edfa8e28412980e38d070ed0b100fe3d7e32f0bc
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mm_struct *mm;
200 struct mem_cgroup *from;
201 struct mem_cgroup *to;
202 unsigned long flags;
203 unsigned long precharge;
204 unsigned long moved_charge;
205 unsigned long moved_swap;
206 struct task_struct *moving_task; /* a task moving charges */
207 wait_queue_head_t waitq; /* a waitq for other context */
208 } mc = {
209 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211 };
212
213 /*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
217 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
219
220 enum charge_type {
221 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
225 NR_CHARGE_TYPE,
226 };
227
228 /* for encoding cft->private value on file */
229 enum res_type {
230 _MEM,
231 _MEMSWAP,
232 _OOM_TYPE,
233 _KMEM,
234 };
235
236 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val) ((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL (0)
241
242 /*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247 static DEFINE_MUTEX(memcg_create_mutex);
248
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
262 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263 {
264 return (memcg == root_mem_cgroup);
265 }
266
267 /*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271 #define MEM_CGROUP_ID_MAX USHRT_MAX
272
273 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274 {
275 return memcg->id.id;
276 }
277
278 /* Writing them here to avoid exposing memcg's inner layout */
279 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
280
281 void sock_update_memcg(struct sock *sk)
282 {
283 if (mem_cgroup_sockets_enabled) {
284 struct mem_cgroup *memcg;
285 struct cg_proto *cg_proto;
286
287 BUG_ON(!sk->sk_prot->proto_cgroup);
288
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
293 *
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
296 */
297 if (sk->sk_cgrp) {
298 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
299 css_get(&sk->sk_cgrp->memcg->css);
300 return;
301 }
302
303 rcu_read_lock();
304 memcg = mem_cgroup_from_task(current);
305 cg_proto = sk->sk_prot->proto_cgroup(memcg);
306 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
307 css_tryget_online(&memcg->css)) {
308 sk->sk_cgrp = cg_proto;
309 }
310 rcu_read_unlock();
311 }
312 }
313 EXPORT_SYMBOL(sock_update_memcg);
314
315 void sock_release_memcg(struct sock *sk)
316 {
317 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
318 struct mem_cgroup *memcg;
319 WARN_ON(!sk->sk_cgrp->memcg);
320 memcg = sk->sk_cgrp->memcg;
321 css_put(&sk->sk_cgrp->memcg->css);
322 }
323 }
324
325 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
326 {
327 if (!memcg || mem_cgroup_is_root(memcg))
328 return NULL;
329
330 return &memcg->tcp_mem;
331 }
332 EXPORT_SYMBOL(tcp_proto_cgroup);
333
334 #endif
335
336 #ifdef CONFIG_MEMCG_KMEM
337 /*
338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
344 *
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
347 */
348 static DEFINE_IDA(memcg_cache_ida);
349 int memcg_nr_cache_ids;
350
351 /* Protects memcg_nr_cache_ids */
352 static DECLARE_RWSEM(memcg_cache_ids_sem);
353
354 void memcg_get_cache_ids(void)
355 {
356 down_read(&memcg_cache_ids_sem);
357 }
358
359 void memcg_put_cache_ids(void)
360 {
361 up_read(&memcg_cache_ids_sem);
362 }
363
364 /*
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
369 *
370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
374 * increase ours as well if it increases.
375 */
376 #define MEMCG_CACHES_MIN_SIZE 4
377 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
378
379 /*
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
384 */
385 struct static_key memcg_kmem_enabled_key;
386 EXPORT_SYMBOL(memcg_kmem_enabled_key);
387
388 #endif /* CONFIG_MEMCG_KMEM */
389
390 static struct mem_cgroup_per_zone *
391 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
392 {
393 int nid = zone_to_nid(zone);
394 int zid = zone_idx(zone);
395
396 return &memcg->nodeinfo[nid]->zoneinfo[zid];
397 }
398
399 /**
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
402 *
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
406 *
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
408 * is returned.
409 *
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
415 * actually true.
416 */
417 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418 {
419 struct mem_cgroup *memcg;
420
421 rcu_read_lock();
422
423 memcg = page->mem_cgroup;
424
425 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
426 memcg = root_mem_cgroup;
427
428 rcu_read_unlock();
429 return &memcg->css;
430 }
431
432 /**
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
434 * @page: the page
435 *
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
439 *
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
444 */
445 ino_t page_cgroup_ino(struct page *page)
446 {
447 struct mem_cgroup *memcg;
448 unsigned long ino = 0;
449
450 rcu_read_lock();
451 memcg = READ_ONCE(page->mem_cgroup);
452 while (memcg && !(memcg->css.flags & CSS_ONLINE))
453 memcg = parent_mem_cgroup(memcg);
454 if (memcg)
455 ino = cgroup_ino(memcg->css.cgroup);
456 rcu_read_unlock();
457 return ino;
458 }
459
460 static struct mem_cgroup_per_zone *
461 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
462 {
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465
466 return &memcg->nodeinfo[nid]->zoneinfo[zid];
467 }
468
469 static struct mem_cgroup_tree_per_zone *
470 soft_limit_tree_node_zone(int nid, int zid)
471 {
472 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
473 }
474
475 static struct mem_cgroup_tree_per_zone *
476 soft_limit_tree_from_page(struct page *page)
477 {
478 int nid = page_to_nid(page);
479 int zid = page_zonenum(page);
480
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
485 struct mem_cgroup_tree_per_zone *mctz,
486 unsigned long new_usage_in_excess)
487 {
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
490 struct mem_cgroup_per_zone *mz_node;
491
492 if (mz->on_tree)
493 return;
494
495 mz->usage_in_excess = new_usage_in_excess;
496 if (!mz->usage_in_excess)
497 return;
498 while (*p) {
499 parent = *p;
500 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
501 tree_node);
502 if (mz->usage_in_excess < mz_node->usage_in_excess)
503 p = &(*p)->rb_left;
504 /*
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
507 */
508 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
509 p = &(*p)->rb_right;
510 }
511 rb_link_node(&mz->tree_node, parent, p);
512 rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = true;
514 }
515
516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
517 struct mem_cgroup_tree_per_zone *mctz)
518 {
519 if (!mz->on_tree)
520 return;
521 rb_erase(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = false;
523 }
524
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&mctz->lock, flags);
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 spin_unlock_irqrestore(&mctz->lock, flags);
533 }
534
535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536 {
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 unsigned long excess = 0;
540
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
543
544 return excess;
545 }
546
547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548 {
549 unsigned long excess;
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
552
553 mctz = soft_limit_tree_from_page(page);
554 /*
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
557 */
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 mz = mem_cgroup_page_zoneinfo(memcg, page);
560 excess = soft_limit_excess(memcg);
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
565 if (excess || mz->on_tree) {
566 unsigned long flags;
567
568 spin_lock_irqsave(&mctz->lock, flags);
569 /* if on-tree, remove it */
570 if (mz->on_tree)
571 __mem_cgroup_remove_exceeded(mz, mctz);
572 /*
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
575 */
576 __mem_cgroup_insert_exceeded(mz, mctz, excess);
577 spin_unlock_irqrestore(&mctz->lock, flags);
578 }
579 }
580 }
581
582 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
583 {
584 struct mem_cgroup_tree_per_zone *mctz;
585 struct mem_cgroup_per_zone *mz;
586 int nid, zid;
587
588 for_each_node(nid) {
589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
590 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
591 mctz = soft_limit_tree_node_zone(nid, zid);
592 mem_cgroup_remove_exceeded(mz, mctz);
593 }
594 }
595 }
596
597 static struct mem_cgroup_per_zone *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599 {
600 struct rb_node *rightmost = NULL;
601 struct mem_cgroup_per_zone *mz;
602
603 retry:
604 mz = NULL;
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
608
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 if (!soft_limit_excess(mz->memcg) ||
617 !css_tryget_online(&mz->memcg->css))
618 goto retry;
619 done:
620 return mz;
621 }
622
623 static struct mem_cgroup_per_zone *
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625 {
626 struct mem_cgroup_per_zone *mz;
627
628 spin_lock_irq(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock_irq(&mctz->lock);
631 return mz;
632 }
633
634 /*
635 * Return page count for single (non recursive) @memcg.
636 *
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronization of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threshold and synchronization as vmstat[] should be
653 * implemented.
654 */
655 static unsigned long
656 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
657 {
658 long val = 0;
659 int cpu;
660
661 /* Per-cpu values can be negative, use a signed accumulator */
662 for_each_possible_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 /*
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
667 */
668 if (val < 0)
669 val = 0;
670 return val;
671 }
672
673 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
674 enum mem_cgroup_events_index idx)
675 {
676 unsigned long val = 0;
677 int cpu;
678
679 for_each_possible_cpu(cpu)
680 val += per_cpu(memcg->stat->events[idx], cpu);
681 return val;
682 }
683
684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 struct page *page,
686 int nr_pages)
687 {
688 /*
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
691 */
692 if (PageAnon(page))
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 nr_pages);
695 else
696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
697 nr_pages);
698
699 if (PageTransHuge(page))
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
701 nr_pages);
702
703 /* pagein of a big page is an event. So, ignore page size */
704 if (nr_pages > 0)
705 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
706 else {
707 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
708 nr_pages = -nr_pages; /* for event */
709 }
710
711 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
712 }
713
714 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
715 int nid,
716 unsigned int lru_mask)
717 {
718 unsigned long nr = 0;
719 int zid;
720
721 VM_BUG_ON((unsigned)nid >= nr_node_ids);
722
723 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
724 struct mem_cgroup_per_zone *mz;
725 enum lru_list lru;
726
727 for_each_lru(lru) {
728 if (!(BIT(lru) & lru_mask))
729 continue;
730 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
731 nr += mz->lru_size[lru];
732 }
733 }
734 return nr;
735 }
736
737 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
738 unsigned int lru_mask)
739 {
740 unsigned long nr = 0;
741 int nid;
742
743 for_each_node_state(nid, N_MEMORY)
744 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
745 return nr;
746 }
747
748 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
749 enum mem_cgroup_events_target target)
750 {
751 unsigned long val, next;
752
753 val = __this_cpu_read(memcg->stat->nr_page_events);
754 next = __this_cpu_read(memcg->stat->targets[target]);
755 /* from time_after() in jiffies.h */
756 if ((long)next - (long)val < 0) {
757 switch (target) {
758 case MEM_CGROUP_TARGET_THRESH:
759 next = val + THRESHOLDS_EVENTS_TARGET;
760 break;
761 case MEM_CGROUP_TARGET_SOFTLIMIT:
762 next = val + SOFTLIMIT_EVENTS_TARGET;
763 break;
764 case MEM_CGROUP_TARGET_NUMAINFO:
765 next = val + NUMAINFO_EVENTS_TARGET;
766 break;
767 default:
768 break;
769 }
770 __this_cpu_write(memcg->stat->targets[target], next);
771 return true;
772 }
773 return false;
774 }
775
776 /*
777 * Check events in order.
778 *
779 */
780 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781 {
782 /* threshold event is triggered in finer grain than soft limit */
783 if (unlikely(mem_cgroup_event_ratelimit(memcg,
784 MEM_CGROUP_TARGET_THRESH))) {
785 bool do_softlimit;
786 bool do_numainfo __maybe_unused;
787
788 do_softlimit = mem_cgroup_event_ratelimit(memcg,
789 MEM_CGROUP_TARGET_SOFTLIMIT);
790 #if MAX_NUMNODES > 1
791 do_numainfo = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_NUMAINFO);
793 #endif
794 mem_cgroup_threshold(memcg);
795 if (unlikely(do_softlimit))
796 mem_cgroup_update_tree(memcg, page);
797 #if MAX_NUMNODES > 1
798 if (unlikely(do_numainfo))
799 atomic_inc(&memcg->numainfo_events);
800 #endif
801 }
802 }
803
804 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
805 {
806 /*
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
810 */
811 if (unlikely(!p))
812 return NULL;
813
814 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
815 }
816 EXPORT_SYMBOL(mem_cgroup_from_task);
817
818 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
819 {
820 struct mem_cgroup *memcg = NULL;
821
822 rcu_read_lock();
823 do {
824 /*
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
828 */
829 if (unlikely(!mm))
830 memcg = root_mem_cgroup;
831 else {
832 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
833 if (unlikely(!memcg))
834 memcg = root_mem_cgroup;
835 }
836 } while (!css_tryget_online(&memcg->css));
837 rcu_read_unlock();
838 return memcg;
839 }
840
841 /**
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
846 *
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
849 *
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
853 *
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
857 */
858 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
859 struct mem_cgroup *prev,
860 struct mem_cgroup_reclaim_cookie *reclaim)
861 {
862 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
863 struct cgroup_subsys_state *css = NULL;
864 struct mem_cgroup *memcg = NULL;
865 struct mem_cgroup *pos = NULL;
866
867 if (mem_cgroup_disabled())
868 return NULL;
869
870 if (!root)
871 root = root_mem_cgroup;
872
873 if (prev && !reclaim)
874 pos = prev;
875
876 if (!root->use_hierarchy && root != root_mem_cgroup) {
877 if (prev)
878 goto out;
879 return root;
880 }
881
882 rcu_read_lock();
883
884 if (reclaim) {
885 struct mem_cgroup_per_zone *mz;
886
887 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
888 iter = &mz->iter[reclaim->priority];
889
890 if (prev && reclaim->generation != iter->generation)
891 goto out_unlock;
892
893 while (1) {
894 pos = READ_ONCE(iter->position);
895 if (!pos || css_tryget(&pos->css))
896 break;
897 /*
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
903 * away.
904 */
905 (void)cmpxchg(&iter->position, pos, NULL);
906 }
907 }
908
909 if (pos)
910 css = &pos->css;
911
912 for (;;) {
913 css = css_next_descendant_pre(css, &root->css);
914 if (!css) {
915 /*
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
920 */
921 if (!prev)
922 continue;
923 break;
924 }
925
926 /*
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
930 */
931 memcg = mem_cgroup_from_css(css);
932
933 if (css == &root->css)
934 break;
935
936 if (css_tryget(css)) {
937 /*
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
941 */
942 if (smp_load_acquire(&memcg->initialized))
943 break;
944
945 css_put(css);
946 }
947
948 memcg = NULL;
949 }
950
951 if (reclaim) {
952 /*
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
956 */
957 (void)cmpxchg(&iter->position, pos, memcg);
958
959 if (pos)
960 css_put(&pos->css);
961
962 if (!memcg)
963 iter->generation++;
964 else if (!prev)
965 reclaim->generation = iter->generation;
966 }
967
968 out_unlock:
969 rcu_read_unlock();
970 out:
971 if (prev && prev != root)
972 css_put(&prev->css);
973
974 return memcg;
975 }
976
977 /**
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
981 */
982 void mem_cgroup_iter_break(struct mem_cgroup *root,
983 struct mem_cgroup *prev)
984 {
985 if (!root)
986 root = root_mem_cgroup;
987 if (prev && prev != root)
988 css_put(&prev->css);
989 }
990
991 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
992 {
993 struct mem_cgroup *memcg = dead_memcg;
994 struct mem_cgroup_reclaim_iter *iter;
995 struct mem_cgroup_per_zone *mz;
996 int nid, zid;
997 int i;
998
999 while ((memcg = parent_mem_cgroup(memcg))) {
1000 for_each_node(nid) {
1001 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1002 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1003 for (i = 0; i <= DEF_PRIORITY; i++) {
1004 iter = &mz->iter[i];
1005 cmpxchg(&iter->position,
1006 dead_memcg, NULL);
1007 }
1008 }
1009 }
1010 }
1011 }
1012
1013 /*
1014 * Iteration constructs for visiting all cgroups (under a tree). If
1015 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1016 * be used for reference counting.
1017 */
1018 #define for_each_mem_cgroup_tree(iter, root) \
1019 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1020 iter != NULL; \
1021 iter = mem_cgroup_iter(root, iter, NULL))
1022
1023 #define for_each_mem_cgroup(iter) \
1024 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1025 iter != NULL; \
1026 iter = mem_cgroup_iter(NULL, iter, NULL))
1027
1028 /**
1029 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1030 * @zone: zone of the wanted lruvec
1031 * @memcg: memcg of the wanted lruvec
1032 *
1033 * Returns the lru list vector holding pages for the given @zone and
1034 * @mem. This can be the global zone lruvec, if the memory controller
1035 * is disabled.
1036 */
1037 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1038 struct mem_cgroup *memcg)
1039 {
1040 struct mem_cgroup_per_zone *mz;
1041 struct lruvec *lruvec;
1042
1043 if (mem_cgroup_disabled()) {
1044 lruvec = &zone->lruvec;
1045 goto out;
1046 }
1047
1048 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1049 lruvec = &mz->lruvec;
1050 out:
1051 /*
1052 * Since a node can be onlined after the mem_cgroup was created,
1053 * we have to be prepared to initialize lruvec->zone here;
1054 * and if offlined then reonlined, we need to reinitialize it.
1055 */
1056 if (unlikely(lruvec->zone != zone))
1057 lruvec->zone = zone;
1058 return lruvec;
1059 }
1060
1061 /**
1062 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1063 * @page: the page
1064 * @zone: zone of the page
1065 *
1066 * This function is only safe when following the LRU page isolation
1067 * and putback protocol: the LRU lock must be held, and the page must
1068 * either be PageLRU() or the caller must have isolated/allocated it.
1069 */
1070 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1071 {
1072 struct mem_cgroup_per_zone *mz;
1073 struct mem_cgroup *memcg;
1074 struct lruvec *lruvec;
1075
1076 if (mem_cgroup_disabled()) {
1077 lruvec = &zone->lruvec;
1078 goto out;
1079 }
1080
1081 memcg = page->mem_cgroup;
1082 /*
1083 * Swapcache readahead pages are added to the LRU - and
1084 * possibly migrated - before they are charged.
1085 */
1086 if (!memcg)
1087 memcg = root_mem_cgroup;
1088
1089 mz = mem_cgroup_page_zoneinfo(memcg, page);
1090 lruvec = &mz->lruvec;
1091 out:
1092 /*
1093 * Since a node can be onlined after the mem_cgroup was created,
1094 * we have to be prepared to initialize lruvec->zone here;
1095 * and if offlined then reonlined, we need to reinitialize it.
1096 */
1097 if (unlikely(lruvec->zone != zone))
1098 lruvec->zone = zone;
1099 return lruvec;
1100 }
1101
1102 /**
1103 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1104 * @lruvec: mem_cgroup per zone lru vector
1105 * @lru: index of lru list the page is sitting on
1106 * @nr_pages: positive when adding or negative when removing
1107 *
1108 * This function must be called when a page is added to or removed from an
1109 * lru list.
1110 */
1111 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1112 int nr_pages)
1113 {
1114 struct mem_cgroup_per_zone *mz;
1115 unsigned long *lru_size;
1116
1117 if (mem_cgroup_disabled())
1118 return;
1119
1120 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1121 lru_size = mz->lru_size + lru;
1122 *lru_size += nr_pages;
1123 VM_BUG_ON((long)(*lru_size) < 0);
1124 }
1125
1126 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1127 {
1128 struct mem_cgroup *task_memcg;
1129 struct task_struct *p;
1130 bool ret;
1131
1132 p = find_lock_task_mm(task);
1133 if (p) {
1134 task_memcg = get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
1136 } else {
1137 /*
1138 * All threads may have already detached their mm's, but the oom
1139 * killer still needs to detect if they have already been oom
1140 * killed to prevent needlessly killing additional tasks.
