MAINTAINERS: Balbir has moved
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include "internal.h"
56
57 int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59 int sysctl_memory_failure_recovery __read_mostly = 1;
60
61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
65 u32 hwpoison_filter_enable = 0;
66 u32 hwpoison_filter_dev_major = ~0U;
67 u32 hwpoison_filter_dev_minor = ~0U;
68 u64 hwpoison_filter_flags_mask;
69 u64 hwpoison_filter_flags_value;
70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75
76 static int hwpoison_filter_dev(struct page *p)
77 {
78 struct address_space *mapping;
79 dev_t dev;
80
81 if (hwpoison_filter_dev_major == ~0U &&
82 hwpoison_filter_dev_minor == ~0U)
83 return 0;
84
85 /*
86 * page_mapping() does not accept slab pages.
87 */
88 if (PageSlab(p))
89 return -EINVAL;
90
91 mapping = page_mapping(p);
92 if (mapping == NULL || mapping->host == NULL)
93 return -EINVAL;
94
95 dev = mapping->host->i_sb->s_dev;
96 if (hwpoison_filter_dev_major != ~0U &&
97 hwpoison_filter_dev_major != MAJOR(dev))
98 return -EINVAL;
99 if (hwpoison_filter_dev_minor != ~0U &&
100 hwpoison_filter_dev_minor != MINOR(dev))
101 return -EINVAL;
102
103 return 0;
104 }
105
106 static int hwpoison_filter_flags(struct page *p)
107 {
108 if (!hwpoison_filter_flags_mask)
109 return 0;
110
111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 hwpoison_filter_flags_value)
113 return 0;
114 else
115 return -EINVAL;
116 }
117
118 /*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129 u64 hwpoison_filter_memcg;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131 static int hwpoison_filter_task(struct page *p)
132 {
133 struct mem_cgroup *mem;
134 struct cgroup_subsys_state *css;
135 unsigned long ino;
136
137 if (!hwpoison_filter_memcg)
138 return 0;
139
140 mem = try_get_mem_cgroup_from_page(p);
141 if (!mem)
142 return -EINVAL;
143
144 css = mem_cgroup_css(mem);
145 /* root_mem_cgroup has NULL dentries */
146 if (!css->cgroup->dentry)
147 return -EINVAL;
148
149 ino = css->cgroup->dentry->d_inode->i_ino;
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160
161 int hwpoison_filter(struct page *p)
162 {
163 if (!hwpoison_filter_enable)
164 return 0;
165
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
175 return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 return 0;
181 }
182 #endif
183
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186 /*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_code = BUS_MCEERR_AO;
202 si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205 #endif
206 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207 /*
208 * Don't use force here, it's convenient if the signal
209 * can be temporarily blocked.
210 * This could cause a loop when the user sets SIGBUS
211 * to SIG_IGN, but hopefully no one will do that?
212 */
213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
214 if (ret < 0)
215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 t->comm, t->pid, ret);
217 return ret;
218 }
219
220 /*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
224 void shake_page(struct page *p, int access)
225 {
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
230 drain_all_pages();
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
234
235 /*
236 * Only call shrink_slab here (which would also shrink other caches) if
237 * access is not potentially fatal.
238 */
239 if (access) {
240 int nr;
241 do {
242 struct shrink_control shrink = {
243 .gfp_mask = GFP_KERNEL,
244 };
245
246 nr = shrink_slab(&shrink, 1000, 1000);
247 if (page_count(p) == 1)
248 break;
249 } while (nr > 10);
250 }
251 }
252 EXPORT_SYMBOL_GPL(shake_page);
253
254 /*
255 * Kill all processes that have a poisoned page mapped and then isolate
256 * the page.
257 *
258 * General strategy:
259 * Find all processes having the page mapped and kill them.
260 * But we keep a page reference around so that the page is not
261 * actually freed yet.
262 * Then stash the page away
263 *
264 * There's no convenient way to get back to mapped processes
265 * from the VMAs. So do a brute-force search over all
266 * running processes.
267 *
268 * Remember that machine checks are not common (or rather
269 * if they are common you have other problems), so this shouldn't
270 * be a performance issue.
271 *
272 * Also there are some races possible while we get from the
273 * error detection to actually handle it.
274 */
275
276 struct to_kill {
277 struct list_head nd;
278 struct task_struct *tsk;
279 unsigned long addr;
280 char addr_valid;
281 };
282
283 /*
284 * Failure handling: if we can't find or can't kill a process there's
285 * not much we can do. We just print a message and ignore otherwise.
286 */
287
288 /*
289 * Schedule a process for later kill.
290 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
291 * TBD would GFP_NOIO be enough?
292 */
293 static void add_to_kill(struct task_struct *tsk, struct page *p,
294 struct vm_area_struct *vma,
295 struct list_head *to_kill,
296 struct to_kill **tkc)
297 {
298 struct to_kill *tk;
299
300 if (*tkc) {
301 tk = *tkc;
302 *tkc = NULL;
303 } else {
304 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
305 if (!tk) {
306 printk(KERN_ERR
307 "MCE: Out of memory while machine check handling\n");
308 return;
309 }
310 }
311 tk->addr = page_address_in_vma(p, vma);
312 tk->addr_valid = 1;
313
314 /*
315 * In theory we don't have to kill when the page was
316 * munmaped. But it could be also a mremap. Since that's
317 * likely very rare kill anyways just out of paranoia, but use
318 * a SIGKILL because the error is not contained anymore.
