MAINTAINERS: Balbir has moved
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76
77 /*
78 * Statistics for memory cgroup.
79 */
80 enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
91 };
92
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107 enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_NTARGETS,
111 };
112 #define THRESHOLDS_EVENTS_TARGET (128)
113 #define SOFTLIMIT_EVENTS_TARGET (1024)
114
115 struct mem_cgroup_stat_cpu {
116 long count[MEM_CGROUP_STAT_NSTATS];
117 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
118 unsigned long targets[MEM_CGROUP_NTARGETS];
119 };
120
121 /*
122 * per-zone information in memory controller.
123 */
124 struct mem_cgroup_per_zone {
125 /*
126 * spin_lock to protect the per cgroup LRU
127 */
128 struct list_head lists[NR_LRU_LISTS];
129 unsigned long count[NR_LRU_LISTS];
130
131 struct zone_reclaim_stat reclaim_stat;
132 struct rb_node tree_node; /* RB tree node */
133 unsigned long long usage_in_excess;/* Set to the value by which */
134 /* the soft limit is exceeded*/
135 bool on_tree;
136 struct mem_cgroup *mem; /* Back pointer, we cannot */
137 /* use container_of */
138 };
139 /* Macro for accessing counter */
140 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
141
142 struct mem_cgroup_per_node {
143 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
144 };
145
146 struct mem_cgroup_lru_info {
147 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
148 };
149
150 /*
151 * Cgroups above their limits are maintained in a RB-Tree, independent of
152 * their hierarchy representation
153 */
154
155 struct mem_cgroup_tree_per_zone {
156 struct rb_root rb_root;
157 spinlock_t lock;
158 };
159
160 struct mem_cgroup_tree_per_node {
161 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
162 };
163
164 struct mem_cgroup_tree {
165 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
166 };
167
168 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
169
170 struct mem_cgroup_threshold {
171 struct eventfd_ctx *eventfd;
172 u64 threshold;
173 };
174
175 /* For threshold */
176 struct mem_cgroup_threshold_ary {
177 /* An array index points to threshold just below usage. */
178 int current_threshold;
179 /* Size of entries[] */
180 unsigned int size;
181 /* Array of thresholds */
182 struct mem_cgroup_threshold entries[0];
183 };
184
185 struct mem_cgroup_thresholds {
186 /* Primary thresholds array */
187 struct mem_cgroup_threshold_ary *primary;
188 /*
189 * Spare threshold array.
190 * This is needed to make mem_cgroup_unregister_event() "never fail".
191 * It must be able to store at least primary->size - 1 entries.
192 */
193 struct mem_cgroup_threshold_ary *spare;
194 };
195
196 /* for OOM */
197 struct mem_cgroup_eventfd_list {
198 struct list_head list;
199 struct eventfd_ctx *eventfd;
200 };
201
202 static void mem_cgroup_threshold(struct mem_cgroup *mem);
203 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
204
205 /*
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
210 *
211 * TODO: Add a water mark for the memory controller. Reclaim will begin when
212 * we hit the water mark. May be even add a low water mark, such that
213 * no reclaim occurs from a cgroup at it's low water mark, this is
214 * a feature that will be implemented much later in the future.
215 */
216 struct mem_cgroup {
217 struct cgroup_subsys_state css;
218 /*
219 * the counter to account for memory usage
220 */
221 struct res_counter res;
222 /*
223 * the counter to account for mem+swap usage.
224 */
225 struct res_counter memsw;
226 /*
227 * Per cgroup active and inactive list, similar to the
228 * per zone LRU lists.
229 */
230 struct mem_cgroup_lru_info info;
231 /*
232 * While reclaiming in a hierarchy, we cache the last child we
233 * reclaimed from.
234 */
235 int last_scanned_child;
236 int last_scanned_node;
237 #if MAX_NUMNODES > 1
238 nodemask_t scan_nodes;
239 unsigned long next_scan_node_update;
240 #endif
241 /*
242 * Should the accounting and control be hierarchical, per subtree?
243 */
244 bool use_hierarchy;
245 atomic_t oom_lock;
246 atomic_t refcnt;
247
248 unsigned int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* set when res.limit == memsw.limit */
253 bool memsw_is_minimum;
254
255 /* protect arrays of thresholds */
256 struct mutex thresholds_lock;
257
258 /* thresholds for memory usage. RCU-protected */
259 struct mem_cgroup_thresholds thresholds;
260
261 /* thresholds for mem+swap usage. RCU-protected */
262 struct mem_cgroup_thresholds memsw_thresholds;
263
264 /* For oom notifier event fd */
265 struct list_head oom_notify;
266
267 /*
268 * Should we move charges of a task when a task is moved into this
269 * mem_cgroup ? And what type of charges should we move ?
270 */
271 unsigned long move_charge_at_immigrate;
272 /*
273 * percpu counter.
274 */
275 struct mem_cgroup_stat_cpu *stat;
276 /*
277 * used when a cpu is offlined or other synchronizations
278 * See mem_cgroup_read_stat().
279 */
280 struct mem_cgroup_stat_cpu nocpu_base;
281 spinlock_t pcp_counter_lock;
282 };
283
284 /* Stuffs for move charges at task migration. */
285 /*
286 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
287 * left-shifted bitmap of these types.
288 */
289 enum move_type {
290 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
291 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
292 NR_MOVE_TYPE,
293 };
294
295 /* "mc" and its members are protected by cgroup_mutex */
296 static struct move_charge_struct {
297 spinlock_t lock; /* for from, to */
298 struct mem_cgroup *from;
299 struct mem_cgroup *to;
300 unsigned long precharge;
301 unsigned long moved_charge;
302 unsigned long moved_swap;
303 struct task_struct *moving_task; /* a task moving charges */
304 wait_queue_head_t waitq; /* a waitq for other context */
305 } mc = {
306 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
307 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
308 };
309
310 static bool move_anon(void)
311 {
312 return test_bit(MOVE_CHARGE_TYPE_ANON,
313 &mc.to->move_charge_at_immigrate);
314 }
315
316 static bool move_file(void)
317 {
318 return test_bit(MOVE_CHARGE_TYPE_FILE,
319 &mc.to->move_charge_at_immigrate);
320 }
321
322 /*
323 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
324 * limit reclaim to prevent infinite loops, if they ever occur.
325 */
326 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
327 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
328
329 enum charge_type {
330 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
331 MEM_CGROUP_CHARGE_TYPE_MAPPED,
332 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
333 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
334 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
335 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
336 NR_CHARGE_TYPE,
337 };
338
339 /* for encoding cft->private value on file */
340 #define _MEM (0)
341 #define _MEMSWAP (1)
342 #define _OOM_TYPE (2)
343 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
344 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
345 #define MEMFILE_ATTR(val) ((val) & 0xffff)
346 /* Used for OOM nofiier */
347 #define OOM_CONTROL (0)
348
349 /*
350 * Reclaim flags for mem_cgroup_hierarchical_reclaim
351 */
352 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
353 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
354 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
355 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
356 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
357 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358
359 static void mem_cgroup_get(struct mem_cgroup *mem);
360 static void mem_cgroup_put(struct mem_cgroup *mem);
361 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
362 static void drain_all_stock_async(void);
363
364 static struct mem_cgroup_per_zone *
365 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
366 {
367 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 }
369
370 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
371 {
372 return &mem->css;
373 }
374
375 static struct mem_cgroup_per_zone *
376 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
377 {
378 int nid = page_to_nid(page);
379 int zid = page_zonenum(page);
380
381 return mem_cgroup_zoneinfo(mem, nid, zid);
382 }
383
384 static struct mem_cgroup_tree_per_zone *
385 soft_limit_tree_node_zone(int nid, int zid)
386 {
387 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388 }
389
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_from_page(struct page *page)
392 {
393 int nid = page_to_nid(page);
394 int zid = page_zonenum(page);
395
396 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
397 }
398
399 static void
400 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
401 struct mem_cgroup_per_zone *mz,
402 struct mem_cgroup_tree_per_zone *mctz,
403 unsigned long long new_usage_in_excess)
404 {
405 struct rb_node **p = &mctz->rb_root.rb_node;
406 struct rb_node *parent = NULL;
407 struct mem_cgroup_per_zone *mz_node;
408
409 if (mz->on_tree)
410 return;
411
412 mz->usage_in_excess = new_usage_in_excess;
413 if (!mz->usage_in_excess)
414 return;
415 while (*p) {
416 parent = *p;
417 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 tree_node);
419 if (mz->usage_in_excess < mz_node->usage_in_excess)
420 p = &(*p)->rb_left;
421 /*
422 * We can't avoid mem cgroups that are over their soft
423 * limit by the same amount
424 */
425 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 p = &(*p)->rb_right;
427 }
428 rb_link_node(&mz->tree_node, parent, p);
429 rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 mz->on_tree = true;
431 }
432
433 static void
434 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
435 struct mem_cgroup_per_zone *mz,
436 struct mem_cgroup_tree_per_zone *mctz)
437 {
438 if (!mz->on_tree)
439 return;
440 rb_erase(&mz->tree_node, &mctz->rb_root);
441 mz->on_tree = false;
442 }
443
444 static void
445 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
446 struct mem_cgroup_per_zone *mz,
447 struct mem_cgroup_tree_per_zone *mctz)
448 {
449 spin_lock(&mctz->lock);
450 __mem_cgroup_remove_exceeded(mem, mz, mctz);
451 spin_unlock(&mctz->lock);
452 }
453
454
455 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
456 {
457 unsigned long long excess;
458 struct mem_cgroup_per_zone *mz;
459 struct mem_cgroup_tree_per_zone *mctz;
460 int nid = page_to_nid(page);
461 int zid = page_zonenum(page);
462 mctz = soft_limit_tree_from_page(page);
463
464 /*
465 * Necessary to update all ancestors when hierarchy is used.
