMBOL(vm_insert_pfn);
1614
1615 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1616 unsigned long pfn)
1617 {
1618 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1619
1620 if (addr < vma->vm_start || addr >= vma->vm_end)
1621 return -EFAULT;
1622
1623 /*
1624 * If we don't have pte special, then we have to use the pfn_valid()
1625 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1626 * refcount the page if pfn_valid is true (hence insert_page rather
1627 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1628 * without pte special, it would there be refcounted as a normal page.
1629 */
1630 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1631 struct page *page;
1632
1633 page = pfn_to_page(pfn);
1634 return insert_page(vma, addr, page, vma->vm_page_prot);
1635 }
1636 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1637 }
1638 EXPORT_SYMBOL(vm_insert_mixed);
1639
1640 /*
1641 * maps a range of physical memory into the requested pages. the old
1642 * mappings are removed. any references to nonexistent pages results
1643 * in null mappings (currently treated as "copy-on-access")
1644 */
1645 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1646 unsigned long addr, unsigned long end,
1647 unsigned long pfn, pgprot_t prot)
1648 {
1649 pte_t *pte;
1650 spinlock_t *ptl;
1651
1652 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1653 if (!pte)
1654 return -ENOMEM;
1655 arch_enter_lazy_mmu_mode();
1656 do {
1657 BUG_ON(!pte_none(*pte));
1658 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1659 pfn++;
1660 } while (pte++, addr += PAGE_SIZE, addr != end);
1661 arch_leave_lazy_mmu_mode();
1662 pte_unmap_unlock(pte - 1, ptl);
1663 return 0;
1664 }
1665
1666 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1667 unsigned long addr, unsigned long end,
1668 unsigned long pfn, pgprot_t prot)
1669 {
1670 pmd_t *pmd;
1671 unsigned long next;
1672
1673 pfn -= addr >> PAGE_SHIFT;
1674 pmd = pmd_alloc(mm, pud, addr);
1675 if (!pmd)
1676 return -ENOMEM;
1677 VM_BUG_ON(pmd_trans_huge(*pmd));
1678 do {
1679 next = pmd_addr_end(addr, end);
1680 if (remap_pte_range(mm, pmd, addr, next,
1681 pfn + (addr >> PAGE_SHIFT), prot))
1682 return -ENOMEM;
1683 } while (pmd++, addr = next, addr != end);
1684 return 0;
1685 }
1686
1687 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1688 unsigned long addr, unsigned long end,
1689 unsigned long pfn, pgprot_t prot)
1690 {
1691 pud_t *pud;
1692 unsigned long next;
1693
1694 pfn -= addr >> PAGE_SHIFT;
1695 pud = pud_alloc(mm, pgd, addr);
1696 if (!pud)
1697 return -ENOMEM;
1698 do {
1699 next = pud_addr_end(addr, end);
1700 if (remap_pmd_range(mm, pud, addr, next,
1701 pfn + (addr >> PAGE_SHIFT), prot))
1702 return -ENOMEM;
1703 } while (pud++, addr = next, addr != end);
1704 return 0;
1705 }
1706
1707 /**
1708 * remap_pfn_range - remap kernel memory to userspace
1709 * @vma: user vma to map to
1710 * @addr: target user address to start at
1711 * @pfn: physical address of kernel memory
1712 * @size: size of map area
1713 * @prot: page protection flags for this mapping
1714 *
1715 * Note: this is only safe if the mm semaphore is held when called.
1716 */
1717 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1718 unsigned long pfn, unsigned long size, pgprot_t prot)
1719 {
1720 pgd_t *pgd;
1721 unsigned long next;
1722 unsigned long end = addr + PAGE_ALIGN(size);
1723 struct mm_struct *mm = vma->vm_mm;
1724 int err;
1725
1726 /*
1727 * Physically remapped pages are special. Tell the
1728 * rest of the world about it:
1729 * VM_IO tells people not to look at these pages
1730 * (accesses can have side effects).
1731 * VM_PFNMAP tells the core MM that the base pages are just
1732 * raw PFN mappings, and do not have a "struct page" associated
1733 * with them.
1734 * VM_DONTEXPAND
1735 * Disable vma merging and expanding with mremap().
1736 * VM_DONTDUMP
1737 * Omit vma from core dump, even when VM_IO turned off.
1738 *
1739 * There's a horrible special case to handle copy-on-write
1740 * behaviour that some programs depend on. We mark the "original"
1741 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1742 * See vm_normal_page() for details.
1743 */
1744 if (is_cow_mapping(vma->vm_flags)) {
1745 if (addr != vma->vm_start || end != vma->vm_end)
1746 return -EINVAL;
1747 vma->vm_pgoff = pfn;
1748 }
1749
1750 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1751 if (err)
1752 return -EINVAL;
1753
1754 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1755
1756 BUG_ON(addr >= end);
1757 pfn -= addr >> PAGE_SHIFT;
1758 pgd = pgd_offset(mm, addr);
1759 flush_cache_range(vma, addr, end);
1760 do {
1761 next = pgd_addr_end(addr, end);
1762 err = remap_pud_range(mm, pgd, addr, next,
1763 pfn + (addr >> PAGE_SHIFT), prot);
1764 if (err)
1765 break;
1766 } while (pgd++, addr = next, addr != end);
1767
1768 if (err)
1769 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1770
1771 return err;
1772 }
1773 EXPORT_SYMBOL(remap_pfn_range);
1774
1775 /**
1776 * vm_iomap_memory - remap memory to userspace
1777 * @vma: user vma to map to
1778 * @start: start of area
1779 * @len: size of area
1780 *
1781 * This is a simplified io_remap_pfn_range() for common driver use. The
1782 * driver just needs to give us the physical memory range to be mapped,
1783 * we'll figure out the rest from the vma information.
1784 *
1785 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1786 * whatever write-combining details or similar.
1787 */
1788 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1789 {
1790 unsigned long vm_len, pfn, pages;
1791
1792 /* Check that the physical memory area passed in looks valid */
1793 if (start + len < start)
1794 return -EINVAL;
1795 /*
1796 * You *really* shouldn't map things that aren't page-aligned,
1797 * but we've historically allowed it because IO memory might
1798 * just have smaller alignment.
1799 */
1800 len += start & ~PAGE_MASK;
1801 pfn = start >> PAGE_SHIFT;
1802 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1803 if (pfn + pages < pfn)
1804 return -EINVAL;
1805
1806 /* We start the mapping 'vm_pgoff' pages into the area */
1807 if (vma->vm_pgoff > pages)
1808 return -EINVAL;
1809 pfn += vma->vm_pgoff;
1810 pages -= vma->vm_pgoff;
1811
1812 /* Can we fit all of the mapping? */
1813 vm_len = vma->vm_end - vma->vm_start;
1814 if (vm_len >> PAGE_SHIFT > pages)
1815 return -EINVAL;
1816
1817 /* Ok, let it rip */
1818 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1819 }
1820 EXPORT_SYMBOL(vm_iomap_memory);
1821
1822 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823 unsigned long addr, unsigned long end,
1824 pte_fn_t fn, void *data)
1825 {
1826 pte_t *pte;
1827 int err;
1828 pgtable_t token;
1829 spinlock_t *uninitialized_var(ptl);
1830
1831 pte = (mm == &init_mm) ?
1832 pte_alloc_kernel(pmd, addr) :
1833 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1834 if (!pte)
1835 return -ENOMEM;
1836
1837 BUG_ON(pmd_huge(*pmd));
1838
1839 arch_enter_lazy_mmu_mode();
1840
1841 token = pmd_pgtable(*pmd);
1842
1843 do {
1844 err = fn(pte++, token, addr, data);
1845 if (err)
1846 break;
1847 } while (addr += PAGE_SIZE, addr != end);
1848
1849 arch_leave_lazy_mmu_mode();
1850
1851 if (mm != &init_mm)
1852 pte_unmap_unlock(pte-1, ptl);
1853 return err;
1854 }
1855
1856 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1857 unsigned long addr, unsigned long end,
1858 pte_fn_t fn, void *data)
1859 {
1860 pmd_t *pmd;
1861 unsigned long next;
1862 int err;
1863
1864 BUG_ON(pud_huge(*pud));
1865
1866 pmd = pmd_alloc(mm, pud, addr);
1867 if (!pmd)
1868 return -ENOMEM;
1869 do {
1870 next = pmd_addr_end(addr, end);
1871 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1872 if (err)
1873 break;
1874 } while (pmd++, addr = next, addr != end);
1875 return err;
1876 }
1877
1878 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1879 unsigned long addr, unsigned long end,
1880 pte_fn_t fn, void *data)
1881 {
1882 pud_t *pud;
1883 unsigned long next;
1884 int err;
1885
1886 pud = pud_alloc(mm, pgd, addr);
1887 if (!pud)
1888 return -ENOMEM;
1889 do {
1890 next = pud_addr_end(addr, end);
1891 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1892 if (err)
1893 break;
1894 } while (pud++, addr = next, addr != end);
1895 return err;
1896 }
1897
1898 /*
1899 * Scan a region of virtual memory, filling in page tables as necessary
1900 * and calling a provided function on each leaf page table.