319 */
320 if (tk->addr == -EFAULT) {
321 pr_info("MCE: Unable to find user space address %lx in %s\n",
322 page_to_pfn(p), tsk->comm);
323 tk->addr_valid = 0;
324 }
325 get_task_struct(tsk);
326 tk->tsk = tsk;
327 list_add_tail(&tk->nd, to_kill);
328 }
329
330 /*
331 * Kill the processes that have been collected earlier.
332 *
333 * Only do anything when DOIT is set, otherwise just free the list
334 * (this is used for clean pages which do not need killing)
335 * Also when FAIL is set do a force kill because something went
336 * wrong earlier.
337 */
338 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
339 int fail, struct page *page, unsigned long pfn)
340 {
341 struct to_kill *tk, *next;
342
343 list_for_each_entry_safe (tk, next, to_kill, nd) {
344 if (doit) {
345 /*
346 * In case something went wrong with munmapping
347 * make sure the process doesn't catch the
348 * signal and then access the memory. Just kill it.
349 */
350 if (fail || tk->addr_valid == 0) {
351 printk(KERN_ERR
352 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
353 pfn, tk->tsk->comm, tk->tsk->pid);
354 force_sig(SIGKILL, tk->tsk);
355 }
356
357 /*
358 * In theory the process could have mapped
359 * something else on the address in-between. We could
360 * check for that, but we need to tell the
361 * process anyways.
362 */
363 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
364 pfn, page) < 0)
365 printk(KERN_ERR
366 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
367 pfn, tk->tsk->comm, tk->tsk->pid);
368 }
369 put_task_struct(tk->tsk);
370 kfree(tk);
371 }
372 }
373
374 static int task_early_kill(struct task_struct *tsk)
375 {
376 if (!tsk->mm)
377 return 0;
378 if (tsk->flags & PF_MCE_PROCESS)
379 return !!(tsk->flags & PF_MCE_EARLY);
380 return sysctl_memory_failure_early_kill;
381 }
382
383 /*
384 * Collect processes when the error hit an anonymous page.
385 */
386 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
387 struct to_kill **tkc)
388 {
389 struct vm_area_struct *vma;
390 struct task_struct *tsk;
391 struct anon_vma *av;
392
393 read_lock(&tasklist_lock);
394 av = page_lock_anon_vma(page);
395 if (av == NULL) /* Not actually mapped anymore */
396 goto out;
397 for_each_process (tsk) {
398 struct anon_vma_chain *vmac;
399
400 if (!task_early_kill(tsk))
401 continue;
402 list_for_each_entry(vmac, &av->head, same_anon_vma) {
403 vma = vmac->vma;
404 if (!page_mapped_in_vma(page, vma))
405 continue;
406 if (vma->vm_mm == tsk->mm)
407 add_to_kill(tsk, page, vma, to_kill, tkc);
408 }
409 }
410 page_unlock_anon_vma(av);
411 out:
412 read_unlock(&tasklist_lock);
413 }
414
415 /*
416 * Collect processes when the error hit a file mapped page.
417 */
418 static void collect_procs_file(struct page *page, struct list_head *to_kill,
419 struct to_kill **tkc)
420 {
421 struct vm_area_struct *vma;
422 struct task_struct *tsk;
423 struct prio_tree_iter iter;
424 struct address_space *mapping = page->mapping;
425
426 /*
427 * A note on the locking order between the two locks.
428 * We don't rely on this particular order.
429 * If you have some other code that needs a different order
430 * feel free to switch them around. Or add a reverse link
431 * from mm_struct to task_struct, then this could be all
432 * done without taking tasklist_lock and looping over all tasks.
433 */
434
435 read_lock(&tasklist_lock);
436 mutex_lock(&mapping->i_mmap_mutex);
437 for_each_process(tsk) {
438 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
439
440 if (!task_early_kill(tsk))
441 continue;
442
443 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
444 pgoff) {
445 /*
446 * Send early kill signal to tasks where a vma covers
447 * the page but the corrupted page is not necessarily
448 * mapped it in its pte.
449 * Assume applications who requested early kill want
450 * to be informed of all such data corruptions.
451 */
452 if (vma->vm_mm == tsk->mm)
453 add_to_kill(tsk, page, vma, to_kill, tkc);
454 }
455 }
456 mutex_unlock(&mapping->i_mmap_mutex);
457 read_unlock(&tasklist_lock);
458 }
459
460 /*
461 * Collect the processes who have the corrupted page mapped to kill.
462 * This is done in two steps for locking reasons.
463 * First preallocate one tokill structure outside the spin locks,
464 * so that we can kill at least one process reasonably reliable.
465 */
466 static void collect_procs(struct page *page, struct list_head *tokill)
467 {
468 struct to_kill *tk;
469
470 if (!page->mapping)
471 return;
472
473 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
474 if (!tk)
475 return;
476 if (PageAnon(page))
477 collect_procs_anon(page, tokill, &tk);
478 else
479 collect_procs_file(page, tokill, &tk);
480 kfree(tk);
481 }
482
483 /*
484 * Error handlers for various types of pages.