1141 */
1142 rcu_read_lock();
1143 task_memcg = mem_cgroup_from_task(task);
1144 css_get(&task_memcg->css);
1145 rcu_read_unlock();
1146 }
1147 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1148 css_put(&task_memcg->css);
1149 return ret;
1150 }
1151
1152 #define mem_cgroup_from_counter(counter, member) \
1153 container_of(counter, struct mem_cgroup, member)
1154
1155 /**
1156 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1157 * @memcg: the memory cgroup
1158 *
1159 * Returns the maximum amount of memory @mem can be charged with, in
1160 * pages.
1161 */
1162 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1163 {
1164 unsigned long margin = 0;
1165 unsigned long count;
1166 unsigned long limit;
1167
1168 count = page_counter_read(&memcg->memory);
1169 limit = READ_ONCE(memcg->memory.limit);
1170 if (count < limit)
1171 margin = limit - count;
1172
1173 if (do_swap_account) {
1174 count = page_counter_read(&memcg->memsw);
1175 limit = READ_ONCE(memcg->memsw.limit);
1176 if (count <= limit)
1177 margin = min(margin, limit - count);
1178 }
1179
1180 return margin;
1181 }
1182
1183 /*
1184 * A routine for checking "mem" is under move_account() or not.
1185 *
1186 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1187 * moving cgroups. This is for waiting at high-memory pressure
1188 * caused by "move".
1189 */
1190 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1191 {
1192 struct mem_cgroup *from;
1193 struct mem_cgroup *to;
1194 bool ret = false;
1195 /*
1196 * Unlike task_move routines, we access mc.to, mc.from not under
1197 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1198 */
1199 spin_lock(&mc.lock);
1200 from = mc.from;
1201 to = mc.to;
1202 if (!from)
1203 goto unlock;
1204
1205 ret = mem_cgroup_is_descendant(from, memcg) ||
1206 mem_cgroup_is_descendant(to, memcg);
1207 unlock:
1208 spin_unlock(&mc.lock);
1209 return ret;
1210 }
1211
1212 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1213 {
1214 if (mc.moving_task && current != mc.moving_task) {
1215 if (mem_cgroup_under_move(memcg)) {
1216 DEFINE_WAIT(wait);
1217 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1218 /* moving charge context might have finished. */
1219 if (mc.moving_task)
1220 schedule();
1221 finish_wait(&mc.waitq, &wait);
1222 return true;
1223 }
1224 }
1225 return false;
1226 }
1227
1228 #define K(x) ((x) << (PAGE_SHIFT-10))
1229 /**
1230 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1231 * @memcg: The memory cgroup that went over limit
1232 * @p: Task that is going to be killed
1233 *
1234 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1235 * enabled
1236 */
1237 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1238 {
1239 /* oom_info_lock ensures that parallel ooms do not interleave */
1240 static DEFINE_MUTEX(oom_info_lock);
1241 struct mem_cgroup *iter;
1242 unsigned int i;
1243
1244 mutex_lock(&oom_info_lock);
1245 rcu_read_lock();
1246
1247 if (p) {
1248 pr_info("Task in ");
1249 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1250 pr_cont(" killed as a result of limit of ");
1251 } else {
1252 pr_info("Memory limit reached of cgroup ");
1253 }
1254
1255 pr_cont_cgroup_path(memcg->css.cgroup);
1256 pr_cont("\n");
1257
1258 rcu_read_unlock();
1259
1260 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1261 K((u64)page_counter_read(&memcg->memory)),
1262 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1263 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1264 K((u64)page_counter_read(&memcg->memsw)),
1265 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1266 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1267 K((u64)page_counter_read(&memcg->kmem)),
1268 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1269
1270 for_each_mem_cgroup_tree(iter, memcg) {
1271 pr_info("Memory cgroup stats for ");
1272 pr_cont_cgroup_path(iter->css.cgroup);
1273 pr_cont(":");
1274
1275 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1276 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1277 continue;
1278 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1279 K(mem_cgroup_read_stat(iter, i)));
1280 }
1281
1282 for (i = 0; i < NR_LRU_LISTS; i++)
1283 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1284 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1285
1286 pr_cont("\n");
1287 }
1288 mutex_unlock(&oom_info_lock);
1289 }
1290
1291 /*
1292 * This function returns the number of memcg under hierarchy tree. Returns
1293 * 1(self count) if no children.
1294 */
1295 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1296 {
1297 int num = 0;
1298 struct mem_cgroup *iter;
1299
1300 for_each_mem_cgroup_tree(iter, memcg)
1301 num++;
1302 return num;
1303 }
1304
1305 /*
1306 * Return the memory (and swap, if configured) limit for a memcg.
1307 */
1308 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309 {
1310 unsigned long limit;
1311
1312 limit = memcg->memory.limit;
1313 if (mem_cgroup_swappiness(memcg)) {
1314 unsigned long memsw_limit;
1315
1316 memsw_limit = memcg->memsw.limit;
1317 limit = min(limit + total_swap_pages, memsw_limit);
1318 }
1319 return limit;
1320 }
1321
1322 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1323 int order)
1324 {
1325 struct oom_control oc = {
1326 .zonelist = NULL,
1327 .nodemask = NULL,
1328 .gfp_mask = gfp_mask,
1329 .order = order,
1330 };
1331 struct mem_cgroup *iter;
1332 unsigned long chosen_points = 0;
1333 unsigned long totalpages;
1334 unsigned int points = 0;
1335 struct task_struct *chosen = NULL;
1336
1337 mutex_lock(&oom_lock);
1338
1339 /*
1340 * If current has a pending SIGKILL or is exiting, then automatically
1341 * select it. The goal is to allow it to allocate so that it may
1342 * quickly exit and free its memory.
1343 */
1344 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1345 mark_oom_victim(current);
1346 goto unlock;
1347 }
1348
1349 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1350 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1351 for_each_mem_cgroup_tree(iter, memcg) {
1352 struct css_task_iter it;
1353 struct task_struct *task;
1354
1355 css_task_iter_start(&iter->css, &it);
1356 while ((task = css_task_iter_next(&it))) {
1357 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1358 case OOM_SCAN_SELECT:
1359 if (chosen)
1360 put_task_struct(chosen);
1361 chosen = task;
1362 chosen_points = ULONG_MAX;
1363 get_task_struct(chosen);
1364 /* fall through */
1365 case OOM_SCAN_CONTINUE:
1366 continue;
1367 case OOM_SCAN_ABORT:
1368 css_task_iter_end(&it);
1369 mem_cgroup_iter_break(memcg, iter);
1370 if (chosen)
1371 put_task_struct(chosen);
1372 goto unlock;
1373 case OOM_SCAN_OK:
1374 break;
1375 };
1376 points = oom_badness(task, memcg, NULL, totalpages);
1377 if (!points || points < chosen_points)
1378 continue;
1379 /* Prefer thread group leaders for display purposes */
1380 if (points == chosen_points &&
1381 thread_group_leader(chosen))
1382 continue;
1383
1384 if (chosen)
1385 put_task_struct(chosen);
1386 chosen = task;
1387 chosen_points = points;
1388 get_task_struct(chosen);
1389 }
1390 css_task_iter_end(&it);
1391 }
1392
1393 if (chosen) {
1394 points = chosen_points * 1000 / totalpages;
1395 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1396 "Memory cgroup out of memory");
1397 }
1398 unlock:
1399 mutex_unlock(&oom_lock);
1400 return chosen;
1401 }
1402
1403 #if MAX_NUMNODES > 1
1404
1405 /**
1406 * test_mem_cgroup_node_reclaimable
1407 * @memcg: the target memcg
1408 * @nid: the node ID to be checked.
1409 * @noswap : specify true here if the user wants flle only information.
1410 *
1411 * This function returns whether the specified memcg contains any
1412 * reclaimable pages on a node. Returns true if there are any reclaimable
1413 * pages in the node.
1414 */
1415 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1416 int nid, bool noswap)
1417 {
1418 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1419 return true;
1420 if (noswap || !total_swap_pages)
1421 return false;
1422 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1423 return true;
1424 return false;
1425
1426 }
1427
1428 /*
1429 * Always updating the nodemask is not very good - even if we have an empty
1430 * list or the wrong list here, we can start from some node and traverse all
1431 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1432 *
1433 */
1434 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1435 {
1436 int nid;
1437 /*
1438 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1439 * pagein/pageout changes since the last update.
1440 */
1441 if (!atomic_read(&memcg->numainfo_events))
1442 return;
1443 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1444 return;
1445
1446 /* make a nodemask where this memcg uses memory from */
1447 memcg->scan_nodes = node_states[N_MEMORY];
1448
1449 for_each_node_mask(nid, node_states[N_MEMORY]) {
1450
1451 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1452 node_clear(nid, memcg->scan_nodes);
1453 }
1454
1455 atomic_set(&memcg->numainfo_events, 0);
1456 atomic_set(&memcg->numainfo_updating, 0);
1457 }
1458
1459 /*
1460 * Selecting a node where we start reclaim from. Because what we need is just
1461 * reducing usage counter, start from anywhere is O,K. Considering
1462 * memory reclaim from current node, there are pros. and cons.
1463 *
1464 * Freeing memory from current node means freeing memory from a node which
1465 * we'll use or we've used. So, it may make LRU bad. And if several threads
1466 * hit limits, it will see a contention on a node. But freeing from remote
1467 * node means more costs for memory reclaim because of memory latency.
1468 *
1469 * Now, we use round-robin. Better algorithm is welcomed.
1470 */
1471 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1472 {
1473 int node;
1474
1475 mem_cgroup_may_update_nodemask(memcg);
1476 node = memcg->last_scanned_node;
1477
1478 node = next_node(node, memcg->scan_nodes);
1479 if (node == MAX_NUMNODES)
1480 node = first_node(memcg->scan_nodes);
1481 /*
1482 * We call this when we hit limit, not when pages are added to LRU.
1483 * No LRU may hold pages because all pages are UNEVICTABLE or
1484 * memcg is too small and all pages are not on LRU. In that case,
1485 * we use curret node.
1486 */
1487 if (unlikely(node == MAX_NUMNODES))
1488 node = numa_node_id();
1489
1490 memcg->last_scanned_node = node;
1491 return node;
1492 }
1493 #else
1494 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1495 {
1496 return 0;
1497 }
1498 #endif
1499
1500 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1501 struct zone *zone,
1502 gfp_t gfp_mask,
1503 unsigned long *total_scanned)
1504 {
1505 struct mem_cgroup *victim = NULL;
1506 int total = 0;
1507 int loop = 0;
1508 unsigned long excess;
1509 unsigned long nr_scanned;
1510 struct mem_cgroup_reclaim_cookie reclaim = {
1511 .zone = zone,
1512 .priority = 0,
1513 };
1514
1515 excess = soft_limit_excess(root_memcg);
1516
1517 while (1) {
1518 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1519 if (!victim) {
1520 loop++;
1521 if (loop >= 2) {
1522 /*
1523 * If we have not been able to reclaim
1524 * anything, it might because there are
1525 * no reclaimable pages under this hierarchy
1526 */
1527 if (!total)
1528 break;
1529 /*
1530 * We want to do more targeted reclaim.
1531 * excess >> 2 is not to excessive so as to
1532 * reclaim too much, nor too less that we keep
1533 * coming back to reclaim from this cgroup
1534 */
1535 if (total >= (excess >> 2) ||
1536 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1537 break;
1538 }
1539 continue;
1540 }
1541 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1542 zone, &nr_scanned);
1543 *total_scanned += nr_scanned;
1544 if (!soft_limit_excess(root_memcg))
1545 break;
1546 }
1547 mem_cgroup_iter_break(root_memcg, victim);
1548 return total;
1549 }
1550
1551 #ifdef CONFIG_LOCKDEP
1552 static struct lockdep_map memcg_oom_lock_dep_map = {
1553 .name = "memcg_oom_lock",
1554 };
1555 #endif
1556
1557 static DEFINE_SPINLOCK(memcg_oom_lock);
1558
1559 /*
1560 * Check OOM-Killer is already running under our hierarchy.
1561 * If someone is running, return false.
1562 */
1563 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1564 {
1565 struct mem_cgroup *iter, *failed = NULL;
1566
1567 spin_lock(&memcg_oom_lock);
1568
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 if (iter->oom_lock) {
1571 /*
1572 * this subtree of our hierarchy is already locked
1573 * so we cannot give a lock.
1574 */
1575 failed = iter;
1576 mem_cgroup_iter_break(memcg, iter);
1577 break;
1578 } else
1579 iter->oom_lock = true;
1580 }
1581
1582 if (failed) {
1583 /*
1584 * OK, we failed to lock the whole subtree so we have
1585 * to clean up what we set up to the failing subtree
1586 */
1587 for_each_mem_cgroup_tree(iter, memcg) {
1588 if (iter == failed) {
1589 mem_cgroup_iter_break(memcg, iter);
1590 break;
1591 }
1592 iter->oom_lock = false;
1593 }
1594 } else
1595 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1596
1597 spin_unlock(&memcg_oom_lock);
1598
1599 return !failed;
1600 }
1601
1602 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1603 {
1604 struct mem_cgroup *iter;
1605
1606 spin_lock(&memcg_oom_lock);
1607 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1608 for_each_mem_cgroup_tree(iter, memcg)
1609 iter->oom_lock = false;
1610 spin_unlock(&memcg_oom_lock);
1611 }
1612
1613 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1614 {
1615 struct mem_cgroup *iter;
1616
1617 spin_lock(&memcg_oom_lock);
1618 for_each_mem_cgroup_tree(iter, memcg)
1619 iter->under_oom++;
1620 spin_unlock(&memcg_oom_lock);
1621 }
1622
1623 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1624 {
1625 struct mem_cgroup *iter;
1626
1627 /*
1628 * When a new child is created while the hierarchy is under oom,
1629 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1630 */
1631 spin_lock(&memcg_oom_lock);
1632 for_each_mem_cgroup_tree(iter, memcg)
1633 if (iter->under_oom > 0)
1634 iter->under_oom--;
1635 spin_unlock(&memcg_oom_lock);
1636 }
1637
1638 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1639
1640 struct oom_wait_info {
1641 struct mem_cgroup *memcg;
1642 wait_queue_t wait;
1643 };
1644
1645 static int memcg_oom_wake_function(wait_queue_t *wait,
1646 unsigned mode, int sync, void *arg)
1647 {
1648 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1649 struct mem_cgroup *oom_wait_memcg;
1650 struct oom_wait_info *oom_wait_info;
1651
1652 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1653 oom_wait_memcg = oom_wait_info->memcg;
1654
1655 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1656 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1657 return 0;
1658 return autoremove_wake_function(wait, mode, sync, arg);
1659 }
1660
1661 static void memcg_oom_recover(struct mem_cgroup *memcg)
1662 {
1663 /*
1664 * For the following lockless ->under_oom test, the only required
1665 * guarantee is that it must see the state asserted by an OOM when
1666 * this function is called as a result of userland actions
1667 * triggered by the notification of the OOM. This is trivially
1668 * achieved by invoking mem_cgroup_mark_under_oom() before
1669 * triggering notification.
1670 */
1671 if (memcg && memcg->under_oom)
1672 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1673 }
1674
1675 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1676 {
1677 if (!current->memcg_may_oom)
1678 return;
1679 /*
1680 * We are in the middle of the charge context here, so we
1681 * don't want to block when potentially sitting on a callstack
1682 * that holds all kinds of filesystem and mm locks.
1683 *
1684 * Also, the caller may handle a failed allocation gracefully
1685 * (like optional page cache readahead) and so an OOM killer
1686 * invocation might not even be necessary.
1687 *
1688 * That's why we don't do anything here except remember the
1689 * OOM context and then deal with it at the end of the page
1690 * fault when the stack is unwound, the locks are released,
1691 * and when we know whether the fault was overall successful.
1692 */
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1697 }
1698
1699 /**
1700 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1701 * @handle: actually kill/wait or just clean up the OOM state
1702 *
1703 * This has to be called at the end of a page fault if the memcg OOM
1704 * handler was enabled.
1705 *
1706 * Memcg supports userspace OOM handling where failed allocations must
1707 * sleep on a waitqueue until the userspace task resolves the
1708 * situation. Sleeping directly in the charge context with all kinds
1709 * of locks held is not a good idea, instead we remember an OOM state
1710 * in the task and mem_cgroup_oom_synchronize() has to be called at
1711 * the end of the page fault to complete the OOM handling.
1712 *
1713 * Returns %true if an ongoing memcg OOM situation was detected and
1714 * completed, %false otherwise.
1715 */
1716 bool mem_cgroup_oom_synchronize(bool handle)
1717 {
1718 struct mem_cgroup *memcg = current->memcg_in_oom;
1719 struct oom_wait_info owait;
1720 bool locked;
1721
1722 /* OOM is global, do not handle */
1723 if (!memcg)
1724 return false;
1725
1726 if (!handle || oom_killer_disabled)
1727 goto cleanup;
1728
1729 owait.memcg = memcg;
1730 owait.wait.flags = 0;
1731 owait.wait.func = memcg_oom_wake_function;
1732 owait.wait.private = current;
1733 INIT_LIST_HEAD(&owait.wait.task_list);
1734
1735 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1736 mem_cgroup_mark_under_oom(memcg);
1737
1738 locked = mem_cgroup_oom_trylock(memcg);
1739
1740 if (locked)
1741 mem_cgroup_oom_notify(memcg);
1742
1743 if (locked && !memcg->oom_kill_disable) {
1744 mem_cgroup_unmark_under_oom(memcg);
1745 finish_wait(&memcg_oom_waitq, &owait.wait);
1746 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1747 current->memcg_oom_order);
1748 } else {
1749 schedule();
1750 mem_cgroup_unmark_under_oom(memcg);
1751 finish_wait(&memcg_oom_waitq, &owait.wait);
1752 }
1753
1754 if (locked) {
1755 mem_cgroup_oom_unlock(memcg);
1756 /*
1757 * There is no guarantee that an OOM-lock contender
1758 * sees the wakeups triggered by the OOM kill
1759 * uncharges. Wake any sleepers explicitely.
1760 */
1761 memcg_oom_recover(memcg);
1762 }
1763 cleanup:
1764 current->memcg_in_oom = NULL;
1765 css_put(&memcg->css);
1766 return true;
1767 }
1768
1769 /**
1770 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1771 * @page: page that is going to change accounted state
1772 *
1773 * This function must mark the beginning of an accounted page state
1774 * change to prevent double accounting when the page is concurrently
1775 * being moved to another memcg:
1776 *
1777 * memcg = mem_cgroup_begin_page_stat(page);
1778 * if (TestClearPageState(page))
1779 * mem_cgroup_update_page_stat(memcg, state, -1);
1780 * mem_cgroup_end_page_stat(memcg);
1781 */
1782 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1783 {
1784 struct mem_cgroup *memcg;
1785 unsigned long flags;
1786
1787 /*
1788 * The RCU lock is held throughout the transaction. The fast
1789 * path can get away without acquiring the memcg->move_lock
1790 * because page moving starts with an RCU grace period.
1791 *
1792 * The RCU lock also protects the memcg from being freed when
1793 * the page state that is going to change is the only thing
1794 * preventing the page from being uncharged.
1795 * E.g. end-writeback clearing PageWriteback(), which allows
1796 * migration to go ahead and uncharge the page before the
1797 * account transaction might be complete.
1798 */
1799 rcu_read_lock();
1800
1801 if (mem_cgroup_disabled())
1802 return NULL;
1803 again:
1804 memcg = page->mem_cgroup;
1805 if (unlikely(!memcg))
1806 return NULL;
1807
1808 if (atomic_read(&memcg->moving_account) <= 0)
1809 return memcg;
1810
1811 spin_lock_irqsave(&memcg->move_lock, flags);
1812 if (memcg != page->mem_cgroup) {
1813 spin_unlock_irqrestore(&memcg->move_lock, flags);
1814 goto again;
1815 }
1816
1817 /*
1818 * When charge migration first begins, we can have locked and
1819 * unlocked page stat updates happening concurrently. Track
1820 * the task who has the lock for mem_cgroup_end_page_stat().