1901 */
1902 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1903 unsigned long size, pte_fn_t fn, void *data)
1904 {
1905 pgd_t *pgd;
1906 unsigned long next;
1907 unsigned long end = addr + size;
1908 int err;
1909
1910 BUG_ON(addr >= end);
1911 pgd = pgd_offset(mm, addr);
1912 do {
1913 next = pgd_addr_end(addr, end);
1914 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1915 if (err)
1916 break;
1917 } while (pgd++, addr = next, addr != end);
1918
1919 return err;
1920 }
1921 EXPORT_SYMBOL_GPL(apply_to_page_range);
1922
1923 /*
1924 * handle_pte_fault chooses page fault handler according to an entry
1925 * which was read non-atomically. Before making any commitment, on
1926 * those architectures or configurations (e.g. i386 with PAE) which
1927 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1928 * must check under lock before unmapping the pte and proceeding
1929 * (but do_wp_page is only called after already making such a check;
1930 * and do_anonymous_page can safely check later on).
1931 */
1932 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1933 pte_t *page_table, pte_t orig_pte)
1934 {
1935 int same = 1;
1936 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1937 if (sizeof(pte_t) > sizeof(unsigned long)) {
1938 spinlock_t *ptl = pte_lockptr(mm, pmd);
1939 spin_lock(ptl);
1940 same = pte_same(*page_table, orig_pte);
1941 spin_unlock(ptl);
1942 }
1943 #endif
1944 pte_unmap(page_table);
1945 return same;
1946 }
1947
1948 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1949 {
1950 debug_dma_assert_idle(src);
1951
1952 /*
1953 * If the source page was a PFN mapping, we don't have
1954 * a "struct page" for it. We do a best-effort copy by
1955 * just copying from the original user address. If that
1956 * fails, we just zero-fill it. Live with it.
1957 */
1958 if (unlikely(!src)) {
1959 void *kaddr = kmap_atomic(dst);
1960 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1961
1962 /*
1963 * This really shouldn't fail, because the page is there
1964 * in the page tables. But it might just be unreadable,
1965 * in which case we just give up and fill the result with
1966 * zeroes.
1967 */
1968 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1969 clear_page(kaddr);
1970 kunmap_atomic(kaddr);
1971 flush_dcache_page(dst);
1972 } else
1973 copy_user_highpage(dst, src, va, vma);
1974 }
1975
1976 /*
1977 * Notify the address space that the page is about to become writable so that
1978 * it can prohibit this or wait for the page to get into an appropriate state.
1979 *
1980 * We do this without the lock held, so that it can sleep if it needs to.
1981 */
1982 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1983 unsigned long address)
1984 {
1985 struct vm_fault vmf;
1986 int ret;
1987
1988 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1989 vmf.pgoff = page->index;
1990 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1991 vmf.page = page;
1992
1993 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1994 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1995 return ret;
1996 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1997 lock_page(page);
1998 if (!page->mapping) {
1999 unlock_page(page);
2000 return 0; /* retry */
2001 }
2002 ret |= VM_FAULT_LOCKED;
2003 } else
2004 VM_BUG_ON_PAGE(!PageLocked(page), page);
2005 return ret;
2006 }
2007
2008 /*
2009 * This routine handles present pages, when users try to write
2010 * to a shared page. It is done by copying the page to a new address
2011 * and decrementing the shared-page counter for the old page.
2012 *
2013 * Note that this routine assumes that the protection checks have been
2014 * done by the caller (the low-level page fault routine in most cases).
2015 * Thus we can safely just mark it writable once we've done any necessary
2016 * COW.
2017 *
2018 * We also mark the page dirty at this point even though the page will
2019 * change only once the write actually happens. This avoids a few races,
2020 * and potentially makes it more efficient.
2021 *
2022 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2023 * but allow concurrent faults), with pte both mapped and locked.
2024 * We return with mmap_sem still held, but pte unmapped and unlocked.
2025 */
2026 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2027 unsigned long address, pte_t *page_table, pmd_t *pmd,
2028 spinlock_t *ptl, pte_t orig_pte)
2029 __releases(ptl)
2030 {
2031 struct page *old_page, *new_page = NULL;
2032 pte_t entry;
2033 int ret = 0;
2034 int page_mkwrite = 0;
2035 struct page *dirty_page = NULL;
2036 unsigned long mmun_start = 0; /* For mmu_notifiers */
2037 unsigned long mmun_end = 0; /* For mmu_notifiers */
2038 struct mem_cgroup *memcg;
2039
2040 old_page = vm_normal_page(vma, address, orig_pte);
2041 if (!old_page) {
2042 /*
2043 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2044 * VM_PFNMAP VMA.
2045 *
2046 * We should not cow pages in a shared writeable mapping.
2047 * Just mark the pages writable as we can't do any dirty
2048 * accounting on raw pfn maps.
2049 */
2050 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2051 (VM_WRITE|VM_SHARED))
2052 goto reuse;
2053 goto gotten;
2054 }
2055
2056 /*
2057 * Take out anonymous pages first, anonymous shared vmas are
2058 * not dirty accountable.
2059 */
2060 if (PageAnon(old_page) && !PageKsm(old_page)) {
2061 if (!trylock_page(old_page)) {
2062 page_cache_get(old_page);
2063 pte_unmap_unlock(page_table, ptl);
2064 lock_page(old_page);
2065 page_table = pte_offset_map_lock(mm, pmd, address,
2066 &ptl);
2067 if (!pte_same(*page_table, orig_pte)) {
2068 unlock_page(old_page);
2069 goto unlock;
2070 }
2071 page_cache_release(old_page);
2072 }
2073 if (reuse_swap_page(old_page)) {
2074 /*
2075 * The page is all ours. Move it to our anon_vma so
2076 * the rmap code will not search our parent or siblings.
2077 * Protected against the rmap code by the page lock.
2078 */
2079 page_move_anon_rmap(old_page, vma, address);
2080 unlock_page(old_page);
2081 goto reuse;
2082 }
2083 unlock_page(old_page);
2084 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2085 (VM_WRITE|VM_SHARED))) {
2086 /*
2087 * Only catch write-faults on shared writable pages,
2088 * read-only shared pages can get COWed by
2089 * get_user_pages(.write=1, .force=1).
2090 */
2091 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2092 int tmp;
2093 page_cache_get(old_page);
2094 pte_unmap_unlock(page_table, ptl);
2095 tmp = do_page_mkwrite(vma, old_page, address);
2096 if (unlikely(!tmp || (tmp &
2097 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2098 page_cache_release(old_page);
2099 return tmp;
2100 }
2101 /*
2102 * Since we dropped the lock we need to revalidate
2103 * the PTE as someone else may have changed it. If
2104 * they did, we just return, as we can count on the
2105 * MMU to tell us if they didn't also make it writable.
2106 */
2107 page_table = pte_offset_map_lock(mm, pmd, address,
2108 &ptl);
2109 if (!pte_same(*page_table, orig_pte)) {
2110 unlock_page(old_page);
2111 goto unlock;
2112 }
2113
2114 page_mkwrite = 1;
2115 }
2116 dirty_page = old_page;
2117 get_page(dirty_page);
2118
2119 reuse:
2120 /*
2121 * Clear the pages cpupid information as the existing
2122 * information potentially belongs to a now completely
2123 * unrelated process.
2124 */
2125 if (old_page)
2126 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2127
2128 flush_cache_page(vma, address, pte_pfn(orig_pte));
2129 entry = pte_mkyoung(orig_pte);
2130 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2131 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2132 update_mmu_cache(vma, address, page_table);
2133 pte_unmap_unlock(page_table, ptl);
2134 ret |= VM_FAULT_WRITE;
2135
2136 if (!dirty_page)
2137 return ret;
2138
2139 /*
2140 * Yes, Virginia, this is actually required to prevent a race
2141 * with clear_page_dirty_for_io() from clearing the page dirty
2142 * bit after it clear all dirty ptes, but before a racing
2143 * do_wp_page installs a dirty pte.
2144 *
2145 * do_shared_fault is protected similarly.