485 */
486
487 enum outcome {
488 IGNORED, /* Error: cannot be handled */
489 FAILED, /* Error: handling failed */
490 DELAYED, /* Will be handled later */
491 RECOVERED, /* Successfully recovered */
492 };
493
494 static const char *action_name[] = {
495 [IGNORED] = "Ignored",
496 [FAILED] = "Failed",
497 [DELAYED] = "Delayed",
498 [RECOVERED] = "Recovered",
499 };
500
501 /*
502 * XXX: It is possible that a page is isolated from LRU cache,
503 * and then kept in swap cache or failed to remove from page cache.
504 * The page count will stop it from being freed by unpoison.
505 * Stress tests should be aware of this memory leak problem.
506 */
507 static int delete_from_lru_cache(struct page *p)
508 {
509 if (!isolate_lru_page(p)) {
510 /*
511 * Clear sensible page flags, so that the buddy system won't
512 * complain when the page is unpoison-and-freed.
513 */
514 ClearPageActive(p);
515 ClearPageUnevictable(p);
516 /*
517 * drop the page count elevated by isolate_lru_page()
518 */
519 page_cache_release(p);
520 return 0;
521 }
522 return -EIO;
523 }
524
525 /*
526 * Error hit kernel page.
527 * Do nothing, try to be lucky and not touch this instead. For a few cases we
528 * could be more sophisticated.
529 */
530 static int me_kernel(struct page *p, unsigned long pfn)
531 {
532 return IGNORED;
533 }
534
535 /*
536 * Page in unknown state. Do nothing.
537 */
538 static int me_unknown(struct page *p, unsigned long pfn)
539 {
540 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
541 return FAILED;
542 }
543
544 /*
545 * Clean (or cleaned) page cache page.
546 */
547 static int me_pagecache_clean(struct page *p, unsigned long pfn)
548 {
549 int err;
550 int ret = FAILED;
551 struct address_space *mapping;
552
553 delete_from_lru_cache(p);
554
555 /*
556 * For anonymous pages we're done the only reference left
557 * should be the one m_f() holds.
558 */
559 if (PageAnon(p))
560 return RECOVERED;
561
562 /*
563 * Now truncate the page in the page cache. This is really
564 * more like a "temporary hole punch"
565 * Don't do this for block devices when someone else
566 * has a reference, because it could be file system metadata
567 * and that's not safe to truncate.
568 */
569 mapping = page_mapping(p);
570 if (!mapping) {
571 /*
572 * Page has been teared down in the meanwhile
573 */
574 return FAILED;
575 }
576
577 /*
578 * Truncation is a bit tricky. Enable it per file system for now.
579 *
580 * Open: to take i_mutex or not for this? Right now we don't.
581 */
582 if (mapping->a_ops->error_remove_page) {
583 err = mapping->a_ops->error_remove_page(mapping, p);
584 if (err != 0) {
585 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
586 pfn, err);
587 } else if (page_has_private(p) &&
588 !try_to_release_page(p, GFP_NOIO)) {
589 pr_info("MCE %#lx: failed to release buffers\n", pfn);
590 } else {
591 ret = RECOVERED;
592 }
593 } else {
594 /*
595 * If the file system doesn't support it just invalidate
596 * This fails on dirty or anything with private pages
597 */
598 if (invalidate_inode_page(p))
599 ret = RECOVERED;
600 else
601 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
602 pfn);
603 }
604 return ret;
605 }
606
607 /*
608 * Dirty cache page page
609 * Issues: when the error hit a hole page the error is not properly
610 * propagated.
611 */
612 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
613 {
614 struct address_space *mapping = page_mapping(p);
615
616 SetPageError(p);
617 /* TBD: print more information about the file. */
618 if (mapping) {
619 /*
620 * IO error will be reported by write(), fsync(), etc.
621 * who check the mapping.
622 * This way the application knows that something went
623 * wrong with its dirty file data.
624 *
625 * There's one open issue:
626 *
627 * The EIO will be only reported on the next IO
628 * operation and then cleared through the IO map.
629 * Normally Linux has two mechanisms to pass IO error
630 * first through the AS_EIO flag in the address space
631 * and then through the PageError flag in the page.
632 * Since we drop pages on memory failure handling the
633 * only mechanism open to use is through AS_AIO.
634 *
635 * This has the disadvantage that it gets cleared on
636 * the first operation that returns an error, while
637 * the PageError bit is more sticky and only cleared
638 * when the page is reread or dropped. If an
639 * application assumes it will always get error on
640 * fsync, but does other operations on the fd before
641 * and the page is dropped between then the error
642 * will not be properly reported.
643 *
644 * This can already happen even without hwpoisoned
645 * pages: first on metadata IO errors (which only
646 * report through AS_EIO) or when the page is dropped
647 * at the wrong time.
648 *
649 * So right now we assume that the application DTRT on
650 * the first EIO, but we're not worse than other parts
651 * of the kernel.
652 */
653 mapping_set_error(mapping, EIO);
654 }
655
656 return me_pagecache_clean(p, pfn);
657 }
658
659 /*
660 * Clean and dirty swap cache.
