Merge branch 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157
158 /*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166 };
167
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178 struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181 };
182
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191 };
192
193 struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202 };
203
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208 };
209
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212
213 /*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
223 */
224 struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
257 */
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264 #endif
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
269
270 bool oom_lock;
271 atomic_t under_oom;
272
273 atomic_t refcnt;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
287
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
290
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
293
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 /*
306 * percpu counter.
307 */
308 struct mem_cgroup_stat_cpu *stat;
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
315
316 #ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320
321 /* Stuffs for move charges at task migration. */
322 /*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326 enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
330 };
331
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342 } mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346
347 static bool move_anon(void)
348 {
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351 }
352
353 static bool move_file(void)
354 {
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357 }
358
359 /*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
366 enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
374 };
375
376 /* for encoding cft->private value on file */
377 #define _MEM (0)
378 #define _MEMSWAP (1)
379 #define _OOM_TYPE (2)
380 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val) ((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL (0)
385
386 /*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403 void sock_update_memcg(struct sock *sk)
404 {
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434
435 void sock_release_memcg(struct sock *sk)
436 {
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443 }
444
445 #ifdef CONFIG_INET
446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458
459 static struct mem_cgroup_per_zone *
460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464
465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 return &memcg->css;
468 }
469
470 static struct mem_cgroup_per_zone *
471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
475
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478
479 static struct mem_cgroup_tree_per_zone *
480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484
485 static struct mem_cgroup_tree_per_zone *
486 soft_limit_tree_from_page(struct page *page)
487 {
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493
494 static void
495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
499 {
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526 }
527
528 static void
529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537 }
538
539 static void
540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543 {
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
547 }
548
549
550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
562 */
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 /*
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
578 */
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
581 }
582 }
583 }
584
585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 }
597 }
598 }
599
600 static struct mem_cgroup_per_zone *
601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
605
606 retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622 done:
623 return mz;
624 }
625
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635 }
636
637 /*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
658 {
659 long val = 0;
660 int cpu;
661
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 put_online_cpus();
671 return val;
672 }
673
674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
676 {
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680
681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
683 {
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
699 {
700 preempt_disable();
701
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
719 }
720
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722
723 preempt_enable();
724 }
725
726 unsigned long
727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
729 {
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
733
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
739 }
740 return ret;
741 }
742
743 static unsigned long
744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
746 {
747 u64 total = 0;
748 int zid;
749
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
753
754 return total;
755 }
756
757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
759 {
760 int nid;
761 u64 total = 0;
762
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
766 }
767
768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
770 {
771 unsigned long val, next;
772
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
792 }
793 return false;
794 }
795
796 /*
797 * Check events in order.
798 *
799 */
800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 preempt_enable();
816
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823 #endif
824 } else
825 preempt_enable();
826 }
827
828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833 }
834
835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847 }
848
849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 struct mem_cgroup *memcg = NULL;
852
853 if (!mm)
854 return NULL;
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
868 }
869
870 /**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
893
894 if (mem_cgroup_disabled())
895 return NULL;
896
897 if (!root)
898 root = root_mem_cgroup;
899
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
902
903 if (prev && prev != root)
904 css_put(&prev->css);
905
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
911
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
915
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
927
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
937
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
950 }
951
952 /**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
959 {
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964 }
965
966 /*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971 #define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
975
976 #define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
980
981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 return (memcg == root_mem_cgroup);
984 }
985
986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 struct mem_cgroup *memcg;
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
997
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1007 }
1008 out:
1009 rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
1013 /**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024 {
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032 }
1033
1034 /*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
1047
1048 /**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1062 {
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1066
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1069
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1100 */
1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118
1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123
1124 /**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1142 {
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147
1148 /*
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1151 */
1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154 {
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
1158 }
1159
1160 return true;
1161 }
1162
1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 int ret;
1166 struct mem_cgroup *curr = NULL;
1167 struct task_struct *p;
1168
1169 p = find_lock_task_mm(task);
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
1185 if (!curr)
1186 return 0;
1187 /*
1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 */
1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 css_put(&curr->css);
1195 return ret;
1196 }
1197
1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199 {
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
1203 unsigned long inactive;
1204 unsigned long active;
1205 unsigned long gb;
1206
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
1211
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
1218 return inactive * inactive_ratio < active;
1219 }
1220
1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 {
1223 unsigned long active;
1224 unsigned long inactive;
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
1227
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
1232
1233 return (active > inactive);
1234 }
1235
1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238 {
1239 int nid = zone_to_nid(zone);
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244 }
1245
1246 struct zone_reclaim_stat *
1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248 {
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 return &mz->reclaim_stat;
1262 }
1263
1264 #define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
1267 /**
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
1270 *
1271 * Returns the maximum amount of memory @mem can be charged with, in
1272 * pages.
1273 */
1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275 {
1276 unsigned long long margin;
1277
1278 margin = res_counter_margin(&memcg->res);
1279 if (do_swap_account)
1280 margin = min(margin, res_counter_margin(&memcg->memsw));
1281 return margin >> PAGE_SHIFT;
1282 }
1283
1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1285 {
1286 struct cgroup *cgrp = memcg->css.cgroup;
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
1292 return memcg->swappiness;
1293 }
1294
1295 /*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
1309
1310 /* for quick checking without looking up memcg */
1311 atomic_t memcg_moving __read_mostly;
1312
1313 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1314 {
1315 atomic_inc(&memcg_moving);
1316 atomic_inc(&memcg->moving_account);
1317 synchronize_rcu();
1318 }
1319
1320 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1321 {
1322 /*
1323 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 * We check NULL in callee rather than caller.
1325 */
1326 if (memcg) {
1327 atomic_dec(&memcg_moving);
1328 atomic_dec(&memcg->moving_account);
1329 }
1330 }
1331
1332 /*
1333 * 2 routines for checking "mem" is under move_account() or not.
1334 *
1335 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1336 * is used for avoiding races in accounting. If true,
1337 * pc->mem_cgroup may be overwritten.
1338 *
1339 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340 * under hierarchy of moving cgroups. This is for
1341 * waiting at hith-memory prressure caused by "move".
1342 */
1343
1344 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1345 {
1346 VM_BUG_ON(!rcu_read_lock_held());
1347 return atomic_read(&memcg->moving_account) > 0;
1348 }
1349
1350 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1351 {
1352 struct mem_cgroup *from;
1353 struct mem_cgroup *to;
1354 bool ret = false;
1355 /*
1356 * Unlike task_move routines, we access mc.to, mc.from not under
1357 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 */
1359 spin_lock(&mc.lock);
1360 from = mc.from;
1361 to = mc.to;
1362 if (!from)
1363 goto unlock;
1364
1365 ret = mem_cgroup_same_or_subtree(memcg, from)
1366 || mem_cgroup_same_or_subtree(memcg, to);
1367 unlock:
1368 spin_unlock(&mc.lock);
1369 return ret;
1370 }
1371
1372 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1373 {
1374 if (mc.moving_task && current != mc.moving_task) {
1375 if (mem_cgroup_under_move(memcg)) {
1376 DEFINE_WAIT(wait);
1377 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 /* moving charge context might have finished. */
1379 if (mc.moving_task)
1380 schedule();
1381 finish_wait(&mc.waitq, &wait);
1382 return true;
1383 }
1384 }
1385 return false;
1386 }
1387
1388 /*
1389 * Take this lock when
1390 * - a code tries to modify page's memcg while it's USED.
1391 * - a code tries to modify page state accounting in a memcg.
1392 * see mem_cgroup_stolen(), too.
1393 */
1394 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396 {
1397 spin_lock_irqsave(&memcg->move_lock, *flags);
1398 }
1399
1400 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 unsigned long *flags)
1402 {
1403 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404 }
1405
1406 /**
1407 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408 * @memcg: The memory cgroup that went over limit
1409 * @p: Task that is going to be killed
1410 *
1411 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412 * enabled
1413 */
1414 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415 {
1416 struct cgroup *task_cgrp;
1417 struct cgroup *mem_cgrp;
1418 /*
1419 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 * on the assumption that OOM is serialized for memory controller.
1421 * If this assumption is broken, revisit this code.
1422 */
1423 static char memcg_name[PATH_MAX];
1424 int ret;
1425
1426 if (!memcg || !p)
1427 return;
1428
1429 rcu_read_lock();
1430
1431 mem_cgrp = memcg->css.cgroup;
1432 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433
1434 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 /*
1437 * Unfortunately, we are unable to convert to a useful name
1438 * But we'll still print out the usage information
1439 */
1440 rcu_read_unlock();
1441 goto done;
1442 }
1443 rcu_read_unlock();
1444
1445 printk(KERN_INFO "Task in %s killed", memcg_name);
1446
1447 rcu_read_lock();
1448 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 if (ret < 0) {
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 /*
1456 * Continues from above, so we don't need an KERN_ level
1457 */
1458 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459 done:
1460
1461 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 "failcnt %llu\n",
1467 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470 }
1471
1472 /*
1473 * This function returns the number of memcg under hierarchy tree. Returns
1474 * 1(self count) if no children.
1475 */
1476 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1477 {
1478 int num = 0;
1479 struct mem_cgroup *iter;
1480
1481 for_each_mem_cgroup_tree(iter, memcg)
1482 num++;
1483 return num;
1484 }
1485
1486 /*
1487 * Return the memory (and swap, if configured) limit for a memcg.
1488 */
1489 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490 {
1491 u64 limit;
1492 u64 memsw;
1493
1494 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1495 limit += total_swap_pages << PAGE_SHIFT;
1496
1497 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1498 /*
1499 * If memsw is finite and limits the amount of swap space available
1500 * to this memcg, return that limit.
1501 */
1502 return min(limit, memsw);
1503 }
1504
1505 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1506 gfp_t gfp_mask,
1507 unsigned long flags)
1508 {
1509 unsigned long total = 0;
1510 bool noswap = false;
1511 int loop;
1512
1513 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1514 noswap = true;
1515 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1516 noswap = true;
1517
1518 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1519 if (loop)
1520 drain_all_stock_async(memcg);
1521 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1522 /*
1523 * Allow limit shrinkers, which are triggered directly
1524 * by userspace, to catch signals and stop reclaim
1525 * after minimal progress, regardless of the margin.
1526 */
1527 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1528 break;
1529 if (mem_cgroup_margin(memcg))
1530 break;
1531 /*
1532 * If nothing was reclaimed after two attempts, there
1533 * may be no reclaimable pages in this hierarchy.
1534 */
1535 if (loop && !total)
1536 break;
1537 }
1538 return total;
1539 }
1540
1541 /**
1542 * test_mem_cgroup_node_reclaimable
1543 * @mem: the target memcg
1544 * @nid: the node ID to be checked.
1545 * @noswap : specify true here if the user wants flle only information.
1546 *
1547 * This function returns whether the specified memcg contains any
1548 * reclaimable pages on a node. Returns true if there are any reclaimable
1549 * pages in the node.
1550 */
1551 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1552 int nid, bool noswap)
1553 {
1554 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1555 return true;
1556 if (noswap || !total_swap_pages)
1557 return false;
1558 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1559 return true;
1560 return false;
1561
1562 }
1563 #if MAX_NUMNODES > 1
1564
1565 /*
1566 * Always updating the nodemask is not very good - even if we have an empty
1567 * list or the wrong list here, we can start from some node and traverse all
1568 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1569 *
1570 */
1571 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1572 {
1573 int nid;
1574 /*
1575 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1576 * pagein/pageout changes since the last update.
1577 */
1578 if (!atomic_read(&memcg->numainfo_events))
1579 return;
1580 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1581 return;
1582
1583 /* make a nodemask where this memcg uses memory from */
1584 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1585
1586 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1587
1588 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1589 node_clear(nid, memcg->scan_nodes);
1590 }
1591
1592 atomic_set(&memcg->numainfo_events, 0);
1593 atomic_set(&memcg->numainfo_updating, 0);
1594 }
1595
1596 /*
1597 * Selecting a node where we start reclaim from. Because what we need is just
1598 * reducing usage counter, start from anywhere is O,K. Considering
1599 * memory reclaim from current node, there are pros. and cons.
1600 *
1601 * Freeing memory from current node means freeing memory from a node which
1602 * we'll use or we've used. So, it may make LRU bad. And if several threads
1603 * hit limits, it will see a contention on a node. But freeing from remote
1604 * node means more costs for memory reclaim because of memory latency.
1605 *
1606 * Now, we use round-robin. Better algorithm is welcomed.
1607 */
1608 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1609 {
1610 int node;
1611
1612 mem_cgroup_may_update_nodemask(memcg);
1613 node = memcg->last_scanned_node;
1614
1615 node = next_node(node, memcg->scan_nodes);
1616 if (node == MAX_NUMNODES)
1617 node = first_node(memcg->scan_nodes);
1618 /*
1619 * We call this when we hit limit, not when pages are added to LRU.
1620 * No LRU may hold pages because all pages are UNEVICTABLE or
1621 * memcg is too small and all pages are not on LRU. In that case,
1622 * we use curret node.
1623 */
1624 if (unlikely(node == MAX_NUMNODES))
1625 node = numa_node_id();
1626
1627 memcg->last_scanned_node = node;
1628 return node;
1629 }
1630
1631 /*
1632 * Check all nodes whether it contains reclaimable pages or not.
1633 * For quick scan, we make use of scan_nodes. This will allow us to skip
1634 * unused nodes. But scan_nodes is lazily updated and may not cotain
1635 * enough new information. We need to do double check.
1636 */
1637 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1638 {
1639 int nid;
1640
1641 /*
1642 * quick check...making use of scan_node.
1643 * We can skip unused nodes.
1644 */
1645 if (!nodes_empty(memcg->scan_nodes)) {
1646 for (nid = first_node(memcg->scan_nodes);
1647 nid < MAX_NUMNODES;
1648 nid = next_node(nid, memcg->scan_nodes)) {
1649
1650 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1651 return true;
1652 }
1653 }
1654 /*
1655 * Check rest of nodes.
1656 */
1657 for_each_node_state(nid, N_HIGH_MEMORY) {
1658 if (node_isset(nid, memcg->scan_nodes))
1659 continue;
1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 return true;
1662 }
1663 return false;
1664 }
1665
1666 #else
1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 {
1669 return 0;
1670 }
1671
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 {
1674 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1675 }
1676 #endif
1677
1678 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1679 struct zone *zone,
1680 gfp_t gfp_mask,
1681 unsigned long *total_scanned)
1682 {
1683 struct mem_cgroup *victim = NULL;
1684 int total = 0;
1685 int loop = 0;
1686 unsigned long excess;
1687 unsigned long nr_scanned;
1688 struct mem_cgroup_reclaim_cookie reclaim = {
1689 .zone = zone,
1690 .priority = 0,
1691 };
1692
1693 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1694
1695 while (1) {
1696 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1697 if (!victim) {
1698 loop++;
1699 if (loop >= 2) {
1700 /*
1701 * If we have not been able to reclaim
1702 * anything, it might because there are
1703 * no reclaimable pages under this hierarchy
1704 */
1705 if (!total)
1706 break;
1707 /*
1708 * We want to do more targeted reclaim.
1709 * excess >> 2 is not to excessive so as to
1710 * reclaim too much, nor too less that we keep
1711 * coming back to reclaim from this cgroup
1712 */
1713 if (total >= (excess >> 2) ||
1714 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1715 break;
1716 }
1717 continue;
1718 }
1719 if (!mem_cgroup_reclaimable(victim, false))
1720 continue;
1721 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1722 zone, &nr_scanned);
1723 *total_scanned += nr_scanned;
1724 if (!res_counter_soft_limit_excess(&root_memcg->res))
1725 break;
1726 }
1727 mem_cgroup_iter_break(root_memcg, victim);
1728 return total;
1729 }
1730
1731 /*
1732 * Check OOM-Killer is already running under our hierarchy.
1733 * If someone is running, return false.
1734 * Has to be called with memcg_oom_lock
1735 */
1736 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1737 {
1738 struct mem_cgroup *iter, *failed = NULL;
1739
1740 for_each_mem_cgroup_tree(iter, memcg) {
1741 if (iter->oom_lock) {
1742 /*
1743 * this subtree of our hierarchy is already locked
1744 * so we cannot give a lock.