1821 */
1822 memcg->move_lock_task = current;
1823 memcg->move_lock_flags = flags;
1824
1825 return memcg;
1826 }
1827 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1828
1829 /**
1830 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1831 * @memcg: the memcg that was accounted against
1832 */
1833 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1834 {
1835 if (memcg && memcg->move_lock_task == current) {
1836 unsigned long flags = memcg->move_lock_flags;
1837
1838 memcg->move_lock_task = NULL;
1839 memcg->move_lock_flags = 0;
1840
1841 spin_unlock_irqrestore(&memcg->move_lock, flags);
1842 }
1843
1844 rcu_read_unlock();
1845 }
1846 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1847
1848 /*
1849 * size of first charge trial. "32" comes from vmscan.c's magic value.
1850 * TODO: maybe necessary to use big numbers in big irons.
1851 */
1852 #define CHARGE_BATCH 32U
1853 struct memcg_stock_pcp {
1854 struct mem_cgroup *cached; /* this never be root cgroup */
1855 unsigned int nr_pages;
1856 struct work_struct work;
1857 unsigned long flags;
1858 #define FLUSHING_CACHED_CHARGE 0
1859 };
1860 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1861 static DEFINE_MUTEX(percpu_charge_mutex);
1862
1863 /**
1864 * consume_stock: Try to consume stocked charge on this cpu.
1865 * @memcg: memcg to consume from.
1866 * @nr_pages: how many pages to charge.
1867 *
1868 * The charges will only happen if @memcg matches the current cpu's memcg
1869 * stock, and at least @nr_pages are available in that stock. Failure to
1870 * service an allocation will refill the stock.
1871 *
1872 * returns true if successful, false otherwise.
1873 */
1874 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1875 {
1876 struct memcg_stock_pcp *stock;
1877 bool ret = false;
1878
1879 if (nr_pages > CHARGE_BATCH)
1880 return ret;
1881
1882 stock = &get_cpu_var(memcg_stock);
1883 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1884 stock->nr_pages -= nr_pages;
1885 ret = true;
1886 }
1887 put_cpu_var(memcg_stock);
1888 return ret;
1889 }
1890
1891 /*
1892 * Returns stocks cached in percpu and reset cached information.
1893 */
1894 static void drain_stock(struct memcg_stock_pcp *stock)
1895 {
1896 struct mem_cgroup *old = stock->cached;
1897
1898 if (stock->nr_pages) {
1899 page_counter_uncharge(&old->memory, stock->nr_pages);
1900 if (do_swap_account)
1901 page_counter_uncharge(&old->memsw, stock->nr_pages);
1902 css_put_many(&old->css, stock->nr_pages);
1903 stock->nr_pages = 0;
1904 }
1905 stock->cached = NULL;
1906 }
1907
1908 /*
1909 * This must be called under preempt disabled or must be called by
1910 * a thread which is pinned to local cpu.
1911 */
1912 static void drain_local_stock(struct work_struct *dummy)
1913 {
1914 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1915 drain_stock(stock);
1916 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1917 }
1918
1919 /*
1920 * Cache charges(val) to local per_cpu area.
1921 * This will be consumed by consume_stock() function, later.
1922 */
1923 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1924 {
1925 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1926
1927 if (stock->cached != memcg) { /* reset if necessary */
1928 drain_stock(stock);
1929 stock->cached = memcg;
1930 }
1931 stock->nr_pages += nr_pages;
1932 put_cpu_var(memcg_stock);
1933 }
1934
1935 /*
1936 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1937 * of the hierarchy under it.
1938 */
1939 static void drain_all_stock(struct mem_cgroup *root_memcg)
1940 {
1941 int cpu, curcpu;
1942
1943 /* If someone's already draining, avoid adding running more workers. */
1944 if (!mutex_trylock(&percpu_charge_mutex))
1945 return;
1946 /* Notify other cpus that system-wide "drain" is running */
1947 get_online_cpus();
1948 curcpu = get_cpu();
1949 for_each_online_cpu(cpu) {
1950 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1951 struct mem_cgroup *memcg;
1952
1953 memcg = stock->cached;
1954 if (!memcg || !stock->nr_pages)
1955 continue;
1956 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1957 continue;
1958 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1959 if (cpu == curcpu)
1960 drain_local_stock(&stock->work);
1961 else
1962 schedule_work_on(cpu, &stock->work);
1963 }
1964 }
1965 put_cpu();
1966 put_online_cpus();
1967 mutex_unlock(&percpu_charge_mutex);
1968 }
1969
1970 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1971 unsigned long action,
1972 void *hcpu)
1973 {
1974 int cpu = (unsigned long)hcpu;
1975 struct memcg_stock_pcp *stock;
1976
1977 if (action == CPU_ONLINE)
1978 return NOTIFY_OK;
1979
1980 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1981 return NOTIFY_OK;
1982
1983 stock = &per_cpu(memcg_stock, cpu);
1984 drain_stock(stock);
1985 return NOTIFY_OK;
1986 }
1987
1988 /*
1989 * Scheduled by try_charge() to be executed from the userland return path
1990 * and reclaims memory over the high limit.
1991 */
1992 void mem_cgroup_handle_over_high(void)
1993 {
1994 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1995 struct mem_cgroup *memcg, *pos;
1996
1997 if (likely(!nr_pages))
1998 return;
1999
2000 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2001
2002 do {
2003 if (page_counter_read(&pos->memory) <= pos->high)
2004 continue;
2005 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2006 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2007 } while ((pos = parent_mem_cgroup(pos)));
2008
2009 css_put(&memcg->css);
2010 current->memcg_nr_pages_over_high = 0;
2011 }
2012
2013 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2014 unsigned int nr_pages)
2015 {
2016 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2017 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2018 struct mem_cgroup *mem_over_limit;
2019 struct page_counter *counter;
2020 unsigned long nr_reclaimed;
2021 bool may_swap = true;
2022 bool drained = false;
2023
2024 if (mem_cgroup_is_root(memcg))
2025 return 0;
2026 retry:
2027 if (consume_stock(memcg, nr_pages))
2028 return 0;
2029
2030 if (!do_swap_account ||
2031 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2032 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2033 goto done_restock;
2034 if (do_swap_account)
2035 page_counter_uncharge(&memcg->memsw, batch);
2036 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2037 } else {
2038 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2039 may_swap = false;
2040 }
2041
2042 if (batch > nr_pages) {
2043 batch = nr_pages;
2044 goto retry;
2045 }
2046
2047 /*
2048 * Unlike in global OOM situations, memcg is not in a physical
2049 * memory shortage. Allow dying and OOM-killed tasks to
2050 * bypass the last charges so that they can exit quickly and
2051 * free their memory.
2052 */
2053 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2054 fatal_signal_pending(current) ||
2055 current->flags & PF_EXITING))
2056 goto force;
2057
2058 /*
2059 * Prevent unbounded recursion when reclaim operations need to
2060 * allocate memory. This might exceed the limits temporarily,
2061 * but we prefer facilitating memory reclaim and getting back
2062 * under the limit over triggering OOM kills in these cases.
2063 */
2064 if (unlikely(current->flags & PF_MEMALLOC))
2065 goto force;
2066
2067 if (unlikely(task_in_memcg_oom(current)))
2068 goto nomem;
2069
2070 if (!gfpflags_allow_blocking(gfp_mask))
2071 goto nomem;
2072
2073 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2074
2075 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2076 gfp_mask, may_swap);
2077
2078 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2079 goto retry;
2080
2081 if (!drained) {
2082 drain_all_stock(mem_over_limit);
2083 drained = true;
2084 goto retry;
2085 }
2086
2087 if (gfp_mask & __GFP_NORETRY)
2088 goto nomem;
2089 /*
2090 * Even though the limit is exceeded at this point, reclaim
2091 * may have been able to free some pages. Retry the charge
2092 * before killing the task.
2093 *
2094 * Only for regular pages, though: huge pages are rather
2095 * unlikely to succeed so close to the limit, and we fall back
2096 * to regular pages anyway in case of failure.
2097 */
2098 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2099 goto retry;
2100 /*
2101 * At task move, charge accounts can be doubly counted. So, it's
2102 * better to wait until the end of task_move if something is going on.
2103 */
2104 if (mem_cgroup_wait_acct_move(mem_over_limit))
2105 goto retry;
2106
2107 if (nr_retries--)
2108 goto retry;
2109
2110 if (gfp_mask & __GFP_NOFAIL)
2111 goto force;
2112
2113 if (fatal_signal_pending(current))
2114 goto force;
2115
2116 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2117
2118 mem_cgroup_oom(mem_over_limit, gfp_mask,
2119 get_order(nr_pages * PAGE_SIZE));
2120 nomem:
2121 if (!(gfp_mask & __GFP_NOFAIL))
2122 return -ENOMEM;
2123 force:
2124 /*
2125 * The allocation either can't fail or will lead to more memory
2126 * being freed very soon. Allow memory usage go over the limit
2127 * temporarily by force charging it.
2128 */
2129 page_counter_charge(&memcg->memory, nr_pages);
2130 if (do_swap_account)
2131 page_counter_charge(&memcg->memsw, nr_pages);
2132 css_get_many(&memcg->css, nr_pages);
2133
2134 return 0;
2135
2136 done_restock:
2137 css_get_many(&memcg->css, batch);
2138 if (batch > nr_pages)
2139 refill_stock(memcg, batch - nr_pages);
2140
2141 /*
2142 * If the hierarchy is above the normal consumption range, schedule
2143 * reclaim on returning to userland. We can perform reclaim here
2144 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2145 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2146 * not recorded as it most likely matches current's and won't
2147 * change in the meantime. As high limit is checked again before
2148 * reclaim, the cost of mismatch is negligible.
2149 */
2150 do {
2151 if (page_counter_read(&memcg->memory) > memcg->high) {
2152 current->memcg_nr_pages_over_high += batch;
2153 set_notify_resume(current);
2154 break;
2155 }
2156 } while ((memcg = parent_mem_cgroup(memcg)));
2157
2158 return 0;
2159 }
2160
2161 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2162 {
2163 if (mem_cgroup_is_root(memcg))
2164 return;
2165
2166 page_counter_uncharge(&memcg->memory, nr_pages);
2167 if (do_swap_account)
2168 page_counter_uncharge(&memcg->memsw, nr_pages);
2169
2170 css_put_many(&memcg->css, nr_pages);
2171 }
2172
2173 static void lock_page_lru(struct page *page, int *isolated)
2174 {
2175 struct zone *zone = page_zone(page);
2176
2177 spin_lock_irq(&zone->lru_lock);
2178 if (PageLRU(page)) {
2179 struct lruvec *lruvec;
2180
2181 lruvec = mem_cgroup_page_lruvec(page, zone);
2182 ClearPageLRU(page);
2183 del_page_from_lru_list(page, lruvec, page_lru(page));
2184 *isolated = 1;
2185 } else
2186 *isolated = 0;
2187 }
2188
2189 static void unlock_page_lru(struct page *page, int isolated)
2190 {
2191 struct zone *zone = page_zone(page);
2192
2193 if (isolated) {
2194 struct lruvec *lruvec;
2195
2196 lruvec = mem_cgroup_page_lruvec(page, zone);
2197 VM_BUG_ON_PAGE(PageLRU(page), page);
2198 SetPageLRU(page);
2199 add_page_to_lru_list(page, lruvec, page_lru(page));
2200 }
2201 spin_unlock_irq(&zone->lru_lock);
2202 }
2203
2204 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2205 bool lrucare)
2206 {
2207 int isolated;
2208
2209 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2210
2211 /*
2212 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2213 * may already be on some other mem_cgroup's LRU. Take care of it.
2214 */
2215 if (lrucare)
2216 lock_page_lru(page, &isolated);
2217
2218 /*
2219 * Nobody should be changing or seriously looking at
2220 * page->mem_cgroup at this point:
2221 *
2222 * - the page is uncharged
2223 *
2224 * - the page is off-LRU
2225 *
2226 * - an anonymous fault has exclusive page access, except for
2227 * a locked page table
2228 *
2229 * - a page cache insertion, a swapin fault, or a migration
2230 * have the page locked
2231 */
2232 page->mem_cgroup = memcg;
2233
2234 if (lrucare)
2235 unlock_page_lru(page, isolated);
2236 }
2237
2238 #ifdef CONFIG_MEMCG_KMEM
2239 static int memcg_alloc_cache_id(void)
2240 {
2241 int id, size;
2242 int err;
2243
2244 id = ida_simple_get(&memcg_cache_ida,
2245 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2246 if (id < 0)
2247 return id;
2248
2249 if (id < memcg_nr_cache_ids)
2250 return id;
2251
2252 /*
2253 * There's no space for the new id in memcg_caches arrays,
2254 * so we have to grow them.
2255 */
2256 down_write(&memcg_cache_ids_sem);
2257
2258 size = 2 * (id + 1);
2259 if (size < MEMCG_CACHES_MIN_SIZE)
2260 size = MEMCG_CACHES_MIN_SIZE;
2261 else if (size > MEMCG_CACHES_MAX_SIZE)
2262 size = MEMCG_CACHES_MAX_SIZE;
2263
2264 err = memcg_update_all_caches(size);
2265 if (!err)
2266 err = memcg_update_all_list_lrus(size);
2267 if (!err)
2268 memcg_nr_cache_ids = size;
2269
2270 up_write(&memcg_cache_ids_sem);
2271
2272 if (err) {
2273 ida_simple_remove(&memcg_cache_ida, id);
2274 return err;
2275 }
2276 return id;
2277 }
2278
2279 static void memcg_free_cache_id(int id)
2280 {
2281 ida_simple_remove(&memcg_cache_ida, id);
2282 }
2283
2284 struct memcg_kmem_cache_create_work {
2285 struct mem_cgroup *memcg;
2286 struct kmem_cache *cachep;
2287 struct work_struct work;
2288 };
2289
2290 static void memcg_kmem_cache_create_func(struct work_struct *w)
2291 {
2292 struct memcg_kmem_cache_create_work *cw =
2293 container_of(w, struct memcg_kmem_cache_create_work, work);
2294 struct mem_cgroup *memcg = cw->memcg;
2295 struct kmem_cache *cachep = cw->cachep;
2296
2297 memcg_create_kmem_cache(memcg, cachep);
2298
2299 css_put(&memcg->css);
2300 kfree(cw);
2301 }
2302
2303 /*
2304 * Enqueue the creation of a per-memcg kmem_cache.
2305 */
2306 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2307 struct kmem_cache *cachep)
2308 {
2309 struct memcg_kmem_cache_create_work *cw;
2310
2311 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2312 if (!cw)
2313 return;
2314
2315 css_get(&memcg->css);
2316
2317 cw->memcg = memcg;
2318 cw->cachep = cachep;
2319 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2320
2321 schedule_work(&cw->work);
2322 }
2323
2324 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2325 struct kmem_cache *cachep)
2326 {
2327 /*
2328 * We need to stop accounting when we kmalloc, because if the
2329 * corresponding kmalloc cache is not yet created, the first allocation
2330 * in __memcg_schedule_kmem_cache_create will recurse.
2331 *
2332 * However, it is better to enclose the whole function. Depending on
2333 * the debugging options enabled, INIT_WORK(), for instance, can
2334 * trigger an allocation. This too, will make us recurse. Because at
2335 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2336 * the safest choice is to do it like this, wrapping the whole function.
2337 */
2338 current->memcg_kmem_skip_account = 1;
2339 __memcg_schedule_kmem_cache_create(memcg, cachep);
2340 current->memcg_kmem_skip_account = 0;
2341 }
2342
2343 /*
2344 * Return the kmem_cache we're supposed to use for a slab allocation.
2345 * We try to use the current memcg's version of the cache.
2346 *
2347 * If the cache does not exist yet, if we are the first user of it,
2348 * we either create it immediately, if possible, or create it asynchronously
2349 * in a workqueue.
2350 * In the latter case, we will let the current allocation go through with
2351 * the original cache.
2352 *
2353 * Can't be called in interrupt context or from kernel threads.
2354 * This function needs to be called with rcu_read_lock() held.
2355 */
2356 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2357 {
2358 struct mem_cgroup *memcg;
2359 struct kmem_cache *memcg_cachep;
2360 int kmemcg_id;
2361
2362 VM_BUG_ON(!is_root_cache(cachep));
2363
2364 if (current->memcg_kmem_skip_account)
2365 return cachep;
2366
2367 memcg = get_mem_cgroup_from_mm(current->mm);
2368 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2369 if (kmemcg_id < 0)
2370 goto out;
2371
2372 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2373 if (likely(memcg_cachep))
2374 return memcg_cachep;
2375
2376 /*
2377 * If we are in a safe context (can wait, and not in interrupt
2378 * context), we could be be predictable and return right away.
2379 * This would guarantee that the allocation being performed
2380 * already belongs in the new cache.
2381 *
2382 * However, there are some clashes that can arrive from locking.
2383 * For instance, because we acquire the slab_mutex while doing
2384 * memcg_create_kmem_cache, this means no further allocation
2385 * could happen with the slab_mutex held. So it's better to
2386 * defer everything.
2387 */
2388 memcg_schedule_kmem_cache_create(memcg, cachep);
2389 out:
2390 css_put(&memcg->css);
2391 return cachep;
2392 }
2393
2394 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2395 {
2396 if (!is_root_cache(cachep))
2397 css_put(&cachep->memcg_params.memcg->css);
2398 }
2399
2400 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2401 struct mem_cgroup *memcg)
2402 {
2403 unsigned int nr_pages = 1 << order;
2404 struct page_counter *counter;
2405 int ret;
2406
2407 if (!memcg_kmem_is_active(memcg))
2408 return 0;
2409
2410 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2411 return -ENOMEM;
2412
2413 ret = try_charge(memcg, gfp, nr_pages);
2414 if (ret) {
2415 page_counter_uncharge(&memcg->kmem, nr_pages);
2416 return ret;
2417 }
2418
2419 page->mem_cgroup = memcg;
2420
2421 return 0;
2422 }
2423
2424 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2425 {
2426 struct mem_cgroup *memcg;
2427 int ret;
2428
2429 memcg = get_mem_cgroup_from_mm(current->mm);
2430 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2431 css_put(&memcg->css);
2432 return ret;
2433 }
2434
2435 void __memcg_kmem_uncharge(struct page *page, int order)
2436 {
2437 struct mem_cgroup *memcg = page->mem_cgroup;
2438 unsigned int nr_pages = 1 << order;
2439
2440 if (!memcg)
2441 return;
2442
2443 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2444
2445 page_counter_uncharge(&memcg->kmem, nr_pages);
2446 page_counter_uncharge(&memcg->memory, nr_pages);
2447 if (do_swap_account)
2448 page_counter_uncharge(&memcg->memsw, nr_pages);
2449
2450 page->mem_cgroup = NULL;
2451 css_put_many(&memcg->css, nr_pages);
2452 }
2453 #endif /* CONFIG_MEMCG_KMEM */
2454
2455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2456
2457 /*
2458 * Because tail pages are not marked as "used", set it. We're under
2459 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2460 * charge/uncharge will be never happen and move_account() is done under
2461 * compound_lock(), so we don't have to take care of races.