2146 */
2147 if (!page_mkwrite) {
2148 wait_on_page_locked(dirty_page);
2149 set_page_dirty_balance(dirty_page);
2150 /* file_update_time outside page_lock */
2151 if (vma->vm_file)
2152 file_update_time(vma->vm_file);
2153 }
2154 put_page(dirty_page);
2155 if (page_mkwrite) {
2156 struct address_space *mapping = dirty_page->mapping;
2157
2158 set_page_dirty(dirty_page);
2159 unlock_page(dirty_page);
2160 page_cache_release(dirty_page);
2161 if (mapping) {
2162 /*
2163 * Some device drivers do not set page.mapping
2164 * but still dirty their pages
2165 */
2166 balance_dirty_pages_ratelimited(mapping);
2167 }
2168 }
2169
2170 return ret;
2171 }
2172
2173 /*
2174 * Ok, we need to copy. Oh, well..
2175 */
2176 page_cache_get(old_page);
2177 gotten:
2178 pte_unmap_unlock(page_table, ptl);
2179
2180 if (unlikely(anon_vma_prepare(vma)))
2181 goto oom;
2182
2183 if (is_zero_pfn(pte_pfn(orig_pte))) {
2184 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2185 if (!new_page)
2186 goto oom;
2187 } else {
2188 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2189 if (!new_page)
2190 goto oom;
2191 cow_user_page(new_page, old_page, address, vma);
2192 }
2193 __SetPageUptodate(new_page);
2194
2195 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2196 goto oom_free_new;
2197
2198 mmun_start = address & PAGE_MASK;
2199 mmun_end = mmun_start + PAGE_SIZE;
2200 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2201
2202 /*
2203 * Re-check the pte - we dropped the lock
2204 */
2205 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2206 if (likely(pte_same(*page_table, orig_pte))) {
2207 if (old_page) {
2208 if (!PageAnon(old_page)) {
2209 dec_mm_counter_fast(mm, MM_FILEPAGES);
2210 inc_mm_counter_fast(mm, MM_ANONPAGES);
2211 }
2212 } else
2213 inc_mm_counter_fast(mm, MM_ANONPAGES);
2214 flush_cache_page(vma, address, pte_pfn(orig_pte));
2215 entry = mk_pte(new_page, vma->vm_page_prot);
2216 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2217 /*
2218 * Clear the pte entry and flush it first, before updating the
2219 * pte with the new entry. This will avoid a race condition
2220 * seen in the presence of one thread doing SMC and another
2221 * thread doing COW.
2222 */
2223 ptep_clear_flush(vma, address, page_table);
2224 page_add_new_anon_rmap(new_page, vma, address);
2225 mem_cgroup_commit_charge(new_page, memcg, false);
2226 lru_cache_add_active_or_unevictable(new_page, vma);
2227 /*
2228 * We call the notify macro here because, when using secondary
2229 * mmu page tables (such as kvm shadow page tables), we want the
2230 * new page to be mapped directly into the secondary page table.
2231 */
2232 set_pte_at_notify(mm, address, page_table, entry);
2233 update_mmu_cache(vma, address, page_table);
2234 if (old_page) {
2235 /*
2236 * Only after switching the pte to the new page may
2237 * we remove the mapcount here. Otherwise another
2238 * process may come and find the rmap count decremented
2239 * before the pte is switched to the new page, and
2240 * "reuse" the old page writing into it while our pte
2241 * here still points into it and can be read by other
2242 * threads.
2243 *
2244 * The critical issue is to order this
2245 * page_remove_rmap with the ptp_clear_flush above.
2246 * Those stores are ordered by (if nothing else,)
2247 * the barrier present in the atomic_add_negative
2248 * in page_remove_rmap.
2249 *
2250 * Then the TLB flush in ptep_clear_flush ensures that
2251 * no process can access the old page before the
2252 * decremented mapcount is visible. And the old page
2253 * cannot be reused until after the decremented
2254 * mapcount is visible. So transitively, TLBs to
2255 * old page will be flushed before it can be reused.
2256 */
2257 page_remove_rmap(old_page);
2258 }
2259
2260 /* Free the old page.. */
2261 new_page = old_page;
2262 ret |= VM_FAULT_WRITE;
2263 } else
2264 mem_cgroup_cancel_charge(new_page, memcg);
2265
2266 if (new_page)
2267 page_cache_release(new_page);
2268 unlock:
2269 pte_unmap_unlock(page_table, ptl);
2270 if (mmun_end > mmun_start)
2271 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2272 if (old_page) {
2273 /*
2274 * Don't let another task, with possibly unlocked vma,
2275 * keep the mlocked page.
2276 */
2277 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2278 lock_page(old_page); /* LRU manipulation */
2279 munlock_vma_page(old_page);
2280 unlock_page(old_page);
2281 }
2282 page_cache_release(old_page);
2283 }
2284 return ret;
2285 oom_free_new:
2286 page_cache_release(new_page);
2287 oom:
2288 if (old_page)
2289 page_cache_release(old_page);
2290 return VM_FAULT_OOM;
2291 }
2292
2293 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2294 unsigned long start_addr, unsigned long end_addr,
2295 struct zap_details *details)
2296 {
2297 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2298 }
2299
2300 static inline void unmap_mapping_range_tree(struct rb_root *root,
2301 struct zap_details *details)
2302 {
2303 struct vm_area_struct *vma;
2304 pgoff_t vba, vea, zba, zea;
2305
2306 vma_interval_tree_foreach(vma, root,
2307 details->first_index, details->last_index) {
2308
2309 vba = vma->vm_pgoff;
2310 vea = vba + vma_pages(vma) - 1;
2311 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2312 zba = details->first_index;
2313 if (zba < vba)
2314 zba = vba;
2315 zea = details->last_index;
2316 if (zea > vea)
2317 zea = vea;
2318
2319 unmap_mapping_range_vma(vma,
2320 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2321 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2322 details);
2323 }
2324 }
2325
2326 static inline void unmap_mapping_range_list(struct list_head *head,
2327 struct zap_details *details)
2328 {
2329 struct vm_area_struct *vma;
2330
2331 /*
2332 * In nonlinear VMAs there is no correspondence between virtual address
2333 * offset and file offset. So we must perform an exhaustive search
2334 * across *all* the pages in each nonlinear VMA, not just the pages
2335 * whose virtual address lies outside the file truncation point.
2336 */
2337 list_for_each_entry(vma, head, shared.nonlinear) {
2338 details->nonlinear_vma = vma;
2339 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2340 }
2341 }
2342
2343 /**
2344 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2345 * @mapping: the address space containing mmaps to be unmapped.
2346 * @holebegin: byte in first page to unmap, relative to the start of
2347 * the underlying file. This will be rounded down to a PAGE_SIZE
2348 * boundary. Note that this is different from truncate_pagecache(), which
2349 * must keep the partial page. In contrast, we must get rid of
2350 * partial pages.
2351 * @holelen: size of prospective hole in bytes. This will be rounded
2352 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2353 * end of the file.
2354 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2355 * but 0 when invalidating pagecache, don't throw away private data.
2356 */
2357 void unmap_mapping_range(struct address_space *mapping,
2358 loff_t const holebegin, loff_t const holelen, int even_cows)
2359 {
2360 struct zap_details details;
2361 pgoff_t hba = holebegin >> PAGE_SHIFT;
2362 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2363
2364 /* Check for overflow. */
2365 if (sizeof(holelen) > sizeof(hlen)) {
2366 long long holeend =
2367 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2368 if (holeend & ~(long long)ULONG_MAX)
2369 hlen = ULONG_MAX - hba + 1;
2370 }
2371
2372 details.check_mapping = even_cows? NULL: mapping;
2373 details.nonlinear_vma = NULL;
2374 details.first_index = hba;
2375 details.last_index = hba + hlen - 1;
2376 if (details.last_index < details.first_index)
2377 details.last_index = ULONG_MAX;
2378
2379
2380 i_mmap_lock_read(mapping);
2381 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2382 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2383 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2384 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2385 i_mmap_unlock_read(mapping);
2386 }
2387 EXPORT_SYMBOL(unmap_mapping_range);
2388
2389 /*
2390 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391 * but allow concurrent faults), and pte mapped but not yet locked.
2392 * We return with pte unmapped and unlocked.
2393 *
2394 * We return with the mmap_sem locked or unlocked in the same cases
2395 * as does filemap_fault().