466 * because their event counter is not touched.
467 */
468 for (; mem; mem = parent_mem_cgroup(mem)) {
469 mz = mem_cgroup_zoneinfo(mem, nid, zid);
470 excess = res_counter_soft_limit_excess(&mem->res);
471 /*
472 * We have to update the tree if mz is on RB-tree or
473 * mem is over its softlimit.
474 */
475 if (excess || mz->on_tree) {
476 spin_lock(&mctz->lock);
477 /* if on-tree, remove it */
478 if (mz->on_tree)
479 __mem_cgroup_remove_exceeded(mem, mz, mctz);
480 /*
481 * Insert again. mz->usage_in_excess will be updated.
482 * If excess is 0, no tree ops.
483 */
484 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
485 spin_unlock(&mctz->lock);
486 }
487 }
488 }
489
490 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
491 {
492 int node, zone;
493 struct mem_cgroup_per_zone *mz;
494 struct mem_cgroup_tree_per_zone *mctz;
495
496 for_each_node_state(node, N_POSSIBLE) {
497 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
498 mz = mem_cgroup_zoneinfo(mem, node, zone);
499 mctz = soft_limit_tree_node_zone(node, zone);
500 mem_cgroup_remove_exceeded(mem, mz, mctz);
501 }
502 }
503 }
504
505 static struct mem_cgroup_per_zone *
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
507 {
508 struct rb_node *rightmost = NULL;
509 struct mem_cgroup_per_zone *mz;
510
511 retry:
512 mz = NULL;
513 rightmost = rb_last(&mctz->rb_root);
514 if (!rightmost)
515 goto done; /* Nothing to reclaim from */
516
517 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
518 /*
519 * Remove the node now but someone else can add it back,
520 * we will to add it back at the end of reclaim to its correct
521 * position in the tree.
522 */
523 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 !css_tryget(&mz->mem->css))
526 goto retry;
527 done:
528 return mz;
529 }
530
531 static struct mem_cgroup_per_zone *
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
533 {
534 struct mem_cgroup_per_zone *mz;
535
536 spin_lock(&mctz->lock);
537 mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 spin_unlock(&mctz->lock);
539 return mz;
540 }
541
542 /*
543 * Implementation Note: reading percpu statistics for memcg.
544 *
545 * Both of vmstat[] and percpu_counter has threshold and do periodic
546 * synchronization to implement "quick" read. There are trade-off between
547 * reading cost and precision of value. Then, we may have a chance to implement
548 * a periodic synchronizion of counter in memcg's counter.
549 *
550 * But this _read() function is used for user interface now. The user accounts
551 * memory usage by memory cgroup and he _always_ requires exact value because
552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553 * have to visit all online cpus and make sum. So, for now, unnecessary
554 * synchronization is not implemented. (just implemented for cpu hotplug)
555 *
556 * If there are kernel internal actions which can make use of some not-exact
557 * value, and reading all cpu value can be performance bottleneck in some
558 * common workload, threashold and synchonization as vmstat[] should be
559 * implemented.
560 */
561 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
562 enum mem_cgroup_stat_index idx)
563 {
564 long val = 0;
565 int cpu;
566
567 get_online_cpus();
568 for_each_online_cpu(cpu)
569 val += per_cpu(mem->stat->count[idx], cpu);
570 #ifdef CONFIG_HOTPLUG_CPU
571 spin_lock(&mem->pcp_counter_lock);
572 val += mem->nocpu_base.count[idx];
573 spin_unlock(&mem->pcp_counter_lock);
574 #endif
575 put_online_cpus();
576 return val;
577 }
578
579 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
580 {
581 long ret;
582
583 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 return ret;
586 }
587
588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 bool charge)
590 {
591 int val = (charge) ? 1 : -1;
592 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 }
594
595 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
596 {
597 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
598 }
599
600 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
601 {
602 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
603 }
604
605 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
606 enum mem_cgroup_events_index idx)
607 {
608 unsigned long val = 0;
609 int cpu;
610
611 for_each_online_cpu(cpu)
612 val += per_cpu(mem->stat->events[idx], cpu);
613 #ifdef CONFIG_HOTPLUG_CPU
614 spin_lock(&mem->pcp_counter_lock);
615 val += mem->nocpu_base.events[idx];
616 spin_unlock(&mem->pcp_counter_lock);
617 #endif
618 return val;
619 }
620
621 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
622 bool file, int nr_pages)
623 {
624 preempt_disable();
625
626 if (file)
627 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
628 else
629 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
640
641 preempt_enable();
642 }
643
644 static unsigned long
645 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
646 {
647 struct mem_cgroup_per_zone *mz;
648 u64 total = 0;
649 int zid;
650
651 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
652 mz = mem_cgroup_zoneinfo(mem, nid, zid);
653 total += MEM_CGROUP_ZSTAT(mz, idx);
654 }
655 return total;
656 }
657 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
658 enum lru_list idx)
659 {
660 int nid;
661 u64 total = 0;
662
663 for_each_online_node(nid)
664 total += mem_cgroup_get_zonestat_node(mem, nid, idx);
665 return total;
666 }
667
668 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
669 {
670 unsigned long val, next;
671
672 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
673 next = this_cpu_read(mem->stat->targets[target]);
674 /* from time_after() in jiffies.h */
675 return ((long)next - (long)val < 0);
676 }
677
678 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
679 {
680 unsigned long val, next;
681
682 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
683
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 default:
692 return;
693 }
694
695 this_cpu_write(mem->stat->targets[target], next);
696 }
697
698 /*
699 * Check events in order.
700 *
701 */
702 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
703 {
704 /* threshold event is triggered in finer grain than soft limit */
705 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
706 mem_cgroup_threshold(mem);
707 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
708 if (unlikely(__memcg_event_check(mem,
709 MEM_CGROUP_TARGET_SOFTLIMIT))){
710 mem_cgroup_update_tree(mem, page);
711 __mem_cgroup_target_update(mem,
712 MEM_CGROUP_TARGET_SOFTLIMIT);
713 }
714 }
715 }
716
717 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
718 {
719 return container_of(cgroup_subsys_state(cont,
720 mem_cgroup_subsys_id), struct mem_cgroup,
721 css);
722 }
723
724 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
725 {
726 /*
727 * mm_update_next_owner() may clear mm->owner to NULL
728 * if it races with swapoff, page migration, etc.
729 * So this can be called with p == NULL.
730 */
731 if (unlikely(!p))
732 return NULL;
733
734 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
735 struct mem_cgroup, css);
736 }
737
738 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
739 {
740 struct mem_cgroup *mem = NULL;
741
742 if (!mm)
743 return NULL;
744 /*
745 * Because we have no locks, mm->owner's may be being moved to other
746 * cgroup. We use css_tryget() here even if this looks
747 * pessimistic (rather than adding locks here).