2462 */
2463 void mem_cgroup_split_huge_fixup(struct page *head)
2464 {
2465 int i;
2466
2467 if (mem_cgroup_disabled())
2468 return;
2469
2470 for (i = 1; i < HPAGE_PMD_NR; i++)
2471 head[i].mem_cgroup = head->mem_cgroup;
2472
2473 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2474 HPAGE_PMD_NR);
2475 }
2476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2477
2478 #ifdef CONFIG_MEMCG_SWAP
2479 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2480 bool charge)
2481 {
2482 int val = (charge) ? 1 : -1;
2483 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2484 }
2485
2486 /**
2487 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2488 * @entry: swap entry to be moved
2489 * @from: mem_cgroup which the entry is moved from
2490 * @to: mem_cgroup which the entry is moved to
2491 *
2492 * It succeeds only when the swap_cgroup's record for this entry is the same
2493 * as the mem_cgroup's id of @from.
2494 *
2495 * Returns 0 on success, -EINVAL on failure.
2496 *
2497 * The caller must have charged to @to, IOW, called page_counter_charge() about
2498 * both res and memsw, and called css_get().
2499 */
2500 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2501 struct mem_cgroup *from, struct mem_cgroup *to)
2502 {
2503 unsigned short old_id, new_id;
2504
2505 old_id = mem_cgroup_id(from);
2506 new_id = mem_cgroup_id(to);
2507
2508 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2509 mem_cgroup_swap_statistics(from, false);
2510 mem_cgroup_swap_statistics(to, true);
2511 return 0;
2512 }
2513 return -EINVAL;
2514 }
2515 #else
2516 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2517 struct mem_cgroup *from, struct mem_cgroup *to)
2518 {
2519 return -EINVAL;
2520 }
2521 #endif
2522
2523 static DEFINE_MUTEX(memcg_limit_mutex);
2524
2525 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2526 unsigned long limit)
2527 {
2528 unsigned long curusage;
2529 unsigned long oldusage;
2530 bool enlarge = false;
2531 int retry_count;
2532 int ret;
2533
2534 /*
2535 * For keeping hierarchical_reclaim simple, how long we should retry
2536 * is depends on callers. We set our retry-count to be function
2537 * of # of children which we should visit in this loop.
2538 */
2539 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2540 mem_cgroup_count_children(memcg);
2541
2542 oldusage = page_counter_read(&memcg->memory);
2543
2544 do {
2545 if (signal_pending(current)) {
2546 ret = -EINTR;
2547 break;
2548 }
2549
2550 mutex_lock(&memcg_limit_mutex);
2551 if (limit > memcg->memsw.limit) {
2552 mutex_unlock(&memcg_limit_mutex);
2553 ret = -EINVAL;
2554 break;
2555 }
2556 if (limit > memcg->memory.limit)
2557 enlarge = true;
2558 ret = page_counter_limit(&memcg->memory, limit);
2559 mutex_unlock(&memcg_limit_mutex);
2560
2561 if (!ret)
2562 break;
2563
2564 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2565
2566 curusage = page_counter_read(&memcg->memory);
2567 /* Usage is reduced ? */
2568 if (curusage >= oldusage)
2569 retry_count--;
2570 else
2571 oldusage = curusage;
2572 } while (retry_count);
2573
2574 if (!ret && enlarge)
2575 memcg_oom_recover(memcg);
2576
2577 return ret;
2578 }
2579
2580 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2581 unsigned long limit)
2582 {
2583 unsigned long curusage;
2584 unsigned long oldusage;
2585 bool enlarge = false;
2586 int retry_count;
2587 int ret;
2588
2589 /* see mem_cgroup_resize_res_limit */
2590 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2591 mem_cgroup_count_children(memcg);
2592
2593 oldusage = page_counter_read(&memcg->memsw);
2594
2595 do {
2596 if (signal_pending(current)) {
2597 ret = -EINTR;
2598 break;
2599 }
2600
2601 mutex_lock(&memcg_limit_mutex);
2602 if (limit < memcg->memory.limit) {
2603 mutex_unlock(&memcg_limit_mutex);
2604 ret = -EINVAL;
2605 break;
2606 }
2607 if (limit > memcg->memsw.limit)
2608 enlarge = true;
2609 ret = page_counter_limit(&memcg->memsw, limit);
2610 mutex_unlock(&memcg_limit_mutex);
2611
2612 if (!ret)
2613 break;
2614
2615 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2616
2617 curusage = page_counter_read(&memcg->memsw);
2618 /* Usage is reduced ? */
2619 if (curusage >= oldusage)
2620 retry_count--;
2621 else
2622 oldusage = curusage;
2623 } while (retry_count);
2624
2625 if (!ret && enlarge)
2626 memcg_oom_recover(memcg);
2627
2628 return ret;
2629 }
2630
2631 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2632 gfp_t gfp_mask,
2633 unsigned long *total_scanned)
2634 {
2635 unsigned long nr_reclaimed = 0;
2636 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2637 unsigned long reclaimed;
2638 int loop = 0;
2639 struct mem_cgroup_tree_per_zone *mctz;
2640 unsigned long excess;
2641 unsigned long nr_scanned;
2642
2643 if (order > 0)
2644 return 0;
2645
2646 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2647 /*
2648 * This loop can run a while, specially if mem_cgroup's continuously
2649 * keep exceeding their soft limit and putting the system under
2650 * pressure
2651 */
2652 do {
2653 if (next_mz)
2654 mz = next_mz;
2655 else
2656 mz = mem_cgroup_largest_soft_limit_node(mctz);
2657 if (!mz)
2658 break;
2659
2660 nr_scanned = 0;
2661 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2662 gfp_mask, &nr_scanned);
2663 nr_reclaimed += reclaimed;
2664 *total_scanned += nr_scanned;
2665 spin_lock_irq(&mctz->lock);
2666 __mem_cgroup_remove_exceeded(mz, mctz);
2667
2668 /*
2669 * If we failed to reclaim anything from this memory cgroup
2670 * it is time to move on to the next cgroup
2671 */
2672 next_mz = NULL;
2673 if (!reclaimed)
2674 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2675
2676 excess = soft_limit_excess(mz->memcg);
2677 /*
2678 * One school of thought says that we should not add
2679 * back the node to the tree if reclaim returns 0.
2680 * But our reclaim could return 0, simply because due
2681 * to priority we are exposing a smaller subset of
2682 * memory to reclaim from. Consider this as a longer
2683 * term TODO.
2684 */
2685 /* If excess == 0, no tree ops */
2686 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2687 spin_unlock_irq(&mctz->lock);
2688 css_put(&mz->memcg->css);
2689 loop++;
2690 /*
2691 * Could not reclaim anything and there are no more
2692 * mem cgroups to try or we seem to be looping without
2693 * reclaiming anything.
2694 */
2695 if (!nr_reclaimed &&
2696 (next_mz == NULL ||
2697 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2698 break;
2699 } while (!nr_reclaimed);
2700 if (next_mz)
2701 css_put(&next_mz->memcg->css);
2702 return nr_reclaimed;
2703 }
2704
2705 /*
2706 * Test whether @memcg has children, dead or alive. Note that this
2707 * function doesn't care whether @memcg has use_hierarchy enabled and
2708 * returns %true if there are child csses according to the cgroup
2709 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2710 */
2711 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2712 {
2713 bool ret;
2714
2715 /*
2716 * The lock does not prevent addition or deletion of children, but
2717 * it prevents a new child from being initialized based on this
2718 * parent in css_online(), so it's enough to decide whether
2719 * hierarchically inherited attributes can still be changed or not.
2720 */
2721 lockdep_assert_held(&memcg_create_mutex);
2722
2723 rcu_read_lock();
2724 ret = css_next_child(NULL, &memcg->css);
2725 rcu_read_unlock();
2726 return ret;
2727 }
2728
2729 /*
2730 * Reclaims as many pages from the given memcg as possible and moves
2731 * the rest to the parent.
2732 *
2733 * Caller is responsible for holding css reference for memcg.
2734 */
2735 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2736 {
2737 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2738
2739 /* we call try-to-free pages for make this cgroup empty */
2740 lru_add_drain_all();
2741 /* try to free all pages in this cgroup */
2742 while (nr_retries && page_counter_read(&memcg->memory)) {
2743 int progress;
2744
2745 if (signal_pending(current))
2746 return -EINTR;
2747
2748 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2749 GFP_KERNEL, true);
2750 if (!progress) {
2751 nr_retries--;
2752 /* maybe some writeback is necessary */
2753 congestion_wait(BLK_RW_ASYNC, HZ/10);
2754 }
2755
2756 }
2757
2758 return 0;
2759 }
2760
2761 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2762 char *buf, size_t nbytes,
2763 loff_t off)
2764 {
2765 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2766
2767 if (mem_cgroup_is_root(memcg))
2768 return -EINVAL;
2769 return mem_cgroup_force_empty(memcg) ?: nbytes;
2770 }
2771
2772 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2773 struct cftype *cft)
2774 {
2775 return mem_cgroup_from_css(css)->use_hierarchy;
2776 }
2777
2778 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2779 struct cftype *cft, u64 val)
2780 {
2781 int retval = 0;
2782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2783 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2784
2785 mutex_lock(&memcg_create_mutex);
2786
2787 if (memcg->use_hierarchy == val)
2788 goto out;
2789
2790 /*
2791 * If parent's use_hierarchy is set, we can't make any modifications
2792 * in the child subtrees. If it is unset, then the change can
2793 * occur, provided the current cgroup has no children.
2794 *
2795 * For the root cgroup, parent_mem is NULL, we allow value to be
2796 * set if there are no children.
2797 */
2798 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2799 (val == 1 || val == 0)) {
2800 if (!memcg_has_children(memcg))
2801 memcg->use_hierarchy = val;
2802 else
2803 retval = -EBUSY;
2804 } else
2805 retval = -EINVAL;
2806
2807 out:
2808 mutex_unlock(&memcg_create_mutex);
2809
2810 return retval;
2811 }
2812
2813 static unsigned long tree_stat(struct mem_cgroup *memcg,
2814 enum mem_cgroup_stat_index idx)
2815 {
2816 struct mem_cgroup *iter;
2817 unsigned long val = 0;
2818
2819 for_each_mem_cgroup_tree(iter, memcg)
2820 val += mem_cgroup_read_stat(iter, idx);
2821
2822 return val;
2823 }
2824
2825 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2826 {
2827 unsigned long val;
2828
2829 if (mem_cgroup_is_root(memcg)) {
2830 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2831 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2832 if (swap)
2833 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2834 } else {
2835 if (!swap)
2836 val = page_counter_read(&memcg->memory);
2837 else
2838 val = page_counter_read(&memcg->memsw);
2839 }
2840 return val;
2841 }
2842
2843 enum {
2844 RES_USAGE,
2845 RES_LIMIT,
2846 RES_MAX_USAGE,
2847 RES_FAILCNT,
2848 RES_SOFT_LIMIT,
2849 };
2850
2851 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2852 struct cftype *cft)
2853 {
2854 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2855 struct page_counter *counter;
2856
2857 switch (MEMFILE_TYPE(cft->private)) {
2858 case _MEM:
2859 counter = &memcg->memory;
2860 break;
2861 case _MEMSWAP:
2862 counter = &memcg->memsw;
2863 break;
2864 case _KMEM:
2865 counter = &memcg->kmem;
2866 break;
2867 default:
2868 BUG();
2869 }
2870
2871 switch (MEMFILE_ATTR(cft->private)) {
2872 case RES_USAGE:
2873 if (counter == &memcg->memory)
2874 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2875 if (counter == &memcg->memsw)
2876 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2877 return (u64)page_counter_read(counter) * PAGE_SIZE;
2878 case RES_LIMIT:
2879 return (u64)counter->limit * PAGE_SIZE;
2880 case RES_MAX_USAGE:
2881 return (u64)counter->watermark * PAGE_SIZE;
2882 case RES_FAILCNT:
2883 return counter->failcnt;
2884 case RES_SOFT_LIMIT:
2885 return (u64)memcg->soft_limit * PAGE_SIZE;
2886 default:
2887 BUG();
2888 }
2889 }
2890
2891 #ifdef CONFIG_MEMCG_KMEM
2892 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2893 unsigned long nr_pages)
2894 {
2895 int err = 0;
2896 int memcg_id;
2897
2898 BUG_ON(memcg->kmemcg_id >= 0);
2899 BUG_ON(memcg->kmem_acct_activated);
2900 BUG_ON(memcg->kmem_acct_active);
2901
2902 /*
2903 * For simplicity, we won't allow this to be disabled. It also can't
2904 * be changed if the cgroup has children already, or if tasks had
2905 * already joined.
2906 *
2907 * If tasks join before we set the limit, a person looking at
2908 * kmem.usage_in_bytes will have no way to determine when it took
2909 * place, which makes the value quite meaningless.
2910 *
2911 * After it first became limited, changes in the value of the limit are
2912 * of course permitted.
2913 */
2914 mutex_lock(&memcg_create_mutex);
2915 if (cgroup_is_populated(memcg->css.cgroup) ||
2916 (memcg->use_hierarchy && memcg_has_children(memcg)))
2917 err = -EBUSY;
2918 mutex_unlock(&memcg_create_mutex);
2919 if (err)
2920 goto out;
2921
2922 memcg_id = memcg_alloc_cache_id();
2923 if (memcg_id < 0) {
2924 err = memcg_id;
2925 goto out;
2926 }
2927
2928 /*
2929 * We couldn't have accounted to this cgroup, because it hasn't got
2930 * activated yet, so this should succeed.
2931 */
2932 err = page_counter_limit(&memcg->kmem, nr_pages);
2933 VM_BUG_ON(err);
2934
2935 static_key_slow_inc(&memcg_kmem_enabled_key);
2936 /*
2937 * A memory cgroup is considered kmem-active as soon as it gets
2938 * kmemcg_id. Setting the id after enabling static branching will
2939 * guarantee no one starts accounting before all call sites are
2940 * patched.
2941 */
2942 memcg->kmemcg_id = memcg_id;
2943 memcg->kmem_acct_activated = true;
2944 memcg->kmem_acct_active = true;
2945 out:
2946 return err;
2947 }
2948
2949 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2950 unsigned long limit)
2951 {
2952 int ret;
2953
2954 mutex_lock(&memcg_limit_mutex);
2955 if (!memcg_kmem_is_active(memcg))
2956 ret = memcg_activate_kmem(memcg, limit);
2957 else
2958 ret = page_counter_limit(&memcg->kmem, limit);
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961 }
2962
2963 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2964 {
2965 int ret = 0;
2966 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2967
2968 if (!parent)
2969 return 0;
2970
2971 mutex_lock(&memcg_limit_mutex);
2972 /*
2973 * If the parent cgroup is not kmem-active now, it cannot be activated
2974 * after this point, because it has at least one child already.
2975 */
2976 if (memcg_kmem_is_active(parent))
2977 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2978 mutex_unlock(&memcg_limit_mutex);
2979 return ret;
2980 }
2981 #else
2982 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2983 unsigned long limit)
2984 {
2985 return -EINVAL;
2986 }
2987 #endif /* CONFIG_MEMCG_KMEM */
2988
2989 /*
2990 * The user of this function is...
2991 * RES_LIMIT.
2992 */
2993 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2994 char *buf, size_t nbytes, loff_t off)
2995 {
2996 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2997 unsigned long nr_pages;
2998 int ret;
2999
3000 buf = strstrip(buf);
3001 ret = page_counter_memparse(buf, "-1", &nr_pages);
3002 if (ret)
3003 return ret;
3004
3005 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3006 case RES_LIMIT:
3007 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3008 ret = -EINVAL;
3009 break;
3010 }
3011 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3012 case _MEM:
3013 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3014 break;
3015 case _MEMSWAP:
3016 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3017 break;
3018 case _KMEM:
3019 ret = memcg_update_kmem_limit(memcg, nr_pages);
3020 break;
3021 }
3022 break;
3023 case RES_SOFT_LIMIT:
3024 memcg->soft_limit = nr_pages;
3025 ret = 0;
3026 break;
3027 }
3028 return ret ?: nbytes;
3029 }
3030
3031 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3032 size_t nbytes, loff_t off)
3033 {
3034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3035 struct page_counter *counter;
3036
3037 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3038 case _MEM:
3039 counter = &memcg->memory;
3040 break;
3041 case _MEMSWAP:
3042 counter = &memcg->memsw;
3043 break;
3044 case _KMEM:
3045 counter = &memcg->kmem;
3046 break;
3047 default:
3048 BUG();
3049 }
3050
3051 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3052 case RES_MAX_USAGE:
3053 page_counter_reset_watermark(counter);
3054 break;
3055 case RES_FAILCNT:
3056 counter->failcnt = 0;
3057 break;
3058 default:
3059 BUG();
3060 }
3061
3062 return nbytes;
3063 }
3064
3065 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3066 struct cftype *cft)
3067 {
3068 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3069 }
3070
3071 #ifdef CONFIG_MMU
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3074 {
3075 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3076
3077 if (val & ~MOVE_MASK)
3078 return -EINVAL;
3079
3080 /*
3081 * No kind of locking is needed in here, because ->can_attach() will
3082 * check this value once in the beginning of the process, and then carry
3083 * on with stale data. This means that changes to this value will only
3084 * affect task migrations starting after the change.