2396 */
2397 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2398 unsigned long address, pte_t *page_table, pmd_t *pmd,
2399 unsigned int flags, pte_t orig_pte)
2400 {
2401 spinlock_t *ptl;
2402 struct page *page, *swapcache;
2403 struct mem_cgroup *memcg;
2404 swp_entry_t entry;
2405 pte_t pte;
2406 int locked;
2407 int exclusive = 0;
2408 int ret = 0;
2409
2410 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2411 goto out;
2412
2413 entry = pte_to_swp_entry(orig_pte);
2414 if (unlikely(non_swap_entry(entry))) {
2415 if (is_migration_entry(entry)) {
2416 migration_entry_wait(mm, pmd, address);
2417 } else if (is_hwpoison_entry(entry)) {
2418 ret = VM_FAULT_HWPOISON;
2419 } else {
2420 print_bad_pte(vma, address, orig_pte, NULL);
2421 ret = VM_FAULT_SIGBUS;
2422 }
2423 goto out;
2424 }
2425 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2426 page = lookup_swap_cache(entry);
2427 if (!page) {
2428 page = swapin_readahead(entry,
2429 GFP_HIGHUSER_MOVABLE, vma, address);
2430 if (!page) {
2431 /*
2432 * Back out if somebody else faulted in this pte
2433 * while we released the pte lock.
2434 */
2435 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2436 if (likely(pte_same(*page_table, orig_pte)))
2437 ret = VM_FAULT_OOM;
2438 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2439 goto unlock;
2440 }
2441
2442 /* Had to read the page from swap area: Major fault */
2443 ret = VM_FAULT_MAJOR;
2444 count_vm_event(PGMAJFAULT);
2445 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2446 } else if (PageHWPoison(page)) {
2447 /*
2448 * hwpoisoned dirty swapcache pages are kept for killing
2449 * owner processes (which may be unknown at hwpoison time)
2450 */
2451 ret = VM_FAULT_HWPOISON;
2452 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2453 swapcache = page;
2454 goto out_release;
2455 }
2456
2457 swapcache = page;
2458 locked = lock_page_or_retry(page, mm, flags);
2459
2460 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2461 if (!locked) {
2462 ret |= VM_FAULT_RETRY;
2463 goto out_release;
2464 }
2465
2466 /*
2467 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2468 * release the swapcache from under us. The page pin, and pte_same
2469 * test below, are not enough to exclude that. Even if it is still
2470 * swapcache, we need to check that the page's swap has not changed.
2471 */
2472 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2473 goto out_page;
2474
2475 page = ksm_might_need_to_copy(page, vma, address);
2476 if (unlikely(!page)) {
2477 ret = VM_FAULT_OOM;
2478 page = swapcache;
2479 goto out_page;
2480 }
2481
2482 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2483 ret = VM_FAULT_OOM;
2484 goto out_page;
2485 }
2486
2487 /*
2488 * Back out if somebody else already faulted in this pte.
2489 */
2490 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2491 if (unlikely(!pte_same(*page_table, orig_pte)))
2492 goto out_nomap;
2493
2494 if (unlikely(!PageUptodate(page))) {
2495 ret = VM_FAULT_SIGBUS;
2496 goto out_nomap;
2497 }
2498
2499 /*
2500 * The page isn't present yet, go ahead with the fault.
2501 *
2502 * Be careful about the sequence of operations here.
2503 * To get its accounting right, reuse_swap_page() must be called
2504 * while the page is counted on swap but not yet in mapcount i.e.
2505 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2506 * must be called after the swap_free(), or it will never succeed.
2507 */
2508
2509 inc_mm_counter_fast(mm, MM_ANONPAGES);
2510 dec_mm_counter_fast(mm, MM_SWAPENTS);
2511 pte = mk_pte(page, vma->vm_page_prot);
2512 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2513 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2514 flags &= ~FAULT_FLAG_WRITE;
2515 ret |= VM_FAULT_WRITE;
2516 exclusive = 1;
2517 }
2518 flush_icache_page(vma, page);
2519 if (pte_swp_soft_dirty(orig_pte))
2520 pte = pte_mksoft_dirty(pte);
2521 set_pte_at(mm, address, page_table, pte);
2522 if (page == swapcache) {
2523 do_page_add_anon_rmap(page, vma, address, exclusive);
2524 mem_cgroup_commit_charge(page, memcg, true);
2525 } else { /* ksm created a completely new copy */
2526 page_add_new_anon_rmap(page, vma, address);
2527 mem_cgroup_commit_charge(page, memcg, false);
2528 lru_cache_add_active_or_unevictable(page, vma);
2529 }
2530
2531 swap_free(entry);
2532 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2533 try_to_free_swap(page);
2534 unlock_page(page);
2535 if (page != swapcache) {
2536 /*
2537 * Hold the lock to avoid the swap entry to be reused
2538 * until we take the PT lock for the pte_same() check
2539 * (to avoid false positives from pte_same). For
2540 * further safety release the lock after the swap_free
2541 * so that the swap count won't change under a
2542 * parallel locked swapcache.
2543 */
2544 unlock_page(swapcache);
2545 page_cache_release(swapcache);
2546 }
2547
2548 if (flags & FAULT_FLAG_WRITE) {
2549 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2550 if (ret & VM_FAULT_ERROR)
2551 ret &= VM_FAULT_ERROR;
2552 goto out;
2553 }
2554
2555 /* No need to invalidate - it was non-present before */
2556 update_mmu_cache(vma, address, page_table);
2557 unlock:
2558 pte_unmap_unlock(page_table, ptl);
2559 out:
2560 return ret;
2561 out_nomap:
2562 mem_cgroup_cancel_charge(page, memcg);
2563 pte_unmap_unlock(page_table, ptl);
2564 out_page:
2565 unlock_page(page);
2566 out_release:
2567 page_cache_release(page);
2568 if (page != swapcache) {
2569 unlock_page(swapcache);
2570 page_cache_release(swapcache);
2571 }
2572 return ret;
2573 }
2574
2575 /*
2576 * This is like a special single-page "expand_{down|up}wards()",
2577 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2578 * doesn't hit another vma.
2579 */
2580 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 address &= PAGE_MASK;
2583 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2584 struct vm_area_struct *prev = vma->vm_prev;
2585
2586 /*
2587 * Is there a mapping abutting this one below?
2588 *
2589 * That's only ok if it's the same stack mapping
2590 * that has gotten split..
2591 */
2592 if (prev && prev->vm_end == address)
2593 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2594
2595 expand_downwards(vma, address - PAGE_SIZE);
2596 }
2597 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2598 struct vm_area_struct *next = vma->vm_next;
2599
2600 /* As VM_GROWSDOWN but s/below/above/ */
2601 if (next && next->vm_start == address + PAGE_SIZE)
2602 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2603
2604 expand_upwards(vma, address + PAGE_SIZE);
2605 }
2606 return 0;
2607 }
2608
2609 /*
2610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611 * but allow concurrent faults), and pte mapped but not yet locked.
2612 * We return with mmap_sem still held, but pte unmapped and unlocked.
2613 */
2614 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 unsigned int flags)
2617 {
2618 struct mem_cgroup *memcg;
2619 struct page *page;
2620 spinlock_t *ptl;
2621 pte_t entry;
2622
2623 pte_unmap(page_table);
2624
2625 /* Check if we need to add a guard page to the stack */
2626 if (check_stack_guard_page(vma, address) < 0)
2627 return VM_FAULT_SIGBUS;
2628
2629 /* Use the zero-page for reads */
2630 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2631 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2632 vma->vm_page_prot));
2633 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2634 if (!pte_none(*page_table))
2635 goto unlock;
2636 goto setpte;
2637 }
2638
2639 /* Allocate our own private page. */
2640 if (unlikely(anon_vma_prepare(vma)))
2641 goto oom;
2642 page = alloc_zeroed_user_highpage_movable(vma, address);
2643 if (!page)
2644 goto oom;
2645 /*
2646 * The memory barrier inside __SetPageUptodate makes sure that
2647 * preceeding stores to the page contents become visible before
2648 * the set_pte_at() write.
2649 */
2650 __SetPageUptodate(page);
2651
2652 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2653 goto oom_free_page;
2654
2655 entry = mk_pte(page, vma->vm_page_prot);
2656 if (vma->vm_flags & VM_WRITE)
2657 entry = pte_mkwrite(pte_mkdirty(entry));
2658
2659 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2660 if (!pte_none(*page_table))
2661 goto release;
2662
2663 inc_mm_counter_fast(mm, MM_ANONPAGES);
2664 page_add_new_anon_rmap(page, vma, address);
2665 mem_cgroup_commit_charge(page, memcg, false);
2666 lru_cache_add_active_or_unevictable(page, vma);
2667 setpte:
2668 set_pte_at(mm, address, page_table, entry);
2669
2670 /* No need to invalidate - it was non-present before */
2671 update_mmu_cache(vma, address, page_table);
2672 unlock:
2673 pte_unmap_unlock(page_table, ptl);
2674 return 0;
2675 release:
2676 mem_cgroup_cancel_charge(page, memcg);
2677 page_cache_release(page);
2678 goto unlock;
2679 oom_free_page:
2680 page_cache_release(page);
2681 oom:
2682 return VM_FAULT_OOM;
2683 }
2684
2685 /*
2686 * The mmap_sem must have been held on entry, and may have been
2687 * released depending on flags and vma->vm_ops->fault() return value.