1745 */
1746 failed = iter;
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
1749 } else
1750 iter->oom_lock = true;
1751 }
1752
1753 if (!failed)
1754 return true;
1755
1756 /*
1757 * OK, we failed to lock the whole subtree so we have to clean up
1758 * what we set up to the failing subtree
1759 */
1760 for_each_mem_cgroup_tree(iter, memcg) {
1761 if (iter == failed) {
1762 mem_cgroup_iter_break(memcg, iter);
1763 break;
1764 }
1765 iter->oom_lock = false;
1766 }
1767 return false;
1768 }
1769
1770 /*
1771 * Has to be called with memcg_oom_lock
1772 */
1773 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1774 {
1775 struct mem_cgroup *iter;
1776
1777 for_each_mem_cgroup_tree(iter, memcg)
1778 iter->oom_lock = false;
1779 return 0;
1780 }
1781
1782 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1783 {
1784 struct mem_cgroup *iter;
1785
1786 for_each_mem_cgroup_tree(iter, memcg)
1787 atomic_inc(&iter->under_oom);
1788 }
1789
1790 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1791 {
1792 struct mem_cgroup *iter;
1793
1794 /*
1795 * When a new child is created while the hierarchy is under oom,
1796 * mem_cgroup_oom_lock() may not be called. We have to use
1797 * atomic_add_unless() here.
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg)
1800 atomic_add_unless(&iter->under_oom, -1, 0);
1801 }
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1805
1806 struct oom_wait_info {
1807 struct mem_cgroup *memcg;
1808 wait_queue_t wait;
1809 };
1810
1811 static int memcg_oom_wake_function(wait_queue_t *wait,
1812 unsigned mode, int sync, void *arg)
1813 {
1814 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1815 struct mem_cgroup *oom_wait_memcg;
1816 struct oom_wait_info *oom_wait_info;
1817
1818 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1819 oom_wait_memcg = oom_wait_info->memcg;
1820
1821 /*
1822 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1823 * Then we can use css_is_ancestor without taking care of RCU.
1824 */
1825 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1826 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1827 return 0;
1828 return autoremove_wake_function(wait, mode, sync, arg);
1829 }
1830
1831 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1832 {
1833 /* for filtering, pass "memcg" as argument. */
1834 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1835 }
1836
1837 static void memcg_oom_recover(struct mem_cgroup *memcg)
1838 {
1839 if (memcg && atomic_read(&memcg->under_oom))
1840 memcg_wakeup_oom(memcg);
1841 }
1842
1843 /*
1844 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1845 */
1846 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1847 {
1848 struct oom_wait_info owait;
1849 bool locked, need_to_kill;
1850
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.task_list);
1856 need_to_kill = true;
1857 mem_cgroup_mark_under_oom(memcg);
1858
1859 /* At first, try to OOM lock hierarchy under memcg.*/
1860 spin_lock(&memcg_oom_lock);
1861 locked = mem_cgroup_oom_lock(memcg);
1862 /*
1863 * Even if signal_pending(), we can't quit charge() loop without
1864 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1865 * under OOM is always welcomed, use TASK_KILLABLE here.
1866 */
1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868 if (!locked || memcg->oom_kill_disable)
1869 need_to_kill = false;
1870 if (locked)
1871 mem_cgroup_oom_notify(memcg);
1872 spin_unlock(&memcg_oom_lock);
1873
1874 if (need_to_kill) {
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 mem_cgroup_out_of_memory(memcg, mask, order);
1877 } else {
1878 schedule();
1879 finish_wait(&memcg_oom_waitq, &owait.wait);
1880 }
1881 spin_lock(&memcg_oom_lock);
1882 if (locked)
1883 mem_cgroup_oom_unlock(memcg);
1884 memcg_wakeup_oom(memcg);
1885 spin_unlock(&memcg_oom_lock);
1886
1887 mem_cgroup_unmark_under_oom(memcg);
1888
1889 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1890 return false;
1891 /* Give chance to dying process */
1892 schedule_timeout_uninterruptible(1);
1893 return true;
1894 }
1895
1896 /*
1897 * Currently used to update mapped file statistics, but the routine can be
1898 * generalized to update other statistics as well.
1899 *
1900 * Notes: Race condition
1901 *
1902 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1903 * it tends to be costly. But considering some conditions, we doesn't need
1904 * to do so _always_.
1905 *
1906 * Considering "charge", lock_page_cgroup() is not required because all
1907 * file-stat operations happen after a page is attached to radix-tree. There
1908 * are no race with "charge".
1909 *
1910 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1911 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1912 * if there are race with "uncharge". Statistics itself is properly handled
1913 * by flags.
1914 *
1915 * Considering "move", this is an only case we see a race. To make the race
1916 * small, we check mm->moving_account and detect there are possibility of race
1917 * If there is, we take a lock.
1918 */
1919
1920 void __mem_cgroup_begin_update_page_stat(struct page *page,
1921 bool *locked, unsigned long *flags)
1922 {
1923 struct mem_cgroup *memcg;
1924 struct page_cgroup *pc;
1925
1926 pc = lookup_page_cgroup(page);
1927 again:
1928 memcg = pc->mem_cgroup;
1929 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1930 return;
1931 /*
1932 * If this memory cgroup is not under account moving, we don't
1933 * need to take move_lock_page_cgroup(). Because we already hold
1934 * rcu_read_lock(), any calls to move_account will be delayed until
1935 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1936 */
1937 if (!mem_cgroup_stolen(memcg))
1938 return;
1939
1940 move_lock_mem_cgroup(memcg, flags);
1941 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1942 move_unlock_mem_cgroup(memcg, flags);
1943 goto again;
1944 }
1945 *locked = true;
1946 }
1947
1948 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1949 {
1950 struct page_cgroup *pc = lookup_page_cgroup(page);
1951
1952 /*
1953 * It's guaranteed that pc->mem_cgroup never changes while
1954 * lock is held because a routine modifies pc->mem_cgroup
1955 * should take move_lock_page_cgroup().
1956 */
1957 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1958 }
1959
1960 void mem_cgroup_update_page_stat(struct page *page,
1961 enum mem_cgroup_page_stat_item idx, int val)
1962 {
1963 struct mem_cgroup *memcg;
1964 struct page_cgroup *pc = lookup_page_cgroup(page);
1965 unsigned long uninitialized_var(flags);
1966
1967 if (mem_cgroup_disabled())
1968 return;
1969
1970 memcg = pc->mem_cgroup;
1971 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1972 return;
1973
1974 switch (idx) {
1975 case MEMCG_NR_FILE_MAPPED:
1976 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1977 break;
1978 default:
1979 BUG();
1980 }
1981
1982 this_cpu_add(memcg->stat->count[idx], val);
1983 }
1984
1985 /*
1986 * size of first charge trial. "32" comes from vmscan.c's magic value.
1987 * TODO: maybe necessary to use big numbers in big irons.
1988 */
1989 #define CHARGE_BATCH 32U
1990 struct memcg_stock_pcp {
1991 struct mem_cgroup *cached; /* this never be root cgroup */
1992 unsigned int nr_pages;
1993 struct work_struct work;
1994 unsigned long flags;
1995 #define FLUSHING_CACHED_CHARGE (0)
1996 };
1997 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1998 static DEFINE_MUTEX(percpu_charge_mutex);
1999
2000 /*
2001 * Try to consume stocked charge on this cpu. If success, one page is consumed
2002 * from local stock and true is returned. If the stock is 0 or charges from a
2003 * cgroup which is not current target, returns false. This stock will be
2004 * refilled.
2005 */
2006 static bool consume_stock(struct mem_cgroup *memcg)
2007 {
2008 struct memcg_stock_pcp *stock;
2009 bool ret = true;
2010
2011 stock = &get_cpu_var(memcg_stock);
2012 if (memcg == stock->cached && stock->nr_pages)
2013 stock->nr_pages--;
2014 else /* need to call res_counter_charge */
2015 ret = false;
2016 put_cpu_var(memcg_stock);
2017 return ret;
2018 }
2019
2020 /*
2021 * Returns stocks cached in percpu to res_counter and reset cached information.
2022 */
2023 static void drain_stock(struct memcg_stock_pcp *stock)
2024 {
2025 struct mem_cgroup *old = stock->cached;
2026
2027 if (stock->nr_pages) {
2028 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2029
2030 res_counter_uncharge(&old->res, bytes);
2031 if (do_swap_account)
2032 res_counter_uncharge(&old->memsw, bytes);
2033 stock->nr_pages = 0;
2034 }
2035 stock->cached = NULL;
2036 }
2037
2038 /*
2039 * This must be called under preempt disabled or must be called by
2040 * a thread which is pinned to local cpu.
2041 */
2042 static void drain_local_stock(struct work_struct *dummy)
2043 {
2044 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2045 drain_stock(stock);
2046 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2047 }
2048
2049 /*
2050 * Cache charges(val) which is from res_counter, to local per_cpu area.
2051 * This will be consumed by consume_stock() function, later.
2052 */
2053 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2056
2057 if (stock->cached != memcg) { /* reset if necessary */
2058 drain_stock(stock);
2059 stock->cached = memcg;
2060 }
2061 stock->nr_pages += nr_pages;
2062 put_cpu_var(memcg_stock);
2063 }
2064
2065 /*
2066 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2067 * of the hierarchy under it. sync flag says whether we should block
2068 * until the work is done.
2069 */
2070 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2071 {
2072 int cpu, curcpu;
2073
2074 /* Notify other cpus that system-wide "drain" is running */
2075 get_online_cpus();
2076 curcpu = get_cpu();
2077 for_each_online_cpu(cpu) {
2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 struct mem_cgroup *memcg;
2080
2081 memcg = stock->cached;
2082 if (!memcg || !stock->nr_pages)
2083 continue;
2084 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2085 continue;
2086 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2087 if (cpu == curcpu)
2088 drain_local_stock(&stock->work);
2089 else
2090 schedule_work_on(cpu, &stock->work);
2091 }
2092 }
2093 put_cpu();
2094
2095 if (!sync)
2096 goto out;
2097
2098 for_each_online_cpu(cpu) {
2099 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2100 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2101 flush_work(&stock->work);
2102 }
2103 out:
2104 put_online_cpus();
2105 }
2106
2107 /*
2108 * Tries to drain stocked charges in other cpus. This function is asynchronous
2109 * and just put a work per cpu for draining localy on each cpu. Caller can
2110 * expects some charges will be back to res_counter later but cannot wait for
2111 * it.
2112 */
2113 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2114 {
2115 /*
2116 * If someone calls draining, avoid adding more kworker runs.
2117 */
2118 if (!mutex_trylock(&percpu_charge_mutex))
2119 return;
2120 drain_all_stock(root_memcg, false);
2121 mutex_unlock(&percpu_charge_mutex);
2122 }
2123
2124 /* This is a synchronous drain interface. */
2125 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2126 {
2127 /* called when force_empty is called */
2128 mutex_lock(&percpu_charge_mutex);
2129 drain_all_stock(root_memcg, true);
2130 mutex_unlock(&percpu_charge_mutex);
2131 }
2132
2133 /*
2134 * This function drains percpu counter value from DEAD cpu and
2135 * move it to local cpu. Note that this function can be preempted.
2136 */
2137 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2138 {
2139 int i;
2140
2141 spin_lock(&memcg->pcp_counter_lock);
2142 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2143 long x = per_cpu(memcg->stat->count[i], cpu);
2144
2145 per_cpu(memcg->stat->count[i], cpu) = 0;
2146 memcg->nocpu_base.count[i] += x;
2147 }
2148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2149 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2150
2151 per_cpu(memcg->stat->events[i], cpu) = 0;
2152 memcg->nocpu_base.events[i] += x;
2153 }
2154 spin_unlock(&memcg->pcp_counter_lock);
2155 }
2156
2157 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2158 unsigned long action,
2159 void *hcpu)
2160 {
2161 int cpu = (unsigned long)hcpu;
2162 struct memcg_stock_pcp *stock;
2163 struct mem_cgroup *iter;
2164
2165 if (action == CPU_ONLINE)
2166 return NOTIFY_OK;
2167
2168 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2169 return NOTIFY_OK;
2170
2171 for_each_mem_cgroup(iter)
2172 mem_cgroup_drain_pcp_counter(iter, cpu);
2173
2174 stock = &per_cpu(memcg_stock, cpu);
2175 drain_stock(stock);
2176 return NOTIFY_OK;
2177 }
2178
2179
2180 /* See __mem_cgroup_try_charge() for details */
2181 enum {
2182 CHARGE_OK, /* success */
2183 CHARGE_RETRY, /* need to retry but retry is not bad */
2184 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2185 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2186 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2187 };
2188
2189 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190 unsigned int nr_pages, bool oom_check)
2191 {
2192 unsigned long csize = nr_pages * PAGE_SIZE;
2193 struct mem_cgroup *mem_over_limit;
2194 struct res_counter *fail_res;
2195 unsigned long flags = 0;
2196 int ret;
2197
2198 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2199
2200 if (likely(!ret)) {
2201 if (!do_swap_account)
2202 return CHARGE_OK;
2203 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2204 if (likely(!ret))
2205 return CHARGE_OK;
2206
2207 res_counter_uncharge(&memcg->res, csize);
2208 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2209 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2210 } else
2211 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2212 /*
2213 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2214 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2215 *
2216 * Never reclaim on behalf of optional batching, retry with a
2217 * single page instead.
2218 */
2219 if (nr_pages == CHARGE_BATCH)
2220 return CHARGE_RETRY;
2221
2222 if (!(gfp_mask & __GFP_WAIT))
2223 return CHARGE_WOULDBLOCK;
2224
2225 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2226 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2227 return CHARGE_RETRY;
2228 /*
2229 * Even though the limit is exceeded at this point, reclaim
2230 * may have been able to free some pages. Retry the charge
2231 * before killing the task.
2232 *
2233 * Only for regular pages, though: huge pages are rather
2234 * unlikely to succeed so close to the limit, and we fall back
2235 * to regular pages anyway in case of failure.
2236 */
2237 if (nr_pages == 1 && ret)
2238 return CHARGE_RETRY;
2239
2240 /*
2241 * At task move, charge accounts can be doubly counted. So, it's
2242 * better to wait until the end of task_move if something is going on.
2243 */
2244 if (mem_cgroup_wait_acct_move(mem_over_limit))
2245 return CHARGE_RETRY;
2246
2247 /* If we don't need to call oom-killer at el, return immediately */
2248 if (!oom_check)
2249 return CHARGE_NOMEM;
2250 /* check OOM */
2251 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2252 return CHARGE_OOM_DIE;
2253
2254 return CHARGE_RETRY;
2255 }
2256
2257 /*
2258 * __mem_cgroup_try_charge() does
2259 * 1. detect memcg to be charged against from passed *mm and *ptr,
2260 * 2. update res_counter
2261 * 3. call memory reclaim if necessary.
2262 *
2263 * In some special case, if the task is fatal, fatal_signal_pending() or
2264 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2265 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2266 * as possible without any hazards. 2: all pages should have a valid
2267 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2268 * pointer, that is treated as a charge to root_mem_cgroup.
2269 *
2270 * So __mem_cgroup_try_charge() will return
2271 * 0 ... on success, filling *ptr with a valid memcg pointer.
2272 * -ENOMEM ... charge failure because of resource limits.
2273 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2274 *
2275 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2276 * the oom-killer can be invoked.
2277 */
2278 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2279 gfp_t gfp_mask,
2280 unsigned int nr_pages,
2281 struct mem_cgroup **ptr,
2282 bool oom)
2283 {
2284 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2285 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2286 struct mem_cgroup *memcg = NULL;
2287 int ret;
2288
2289 /*
2290 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2291 * in system level. So, allow to go ahead dying process in addition to
2292 * MEMDIE process.
2293 */
2294 if (unlikely(test_thread_flag(TIF_MEMDIE)
2295 || fatal_signal_pending(current)))
2296 goto bypass;
2297
2298 /*
2299 * We always charge the cgroup the mm_struct belongs to.
2300 * The mm_struct's mem_cgroup changes on task migration if the
2301 * thread group leader migrates. It's possible that mm is not
2302 * set, if so charge the init_mm (happens for pagecache usage).
2303 */
2304 if (!*ptr && !mm)
2305 *ptr = root_mem_cgroup;
2306 again:
2307 if (*ptr) { /* css should be a valid one */
2308 memcg = *ptr;
2309 VM_BUG_ON(css_is_removed(&memcg->css));
2310 if (mem_cgroup_is_root(memcg))
2311 goto done;
2312 if (nr_pages == 1 && consume_stock(memcg))
2313 goto done;
2314 css_get(&memcg->css);
2315 } else {
2316 struct task_struct *p;
2317
2318 rcu_read_lock();
2319 p = rcu_dereference(mm->owner);
2320 /*
2321 * Because we don't have task_lock(), "p" can exit.