3085 */
3086 memcg->move_charge_at_immigrate = val;
3087 return 0;
3088 }
3089 #else
3090 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3091 struct cftype *cft, u64 val)
3092 {
3093 return -ENOSYS;
3094 }
3095 #endif
3096
3097 #ifdef CONFIG_NUMA
3098 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3099 {
3100 struct numa_stat {
3101 const char *name;
3102 unsigned int lru_mask;
3103 };
3104
3105 static const struct numa_stat stats[] = {
3106 { "total", LRU_ALL },
3107 { "file", LRU_ALL_FILE },
3108 { "anon", LRU_ALL_ANON },
3109 { "unevictable", BIT(LRU_UNEVICTABLE) },
3110 };
3111 const struct numa_stat *stat;
3112 int nid;
3113 unsigned long nr;
3114 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3115
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3118 seq_printf(m, "%s=%lu", stat->name, nr);
3119 for_each_node_state(nid, N_MEMORY) {
3120 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3121 stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
3125 }
3126
3127 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3128 struct mem_cgroup *iter;
3129
3130 nr = 0;
3131 for_each_mem_cgroup_tree(iter, memcg)
3132 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3133 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3134 for_each_node_state(nid, N_MEMORY) {
3135 nr = 0;
3136 for_each_mem_cgroup_tree(iter, memcg)
3137 nr += mem_cgroup_node_nr_lru_pages(
3138 iter, nid, stat->lru_mask);
3139 seq_printf(m, " N%d=%lu", nid, nr);
3140 }
3141 seq_putc(m, '\n');
3142 }
3143
3144 return 0;
3145 }
3146 #endif /* CONFIG_NUMA */
3147
3148 static int memcg_stat_show(struct seq_file *m, void *v)
3149 {
3150 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3151 unsigned long memory, memsw;
3152 struct mem_cgroup *mi;
3153 unsigned int i;
3154
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3156 MEM_CGROUP_STAT_NSTATS);
3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3158 MEM_CGROUP_EVENTS_NSTATS);
3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3160
3161 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3162 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3163 continue;
3164 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3165 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3166 }
3167
3168 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3169 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3170 mem_cgroup_read_events(memcg, i));
3171
3172 for (i = 0; i < NR_LRU_LISTS; i++)
3173 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3174 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3175
3176 /* Hierarchical information */
3177 memory = memsw = PAGE_COUNTER_MAX;
3178 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3179 memory = min(memory, mi->memory.limit);
3180 memsw = min(memsw, mi->memsw.limit);
3181 }
3182 seq_printf(m, "hierarchical_memory_limit %llu\n",
3183 (u64)memory * PAGE_SIZE);
3184 if (do_swap_account)
3185 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3186 (u64)memsw * PAGE_SIZE);
3187
3188 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3189 unsigned long long val = 0;
3190
3191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3192 continue;
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3196 }
3197
3198 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3199 unsigned long long val = 0;
3200
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_read_events(mi, i);
3203 seq_printf(m, "total_%s %llu\n",
3204 mem_cgroup_events_names[i], val);
3205 }
3206
3207 for (i = 0; i < NR_LRU_LISTS; i++) {
3208 unsigned long long val = 0;
3209
3210 for_each_mem_cgroup_tree(mi, memcg)
3211 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3212 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3213 }
3214
3215 #ifdef CONFIG_DEBUG_VM
3216 {
3217 int nid, zid;
3218 struct mem_cgroup_per_zone *mz;
3219 struct zone_reclaim_stat *rstat;
3220 unsigned long recent_rotated[2] = {0, 0};
3221 unsigned long recent_scanned[2] = {0, 0};
3222
3223 for_each_online_node(nid)
3224 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3225 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3226 rstat = &mz->lruvec.reclaim_stat;
3227
3228 recent_rotated[0] += rstat->recent_rotated[0];
3229 recent_rotated[1] += rstat->recent_rotated[1];
3230 recent_scanned[0] += rstat->recent_scanned[0];
3231 recent_scanned[1] += rstat->recent_scanned[1];
3232 }
3233 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3234 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3235 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3236 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3237 }
3238 #endif
3239
3240 return 0;
3241 }
3242 static u64 mem_cgroup_vmpressure_read(struct cgroup_subsys_state *css,
3243 struct cftype *cft)
3244 {
3245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246 struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
3247 unsigned long vmpressure;
3248
3249 vmpressure = vmpr->pressure;
3250
3251 return vmpressure;
3252 }
3253 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3254 struct cftype *cft)
3255 {
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3257
3258 return mem_cgroup_swappiness(memcg);
3259 }
3260
3261 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3262 struct cftype *cft, u64 val)
3263 {
3264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3265
3266 if (val > 100)
3267 return -EINVAL;
3268
3269 if (css->parent)
3270 memcg->swappiness = val;
3271 else
3272 vm_swappiness = val;
3273
3274 return 0;
3275 }
3276
3277 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3278 {
3279 struct mem_cgroup_threshold_ary *t;
3280 unsigned long usage;
3281 int i;
3282
3283 rcu_read_lock();
3284 if (!swap)
3285 t = rcu_dereference(memcg->thresholds.primary);
3286 else
3287 t = rcu_dereference(memcg->memsw_thresholds.primary);
3288
3289 if (!t)
3290 goto unlock;
3291
3292 usage = mem_cgroup_usage(memcg, swap);
3293
3294 /*
3295 * current_threshold points to threshold just below or equal to usage.
3296 * If it's not true, a threshold was crossed after last
3297 * call of __mem_cgroup_threshold().
3298 */
3299 i = t->current_threshold;
3300
3301 /*
3302 * Iterate backward over array of thresholds starting from
3303 * current_threshold and check if a threshold is crossed.
3304 * If none of thresholds below usage is crossed, we read
3305 * only one element of the array here.
3306 */
3307 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3308 eventfd_signal(t->entries[i].eventfd, 1);
3309
3310 /* i = current_threshold + 1 */
3311 i++;
3312
3313 /*
3314 * Iterate forward over array of thresholds starting from
3315 * current_threshold+1 and check if a threshold is crossed.
3316 * If none of thresholds above usage is crossed, we read
3317 * only one element of the array here.
3318 */
3319 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3320 eventfd_signal(t->entries[i].eventfd, 1);
3321
3322 /* Update current_threshold */
3323 t->current_threshold = i - 1;
3324 unlock:
3325 rcu_read_unlock();
3326 }
3327
3328 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3329 {
3330 while (memcg) {
3331 __mem_cgroup_threshold(memcg, false);
3332 if (do_swap_account)
3333 __mem_cgroup_threshold(memcg, true);
3334
3335 memcg = parent_mem_cgroup(memcg);
3336 }
3337 }
3338
3339 static int compare_thresholds(const void *a, const void *b)
3340 {
3341 const struct mem_cgroup_threshold *_a = a;
3342 const struct mem_cgroup_threshold *_b = b;
3343
3344 if (_a->threshold > _b->threshold)
3345 return 1;
3346
3347 if (_a->threshold < _b->threshold)
3348 return -1;
3349
3350 return 0;
3351 }
3352
3353 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3354 {
3355 struct mem_cgroup_eventfd_list *ev;
3356
3357 spin_lock(&memcg_oom_lock);
3358
3359 list_for_each_entry(ev, &memcg->oom_notify, list)
3360 eventfd_signal(ev->eventfd, 1);
3361
3362 spin_unlock(&memcg_oom_lock);
3363 return 0;
3364 }
3365
3366 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3367 {
3368 struct mem_cgroup *iter;
3369
3370 for_each_mem_cgroup_tree(iter, memcg)
3371 mem_cgroup_oom_notify_cb(iter);
3372 }
3373
3374 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3375 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3376 {
3377 struct mem_cgroup_thresholds *thresholds;
3378 struct mem_cgroup_threshold_ary *new;
3379 unsigned long threshold;
3380 unsigned long usage;
3381 int i, size, ret;
3382
3383 ret = page_counter_memparse(args, "-1", &threshold);
3384 if (ret)
3385 return ret;
3386
3387 mutex_lock(&memcg->thresholds_lock);
3388
3389 if (type == _MEM) {
3390 thresholds = &memcg->thresholds;
3391 usage = mem_cgroup_usage(memcg, false);
3392 } else if (type == _MEMSWAP) {
3393 thresholds = &memcg->memsw_thresholds;
3394 usage = mem_cgroup_usage(memcg, true);
3395 } else
3396 BUG();
3397
3398 /* Check if a threshold crossed before adding a new one */
3399 if (thresholds->primary)
3400 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3401
3402 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3403
3404 /* Allocate memory for new array of thresholds */
3405 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3406 GFP_KERNEL);
3407 if (!new) {
3408 ret = -ENOMEM;
3409 goto unlock;
3410 }
3411 new->size = size;
3412
3413 /* Copy thresholds (if any) to new array */
3414 if (thresholds->primary) {
3415 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3416 sizeof(struct mem_cgroup_threshold));
3417 }
3418
3419 /* Add new threshold */
3420 new->entries[size - 1].eventfd = eventfd;
3421 new->entries[size - 1].threshold = threshold;
3422
3423 /* Sort thresholds. Registering of new threshold isn't time-critical */
3424 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3425 compare_thresholds, NULL);
3426
3427 /* Find current threshold */
3428 new->current_threshold = -1;
3429 for (i = 0; i < size; i++) {
3430 if (new->entries[i].threshold <= usage) {
3431 /*
3432 * new->current_threshold will not be used until
3433 * rcu_assign_pointer(), so it's safe to increment
3434 * it here.
3435 */
3436 ++new->current_threshold;
3437 } else
3438 break;
3439 }
3440
3441 /* Free old spare buffer and save old primary buffer as spare */
3442 kfree(thresholds->spare);
3443 thresholds->spare = thresholds->primary;
3444
3445 rcu_assign_pointer(thresholds->primary, new);
3446
3447 /* To be sure that nobody uses thresholds */
3448 synchronize_rcu();
3449
3450 unlock:
3451 mutex_unlock(&memcg->thresholds_lock);
3452
3453 return ret;
3454 }
3455
3456 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3457 struct eventfd_ctx *eventfd, const char *args)
3458 {
3459 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3460 }
3461
3462 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3463 struct eventfd_ctx *eventfd, const char *args)
3464 {
3465 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3466 }
3467
3468 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3469 struct eventfd_ctx *eventfd, enum res_type type)
3470 {
3471 struct mem_cgroup_thresholds *thresholds;
3472 struct mem_cgroup_threshold_ary *new;
3473 unsigned long usage;
3474 int i, j, size;
3475
3476 mutex_lock(&memcg->thresholds_lock);
3477
3478 if (type == _MEM) {
3479 thresholds = &memcg->thresholds;
3480 usage = mem_cgroup_usage(memcg, false);
3481 } else if (type == _MEMSWAP) {
3482 thresholds = &memcg->memsw_thresholds;
3483 usage = mem_cgroup_usage(memcg, true);
3484 } else
3485 BUG();
3486
3487 if (!thresholds->primary)
3488 goto unlock;
3489
3490 /* Check if a threshold crossed before removing */
3491 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3492
3493 /* Calculate new number of threshold */
3494 size = 0;
3495 for (i = 0; i < thresholds->primary->size; i++) {
3496 if (thresholds->primary->entries[i].eventfd != eventfd)
3497 size++;
3498 }
3499
3500 new = thresholds->spare;
3501
3502 /* Set thresholds array to NULL if we don't have thresholds */
3503 if (!size) {
3504 kfree(new);
3505 new = NULL;
3506 goto swap_buffers;
3507 }
3508
3509 new->size = size;
3510
3511 /* Copy thresholds and find current threshold */
3512 new->current_threshold = -1;
3513 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3514 if (thresholds->primary->entries[i].eventfd == eventfd)
3515 continue;
3516
3517 new->entries[j] = thresholds->primary->entries[i];
3518 if (new->entries[j].threshold <= usage) {
3519 /*
3520 * new->current_threshold will not be used
3521 * until rcu_assign_pointer(), so it's safe to increment
3522 * it here.
3523 */
3524 ++new->current_threshold;
3525 }
3526 j++;
3527 }
3528
3529 swap_buffers:
3530 /* Swap primary and spare array */
3531 thresholds->spare = thresholds->primary;
3532
3533 rcu_assign_pointer(thresholds->primary, new);
3534
3535 /* To be sure that nobody uses thresholds */
3536 synchronize_rcu();
3537
3538 /* If all events are unregistered, free the spare array */
3539 if (!new) {
3540 kfree(thresholds->spare);
3541 thresholds->spare = NULL;
3542 }
3543 unlock:
3544 mutex_unlock(&memcg->thresholds_lock);
3545 }
3546
3547 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3548 struct eventfd_ctx *eventfd)
3549 {
3550 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3551 }
3552
3553 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3554 struct eventfd_ctx *eventfd)
3555 {
3556 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3557 }
3558
3559 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3560 struct eventfd_ctx *eventfd, const char *args)
3561 {
3562 struct mem_cgroup_eventfd_list *event;
3563
3564 event = kmalloc(sizeof(*event), GFP_KERNEL);
3565 if (!event)
3566 return -ENOMEM;
3567
3568 spin_lock(&memcg_oom_lock);
3569
3570 event->eventfd = eventfd;
3571 list_add(&event->list, &memcg->oom_notify);
3572
3573 /* already in OOM ? */
3574 if (memcg->under_oom)
3575 eventfd_signal(eventfd, 1);
3576 spin_unlock(&memcg_oom_lock);
3577
3578 return 0;
3579 }
3580
3581 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3582 struct eventfd_ctx *eventfd)
3583 {
3584 struct mem_cgroup_eventfd_list *ev, *tmp;
3585
3586 spin_lock(&memcg_oom_lock);
3587
3588 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3589 if (ev->eventfd == eventfd) {
3590 list_del(&ev->list);
3591 kfree(ev);
3592 }
3593 }
3594
3595 spin_unlock(&memcg_oom_lock);
3596 }
3597
3598 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3599 {
3600 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3601
3602 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3603 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3604 return 0;
3605 }
3606
3607 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3608 struct cftype *cft, u64 val)
3609 {
3610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3611
3612 /* cannot set to root cgroup and only 0 and 1 are allowed */
3613 if (!css->parent || !((val == 0) || (val == 1)))
3614 return -EINVAL;
3615
3616 memcg->oom_kill_disable = val;
3617 if (!val)
3618 memcg_oom_recover(memcg);
3619
3620 return 0;
3621 }
3622
3623 #ifdef CONFIG_MEMCG_KMEM
3624 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3625 {
3626 int ret;
3627
3628 ret = memcg_propagate_kmem(memcg);
3629 if (ret)
3630 return ret;
3631
3632 return mem_cgroup_sockets_init(memcg, ss);
3633 }
3634
3635 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3636 {
3637 struct cgroup_subsys_state *css;
3638 struct mem_cgroup *parent, *child;
3639 int kmemcg_id;
3640
3641 if (!memcg->kmem_acct_active)
3642 return;
3643
3644 /*
3645 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3646 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3647 * guarantees no cache will be created for this cgroup after we are
3648 * done (see memcg_create_kmem_cache()).
3649 */
3650 memcg->kmem_acct_active = false;
3651
3652 memcg_deactivate_kmem_caches(memcg);
3653
3654 kmemcg_id = memcg->kmemcg_id;
3655 BUG_ON(kmemcg_id < 0);
3656
3657 parent = parent_mem_cgroup(memcg);
3658 if (!parent)
3659 parent = root_mem_cgroup;
3660
3661 /*
3662 * Change kmemcg_id of this cgroup and all its descendants to the
3663 * parent's id, and then move all entries from this cgroup's list_lrus
3664 * to ones of the parent. After we have finished, all list_lrus
3665 * corresponding to this cgroup are guaranteed to remain empty. The
3666 * ordering is imposed by list_lru_node->lock taken by
3667 * memcg_drain_all_list_lrus().
3668 */
3669 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3670 css_for_each_descendant_pre(css, &memcg->css) {
3671 child = mem_cgroup_from_css(css);
3672 BUG_ON(child->kmemcg_id != kmemcg_id);
3673 child->kmemcg_id = parent->kmemcg_id;
3674 if (!memcg->use_hierarchy)
3675 break;
3676 }
3677 rcu_read_unlock();
3678
3679 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3680
3681 memcg_free_cache_id(kmemcg_id);
3682 }
3683
3684 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3685 {
3686 if (memcg->kmem_acct_activated) {
3687 memcg_destroy_kmem_caches(memcg);
3688 static_key_slow_dec(&memcg_kmem_enabled_key);
3689 WARN_ON(page_counter_read(&memcg->kmem));
3690 }
3691 mem_cgroup_sockets_destroy(memcg);
3692 }
3693 #else
3694 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3695 {
3696 return 0;
3697 }
3698
3699 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3700 {
3701 }
3702
3703 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3704 {
3705 }
3706 #endif
3707
3708 #ifdef CONFIG_CGROUP_WRITEBACK
3709
3710 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3711 {
3712 return &memcg->cgwb_list;
3713 }
3714
3715 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3716 {
3717 return wb_domain_init(&memcg->cgwb_domain, gfp);
3718 }
3719
3720 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3721 {
3722 wb_domain_exit(&memcg->cgwb_domain);
3723 }
3724
3725 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3726 {
3727 wb_domain_size_changed(&memcg->cgwb_domain);
3728 }
3729
3730 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3731 {
3732 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3733
3734 if (!memcg->css.parent)
3735 return NULL;
3736
3737 return &memcg->cgwb_domain;
3738 }
3739
3740 /**
3741 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3742 * @wb: bdi_writeback in question
3743 * @pfilepages: out parameter for number of file pages
3744 * @pheadroom: out parameter for number of allocatable pages according to memcg
3745 * @pdirty: out parameter for number of dirty pages
3746 * @pwriteback: out parameter for number of pages under writeback
3747 *
3748 * Determine the numbers of file, headroom, dirty, and writeback pages in
3749 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3750 * is a bit more involved.
3751 *
3752 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3753 * headroom is calculated as the lowest headroom of itself and the
3754 * ancestors. Note that this doesn't consider the actual amount of
3755 * available memory in the system. The caller should further cap
3756 * *@pheadroom accordingly.
3757 */
3758 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3759 unsigned long *pheadroom, unsigned long *pdirty,
3760 unsigned long *pwriteback)
3761 {
3762 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3763 struct mem_cgroup *parent;
3764
3765 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3766
3767 /* this should eventually include NR_UNSTABLE_NFS */
3768 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3769 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3770 (1 << LRU_ACTIVE_FILE));
3771 *pheadroom = PAGE_COUNTER_MAX;
3772
3773 while ((parent = parent_mem_cgroup(memcg))) {
3774 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3775 unsigned long used = page_counter_read(&memcg->memory);
3776
3777 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3778 memcg = parent;
3779 }
3780 }
3781
3782 #else /* CONFIG_CGROUP_WRITEBACK */
3783
3784 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3785 {
3786 return 0;
3787 }
3788
3789 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3790 {
3791 }
3792
3793 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3794 {
3795 }
3796
3797 #endif /* CONFIG_CGROUP_WRITEBACK */
3798
3799 /*
3800 * DO NOT USE IN NEW FILES.
3801 *
3802 * "cgroup.event_control" implementation.
3803 *
3804 * This is way over-engineered. It tries to support fully configurable
3805 * events for each user. Such level of flexibility is completely
3806 * unnecessary especially in the light of the planned unified hierarchy.
3807 *
3808 * Please deprecate this and replace with something simpler if at all
3809 * possible.
3810 */
3811
3812 /*
3813 * Unregister event and free resources.
3814 *
3815 * Gets called from workqueue.
3816 */
3817 static void memcg_event_remove(struct work_struct *work)
3818 {
3819 struct mem_cgroup_event *event =
3820 container_of(work, struct mem_cgroup_event, remove);
3821 struct mem_cgroup *memcg = event->memcg;
3822
3823 remove_wait_queue(event->wqh, &event->wait);
3824
3825 event->unregister_event(memcg, event->eventfd);
3826
3827 /* Notify userspace the event is going away. */
3828 eventfd_signal(event->eventfd, 1);
3829
3830 eventfd_ctx_put(event->eventfd);
3831 kfree(event);
3832 css_put(&memcg->css);
3833 }
3834
3835 /*
3836 * Gets called on POLLHUP on eventfd when user closes it.
3837 *
3838 * Called with wqh->lock held and interrupts disabled.
3839 */
3840 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3841 int sync, void *key)
3842 {
3843 struct mem_cgroup_event *event =
3844 container_of(wait, struct mem_cgroup_event, wait);
3845 struct mem_cgroup *memcg = event->memcg;
3846 unsigned long flags = (unsigned long)key;
3847
3848 if (flags & POLLHUP) {
3849 /*
3850 * If the event has been detached at cgroup removal, we
3851 * can simply return knowing the other side will cleanup
3852 * for us.
3853 *
3854 * We can't race against event freeing since the other
3855 * side will require wqh->lock via remove_wait_queue(),
3856 * which we hold.
3857 */
3858 spin_lock(&memcg->event_list_lock);
3859 if (!list_empty(&event->list)) {
3860 list_del_init(&event->list);
3861 /*
3862 * We are in atomic context, but cgroup_event_remove()
3863 * may sleep, so we have to call it in workqueue.
3864 */
3865 schedule_work(&event->remove);
3866 }
3867 spin_unlock(&memcg->event_list_lock);
3868 }
3869
3870 return 0;
3871 }
3872
3873 static void memcg_event_ptable_queue_proc(struct file *file,
3874 wait_queue_head_t *wqh, poll_table *pt)
3875 {
3876 struct mem_cgroup_event *event =
3877 container_of(pt, struct mem_cgroup_event, pt);
3878
3879 event->wqh = wqh;
3880 add_wait_queue(wqh, &event->wait);
3881 }
3882
3883 /*
3884 * DO NOT USE IN NEW FILES.
3885 *
3886 * Parse input and register new cgroup event handler.
3887 *
3888 * Input must be in format '<event_fd> <control_fd> <args>'.
3889 * Interpretation of args is defined by control file implementation.