2688 * See filemap_fault() and __lock_page_retry().
2689 */
2690 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2691 pgoff_t pgoff, unsigned int flags, struct page **page)
2692 {
2693 struct vm_fault vmf;
2694 int ret;
2695
2696 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2697 vmf.pgoff = pgoff;
2698 vmf.flags = flags;
2699 vmf.page = NULL;
2700
2701 ret = vma->vm_ops->fault(vma, &vmf);
2702 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2703 return ret;
2704
2705 if (unlikely(PageHWPoison(vmf.page))) {
2706 if (ret & VM_FAULT_LOCKED)
2707 unlock_page(vmf.page);
2708 page_cache_release(vmf.page);
2709 return VM_FAULT_HWPOISON;
2710 }
2711
2712 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2713 lock_page(vmf.page);
2714 else
2715 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2716
2717 *page = vmf.page;
2718 return ret;
2719 }
2720
2721 /**
2722 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2723 *
2724 * @vma: virtual memory area
2725 * @address: user virtual address
2726 * @page: page to map
2727 * @pte: pointer to target page table entry
2728 * @write: true, if new entry is writable
2729 * @anon: true, if it's anonymous page
2730 *
2731 * Caller must hold page table lock relevant for @pte.
2732 *
2733 * Target users are page handler itself and implementations of
2734 * vm_ops->map_pages.
2735 */
2736 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2737 struct page *page, pte_t *pte, bool write, bool anon)
2738 {
2739 pte_t entry;
2740
2741 flush_icache_page(vma, page);
2742 entry = mk_pte(page, vma->vm_page_prot);
2743 if (write)
2744 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2745 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2746 entry = pte_mksoft_dirty(entry);
2747 if (anon) {
2748 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2749 page_add_new_anon_rmap(page, vma, address);
2750 } else {
2751 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2752 page_add_file_rmap(page);
2753 }
2754 set_pte_at(vma->vm_mm, address, pte, entry);
2755
2756 /* no need to invalidate: a not-present page won't be cached */
2757 update_mmu_cache(vma, address, pte);
2758 }
2759
2760 static unsigned long fault_around_bytes __read_mostly =
2761 rounddown_pow_of_two(65536);
2762
2763 #ifdef CONFIG_DEBUG_FS
2764 static int fault_around_bytes_get(void *data, u64 *val)
2765 {
2766 *val = fault_around_bytes;
2767 return 0;
2768 }
2769
2770 /*
2771 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2772 * rounded down to nearest page order. It's what do_fault_around() expects to
2773 * see.
2774 */
2775 static int fault_around_bytes_set(void *data, u64 val)
2776 {
2777 if (val / PAGE_SIZE > PTRS_PER_PTE)
2778 return -EINVAL;
2779 if (val > PAGE_SIZE)
2780 fault_around_bytes = rounddown_pow_of_two(val);
2781 else
2782 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2783 return 0;
2784 }
2785 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2786 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2787
2788 static int __init fault_around_debugfs(void)
2789 {
2790 void *ret;
2791
2792 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2793 &fault_around_bytes_fops);
2794 if (!ret)
2795 pr_warn("Failed to create fault_around_bytes in debugfs");
2796 return 0;
2797 }
2798 late_initcall(fault_around_debugfs);
2799 #endif
2800
2801 /*
2802 * do_fault_around() tries to map few pages around the fault address. The hope
2803 * is that the pages will be needed soon and this will lower the number of
2804 * faults to handle.
2805 *
2806 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2807 * not ready to be mapped: not up-to-date, locked, etc.
2808 *
2809 * This function is called with the page table lock taken. In the split ptlock
2810 * case the page table lock only protects only those entries which belong to
2811 * the page table corresponding to the fault address.
2812 *
2813 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2814 * only once.
2815 *
2816 * fault_around_pages() defines how many pages we'll try to map.
2817 * do_fault_around() expects it to return a power of two less than or equal to
2818 * PTRS_PER_PTE.
2819 *
2820 * The virtual address of the area that we map is naturally aligned to the
2821 * fault_around_pages() value (and therefore to page order). This way it's
2822 * easier to guarantee that we don't cross page table boundaries.
2823 */
2824 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2825 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2826 {
2827 unsigned long start_addr, nr_pages, mask;
2828 pgoff_t max_pgoff;
2829 struct vm_fault vmf;
2830 int off;
2831
2832 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2833 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2834
2835 start_addr = max(address & mask, vma->vm_start);
2836 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2837 pte -= off;
2838 pgoff -= off;
2839
2840 /*
2841 * max_pgoff is either end of page table or end of vma
2842 * or fault_around_pages() from pgoff, depending what is nearest.
2843 */
2844 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2845 PTRS_PER_PTE - 1;
2846 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2847 pgoff + nr_pages - 1);
2848
2849 /* Check if it makes any sense to call ->map_pages */
2850 while (!pte_none(*pte)) {
2851 if (++pgoff > max_pgoff)
2852 return;
2853 start_addr += PAGE_SIZE;
2854 if (start_addr >= vma->vm_end)
2855 return;
2856 pte++;
2857 }
2858
2859 vmf.virtual_address = (void __user *) start_addr;
2860 vmf.pte = pte;
2861 vmf.pgoff = pgoff;
2862 vmf.max_pgoff = max_pgoff;
2863 vmf.flags = flags;
2864 vma->vm_ops->map_pages(vma, &vmf);
2865 }
2866
2867 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2868 unsigned long address, pmd_t *pmd,
2869 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2870 {
2871 struct page *fault_page;
2872 spinlock_t *ptl;
2873 pte_t *pte;
2874 int ret = 0;
2875
2876 /*
2877 * Let's call ->map_pages() first and use ->fault() as fallback
2878 * if page by the offset is not ready to be mapped (cold cache or
2879 * something).
2880 */
2881 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2882 fault_around_bytes >> PAGE_SHIFT > 1) {
2883 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2884 do_fault_around(vma, address, pte, pgoff, flags);
2885 if (!pte_same(*pte, orig_pte))
2886 goto unlock_out;
2887 pte_unmap_unlock(pte, ptl);
2888 }
2889
2890 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2891 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2892 return ret;
2893
2894 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2895 if (unlikely(!pte_same(*pte, orig_pte))) {
2896 pte_unmap_unlock(pte, ptl);
2897 unlock_page(fault_page);
2898 page_cache_release(fault_page);
2899 return ret;
2900 }
2901 do_set_pte(vma, address, fault_page, pte, false, false);
2902 unlock_page(fault_page);
2903 unlock_out:
2904 pte_unmap_unlock(pte, ptl);
2905 return ret;
2906 }
2907
2908 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2909 unsigned long address, pmd_t *pmd,
2910 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2911 {
2912 struct page *fault_page, *new_page;
2913 struct mem_cgroup *memcg;
2914 spinlock_t *ptl;
2915 pte_t *pte;
2916 int ret;
2917
2918 if (unlikely(anon_vma_prepare(vma)))
2919 return VM_FAULT_OOM;
2920
2921 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2922 if (!new_page)
2923 return VM_FAULT_OOM;
2924
2925 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2926 page_cache_release(new_page);
2927 return VM_FAULT_OOM;
2928 }
2929
2930 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2931 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2932 goto uncharge_out;
2933
2934 copy_user_highpage(new_page, fault_page, address, vma);
2935 __SetPageUptodate(new_page);
2936
2937 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2938 if (unlikely(!pte_same(*pte, orig_pte))) {
2939 pte_unmap_unlock(pte, ptl);
2940 unlock_page(fault_page);
2941 page_cache_release(fault_page);
2942 goto uncharge_out;
2943 }
2944 do_set_pte(vma, address, new_page, pte, true, true);
2945 mem_cgroup_commit_charge(new_page, memcg, false);
2946 lru_cache_add_active_or_unevictable(new_page, vma);
2947 pte_unmap_unlock(pte, ptl);
2948 unlock_page(fault_page);
2949 page_cache_release(fault_page);
2950 return ret;
2951 uncharge_out:
2952 mem_cgroup_cancel_charge(new_page, memcg);
2953 page_cache_release(new_page);
2954 return ret;
2955 }
2956
2957 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2958 unsigned long address, pmd_t *pmd,
2959 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2960 {
2961 struct page *fault_page;
2962 struct address_space *mapping;
2963 spinlock_t *ptl;
2964 pte_t *pte;
2965 int dirtied = 0;
2966 int ret, tmp;
2967
2968 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970 return ret;
2971
2972 /*
2973 * Check if the backing address space wants to know that the page is
2974 * about to become writable
2975 */
2976 if (vma->vm_ops->page_mkwrite) {
2977 unlock_page(fault_page);
2978 tmp = do_page_mkwrite(vma, fault_page, address);
2979 if (unlikely(!tmp ||
2980 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2981 page_cache_release(fault_page);
2982 return tmp;
2983 }
2984 }
2985
2986 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2987 if (unlikely(!pte_same(*pte, orig_pte))) {
2988 pte_unmap_unlock(pte, ptl);
2989 unlock_page(fault_page);
2990 page_cache_release(fault_page);
2991 return ret;
2992 }
2993 do_set_pte(vma, address, fault_page, pte, true, false);
2994 pte_unmap_unlock(pte, ptl);
2995
2996 if (set_page_dirty(fault_page))
2997 dirtied = 1;
2998 mapping = fault_page->mapping;
2999 unlock_page(fault_page);
3000 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3001 /*
3002 * Some device drivers do not set page.mapping but still
3003 * dirty their pages
3004 */
3005 balance_dirty_pages_ratelimited(mapping);
3006 }
3007
3008 /* file_update_time outside page_lock */
3009 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3010 file_update_time(vma->vm_file);
3011
3012 return ret;
3013 }
3014
3015 /*
3016 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3017 * but allow concurrent faults).