2322 * In that case, "memcg" can point to root or p can be NULL with
2323 * race with swapoff. Then, we have small risk of mis-accouning.
2324 * But such kind of mis-account by race always happens because
2325 * we don't have cgroup_mutex(). It's overkill and we allo that
2326 * small race, here.
2327 * (*) swapoff at el will charge against mm-struct not against
2328 * task-struct. So, mm->owner can be NULL.
2329 */
2330 memcg = mem_cgroup_from_task(p);
2331 if (!memcg)
2332 memcg = root_mem_cgroup;
2333 if (mem_cgroup_is_root(memcg)) {
2334 rcu_read_unlock();
2335 goto done;
2336 }
2337 if (nr_pages == 1 && consume_stock(memcg)) {
2338 /*
2339 * It seems dagerous to access memcg without css_get().
2340 * But considering how consume_stok works, it's not
2341 * necessary. If consume_stock success, some charges
2342 * from this memcg are cached on this cpu. So, we
2343 * don't need to call css_get()/css_tryget() before
2344 * calling consume_stock().
2345 */
2346 rcu_read_unlock();
2347 goto done;
2348 }
2349 /* after here, we may be blocked. we need to get refcnt */
2350 if (!css_tryget(&memcg->css)) {
2351 rcu_read_unlock();
2352 goto again;
2353 }
2354 rcu_read_unlock();
2355 }
2356
2357 do {
2358 bool oom_check;
2359
2360 /* If killed, bypass charge */
2361 if (fatal_signal_pending(current)) {
2362 css_put(&memcg->css);
2363 goto bypass;
2364 }
2365
2366 oom_check = false;
2367 if (oom && !nr_oom_retries) {
2368 oom_check = true;
2369 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2370 }
2371
2372 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2373 switch (ret) {
2374 case CHARGE_OK:
2375 break;
2376 case CHARGE_RETRY: /* not in OOM situation but retry */
2377 batch = nr_pages;
2378 css_put(&memcg->css);
2379 memcg = NULL;
2380 goto again;
2381 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2382 css_put(&memcg->css);
2383 goto nomem;
2384 case CHARGE_NOMEM: /* OOM routine works */
2385 if (!oom) {
2386 css_put(&memcg->css);
2387 goto nomem;
2388 }
2389 /* If oom, we never return -ENOMEM */
2390 nr_oom_retries--;
2391 break;
2392 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2393 css_put(&memcg->css);
2394 goto bypass;
2395 }
2396 } while (ret != CHARGE_OK);
2397
2398 if (batch > nr_pages)
2399 refill_stock(memcg, batch - nr_pages);
2400 css_put(&memcg->css);
2401 done:
2402 *ptr = memcg;
2403 return 0;
2404 nomem:
2405 *ptr = NULL;
2406 return -ENOMEM;
2407 bypass:
2408 *ptr = root_mem_cgroup;
2409 return -EINTR;
2410 }
2411
2412 /*
2413 * Somemtimes we have to undo a charge we got by try_charge().
2414 * This function is for that and do uncharge, put css's refcnt.
2415 * gotten by try_charge().
2416 */
2417 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2418 unsigned int nr_pages)
2419 {
2420 if (!mem_cgroup_is_root(memcg)) {
2421 unsigned long bytes = nr_pages * PAGE_SIZE;
2422
2423 res_counter_uncharge(&memcg->res, bytes);
2424 if (do_swap_account)
2425 res_counter_uncharge(&memcg->memsw, bytes);
2426 }
2427 }
2428
2429 /*
2430 * A helper function to get mem_cgroup from ID. must be called under
2431 * rcu_read_lock(). The caller must check css_is_removed() or some if
2432 * it's concern. (dropping refcnt from swap can be called against removed
2433 * memcg.)
2434 */
2435 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2436 {
2437 struct cgroup_subsys_state *css;
2438
2439 /* ID 0 is unused ID */
2440 if (!id)
2441 return NULL;
2442 css = css_lookup(&mem_cgroup_subsys, id);
2443 if (!css)
2444 return NULL;
2445 return container_of(css, struct mem_cgroup, css);
2446 }
2447
2448 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2449 {
2450 struct mem_cgroup *memcg = NULL;
2451 struct page_cgroup *pc;
2452 unsigned short id;
2453 swp_entry_t ent;
2454
2455 VM_BUG_ON(!PageLocked(page));
2456
2457 pc = lookup_page_cgroup(page);
2458 lock_page_cgroup(pc);
2459 if (PageCgroupUsed(pc)) {
2460 memcg = pc->mem_cgroup;
2461 if (memcg && !css_tryget(&memcg->css))
2462 memcg = NULL;
2463 } else if (PageSwapCache(page)) {
2464 ent.val = page_private(page);
2465 id = lookup_swap_cgroup_id(ent);
2466 rcu_read_lock();
2467 memcg = mem_cgroup_lookup(id);
2468 if (memcg && !css_tryget(&memcg->css))
2469 memcg = NULL;
2470 rcu_read_unlock();
2471 }
2472 unlock_page_cgroup(pc);
2473 return memcg;
2474 }
2475
2476 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2477 struct page *page,
2478 unsigned int nr_pages,
2479 enum charge_type ctype,
2480 bool lrucare)
2481 {
2482 struct page_cgroup *pc = lookup_page_cgroup(page);
2483 struct zone *uninitialized_var(zone);
2484 bool was_on_lru = false;
2485 bool anon;
2486
2487 lock_page_cgroup(pc);
2488 if (unlikely(PageCgroupUsed(pc))) {
2489 unlock_page_cgroup(pc);
2490 __mem_cgroup_cancel_charge(memcg, nr_pages);
2491 return;
2492 }
2493 /*
2494 * we don't need page_cgroup_lock about tail pages, becase they are not
2495 * accessed by any other context at this point.
2496 */
2497
2498 /*
2499 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2500 * may already be on some other mem_cgroup's LRU. Take care of it.
2501 */
2502 if (lrucare) {
2503 zone = page_zone(page);
2504 spin_lock_irq(&zone->lru_lock);
2505 if (PageLRU(page)) {
2506 ClearPageLRU(page);
2507 del_page_from_lru_list(zone, page, page_lru(page));
2508 was_on_lru = true;
2509 }
2510 }
2511
2512 pc->mem_cgroup = memcg;
2513 /*
2514 * We access a page_cgroup asynchronously without lock_page_cgroup().
2515 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2516 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2517 * before USED bit, we need memory barrier here.
2518 * See mem_cgroup_add_lru_list(), etc.
2519 */
2520 smp_wmb();
2521 SetPageCgroupUsed(pc);
2522
2523 if (lrucare) {
2524 if (was_on_lru) {
2525 VM_BUG_ON(PageLRU(page));
2526 SetPageLRU(page);
2527 add_page_to_lru_list(zone, page, page_lru(page));
2528 }
2529 spin_unlock_irq(&zone->lru_lock);
2530 }
2531
2532 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2533 anon = true;
2534 else
2535 anon = false;
2536
2537 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2538 unlock_page_cgroup(pc);
2539
2540 /*
2541 * "charge_statistics" updated event counter. Then, check it.
2542 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543 * if they exceeds softlimit.
2544 */
2545 memcg_check_events(memcg, page);
2546 }
2547
2548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549
2550 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2551 /*
2552 * Because tail pages are not marked as "used", set it. We're under
2553 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554 * charge/uncharge will be never happen and move_account() is done under
2555 * compound_lock(), so we don't have to take care of races.
2556 */
2557 void mem_cgroup_split_huge_fixup(struct page *head)
2558 {
2559 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 struct page_cgroup *pc;
2561 int i;
2562
2563 if (mem_cgroup_disabled())
2564 return;
2565 for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 pc = head_pc + i;
2567 pc->mem_cgroup = head_pc->mem_cgroup;
2568 smp_wmb();/* see __commit_charge() */
2569 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2570 }
2571 }
2572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2573
2574 /**
2575 * mem_cgroup_move_account - move account of the page
2576 * @page: the page
2577 * @nr_pages: number of regular pages (>1 for huge pages)
2578 * @pc: page_cgroup of the page.
2579 * @from: mem_cgroup which the page is moved from.
2580 * @to: mem_cgroup which the page is moved to. @from != @to.
2581 * @uncharge: whether we should call uncharge and css_put against @from.
2582 *
2583 * The caller must confirm following.
2584 * - page is not on LRU (isolate_page() is useful.)
2585 * - compound_lock is held when nr_pages > 1
2586 *
2587 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2588 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2589 * true, this function does "uncharge" from old cgroup, but it doesn't if
2590 * @uncharge is false, so a caller should do "uncharge".
2591 */
2592 static int mem_cgroup_move_account(struct page *page,
2593 unsigned int nr_pages,
2594 struct page_cgroup *pc,
2595 struct mem_cgroup *from,
2596 struct mem_cgroup *to,
2597 bool uncharge)
2598 {
2599 unsigned long flags;
2600 int ret;
2601 bool anon = PageAnon(page);
2602
2603 VM_BUG_ON(from == to);
2604 VM_BUG_ON(PageLRU(page));
2605 /*
2606 * The page is isolated from LRU. So, collapse function
2607 * will not handle this page. But page splitting can happen.
2608 * Do this check under compound_page_lock(). The caller should
2609 * hold it.
2610 */
2611 ret = -EBUSY;
2612 if (nr_pages > 1 && !PageTransHuge(page))
2613 goto out;
2614
2615 lock_page_cgroup(pc);
2616
2617 ret = -EINVAL;
2618 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2619 goto unlock;
2620
2621 move_lock_mem_cgroup(from, &flags);
2622
2623 if (!anon && page_mapped(page)) {
2624 /* Update mapped_file data for mem_cgroup */
2625 preempt_disable();
2626 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2628 preempt_enable();
2629 }
2630 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2631 if (uncharge)
2632 /* This is not "cancel", but cancel_charge does all we need. */
2633 __mem_cgroup_cancel_charge(from, nr_pages);
2634
2635 /* caller should have done css_get */
2636 pc->mem_cgroup = to;
2637 mem_cgroup_charge_statistics(to, anon, nr_pages);
2638 /*
2639 * We charges against "to" which may not have any tasks. Then, "to"
2640 * can be under rmdir(). But in current implementation, caller of
2641 * this function is just force_empty() and move charge, so it's
2642 * guaranteed that "to" is never removed. So, we don't check rmdir
2643 * status here.
2644 */
2645 move_unlock_mem_cgroup(from, &flags);
2646 ret = 0;
2647 unlock:
2648 unlock_page_cgroup(pc);
2649 /*
2650 * check events
2651 */
2652 memcg_check_events(to, page);
2653 memcg_check_events(from, page);
2654 out:
2655 return ret;
2656 }
2657
2658 /*
2659 * move charges to its parent.
2660 */
2661
2662 static int mem_cgroup_move_parent(struct page *page,
2663 struct page_cgroup *pc,
2664 struct mem_cgroup *child,
2665 gfp_t gfp_mask)
2666 {
2667 struct cgroup *cg = child->css.cgroup;
2668 struct cgroup *pcg = cg->parent;
2669 struct mem_cgroup *parent;
2670 unsigned int nr_pages;
2671 unsigned long uninitialized_var(flags);
2672 int ret;
2673
2674 /* Is ROOT ? */
2675 if (!pcg)
2676 return -EINVAL;
2677
2678 ret = -EBUSY;
2679 if (!get_page_unless_zero(page))
2680 goto out;
2681 if (isolate_lru_page(page))
2682 goto put;
2683
2684 nr_pages = hpage_nr_pages(page);
2685
2686 parent = mem_cgroup_from_cont(pcg);
2687 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2688 if (ret)
2689 goto put_back;
2690
2691 if (nr_pages > 1)
2692 flags = compound_lock_irqsave(page);
2693
2694 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2695 if (ret)
2696 __mem_cgroup_cancel_charge(parent, nr_pages);
2697
2698 if (nr_pages > 1)
2699 compound_unlock_irqrestore(page, flags);
2700 put_back:
2701 putback_lru_page(page);
2702 put:
2703 put_page(page);
2704 out:
2705 return ret;
2706 }
2707
2708 /*
2709 * Charge the memory controller for page usage.
2710 * Return
2711 * 0 if the charge was successful
2712 * < 0 if the cgroup is over its limit
2713 */
2714 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2715 gfp_t gfp_mask, enum charge_type ctype)
2716 {
2717 struct mem_cgroup *memcg = NULL;
2718 unsigned int nr_pages = 1;
2719 bool oom = true;
2720 int ret;
2721
2722 if (PageTransHuge(page)) {
2723 nr_pages <<= compound_order(page);
2724 VM_BUG_ON(!PageTransHuge(page));
2725 /*
2726 * Never OOM-kill a process for a huge page. The
2727 * fault handler will fall back to regular pages.
2728 */
2729 oom = false;
2730 }
2731
2732 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2733 if (ret == -ENOMEM)
2734 return ret;
2735 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2736 return 0;
2737 }
2738
2739 int mem_cgroup_newpage_charge(struct page *page,
2740 struct mm_struct *mm, gfp_t gfp_mask)
2741 {
2742 if (mem_cgroup_disabled())
2743 return 0;
2744 VM_BUG_ON(page_mapped(page));
2745 VM_BUG_ON(page->mapping && !PageAnon(page));
2746 VM_BUG_ON(!mm);
2747 return mem_cgroup_charge_common(page, mm, gfp_mask,
2748 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2749 }
2750
2751 static void
2752 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2753 enum charge_type ctype);
2754
2755 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2756 gfp_t gfp_mask)
2757 {
2758 struct mem_cgroup *memcg = NULL;
2759 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2760 int ret;
2761
2762 if (mem_cgroup_disabled())
2763 return 0;
2764 if (PageCompound(page))
2765 return 0;
2766
2767 if (unlikely(!mm))
2768 mm = &init_mm;
2769 if (!page_is_file_cache(page))
2770 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2771
2772 if (!PageSwapCache(page))
2773 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2774 else { /* page is swapcache/shmem */
2775 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2776 if (!ret)
2777 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2778 }
2779 return ret;
2780 }
2781
2782 /*
2783 * While swap-in, try_charge -> commit or cancel, the page is locked.
2784 * And when try_charge() successfully returns, one refcnt to memcg without
2785 * struct page_cgroup is acquired. This refcnt will be consumed by
2786 * "commit()" or removed by "cancel()"
2787 */
2788 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2789 struct page *page,
2790 gfp_t mask, struct mem_cgroup **memcgp)
2791 {
2792 struct mem_cgroup *memcg;
2793 int ret;
2794
2795 *memcgp = NULL;
2796
2797 if (mem_cgroup_disabled())
2798 return 0;
2799
2800 if (!do_swap_account)
2801 goto charge_cur_mm;
2802 /*
2803 * A racing thread's fault, or swapoff, may have already updated
2804 * the pte, and even removed page from swap cache: in those cases
2805 * do_swap_page()'s pte_same() test will fail; but there's also a
2806 * KSM case which does need to charge the page.
2807 */
2808 if (!PageSwapCache(page))
2809 goto charge_cur_mm;
2810 memcg = try_get_mem_cgroup_from_page(page);
2811 if (!memcg)
2812 goto charge_cur_mm;
2813 *memcgp = memcg;
2814 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2815 css_put(&memcg->css);
2816 if (ret == -EINTR)
2817 ret = 0;
2818 return ret;
2819 charge_cur_mm:
2820 if (unlikely(!mm))
2821 mm = &init_mm;
2822 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2823 if (ret == -EINTR)
2824 ret = 0;
2825 return ret;
2826 }
2827
2828 static void
2829 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2830 enum charge_type ctype)
2831 {
2832 if (mem_cgroup_disabled())
2833 return;
2834 if (!memcg)
2835 return;
2836 cgroup_exclude_rmdir(&memcg->css);
2837
2838 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2839 /*
2840 * Now swap is on-memory. This means this page may be
2841 * counted both as mem and swap....double count.
2842 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2843 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2844 * may call delete_from_swap_cache() before reach here.
2845 */
2846 if (do_swap_account && PageSwapCache(page)) {
2847 swp_entry_t ent = {.val = page_private(page)};
2848 struct mem_cgroup *swap_memcg;
2849 unsigned short id;
2850
2851 id = swap_cgroup_record(ent, 0);
2852 rcu_read_lock();
2853 swap_memcg = mem_cgroup_lookup(id);
2854 if (swap_memcg) {
2855 /*
2856 * This recorded memcg can be obsolete one. So, avoid
2857 * calling css_tryget
2858 */
2859 if (!mem_cgroup_is_root(swap_memcg))
2860 res_counter_uncharge(&swap_memcg->memsw,
2861 PAGE_SIZE);
2862 mem_cgroup_swap_statistics(swap_memcg, false);
2863 mem_cgroup_put(swap_memcg);
2864 }
2865 rcu_read_unlock();
2866 }
2867 /*
2868 * At swapin, we may charge account against cgroup which has no tasks.