661 *
662 * Dirty swap cache page is tricky to handle. The page could live both in page
663 * cache and swap cache(ie. page is freshly swapped in). So it could be
664 * referenced concurrently by 2 types of PTEs:
665 * normal PTEs and swap PTEs. We try to handle them consistently by calling
666 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
667 * and then
668 * - clear dirty bit to prevent IO
669 * - remove from LRU
670 * - but keep in the swap cache, so that when we return to it on
671 * a later page fault, we know the application is accessing
672 * corrupted data and shall be killed (we installed simple
673 * interception code in do_swap_page to catch it).
674 *
675 * Clean swap cache pages can be directly isolated. A later page fault will
676 * bring in the known good data from disk.
677 */
678 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
679 {
680 ClearPageDirty(p);
681 /* Trigger EIO in shmem: */
682 ClearPageUptodate(p);
683
684 if (!delete_from_lru_cache(p))
685 return DELAYED;
686 else
687 return FAILED;
688 }
689
690 static int me_swapcache_clean(struct page *p, unsigned long pfn)
691 {
692 delete_from_swap_cache(p);
693
694 if (!delete_from_lru_cache(p))
695 return RECOVERED;
696 else
697 return FAILED;
698 }
699
700 /*
701 * Huge pages. Needs work.
702 * Issues:
703 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
704 * To narrow down kill region to one page, we need to break up pmd.
705 */
706 static int me_huge_page(struct page *p, unsigned long pfn)
707 {
708 int res = 0;
709 struct page *hpage = compound_head(p);
710 /*
711 * We can safely recover from error on free or reserved (i.e.
712 * not in-use) hugepage by dequeuing it from freelist.
713 * To check whether a hugepage is in-use or not, we can't use
714 * page->lru because it can be used in other hugepage operations,
715 * such as __unmap_hugepage_range() and gather_surplus_pages().
716 * So instead we use page_mapping() and PageAnon().
717 * We assume that this function is called with page lock held,
718 * so there is no race between isolation and mapping/unmapping.
719 */
720 if (!(page_mapping(hpage) || PageAnon(hpage))) {
721 res = dequeue_hwpoisoned_huge_page(hpage);
722 if (!res)
723 return RECOVERED;
724 }
725 return DELAYED;
726 }
727
728 /*
729 * Various page states we can handle.
730 *
731 * A page state is defined by its current page->flags bits.
732 * The table matches them in order and calls the right handler.
733 *
734 * This is quite tricky because we can access page at any time
735 * in its live cycle, so all accesses have to be extremely careful.
736 *
737 * This is not complete. More states could be added.
738 * For any missing state don't attempt recovery.
739 */
740
741 #define dirty (1UL << PG_dirty)
742 #define sc (1UL << PG_swapcache)
743 #define unevict (1UL << PG_unevictable)
744 #define mlock (1UL << PG_mlocked)
745 #define writeback (1UL << PG_writeback)
746 #define lru (1UL << PG_lru)
747 #define swapbacked (1UL << PG_swapbacked)
748 #define head (1UL << PG_head)
749 #define tail (1UL << PG_tail)
750 #define compound (1UL << PG_compound)
751 #define slab (1UL << PG_slab)
752 #define reserved (1UL << PG_reserved)
753
754 static struct page_state {
755 unsigned long mask;
756 unsigned long res;
757 char *msg;
758 int (*action)(struct page *p, unsigned long pfn);
759 } error_states[] = {
760 { reserved, reserved, "reserved kernel", me_kernel },
761 /*
762 * free pages are specially detected outside this table:
763 * PG_buddy pages only make a small fraction of all free pages.
764 */
765
766 /*
767 * Could in theory check if slab page is free or if we can drop
768 * currently unused objects without touching them. But just
769 * treat it as standard kernel for now.
770 */
771 { slab, slab, "kernel slab", me_kernel },
772
773 #ifdef CONFIG_PAGEFLAGS_EXTENDED
774 { head, head, "huge", me_huge_page },
775 { tail, tail, "huge", me_huge_page },
776 #else
777 { compound, compound, "huge", me_huge_page },
778 #endif
779
780 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
781 { sc|dirty, sc, "swapcache", me_swapcache_clean },
782
783 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
784 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
785
786 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
787 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
788
789 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
790 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
791
792 /*
793 * Catchall entry: must be at end.
794 */
795 { 0, 0, "unknown page state", me_unknown },
796 };
797
798 #undef dirty
799 #undef sc
800 #undef unevict
801 #undef mlock
802 #undef writeback
803 #undef lru
804 #undef swapbacked
805 #undef head
806 #undef tail
807 #undef compound
808 #undef slab
809 #undef reserved
810
811 static void action_result(unsigned long pfn, char *msg, int result)
812 {
813 struct page *page = pfn_to_page(pfn);
814
815 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
816 pfn,
817 PageDirty(page) ? "dirty " : "",
818 msg, action_name[result]);
819 }
820
821 static int page_action(struct page_state *ps, struct page *p,
822 unsigned long pfn)
823 {
824 int result;
825 int count;
826
827 result = ps->action(p, pfn);
828 action_result(pfn, ps->msg, result);
829
830 count = page_count(p) - 1;
831 if (ps->action == me_swapcache_dirty && result == DELAYED)
832 count--;
833 if (count != 0) {
834 printk(KERN_ERR
835 "MCE %#lx: %s page still referenced by %d users\n",
836 pfn, ps->msg, count);
837 result = FAILED;
838 }
839
840 /* Could do more checks here if page looks ok */
841 /*
842 * Could adjust zone counters here to correct for the missing page.