748 */
749 rcu_read_lock();
750 do {
751 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
752 if (unlikely(!mem))
753 break;
754 } while (!css_tryget(&mem->css));
755 rcu_read_unlock();
756 return mem;
757 }
758
759 /* The caller has to guarantee "mem" exists before calling this */
760 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
761 {
762 struct cgroup_subsys_state *css;
763 int found;
764
765 if (!mem) /* ROOT cgroup has the smallest ID */
766 return root_mem_cgroup; /*css_put/get against root is ignored*/
767 if (!mem->use_hierarchy) {
768 if (css_tryget(&mem->css))
769 return mem;
770 return NULL;
771 }
772 rcu_read_lock();
773 /*
774 * searching a memory cgroup which has the smallest ID under given
775 * ROOT cgroup. (ID >= 1)
776 */
777 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
778 if (css && css_tryget(css))
779 mem = container_of(css, struct mem_cgroup, css);
780 else
781 mem = NULL;
782 rcu_read_unlock();
783 return mem;
784 }
785
786 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
787 struct mem_cgroup *root,
788 bool cond)
789 {
790 int nextid = css_id(&iter->css) + 1;
791 int found;
792 int hierarchy_used;
793 struct cgroup_subsys_state *css;
794
795 hierarchy_used = iter->use_hierarchy;
796
797 css_put(&iter->css);
798 /* If no ROOT, walk all, ignore hierarchy */
799 if (!cond || (root && !hierarchy_used))
800 return NULL;
801
802 if (!root)
803 root = root_mem_cgroup;
804
805 do {
806 iter = NULL;
807 rcu_read_lock();
808
809 css = css_get_next(&mem_cgroup_subsys, nextid,
810 &root->css, &found);
811 if (css && css_tryget(css))
812 iter = container_of(css, struct mem_cgroup, css);
813 rcu_read_unlock();
814 /* If css is NULL, no more cgroups will be found */
815 nextid = found + 1;
816 } while (css && !iter);
817
818 return iter;
819 }
820 /*
821 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
822 * be careful that "break" loop is not allowed. We have reference count.
823 * Instead of that modify "cond" to be false and "continue" to exit the loop.
824 */
825 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
826 for (iter = mem_cgroup_start_loop(root);\
827 iter != NULL;\
828 iter = mem_cgroup_get_next(iter, root, cond))
829
830 #define for_each_mem_cgroup_tree(iter, root) \
831 for_each_mem_cgroup_tree_cond(iter, root, true)
832
833 #define for_each_mem_cgroup_all(iter) \
834 for_each_mem_cgroup_tree_cond(iter, NULL, true)
835
836
837 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
838 {
839 return (mem == root_mem_cgroup);
840 }
841
842 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
843 {
844 struct mem_cgroup *mem;
845
846 if (!mm)
847 return;
848
849 rcu_read_lock();
850 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 if (unlikely(!mem))
852 goto out;
853
854 switch (idx) {
855 case PGMAJFAULT:
856 mem_cgroup_pgmajfault(mem, 1);
857 break;
858 case PGFAULT:
859 mem_cgroup_pgfault(mem, 1);
860 break;
861 default:
862 BUG();
863 }
864 out:
865 rcu_read_unlock();
866 }
867 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
868
869 /*
870 * Following LRU functions are allowed to be used without PCG_LOCK.
871 * Operations are called by routine of global LRU independently from memcg.
872 * What we have to take care of here is validness of pc->mem_cgroup.
873 *
874 * Changes to pc->mem_cgroup happens when
875 * 1. charge
876 * 2. moving account
877 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
878 * It is added to LRU before charge.
879 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
880 * When moving account, the page is not on LRU. It's isolated.
881 */
882
883 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
884 {
885 struct page_cgroup *pc;
886 struct mem_cgroup_per_zone *mz;
887
888 if (mem_cgroup_disabled())
889 return;
890 pc = lookup_page_cgroup(page);
891 /* can happen while we handle swapcache. */
892 if (!TestClearPageCgroupAcctLRU(pc))
893 return;
894 VM_BUG_ON(!pc->mem_cgroup);
895 /*
896 * We don't check PCG_USED bit. It's cleared when the "page" is finally
897 * removed from global LRU.
898 */
899 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
900 /* huge page split is done under lru_lock. so, we have no races. */
901 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
902 if (mem_cgroup_is_root(pc->mem_cgroup))
903 return;
904 VM_BUG_ON(list_empty(&pc->lru));
905 list_del_init(&pc->lru);
906 }
907
908 void mem_cgroup_del_lru(struct page *page)
909 {
910 mem_cgroup_del_lru_list(page, page_lru(page));
911 }
912
913 /*
914 * Writeback is about to end against a page which has been marked for immediate
915 * reclaim. If it still appears to be reclaimable, move it to the tail of the
916 * inactive list.
917 */
918 void mem_cgroup_rotate_reclaimable_page(struct page *page)
919 {
920 struct mem_cgroup_per_zone *mz;
921 struct page_cgroup *pc;
922 enum lru_list lru = page_lru(page);
923
924 if (mem_cgroup_disabled())
925 return;
926
927 pc = lookup_page_cgroup(page);
928 /* unused or root page is not rotated. */
929 if (!PageCgroupUsed(pc))
930 return;
931 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
932 smp_rmb();
933 if (mem_cgroup_is_root(pc->mem_cgroup))
934 return;
935 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
936 list_move_tail(&pc->lru, &mz->lists[lru]);
937 }
938
939 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
940 {
941 struct mem_cgroup_per_zone *mz;
942 struct page_cgroup *pc;
943
944 if (mem_cgroup_disabled())
945 return;
946
947 pc = lookup_page_cgroup(page);
948 /* unused or root page is not rotated. */
949 if (!PageCgroupUsed(pc))
950 return;
951 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
952 smp_rmb();
953 if (mem_cgroup_is_root(pc->mem_cgroup))
954 return;
955 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
956 list_move(&pc->lru, &mz->lists[lru]);
957 }
958
959 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
960 {
961 struct page_cgroup *pc;
962 struct mem_cgroup_per_zone *mz;
963
964 if (mem_cgroup_disabled())
965 return;
966 pc = lookup_page_cgroup(page);
967 VM_BUG_ON(PageCgroupAcctLRU(pc));
968 if (!PageCgroupUsed(pc))
969 return;
970 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
971 smp_rmb();
972 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
973 /* huge page split is done under lru_lock. so, we have no races. */
974 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
975 SetPageCgroupAcctLRU(pc);
976 if (mem_cgroup_is_root(pc->mem_cgroup))
977 return;
978 list_add(&pc->lru, &mz->lists[lru]);
979 }
980
981 /*
982 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
983 * while it's linked to lru because the page may be reused after it's fully
984 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
985 * It's done under lock_page and expected that zone->lru_lock isnever held.
986 */
987 static void mem_cgroup_lru_del_before_commit(struct page *page)
988 {
989 unsigned long flags;
990 struct zone *zone = page_zone(page);
991 struct page_cgroup *pc = lookup_page_cgroup(page);
992
993 /*
994 * Doing this check without taking ->lru_lock seems wrong but this
995 * is safe. Because if page_cgroup's USED bit is unset, the page
996 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
997 * set, the commit after this will fail, anyway.
998 * This all charge/uncharge is done under some mutual execustion.
999 * So, we don't need to taking care of changes in USED bit.
1000 */
1001 if (likely(!PageLRU(page)))
1002 return;
1003
1004 spin_lock_irqsave(&zone->lru_lock, flags);
1005 /*
1006 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1007 * is guarded by lock_page() because the page is SwapCache.
1008 */
1009 if (!PageCgroupUsed(pc))
1010 mem_cgroup_del_lru_list(page, page_lru(page));
1011 spin_unlock_irqrestore(&zone->lru_lock, flags);
1012 }
1013
1014 static void mem_cgroup_lru_add_after_commit(struct page *page)
1015 {
1016 unsigned long flags;
1017 struct zone *zone = page_zone(page);
1018 struct page_cgroup *pc = lookup_page_cgroup(page);
1019
1020 /* taking care of that the page is added to LRU while we commit it */
1021 if (likely(!PageLRU(page)))
1022 return;
1023 spin_lock_irqsave(&zone->lru_lock, flags);
1024 /* link when the page is linked to LRU but page_cgroup isn't */
1025 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1026 mem_cgroup_add_lru_list(page, page_lru(page));
1027 spin_unlock_irqrestore(&zone->lru_lock, flags);
1028 }
1029
1030
1031 void mem_cgroup_move_lists(struct page *page,
1032 enum lru_list from, enum lru_list to)
1033 {
1034 if (mem_cgroup_disabled())
1035 return;
1036 mem_cgroup_del_lru_list(page, from);
1037 mem_cgroup_add_lru_list(page, to);
1038 }
1039
1040 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1041 {
1042 int ret;
1043 struct mem_cgroup *curr = NULL;
1044 struct task_struct *p;
1045
1046 p = find_lock_task_mm(task);
1047 if (!p)
1048 return 0;
1049 curr = try_get_mem_cgroup_from_mm(p->mm);
1050 task_unlock(p);
1051 if (!curr)
1052 return 0;
1053 /*
1054 * We should check use_hierarchy of "mem" not "curr". Because checking
1055 * use_hierarchy of "curr" here make this function true if hierarchy is
1056 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1057 * hierarchy(even if use_hierarchy is disabled in "mem").