2869 * So, rmdir()->pre_destroy() can be called while we do this charge.
2870 * In that case, we need to call pre_destroy() again. check it here.
2871 */
2872 cgroup_release_and_wakeup_rmdir(&memcg->css);
2873 }
2874
2875 void mem_cgroup_commit_charge_swapin(struct page *page,
2876 struct mem_cgroup *memcg)
2877 {
2878 __mem_cgroup_commit_charge_swapin(page, memcg,
2879 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2880 }
2881
2882 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2883 {
2884 if (mem_cgroup_disabled())
2885 return;
2886 if (!memcg)
2887 return;
2888 __mem_cgroup_cancel_charge(memcg, 1);
2889 }
2890
2891 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2892 unsigned int nr_pages,
2893 const enum charge_type ctype)
2894 {
2895 struct memcg_batch_info *batch = NULL;
2896 bool uncharge_memsw = true;
2897
2898 /* If swapout, usage of swap doesn't decrease */
2899 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2900 uncharge_memsw = false;
2901
2902 batch = &current->memcg_batch;
2903 /*
2904 * In usual, we do css_get() when we remember memcg pointer.
2905 * But in this case, we keep res->usage until end of a series of
2906 * uncharges. Then, it's ok to ignore memcg's refcnt.
2907 */
2908 if (!batch->memcg)
2909 batch->memcg = memcg;
2910 /*
2911 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2912 * In those cases, all pages freed continuously can be expected to be in
2913 * the same cgroup and we have chance to coalesce uncharges.
2914 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2915 * because we want to do uncharge as soon as possible.
2916 */
2917
2918 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2919 goto direct_uncharge;
2920
2921 if (nr_pages > 1)
2922 goto direct_uncharge;
2923
2924 /*
2925 * In typical case, batch->memcg == mem. This means we can
2926 * merge a series of uncharges to an uncharge of res_counter.
2927 * If not, we uncharge res_counter ony by one.
2928 */
2929 if (batch->memcg != memcg)
2930 goto direct_uncharge;
2931 /* remember freed charge and uncharge it later */
2932 batch->nr_pages++;
2933 if (uncharge_memsw)
2934 batch->memsw_nr_pages++;
2935 return;
2936 direct_uncharge:
2937 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2938 if (uncharge_memsw)
2939 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2940 if (unlikely(batch->memcg != memcg))
2941 memcg_oom_recover(memcg);
2942 }
2943
2944 /*
2945 * uncharge if !page_mapped(page)
2946 */
2947 static struct mem_cgroup *
2948 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2949 {
2950 struct mem_cgroup *memcg = NULL;
2951 unsigned int nr_pages = 1;
2952 struct page_cgroup *pc;
2953 bool anon;
2954
2955 if (mem_cgroup_disabled())
2956 return NULL;
2957
2958 if (PageSwapCache(page))
2959 return NULL;
2960
2961 if (PageTransHuge(page)) {
2962 nr_pages <<= compound_order(page);
2963 VM_BUG_ON(!PageTransHuge(page));
2964 }
2965 /*
2966 * Check if our page_cgroup is valid
2967 */
2968 pc = lookup_page_cgroup(page);
2969 if (unlikely(!PageCgroupUsed(pc)))
2970 return NULL;
2971
2972 lock_page_cgroup(pc);
2973
2974 memcg = pc->mem_cgroup;
2975
2976 if (!PageCgroupUsed(pc))
2977 goto unlock_out;
2978
2979 anon = PageAnon(page);
2980
2981 switch (ctype) {
2982 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2983 /*
2984 * Generally PageAnon tells if it's the anon statistics to be
2985 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2986 * used before page reached the stage of being marked PageAnon.
2987 */
2988 anon = true;
2989 /* fallthrough */
2990 case MEM_CGROUP_CHARGE_TYPE_DROP:
2991 /* See mem_cgroup_prepare_migration() */
2992 if (page_mapped(page) || PageCgroupMigration(pc))
2993 goto unlock_out;
2994 break;
2995 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2996 if (!PageAnon(page)) { /* Shared memory */
2997 if (page->mapping && !page_is_file_cache(page))
2998 goto unlock_out;
2999 } else if (page_mapped(page)) /* Anon */
3000 goto unlock_out;
3001 break;
3002 default:
3003 break;
3004 }
3005
3006 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3007
3008 ClearPageCgroupUsed(pc);
3009 /*
3010 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3011 * freed from LRU. This is safe because uncharged page is expected not
3012 * to be reused (freed soon). Exception is SwapCache, it's handled by
3013 * special functions.
3014 */
3015
3016 unlock_page_cgroup(pc);
3017 /*
3018 * even after unlock, we have memcg->res.usage here and this memcg
3019 * will never be freed.
3020 */
3021 memcg_check_events(memcg, page);
3022 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3023 mem_cgroup_swap_statistics(memcg, true);
3024 mem_cgroup_get(memcg);
3025 }
3026 if (!mem_cgroup_is_root(memcg))
3027 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3028
3029 return memcg;
3030
3031 unlock_out:
3032 unlock_page_cgroup(pc);
3033 return NULL;
3034 }
3035
3036 void mem_cgroup_uncharge_page(struct page *page)
3037 {
3038 /* early check. */
3039 if (page_mapped(page))
3040 return;
3041 VM_BUG_ON(page->mapping && !PageAnon(page));
3042 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3043 }
3044
3045 void mem_cgroup_uncharge_cache_page(struct page *page)
3046 {
3047 VM_BUG_ON(page_mapped(page));
3048 VM_BUG_ON(page->mapping);
3049 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3050 }
3051
3052 /*
3053 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3054 * In that cases, pages are freed continuously and we can expect pages
3055 * are in the same memcg. All these calls itself limits the number of
3056 * pages freed at once, then uncharge_start/end() is called properly.
3057 * This may be called prural(2) times in a context,
3058 */
3059
3060 void mem_cgroup_uncharge_start(void)
3061 {
3062 current->memcg_batch.do_batch++;
3063 /* We can do nest. */
3064 if (current->memcg_batch.do_batch == 1) {
3065 current->memcg_batch.memcg = NULL;
3066 current->memcg_batch.nr_pages = 0;
3067 current->memcg_batch.memsw_nr_pages = 0;
3068 }
3069 }
3070
3071 void mem_cgroup_uncharge_end(void)
3072 {
3073 struct memcg_batch_info *batch = &current->memcg_batch;
3074
3075 if (!batch->do_batch)
3076 return;
3077
3078 batch->do_batch--;
3079 if (batch->do_batch) /* If stacked, do nothing. */
3080 return;
3081
3082 if (!batch->memcg)
3083 return;
3084 /*
3085 * This "batch->memcg" is valid without any css_get/put etc...
3086 * bacause we hide charges behind us.
3087 */
3088 if (batch->nr_pages)
3089 res_counter_uncharge(&batch->memcg->res,
3090 batch->nr_pages * PAGE_SIZE);
3091 if (batch->memsw_nr_pages)
3092 res_counter_uncharge(&batch->memcg->memsw,
3093 batch->memsw_nr_pages * PAGE_SIZE);
3094 memcg_oom_recover(batch->memcg);
3095 /* forget this pointer (for sanity check) */
3096 batch->memcg = NULL;
3097 }
3098
3099 #ifdef CONFIG_SWAP
3100 /*
3101 * called after __delete_from_swap_cache() and drop "page" account.
3102 * memcg information is recorded to swap_cgroup of "ent"
3103 */
3104 void
3105 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3106 {
3107 struct mem_cgroup *memcg;
3108 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3109
3110 if (!swapout) /* this was a swap cache but the swap is unused ! */
3111 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3112
3113 memcg = __mem_cgroup_uncharge_common(page, ctype);
3114
3115 /*
3116 * record memcg information, if swapout && memcg != NULL,
3117 * mem_cgroup_get() was called in uncharge().
3118 */
3119 if (do_swap_account && swapout && memcg)
3120 swap_cgroup_record(ent, css_id(&memcg->css));
3121 }
3122 #endif
3123
3124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3125 /*
3126 * called from swap_entry_free(). remove record in swap_cgroup and
3127 * uncharge "memsw" account.
3128 */
3129 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3130 {
3131 struct mem_cgroup *memcg;
3132 unsigned short id;
3133
3134 if (!do_swap_account)
3135 return;
3136
3137 id = swap_cgroup_record(ent, 0);
3138 rcu_read_lock();
3139 memcg = mem_cgroup_lookup(id);
3140 if (memcg) {
3141 /*
3142 * We uncharge this because swap is freed.
3143 * This memcg can be obsolete one. We avoid calling css_tryget
3144 */
3145 if (!mem_cgroup_is_root(memcg))
3146 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3147 mem_cgroup_swap_statistics(memcg, false);
3148 mem_cgroup_put(memcg);
3149 }
3150 rcu_read_unlock();
3151 }
3152
3153 /**
3154 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3155 * @entry: swap entry to be moved
3156 * @from: mem_cgroup which the entry is moved from
3157 * @to: mem_cgroup which the entry is moved to
3158 * @need_fixup: whether we should fixup res_counters and refcounts.
3159 *
3160 * It succeeds only when the swap_cgroup's record for this entry is the same
3161 * as the mem_cgroup's id of @from.
3162 *
3163 * Returns 0 on success, -EINVAL on failure.
3164 *
3165 * The caller must have charged to @to, IOW, called res_counter_charge() about
3166 * both res and memsw, and called css_get().
3167 */
3168 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3169 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3170 {
3171 unsigned short old_id, new_id;
3172
3173 old_id = css_id(&from->css);
3174 new_id = css_id(&to->css);
3175
3176 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3177 mem_cgroup_swap_statistics(from, false);
3178 mem_cgroup_swap_statistics(to, true);
3179 /*
3180 * This function is only called from task migration context now.
3181 * It postpones res_counter and refcount handling till the end
3182 * of task migration(mem_cgroup_clear_mc()) for performance
3183 * improvement. But we cannot postpone mem_cgroup_get(to)
3184 * because if the process that has been moved to @to does
3185 * swap-in, the refcount of @to might be decreased to 0.
3186 */
3187 mem_cgroup_get(to);
3188 if (need_fixup) {
3189 if (!mem_cgroup_is_root(from))
3190 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3191 mem_cgroup_put(from);
3192 /*
3193 * we charged both to->res and to->memsw, so we should
3194 * uncharge to->res.
3195 */
3196 if (!mem_cgroup_is_root(to))
3197 res_counter_uncharge(&to->res, PAGE_SIZE);
3198 }
3199 return 0;
3200 }
3201 return -EINVAL;
3202 }
3203 #else
3204 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3205 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3206 {
3207 return -EINVAL;
3208 }
3209 #endif
3210
3211 /*
3212 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3213 * page belongs to.
3214 */
3215 int mem_cgroup_prepare_migration(struct page *page,
3216 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3217 {
3218 struct mem_cgroup *memcg = NULL;
3219 struct page_cgroup *pc;
3220 enum charge_type ctype;
3221 int ret = 0;
3222
3223 *memcgp = NULL;
3224
3225 VM_BUG_ON(PageTransHuge(page));
3226 if (mem_cgroup_disabled())
3227 return 0;
3228
3229 pc = lookup_page_cgroup(page);
3230 lock_page_cgroup(pc);
3231 if (PageCgroupUsed(pc)) {
3232 memcg = pc->mem_cgroup;
3233 css_get(&memcg->css);
3234 /*
3235 * At migrating an anonymous page, its mapcount goes down
3236 * to 0 and uncharge() will be called. But, even if it's fully
3237 * unmapped, migration may fail and this page has to be
3238 * charged again. We set MIGRATION flag here and delay uncharge
3239 * until end_migration() is called
3240 *
3241 * Corner Case Thinking
3242 * A)
3243 * When the old page was mapped as Anon and it's unmap-and-freed
3244 * while migration was ongoing.
3245 * If unmap finds the old page, uncharge() of it will be delayed
3246 * until end_migration(). If unmap finds a new page, it's
3247 * uncharged when it make mapcount to be 1->0. If unmap code
3248 * finds swap_migration_entry, the new page will not be mapped
3249 * and end_migration() will find it(mapcount==0).
3250 *
3251 * B)
3252 * When the old page was mapped but migraion fails, the kernel
3253 * remaps it. A charge for it is kept by MIGRATION flag even
3254 * if mapcount goes down to 0. We can do remap successfully
3255 * without charging it again.
3256 *
3257 * C)
3258 * The "old" page is under lock_page() until the end of
3259 * migration, so, the old page itself will not be swapped-out.
3260 * If the new page is swapped out before end_migraton, our
3261 * hook to usual swap-out path will catch the event.
3262 */
3263 if (PageAnon(page))
3264 SetPageCgroupMigration(pc);
3265 }
3266 unlock_page_cgroup(pc);
3267 /*
3268 * If the page is not charged at this point,
3269 * we return here.
3270 */
3271 if (!memcg)
3272 return 0;
3273
3274 *memcgp = memcg;
3275 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3276 css_put(&memcg->css);/* drop extra refcnt */
3277 if (ret) {
3278 if (PageAnon(page)) {
3279 lock_page_cgroup(pc);
3280 ClearPageCgroupMigration(pc);
3281 unlock_page_cgroup(pc);
3282 /*
3283 * The old page may be fully unmapped while we kept it.
3284 */
3285 mem_cgroup_uncharge_page(page);
3286 }
3287 /* we'll need to revisit this error code (we have -EINTR) */
3288 return -ENOMEM;
3289 }
3290 /*
3291 * We charge new page before it's used/mapped. So, even if unlock_page()
3292 * is called before end_migration, we can catch all events on this new
3293 * page. In the case new page is migrated but not remapped, new page's
3294 * mapcount will be finally 0 and we call uncharge in end_migration().
3295 */
3296 if (PageAnon(page))
3297 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3298 else if (page_is_file_cache(page))
3299 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3300 else
3301 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3302 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3303 return ret;
3304 }
3305
3306 /* remove redundant charge if migration failed*/
3307 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3308 struct page *oldpage, struct page *newpage, bool migration_ok)
3309 {
3310 struct page *used, *unused;
3311 struct page_cgroup *pc;
3312 bool anon;
3313
3314 if (!memcg)
3315 return;
3316 /* blocks rmdir() */
3317 cgroup_exclude_rmdir(&memcg->css);
3318 if (!migration_ok) {
3319 used = oldpage;
3320 unused = newpage;
3321 } else {
3322 used = newpage;
3323 unused = oldpage;
3324 }
3325 /*
3326 * We disallowed uncharge of pages under migration because mapcount
3327 * of the page goes down to zero, temporarly.
3328 * Clear the flag and check the page should be charged.
3329 */
3330 pc = lookup_page_cgroup(oldpage);
3331 lock_page_cgroup(pc);
3332 ClearPageCgroupMigration(pc);
3333 unlock_page_cgroup(pc);
3334 anon = PageAnon(used);
3335 __mem_cgroup_uncharge_common(unused,
3336 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3337 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3338
3339 /*
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
3346 */
3347 if (anon)
3348 mem_cgroup_uncharge_page(used);
3349 /*
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3354 */
3355 cgroup_release_and_wakeup_rmdir(&memcg->css);
3356 }
3357
3358 /*
3359 * At replace page cache, newpage is not under any memcg but it's on
3360 * LRU. So, this function doesn't touch res_counter but handles LRU
3361 * in correct way. Both pages are locked so we cannot race with uncharge.
3362 */
3363 void mem_cgroup_replace_page_cache(struct page *oldpage,
3364 struct page *newpage)
3365 {
3366 struct mem_cgroup *memcg;
3367 struct page_cgroup *pc;
3368 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3369
3370 if (mem_cgroup_disabled())
3371 return;
3372
3373 pc = lookup_page_cgroup(oldpage);
3374 /* fix accounting on old pages */
3375 lock_page_cgroup(pc);
3376 memcg = pc->mem_cgroup;
3377 mem_cgroup_charge_statistics(memcg, false, -1);
3378 ClearPageCgroupUsed(pc);
3379 unlock_page_cgroup(pc);
3380
3381 if (PageSwapBacked(oldpage))
3382 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3383
3384 /*
3385 * Even if newpage->mapping was NULL before starting replacement,
3386 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3387 * LRU while we overwrite pc->mem_cgroup.