3018 * The mmap_sem may have been released depending on flags and our
3019 * return value. See filemap_fault() and __lock_page_or_retry().
3020 */
3021 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3022 unsigned long address, pte_t *page_table, pmd_t *pmd,
3023 unsigned int flags, pte_t orig_pte)
3024 {
3025 pgoff_t pgoff = (((address & PAGE_MASK)
3026 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3027
3028 pte_unmap(page_table);
3029 if (!(flags & FAULT_FLAG_WRITE))
3030 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3031 orig_pte);
3032 if (!(vma->vm_flags & VM_SHARED))
3033 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3034 orig_pte);
3035 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3036 }
3037
3038 /*
3039 * Fault of a previously existing named mapping. Repopulate the pte
3040 * from the encoded file_pte if possible. This enables swappable
3041 * nonlinear vmas.
3042 *
3043 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044 * but allow concurrent faults), and pte mapped but not yet locked.
3045 * We return with pte unmapped and unlocked.
3046 * The mmap_sem may have been released depending on flags and our
3047 * return value. See filemap_fault() and __lock_page_or_retry().
3048 */
3049 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3050 unsigned long address, pte_t *page_table, pmd_t *pmd,
3051 unsigned int flags, pte_t orig_pte)
3052 {
3053 pgoff_t pgoff;
3054
3055 flags |= FAULT_FLAG_NONLINEAR;
3056
3057 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3058 return 0;
3059
3060 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3061 /*
3062 * Page table corrupted: show pte and kill process.
3063 */
3064 print_bad_pte(vma, address, orig_pte, NULL);
3065 return VM_FAULT_SIGBUS;
3066 }
3067
3068 pgoff = pte_to_pgoff(orig_pte);
3069 if (!(flags & FAULT_FLAG_WRITE))
3070 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3071 orig_pte);
3072 if (!(vma->vm_flags & VM_SHARED))
3073 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3074 orig_pte);
3075 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3076 }
3077
3078 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3079 unsigned long addr, int page_nid,
3080 int *flags)
3081 {
3082 get_page(page);
3083
3084 count_vm_numa_event(NUMA_HINT_FAULTS);
3085 if (page_nid == numa_node_id()) {
3086 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3087 *flags |= TNF_FAULT_LOCAL;
3088 }
3089
3090 return mpol_misplaced(page, vma, addr);
3091 }
3092
3093 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3094 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3095 {
3096 struct page *page = NULL;
3097 spinlock_t *ptl;
3098 int page_nid = -1;
3099 int last_cpupid;
3100 int target_nid;
3101 bool migrated = false;
3102 int flags = 0;
3103
3104 /*
3105 * The "pte" at this point cannot be used safely without
3106 * validation through pte_unmap_same(). It's of NUMA type but
3107 * the pfn may be screwed if the read is non atomic.
3108 *
3109 * ptep_modify_prot_start is not called as this is clearing
3110 * the _PAGE_NUMA bit and it is not really expected that there
3111 * would be concurrent hardware modifications to the PTE.
3112 */
3113 ptl = pte_lockptr(mm, pmd);
3114 spin_lock(ptl);
3115 if (unlikely(!pte_same(*ptep, pte))) {
3116 pte_unmap_unlock(ptep, ptl);
3117 goto out;
3118 }
3119
3120 pte = pte_mknonnuma(pte);
3121 set_pte_at(mm, addr, ptep, pte);
3122 update_mmu_cache(vma, addr, ptep);
3123
3124 page = vm_normal_page(vma, addr, pte);
3125 if (!page) {
3126 pte_unmap_unlock(ptep, ptl);
3127 return 0;
3128 }
3129 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3130
3131 /*
3132 * Avoid grouping on DSO/COW pages in specific and RO pages
3133 * in general, RO pages shouldn't hurt as much anyway since
3134 * they can be in shared cache state.
3135 */
3136 if (!pte_write(pte))
3137 flags |= TNF_NO_GROUP;
3138
3139 /*
3140 * Flag if the page is shared between multiple address spaces. This
3141 * is later used when determining whether to group tasks together
3142 */
3143 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3144 flags |= TNF_SHARED;
3145
3146 last_cpupid = page_cpupid_last(page);
3147 page_nid = page_to_nid(page);
3148 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3149 pte_unmap_unlock(ptep, ptl);
3150 if (target_nid == -1) {
3151 put_page(page);
3152 goto out;
3153 }
3154
3155 /* Migrate to the requested node */
3156 migrated = migrate_misplaced_page(page, vma, target_nid);
3157 if (migrated) {
3158 page_nid = target_nid;
3159 flags |= TNF_MIGRATED;
3160 }
3161
3162 out:
3163 if (page_nid != -1)
3164 task_numa_fault(last_cpupid, page_nid, 1, flags);
3165 return 0;
3166 }
3167
3168 /*
3169 * These routines also need to handle stuff like marking pages dirty
3170 * and/or accessed for architectures that don't do it in hardware (most
3171 * RISC architectures). The early dirtying is also good on the i386.
3172 *
3173 * There is also a hook called "update_mmu_cache()" that architectures
3174 * with external mmu caches can use to update those (ie the Sparc or
3175 * PowerPC hashed page tables that act as extended TLBs).
3176 *
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults), and pte mapped but not yet locked.
3179 * We return with pte unmapped and unlocked.
3180 *
3181 * The mmap_sem may have been released depending on flags and our
3182 * return value. See filemap_fault() and __lock_page_or_retry().
3183 */
3184 static int handle_pte_fault(struct mm_struct *mm,
3185 struct vm_area_struct *vma, unsigned long address,
3186 pte_t *pte, pmd_t *pmd, unsigned int flags)
3187 {
3188 pte_t entry;
3189 spinlock_t *ptl;
3190
3191 entry = ACCESS_ONCE(*pte);
3192 if (!pte_present(entry)) {
3193 if (pte_none(entry)) {
3194 if (vma->vm_ops) {
3195 if (likely(vma->vm_ops->fault))
3196 return do_linear_fault(mm, vma, address,
3197 pte, pmd, flags, entry);
3198 }
3199 return do_anonymous_page(mm, vma, address,
3200 pte, pmd, flags);
3201 }
3202 if (pte_file(entry))
3203 return do_nonlinear_fault(mm, vma, address,
3204 pte, pmd, flags, entry);
3205 return do_swap_page(mm, vma, address,
3206 pte, pmd, flags, entry);
3207 }
3208
3209 if (pte_numa(entry))
3210 return do_numa_page(mm, vma, address, entry, pte, pmd);
3211
3212 ptl = pte_lockptr(mm, pmd);
3213 spin_lock(ptl);
3214 if (unlikely(!pte_same(*pte, entry)))
3215 goto unlock;
3216 if (flags & FAULT_FLAG_WRITE) {
3217 if (!pte_write(entry))
3218 return do_wp_page(mm, vma, address,
3219 pte, pmd, ptl, entry);
3220 entry = pte_mkdirty(entry);
3221 }
3222 entry = pte_mkyoung(entry);
3223 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3224 update_mmu_cache(vma, address, pte);
3225 } else {
3226 /*
3227 * This is needed only for protection faults but the arch code
3228 * is not yet telling us if this is a protection fault or not.