1058 */
1059 if (mem->use_hierarchy)
1060 ret = css_is_ancestor(&curr->css, &mem->css);
1061 else
1062 ret = (curr == mem);
1063 css_put(&curr->css);
1064 return ret;
1065 }
1066
1067 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1068 {
1069 unsigned long active;
1070 unsigned long inactive;
1071 unsigned long gb;
1072 unsigned long inactive_ratio;
1073
1074 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1075 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1076
1077 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1078 if (gb)
1079 inactive_ratio = int_sqrt(10 * gb);
1080 else
1081 inactive_ratio = 1;
1082
1083 if (present_pages) {
1084 present_pages[0] = inactive;
1085 present_pages[1] = active;
1086 }
1087
1088 return inactive_ratio;
1089 }
1090
1091 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1092 {
1093 unsigned long active;
1094 unsigned long inactive;
1095 unsigned long present_pages[2];
1096 unsigned long inactive_ratio;
1097
1098 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1099
1100 inactive = present_pages[0];
1101 active = present_pages[1];
1102
1103 if (inactive * inactive_ratio < active)
1104 return 1;
1105
1106 return 0;
1107 }
1108
1109 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1110 {
1111 unsigned long active;
1112 unsigned long inactive;
1113
1114 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1115 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1116
1117 return (active > inactive);
1118 }
1119
1120 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1121 struct zone *zone,
1122 enum lru_list lru)
1123 {
1124 int nid = zone_to_nid(zone);
1125 int zid = zone_idx(zone);
1126 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1127
1128 return MEM_CGROUP_ZSTAT(mz, lru);
1129 }
1130
1131 #ifdef CONFIG_NUMA
1132 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1133 int nid)
1134 {
1135 unsigned long ret;
1136
1137 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1138 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1139
1140 return ret;
1141 }
1142
1143 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1144 {
1145 u64 total = 0;
1146 int nid;
1147
1148 for_each_node_state(nid, N_HIGH_MEMORY)
1149 total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1150
1151 return total;
1152 }
1153
1154 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1155 int nid)
1156 {
1157 unsigned long ret;
1158
1159 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1160 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1161
1162 return ret;
1163 }
1164
1165 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1166 {
1167 u64 total = 0;
1168 int nid;
1169
1170 for_each_node_state(nid, N_HIGH_MEMORY)
1171 total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1172
1173 return total;
1174 }
1175
1176 static unsigned long
1177 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1178 {
1179 return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1180 }
1181
1182 static unsigned long
1183 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1184 {
1185 u64 total = 0;
1186 int nid;
1187
1188 for_each_node_state(nid, N_HIGH_MEMORY)
1189 total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1190
1191 return total;
1192 }
1193
1194 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1195 int nid)
1196 {
1197 enum lru_list l;
1198 u64 total = 0;
1199
1200 for_each_lru(l)
1201 total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1202
1203 return total;
1204 }
1205
1206 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1207 {
1208 u64 total = 0;
1209 int nid;
1210
1211 for_each_node_state(nid, N_HIGH_MEMORY)
1212 total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1213
1214 return total;
1215 }
1216 #endif /* CONFIG_NUMA */
1217
1218 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1219 struct zone *zone)
1220 {
1221 int nid = zone_to_nid(zone);
1222 int zid = zone_idx(zone);
1223 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1224
1225 return &mz->reclaim_stat;
1226 }
1227
1228 struct zone_reclaim_stat *
1229 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1230 {
1231 struct page_cgroup *pc;
1232 struct mem_cgroup_per_zone *mz;
1233
1234 if (mem_cgroup_disabled())
1235 return NULL;
1236
1237 pc = lookup_page_cgroup(page);
1238 if (!PageCgroupUsed(pc))
1239 return NULL;
1240 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1241 smp_rmb();
1242 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1243 return &mz->reclaim_stat;
1244 }
1245
1246 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1247 struct list_head *dst,
1248 unsigned long *scanned, int order,
1249 int mode, struct zone *z,
1250 struct mem_cgroup *mem_cont,
1251 int active, int file)
1252 {
1253 unsigned long nr_taken = 0;
1254 struct page *page;
1255 unsigned long scan;
1256 LIST_HEAD(pc_list);
1257 struct list_head *src;
1258 struct page_cgroup *pc, *tmp;
1259 int nid = zone_to_nid(z);
1260 int zid = zone_idx(z);
1261 struct mem_cgroup_per_zone *mz;
1262 int lru = LRU_FILE * file + active;
1263 int ret;
1264
1265 BUG_ON(!mem_cont);
1266 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1267 src = &mz->lists[lru];
1268
1269 scan = 0;
1270 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1271 if (scan >= nr_to_scan)
1272 break;
1273
1274 if (unlikely(!PageCgroupUsed(pc)))
1275 continue;
1276
1277 page = lookup_cgroup_page(pc);
1278
1279 if (unlikely(!PageLRU(page)))
1280 continue;
1281
1282 scan++;
1283 ret = __isolate_lru_page(page, mode, file);
1284 switch (ret) {
1285 case 0:
1286 list_move(&page->lru, dst);
1287 mem_cgroup_del_lru(page);
1288 nr_taken += hpage_nr_pages(page);
1289 break;
1290 case -EBUSY:
1291 /* we don't affect global LRU but rotate in our LRU */
1292 mem_cgroup_rotate_lru_list(page, page_lru(page));
1293 break;
1294 default:
1295 break;
1296 }
1297 }
1298
1299 *scanned = scan;
1300
1301 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1302 0, 0, 0, mode);
1303
1304 return nr_taken;
1305 }
1306
1307 #define mem_cgroup_from_res_counter(counter, member) \
1308 container_of(counter, struct mem_cgroup, member)
1309
1310 /**
1311 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1312 * @mem: the memory cgroup
1313 *
1314 * Returns the maximum amount of memory @mem can be charged with, in
1315 * pages.
1316 */
1317 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1318 {
1319 unsigned long long margin;
1320
1321 margin = res_counter_margin(&mem->res);
1322 if (do_swap_account)
1323 margin = min(margin, res_counter_margin(&mem->memsw));
1324 return margin >> PAGE_SHIFT;
1325 }
1326
1327 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1328 {
1329 struct cgroup *cgrp = memcg->css.cgroup;
1330
1331 /* root ? */
1332 if (cgrp->parent == NULL)
1333 return vm_swappiness;
1334
1335 return memcg->swappiness;
1336 }
1337
1338 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1339 {
1340 int cpu;
1341
1342 get_online_cpus();
1343 spin_lock(&mem->pcp_counter_lock);
1344 for_each_online_cpu(cpu)
1345 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1346 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1347 spin_unlock(&mem->pcp_counter_lock);
1348 put_online_cpus();
1349
1350 synchronize_rcu();
1351 }
1352
1353 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1354 {
1355 int cpu;
1356
1357 if (!mem)
1358 return;
1359 get_online_cpus();
1360 spin_lock(&mem->pcp_counter_lock);
1361 for_each_online_cpu(cpu)
1362 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1363 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1364 spin_unlock(&mem->pcp_counter_lock);
1365 put_online_cpus();
1366 }
1367 /*
1368 * 2 routines for checking "mem" is under move_account() or not.
1369 *
1370 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1371 * for avoiding race in accounting. If true,
1372 * pc->mem_cgroup may be overwritten.
1373 *
1374 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1375 * under hierarchy of moving cgroups. This is for
1376 * waiting at hith-memory prressure caused by "move".