3890 */
3891 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3892 char *buf, size_t nbytes, loff_t off)
3893 {
3894 struct cgroup_subsys_state *css = of_css(of);
3895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3896 struct mem_cgroup_event *event;
3897 struct cgroup_subsys_state *cfile_css;
3898 unsigned int efd, cfd;
3899 struct fd efile;
3900 struct fd cfile;
3901 const char *name;
3902 char *endp;
3903 int ret;
3904
3905 buf = strstrip(buf);
3906
3907 efd = simple_strtoul(buf, &endp, 10);
3908 if (*endp != ' ')
3909 return -EINVAL;
3910 buf = endp + 1;
3911
3912 cfd = simple_strtoul(buf, &endp, 10);
3913 if ((*endp != ' ') && (*endp != '\0'))
3914 return -EINVAL;
3915 buf = endp + 1;
3916
3917 event = kzalloc(sizeof(*event), GFP_KERNEL);
3918 if (!event)
3919 return -ENOMEM;
3920
3921 event->memcg = memcg;
3922 INIT_LIST_HEAD(&event->list);
3923 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3924 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3925 INIT_WORK(&event->remove, memcg_event_remove);
3926
3927 efile = fdget(efd);
3928 if (!efile.file) {
3929 ret = -EBADF;
3930 goto out_kfree;
3931 }
3932
3933 event->eventfd = eventfd_ctx_fileget(efile.file);
3934 if (IS_ERR(event->eventfd)) {
3935 ret = PTR_ERR(event->eventfd);
3936 goto out_put_efile;
3937 }
3938
3939 cfile = fdget(cfd);
3940 if (!cfile.file) {
3941 ret = -EBADF;
3942 goto out_put_eventfd;
3943 }
3944
3945 /* the process need read permission on control file */
3946 /* AV: shouldn't we check that it's been opened for read instead? */
3947 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3948 if (ret < 0)
3949 goto out_put_cfile;
3950
3951 /*
3952 * Determine the event callbacks and set them in @event. This used
3953 * to be done via struct cftype but cgroup core no longer knows
3954 * about these events. The following is crude but the whole thing
3955 * is for compatibility anyway.
3956 *
3957 * DO NOT ADD NEW FILES.
3958 */
3959 name = cfile.file->f_path.dentry->d_name.name;
3960
3961 if (!strcmp(name, "memory.usage_in_bytes")) {
3962 event->register_event = mem_cgroup_usage_register_event;
3963 event->unregister_event = mem_cgroup_usage_unregister_event;
3964 } else if (!strcmp(name, "memory.oom_control")) {
3965 event->register_event = mem_cgroup_oom_register_event;
3966 event->unregister_event = mem_cgroup_oom_unregister_event;
3967 } else if (!strcmp(name, "memory.pressure_level")) {
3968 event->register_event = vmpressure_register_event;
3969 event->unregister_event = vmpressure_unregister_event;
3970 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3971 event->register_event = memsw_cgroup_usage_register_event;
3972 event->unregister_event = memsw_cgroup_usage_unregister_event;
3973 } else {
3974 ret = -EINVAL;
3975 goto out_put_cfile;
3976 }
3977
3978 /*
3979 * Verify @cfile should belong to @css. Also, remaining events are
3980 * automatically removed on cgroup destruction but the removal is
3981 * asynchronous, so take an extra ref on @css.
3982 */
3983 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3984 &memory_cgrp_subsys);
3985 ret = -EINVAL;
3986 if (IS_ERR(cfile_css))
3987 goto out_put_cfile;
3988 if (cfile_css != css) {
3989 css_put(cfile_css);
3990 goto out_put_cfile;
3991 }
3992
3993 ret = event->register_event(memcg, event->eventfd, buf);
3994 if (ret)
3995 goto out_put_css;
3996
3997 efile.file->f_op->poll(efile.file, &event->pt);
3998
3999 spin_lock(&memcg->event_list_lock);
4000 list_add(&event->list, &memcg->event_list);
4001 spin_unlock(&memcg->event_list_lock);
4002
4003 fdput(cfile);
4004 fdput(efile);
4005
4006 return nbytes;
4007
4008 out_put_css:
4009 css_put(css);
4010 out_put_cfile:
4011 fdput(cfile);
4012 out_put_eventfd:
4013 eventfd_ctx_put(event->eventfd);
4014 out_put_efile:
4015 fdput(efile);
4016 out_kfree:
4017 kfree(event);
4018
4019 return ret;
4020 }
4021
4022 static struct cftype mem_cgroup_legacy_files[] = {
4023 {
4024 .name = "usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4037 .write = mem_cgroup_write,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "soft_limit_in_bytes",
4042 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4043 .write = mem_cgroup_write,
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "failcnt",
4048 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "stat",
4054 .seq_show = memcg_stat_show,
4055 },
4056 {
4057 .name = "force_empty",
4058 .write = mem_cgroup_force_empty_write,
4059 },
4060 {
4061 .name = "use_hierarchy",
4062 .write_u64 = mem_cgroup_hierarchy_write,
4063 .read_u64 = mem_cgroup_hierarchy_read,
4064 },
4065 {
4066 .name = "cgroup.event_control", /* XXX: for compat */
4067 .write = memcg_write_event_control,
4068 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4069 },
4070 {
4071 .name = "swappiness",
4072 .read_u64 = mem_cgroup_swappiness_read,
4073 .write_u64 = mem_cgroup_swappiness_write,
4074 },
4075 {
4076 .name = "move_charge_at_immigrate",
4077 .read_u64 = mem_cgroup_move_charge_read,
4078 .write_u64 = mem_cgroup_move_charge_write,
4079 },
4080 {
4081 .name = "oom_control",
4082 .seq_show = mem_cgroup_oom_control_read,
4083 .write_u64 = mem_cgroup_oom_control_write,
4084 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4085 },
4086 {
4087 .name = "pressure_level",
4088 },
4089 {
4090 .name = "vmpressure",
4091 .read_u64 = mem_cgroup_vmpressure_read,
4092 },
4093 #ifdef CONFIG_NUMA
4094 {
4095 .name = "numa_stat",
4096 .seq_show = memcg_numa_stat_show,
4097 },
4098 #endif
4099 #ifdef CONFIG_MEMCG_KMEM
4100 {
4101 .name = "kmem.limit_in_bytes",
4102 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4103 .write = mem_cgroup_write,
4104 .read_u64 = mem_cgroup_read_u64,
4105 },
4106 {
4107 .name = "kmem.usage_in_bytes",
4108 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4109 .read_u64 = mem_cgroup_read_u64,
4110 },
4111 {
4112 .name = "kmem.failcnt",
4113 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4114 .write = mem_cgroup_reset,
4115 .read_u64 = mem_cgroup_read_u64,
4116 },
4117 {
4118 .name = "kmem.max_usage_in_bytes",
4119 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4120 .write = mem_cgroup_reset,
4121 .read_u64 = mem_cgroup_read_u64,
4122 },
4123 #ifdef CONFIG_SLABINFO
4124 {
4125 .name = "kmem.slabinfo",
4126 .seq_start = slab_start,
4127 .seq_next = slab_next,
4128 .seq_stop = slab_stop,
4129 .seq_show = memcg_slab_show,
4130 },
4131 #endif
4132 #endif
4133 { }, /* terminate */
4134 };
4135
4136 /*
4137 * Private memory cgroup IDR
4138 *
4139 * Swap-out records and page cache shadow entries need to store memcg
4140 * references in constrained space, so we maintain an ID space that is
4141 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4142 * memory-controlled cgroups to 64k.
4143 *
4144 * However, there usually are many references to the oflline CSS after
4145 * the cgroup has been destroyed, such as page cache or reclaimable
4146 * slab objects, that don't need to hang on to the ID. We want to keep
4147 * those dead CSS from occupying IDs, or we might quickly exhaust the
4148 * relatively small ID space and prevent the creation of new cgroups
4149 * even when there are much fewer than 64k cgroups - possibly none.
4150 *
4151 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4152 * be freed and recycled when it's no longer needed, which is usually
4153 * when the CSS is offlined.
4154 *
4155 * The only exception to that are records of swapped out tmpfs/shmem
4156 * pages that need to be attributed to live ancestors on swapin. But
4157 * those references are manageable from userspace.
4158 */
4159
4160 static DEFINE_IDR(mem_cgroup_idr);
4161
4162 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4163 {
4164 atomic_add(n, &memcg->id.ref);
4165 }
4166
4167 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4168 {
4169 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4170 idr_remove(&mem_cgroup_idr, memcg->id.id);
4171 memcg->id.id = 0;
4172
4173 /* Memcg ID pins CSS */
4174 css_put(&memcg->css);
4175 }
4176 }
4177
4178 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4179 {
4180 mem_cgroup_id_get_many(memcg, 1);
4181 }
4182
4183 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4184 {
4185 mem_cgroup_id_put_many(memcg, 1);
4186 }
4187
4188 /**
4189 * mem_cgroup_from_id - look up a memcg from a memcg id
4190 * @id: the memcg id to look up
4191 *
4192 * Caller must hold rcu_read_lock().
4193 */
4194 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4195 {
4196 WARN_ON_ONCE(!rcu_read_lock_held());
4197 return idr_find(&mem_cgroup_idr, id);
4198 }
4199
4200 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4201 {
4202 struct mem_cgroup_per_node *pn;
4203 struct mem_cgroup_per_zone *mz;
4204 int zone, tmp = node;
4205 /*
4206 * This routine is called against possible nodes.
4207 * But it's BUG to call kmalloc() against offline node.
4208 *
4209 * TODO: this routine can waste much memory for nodes which will
4210 * never be onlined. It's better to use memory hotplug callback
4211 * function.
4212 */
4213 if (!node_state(node, N_NORMAL_MEMORY))
4214 tmp = -1;
4215 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4216 if (!pn)
4217 return 1;
4218
4219 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4220 mz = &pn->zoneinfo[zone];
4221 lruvec_init(&mz->lruvec);
4222 mz->usage_in_excess = 0;
4223 mz->on_tree = false;
4224 mz->memcg = memcg;
4225 }
4226 memcg->nodeinfo[node] = pn;
4227 return 0;
4228 }
4229
4230 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4231 {
4232 kfree(memcg->nodeinfo[node]);
4233 }
4234
4235 static struct mem_cgroup *mem_cgroup_alloc(void)
4236 {
4237 struct mem_cgroup *memcg;
4238 size_t size;
4239
4240 size = sizeof(struct mem_cgroup);
4241 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4242
4243 memcg = kzalloc(size, GFP_KERNEL);
4244 if (!memcg)
4245 return NULL;
4246
4247 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4248 if (!memcg->stat)
4249 goto out_free;
4250
4251 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4252 goto out_free_stat;
4253
4254 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4255 1, MEM_CGROUP_ID_MAX,
4256 GFP_KERNEL);
4257 if (memcg->id.id < 0)
4258 goto out_free_stat;
4259
4260 return memcg;
4261
4262 out_free_stat:
4263 free_percpu(memcg->stat);
4264 out_free:
4265 kfree(memcg);
4266 return NULL;
4267 }
4268
4269 /*
4270 * At destroying mem_cgroup, references from swap_cgroup can remain.
4271 * (scanning all at force_empty is too costly...)
4272 *
4273 * Instead of clearing all references at force_empty, we remember
4274 * the number of reference from swap_cgroup and free mem_cgroup when
4275 * it goes down to 0.
4276 *
4277 * Removal of cgroup itself succeeds regardless of refs from swap.
4278 */
4279
4280 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4281 {
4282 int node;
4283
4284 mem_cgroup_remove_from_trees(memcg);
4285
4286 for_each_node(node)
4287 free_mem_cgroup_per_zone_info(memcg, node);
4288
4289 free_percpu(memcg->stat);
4290 memcg_wb_domain_exit(memcg);
4291 kfree(memcg);
4292 }
4293
4294 /*
4295 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4296 */
4297 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4298 {
4299 if (!memcg->memory.parent)
4300 return NULL;
4301 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4302 }
4303 EXPORT_SYMBOL(parent_mem_cgroup);
4304
4305 static struct cgroup_subsys_state * __ref
4306 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4307 {
4308 struct mem_cgroup *memcg;
4309 long error = -ENOMEM;
4310 int node;
4311
4312 memcg = mem_cgroup_alloc();
4313 if (!memcg)
4314 return ERR_PTR(error);
4315
4316 for_each_node(node)
4317 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4318 goto free_out;
4319
4320 /* root ? */
4321 if (parent_css == NULL) {
4322 root_mem_cgroup = memcg;
4323 mem_cgroup_root_css = &memcg->css;
4324 page_counter_init(&memcg->memory, NULL);
4325 memcg->high = PAGE_COUNTER_MAX;
4326 memcg->soft_limit = PAGE_COUNTER_MAX;
4327 page_counter_init(&memcg->memsw, NULL);
4328 page_counter_init(&memcg->kmem, NULL);
4329 }
4330
4331 memcg->last_scanned_node = MAX_NUMNODES;
4332 INIT_LIST_HEAD(&memcg->oom_notify);
4333 memcg->move_charge_at_immigrate = 0;
4334 mutex_init(&memcg->thresholds_lock);
4335 spin_lock_init(&memcg->move_lock);
4336 vmpressure_init(&memcg->vmpressure);
4337 INIT_LIST_HEAD(&memcg->event_list);
4338 spin_lock_init(&memcg->event_list_lock);
4339 #ifdef CONFIG_MEMCG_KMEM
4340 memcg->kmemcg_id = -1;
4341 #endif
4342 #ifdef CONFIG_CGROUP_WRITEBACK
4343 INIT_LIST_HEAD(&memcg->cgwb_list);
4344 #endif
4345 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4346 return &memcg->css;
4347
4348 free_out:
4349 idr_remove(&mem_cgroup_idr, memcg->id.id);
4350 __mem_cgroup_free(memcg);
4351 return ERR_PTR(error);
4352 }
4353
4354 static int
4355 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4356 {
4357 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4358 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4359 int ret;
4360
4361 /* Online state pins memcg ID, memcg ID pins CSS */
4362 mem_cgroup_id_get(mem_cgroup_from_css(css));
4363 css_get(css);
4364
4365 if (!parent)
4366 return 0;
4367
4368 mutex_lock(&memcg_create_mutex);
4369
4370 memcg->use_hierarchy = parent->use_hierarchy;
4371 memcg->oom_kill_disable = parent->oom_kill_disable;
4372 memcg->swappiness = mem_cgroup_swappiness(parent);
4373
4374 if (parent->use_hierarchy) {
4375 page_counter_init(&memcg->memory, &parent->memory);
4376 memcg->high = PAGE_COUNTER_MAX;
4377 memcg->soft_limit = PAGE_COUNTER_MAX;
4378 page_counter_init(&memcg->memsw, &parent->memsw);
4379 page_counter_init(&memcg->kmem, &parent->kmem);
4380
4381 /*
4382 * No need to take a reference to the parent because cgroup
4383 * core guarantees its existence.
4384 */
4385 } else {
4386 page_counter_init(&memcg->memory, NULL);
4387 memcg->high = PAGE_COUNTER_MAX;
4388 memcg->soft_limit = PAGE_COUNTER_MAX;
4389 page_counter_init(&memcg->memsw, NULL);
4390 page_counter_init(&memcg->kmem, NULL);
4391 /*
4392 * Deeper hierachy with use_hierarchy == false doesn't make
4393 * much sense so let cgroup subsystem know about this
4394 * unfortunate state in our controller.
4395 */
4396 if (parent != root_mem_cgroup)
4397 memory_cgrp_subsys.broken_hierarchy = true;
4398 }
4399 mutex_unlock(&memcg_create_mutex);
4400
4401 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4402 if (ret)
4403 return ret;
4404
4405 /*
4406 * Make sure the memcg is initialized: mem_cgroup_iter()
4407 * orders reading memcg->initialized against its callers
4408 * reading the memcg members.
4409 */
4410 smp_store_release(&memcg->initialized, 1);
4411
4412 return 0;
4413 }
4414
4415 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4416 {
4417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4418 struct mem_cgroup_event *event, *tmp;
4419
4420 /*
4421 * Unregister events and notify userspace.
4422 * Notify userspace about cgroup removing only after rmdir of cgroup
4423 * directory to avoid race between userspace and kernelspace.
4424 */
4425 spin_lock(&memcg->event_list_lock);
4426 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4427 list_del_init(&event->list);
4428 schedule_work(&event->remove);
4429 }
4430 spin_unlock(&memcg->event_list_lock);
4431
4432 vmpressure_cleanup(&memcg->vmpressure);
4433
4434 memcg_deactivate_kmem(memcg);
4435
4436 wb_memcg_offline(memcg);
4437
4438 mem_cgroup_id_put(memcg);
4439 }
4440
4441 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4442 {
4443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4444
4445 invalidate_reclaim_iterators(memcg);
4446 }
4447
4448 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4449 {
4450 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4451
4452 memcg_destroy_kmem(memcg);
4453 __mem_cgroup_free(memcg);
4454 }
4455
4456 /**
4457 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4458 * @css: the target css
4459 *
4460 * Reset the states of the mem_cgroup associated with @css. This is
4461 * invoked when the userland requests disabling on the default hierarchy
4462 * but the memcg is pinned through dependency. The memcg should stop
4463 * applying policies and should revert to the vanilla state as it may be
4464 * made visible again.
4465 *
4466 * The current implementation only resets the essential configurations.
4467 * This needs to be expanded to cover all the visible parts.
4468 */
4469 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4470 {
4471 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4472
4473 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4474 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4475 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4476 memcg->low = 0;
4477 memcg->high = PAGE_COUNTER_MAX;
4478 memcg->soft_limit = PAGE_COUNTER_MAX;
4479 memcg_wb_domain_size_changed(memcg);
4480 }
4481
4482 #ifdef CONFIG_MMU
4483 /* Handlers for move charge at task migration. */
4484 static int mem_cgroup_do_precharge(unsigned long count)
4485 {
4486 int ret;
4487
4488 /* Try a single bulk charge without reclaim first, kswapd may wake */
4489 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4490 if (!ret) {
4491 mc.precharge += count;
4492 return ret;
4493 }
4494
4495 /* Try charges one by one with reclaim, but do not retry */
4496 while (count--) {
4497 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4498 if (ret)
4499 return ret;
4500 mc.precharge++;
4501 cond_resched();
4502 }
4503 return 0;
4504 }
4505
4506 /**
4507 * get_mctgt_type - get target type of moving charge
4508 * @vma: the vma the pte to be checked belongs
4509 * @addr: the address corresponding to the pte to be checked
4510 * @ptent: the pte to be checked
4511 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4512 *
4513 * Returns
4514 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4515 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4516 * move charge. if @target is not NULL, the page is stored in target->page
4517 * with extra refcnt got(Callers should handle it).
4518 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4519 * target for charge migration. if @target is not NULL, the entry is stored
4520 * in target->ent.
4521 *
4522 * Called with pte lock held.
4523 */
4524 union mc_target {
4525 struct page *page;
4526 swp_entry_t ent;
4527 };
4528
4529 enum mc_target_type {
4530 MC_TARGET_NONE = 0,
4531 MC_TARGET_PAGE,
4532 MC_TARGET_SWAP,
4533 };
4534
4535 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4536 unsigned long addr, pte_t ptent)
4537 {
4538 struct page *page = vm_normal_page(vma, addr, ptent);
4539
4540 if (!page || !page_mapped(page))
4541 return NULL;
4542 if (PageAnon(page)) {
4543 if (!(mc.flags & MOVE_ANON))
4544 return NULL;
4545 } else {
4546 if (!(mc.flags & MOVE_FILE))
4547 return NULL;
4548 }
4549 if (!get_page_unless_zero(page))
4550 return NULL;
4551
4552 return page;
4553 }
4554
4555 #ifdef CONFIG_SWAP
4556 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4557 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4558 {
4559 struct page *page = NULL;
4560 swp_entry_t ent = pte_to_swp_entry(ptent);
4561
4562 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4563 return NULL;
4564 /*
4565 * Because lookup_swap_cache() updates some statistics counter,
4566 * we call find_get_page() with swapper_space directly.