3229 * This still avoids useless tlb flushes for .text page faults
3230 * with threads.
3231 */
3232 if (flags & FAULT_FLAG_WRITE)
3233 flush_tlb_fix_spurious_fault(vma, address);
3234 }
3235 unlock:
3236 pte_unmap_unlock(pte, ptl);
3237 return 0;
3238 }
3239
3240 /*
3241 * By the time we get here, we already hold the mm semaphore
3242 *
3243 * The mmap_sem may have been released depending on flags and our
3244 * return value. See filemap_fault() and __lock_page_or_retry().
3245 */
3246 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3247 unsigned long address, unsigned int flags)
3248 {
3249 pgd_t *pgd;
3250 pud_t *pud;
3251 pmd_t *pmd;
3252 pte_t *pte;
3253
3254 if (unlikely(is_vm_hugetlb_page(vma)))
3255 return hugetlb_fault(mm, vma, address, flags);
3256
3257 pgd = pgd_offset(mm, address);
3258 pud = pud_alloc(mm, pgd, address);
3259 if (!pud)
3260 return VM_FAULT_OOM;
3261 pmd = pmd_alloc(mm, pud, address);
3262 if (!pmd)
3263 return VM_FAULT_OOM;
3264 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3265 int ret = VM_FAULT_FALLBACK;
3266 if (!vma->vm_ops)
3267 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3268 pmd, flags);
3269 if (!(ret & VM_FAULT_FALLBACK))
3270 return ret;
3271 } else {
3272 pmd_t orig_pmd = *pmd;
3273 int ret;
3274
3275 barrier();
3276 if (pmd_trans_huge(orig_pmd)) {
3277 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3278
3279 /*
3280 * If the pmd is splitting, return and retry the
3281 * the fault. Alternative: wait until the split
3282 * is done, and goto retry.
3283 */
3284 if (pmd_trans_splitting(orig_pmd))
3285 return 0;
3286
3287 if (pmd_numa(orig_pmd))
3288 return do_huge_pmd_numa_page(mm, vma, address,
3289 orig_pmd, pmd);
3290
3291 if (dirty && !pmd_write(orig_pmd)) {
3292 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3293 orig_pmd);
3294 if (!(ret & VM_FAULT_FALLBACK))
3295 return ret;
3296 } else {
3297 huge_pmd_set_accessed(mm, vma, address, pmd,
3298 orig_pmd, dirty);
3299 return 0;
3300 }
3301 }
3302 }
3303
3304 /*
3305 * Use __pte_alloc instead of pte_alloc_map, because we can't
3306 * run pte_offset_map on the pmd, if an huge pmd could
3307 * materialize from under us from a different thread.
3308 */
3309 if (unlikely(pmd_none(*pmd)) &&
3310 unlikely(__pte_alloc(mm, vma, pmd, address)))
3311 return VM_FAULT_OOM;
3312 /* if an huge pmd materialized from under us just retry later */
3313 if (unlikely(pmd_trans_huge(*pmd)))
3314 return 0;
3315 /*
3316 * A regular pmd is established and it can't morph into a huge pmd
3317 * from under us anymore at this point because we hold the mmap_sem
3318 * read mode and khugepaged takes it in write mode. So now it's
3319 * safe to run pte_offset_map().
3320 */
3321 pte = pte_offset_map(pmd, address);
3322
3323 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3324 }
3325
3326 /*
3327 * By the time we get here, we already hold the mm semaphore
3328 *
3329 * The mmap_sem may have been released depending on flags and our
3330 * return value. See filemap_fault() and __lock_page_or_retry().
3331 */
3332 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3333 unsigned long address, unsigned int flags)
3334 {
3335 int ret;
3336
3337 __set_current_state(TASK_RUNNING);
3338
3339 count_vm_event(PGFAULT);
3340 mem_cgroup_count_vm_event(mm, PGFAULT);
3341
3342 /* do counter updates before entering really critical section. */
3343 check_sync_rss_stat(current);
3344
3345 /*
3346 * Enable the memcg OOM handling for faults triggered in user
3347 * space. Kernel faults are handled more gracefully.
3348 */
3349 if (flags & FAULT_FLAG_USER)
3350 mem_cgroup_oom_enable();
3351
3352 ret = __handle_mm_fault(mm, vma, address, flags);
3353
3354 if (flags & FAULT_FLAG_USER) {
3355 mem_cgroup_oom_disable();
3356 /*
3357 * The task may have entered a memcg OOM situation but
3358 * if the allocation error was handled gracefully (no
3359 * VM_FAULT_OOM), there is no need to kill anything.
3360 * Just clean up the OOM state peacefully.
3361 */
3362 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3363 mem_cgroup_oom_synchronize(false);
3364 }
3365
3366 return ret;
3367 }
3368
3369 #ifndef __PAGETABLE_PUD_FOLDED
3370 /*
3371 * Allocate page upper directory.
3372 * We've already handled the fast-path in-line.
3373 */
3374 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3375 {
3376 pud_t *new = pud_alloc_one(mm, address);
3377 if (!new)
3378 return -ENOMEM;
3379
3380 smp_wmb(); /* See comment in __pte_alloc */
3381
3382 spin_lock(&mm->page_table_lock);
3383 if (pgd_present(*pgd)) /* Another has populated it */
3384 pud_free(mm, new);
3385 else
3386 pgd_populate(mm, pgd, new);
3387 spin_unlock(&mm->page_table_lock);
3388 return 0;
3389 }
3390 #endif /* __PAGETABLE_PUD_FOLDED */
3391
3392 #ifndef __PAGETABLE_PMD_FOLDED
3393 /*
3394 * Allocate page middle directory.
3395 * We've already handled the fast-path in-line.
3396 */
3397 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3398 {
3399 pmd_t *new = pmd_alloc_one(mm, address);
3400 if (!new)
3401 return -ENOMEM;
3402
3403 smp_wmb(); /* See comment in __pte_alloc */
3404
3405 spin_lock(&mm->page_table_lock);
3406 #ifndef __ARCH_HAS_4LEVEL_HACK
3407 if (pud_present(*pud)) /* Another has populated it */
3408 pmd_free(mm, new);
3409 else
3410 pud_populate(mm, pud, new);
3411 #else
3412 if (pgd_present(*pud)) /* Another has populated it */
3413 pmd_free(mm, new);
3414 else
3415 pgd_populate(mm, pud, new);
3416 #endif /* __ARCH_HAS_4LEVEL_HACK */
3417 spin_unlock(&mm->page_table_lock);
3418 return 0;
3419 }
3420 #endif /* __PAGETABLE_PMD_FOLDED */
3421
3422 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3423 pte_t **ptepp, spinlock_t **ptlp)
3424 {
3425 pgd_t *pgd;
3426 pud_t *pud;
3427 pmd_t *pmd;
3428 pte_t *ptep;
3429
3430 pgd = pgd_offset(mm, address);
3431 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3432 goto out;
3433
3434 pud = pud_offset(pgd, address);
3435 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3436 goto out;
3437
3438 pmd = pmd_offset(pud, address);
3439 VM_BUG_ON(pmd_trans_huge(*pmd));
3440 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3441 goto out;
3442
3443 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3444 if (pmd_huge(*pmd))
3445 goto out;
3446
3447 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3448 if (!ptep)
3449 goto out;
3450 if (!pte_present(*ptep))
3451 goto unlock;
3452 *ptepp = ptep;
3453 return 0;
3454 unlock:
3455 pte_unmap_unlock(ptep, *ptlp);
3456 out:
3457 return -EINVAL;
3458 }
3459
3460 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3461 pte_t **ptepp, spinlock_t **ptlp)
3462 {
3463 int res;
3464
3465 /* (void) is needed to make gcc happy */
3466 (void) __cond_lock(*ptlp,
3467 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3468 return res;
3469 }
3470
3471 /**
3472 * follow_pfn - look up PFN at a user virtual address
3473 * @vma: memory mapping
3474 * @address: user virtual address
3475 * @pfn: location to store found PFN
3476 *
3477 * Only IO mappings and raw PFN mappings are allowed.