1377 */
1378
1379 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1380 {
1381 VM_BUG_ON(!rcu_read_lock_held());
1382 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1383 }
1384
1385 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1386 {
1387 struct mem_cgroup *from;
1388 struct mem_cgroup *to;
1389 bool ret = false;
1390 /*
1391 * Unlike task_move routines, we access mc.to, mc.from not under
1392 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1393 */
1394 spin_lock(&mc.lock);
1395 from = mc.from;
1396 to = mc.to;
1397 if (!from)
1398 goto unlock;
1399 if (from == mem || to == mem
1400 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1401 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1402 ret = true;
1403 unlock:
1404 spin_unlock(&mc.lock);
1405 return ret;
1406 }
1407
1408 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1409 {
1410 if (mc.moving_task && current != mc.moving_task) {
1411 if (mem_cgroup_under_move(mem)) {
1412 DEFINE_WAIT(wait);
1413 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1414 /* moving charge context might have finished. */
1415 if (mc.moving_task)
1416 schedule();
1417 finish_wait(&mc.waitq, &wait);
1418 return true;
1419 }
1420 }
1421 return false;
1422 }
1423
1424 /**
1425 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1426 * @memcg: The memory cgroup that went over limit
1427 * @p: Task that is going to be killed
1428 *
1429 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1430 * enabled
1431 */
1432 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1433 {
1434 struct cgroup *task_cgrp;
1435 struct cgroup *mem_cgrp;
1436 /*
1437 * Need a buffer in BSS, can't rely on allocations. The code relies
1438 * on the assumption that OOM is serialized for memory controller.
1439 * If this assumption is broken, revisit this code.
1440 */
1441 static char memcg_name[PATH_MAX];
1442 int ret;
1443
1444 if (!memcg || !p)
1445 return;
1446
1447
1448 rcu_read_lock();
1449
1450 mem_cgrp = memcg->css.cgroup;
1451 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1452
1453 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1454 if (ret < 0) {
1455 /*
1456 * Unfortunately, we are unable to convert to a useful name
1457 * But we'll still print out the usage information
1458 */
1459 rcu_read_unlock();
1460 goto done;
1461 }
1462 rcu_read_unlock();
1463
1464 printk(KERN_INFO "Task in %s killed", memcg_name);
1465
1466 rcu_read_lock();
1467 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1468 if (ret < 0) {
1469 rcu_read_unlock();
1470 goto done;
1471 }
1472 rcu_read_unlock();
1473
1474 /*
1475 * Continues from above, so we don't need an KERN_ level
1476 */
1477 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1478 done:
1479
1480 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1481 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1482 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1483 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1484 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1485 "failcnt %llu\n",
1486 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1487 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1488 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1489 }
1490
1491 /*
1492 * This function returns the number of memcg under hierarchy tree. Returns
1493 * 1(self count) if no children.
1494 */
1495 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1496 {
1497 int num = 0;
1498 struct mem_cgroup *iter;
1499
1500 for_each_mem_cgroup_tree(iter, mem)
1501 num++;
1502 return num;
1503 }
1504
1505 /*
1506 * Return the memory (and swap, if configured) limit for a memcg.
1507 */
1508 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1509 {
1510 u64 limit;
1511 u64 memsw;
1512
1513 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1514 limit += total_swap_pages << PAGE_SHIFT;
1515
1516 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1517 /*
1518 * If memsw is finite and limits the amount of swap space available
1519 * to this memcg, return that limit.
1520 */
1521 return min(limit, memsw);
1522 }
1523
1524 /*
1525 * Visit the first child (need not be the first child as per the ordering
1526 * of the cgroup list, since we track last_scanned_child) of @mem and use
1527 * that to reclaim free pages from.
1528 */
1529 static struct mem_cgroup *
1530 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1531 {
1532 struct mem_cgroup *ret = NULL;
1533 struct cgroup_subsys_state *css;
1534 int nextid, found;
1535
1536 if (!root_mem->use_hierarchy) {
1537 css_get(&root_mem->css);
1538 ret = root_mem;
1539 }
1540
1541 while (!ret) {
1542 rcu_read_lock();
1543 nextid = root_mem->last_scanned_child + 1;
1544 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1545 &found);
1546 if (css && css_tryget(css))
1547 ret = container_of(css, struct mem_cgroup, css);
1548
1549 rcu_read_unlock();
1550 /* Updates scanning parameter */
1551 if (!css) {
1552 /* this means start scan from ID:1 */
1553 root_mem->last_scanned_child = 0;
1554 } else
1555 root_mem->last_scanned_child = found;
1556 }
1557
1558 return ret;
1559 }
1560
1561 #if MAX_NUMNODES > 1
1562
1563 /*
1564 * Always updating the nodemask is not very good - even if we have an empty
1565 * list or the wrong list here, we can start from some node and traverse all
1566 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1567 *
1568 */
1569 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1570 {
1571 int nid;
1572
1573 if (time_after(mem->next_scan_node_update, jiffies))
1574 return;
1575
1576 mem->next_scan_node_update = jiffies + 10*HZ;
1577 /* make a nodemask where this memcg uses memory from */
1578 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1579
1580 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581
1582 if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1583 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1584 continue;
1585
1586 if (total_swap_pages &&
1587 (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1588 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1589 continue;
1590 node_clear(nid, mem->scan_nodes);
1591 }
1592 }
1593
1594 /*
1595 * Selecting a node where we start reclaim from. Because what we need is just
1596 * reducing usage counter, start from anywhere is O,K. Considering
1597 * memory reclaim from current node, there are pros. and cons.
1598 *
1599 * Freeing memory from current node means freeing memory from a node which
1600 * we'll use or we've used. So, it may make LRU bad. And if several threads
1601 * hit limits, it will see a contention on a node. But freeing from remote
1602 * node means more costs for memory reclaim because of memory latency.
1603 *
1604 * Now, we use round-robin. Better algorithm is welcomed.
1605 */
1606 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1607 {
1608 int node;
1609
1610 mem_cgroup_may_update_nodemask(mem);
1611 node = mem->last_scanned_node;
1612
1613 node = next_node(node, mem->scan_nodes);
1614 if (node == MAX_NUMNODES)
1615 node = first_node(mem->scan_nodes);
1616 /*
1617 * We call this when we hit limit, not when pages are added to LRU.
1618 * No LRU may hold pages because all pages are UNEVICTABLE or
1619 * memcg is too small and all pages are not on LRU. In that case,
1620 * we use curret node.
1621 */
1622 if (unlikely(node == MAX_NUMNODES))
1623 node = numa_node_id();
1624
1625 mem->last_scanned_node = node;
1626 return node;
1627 }
1628
1629 #else
1630 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1631 {
1632 return 0;
1633 }
1634 #endif
1635
1636 /*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 struct zone *zone,
1650 gfp_t gfp_mask,
1651 unsigned long reclaim_options,
1652 unsigned long *total_scanned)
1653 {
1654 struct mem_cgroup *victim;
1655 int ret, total = 0;
1656 int loop = 0;
1657 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 unsigned long excess;
1661 unsigned long nr_scanned;
1662
1663 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (root_mem->memsw_is_minimum)
1667 noswap = true;
1668
1669 while (1) {
1670 victim = mem_cgroup_select_victim(root_mem);
1671 if (victim == root_mem) {
1672 loop++;
1673 if (loop >= 1)
1674 drain_all_stock_async();
1675 if (loop >= 2) {
1676 /*
1677 * If we have not been able to reclaim
1678 * anything, it might because there are
1679 * no reclaimable pages under this hierarchy
1680 */
1681 if (!check_soft || !total) {
1682 css_put(&victim->css);
1683 break;
1684 }
1685 /*
1686 * We want to do more targeted reclaim.
1687 * excess >> 2 is not to excessive so as to
1688 * reclaim too much, nor too less that we keep
1689 * coming back to reclaim from this cgroup
1690 */
1691 if (total >= (excess >> 2) ||
1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1693 css_put(&victim->css);
1694 break;
1695 }
1696 }
1697 }
1698 if (!mem_cgroup_local_usage(victim)) {
1699 /* this cgroup's local usage == 0 */
1700 css_put(&victim->css);
1701 continue;
1702 }
1703 /* we use swappiness of local cgroup */
1704 if (check_soft) {
1705 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1706 noswap, get_swappiness(victim), zone,
1707 &nr_scanned);
1708 *total_scanned += nr_scanned;
1709 } else
1710 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1711 noswap, get_swappiness(victim));
1712 css_put(&victim->css);
1713 /*
1714 * At shrinking usage, we can't check we should stop here or
1715 * reclaim more. It's depends on callers. last_scanned_child
1716 * will work enough for keeping fairness under tree.
1717 */
1718 if (shrink)
1719 return ret;
1720 total += ret;
1721 if (check_soft) {
1722 if (!res_counter_soft_limit_excess(&root_mem->res))
1723 return total;
1724 } else if (mem_cgroup_margin(root_mem))
1725 return total;
1726 }
1727 return total;
1728 }
1729
1730 /*
1731 * Check OOM-Killer is already running under our hierarchy.