4567 */
4568 page = find_get_page(swap_address_space(ent), ent.val);
4569 if (do_swap_account)
4570 entry->val = ent.val;
4571
4572 return page;
4573 }
4574 #else
4575 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4576 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4577 {
4578 return NULL;
4579 }
4580 #endif
4581
4582 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4583 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4584 {
4585 struct page *page = NULL;
4586 struct address_space *mapping;
4587 pgoff_t pgoff;
4588
4589 if (!vma->vm_file) /* anonymous vma */
4590 return NULL;
4591 if (!(mc.flags & MOVE_FILE))
4592 return NULL;
4593
4594 mapping = vma->vm_file->f_mapping;
4595 pgoff = linear_page_index(vma, addr);
4596
4597 /* page is moved even if it's not RSS of this task(page-faulted). */
4598 #ifdef CONFIG_SWAP
4599 /* shmem/tmpfs may report page out on swap: account for that too. */
4600 if (shmem_mapping(mapping)) {
4601 page = find_get_entry(mapping, pgoff);
4602 if (radix_tree_exceptional_entry(page)) {
4603 swp_entry_t swp = radix_to_swp_entry(page);
4604 if (do_swap_account)
4605 *entry = swp;
4606 page = find_get_page(swap_address_space(swp), swp.val);
4607 }
4608 } else
4609 page = find_get_page(mapping, pgoff);
4610 #else
4611 page = find_get_page(mapping, pgoff);
4612 #endif
4613 return page;
4614 }
4615
4616 /**
4617 * mem_cgroup_move_account - move account of the page
4618 * @page: the page
4619 * @nr_pages: number of regular pages (>1 for huge pages)
4620 * @from: mem_cgroup which the page is moved from.
4621 * @to: mem_cgroup which the page is moved to. @from != @to.
4622 *
4623 * The caller must confirm following.
4624 * - page is not on LRU (isolate_page() is useful.)
4625 * - compound_lock is held when nr_pages > 1
4626 *
4627 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4628 * from old cgroup.
4629 */
4630 static int mem_cgroup_move_account(struct page *page,
4631 unsigned int nr_pages,
4632 struct mem_cgroup *from,
4633 struct mem_cgroup *to)
4634 {
4635 unsigned long flags;
4636 int ret;
4637 bool anon;
4638
4639 VM_BUG_ON(from == to);
4640 VM_BUG_ON_PAGE(PageLRU(page), page);
4641 /*
4642 * The page is isolated from LRU. So, collapse function
4643 * will not handle this page. But page splitting can happen.
4644 * Do this check under compound_page_lock(). The caller should
4645 * hold it.
4646 */
4647 ret = -EBUSY;
4648 if (nr_pages > 1 && !PageTransHuge(page))
4649 goto out;
4650
4651 /*
4652 * Prevent mem_cgroup_replace_page() from looking at
4653 * page->mem_cgroup of its source page while we change it.
4654 */
4655 if (!trylock_page(page))
4656 goto out;
4657
4658 ret = -EINVAL;
4659 if (page->mem_cgroup != from)
4660 goto out_unlock;
4661
4662 anon = PageAnon(page);
4663
4664 spin_lock_irqsave(&from->move_lock, flags);
4665
4666 if (!anon && page_mapped(page)) {
4667 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4668 nr_pages);
4669 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4670 nr_pages);
4671 }
4672
4673 /*
4674 * move_lock grabbed above and caller set from->moving_account, so
4675 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4676 * So mapping should be stable for dirty pages.
4677 */
4678 if (!anon && PageDirty(page)) {
4679 struct address_space *mapping = page_mapping(page);
4680
4681 if (mapping_cap_account_dirty(mapping)) {
4682 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4683 nr_pages);
4684 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4685 nr_pages);
4686 }
4687 }
4688
4689 if (PageWriteback(page)) {
4690 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4691 nr_pages);
4692 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4693 nr_pages);
4694 }
4695
4696 /*
4697 * It is safe to change page->mem_cgroup here because the page
4698 * is referenced, charged, and isolated - we can't race with
4699 * uncharging, charging, migration, or LRU putback.
4700 */
4701
4702 /* caller should have done css_get */
4703 page->mem_cgroup = to;
4704 spin_unlock_irqrestore(&from->move_lock, flags);
4705
4706 ret = 0;
4707
4708 local_irq_disable();
4709 mem_cgroup_charge_statistics(to, page, nr_pages);
4710 memcg_check_events(to, page);
4711 mem_cgroup_charge_statistics(from, page, -nr_pages);
4712 memcg_check_events(from, page);
4713 local_irq_enable();
4714 out_unlock:
4715 unlock_page(page);
4716 out:
4717 return ret;
4718 }
4719
4720 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4721 unsigned long addr, pte_t ptent, union mc_target *target)
4722 {
4723 struct page *page = NULL;
4724 enum mc_target_type ret = MC_TARGET_NONE;
4725 swp_entry_t ent = { .val = 0 };
4726
4727 if (pte_present(ptent))
4728 page = mc_handle_present_pte(vma, addr, ptent);
4729 else if (is_swap_pte(ptent))
4730 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4731 else if (pte_none(ptent))
4732 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4733
4734 if (!page && !ent.val)
4735 return ret;
4736 if (page) {
4737 /*
4738 * Do only loose check w/o serialization.
4739 * mem_cgroup_move_account() checks the page is valid or
4740 * not under LRU exclusion.
4741 */
4742 if (page->mem_cgroup == mc.from) {
4743 ret = MC_TARGET_PAGE;
4744 if (target)
4745 target->page = page;
4746 }
4747 if (!ret || !target)
4748 put_page(page);
4749 }
4750 /* There is a swap entry and a page doesn't exist or isn't charged */
4751 if (ent.val && !ret &&
4752 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4753 ret = MC_TARGET_SWAP;
4754 if (target)
4755 target->ent = ent;
4756 }
4757 return ret;
4758 }
4759
4760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4761 /*
4762 * We don't consider swapping or file mapped pages because THP does not
4763 * support them for now.
4764 * Caller should make sure that pmd_trans_huge(pmd) is true.
4765 */
4766 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4767 unsigned long addr, pmd_t pmd, union mc_target *target)
4768 {
4769 struct page *page = NULL;
4770 enum mc_target_type ret = MC_TARGET_NONE;
4771
4772 page = pmd_page(pmd);
4773 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4774 if (!(mc.flags & MOVE_ANON))
4775 return ret;
4776 if (page->mem_cgroup == mc.from) {
4777 ret = MC_TARGET_PAGE;
4778 if (target) {
4779 get_page(page);
4780 target->page = page;
4781 }
4782 }
4783 return ret;
4784 }
4785 #else
4786 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4787 unsigned long addr, pmd_t pmd, union mc_target *target)
4788 {
4789 return MC_TARGET_NONE;
4790 }
4791 #endif
4792
4793 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4794 unsigned long addr, unsigned long end,
4795 struct mm_walk *walk)
4796 {
4797 struct vm_area_struct *vma = walk->vma;
4798 pte_t *pte;
4799 spinlock_t *ptl;
4800
4801 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4802 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4803 mc.precharge += HPAGE_PMD_NR;
4804 spin_unlock(ptl);
4805 return 0;
4806 }
4807
4808 if (pmd_trans_unstable(pmd))
4809 return 0;
4810 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4811 for (; addr != end; pte++, addr += PAGE_SIZE)
4812 if (get_mctgt_type(vma, addr, *pte, NULL))
4813 mc.precharge++; /* increment precharge temporarily */
4814 pte_unmap_unlock(pte - 1, ptl);
4815 cond_resched();
4816
4817 return 0;
4818 }
4819
4820 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4821 {
4822 unsigned long precharge;
4823
4824 struct mm_walk mem_cgroup_count_precharge_walk = {
4825 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4826 .mm = mm,
4827 };
4828 down_read(&mm->mmap_sem);
4829 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4830 up_read(&mm->mmap_sem);
4831
4832 precharge = mc.precharge;
4833 mc.precharge = 0;
4834
4835 return precharge;
4836 }
4837
4838 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4839 {
4840 unsigned long precharge = mem_cgroup_count_precharge(mm);
4841
4842 VM_BUG_ON(mc.moving_task);
4843 mc.moving_task = current;
4844 return mem_cgroup_do_precharge(precharge);
4845 }
4846
4847 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4848 static void __mem_cgroup_clear_mc(void)
4849 {
4850 struct mem_cgroup *from = mc.from;
4851 struct mem_cgroup *to = mc.to;
4852
4853 /* we must uncharge all the leftover precharges from mc.to */
4854 if (mc.precharge) {
4855 cancel_charge(mc.to, mc.precharge);
4856 mc.precharge = 0;
4857 }
4858 /*
4859 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4860 * we must uncharge here.
4861 */
4862 if (mc.moved_charge) {
4863 cancel_charge(mc.from, mc.moved_charge);
4864 mc.moved_charge = 0;
4865 }
4866 /* we must fixup refcnts and charges */
4867 if (mc.moved_swap) {
4868 /* uncharge swap account from the old cgroup */
4869 if (!mem_cgroup_is_root(mc.from))
4870 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4871
4872 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4873
4874 /*
4875 * we charged both to->memory and to->memsw, so we
4876 * should uncharge to->memory.
4877 */
4878 if (!mem_cgroup_is_root(mc.to))
4879 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4880
4881 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4882 css_put_many(&mc.to->css, mc.moved_swap);
4883
4884 mc.moved_swap = 0;
4885 }
4886 memcg_oom_recover(from);
4887 memcg_oom_recover(to);
4888 wake_up_all(&mc.waitq);
4889 }
4890
4891 static void mem_cgroup_clear_mc(void)
4892 {
4893 struct mm_struct *mm = mc.mm;
4894
4895 /*
4896 * we must clear moving_task before waking up waiters at the end of
4897 * task migration.
4898 */
4899 mc.moving_task = NULL;
4900 __mem_cgroup_clear_mc();
4901 spin_lock(&mc.lock);
4902 mc.from = NULL;
4903 mc.to = NULL;
4904 mc.mm = NULL;
4905 spin_unlock(&mc.lock);
4906
4907 mmput(mm);
4908 }
4909
4910 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4911 {
4912 struct cgroup_subsys_state *css;
4913 struct mem_cgroup *memcg;
4914 struct mem_cgroup *from;
4915 struct task_struct *leader, *p;
4916 struct mm_struct *mm;
4917 unsigned long move_flags;
4918 int ret = 0;
4919
4920 /* charge immigration isn't supported on the default hierarchy */
4921 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4922 return 0;
4923
4924 /*
4925 * Multi-process migrations only happen on the default hierarchy
4926 * where charge immigration is not used. Perform charge
4927 * immigration if @tset contains a leader and whine if there are
4928 * multiple.
4929 */
4930 p = NULL;
4931 cgroup_taskset_for_each_leader(leader, css, tset) {
4932 WARN_ON_ONCE(p);
4933 p = leader;
4934 memcg = mem_cgroup_from_css(css);
4935 }
4936 if (!p)
4937 return 0;
4938
4939 /*
4940 * We are now commited to this value whatever it is. Changes in this
4941 * tunable will only affect upcoming migrations, not the current one.
4942 * So we need to save it, and keep it going.
4943 */
4944 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4945 if (!move_flags)
4946 return 0;
4947
4948 from = mem_cgroup_from_task(p);
4949
4950 VM_BUG_ON(from == memcg);
4951
4952 mm = get_task_mm(p);
4953 if (!mm)
4954 return 0;
4955 /* We move charges only when we move a owner of the mm */
4956 if (mm->owner == p) {
4957 VM_BUG_ON(mc.from);
4958 VM_BUG_ON(mc.to);
4959 VM_BUG_ON(mc.precharge);
4960 VM_BUG_ON(mc.moved_charge);
4961 VM_BUG_ON(mc.moved_swap);
4962
4963 spin_lock(&mc.lock);
4964 mc.mm = mm;
4965 mc.from = from;
4966 mc.to = memcg;
4967 mc.flags = move_flags;
4968 spin_unlock(&mc.lock);
4969 /* We set mc.moving_task later */
4970
4971 ret = mem_cgroup_precharge_mc(mm);
4972 if (ret)
4973 mem_cgroup_clear_mc();
4974 } else {
4975 mmput(mm);
4976 }
4977 return ret;
4978 }
4979
4980 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4981 {
4982 if (mc.to)
4983 mem_cgroup_clear_mc();
4984 }
4985
4986 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4987 unsigned long addr, unsigned long end,
4988 struct mm_walk *walk)
4989 {
4990 int ret = 0;
4991 struct vm_area_struct *vma = walk->vma;
4992 pte_t *pte;
4993 spinlock_t *ptl;
4994 enum mc_target_type target_type;
4995 union mc_target target;
4996 struct page *page;
4997
4998 /*
4999 * We don't take compound_lock() here but no race with splitting thp
5000 * happens because:
5001 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5002 * under splitting, which means there's no concurrent thp split,
5003 * - if another thread runs into split_huge_page() just after we
5004 * entered this if-block, the thread must wait for page table lock
5005 * to be unlocked in __split_huge_page_splitting(), where the main
5006 * part of thp split is not executed yet.
5007 */
5008 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5009 if (mc.precharge < HPAGE_PMD_NR) {
5010 spin_unlock(ptl);
5011 return 0;
5012 }
5013 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5014 if (target_type == MC_TARGET_PAGE) {
5015 page = target.page;
5016 if (!isolate_lru_page(page)) {
5017 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5018 mc.from, mc.to)) {
5019 mc.precharge -= HPAGE_PMD_NR;
5020 mc.moved_charge += HPAGE_PMD_NR;
5021 }
5022 putback_lru_page(page);
5023 }
5024 put_page(page);
5025 }
5026 spin_unlock(ptl);
5027 return 0;
5028 }
5029
5030 if (pmd_trans_unstable(pmd))
5031 return 0;
5032 retry:
5033 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5034 for (; addr != end; addr += PAGE_SIZE) {
5035 pte_t ptent = *(pte++);
5036 swp_entry_t ent;
5037
5038 if (!mc.precharge)
5039 break;
5040
5041 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5042 case MC_TARGET_PAGE:
5043 page = target.page;
5044 if (isolate_lru_page(page))
5045 goto put;
5046 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5047 mc.precharge--;
5048 /* we uncharge from mc.from later. */
5049 mc.moved_charge++;
5050 }
5051 putback_lru_page(page);
5052 put: /* get_mctgt_type() gets the page */
5053 put_page(page);
5054 break;
5055 case MC_TARGET_SWAP:
5056 ent = target.ent;
5057 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5058 mc.precharge--;
5059 /* we fixup refcnts and charges later. */
5060 mc.moved_swap++;
5061 }
5062 break;
5063 default:
5064 break;
5065 }
5066 }
5067 pte_unmap_unlock(pte - 1, ptl);
5068 cond_resched();
5069
5070 if (addr != end) {
5071 /*
5072 * We have consumed all precharges we got in can_attach().
5073 * We try charge one by one, but don't do any additional
5074 * charges to mc.to if we have failed in charge once in attach()
5075 * phase.
5076 */
5077 ret = mem_cgroup_do_precharge(1);
5078 if (!ret)
5079 goto retry;
5080 }
5081
5082 return ret;
5083 }
5084
5085 static void mem_cgroup_move_charge(void)
5086 {
5087 struct mm_walk mem_cgroup_move_charge_walk = {
5088 .pmd_entry = mem_cgroup_move_charge_pte_range,
5089 .mm = mc.mm,
5090 };
5091
5092 lru_add_drain_all();
5093 /*
5094 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5095 * move_lock while we're moving its pages to another memcg.
5096 * Then wait for already started RCU-only updates to finish.
5097 */
5098 atomic_inc(&mc.from->moving_account);
5099 synchronize_rcu();
5100 retry:
5101 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5102 /*
5103 * Someone who are holding the mmap_sem might be waiting in
5104 * waitq. So we cancel all extra charges, wake up all waiters,
5105 * and retry. Because we cancel precharges, we might not be able
5106 * to move enough charges, but moving charge is a best-effort
5107 * feature anyway, so it wouldn't be a big problem.
5108 */
5109 __mem_cgroup_clear_mc();
5110 cond_resched();
5111 goto retry;
5112 }
5113 /*
5114 * When we have consumed all precharges and failed in doing
5115 * additional charge, the page walk just aborts.
5116 */
5117 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5118 up_read(&mc.mm->mmap_sem);
5119 atomic_dec(&mc.from->moving_account);
5120 }
5121
5122 static void mem_cgroup_move_task(void)
5123 {
5124 if (mc.to) {
5125 mem_cgroup_move_charge();
5126 mem_cgroup_clear_mc();
5127 }
5128 }
5129 #else /* !CONFIG_MMU */
5130 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5131 {
5132 return 0;
5133 }
5134 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5135 {
5136 }
5137 static void mem_cgroup_move_task(void)
5138 {
5139 }
5140 #endif
5141
5142 /*
5143 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5144 * to verify whether we're attached to the default hierarchy on each mount
5145 * attempt.
5146 */
5147 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5148 {
5149 /*
5150 * use_hierarchy is forced on the default hierarchy. cgroup core
5151 * guarantees that @root doesn't have any children, so turning it
5152 * on for the root memcg is enough.