3388 */
3389 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3390 }
3391
3392 #ifdef CONFIG_DEBUG_VM
3393 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3394 {
3395 struct page_cgroup *pc;
3396
3397 pc = lookup_page_cgroup(page);
3398 /*
3399 * Can be NULL while feeding pages into the page allocator for
3400 * the first time, i.e. during boot or memory hotplug;
3401 * or when mem_cgroup_disabled().
3402 */
3403 if (likely(pc) && PageCgroupUsed(pc))
3404 return pc;
3405 return NULL;
3406 }
3407
3408 bool mem_cgroup_bad_page_check(struct page *page)
3409 {
3410 if (mem_cgroup_disabled())
3411 return false;
3412
3413 return lookup_page_cgroup_used(page) != NULL;
3414 }
3415
3416 void mem_cgroup_print_bad_page(struct page *page)
3417 {
3418 struct page_cgroup *pc;
3419
3420 pc = lookup_page_cgroup_used(page);
3421 if (pc) {
3422 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3423 pc, pc->flags, pc->mem_cgroup);
3424 }
3425 }
3426 #endif
3427
3428 static DEFINE_MUTEX(set_limit_mutex);
3429
3430 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3431 unsigned long long val)
3432 {
3433 int retry_count;
3434 u64 memswlimit, memlimit;
3435 int ret = 0;
3436 int children = mem_cgroup_count_children(memcg);
3437 u64 curusage, oldusage;
3438 int enlarge;
3439
3440 /*
3441 * For keeping hierarchical_reclaim simple, how long we should retry
3442 * is depends on callers. We set our retry-count to be function
3443 * of # of children which we should visit in this loop.
3444 */
3445 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3446
3447 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3448
3449 enlarge = 0;
3450 while (retry_count) {
3451 if (signal_pending(current)) {
3452 ret = -EINTR;
3453 break;
3454 }
3455 /*
3456 * Rather than hide all in some function, I do this in
3457 * open coded manner. You see what this really does.
3458 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3459 */
3460 mutex_lock(&set_limit_mutex);
3461 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3462 if (memswlimit < val) {
3463 ret = -EINVAL;
3464 mutex_unlock(&set_limit_mutex);
3465 break;
3466 }
3467
3468 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 if (memlimit < val)
3470 enlarge = 1;
3471
3472 ret = res_counter_set_limit(&memcg->res, val);
3473 if (!ret) {
3474 if (memswlimit == val)
3475 memcg->memsw_is_minimum = true;
3476 else
3477 memcg->memsw_is_minimum = false;
3478 }
3479 mutex_unlock(&set_limit_mutex);
3480
3481 if (!ret)
3482 break;
3483
3484 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3485 MEM_CGROUP_RECLAIM_SHRINK);
3486 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3487 /* Usage is reduced ? */
3488 if (curusage >= oldusage)
3489 retry_count--;
3490 else
3491 oldusage = curusage;
3492 }
3493 if (!ret && enlarge)
3494 memcg_oom_recover(memcg);
3495
3496 return ret;
3497 }
3498
3499 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3500 unsigned long long val)
3501 {
3502 int retry_count;
3503 u64 memlimit, memswlimit, oldusage, curusage;
3504 int children = mem_cgroup_count_children(memcg);
3505 int ret = -EBUSY;
3506 int enlarge = 0;
3507
3508 /* see mem_cgroup_resize_res_limit */
3509 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3510 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3511 while (retry_count) {
3512 if (signal_pending(current)) {
3513 ret = -EINTR;
3514 break;
3515 }
3516 /*
3517 * Rather than hide all in some function, I do this in
3518 * open coded manner. You see what this really does.
3519 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3520 */
3521 mutex_lock(&set_limit_mutex);
3522 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3523 if (memlimit > val) {
3524 ret = -EINVAL;
3525 mutex_unlock(&set_limit_mutex);
3526 break;
3527 }
3528 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3529 if (memswlimit < val)
3530 enlarge = 1;
3531 ret = res_counter_set_limit(&memcg->memsw, val);
3532 if (!ret) {
3533 if (memlimit == val)
3534 memcg->memsw_is_minimum = true;
3535 else
3536 memcg->memsw_is_minimum = false;
3537 }
3538 mutex_unlock(&set_limit_mutex);
3539
3540 if (!ret)
3541 break;
3542
3543 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3544 MEM_CGROUP_RECLAIM_NOSWAP |
3545 MEM_CGROUP_RECLAIM_SHRINK);
3546 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3547 /* Usage is reduced ? */
3548 if (curusage >= oldusage)
3549 retry_count--;
3550 else
3551 oldusage = curusage;
3552 }
3553 if (!ret && enlarge)
3554 memcg_oom_recover(memcg);
3555 return ret;
3556 }
3557
3558 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3559 gfp_t gfp_mask,
3560 unsigned long *total_scanned)
3561 {
3562 unsigned long nr_reclaimed = 0;
3563 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3564 unsigned long reclaimed;
3565 int loop = 0;
3566 struct mem_cgroup_tree_per_zone *mctz;
3567 unsigned long long excess;
3568 unsigned long nr_scanned;
3569
3570 if (order > 0)
3571 return 0;
3572
3573 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3574 /*
3575 * This loop can run a while, specially if mem_cgroup's continuously
3576 * keep exceeding their soft limit and putting the system under
3577 * pressure
3578 */
3579 do {
3580 if (next_mz)
3581 mz = next_mz;
3582 else
3583 mz = mem_cgroup_largest_soft_limit_node(mctz);
3584 if (!mz)
3585 break;
3586
3587 nr_scanned = 0;
3588 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3589 gfp_mask, &nr_scanned);
3590 nr_reclaimed += reclaimed;
3591 *total_scanned += nr_scanned;
3592 spin_lock(&mctz->lock);
3593
3594 /*
3595 * If we failed to reclaim anything from this memory cgroup
3596 * it is time to move on to the next cgroup
3597 */
3598 next_mz = NULL;
3599 if (!reclaimed) {
3600 do {
3601 /*
3602 * Loop until we find yet another one.
3603 *
3604 * By the time we get the soft_limit lock
3605 * again, someone might have aded the
3606 * group back on the RB tree. Iterate to
3607 * make sure we get a different mem.
3608 * mem_cgroup_largest_soft_limit_node returns
3609 * NULL if no other cgroup is present on
3610 * the tree
3611 */
3612 next_mz =
3613 __mem_cgroup_largest_soft_limit_node(mctz);
3614 if (next_mz == mz)
3615 css_put(&next_mz->memcg->css);
3616 else /* next_mz == NULL or other memcg */
3617 break;
3618 } while (1);
3619 }
3620 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3621 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3622 /*
3623 * One school of thought says that we should not add
3624 * back the node to the tree if reclaim returns 0.
3625 * But our reclaim could return 0, simply because due
3626 * to priority we are exposing a smaller subset of
3627 * memory to reclaim from. Consider this as a longer
3628 * term TODO.
3629 */
3630 /* If excess == 0, no tree ops */
3631 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3632 spin_unlock(&mctz->lock);
3633 css_put(&mz->memcg->css);
3634 loop++;
3635 /*
3636 * Could not reclaim anything and there are no more
3637 * mem cgroups to try or we seem to be looping without
3638 * reclaiming anything.
3639 */
3640 if (!nr_reclaimed &&
3641 (next_mz == NULL ||
3642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3643 break;
3644 } while (!nr_reclaimed);
3645 if (next_mz)
3646 css_put(&next_mz->memcg->css);
3647 return nr_reclaimed;
3648 }
3649
3650 /*
3651 * This routine traverse page_cgroup in given list and drop them all.
3652 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3653 */
3654 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3655 int node, int zid, enum lru_list lru)
3656 {
3657 struct mem_cgroup_per_zone *mz;
3658 unsigned long flags, loop;
3659 struct list_head *list;
3660 struct page *busy;
3661 struct zone *zone;
3662 int ret = 0;
3663
3664 zone = &NODE_DATA(node)->node_zones[zid];
3665 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3666 list = &mz->lruvec.lists[lru];
3667
3668 loop = mz->lru_size[lru];
3669 /* give some margin against EBUSY etc...*/
3670 loop += 256;
3671 busy = NULL;
3672 while (loop--) {
3673 struct page_cgroup *pc;
3674 struct page *page;
3675
3676 ret = 0;
3677 spin_lock_irqsave(&zone->lru_lock, flags);
3678 if (list_empty(list)) {
3679 spin_unlock_irqrestore(&zone->lru_lock, flags);
3680 break;
3681 }
3682 page = list_entry(list->prev, struct page, lru);
3683 if (busy == page) {
3684 list_move(&page->lru, list);
3685 busy = NULL;
3686 spin_unlock_irqrestore(&zone->lru_lock, flags);
3687 continue;
3688 }
3689 spin_unlock_irqrestore(&zone->lru_lock, flags);
3690
3691 pc = lookup_page_cgroup(page);
3692
3693 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3694 if (ret == -ENOMEM || ret == -EINTR)
3695 break;
3696
3697 if (ret == -EBUSY || ret == -EINVAL) {
3698 /* found lock contention or "pc" is obsolete. */
3699 busy = page;
3700 cond_resched();
3701 } else
3702 busy = NULL;
3703 }
3704
3705 if (!ret && !list_empty(list))
3706 return -EBUSY;
3707 return ret;
3708 }
3709
3710 /*
3711 * make mem_cgroup's charge to be 0 if there is no task.
3712 * This enables deleting this mem_cgroup.
3713 */
3714 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3715 {
3716 int ret;
3717 int node, zid, shrink;
3718 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3719 struct cgroup *cgrp = memcg->css.cgroup;
3720
3721 css_get(&memcg->css);
3722
3723 shrink = 0;
3724 /* should free all ? */
3725 if (free_all)
3726 goto try_to_free;
3727 move_account:
3728 do {
3729 ret = -EBUSY;
3730 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3731 goto out;
3732 ret = -EINTR;
3733 if (signal_pending(current))
3734 goto out;
3735 /* This is for making all *used* pages to be on LRU. */
3736 lru_add_drain_all();
3737 drain_all_stock_sync(memcg);
3738 ret = 0;
3739 mem_cgroup_start_move(memcg);
3740 for_each_node_state(node, N_HIGH_MEMORY) {
3741 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3742 enum lru_list lru;
3743 for_each_lru(lru) {
3744 ret = mem_cgroup_force_empty_list(memcg,
3745 node, zid, lru);
3746 if (ret)
3747 break;
3748 }
3749 }
3750 if (ret)
3751 break;
3752 }
3753 mem_cgroup_end_move(memcg);
3754 memcg_oom_recover(memcg);
3755 /* it seems parent cgroup doesn't have enough mem */
3756 if (ret == -ENOMEM)
3757 goto try_to_free;
3758 cond_resched();
3759 /* "ret" should also be checked to ensure all lists are empty. */
3760 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3761 out:
3762 css_put(&memcg->css);
3763 return ret;
3764
3765 try_to_free:
3766 /* returns EBUSY if there is a task or if we come here twice. */
3767 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3768 ret = -EBUSY;
3769 goto out;
3770 }
3771 /* we call try-to-free pages for make this cgroup empty */
3772 lru_add_drain_all();
3773 /* try to free all pages in this cgroup */
3774 shrink = 1;
3775 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3776 int progress;
3777
3778 if (signal_pending(current)) {
3779 ret = -EINTR;
3780 goto out;
3781 }
3782 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3783 false);
3784 if (!progress) {
3785 nr_retries--;
3786 /* maybe some writeback is necessary */
3787 congestion_wait(BLK_RW_ASYNC, HZ/10);
3788 }
3789
3790 }
3791 lru_add_drain();
3792 /* try move_account...there may be some *locked* pages. */
3793 goto move_account;
3794 }
3795
3796 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3797 {
3798 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3799 }
3800
3801
3802 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3803 {
3804 return mem_cgroup_from_cont(cont)->use_hierarchy;
3805 }
3806
3807 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3808 u64 val)
3809 {
3810 int retval = 0;
3811 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3812 struct cgroup *parent = cont->parent;
3813 struct mem_cgroup *parent_memcg = NULL;
3814
3815 if (parent)
3816 parent_memcg = mem_cgroup_from_cont(parent);
3817
3818 cgroup_lock();
3819 /*
3820 * If parent's use_hierarchy is set, we can't make any modifications
3821 * in the child subtrees. If it is unset, then the change can
3822 * occur, provided the current cgroup has no children.
3823 *
3824 * For the root cgroup, parent_mem is NULL, we allow value to be
3825 * set if there are no children.
3826 */
3827 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3828 (val == 1 || val == 0)) {
3829 if (list_empty(&cont->children))
3830 memcg->use_hierarchy = val;
3831 else
3832 retval = -EBUSY;
3833 } else
3834 retval = -EINVAL;
3835 cgroup_unlock();
3836
3837 return retval;
3838 }
3839
3840
3841 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3842 enum mem_cgroup_stat_index idx)
3843 {
3844 struct mem_cgroup *iter;
3845 long val = 0;
3846
3847 /* Per-cpu values can be negative, use a signed accumulator */
3848 for_each_mem_cgroup_tree(iter, memcg)
3849 val += mem_cgroup_read_stat(iter, idx);
3850
3851 if (val < 0) /* race ? */
3852 val = 0;
3853 return val;
3854 }
3855
3856 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3857 {
3858 u64 val;
3859
3860 if (!mem_cgroup_is_root(memcg)) {
3861 if (!swap)
3862 return res_counter_read_u64(&memcg->res, RES_USAGE);
3863 else
3864 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3865 }
3866
3867 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3868 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3869
3870 if (swap)
3871 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3872
3873 return val << PAGE_SHIFT;
3874 }
3875
3876 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3877 struct file *file, char __user *buf,
3878 size_t nbytes, loff_t *ppos)
3879 {
3880 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3881 char str[64];
3882 u64 val;
3883 int type, name, len;
3884
3885 type = MEMFILE_TYPE(cft->private);
3886 name = MEMFILE_ATTR(cft->private);
3887
3888 if (!do_swap_account && type == _MEMSWAP)
3889 return -EOPNOTSUPP;
3890
3891 switch (type) {
3892 case _MEM:
3893 if (name == RES_USAGE)
3894 val = mem_cgroup_usage(memcg, false);
3895 else
3896 val = res_counter_read_u64(&memcg->res, name);
3897 break;
3898 case _MEMSWAP:
3899 if (name == RES_USAGE)
3900 val = mem_cgroup_usage(memcg, true);
3901 else
3902 val = res_counter_read_u64(&memcg->memsw, name);
3903 break;
3904 default:
3905 BUG();
3906 }
3907
3908 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3909 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3910 }
3911 /*
3912 * The user of this function is...
3913 * RES_LIMIT.
3914 */
3915 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3916 const char *buffer)
3917 {
3918 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3919 int type, name;
3920 unsigned long long val;
3921 int ret;
3922
3923 type = MEMFILE_TYPE(cft->private);
3924 name = MEMFILE_ATTR(cft->private);
3925
3926 if (!do_swap_account && type == _MEMSWAP)
3927 return -EOPNOTSUPP;
3928
3929 switch (name) {
3930 case RES_LIMIT:
3931 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3932 ret = -EINVAL;
3933 break;
3934 }
3935 /* This function does all necessary parse...reuse it */
3936 ret = res_counter_memparse_write_strategy(buffer, &val);
3937 if (ret)
3938 break;
3939 if (type == _MEM)
3940 ret = mem_cgroup_resize_limit(memcg, val);
3941 else
3942 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3943 break;
3944 case RES_SOFT_LIMIT:
3945 ret = res_counter_memparse_write_strategy(buffer, &val);
3946 if (ret)
3947 break;
3948 /*
3949 * For memsw, soft limits are hard to implement in terms
3950 * of semantics, for now, we support soft limits for
3951 * control without swap
3952 */
3953 if (type == _MEM)
3954 ret = res_counter_set_soft_limit(&memcg->res, val);
3955 else
3956 ret = -EINVAL;
3957 break;
3958 default:
3959 ret = -EINVAL; /* should be BUG() ? */
3960 break;
3961 }
3962 return ret;
3963 }
3964
3965 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3966 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3967 {
3968 struct cgroup *cgroup;
3969 unsigned long long min_limit, min_memsw_limit, tmp;
3970
3971 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3972 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3973 cgroup = memcg->css.cgroup;
3974 if (!memcg->use_hierarchy)
3975 goto out;
3976
3977 while (cgroup->parent) {
3978 cgroup = cgroup->parent;
3979 memcg = mem_cgroup_from_cont(cgroup);
3980 if (!memcg->use_hierarchy)
3981 break;
3982 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3983 min_limit = min(min_limit, tmp);
3984 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3985 min_memsw_limit = min(min_memsw_limit, tmp);
3986 }
3987 out:
3988 *mem_limit = min_limit;
3989 *memsw_limit = min_memsw_limit;
3990 }
3991
3992 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3993 {
3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3995 int type, name;
3996
3997 type = MEMFILE_TYPE(event);
3998 name = MEMFILE_ATTR(event);
3999
4000 if (!do_swap_account && type == _MEMSWAP)
4001 return -EOPNOTSUPP;
4002
4003 switch (name) {
4004 case RES_MAX_USAGE:
4005 if (type == _MEM)
4006 res_counter_reset_max(&memcg->res);
4007 else
4008 res_counter_reset_max(&memcg->memsw);
4009 break;
4010 case RES_FAILCNT:
4011 if (type == _MEM)
4012 res_counter_reset_failcnt(&memcg->res);
4013 else
4014 res_counter_reset_failcnt(&memcg->memsw);
4015 break;
4016 }
4017
4018 return 0;
4019 }
4020
4021 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4022 struct cftype *cft)
4023 {
4024 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4025 }
4026
4027 #ifdef CONFIG_MMU
4028 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4029 struct cftype *cft, u64 val)
4030 {
4031 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4032
4033 if (val >= (1 << NR_MOVE_TYPE))
4034 return -EINVAL;
4035 /*
4036 * We check this value several times in both in can_attach() and
4037 * attach(), so we need cgroup lock to prevent this value from being
4038 * inconsistent.