1732 * If someone is running, return false.
1733 */
1734 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1735 {
1736 int x, lock_count = 0;
1737 struct mem_cgroup *iter;
1738
1739 for_each_mem_cgroup_tree(iter, mem) {
1740 x = atomic_inc_return(&iter->oom_lock);
1741 lock_count = max(x, lock_count);
1742 }
1743
1744 if (lock_count == 1)
1745 return true;
1746 return false;
1747 }
1748
1749 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1750 {
1751 struct mem_cgroup *iter;
1752
1753 /*
1754 * When a new child is created while the hierarchy is under oom,
1755 * mem_cgroup_oom_lock() may not be called. We have to use
1756 * atomic_add_unless() here.
1757 */
1758 for_each_mem_cgroup_tree(iter, mem)
1759 atomic_add_unless(&iter->oom_lock, -1, 0);
1760 return 0;
1761 }
1762
1763
1764 static DEFINE_MUTEX(memcg_oom_mutex);
1765 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1766
1767 struct oom_wait_info {
1768 struct mem_cgroup *mem;
1769 wait_queue_t wait;
1770 };
1771
1772 static int memcg_oom_wake_function(wait_queue_t *wait,
1773 unsigned mode, int sync, void *arg)
1774 {
1775 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1776 struct oom_wait_info *oom_wait_info;
1777
1778 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1779
1780 if (oom_wait_info->mem == wake_mem)
1781 goto wakeup;
1782 /* if no hierarchy, no match */
1783 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1784 return 0;
1785 /*
1786 * Both of oom_wait_info->mem and wake_mem are stable under us.
1787 * Then we can use css_is_ancestor without taking care of RCU.
1788 */
1789 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1790 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1791 return 0;
1792
1793 wakeup:
1794 return autoremove_wake_function(wait, mode, sync, arg);
1795 }
1796
1797 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1798 {
1799 /* for filtering, pass "mem" as argument. */
1800 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1801 }
1802
1803 static void memcg_oom_recover(struct mem_cgroup *mem)
1804 {
1805 if (mem && atomic_read(&mem->oom_lock))
1806 memcg_wakeup_oom(mem);
1807 }
1808
1809 /*
1810 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1811 */
1812 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1813 {
1814 struct oom_wait_info owait;
1815 bool locked, need_to_kill;
1816
1817 owait.mem = mem;
1818 owait.wait.flags = 0;
1819 owait.wait.func = memcg_oom_wake_function;
1820 owait.wait.private = current;
1821 INIT_LIST_HEAD(&owait.wait.task_list);
1822 need_to_kill = true;
1823 /* At first, try to OOM lock hierarchy under mem.*/
1824 mutex_lock(&memcg_oom_mutex);
1825 locked = mem_cgroup_oom_lock(mem);
1826 /*
1827 * Even if signal_pending(), we can't quit charge() loop without
1828 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1829 * under OOM is always welcomed, use TASK_KILLABLE here.
1830 */
1831 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1832 if (!locked || mem->oom_kill_disable)
1833 need_to_kill = false;
1834 if (locked)
1835 mem_cgroup_oom_notify(mem);
1836 mutex_unlock(&memcg_oom_mutex);
1837
1838 if (need_to_kill) {
1839 finish_wait(&memcg_oom_waitq, &owait.wait);
1840 mem_cgroup_out_of_memory(mem, mask);
1841 } else {
1842 schedule();
1843 finish_wait(&memcg_oom_waitq, &owait.wait);
1844 }
1845 mutex_lock(&memcg_oom_mutex);
1846 mem_cgroup_oom_unlock(mem);
1847 memcg_wakeup_oom(mem);
1848 mutex_unlock(&memcg_oom_mutex);
1849
1850 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1851 return false;
1852 /* Give chance to dying process */
1853 schedule_timeout(1);
1854 return true;
1855 }
1856
1857 /*
1858 * Currently used to update mapped file statistics, but the routine can be
1859 * generalized to update other statistics as well.
1860 *
1861 * Notes: Race condition
1862 *
1863 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1864 * it tends to be costly. But considering some conditions, we doesn't need
1865 * to do so _always_.
1866 *
1867 * Considering "charge", lock_page_cgroup() is not required because all
1868 * file-stat operations happen after a page is attached to radix-tree. There
1869 * are no race with "charge".
1870 *
1871 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1872 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1873 * if there are race with "uncharge". Statistics itself is properly handled
1874 * by flags.
1875 *
1876 * Considering "move", this is an only case we see a race. To make the race
1877 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1878 * possibility of race condition. If there is, we take a lock.
1879 */
1880
1881 void mem_cgroup_update_page_stat(struct page *page,
1882 enum mem_cgroup_page_stat_item idx, int val)
1883 {
1884 struct mem_cgroup *mem;
1885 struct page_cgroup *pc = lookup_page_cgroup(page);
1886 bool need_unlock = false;
1887 unsigned long uninitialized_var(flags);
1888
1889 if (unlikely(!pc))
1890 return;
1891
1892 rcu_read_lock();
1893 mem = pc->mem_cgroup;
1894 if (unlikely(!mem || !PageCgroupUsed(pc)))
1895 goto out;
1896 /* pc->mem_cgroup is unstable ? */
1897 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1898 /* take a lock against to access pc->mem_cgroup */
1899 move_lock_page_cgroup(pc, &flags);
1900 need_unlock = true;
1901 mem = pc->mem_cgroup;
1902 if (!mem || !PageCgroupUsed(pc))
1903 goto out;
1904 }
1905
1906 switch (idx) {
1907 case MEMCG_NR_FILE_MAPPED:
1908 if (val > 0)
1909 SetPageCgroupFileMapped(pc);
1910 else if (!page_mapped(page))
1911 ClearPageCgroupFileMapped(pc);
1912 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1913 break;
1914 default:
1915 BUG();
1916 }
1917
1918 this_cpu_add(mem->stat->count[idx], val);
1919
1920 out:
1921 if (unlikely(need_unlock))
1922 move_unlock_page_cgroup(pc, &flags);
1923 rcu_read_unlock();
1924 return;
1925 }
1926 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1927
1928 /*
1929 * size of first charge trial. "32" comes from vmscan.c's magic value.
1930 * TODO: maybe necessary to use big numbers in big irons.
1931 */
1932 #define CHARGE_BATCH 32U
1933 struct memcg_stock_pcp {
1934 struct mem_cgroup *cached; /* this never be root cgroup */
1935 unsigned int nr_pages;
1936 struct work_struct work;
1937 };
1938 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1939 static atomic_t memcg_drain_count;
1940
1941 /*
1942 * Try to consume stocked charge on this cpu. If success, one page is consumed
1943 * from local stock and true is returned. If the stock is 0 or charges from a
1944 * cgroup which is not current target, returns false. This stock will be
1945 * refilled.
1946 */
1947 static bool consume_stock(struct mem_cgroup *mem)
1948 {
1949 struct memcg_stock_pcp *stock;
1950 bool ret = true;
1951
1952 stock = &get_cpu_var(memcg_stock);
1953 if (mem == stock->cached && stock->nr_pages)
1954 stock->nr_pages--;
1955 else /* need to call res_counter_charge */
1956 ret = false;
1957 put_cpu_var(memcg_stock);
1958 return ret;
1959 }
1960
1961 /*
1962 * Returns stocks cached in percpu to res_counter and reset cached information.
1963 */
1964 static void drain_stock(struct memcg_stock_pcp *stock)
1965 {
1966 struct mem_cgroup *old = stock->cached;
1967
1968 if (stock->nr_pages) {
1969 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1970
1971 res_counter_uncharge(&old->res, bytes);
1972 if (do_swap_account)
1973 res_counter_uncharge(&old->memsw, bytes);
1974 stock->nr_pages = 0;
1975 }
1976 stock->cached = NULL;
1977 }
1978
1979 /*
1980 * This must be called under preempt disabled or must be called by
1981 * a thread which is pinned to local cpu.
1982 */
1983 static void drain_local_stock(struct work_struct *dummy)
1984 {
1985 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1986 drain_stock(stock);
1987 }
1988
1989 /*
1990 * Cache charges(val) which is from res_counter, to local per_cpu area.
1991 * This will be consumed by consume_stock() function, later.