843 */
844
845 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
846 }
847
848 /*
849 * Do all that is necessary to remove user space mappings. Unmap
850 * the pages and send SIGBUS to the processes if the data was dirty.
851 */
852 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
853 int trapno)
854 {
855 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
856 struct address_space *mapping;
857 LIST_HEAD(tokill);
858 int ret;
859 int kill = 1;
860 struct page *hpage = compound_head(p);
861 struct page *ppage;
862
863 if (PageReserved(p) || PageSlab(p))
864 return SWAP_SUCCESS;
865
866 /*
867 * This check implies we don't kill processes if their pages
868 * are in the swap cache early. Those are always late kills.
869 */
870 if (!page_mapped(hpage))
871 return SWAP_SUCCESS;
872
873 if (PageKsm(p))
874 return SWAP_FAIL;
875
876 if (PageSwapCache(p)) {
877 printk(KERN_ERR
878 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
879 ttu |= TTU_IGNORE_HWPOISON;
880 }
881
882 /*
883 * Propagate the dirty bit from PTEs to struct page first, because we
884 * need this to decide if we should kill or just drop the page.
885 * XXX: the dirty test could be racy: set_page_dirty() may not always
886 * be called inside page lock (it's recommended but not enforced).
887 */
888 mapping = page_mapping(hpage);
889 if (!PageDirty(hpage) && mapping &&
890 mapping_cap_writeback_dirty(mapping)) {
891 if (page_mkclean(hpage)) {
892 SetPageDirty(hpage);
893 } else {
894 kill = 0;
895 ttu |= TTU_IGNORE_HWPOISON;
896 printk(KERN_INFO
897 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
898 pfn);
899 }
900 }
901
902 /*
903 * ppage: poisoned page
904 * if p is regular page(4k page)
905 * ppage == real poisoned page;
906 * else p is hugetlb or THP, ppage == head page.
907 */
908 ppage = hpage;
909
910 if (PageTransHuge(hpage)) {
911 /*
912 * Verify that this isn't a hugetlbfs head page, the check for
913 * PageAnon is just for avoid tripping a split_huge_page
914 * internal debug check, as split_huge_page refuses to deal with
915 * anything that isn't an anon page. PageAnon can't go away fro
916 * under us because we hold a refcount on the hpage, without a
917 * refcount on the hpage. split_huge_page can't be safely called
918 * in the first place, having a refcount on the tail isn't
919 * enough * to be safe.
920 */
921 if (!PageHuge(hpage) && PageAnon(hpage)) {
922 if (unlikely(split_huge_page(hpage))) {
923 /*
924 * FIXME: if splitting THP is failed, it is
925 * better to stop the following operation rather
926 * than causing panic by unmapping. System might
927 * survive if the page is freed later.
928 */
929 printk(KERN_INFO
930 "MCE %#lx: failed to split THP\n", pfn);
931
932 BUG_ON(!PageHWPoison(p));
933 return SWAP_FAIL;
934 }
935 /* THP is split, so ppage should be the real poisoned page. */
936 ppage = p;
937 }
938 }
939
940 /*
941 * First collect all the processes that have the page
942 * mapped in dirty form. This has to be done before try_to_unmap,
943 * because ttu takes the rmap data structures down.
944 *
945 * Error handling: We ignore errors here because
946 * there's nothing that can be done.
947 */
948 if (kill)
949 collect_procs(ppage, &tokill);
950
951 if (hpage != ppage)
952 lock_page(ppage);
953
954 ret = try_to_unmap(ppage, ttu);
955 if (ret != SWAP_SUCCESS)
956 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
957 pfn, page_mapcount(ppage));
958
959 if (hpage != ppage)
960 unlock_page(ppage);
961
962 /*
963 * Now that the dirty bit has been propagated to the
964 * struct page and all unmaps done we can decide if
965 * killing is needed or not. Only kill when the page
966 * was dirty, otherwise the tokill list is merely
967 * freed. When there was a problem unmapping earlier
968 * use a more force-full uncatchable kill to prevent
969 * any accesses to the poisoned memory.