4039 */
4040 cgroup_lock();
4041 memcg->move_charge_at_immigrate = val;
4042 cgroup_unlock();
4043
4044 return 0;
4045 }
4046 #else
4047 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4048 struct cftype *cft, u64 val)
4049 {
4050 return -ENOSYS;
4051 }
4052 #endif
4053
4054
4055 /* For read statistics */
4056 enum {
4057 MCS_CACHE,
4058 MCS_RSS,
4059 MCS_FILE_MAPPED,
4060 MCS_PGPGIN,
4061 MCS_PGPGOUT,
4062 MCS_SWAP,
4063 MCS_PGFAULT,
4064 MCS_PGMAJFAULT,
4065 MCS_INACTIVE_ANON,
4066 MCS_ACTIVE_ANON,
4067 MCS_INACTIVE_FILE,
4068 MCS_ACTIVE_FILE,
4069 MCS_UNEVICTABLE,
4070 NR_MCS_STAT,
4071 };
4072
4073 struct mcs_total_stat {
4074 s64 stat[NR_MCS_STAT];
4075 };
4076
4077 struct {
4078 char *local_name;
4079 char *total_name;
4080 } memcg_stat_strings[NR_MCS_STAT] = {
4081 {"cache", "total_cache"},
4082 {"rss", "total_rss"},
4083 {"mapped_file", "total_mapped_file"},
4084 {"pgpgin", "total_pgpgin"},
4085 {"pgpgout", "total_pgpgout"},
4086 {"swap", "total_swap"},
4087 {"pgfault", "total_pgfault"},
4088 {"pgmajfault", "total_pgmajfault"},
4089 {"inactive_anon", "total_inactive_anon"},
4090 {"active_anon", "total_active_anon"},
4091 {"inactive_file", "total_inactive_file"},
4092 {"active_file", "total_active_file"},
4093 {"unevictable", "total_unevictable"}
4094 };
4095
4096
4097 static void
4098 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4099 {
4100 s64 val;
4101
4102 /* per cpu stat */
4103 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4104 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4105 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4106 s->stat[MCS_RSS] += val * PAGE_SIZE;
4107 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4108 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4109 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4110 s->stat[MCS_PGPGIN] += val;
4111 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4112 s->stat[MCS_PGPGOUT] += val;
4113 if (do_swap_account) {
4114 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4115 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4116 }
4117 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4118 s->stat[MCS_PGFAULT] += val;
4119 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4120 s->stat[MCS_PGMAJFAULT] += val;
4121
4122 /* per zone stat */
4123 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4124 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4125 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4126 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4127 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4128 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4129 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4130 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4131 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4132 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4133 }
4134
4135 static void
4136 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4137 {
4138 struct mem_cgroup *iter;
4139
4140 for_each_mem_cgroup_tree(iter, memcg)
4141 mem_cgroup_get_local_stat(iter, s);
4142 }
4143
4144 #ifdef CONFIG_NUMA
4145 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4146 {
4147 int nid;
4148 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4149 unsigned long node_nr;
4150 struct cgroup *cont = m->private;
4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4152
4153 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4154 seq_printf(m, "total=%lu", total_nr);
4155 for_each_node_state(nid, N_HIGH_MEMORY) {
4156 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4157 seq_printf(m, " N%d=%lu", nid, node_nr);
4158 }
4159 seq_putc(m, '\n');
4160
4161 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4162 seq_printf(m, "file=%lu", file_nr);
4163 for_each_node_state(nid, N_HIGH_MEMORY) {
4164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4165 LRU_ALL_FILE);
4166 seq_printf(m, " N%d=%lu", nid, node_nr);
4167 }
4168 seq_putc(m, '\n');
4169
4170 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4171 seq_printf(m, "anon=%lu", anon_nr);
4172 for_each_node_state(nid, N_HIGH_MEMORY) {
4173 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4174 LRU_ALL_ANON);
4175 seq_printf(m, " N%d=%lu", nid, node_nr);
4176 }
4177 seq_putc(m, '\n');
4178
4179 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4180 seq_printf(m, "unevictable=%lu", unevictable_nr);
4181 for_each_node_state(nid, N_HIGH_MEMORY) {
4182 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4183 BIT(LRU_UNEVICTABLE));
4184 seq_printf(m, " N%d=%lu", nid, node_nr);
4185 }
4186 seq_putc(m, '\n');
4187 return 0;
4188 }
4189 #endif /* CONFIG_NUMA */
4190
4191 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4192 struct cgroup_map_cb *cb)
4193 {
4194 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4195 struct mcs_total_stat mystat;
4196 int i;
4197
4198 memset(&mystat, 0, sizeof(mystat));
4199 mem_cgroup_get_local_stat(memcg, &mystat);
4200
4201
4202 for (i = 0; i < NR_MCS_STAT; i++) {
4203 if (i == MCS_SWAP && !do_swap_account)
4204 continue;
4205 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4206 }
4207
4208 /* Hierarchical information */
4209 {
4210 unsigned long long limit, memsw_limit;
4211 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4212 cb->fill(cb, "hierarchical_memory_limit", limit);
4213 if (do_swap_account)
4214 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4215 }
4216
4217 memset(&mystat, 0, sizeof(mystat));
4218 mem_cgroup_get_total_stat(memcg, &mystat);
4219 for (i = 0; i < NR_MCS_STAT; i++) {
4220 if (i == MCS_SWAP && !do_swap_account)
4221 continue;
4222 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4223 }
4224
4225 #ifdef CONFIG_DEBUG_VM
4226 {
4227 int nid, zid;
4228 struct mem_cgroup_per_zone *mz;
4229 unsigned long recent_rotated[2] = {0, 0};
4230 unsigned long recent_scanned[2] = {0, 0};
4231
4232 for_each_online_node(nid)
4233 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4234 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4235
4236 recent_rotated[0] +=
4237 mz->reclaim_stat.recent_rotated[0];
4238 recent_rotated[1] +=
4239 mz->reclaim_stat.recent_rotated[1];
4240 recent_scanned[0] +=
4241 mz->reclaim_stat.recent_scanned[0];
4242 recent_scanned[1] +=
4243 mz->reclaim_stat.recent_scanned[1];
4244 }
4245 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4246 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4247 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4248 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4249 }
4250 #endif
4251
4252 return 0;
4253 }
4254
4255 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4256 {
4257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4258
4259 return mem_cgroup_swappiness(memcg);
4260 }
4261
4262 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4263 u64 val)
4264 {
4265 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4266 struct mem_cgroup *parent;
4267
4268 if (val > 100)
4269 return -EINVAL;
4270
4271 if (cgrp->parent == NULL)
4272 return -EINVAL;
4273
4274 parent = mem_cgroup_from_cont(cgrp->parent);
4275
4276 cgroup_lock();
4277
4278 /* If under hierarchy, only empty-root can set this value */
4279 if ((parent->use_hierarchy) ||
4280 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4281 cgroup_unlock();
4282 return -EINVAL;
4283 }
4284
4285 memcg->swappiness = val;
4286
4287 cgroup_unlock();
4288
4289 return 0;
4290 }
4291
4292 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4293 {
4294 struct mem_cgroup_threshold_ary *t;
4295 u64 usage;
4296 int i;
4297
4298 rcu_read_lock();
4299 if (!swap)
4300 t = rcu_dereference(memcg->thresholds.primary);
4301 else
4302 t = rcu_dereference(memcg->memsw_thresholds.primary);
4303
4304 if (!t)
4305 goto unlock;
4306
4307 usage = mem_cgroup_usage(memcg, swap);
4308
4309 /*
4310 * current_threshold points to threshold just below usage.
4311 * If it's not true, a threshold was crossed after last
4312 * call of __mem_cgroup_threshold().
4313 */
4314 i = t->current_threshold;
4315
4316 /*
4317 * Iterate backward over array of thresholds starting from
4318 * current_threshold and check if a threshold is crossed.
4319 * If none of thresholds below usage is crossed, we read
4320 * only one element of the array here.
4321 */
4322 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4323 eventfd_signal(t->entries[i].eventfd, 1);
4324
4325 /* i = current_threshold + 1 */
4326 i++;
4327
4328 /*
4329 * Iterate forward over array of thresholds starting from
4330 * current_threshold+1 and check if a threshold is crossed.
4331 * If none of thresholds above usage is crossed, we read
4332 * only one element of the array here.
4333 */
4334 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4335 eventfd_signal(t->entries[i].eventfd, 1);
4336
4337 /* Update current_threshold */
4338 t->current_threshold = i - 1;
4339 unlock:
4340 rcu_read_unlock();
4341 }
4342
4343 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4344 {
4345 while (memcg) {
4346 __mem_cgroup_threshold(memcg, false);
4347 if (do_swap_account)
4348 __mem_cgroup_threshold(memcg, true);
4349
4350 memcg = parent_mem_cgroup(memcg);
4351 }
4352 }
4353
4354 static int compare_thresholds(const void *a, const void *b)
4355 {
4356 const struct mem_cgroup_threshold *_a = a;
4357 const struct mem_cgroup_threshold *_b = b;
4358
4359 return _a->threshold - _b->threshold;
4360 }
4361
4362 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4363 {
4364 struct mem_cgroup_eventfd_list *ev;
4365
4366 list_for_each_entry(ev, &memcg->oom_notify, list)
4367 eventfd_signal(ev->eventfd, 1);
4368 return 0;
4369 }
4370
4371 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4372 {
4373 struct mem_cgroup *iter;
4374
4375 for_each_mem_cgroup_tree(iter, memcg)
4376 mem_cgroup_oom_notify_cb(iter);
4377 }
4378
4379 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4380 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4381 {
4382 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4383 struct mem_cgroup_thresholds *thresholds;
4384 struct mem_cgroup_threshold_ary *new;
4385 int type = MEMFILE_TYPE(cft->private);
4386 u64 threshold, usage;
4387 int i, size, ret;
4388
4389 ret = res_counter_memparse_write_strategy(args, &threshold);
4390 if (ret)
4391 return ret;
4392
4393 mutex_lock(&memcg->thresholds_lock);
4394
4395 if (type == _MEM)
4396 thresholds = &memcg->thresholds;
4397 else if (type == _MEMSWAP)
4398 thresholds = &memcg->memsw_thresholds;
4399 else
4400 BUG();
4401
4402 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4403
4404 /* Check if a threshold crossed before adding a new one */
4405 if (thresholds->primary)
4406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4407
4408 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4409
4410 /* Allocate memory for new array of thresholds */
4411 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4412 GFP_KERNEL);
4413 if (!new) {
4414 ret = -ENOMEM;
4415 goto unlock;
4416 }
4417 new->size = size;
4418
4419 /* Copy thresholds (if any) to new array */
4420 if (thresholds->primary) {
4421 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4422 sizeof(struct mem_cgroup_threshold));
4423 }
4424
4425 /* Add new threshold */
4426 new->entries[size - 1].eventfd = eventfd;
4427 new->entries[size - 1].threshold = threshold;
4428
4429 /* Sort thresholds. Registering of new threshold isn't time-critical */
4430 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4431 compare_thresholds, NULL);
4432
4433 /* Find current threshold */
4434 new->current_threshold = -1;
4435 for (i = 0; i < size; i++) {
4436 if (new->entries[i].threshold < usage) {
4437 /*
4438 * new->current_threshold will not be used until
4439 * rcu_assign_pointer(), so it's safe to increment
4440 * it here.
4441 */
4442 ++new->current_threshold;
4443 }
4444 }
4445
4446 /* Free old spare buffer and save old primary buffer as spare */
4447 kfree(thresholds->spare);
4448 thresholds->spare = thresholds->primary;
4449
4450 rcu_assign_pointer(thresholds->primary, new);
4451
4452 /* To be sure that nobody uses thresholds */
4453 synchronize_rcu();
4454
4455 unlock:
4456 mutex_unlock(&memcg->thresholds_lock);
4457
4458 return ret;
4459 }
4460
4461 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4462 struct cftype *cft, struct eventfd_ctx *eventfd)
4463 {
4464 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4465 struct mem_cgroup_thresholds *thresholds;
4466 struct mem_cgroup_threshold_ary *new;
4467 int type = MEMFILE_TYPE(cft->private);
4468 u64 usage;
4469 int i, j, size;
4470
4471 mutex_lock(&memcg->thresholds_lock);
4472 if (type == _MEM)
4473 thresholds = &memcg->thresholds;
4474 else if (type == _MEMSWAP)
4475 thresholds = &memcg->memsw_thresholds;
4476 else
4477 BUG();
4478
4479 if (!thresholds->primary)
4480 goto unlock;
4481
4482 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4483
4484 /* Check if a threshold crossed before removing */
4485 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4486
4487 /* Calculate new number of threshold */
4488 size = 0;
4489 for (i = 0; i < thresholds->primary->size; i++) {
4490 if (thresholds->primary->entries[i].eventfd != eventfd)
4491 size++;
4492 }
4493
4494 new = thresholds->spare;
4495
4496 /* Set thresholds array to NULL if we don't have thresholds */
4497 if (!size) {
4498 kfree(new);
4499 new = NULL;
4500 goto swap_buffers;
4501 }
4502
4503 new->size = size;
4504
4505 /* Copy thresholds and find current threshold */
4506 new->current_threshold = -1;
4507 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4508 if (thresholds->primary->entries[i].eventfd == eventfd)
4509 continue;
4510
4511 new->entries[j] = thresholds->primary->entries[i];
4512 if (new->entries[j].threshold < usage) {
4513 /*
4514 * new->current_threshold will not be used
4515 * until rcu_assign_pointer(), so it's safe to increment
4516 * it here.