5153 */
5154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5155 root_mem_cgroup->use_hierarchy = true;
5156 else
5157 root_mem_cgroup->use_hierarchy = false;
5158 }
5159
5160 static u64 memory_current_read(struct cgroup_subsys_state *css,
5161 struct cftype *cft)
5162 {
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5164
5165 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5166 }
5167
5168 static int memory_low_show(struct seq_file *m, void *v)
5169 {
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5171 unsigned long low = READ_ONCE(memcg->low);
5172
5173 if (low == PAGE_COUNTER_MAX)
5174 seq_puts(m, "max\n");
5175 else
5176 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5177
5178 return 0;
5179 }
5180
5181 static ssize_t memory_low_write(struct kernfs_open_file *of,
5182 char *buf, size_t nbytes, loff_t off)
5183 {
5184 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5185 unsigned long low;
5186 int err;
5187
5188 buf = strstrip(buf);
5189 err = page_counter_memparse(buf, "max", &low);
5190 if (err)
5191 return err;
5192
5193 memcg->low = low;
5194
5195 return nbytes;
5196 }
5197
5198 static int memory_high_show(struct seq_file *m, void *v)
5199 {
5200 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5201 unsigned long high = READ_ONCE(memcg->high);
5202
5203 if (high == PAGE_COUNTER_MAX)
5204 seq_puts(m, "max\n");
5205 else
5206 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5207
5208 return 0;
5209 }
5210
5211 static ssize_t memory_high_write(struct kernfs_open_file *of,
5212 char *buf, size_t nbytes, loff_t off)
5213 {
5214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5215 unsigned long nr_pages;
5216 unsigned long high;
5217 int err;
5218
5219 buf = strstrip(buf);
5220 err = page_counter_memparse(buf, "max", &high);
5221 if (err)
5222 return err;
5223
5224 memcg->high = high;
5225
5226 nr_pages = page_counter_read(&memcg->memory);
5227 if (nr_pages > high)
5228 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5229 GFP_KERNEL, true);
5230
5231 memcg_wb_domain_size_changed(memcg);
5232 return nbytes;
5233 }
5234
5235 static int memory_max_show(struct seq_file *m, void *v)
5236 {
5237 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5238 unsigned long max = READ_ONCE(memcg->memory.limit);
5239
5240 if (max == PAGE_COUNTER_MAX)
5241 seq_puts(m, "max\n");
5242 else
5243 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5244
5245 return 0;
5246 }
5247
5248 static ssize_t memory_max_write(struct kernfs_open_file *of,
5249 char *buf, size_t nbytes, loff_t off)
5250 {
5251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5252 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5253 bool drained = false;
5254 unsigned long max;
5255 int err;
5256
5257 buf = strstrip(buf);
5258 err = page_counter_memparse(buf, "max", &max);
5259 if (err)
5260 return err;
5261
5262 xchg(&memcg->memory.limit, max);
5263
5264 for (;;) {
5265 unsigned long nr_pages = page_counter_read(&memcg->memory);
5266
5267 if (nr_pages <= max)
5268 break;
5269
5270 if (signal_pending(current)) {
5271 err = -EINTR;
5272 break;
5273 }
5274
5275 if (!drained) {
5276 drain_all_stock(memcg);
5277 drained = true;
5278 continue;
5279 }
5280
5281 if (nr_reclaims) {
5282 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5283 GFP_KERNEL, true))
5284 nr_reclaims--;
5285 continue;
5286 }
5287
5288 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5289 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5290 break;
5291 }
5292
5293 memcg_wb_domain_size_changed(memcg);
5294 return nbytes;
5295 }
5296
5297 static int memory_events_show(struct seq_file *m, void *v)
5298 {
5299 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5300
5301 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5302 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5303 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5304 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5305
5306 return 0;
5307 }
5308
5309 static struct cftype memory_files[] = {
5310 {
5311 .name = "current",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .read_u64 = memory_current_read,
5314 },
5315 {
5316 .name = "low",
5317 .flags = CFTYPE_NOT_ON_ROOT,
5318 .seq_show = memory_low_show,
5319 .write = memory_low_write,
5320 },
5321 {
5322 .name = "high",
5323 .flags = CFTYPE_NOT_ON_ROOT,
5324 .seq_show = memory_high_show,
5325 .write = memory_high_write,
5326 },
5327 {
5328 .name = "max",
5329 .flags = CFTYPE_NOT_ON_ROOT,
5330 .seq_show = memory_max_show,
5331 .write = memory_max_write,
5332 },
5333 {
5334 .name = "events",
5335 .flags = CFTYPE_NOT_ON_ROOT,
5336 .file_offset = offsetof(struct mem_cgroup, events_file),
5337 .seq_show = memory_events_show,
5338 },
5339 { } /* terminate */
5340 };
5341
5342 struct cgroup_subsys memory_cgrp_subsys = {
5343 .css_alloc = mem_cgroup_css_alloc,
5344 .css_online = mem_cgroup_css_online,
5345 .css_offline = mem_cgroup_css_offline,
5346 .css_released = mem_cgroup_css_released,
5347 .css_free = mem_cgroup_css_free,
5348 .css_reset = mem_cgroup_css_reset,
5349 .can_attach = mem_cgroup_can_attach,
5350 .cancel_attach = mem_cgroup_cancel_attach,
5351 .post_attach = mem_cgroup_move_task,
5352 .bind = mem_cgroup_bind,
5353 .dfl_cftypes = memory_files,
5354 .legacy_cftypes = mem_cgroup_legacy_files,
5355 .early_init = 0,
5356 };
5357
5358 /**
5359 * mem_cgroup_low - check if memory consumption is below the normal range
5360 * @root: the highest ancestor to consider
5361 * @memcg: the memory cgroup to check
5362 *
5363 * Returns %true if memory consumption of @memcg, and that of all
5364 * configurable ancestors up to @root, is below the normal range.
5365 */
5366 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5367 {
5368 if (mem_cgroup_disabled())
5369 return false;
5370
5371 /*
5372 * The toplevel group doesn't have a configurable range, so
5373 * it's never low when looked at directly, and it is not
5374 * considered an ancestor when assessing the hierarchy.
5375 */
5376
5377 if (memcg == root_mem_cgroup)
5378 return false;
5379
5380 if (page_counter_read(&memcg->memory) >= memcg->low)
5381 return false;
5382
5383 while (memcg != root) {
5384 memcg = parent_mem_cgroup(memcg);
5385
5386 if (memcg == root_mem_cgroup)
5387 break;
5388
5389 if (page_counter_read(&memcg->memory) >= memcg->low)
5390 return false;
5391 }
5392 return true;
5393 }
5394
5395 /**
5396 * mem_cgroup_try_charge - try charging a page
5397 * @page: page to charge
5398 * @mm: mm context of the victim
5399 * @gfp_mask: reclaim mode
5400 * @memcgp: charged memcg return
5401 *
5402 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5403 * pages according to @gfp_mask if necessary.
5404 *
5405 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5406 * Otherwise, an error code is returned.
5407 *
5408 * After page->mapping has been set up, the caller must finalize the
5409 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5410 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5411 */
5412 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5413 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5414 {
5415 struct mem_cgroup *memcg = NULL;
5416 unsigned int nr_pages = 1;
5417 int ret = 0;
5418
5419 if (mem_cgroup_disabled())
5420 goto out;
5421
5422 if (PageSwapCache(page)) {
5423 /*
5424 * Every swap fault against a single page tries to charge the
5425 * page, bail as early as possible. shmem_unuse() encounters
5426 * already charged pages, too. The USED bit is protected by
5427 * the page lock, which serializes swap cache removal, which
5428 * in turn serializes uncharging.
5429 */
5430 VM_BUG_ON_PAGE(!PageLocked(page), page);
5431 if (page->mem_cgroup)
5432 goto out;
5433
5434 if (do_swap_account) {
5435 swp_entry_t ent = { .val = page_private(page), };
5436 unsigned short id = lookup_swap_cgroup_id(ent);
5437
5438 rcu_read_lock();
5439 memcg = mem_cgroup_from_id(id);
5440 if (memcg && !css_tryget_online(&memcg->css))
5441 memcg = NULL;
5442 rcu_read_unlock();
5443 }
5444 }
5445
5446 if (PageTransHuge(page)) {
5447 nr_pages <<= compound_order(page);
5448 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5449 }
5450
5451 if (!memcg)
5452 memcg = get_mem_cgroup_from_mm(mm);
5453
5454 ret = try_charge(memcg, gfp_mask, nr_pages);
5455
5456 css_put(&memcg->css);
5457 out:
5458 *memcgp = memcg;
5459 return ret;
5460 }
5461
5462 /**
5463 * mem_cgroup_commit_charge - commit a page charge
5464 * @page: page to charge
5465 * @memcg: memcg to charge the page to
5466 * @lrucare: page might be on LRU already
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up. This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration. If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479 bool lrucare)
5480 {
5481 unsigned int nr_pages = 1;
5482
5483 VM_BUG_ON_PAGE(!page->mapping, page);
5484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486 if (mem_cgroup_disabled())
5487 return;
5488 /*
5489 * Swap faults will attempt to charge the same page multiple
5490 * times. But reuse_swap_page() might have removed the page
5491 * from swapcache already, so we can't check PageSwapCache().
5492 */
5493 if (!memcg)
5494 return;
5495
5496 commit_charge(page, memcg, lrucare);
5497
5498 if (PageTransHuge(page)) {
5499 nr_pages <<= compound_order(page);
5500 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5501 }
5502
5503 local_irq_disable();
5504 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5505 memcg_check_events(memcg, page);
5506 local_irq_enable();
5507
5508 if (do_swap_account && PageSwapCache(page)) {
5509 swp_entry_t entry = { .val = page_private(page) };
5510 /*
5511 * The swap entry might not get freed for a long time,
5512 * let's not wait for it. The page already received a
5513 * memory+swap charge, drop the swap entry duplicate.
5514 */
5515 mem_cgroup_uncharge_swap(entry);
5516 }
5517 }
5518
5519 /**
5520 * mem_cgroup_cancel_charge - cancel a page charge
5521 * @page: page to charge
5522 * @memcg: memcg to charge the page to
5523 *
5524 * Cancel a charge transaction started by mem_cgroup_try_charge().
5525 */
5526 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5527 {
5528 unsigned int nr_pages = 1;
5529
5530 if (mem_cgroup_disabled())
5531 return;
5532 /*
5533 * Swap faults will attempt to charge the same page multiple
5534 * times. But reuse_swap_page() might have removed the page
5535 * from swapcache already, so we can't check PageSwapCache().
5536 */
5537 if (!memcg)
5538 return;
5539
5540 if (PageTransHuge(page)) {
5541 nr_pages <<= compound_order(page);
5542 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5543 }
5544
5545 cancel_charge(memcg, nr_pages);
5546 }
5547
5548 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5549 unsigned long nr_anon, unsigned long nr_file,
5550 unsigned long nr_huge, struct page *dummy_page)
5551 {
5552 unsigned long nr_pages = nr_anon + nr_file;
5553 unsigned long flags;
5554
5555 if (!mem_cgroup_is_root(memcg)) {
5556 page_counter_uncharge(&memcg->memory, nr_pages);
5557 if (do_swap_account)
5558 page_counter_uncharge(&memcg->memsw, nr_pages);
5559 memcg_oom_recover(memcg);
5560 }
5561
5562 local_irq_save(flags);
5563 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5564 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5565 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5566 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5567 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5568 memcg_check_events(memcg, dummy_page);
5569 local_irq_restore(flags);
5570
5571 if (!mem_cgroup_is_root(memcg))
5572 css_put_many(&memcg->css, nr_pages);
5573 }
5574
5575 static void uncharge_list(struct list_head *page_list)
5576 {
5577 struct mem_cgroup *memcg = NULL;
5578 unsigned long nr_anon = 0;
5579 unsigned long nr_file = 0;
5580 unsigned long nr_huge = 0;
5581 unsigned long pgpgout = 0;
5582 struct list_head *next;
5583 struct page *page;
5584
5585 next = page_list->next;
5586 do {
5587 unsigned int nr_pages = 1;
5588
5589 page = list_entry(next, struct page, lru);
5590 next = page->lru.next;
5591
5592 VM_BUG_ON_PAGE(PageLRU(page), page);
5593 VM_BUG_ON_PAGE(page_count(page), page);
5594
5595 if (!page->mem_cgroup)
5596 continue;
5597
5598 /*
5599 * Nobody should be changing or seriously looking at
5600 * page->mem_cgroup at this point, we have fully
5601 * exclusive access to the page.
5602 */
5603
5604 if (memcg != page->mem_cgroup) {
5605 if (memcg) {
5606 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5607 nr_huge, page);
5608 pgpgout = nr_anon = nr_file = nr_huge = 0;
5609 }
5610 memcg = page->mem_cgroup;
5611 }
5612
5613 if (PageTransHuge(page)) {
5614 nr_pages <<= compound_order(page);
5615 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5616 nr_huge += nr_pages;
5617 }
5618
5619 if (PageAnon(page))
5620 nr_anon += nr_pages;
5621 else
5622 nr_file += nr_pages;
5623
5624 page->mem_cgroup = NULL;
5625
5626 pgpgout++;
5627 } while (next != page_list);
5628
5629 if (memcg)
5630 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5631 nr_huge, page);
5632 }
5633
5634 /**
5635 * mem_cgroup_uncharge - uncharge a page
5636 * @page: page to uncharge
5637 *
5638 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5639 * mem_cgroup_commit_charge().
5640 */
5641 void mem_cgroup_uncharge(struct page *page)
5642 {
5643 if (mem_cgroup_disabled())
5644 return;
5645
5646 /* Don't touch page->lru of any random page, pre-check: */
5647 if (!page->mem_cgroup)
5648 return;
5649
5650 INIT_LIST_HEAD(&page->lru);
5651 uncharge_list(&page->lru);
5652 }
5653
5654 /**
5655 * mem_cgroup_uncharge_list - uncharge a list of page
5656 * @page_list: list of pages to uncharge
5657 *
5658 * Uncharge a list of pages previously charged with
5659 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5660 */
5661 void mem_cgroup_uncharge_list(struct list_head *page_list)
5662 {
5663 if (mem_cgroup_disabled())
5664 return;
5665
5666 if (!list_empty(page_list))
5667 uncharge_list(page_list);
5668 }
5669
5670 /**
5671 * mem_cgroup_replace_page - migrate a charge to another page
5672 * @oldpage: currently charged page
5673 * @newpage: page to transfer the charge to
5674 *
5675 * Migrate the charge from @oldpage to @newpage.
5676 *
5677 * Both pages must be locked, @newpage->mapping must be set up.
5678 * Either or both pages might be on the LRU already.
5679 */
5680 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5681 {
5682 struct mem_cgroup *memcg;
5683 int isolated;
5684
5685 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5686 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5687 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5688 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5689 newpage);
5690
5691 if (mem_cgroup_disabled())
5692 return;
5693
5694 /* Page cache replacement: new page already charged? */
5695 if (newpage->mem_cgroup)
5696 return;
5697
5698 /* Swapcache readahead pages can get replaced before being charged */
5699 memcg = oldpage->mem_cgroup;
5700 if (!memcg)
5701 return;
5702
5703 lock_page_lru(oldpage, &isolated);
5704 oldpage->mem_cgroup = NULL;
5705 unlock_page_lru(oldpage, isolated);
5706
5707 commit_charge(newpage, memcg, true);
5708 }
5709
5710 /*
5711 * subsys_initcall() for memory controller.
5712 *
5713 * Some parts like hotcpu_notifier() have to be initialized from this context
5714 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5715 * everything that doesn't depend on a specific mem_cgroup structure should
5716 * be initialized from here.
5717 */
5718 static int __init mem_cgroup_init(void)
5719 {
5720 int cpu, node;
5721
5722 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5723
5724 for_each_possible_cpu(cpu)
5725 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5726 drain_local_stock);
5727
5728 for_each_node(node) {
5729 struct mem_cgroup_tree_per_node *rtpn;
5730 int zone;
5731
5732 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5733 node_online(node) ? node : NUMA_NO_NODE);
5734
5735 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5736 struct mem_cgroup_tree_per_zone *rtpz;
5737
5738 rtpz = &rtpn->rb_tree_per_zone[zone];
5739 rtpz->rb_root = RB_ROOT;
5740 spin_lock_init(&rtpz->lock);
5741 }
5742 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5743 }
5744
5745 return 0;
5746 }
5747 subsys_initcall(mem_cgroup_init);
5748
5749 #ifdef CONFIG_MEMCG_SWAP
5750 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5751 {
5752 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5753 /*
5754 * The root cgroup cannot be destroyed, so it's refcount must
5755 * always be >= 1.
5756 */
5757 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5758 VM_BUG_ON(1);
5759 break;
5760 }
5761 memcg = parent_mem_cgroup(memcg);
5762 if (!memcg)
5763 memcg = root_mem_cgroup;
5764 }
5765 return memcg;
5766 }
5767
5768 /**
5769 * mem_cgroup_swapout - transfer a memsw charge to swap
5770 * @page: page whose memsw charge to transfer
5771 * @entry: swap entry to move the charge to
5772 *
5773 * Transfer the memsw charge of @page to @entry.
5774 */
5775 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5776 {
5777 struct mem_cgroup *memcg, *swap_memcg;
5778 unsigned short oldid;
5779
5780 VM_BUG_ON_PAGE(PageLRU(page), page);
5781 VM_BUG_ON_PAGE(page_count(page), page);
5782
5783 if (!do_swap_account)
5784 return;
5785
5786 memcg = page->mem_cgroup;
5787
5788 /* Readahead page, never charged */
5789 if (!memcg)
5790 return;
5791
5792 /*
5793 * In case the memcg owning these pages has been offlined and doesn't
5794 * have an ID allocated to it anymore, charge the closest online
5795 * ancestor for the swap instead and transfer the memory+swap charge.
5796 */
5797 swap_memcg = mem_cgroup_id_get_online(memcg);
5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5799 VM_BUG_ON_PAGE(oldid, page);
5800 mem_cgroup_swap_statistics(swap_memcg, true);
5801
5802 page->mem_cgroup = NULL;
5803
5804 if (!mem_cgroup_is_root(memcg))
5805 page_counter_uncharge(&memcg->memory, 1);
5806
5807 if (memcg != swap_memcg) {
5808 if (!mem_cgroup_is_root(swap_memcg))
5809 page_counter_charge(&swap_memcg->memsw, 1);
5810 page_counter_uncharge(&memcg->memsw, 1);
5811 }
5812
5813 /*
5814 * Interrupts should be disabled here because the caller holds the
5815 * mapping->tree_lock lock which is taken with interrupts-off. It is
5816 * important here to have the interrupts disabled because it is the
5817 * only synchronisation we have for udpating the per-CPU variables.
5818 */
5819 VM_BUG_ON(!irqs_disabled());
5820 mem_cgroup_charge_statistics(memcg, page, -1);
5821 memcg_check_events(memcg, page);
5822
5823 if (!mem_cgroup_is_root(memcg))
5824 css_put(&memcg->css);
5825 }
5826
5827 /**
5828 * mem_cgroup_uncharge_swap - uncharge a swap entry
5829 * @entry: swap entry to uncharge
5830 *
5831 * Drop the memsw charge associated with @entry.
5832 */
5833 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5834 {
5835 struct mem_cgroup *memcg;
5836 unsigned short id;
5837
5838 if (!do_swap_account)
5839 return;
5840
5841 id = swap_cgroup_record(entry, 0);
5842 rcu_read_lock();
5843 memcg = mem_cgroup_from_id(id);
5844 if (memcg) {
5845 if (!mem_cgroup_is_root(memcg))
5846 page_counter_uncharge(&memcg->memsw, 1);
5847 mem_cgroup_swap_statistics(memcg, false);
5848 mem_cgroup_id_put(memcg);
5849 }
5850 rcu_read_unlock();
5851 }
5852
5853 /* for remember boot option*/
5854 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5855 static int really_do_swap_account __initdata = 1;
5856 #else
5857 static int really_do_swap_account __initdata;
5858 #endif
5859
5860 static int __init enable_swap_account(char *s)
5861 {
5862 if (!strcmp(s, "1"))
5863 really_do_swap_account = 1;
5864 else if (!strcmp(s, "0"))
5865 really_do_swap_account = 0;
5866 return 1;
5867 }
5868 __setup("swapaccount=", enable_swap_account);
5869
5870 static struct cftype memsw_cgroup_files[] = {
5871 {
5872 .name = "memsw.usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5874 .read_u64 = mem_cgroup_read_u64,
5875 },
5876 {
5877 .name = "memsw.max_usage_in_bytes",
5878 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5879 .write = mem_cgroup_reset,
5880 .read_u64 = mem_cgroup_read_u64,
5881 },
5882 {
5883 .name = "memsw.limit_in_bytes",
5884 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5885 .write = mem_cgroup_write,
5886 .read_u64 = mem_cgroup_read_u64,
5887 },
5888 {
5889 .name = "memsw.failcnt",
5890 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5891 .write = mem_cgroup_reset,
5892 .read_u64 = mem_cgroup_read_u64,
5893 },
5894 { }, /* terminate */
5895 };
5896
5897 static int __init mem_cgroup_swap_init(void)
5898 {
5899 if (!mem_cgroup_disabled() && really_do_swap_account) {
5900 do_swap_account = 1;
5901 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5902 memsw_cgroup_files));
5903 }
5904 return 0;
5905 }
5906 subsys_initcall(mem_cgroup_swap_init);
5907
5908 #endif /* CONFIG_MEMCG_SWAP */