970 */
971 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
972 ret != SWAP_SUCCESS, p, pfn);
973
974 return ret;
975 }
976
977 static void set_page_hwpoison_huge_page(struct page *hpage)
978 {
979 int i;
980 int nr_pages = 1 << compound_trans_order(hpage);
981 for (i = 0; i < nr_pages; i++)
982 SetPageHWPoison(hpage + i);
983 }
984
985 static void clear_page_hwpoison_huge_page(struct page *hpage)
986 {
987 int i;
988 int nr_pages = 1 << compound_trans_order(hpage);
989 for (i = 0; i < nr_pages; i++)
990 ClearPageHWPoison(hpage + i);
991 }
992
993 int __memory_failure(unsigned long pfn, int trapno, int flags)
994 {
995 struct page_state *ps;
996 struct page *p;
997 struct page *hpage;
998 int res;
999 unsigned int nr_pages;
1000
1001 if (!sysctl_memory_failure_recovery)
1002 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1003
1004 if (!pfn_valid(pfn)) {
1005 printk(KERN_ERR
1006 "MCE %#lx: memory outside kernel control\n",
1007 pfn);
1008 return -ENXIO;
1009 }
1010
1011 p = pfn_to_page(pfn);
1012 hpage = compound_head(p);
1013 if (TestSetPageHWPoison(p)) {
1014 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1015 return 0;
1016 }
1017
1018 nr_pages = 1 << compound_trans_order(hpage);
1019 atomic_long_add(nr_pages, &mce_bad_pages);
1020
1021 /*
1022 * We need/can do nothing about count=0 pages.
1023 * 1) it's a free page, and therefore in safe hand:
1024 * prep_new_page() will be the gate keeper.
1025 * 2) it's a free hugepage, which is also safe:
1026 * an affected hugepage will be dequeued from hugepage freelist,
1027 * so there's no concern about reusing it ever after.
1028 * 3) it's part of a non-compound high order page.
1029 * Implies some kernel user: cannot stop them from
1030 * R/W the page; let's pray that the page has been
1031 * used and will be freed some time later.
1032 * In fact it's dangerous to directly bump up page count from 0,
1033 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1034 */
1035 if (!(flags & MF_COUNT_INCREASED) &&
1036 !get_page_unless_zero(hpage)) {
1037 if (is_free_buddy_page(p)) {
1038 action_result(pfn, "free buddy", DELAYED);
1039 return 0;
1040 } else if (PageHuge(hpage)) {
1041 /*
1042 * Check "just unpoisoned", "filter hit", and
1043 * "race with other subpage."
1044 */
1045 lock_page(hpage);
1046 if (!PageHWPoison(hpage)
1047 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1048 || (p != hpage && TestSetPageHWPoison(hpage))) {
1049 atomic_long_sub(nr_pages, &mce_bad_pages);
1050 return 0;
1051 }
1052 set_page_hwpoison_huge_page(hpage);
1053 res = dequeue_hwpoisoned_huge_page(hpage);
1054 action_result(pfn, "free huge",
1055 res ? IGNORED : DELAYED);
1056 unlock_page(hpage);
1057 return res;
1058 } else {
1059 action_result(pfn, "high order kernel", IGNORED);
1060 return -EBUSY;
1061 }
1062 }
1063
1064 /*
1065 * We ignore non-LRU pages for good reasons.
1066 * - PG_locked is only well defined for LRU pages and a few others
1067 * - to avoid races with __set_page_locked()
1068 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1069 * The check (unnecessarily) ignores LRU pages being isolated and
1070 * walked by the page reclaim code, however that's not a big loss.
1071 */
1072 if (!PageHuge(p) && !PageTransCompound(p)) {
1073 if (!PageLRU(p))
1074 shake_page(p, 0);
1075 if (!PageLRU(p)) {
1076 /*
1077 * shake_page could have turned it free.
1078 */
1079 if (is_free_buddy_page(p)) {
1080 action_result(pfn, "free buddy, 2nd try",
1081 DELAYED);
1082 return 0;
1083 }
1084 action_result(pfn, "non LRU", IGNORED);
1085 put_page(p);
1086 return -EBUSY;
1087 }
1088 }
1089
1090 /*
1091 * Lock the page and wait for writeback to finish.
1092 * It's very difficult to mess with pages currently under IO
1093 * and in many cases impossible, so we just avoid it here.
1094 */
1095 lock_page(hpage);
1096
1097 /*
1098 * unpoison always clear PG_hwpoison inside page lock
1099 */
1100 if (!PageHWPoison(p)) {
1101 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1102 res = 0;
1103 goto out;
1104 }
1105 if (hwpoison_filter(p)) {
1106 if (TestClearPageHWPoison(p))
1107 atomic_long_sub(nr_pages, &mce_bad_pages);
1108 unlock_page(hpage);
1109 put_page(hpage);
1110 return 0;
1111 }
1112
1113 /*
1114 * For error on the tail page, we should set PG_hwpoison
1115 * on the head page to show that the hugepage is hwpoisoned
1116 */
1117 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1118 action_result(pfn, "hugepage already hardware poisoned",
1119 IGNORED);
1120 unlock_page(hpage);
1121 put_page(hpage);
1122 return 0;
1123 }
1124 /*
1125 * Set PG_hwpoison on all pages in an error hugepage,
1126 * because containment is done in hugepage unit for now.
1127 * Since we have done TestSetPageHWPoison() for the head page with
1128 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1129 */
1130 if (PageHuge(p))
1131 set_page_hwpoison_huge_page(hpage);
1132
1133 wait_on_page_writeback(p);
1134
1135 /*
1136 * Now take care of user space mappings.
1137 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1138 */
1139 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1140 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1141 res = -EBUSY;
1142 goto out;
1143 }
1144
1145 /*
1146 * Torn down by someone else?