4517 */
4518 ++new->current_threshold;
4519 }
4520 j++;
4521 }
4522
4523 swap_buffers:
4524 /* Swap primary and spare array */
4525 thresholds->spare = thresholds->primary;
4526 /* If all events are unregistered, free the spare array */
4527 if (!new) {
4528 kfree(thresholds->spare);
4529 thresholds->spare = NULL;
4530 }
4531
4532 rcu_assign_pointer(thresholds->primary, new);
4533
4534 /* To be sure that nobody uses thresholds */
4535 synchronize_rcu();
4536 unlock:
4537 mutex_unlock(&memcg->thresholds_lock);
4538 }
4539
4540 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4541 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4542 {
4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4544 struct mem_cgroup_eventfd_list *event;
4545 int type = MEMFILE_TYPE(cft->private);
4546
4547 BUG_ON(type != _OOM_TYPE);
4548 event = kmalloc(sizeof(*event), GFP_KERNEL);
4549 if (!event)
4550 return -ENOMEM;
4551
4552 spin_lock(&memcg_oom_lock);
4553
4554 event->eventfd = eventfd;
4555 list_add(&event->list, &memcg->oom_notify);
4556
4557 /* already in OOM ? */
4558 if (atomic_read(&memcg->under_oom))
4559 eventfd_signal(eventfd, 1);
4560 spin_unlock(&memcg_oom_lock);
4561
4562 return 0;
4563 }
4564
4565 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4566 struct cftype *cft, struct eventfd_ctx *eventfd)
4567 {
4568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4569 struct mem_cgroup_eventfd_list *ev, *tmp;
4570 int type = MEMFILE_TYPE(cft->private);
4571
4572 BUG_ON(type != _OOM_TYPE);
4573
4574 spin_lock(&memcg_oom_lock);
4575
4576 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4577 if (ev->eventfd == eventfd) {
4578 list_del(&ev->list);
4579 kfree(ev);
4580 }
4581 }
4582
4583 spin_unlock(&memcg_oom_lock);
4584 }
4585
4586 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4587 struct cftype *cft, struct cgroup_map_cb *cb)
4588 {
4589 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4590
4591 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4592
4593 if (atomic_read(&memcg->under_oom))
4594 cb->fill(cb, "under_oom", 1);
4595 else
4596 cb->fill(cb, "under_oom", 0);
4597 return 0;
4598 }
4599
4600 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4601 struct cftype *cft, u64 val)
4602 {
4603 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4604 struct mem_cgroup *parent;
4605
4606 /* cannot set to root cgroup and only 0 and 1 are allowed */
4607 if (!cgrp->parent || !((val == 0) || (val == 1)))
4608 return -EINVAL;
4609
4610 parent = mem_cgroup_from_cont(cgrp->parent);
4611
4612 cgroup_lock();
4613 /* oom-kill-disable is a flag for subhierarchy. */
4614 if ((parent->use_hierarchy) ||
4615 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4616 cgroup_unlock();
4617 return -EINVAL;
4618 }
4619 memcg->oom_kill_disable = val;
4620 if (!val)
4621 memcg_oom_recover(memcg);
4622 cgroup_unlock();
4623 return 0;
4624 }
4625
4626 #ifdef CONFIG_NUMA
4627 static const struct file_operations mem_control_numa_stat_file_operations = {
4628 .read = seq_read,
4629 .llseek = seq_lseek,
4630 .release = single_release,
4631 };
4632
4633 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4634 {
4635 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4636
4637 file->f_op = &mem_control_numa_stat_file_operations;
4638 return single_open(file, mem_control_numa_stat_show, cont);
4639 }
4640 #endif /* CONFIG_NUMA */
4641
4642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4643 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4644 {
4645 return mem_cgroup_sockets_init(memcg, ss);
4646 };
4647
4648 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4649 {
4650 mem_cgroup_sockets_destroy(memcg);
4651 }
4652 #else
4653 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4654 {
4655 return 0;
4656 }
4657
4658 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4659 {
4660 }
4661 #endif
4662
4663 static struct cftype mem_cgroup_files[] = {
4664 {
4665 .name = "usage_in_bytes",
4666 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4667 .read = mem_cgroup_read,
4668 .register_event = mem_cgroup_usage_register_event,
4669 .unregister_event = mem_cgroup_usage_unregister_event,
4670 },
4671 {
4672 .name = "max_usage_in_bytes",
4673 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4674 .trigger = mem_cgroup_reset,
4675 .read = mem_cgroup_read,
4676 },
4677 {
4678 .name = "limit_in_bytes",
4679 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4680 .write_string = mem_cgroup_write,
4681 .read = mem_cgroup_read,
4682 },
4683 {
4684 .name = "soft_limit_in_bytes",
4685 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4686 .write_string = mem_cgroup_write,
4687 .read = mem_cgroup_read,
4688 },
4689 {
4690 .name = "failcnt",
4691 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4692 .trigger = mem_cgroup_reset,
4693 .read = mem_cgroup_read,
4694 },
4695 {
4696 .name = "stat",
4697 .read_map = mem_control_stat_show,
4698 },
4699 {
4700 .name = "force_empty",
4701 .trigger = mem_cgroup_force_empty_write,
4702 },
4703 {
4704 .name = "use_hierarchy",
4705 .write_u64 = mem_cgroup_hierarchy_write,
4706 .read_u64 = mem_cgroup_hierarchy_read,
4707 },
4708 {
4709 .name = "swappiness",
4710 .read_u64 = mem_cgroup_swappiness_read,
4711 .write_u64 = mem_cgroup_swappiness_write,
4712 },
4713 {
4714 .name = "move_charge_at_immigrate",
4715 .read_u64 = mem_cgroup_move_charge_read,
4716 .write_u64 = mem_cgroup_move_charge_write,
4717 },
4718 {
4719 .name = "oom_control",
4720 .read_map = mem_cgroup_oom_control_read,
4721 .write_u64 = mem_cgroup_oom_control_write,
4722 .register_event = mem_cgroup_oom_register_event,
4723 .unregister_event = mem_cgroup_oom_unregister_event,
4724 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4725 },
4726 #ifdef CONFIG_NUMA
4727 {
4728 .name = "numa_stat",
4729 .open = mem_control_numa_stat_open,
4730 .mode = S_IRUGO,
4731 },
4732 #endif
4733 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4734 {
4735 .name = "memsw.usage_in_bytes",
4736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4737 .read = mem_cgroup_read,
4738 .register_event = mem_cgroup_usage_register_event,
4739 .unregister_event = mem_cgroup_usage_unregister_event,
4740 },
4741 {
4742 .name = "memsw.max_usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4744 .trigger = mem_cgroup_reset,
4745 .read = mem_cgroup_read,
4746 },
4747 {
4748 .name = "memsw.limit_in_bytes",
4749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4750 .write_string = mem_cgroup_write,
4751 .read = mem_cgroup_read,
4752 },
4753 {
4754 .name = "memsw.failcnt",
4755 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4756 .trigger = mem_cgroup_reset,
4757 .read = mem_cgroup_read,
4758 },
4759 #endif
4760 { }, /* terminate */
4761 };
4762
4763 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4764 {
4765 struct mem_cgroup_per_node *pn;
4766 struct mem_cgroup_per_zone *mz;
4767 enum lru_list lru;
4768 int zone, tmp = node;
4769 /*
4770 * This routine is called against possible nodes.
4771 * But it's BUG to call kmalloc() against offline node.
4772 *
4773 * TODO: this routine can waste much memory for nodes which will
4774 * never be onlined. It's better to use memory hotplug callback
4775 * function.
4776 */
4777 if (!node_state(node, N_NORMAL_MEMORY))
4778 tmp = -1;
4779 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4780 if (!pn)
4781 return 1;
4782
4783 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4784 mz = &pn->zoneinfo[zone];
4785 for_each_lru(lru)
4786 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4787 mz->usage_in_excess = 0;
4788 mz->on_tree = false;
4789 mz->memcg = memcg;
4790 }
4791 memcg->info.nodeinfo[node] = pn;
4792 return 0;
4793 }
4794
4795 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4796 {
4797 kfree(memcg->info.nodeinfo[node]);
4798 }
4799
4800 static struct mem_cgroup *mem_cgroup_alloc(void)
4801 {
4802 struct mem_cgroup *memcg;
4803 int size = sizeof(struct mem_cgroup);
4804
4805 /* Can be very big if MAX_NUMNODES is very big */
4806 if (size < PAGE_SIZE)
4807 memcg = kzalloc(size, GFP_KERNEL);
4808 else
4809 memcg = vzalloc(size);
4810
4811 if (!memcg)
4812 return NULL;
4813
4814 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4815 if (!memcg->stat)
4816 goto out_free;
4817 spin_lock_init(&memcg->pcp_counter_lock);
4818 return memcg;
4819
4820 out_free:
4821 if (size < PAGE_SIZE)
4822 kfree(memcg);
4823 else
4824 vfree(memcg);
4825 return NULL;
4826 }
4827
4828 /*
4829 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4830 * but in process context. The work_freeing structure is overlaid
4831 * on the rcu_freeing structure, which itself is overlaid on memsw.
4832 */
4833 static void vfree_work(struct work_struct *work)
4834 {
4835 struct mem_cgroup *memcg;
4836
4837 memcg = container_of(work, struct mem_cgroup, work_freeing);
4838 vfree(memcg);
4839 }
4840 static void vfree_rcu(struct rcu_head *rcu_head)
4841 {
4842 struct mem_cgroup *memcg;
4843
4844 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4845 INIT_WORK(&memcg->work_freeing, vfree_work);
4846 schedule_work(&memcg->work_freeing);
4847 }
4848
4849 /*
4850 * At destroying mem_cgroup, references from swap_cgroup can remain.
4851 * (scanning all at force_empty is too costly...)
4852 *
4853 * Instead of clearing all references at force_empty, we remember
4854 * the number of reference from swap_cgroup and free mem_cgroup when
4855 * it goes down to 0.
4856 *
4857 * Removal of cgroup itself succeeds regardless of refs from swap.
4858 */
4859
4860 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4861 {
4862 int node;
4863
4864 mem_cgroup_remove_from_trees(memcg);
4865 free_css_id(&mem_cgroup_subsys, &memcg->css);
4866
4867 for_each_node(node)
4868 free_mem_cgroup_per_zone_info(memcg, node);
4869
4870 free_percpu(memcg->stat);
4871 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4872 kfree_rcu(memcg, rcu_freeing);
4873 else
4874 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4875 }
4876
4877 static void mem_cgroup_get(struct mem_cgroup *memcg)
4878 {
4879 atomic_inc(&memcg->refcnt);
4880 }
4881
4882 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4883 {
4884 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4885 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4886 __mem_cgroup_free(memcg);
4887 if (parent)
4888 mem_cgroup_put(parent);
4889 }
4890 }
4891
4892 static void mem_cgroup_put(struct mem_cgroup *memcg)
4893 {
4894 __mem_cgroup_put(memcg, 1);
4895 }
4896
4897 /*
4898 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4899 */
4900 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4901 {
4902 if (!memcg->res.parent)
4903 return NULL;
4904 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4905 }
4906 EXPORT_SYMBOL(parent_mem_cgroup);
4907
4908 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4909 static void __init enable_swap_cgroup(void)
4910 {
4911 if (!mem_cgroup_disabled() && really_do_swap_account)
4912 do_swap_account = 1;
4913 }
4914 #else
4915 static void __init enable_swap_cgroup(void)
4916 {
4917 }
4918 #endif
4919
4920 static int mem_cgroup_soft_limit_tree_init(void)
4921 {
4922 struct mem_cgroup_tree_per_node *rtpn;
4923 struct mem_cgroup_tree_per_zone *rtpz;
4924 int tmp, node, zone;
4925
4926 for_each_node(node) {
4927 tmp = node;
4928 if (!node_state(node, N_NORMAL_MEMORY))
4929 tmp = -1;
4930 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4931 if (!rtpn)
4932 goto err_cleanup;
4933
4934 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935
4936 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937 rtpz = &rtpn->rb_tree_per_zone[zone];
4938 rtpz->rb_root = RB_ROOT;
4939 spin_lock_init(&rtpz->lock);
4940 }
4941 }
4942 return 0;
4943
4944 err_cleanup:
4945 for_each_node(node) {
4946 if (!soft_limit_tree.rb_tree_per_node[node])
4947 break;
4948 kfree(soft_limit_tree.rb_tree_per_node[node]);
4949 soft_limit_tree.rb_tree_per_node[node] = NULL;
4950 }
4951 return 1;
4952
4953 }
4954
4955 static struct cgroup_subsys_state * __ref
4956 mem_cgroup_create(struct cgroup *cont)
4957 {
4958 struct mem_cgroup *memcg, *parent;
4959 long error = -ENOMEM;
4960 int node;
4961
4962 memcg = mem_cgroup_alloc();
4963 if (!memcg)
4964 return ERR_PTR(error);
4965
4966 for_each_node(node)
4967 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4968 goto free_out;
4969
4970 /* root ? */
4971 if (cont->parent == NULL) {
4972 int cpu;
4973 enable_swap_cgroup();
4974 parent = NULL;
4975 if (mem_cgroup_soft_limit_tree_init())
4976 goto free_out;
4977 root_mem_cgroup = memcg;
4978 for_each_possible_cpu(cpu) {
4979 struct memcg_stock_pcp *stock =
4980 &per_cpu(memcg_stock, cpu);
4981 INIT_WORK(&stock->work, drain_local_stock);
4982 }
4983 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4984 } else {
4985 parent = mem_cgroup_from_cont(cont->parent);
4986 memcg->use_hierarchy = parent->use_hierarchy;
4987 memcg->oom_kill_disable = parent->oom_kill_disable;
4988 }
4989
4990 if (parent && parent->use_hierarchy) {
4991 res_counter_init(&memcg->res, &parent->res);
4992 res_counter_init(&memcg->memsw, &parent->memsw);
4993 /*
4994 * We increment refcnt of the parent to ensure that we can
4995 * safely access it on res_counter_charge/uncharge.
4996 * This refcnt will be decremented when freeing this
4997 * mem_cgroup(see mem_cgroup_put).
4998 */
4999 mem_cgroup_get(parent);
5000 } else {
5001 res_counter_init(&memcg->res, NULL);
5002 res_counter_init(&memcg->memsw, NULL);
5003 }
5004 memcg->last_scanned_node = MAX_NUMNODES;
5005 INIT_LIST_HEAD(&memcg->oom_notify);
5006
5007 if (parent)
5008 memcg->swappiness = mem_cgroup_swappiness(parent);
5009 atomic_set(&memcg->refcnt, 1);
5010 memcg->move_charge_at_immigrate = 0;
5011 mutex_init(&memcg->thresholds_lock);
5012 spin_lock_init(&memcg->move_lock);
5013
5014 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5015 if (error) {
5016 /*
5017 * We call put now because our (and parent's) refcnts
5018 * are already in place. mem_cgroup_put() will internally
5019 * call __mem_cgroup_free, so return directly
5020 */
5021 mem_cgroup_put(memcg);
5022 return ERR_PTR(error);
5023 }
5024 return &memcg->css;
5025 free_out:
5026 __mem_cgroup_free(memcg);
5027 return ERR_PTR(error);
5028 }
5029
5030 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5031 {
5032 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5033
5034 return mem_cgroup_force_empty(memcg, false);
5035 }
5036
5037 static void mem_cgroup_destroy(struct cgroup *cont)
5038 {
5039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5040
5041 kmem_cgroup_destroy(memcg);
5042
5043 mem_cgroup_put(memcg);
5044 }
5045
5046 #ifdef CONFIG_MMU
5047 /* Handlers for move charge at task migration. */
5048 #define PRECHARGE_COUNT_AT_ONCE 256
5049 static int mem_cgroup_do_precharge(unsigned long count)
5050 {
5051 int ret = 0;
5052 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5053 struct mem_cgroup *memcg = mc.to;
5054
5055 if (mem_cgroup_is_root(memcg)) {
5056 mc.precharge += count;
5057 /* we don't need css_get for root */
5058 return ret;
5059 }
5060 /* try to charge at once */
5061 if (count > 1) {
5062 struct res_counter *dummy;
5063 /*
5064 * "memcg" cannot be under rmdir() because we've already checked
5065 * by cgroup_lock_live_cgroup() that it is not removed and we
5066 * are still under the same cgroup_mutex. So we can postpone
5067 * css_get().
5068 */
5069 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5070 goto one_by_one;
5071 if (do_swap_account && res_counter_charge(&memcg->memsw,
5072 PAGE_SIZE * count, &dummy)) {
5073 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5074 goto one_by_one;
5075 }
5076 mc.precharge += count;
5077 return ret;
5078 }
5079 one_by_one:
5080 /* fall back to one by one charge */
5081 while (count--) {
5082 if (signal_pending(current)) {
5083 ret = -EINTR;
5084 break;
5085 }
5086 if (!batch_count--) {
5087 batch_count = PRECHARGE_COUNT_AT_ONCE;
5088 cond_resched();
5089 }
5090 ret = __mem_cgroup_try_charge(NULL,
5091 GFP_KERNEL, 1, &memcg, false);
5092 if (ret)
5093 /* mem_cgroup_clear_mc() will do uncharge later */
5094 return ret;
5095 mc.precharge++;
5096 }
5097 return ret;
5098 }
5099
5100 /**
5101 * get_mctgt_type - get target type of moving charge
5102 * @vma: the vma the pte to be checked belongs
5103 * @addr: the address corresponding to the pte to be checked
5104 * @ptent: the pte to be checked
5105 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5106 *
5107 * Returns
5108 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5109 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5110 * move charge. if @target is not NULL, the page is stored in target->page
5111 * with extra refcnt got(Callers should handle it).
5112 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5113 * target for charge migration. if @target is not NULL, the entry is stored
5114 * in target->ent.
5115 *
5116 * Called with pte lock held.