1992 */
1993 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1994 {
1995 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1996
1997 if (stock->cached != mem) { /* reset if necessary */
1998 drain_stock(stock);
1999 stock->cached = mem;
2000 }
2001 stock->nr_pages += nr_pages;
2002 put_cpu_var(memcg_stock);
2003 }
2004
2005 /*
2006 * Tries to drain stocked charges in other cpus. This function is asynchronous
2007 * and just put a work per cpu for draining localy on each cpu. Caller can
2008 * expects some charges will be back to res_counter later but cannot wait for
2009 * it.
2010 */
2011 static void drain_all_stock_async(void)
2012 {
2013 int cpu;
2014 /* This function is for scheduling "drain" in asynchronous way.
2015 * The result of "drain" is not directly handled by callers. Then,
2016 * if someone is calling drain, we don't have to call drain more.
2017 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
2018 * there is a race. We just do loose check here.
2019 */
2020 if (atomic_read(&memcg_drain_count))
2021 return;
2022 /* Notify other cpus that system-wide "drain" is running */
2023 atomic_inc(&memcg_drain_count);
2024 get_online_cpus();
2025 for_each_online_cpu(cpu) {
2026 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2027 schedule_work_on(cpu, &stock->work);
2028 }
2029 put_online_cpus();
2030 atomic_dec(&memcg_drain_count);
2031 /* We don't wait for flush_work */
2032 }
2033
2034 /* This is a synchronous drain interface. */
2035 static void drain_all_stock_sync(void)
2036 {
2037 /* called when force_empty is called */
2038 atomic_inc(&memcg_drain_count);
2039 schedule_on_each_cpu(drain_local_stock);
2040 atomic_dec(&memcg_drain_count);
2041 }
2042
2043 /*
2044 * This function drains percpu counter value from DEAD cpu and
2045 * move it to local cpu. Note that this function can be preempted.
2046 */
2047 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2048 {
2049 int i;
2050
2051 spin_lock(&mem->pcp_counter_lock);
2052 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2053 long x = per_cpu(mem->stat->count[i], cpu);
2054
2055 per_cpu(mem->stat->count[i], cpu) = 0;
2056 mem->nocpu_base.count[i] += x;
2057 }
2058 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2059 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2060
2061 per_cpu(mem->stat->events[i], cpu) = 0;
2062 mem->nocpu_base.events[i] += x;
2063 }
2064 /* need to clear ON_MOVE value, works as a kind of lock. */
2065 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2066 spin_unlock(&mem->pcp_counter_lock);
2067 }
2068
2069 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2070 {
2071 int idx = MEM_CGROUP_ON_MOVE;
2072
2073 spin_lock(&mem->pcp_counter_lock);
2074 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2075 spin_unlock(&mem->pcp_counter_lock);
2076 }
2077
2078 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2079 unsigned long action,
2080 void *hcpu)
2081 {
2082 int cpu = (unsigned long)hcpu;
2083 struct memcg_stock_pcp *stock;
2084 struct mem_cgroup *iter;
2085
2086 if ((action == CPU_ONLINE)) {
2087 for_each_mem_cgroup_all(iter)
2088 synchronize_mem_cgroup_on_move(iter, cpu);
2089 return NOTIFY_OK;
2090 }
2091
2092 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2093 return NOTIFY_OK;
2094
2095 for_each_mem_cgroup_all(iter)
2096 mem_cgroup_drain_pcp_counter(iter, cpu);
2097
2098 stock = &per_cpu(memcg_stock, cpu);
2099 drain_stock(stock);
2100 return NOTIFY_OK;
2101 }
2102
2103
2104 /* See __mem_cgroup_try_charge() for details */
2105 enum {
2106 CHARGE_OK, /* success */
2107 CHARGE_RETRY, /* need to retry but retry is not bad */
2108 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2109 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2110 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2111 };
2112
2113 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2114 unsigned int nr_pages, bool oom_check)
2115 {
2116 unsigned long csize = nr_pages * PAGE_SIZE;
2117 struct mem_cgroup *mem_over_limit;
2118 struct res_counter *fail_res;
2119 unsigned long flags = 0;
2120 int ret;
2121
2122 ret = res_counter_charge(&mem->res, csize, &fail_res);
2123
2124 if (likely(!ret)) {
2125 if (!do_swap_account)
2126 return CHARGE_OK;
2127 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2128 if (likely(!ret))
2129 return CHARGE_OK;
2130
2131 res_counter_uncharge(&mem->res, csize);
2132 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2133 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2134 } else
2135 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2136 /*
2137 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2138 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2139 *
2140 * Never reclaim on behalf of optional batching, retry with a
2141 * single page instead.
2142 */
2143 if (nr_pages == CHARGE_BATCH)
2144 return CHARGE_RETRY;
2145
2146 if (!(gfp_mask & __GFP_WAIT))
2147 return CHARGE_WOULDBLOCK;
2148
2149 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2150 gfp_mask, flags, NULL);
2151 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2152 return CHARGE_RETRY;
2153 /*
2154 * Even though the limit is exceeded at this point, reclaim
2155 * may have been able to free some pages. Retry the charge
2156 * before killing the task.
2157 *
2158 * Only for regular pages, though: huge pages are rather
2159 * unlikely to succeed so close to the limit, and we fall back
2160 * to regular pages anyway in case of failure.
2161 */
2162 if (nr_pages == 1 && ret)
2163 return CHARGE_RETRY;
2164
2165 /*
2166 * At task move, charge accounts can be doubly counted. So, it's
2167 * better to wait until the end of task_move if something is going on.
2168 */
2169 if (mem_cgroup_wait_acct_move(mem_over_limit))
2170 return CHARGE_RETRY;
2171
2172 /* If we don't need to call oom-killer at el, return immediately */
2173 if (!oom_check)
2174 return CHARGE_NOMEM;
2175 /* check OOM */
2176 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2177 return CHARGE_OOM_DIE;
2178
2179 return CHARGE_RETRY;
2180 }
2181
2182 /*
2183 * Unlike exported interface, "oom" parameter is added. if oom==true,
2184 * oom-killer can be invoked.
2185 */
2186 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2187 gfp_t gfp_mask,
2188 unsigned int nr_pages,
2189 struct mem_cgroup **memcg,
2190 bool oom)
2191 {
2192 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2193 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2194 struct mem_cgroup *mem = NULL;
2195 int ret;
2196
2197 /*
2198 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2199 * in system level. So, allow to go ahead dying process in addition to
2200 * MEMDIE process.
2201 */
2202 if (unlikely(test_thread_flag(TIF_MEMDIE)
2203 || fatal_signal_pending(current)))
2204 goto bypass;
2205
2206 /*
2207 * We always charge the cgroup the mm_struct belongs to.
2208 * The mm_struct's mem_cgroup changes on task migration if the
2209 * thread group leader migrates. It's possible that mm is not
2210 * set, if so charge the init_mm (happens for pagecache usage).
2211 */
2212 if (!*memcg && !mm)
2213 goto bypass;
2214 again:
2215 if (*memcg) { /* css should be a valid one */
2216 mem = *memcg;
2217 VM_BUG_ON(css_is_removed(&mem->css));
2218 if (mem_cgroup_is_root(mem))
2219 goto done;
2220 if (nr_pages == 1 && consume_stock(mem))
2221 goto done;
2222 css_get(&mem->css);
2223 } else {
2224 struct task_struct *p;
2225
2226 rcu_read_lock();
2227 p = rcu_dereference(mm->owner);
2228 /*
2229 * Because we don't have task_lock(), "p" can exit.
2230 * In that case, "mem" can point to root or p can be NULL with
2231 * race with swapoff. Then, we have small risk of mis-accouning.
2232 * But such kind of mis-account by race always happens because
2233 * we don't have cgroup_mutex(). It's overkill and we allo that
2234 * small race, here.
2235 * (*) swapoff at el will charge against mm-struct not against
2236 * task-struct. So, mm->owner can be NULL.
2237 */
2238 mem = mem_cgroup_from_task(p);
2239 if (!mem || mem_cgroup_is_root(mem)) {
2240 rcu_read_unlock();
2241 goto done;
2242 }
2243 if (nr_pages == 1 && consume_stock(mem)) {
2244 /*
2245 * It seems dagerous to access memcg without css_get().
2246 * But considering how consume_stok works, it's not
2247 * necessary. If consume_stock success, some charges
2248 * from this memcg are cached on this cpu. So, we
2249 * don't need to call css_get()/css_tryget() before
2250 * calling consume_stock().