1147 */
1148 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1149 action_result(pfn, "already truncated LRU", IGNORED);
1150 res = -EBUSY;
1151 goto out;
1152 }
1153
1154 res = -EBUSY;
1155 for (ps = error_states;; ps++) {
1156 if ((p->flags & ps->mask) == ps->res) {
1157 res = page_action(ps, p, pfn);
1158 break;
1159 }
1160 }
1161 out:
1162 unlock_page(hpage);
1163 return res;
1164 }
1165 EXPORT_SYMBOL_GPL(__memory_failure);
1166
1167 /**
1168 * memory_failure - Handle memory failure of a page.
1169 * @pfn: Page Number of the corrupted page
1170 * @trapno: Trap number reported in the signal to user space.
1171 *
1172 * This function is called by the low level machine check code
1173 * of an architecture when it detects hardware memory corruption
1174 * of a page. It tries its best to recover, which includes
1175 * dropping pages, killing processes etc.
1176 *
1177 * The function is primarily of use for corruptions that
1178 * happen outside the current execution context (e.g. when
1179 * detected by a background scrubber)
1180 *
1181 * Must run in process context (e.g. a work queue) with interrupts
1182 * enabled and no spinlocks hold.
1183 */
1184 void memory_failure(unsigned long pfn, int trapno)
1185 {
1186 __memory_failure(pfn, trapno, 0);
1187 }
1188
1189 /**
1190 * unpoison_memory - Unpoison a previously poisoned page
1191 * @pfn: Page number of the to be unpoisoned page
1192 *
1193 * Software-unpoison a page that has been poisoned by
1194 * memory_failure() earlier.
1195 *
1196 * This is only done on the software-level, so it only works
1197 * for linux injected failures, not real hardware failures
1198 *
1199 * Returns 0 for success, otherwise -errno.
1200 */
1201 int unpoison_memory(unsigned long pfn)
1202 {
1203 struct page *page;
1204 struct page *p;
1205 int freeit = 0;
1206 unsigned int nr_pages;
1207
1208 if (!pfn_valid(pfn))
1209 return -ENXIO;
1210
1211 p = pfn_to_page(pfn);
1212 page = compound_head(p);
1213
1214 if (!PageHWPoison(p)) {
1215 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1216 return 0;
1217 }
1218
1219 nr_pages = 1 << compound_trans_order(page);
1220
1221 if (!get_page_unless_zero(page)) {
1222 /*
1223 * Since HWPoisoned hugepage should have non-zero refcount,
1224 * race between memory failure and unpoison seems to happen.
1225 * In such case unpoison fails and memory failure runs
1226 * to the end.
1227 */
1228 if (PageHuge(page)) {
1229 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1230 return 0;
1231 }
1232 if (TestClearPageHWPoison(p))
1233 atomic_long_sub(nr_pages, &mce_bad_pages);
1234 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1235 return 0;
1236 }
1237
1238 lock_page(page);
1239 /*
1240 * This test is racy because PG_hwpoison is set outside of page lock.
1241 * That's acceptable because that won't trigger kernel panic. Instead,
1242 * the PG_hwpoison page will be caught and isolated on the entrance to
1243 * the free buddy page pool.
1244 */
1245 if (TestClearPageHWPoison(page)) {
1246 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1247 atomic_long_sub(nr_pages, &mce_bad_pages);
1248 freeit = 1;
1249 if (PageHuge(page))
1250 clear_page_hwpoison_huge_page(page);
1251 }
1252 unlock_page(page);
1253
1254 put_page(page);
1255 if (freeit)
1256 put_page(page);
1257
1258 return 0;
1259 }
1260 EXPORT_SYMBOL(unpoison_memory);
1261
1262 static struct page *new_page(struct page *p, unsigned long private, int **x)
1263 {
1264 int nid = page_to_nid(p);
1265 if (PageHuge(p))
1266 return alloc_huge_page_node(page_hstate(compound_head(p)),
1267 nid);
1268 else
1269 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1270 }
1271
1272 /*
1273 * Safely get reference count of an arbitrary page.
1274 * Returns 0 for a free page, -EIO for a zero refcount page
1275 * that is not free, and 1 for any other page type.
1276 * For 1 the page is returned with increased page count, otherwise not.
1277 */
1278 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1279 {
1280 int ret;
1281
1282 if (flags & MF_COUNT_INCREASED)
1283 return 1;
1284
1285 /*
1286 * The lock_memory_hotplug prevents a race with memory hotplug.
1287 * This is a big hammer, a better would be nicer.
1288 */
1289 lock_memory_hotplug();
1290
1291 /*
1292 * Isolate the page, so that it doesn't get reallocated if it
1293 * was free.
1294 */
1295 set_migratetype_isolate(p);
1296 /*
1297 * When the target page is a free hugepage, just remove it
1298 * from free hugepage list.