5117 */
5118 union mc_target {
5119 struct page *page;
5120 swp_entry_t ent;
5121 };
5122
5123 enum mc_target_type {
5124 MC_TARGET_NONE = 0,
5125 MC_TARGET_PAGE,
5126 MC_TARGET_SWAP,
5127 };
5128
5129 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5130 unsigned long addr, pte_t ptent)
5131 {
5132 struct page *page = vm_normal_page(vma, addr, ptent);
5133
5134 if (!page || !page_mapped(page))
5135 return NULL;
5136 if (PageAnon(page)) {
5137 /* we don't move shared anon */
5138 if (!move_anon() || page_mapcount(page) > 2)
5139 return NULL;
5140 } else if (!move_file())
5141 /* we ignore mapcount for file pages */
5142 return NULL;
5143 if (!get_page_unless_zero(page))
5144 return NULL;
5145
5146 return page;
5147 }
5148
5149 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5150 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5151 {
5152 int usage_count;
5153 struct page *page = NULL;
5154 swp_entry_t ent = pte_to_swp_entry(ptent);
5155
5156 if (!move_anon() || non_swap_entry(ent))
5157 return NULL;
5158 usage_count = mem_cgroup_count_swap_user(ent, &page);
5159 if (usage_count > 1) { /* we don't move shared anon */
5160 if (page)
5161 put_page(page);
5162 return NULL;
5163 }
5164 if (do_swap_account)
5165 entry->val = ent.val;
5166
5167 return page;
5168 }
5169
5170 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5171 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5172 {
5173 struct page *page = NULL;
5174 struct inode *inode;
5175 struct address_space *mapping;
5176 pgoff_t pgoff;
5177
5178 if (!vma->vm_file) /* anonymous vma */
5179 return NULL;
5180 if (!move_file())
5181 return NULL;
5182
5183 inode = vma->vm_file->f_path.dentry->d_inode;
5184 mapping = vma->vm_file->f_mapping;
5185 if (pte_none(ptent))
5186 pgoff = linear_page_index(vma, addr);
5187 else /* pte_file(ptent) is true */
5188 pgoff = pte_to_pgoff(ptent);
5189
5190 /* page is moved even if it's not RSS of this task(page-faulted). */
5191 page = find_get_page(mapping, pgoff);
5192
5193 #ifdef CONFIG_SWAP
5194 /* shmem/tmpfs may report page out on swap: account for that too. */
5195 if (radix_tree_exceptional_entry(page)) {
5196 swp_entry_t swap = radix_to_swp_entry(page);
5197 if (do_swap_account)
5198 *entry = swap;
5199 page = find_get_page(&swapper_space, swap.val);
5200 }
5201 #endif
5202 return page;
5203 }
5204
5205 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5206 unsigned long addr, pte_t ptent, union mc_target *target)
5207 {
5208 struct page *page = NULL;
5209 struct page_cgroup *pc;
5210 enum mc_target_type ret = MC_TARGET_NONE;
5211 swp_entry_t ent = { .val = 0 };
5212
5213 if (pte_present(ptent))
5214 page = mc_handle_present_pte(vma, addr, ptent);
5215 else if (is_swap_pte(ptent))
5216 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5217 else if (pte_none(ptent) || pte_file(ptent))
5218 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5219
5220 if (!page && !ent.val)
5221 return ret;
5222 if (page) {
5223 pc = lookup_page_cgroup(page);
5224 /*
5225 * Do only loose check w/o page_cgroup lock.
5226 * mem_cgroup_move_account() checks the pc is valid or not under
5227 * the lock.
5228 */
5229 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5230 ret = MC_TARGET_PAGE;
5231 if (target)
5232 target->page = page;
5233 }
5234 if (!ret || !target)
5235 put_page(page);
5236 }
5237 /* There is a swap entry and a page doesn't exist or isn't charged */
5238 if (ent.val && !ret &&
5239 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5240 ret = MC_TARGET_SWAP;
5241 if (target)
5242 target->ent = ent;
5243 }
5244 return ret;
5245 }
5246
5247 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5248 /*
5249 * We don't consider swapping or file mapped pages because THP does not
5250 * support them for now.
5251 * Caller should make sure that pmd_trans_huge(pmd) is true.
5252 */
5253 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 unsigned long addr, pmd_t pmd, union mc_target *target)
5255 {
5256 struct page *page = NULL;
5257 struct page_cgroup *pc;
5258 enum mc_target_type ret = MC_TARGET_NONE;
5259
5260 page = pmd_page(pmd);
5261 VM_BUG_ON(!page || !PageHead(page));
5262 if (!move_anon())
5263 return ret;
5264 pc = lookup_page_cgroup(page);
5265 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5266 ret = MC_TARGET_PAGE;
5267 if (target) {
5268 get_page(page);
5269 target->page = page;
5270 }
5271 }
5272 return ret;
5273 }
5274 #else
5275 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5276 unsigned long addr, pmd_t pmd, union mc_target *target)
5277 {
5278 return MC_TARGET_NONE;
5279 }
5280 #endif
5281
5282 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5283 unsigned long addr, unsigned long end,
5284 struct mm_walk *walk)
5285 {
5286 struct vm_area_struct *vma = walk->private;
5287 pte_t *pte;
5288 spinlock_t *ptl;
5289
5290 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5291 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5292 mc.precharge += HPAGE_PMD_NR;
5293 spin_unlock(&vma->vm_mm->page_table_lock);
5294 return 0;
5295 }
5296
5297 if (pmd_trans_unstable(pmd))
5298 return 0;
5299 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5300 for (; addr != end; pte++, addr += PAGE_SIZE)
5301 if (get_mctgt_type(vma, addr, *pte, NULL))
5302 mc.precharge++; /* increment precharge temporarily */
5303 pte_unmap_unlock(pte - 1, ptl);
5304 cond_resched();
5305
5306 return 0;
5307 }
5308
5309 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5310 {
5311 unsigned long precharge;
5312 struct vm_area_struct *vma;
5313
5314 down_read(&mm->mmap_sem);
5315 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5316 struct mm_walk mem_cgroup_count_precharge_walk = {
5317 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5318 .mm = mm,
5319 .private = vma,
5320 };
5321 if (is_vm_hugetlb_page(vma))
5322 continue;
5323 walk_page_range(vma->vm_start, vma->vm_end,
5324 &mem_cgroup_count_precharge_walk);
5325 }
5326 up_read(&mm->mmap_sem);
5327
5328 precharge = mc.precharge;
5329 mc.precharge = 0;
5330
5331 return precharge;
5332 }
5333
5334 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5335 {
5336 unsigned long precharge = mem_cgroup_count_precharge(mm);
5337
5338 VM_BUG_ON(mc.moving_task);
5339 mc.moving_task = current;
5340 return mem_cgroup_do_precharge(precharge);
5341 }
5342
5343 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5344 static void __mem_cgroup_clear_mc(void)
5345 {
5346 struct mem_cgroup *from = mc.from;
5347 struct mem_cgroup *to = mc.to;
5348
5349 /* we must uncharge all the leftover precharges from mc.to */
5350 if (mc.precharge) {
5351 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5352 mc.precharge = 0;
5353 }
5354 /*
5355 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5356 * we must uncharge here.
5357 */
5358 if (mc.moved_charge) {
5359 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5360 mc.moved_charge = 0;
5361 }
5362 /* we must fixup refcnts and charges */
5363 if (mc.moved_swap) {
5364 /* uncharge swap account from the old cgroup */
5365 if (!mem_cgroup_is_root(mc.from))
5366 res_counter_uncharge(&mc.from->memsw,
5367 PAGE_SIZE * mc.moved_swap);
5368 __mem_cgroup_put(mc.from, mc.moved_swap);
5369
5370 if (!mem_cgroup_is_root(mc.to)) {
5371 /*
5372 * we charged both to->res and to->memsw, so we should
5373 * uncharge to->res.
5374 */
5375 res_counter_uncharge(&mc.to->res,
5376 PAGE_SIZE * mc.moved_swap);
5377 }
5378 /* we've already done mem_cgroup_get(mc.to) */
5379 mc.moved_swap = 0;
5380 }
5381 memcg_oom_recover(from);
5382 memcg_oom_recover(to);
5383 wake_up_all(&mc.waitq);
5384 }
5385
5386 static void mem_cgroup_clear_mc(void)
5387 {
5388 struct mem_cgroup *from = mc.from;
5389
5390 /*
5391 * we must clear moving_task before waking up waiters at the end of
5392 * task migration.
5393 */
5394 mc.moving_task = NULL;
5395 __mem_cgroup_clear_mc();
5396 spin_lock(&mc.lock);
5397 mc.from = NULL;
5398 mc.to = NULL;
5399 spin_unlock(&mc.lock);
5400 mem_cgroup_end_move(from);
5401 }
5402
5403 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5404 struct cgroup_taskset *tset)
5405 {
5406 struct task_struct *p = cgroup_taskset_first(tset);
5407 int ret = 0;
5408 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5409
5410 if (memcg->move_charge_at_immigrate) {
5411 struct mm_struct *mm;
5412 struct mem_cgroup *from = mem_cgroup_from_task(p);
5413
5414 VM_BUG_ON(from == memcg);
5415
5416 mm = get_task_mm(p);
5417 if (!mm)
5418 return 0;
5419 /* We move charges only when we move a owner of the mm */
5420 if (mm->owner == p) {
5421 VM_BUG_ON(mc.from);
5422 VM_BUG_ON(mc.to);
5423 VM_BUG_ON(mc.precharge);
5424 VM_BUG_ON(mc.moved_charge);
5425 VM_BUG_ON(mc.moved_swap);
5426 mem_cgroup_start_move(from);
5427 spin_lock(&mc.lock);
5428 mc.from = from;
5429 mc.to = memcg;
5430 spin_unlock(&mc.lock);
5431 /* We set mc.moving_task later */
5432
5433 ret = mem_cgroup_precharge_mc(mm);
5434 if (ret)
5435 mem_cgroup_clear_mc();
5436 }
5437 mmput(mm);
5438 }
5439 return ret;
5440 }
5441
5442 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5443 struct cgroup_taskset *tset)
5444 {
5445 mem_cgroup_clear_mc();
5446 }
5447
5448 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5449 unsigned long addr, unsigned long end,
5450 struct mm_walk *walk)
5451 {
5452 int ret = 0;
5453 struct vm_area_struct *vma = walk->private;
5454 pte_t *pte;
5455 spinlock_t *ptl;
5456 enum mc_target_type target_type;
5457 union mc_target target;
5458 struct page *page;
5459 struct page_cgroup *pc;
5460
5461 /*
5462 * We don't take compound_lock() here but no race with splitting thp
5463 * happens because:
5464 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5465 * under splitting, which means there's no concurrent thp split,
5466 * - if another thread runs into split_huge_page() just after we
5467 * entered this if-block, the thread must wait for page table lock
5468 * to be unlocked in __split_huge_page_splitting(), where the main
5469 * part of thp split is not executed yet.
5470 */
5471 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5472 if (mc.precharge < HPAGE_PMD_NR) {
5473 spin_unlock(&vma->vm_mm->page_table_lock);
5474 return 0;
5475 }
5476 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5477 if (target_type == MC_TARGET_PAGE) {
5478 page = target.page;
5479 if (!isolate_lru_page(page)) {
5480 pc = lookup_page_cgroup(page);
5481 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5482 pc, mc.from, mc.to,
5483 false)) {
5484 mc.precharge -= HPAGE_PMD_NR;
5485 mc.moved_charge += HPAGE_PMD_NR;
5486 }
5487 putback_lru_page(page);
5488 }
5489 put_page(page);
5490 }
5491 spin_unlock(&vma->vm_mm->page_table_lock);
5492 return 0;
5493 }
5494
5495 if (pmd_trans_unstable(pmd))
5496 return 0;
5497 retry:
5498 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5499 for (; addr != end; addr += PAGE_SIZE) {
5500 pte_t ptent = *(pte++);
5501 swp_entry_t ent;
5502
5503 if (!mc.precharge)
5504 break;
5505
5506 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5507 case MC_TARGET_PAGE:
5508 page = target.page;
5509 if (isolate_lru_page(page))
5510 goto put;
5511 pc = lookup_page_cgroup(page);
5512 if (!mem_cgroup_move_account(page, 1, pc,
5513 mc.from, mc.to, false)) {
5514 mc.precharge--;
5515 /* we uncharge from mc.from later. */
5516 mc.moved_charge++;
5517 }
5518 putback_lru_page(page);
5519 put: /* get_mctgt_type() gets the page */
5520 put_page(page);
5521 break;
5522 case MC_TARGET_SWAP:
5523 ent = target.ent;
5524 if (!mem_cgroup_move_swap_account(ent,
5525 mc.from, mc.to, false)) {
5526 mc.precharge--;
5527 /* we fixup refcnts and charges later. */
5528 mc.moved_swap++;
5529 }
5530 break;
5531 default:
5532 break;
5533 }
5534 }
5535 pte_unmap_unlock(pte - 1, ptl);
5536 cond_resched();
5537
5538 if (addr != end) {
5539 /*
5540 * We have consumed all precharges we got in can_attach().
5541 * We try charge one by one, but don't do any additional
5542 * charges to mc.to if we have failed in charge once in attach()
5543 * phase.
5544 */
5545 ret = mem_cgroup_do_precharge(1);
5546 if (!ret)
5547 goto retry;
5548 }
5549
5550 return ret;
5551 }
5552
5553 static void mem_cgroup_move_charge(struct mm_struct *mm)
5554 {
5555 struct vm_area_struct *vma;
5556
5557 lru_add_drain_all();
5558 retry:
5559 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5560 /*
5561 * Someone who are holding the mmap_sem might be waiting in
5562 * waitq. So we cancel all extra charges, wake up all waiters,
5563 * and retry. Because we cancel precharges, we might not be able
5564 * to move enough charges, but moving charge is a best-effort
5565 * feature anyway, so it wouldn't be a big problem.
5566 */
5567 __mem_cgroup_clear_mc();
5568 cond_resched();
5569 goto retry;
5570 }
5571 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5572 int ret;
5573 struct mm_walk mem_cgroup_move_charge_walk = {
5574 .pmd_entry = mem_cgroup_move_charge_pte_range,
5575 .mm = mm,
5576 .private = vma,
5577 };
5578 if (is_vm_hugetlb_page(vma))
5579 continue;
5580 ret = walk_page_range(vma->vm_start, vma->vm_end,
5581 &mem_cgroup_move_charge_walk);
5582 if (ret)
5583 /*
5584 * means we have consumed all precharges and failed in
5585 * doing additional charge. Just abandon here.
5586 */
5587 break;
5588 }
5589 up_read(&mm->mmap_sem);
5590 }
5591
5592 static void mem_cgroup_move_task(struct cgroup *cont,
5593 struct cgroup_taskset *tset)
5594 {
5595 struct task_struct *p = cgroup_taskset_first(tset);
5596 struct mm_struct *mm = get_task_mm(p);
5597
5598 if (mm) {
5599 if (mc.to)
5600 mem_cgroup_move_charge(mm);
5601 put_swap_token(mm);
5602 mmput(mm);
5603 }
5604 if (mc.to)
5605 mem_cgroup_clear_mc();
5606 }
5607 #else /* !CONFIG_MMU */
5608 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5609 struct cgroup_taskset *tset)
5610 {
5611 return 0;
5612 }
5613 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5614 struct cgroup_taskset *tset)
5615 {
5616 }
5617 static void mem_cgroup_move_task(struct cgroup *cont,
5618 struct cgroup_taskset *tset)
5619 {
5620 }
5621 #endif
5622
5623 struct cgroup_subsys mem_cgroup_subsys = {
5624 .name = "memory",
5625 .subsys_id = mem_cgroup_subsys_id,
5626 .create = mem_cgroup_create,
5627 .pre_destroy = mem_cgroup_pre_destroy,
5628 .destroy = mem_cgroup_destroy,
5629 .can_attach = mem_cgroup_can_attach,
5630 .cancel_attach = mem_cgroup_cancel_attach,
5631 .attach = mem_cgroup_move_task,
5632 .base_cftypes = mem_cgroup_files,
5633 .early_init = 0,
5634 .use_id = 1,
5635 .__DEPRECATED_clear_css_refs = true,
5636 };
5637
5638 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5639 static int __init enable_swap_account(char *s)
5640 {
5641 /* consider enabled if no parameter or 1 is given */
5642 if (!strcmp(s, "1"))
5643 really_do_swap_account = 1;
5644 else if (!strcmp(s, "0"))
5645 really_do_swap_account = 0;
5646 return 1;
5647 }
5648 __setup("swapaccount=", enable_swap_account);
5649
5650 #endif