3478 *
3479 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3480 */
3481 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3482 unsigned long *pfn)
3483 {
3484 int ret = -EINVAL;
3485 spinlock_t *ptl;
3486 pte_t *ptep;
3487
3488 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3489 return ret;
3490
3491 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3492 if (ret)
3493 return ret;
3494 *pfn = pte_pfn(*ptep);
3495 pte_unmap_unlock(ptep, ptl);
3496 return 0;
3497 }
3498 EXPORT_SYMBOL(follow_pfn);
3499
3500 #ifdef CONFIG_HAVE_IOREMAP_PROT
3501 int follow_phys(struct vm_area_struct *vma,
3502 unsigned long address, unsigned int flags,
3503 unsigned long *prot, resource_size_t *phys)
3504 {
3505 int ret = -EINVAL;
3506 pte_t *ptep, pte;
3507 spinlock_t *ptl;
3508
3509 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3510 goto out;
3511
3512 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3513 goto out;
3514 pte = *ptep;
3515
3516 if ((flags & FOLL_WRITE) && !pte_write(pte))
3517 goto unlock;
3518
3519 *prot = pgprot_val(pte_pgprot(pte));
3520 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3521
3522 ret = 0;
3523 unlock:
3524 pte_unmap_unlock(ptep, ptl);
3525 out:
3526 return ret;
3527 }
3528
3529 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3530 void *buf, int len, int write)
3531 {
3532 resource_size_t phys_addr;
3533 unsigned long prot = 0;
3534 void __iomem *maddr;
3535 int offset = addr & (PAGE_SIZE-1);
3536
3537 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3538 return -EINVAL;
3539
3540 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3541 if (write)
3542 memcpy_toio(maddr + offset, buf, len);
3543 else
3544 memcpy_fromio(buf, maddr + offset, len);
3545 iounmap(maddr);
3546
3547 return len;
3548 }
3549 EXPORT_SYMBOL_GPL(generic_access_phys);
3550 #endif
3551
3552 /*
3553 * Access another process' address space as given in mm. If non-NULL, use the
3554 * given task for page fault accounting.
3555 */
3556 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3557 unsigned long addr, void *buf, int len, int write)
3558 {
3559 struct vm_area_struct *vma;
3560 void *old_buf = buf;
3561
3562 down_read(&mm->mmap_sem);
3563 /* ignore errors, just check how much was successfully transferred */
3564 while (len) {
3565 int bytes, ret, offset;
3566 void *maddr;
3567 struct page *page = NULL;
3568
3569 ret = get_user_pages(tsk, mm, addr, 1,
3570 write, 1, &page, &vma);
3571 if (ret <= 0) {
3572 #ifndef CONFIG_HAVE_IOREMAP_PROT
3573 break;
3574 #else
3575 /*
3576 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3577 * we can access using slightly different code.
3578 */
3579 vma = find_vma(mm, addr);
3580 if (!vma || vma->vm_start > addr)
3581 break;
3582 if (vma->vm_ops && vma->vm_ops->access)
3583 ret = vma->vm_ops->access(vma, addr, buf,
3584 len, write);
3585 if (ret <= 0)
3586 break;
3587 bytes = ret;
3588 #endif
3589 } else {
3590 bytes = len;
3591 offset = addr & (PAGE_SIZE-1);
3592 if (bytes > PAGE_SIZE-offset)
3593 bytes = PAGE_SIZE-offset;
3594
3595 maddr = kmap(page);
3596 if (write) {
3597 copy_to_user_page(vma, page, addr,
3598 maddr + offset, buf, bytes);
3599 set_page_dirty_lock(page);
3600 } else {
3601 copy_from_user_page(vma, page, addr,
3602 buf, maddr + offset, bytes);
3603 }
3604 kunmap(page);
3605 page_cache_release(page);
3606 }
3607 len -= bytes;
3608 buf += bytes;
3609 addr += bytes;
3610 }
3611 up_read(&mm->mmap_sem);
3612
3613 return buf - old_buf;
3614 }
3615
3616 /**
3617 * access_remote_vm - access another process' address space
3618 * @mm: the mm_struct of the target address space
3619 * @addr: start address to access
3620 * @buf: source or destination buffer
3621 * @len: number of bytes to transfer
3622 * @write: whether the access is a write
3623 *
3624 * The caller must hold a reference on @mm.
3625 */
3626 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3627 void *buf, int len, int write)
3628 {
3629 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3630 }
3631
3632 /*
3633 * Access another process' address space.
3634 * Source/target buffer must be kernel space,
3635 * Do not walk the page table directly, use get_user_pages
3636 */
3637 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3638 void *buf, int len, int write)
3639 {
3640 struct mm_struct *mm;
3641 int ret;
3642
3643 mm = get_task_mm(tsk);
3644 if (!mm)
3645 return 0;
3646
3647 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3648 mmput(mm);
3649
3650 return ret;
3651 }
3652
3653 /*
3654 * Print the name of a VMA.
3655 */
3656 void print_vma_addr(char *prefix, unsigned long ip)
3657 {
3658 struct mm_struct *mm = current->mm;
3659 struct vm_area_struct *vma;
3660
3661 /*
3662 * Do not print if we are in atomic
3663 * contexts (in exception stacks, etc.):
3664 */
3665 if (preempt_count())
3666 return;
3667
3668 down_read(&mm->mmap_sem);
3669 vma = find_vma(mm, ip);
3670 if (vma && vma->vm_file) {
3671 struct file *f = vma->vm_file;
3672 char *buf = (char *)__get_free_page(GFP_KERNEL);
3673 if (buf) {
3674 char *p;
3675
3676 p = d_path(&f->f_path, buf, PAGE_SIZE);
3677 if (IS_ERR(p))
3678 p = "?";
3679 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3680 vma->vm_start,
3681 vma->vm_end - vma->vm_start);
3682 free_page((unsigned long)buf);
3683 }
3684 }
3685 up_read(&mm->mmap_sem);
3686 }
3687
3688 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3689 void might_fault(void)
3690 {
3691 /*
3692 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3693 * holding the mmap_sem, this is safe because kernel memory doesn't
3694 * get paged out, therefore we'll never actually fault, and the
3695 * below annotations will generate false positives.
3696 */
3697 if (segment_eq(get_fs(), KERNEL_DS))
3698 return;
3699
3700 /*
3701 * it would be nicer only to annotate paths which are not under
3702 * pagefault_disable, however that requires a larger audit and
3703 * providing helpers like get_user_atomic.
3704 */
3705 if (in_atomic())
3706 return;
3707
3708 __might_sleep(__FILE__, __LINE__, 0);
3709
3710 if (current->mm)
3711 might_lock_read(&current->mm->mmap_sem);
3712 }
3713 EXPORT_SYMBOL(might_fault);
3714 #endif
3715
3716 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3717 static void clear_gigantic_page(struct page *page,
3718 unsigned long addr,
3719 unsigned int pages_per_huge_page)
3720 {
3721 int i;
3722 struct page *p = page;
3723
3724 might_sleep();
3725 for (i = 0; i < pages_per_huge_page;
3726 i++, p = mem_map_next(p, page, i)) {
3727 cond_resched();
3728 clear_user_highpage(p, addr + i * PAGE_SIZE);
3729 }
3730 }
3731 void clear_huge_page(struct page *page,
3732 unsigned long addr, unsigned int pages_per_huge_page)
3733 {
3734 int i;
3735
3736 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3737 clear_gigantic_page(page, addr, pages_per_huge_page);
3738 return;
3739 }
3740
3741 might_sleep();
3742 for (i = 0; i < pages_per_huge_page; i++) {
3743 cond_resched();
3744 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3745 }
3746 }
3747
3748 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3749 unsigned long addr,
3750 struct vm_area_struct *vma,
3751 unsigned int pages_per_huge_page)
3752 {
3753 int i;
3754 struct page *dst_base = dst;
3755 struct page *src_base = src;
3756
3757 for (i = 0; i < pages_per_huge_page; ) {
3758 cond_resched();
3759 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3760
3761 i++;
3762 dst = mem_map_next(dst, dst_base, i);
3763 src = mem_map_next(src, src_base, i);
3764 }
3765 }
3766
3767 void copy_user_huge_page(struct page *dst, struct page *src,
3768 unsigned long addr, struct vm_area_struct *vma,
3769 unsigned int pages_per_huge_page)
3770 {
3771 int i;
3772
3773 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3774 copy_user_gigantic_page(dst, src, addr, vma,
3775 pages_per_huge_page);
3776 return;
3777 }
3778
3779 might_sleep();
3780 for (i = 0; i < pages_per_huge_page; i++) {
3781 cond_resched();
3782 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3783 }
3784 }
3785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3786
3787 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3788
3789 static struct kmem_cache *page_ptl_cachep;
3790
3791 void __init ptlock_cache_init(void)
3792 {
3793 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3794 SLAB_PANIC, NULL);
3795 }
3796
3797 bool ptlock_alloc(struct page *page)
3798 {
3799 spinlock_t *ptl;
3800
3801 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3802 if (!ptl)
3803 return false;
3804 page->ptl = ptl;
3805 return true;
3806 }
3807
3808 void ptlock_free(struct page *page)
3809 {
3810 kmem_cache_free(page_ptl_cachep, page->ptl);
3811 }
3812 #endif