1299 */
1300 if (!get_page_unless_zero(compound_head(p))) {
1301 if (PageHuge(p)) {
1302 pr_info("get_any_page: %#lx free huge page\n", pfn);
1303 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1304 } else if (is_free_buddy_page(p)) {
1305 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1306 /* Set hwpoison bit while page is still isolated */
1307 SetPageHWPoison(p);
1308 ret = 0;
1309 } else {
1310 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1311 pfn, p->flags);
1312 ret = -EIO;
1313 }
1314 } else {
1315 /* Not a free page */
1316 ret = 1;
1317 }
1318 unset_migratetype_isolate(p);
1319 unlock_memory_hotplug();
1320 return ret;
1321 }
1322
1323 static int soft_offline_huge_page(struct page *page, int flags)
1324 {
1325 int ret;
1326 unsigned long pfn = page_to_pfn(page);
1327 struct page *hpage = compound_head(page);
1328 LIST_HEAD(pagelist);
1329
1330 ret = get_any_page(page, pfn, flags);
1331 if (ret < 0)
1332 return ret;
1333 if (ret == 0)
1334 goto done;
1335
1336 if (PageHWPoison(hpage)) {
1337 put_page(hpage);
1338 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1339 return -EBUSY;
1340 }
1341
1342 /* Keep page count to indicate a given hugepage is isolated. */
1343
1344 list_add(&hpage->lru, &pagelist);
1345 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1346 true);
1347 if (ret) {
1348 struct page *page1, *page2;
1349 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1350 put_page(page1);
1351
1352 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1353 pfn, ret, page->flags);
1354 if (ret > 0)
1355 ret = -EIO;
1356 return ret;
1357 }
1358 done:
1359 if (!PageHWPoison(hpage))
1360 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1361 set_page_hwpoison_huge_page(hpage);
1362 dequeue_hwpoisoned_huge_page(hpage);
1363 /* keep elevated page count for bad page */
1364 return ret;
1365 }
1366
1367 /**
1368 * soft_offline_page - Soft offline a page.
1369 * @page: page to offline
1370 * @flags: flags. Same as memory_failure().
1371 *
1372 * Returns 0 on success, otherwise negated errno.
1373 *
1374 * Soft offline a page, by migration or invalidation,
1375 * without killing anything. This is for the case when
1376 * a page is not corrupted yet (so it's still valid to access),
1377 * but has had a number of corrected errors and is better taken
1378 * out.
1379 *
1380 * The actual policy on when to do that is maintained by
1381 * user space.
1382 *
1383 * This should never impact any application or cause data loss,
1384 * however it might take some time.
1385 *
1386 * This is not a 100% solution for all memory, but tries to be
1387 * ``good enough'' for the majority of memory.
1388 */
1389 int soft_offline_page(struct page *page, int flags)
1390 {
1391 int ret;
1392 unsigned long pfn = page_to_pfn(page);
1393
1394 if (PageHuge(page))
1395 return soft_offline_huge_page(page, flags);
1396
1397 ret = get_any_page(page, pfn, flags);
1398 if (ret < 0)
1399 return ret;
1400 if (ret == 0)
1401 goto done;
1402
1403 /*
1404 * Page cache page we can handle?
1405 */
1406 if (!PageLRU(page)) {
1407 /*
1408 * Try to free it.
1409 */
1410 put_page(page);
1411 shake_page(page, 1);
1412
1413 /*
1414 * Did it turn free?
1415 */
1416 ret = get_any_page(page, pfn, 0);
1417 if (ret < 0)
1418 return ret;
1419 if (ret == 0)
1420 goto done;
1421 }
1422 if (!PageLRU(page)) {
1423 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1424 pfn, page->flags);
1425 return -EIO;
1426 }
1427
1428 lock_page(page);
1429 wait_on_page_writeback(page);
1430
1431 /*
1432 * Synchronized using the page lock with memory_failure()
1433 */
1434 if (PageHWPoison(page)) {
1435 unlock_page(page);
1436 put_page(page);
1437 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1438 return -EBUSY;
1439 }
1440
1441 /*
1442 * Try to invalidate first. This should work for
1443 * non dirty unmapped page cache pages.
1444 */
1445 ret = invalidate_inode_page(page);
1446 unlock_page(page);
1447 /*
1448 * RED-PEN would be better to keep it isolated here, but we
1449 * would need to fix isolation locking first.
1450 */
1451 if (ret == 1) {
1452 put_page(page);
1453 ret = 0;
1454 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1455 goto done;
1456 }
1457
1458 /*
1459 * Simple invalidation didn't work.
1460 * Try to migrate to a new page instead. migrate.c
1461 * handles a large number of cases for us.
1462 */
1463 ret = isolate_lru_page(page);
1464 /*
1465 * Drop page reference which is came from get_any_page()
1466 * successful isolate_lru_page() already took another one.
1467 */
1468 put_page(page);
1469 if (!ret) {
1470 LIST_HEAD(pagelist);
1471
1472 list_add(&page->lru, &pagelist);
1473 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1474 0, true);
1475 if (ret) {
1476 putback_lru_pages(&pagelist);
1477 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1478 pfn, ret, page->flags);
1479 if (ret > 0)
1480 ret = -EIO;
1481 }
1482 } else {
1483 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1484 pfn, ret, page_count(page), page->flags);
1485 }
1486 if (ret)
1487 return ret;
1488
1489 done:
1490 atomic_long_add(1, &mce_bad_pages);
1491 SetPageHWPoison(page);
1492 /* keep elevated page count for bad page */
1493 return ret;
1494 }