2251 */
2252 rcu_read_unlock();
2253 goto done;
2254 }
2255 /* after here, we may be blocked. we need to get refcnt */
2256 if (!css_tryget(&mem->css)) {
2257 rcu_read_unlock();
2258 goto again;
2259 }
2260 rcu_read_unlock();
2261 }
2262
2263 do {
2264 bool oom_check;
2265
2266 /* If killed, bypass charge */
2267 if (fatal_signal_pending(current)) {
2268 css_put(&mem->css);
2269 goto bypass;
2270 }
2271
2272 oom_check = false;
2273 if (oom && !nr_oom_retries) {
2274 oom_check = true;
2275 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2276 }
2277
2278 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2279 switch (ret) {
2280 case CHARGE_OK:
2281 break;
2282 case CHARGE_RETRY: /* not in OOM situation but retry */
2283 batch = nr_pages;
2284 css_put(&mem->css);
2285 mem = NULL;
2286 goto again;
2287 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2288 css_put(&mem->css);
2289 goto nomem;
2290 case CHARGE_NOMEM: /* OOM routine works */
2291 if (!oom) {
2292 css_put(&mem->css);
2293 goto nomem;
2294 }
2295 /* If oom, we never return -ENOMEM */
2296 nr_oom_retries--;
2297 break;
2298 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2299 css_put(&mem->css);
2300 goto bypass;
2301 }
2302 } while (ret != CHARGE_OK);
2303
2304 if (batch > nr_pages)
2305 refill_stock(mem, batch - nr_pages);
2306 css_put(&mem->css);
2307 done:
2308 *memcg = mem;
2309 return 0;
2310 nomem:
2311 *memcg = NULL;
2312 return -ENOMEM;
2313 bypass:
2314 *memcg = NULL;
2315 return 0;
2316 }
2317
2318 /*
2319 * Somemtimes we have to undo a charge we got by try_charge().
2320 * This function is for that and do uncharge, put css's refcnt.
2321 * gotten by try_charge().
2322 */
2323 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2324 unsigned int nr_pages)
2325 {
2326 if (!mem_cgroup_is_root(mem)) {
2327 unsigned long bytes = nr_pages * PAGE_SIZE;
2328
2329 res_counter_uncharge(&mem->res, bytes);
2330 if (do_swap_account)
2331 res_counter_uncharge(&mem->memsw, bytes);
2332 }
2333 }
2334
2335 /*
2336 * A helper function to get mem_cgroup from ID. must be called under
2337 * rcu_read_lock(). The caller must check css_is_removed() or some if
2338 * it's concern. (dropping refcnt from swap can be called against removed
2339 * memcg.)
2340 */
2341 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2342 {
2343 struct cgroup_subsys_state *css;
2344
2345 /* ID 0 is unused ID */
2346 if (!id)
2347 return NULL;
2348 css = css_lookup(&mem_cgroup_subsys, id);
2349 if (!css)
2350 return NULL;
2351 return container_of(css, struct mem_cgroup, css);
2352 }
2353
2354 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2355 {
2356 struct mem_cgroup *mem = NULL;
2357 struct page_cgroup *pc;
2358 unsigned short id;
2359 swp_entry_t ent;
2360
2361 VM_BUG_ON(!PageLocked(page));
2362
2363 pc = lookup_page_cgroup(page);
2364 lock_page_cgroup(pc);
2365 if (PageCgroupUsed(pc)) {
2366 mem = pc->mem_cgroup;
2367 if (mem && !css_tryget(&mem->css))
2368 mem = NULL;
2369 } else if (PageSwapCache(page)) {
2370 ent.val = page_private(page);
2371 id = lookup_swap_cgroup(ent);
2372 rcu_read_lock();
2373 mem = mem_cgroup_lookup(id);
2374 if (mem && !css_tryget(&mem->css))
2375 mem = NULL;
2376 rcu_read_unlock();
2377 }
2378 unlock_page_cgroup(pc);
2379 return mem;
2380 }
2381
2382 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2383 struct page *page,
2384 unsigned int nr_pages,
2385 struct page_cgroup *pc,
2386 enum charge_type ctype)
2387 {
2388 lock_page_cgroup(pc);
2389 if (unlikely(PageCgroupUsed(pc))) {
2390 unlock_page_cgroup(pc);
2391 __mem_cgroup_cancel_charge(mem, nr_pages);
2392 return;
2393 }
2394 /*
2395 * we don't need page_cgroup_lock about tail pages, becase they are not
2396 * accessed by any other context at this point.
2397 */
2398 pc->mem_cgroup = mem;
2399 /*
2400 * We access a page_cgroup asynchronously without lock_page_cgroup().
2401 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2402 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2403 * before USED bit, we need memory barrier here.
2404 * See mem_cgroup_add_lru_list(), etc.
2405 */
2406 smp_wmb();
2407 switch (ctype) {
2408 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2409 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2410 SetPageCgroupCache(pc);
2411 SetPageCgroupUsed(pc);
2412 break;
2413 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2414 ClearPageCgroupCache(pc);
2415 SetPageCgroupUsed(pc);
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2422 unlock_page_cgroup(pc);
2423 /*
2424 * "charge_statistics" updated event counter. Then, check it.
2425 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2426 * if they exceeds softlimit.
2427 */
2428 memcg_check_events(mem, page);
2429 }
2430
2431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2432
2433 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2434 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2435 /*
2436 * Because tail pages are not marked as "used", set it. We're under
2437 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2438 */
2439 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2440 {
2441 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2442 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2443 unsigned long flags;
2444
2445 if (mem_cgroup_disabled())
2446 return;
2447 /*
2448 * We have no races with charge/uncharge but will have races with
2449 * page state accounting.
2450 */
2451 move_lock_page_cgroup(head_pc, &flags);
2452
2453 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2454 smp_wmb(); /* see __commit_charge() */
2455 if (PageCgroupAcctLRU(head_pc)) {
2456 enum lru_list lru;
2457 struct mem_cgroup_per_zone *mz;
2458
2459 /*
2460 * LRU flags cannot be copied because we need to add tail
2461 *.page to LRU by generic call and our hook will be called.
2462 * We hold lru_lock, then, reduce counter directly.
2463 */
2464 lru = page_lru(head);
2465 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2466 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2467 }
2468 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2469 move_unlock_page_cgroup(head_pc, &flags);
2470 }
2471 #endif
2472
2473 /**
2474 * mem_cgroup_move_account - move account of the page
2475 * @page: the page
2476 * @nr_pages: number of regular pages (>1 for huge pages)
2477 * @pc: page_cgroup of the page.
2478 * @from: mem_cgroup which the page is moved from.
2479 * @to: mem_cgroup which the page is moved to. @from != @to.
2480 * @uncharge: whether we should call uncharge and css_put against @from.
2481 *
2482 * The caller must confirm following.
2483 * - page is not on LRU (isolate_page() is useful.)
2484 * - compound_lock is held when nr_pages > 1
2485 *
2486 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2487 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2488 * true, this function does "uncharge" from old cgroup, but it doesn't if
2489 * @uncharge is false, so a caller should do "uncharge".
2490 */
2491 static int mem_cgroup_move_account(struct page *page,
2492 unsigned int nr_pages,
2493 struct page_cgroup *pc,
2494 struct mem_cgroup *from,
2495 struct mem_cgroup *to,
2496 bool uncharge)
2497 {
2498 unsigned long flags;
2499 int ret;
2500
2501 VM_BUG_ON(from == to);
2502 VM_BUG_ON(PageLRU(page));
2503 /*
2504 * The page is isolated from LRU. So, collapse function
2505 * will not handle this page. But page splitting can happen.
2506 * Do this check under compound_page_lock(). The caller should
2507 * hold it.
2508 */
2509 ret = -EBUSY;
2510 if (nr_pages > 1 && !PageTransHuge(page))
2511 goto out;
2512
2513 lock_page_cgroup(pc);
2514
2515 ret = -EINVAL;
2516 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2517 goto unlock;
2518
2519 move_lock_page_cgroup(pc, &flags);
2520
2521 if (PageCgroupFileMapped(pc)) {
2522 /* Update mapped_file data for mem_cgroup */
2523 preempt_disable();
2524 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2525 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2526 preempt_enable();
2527 }
2528 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2529 if (uncharge)
2530 /* This is not "cancel", but cancel_charge does all we need. */
2531 __mem_cgroup_cancel_charge(from, nr_pages);
2532
2533 /* caller should have done css_get */
2534 pc->mem_cgroup = to;
2535 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2536 /*
2537 * We charges against "to" which may not have any tasks. Then, "to"
2538 * can be under rmdir(). But in current implementation, caller of
2539 * this function is just force_empty() and move charge, so it's
2540 * guaranteed that "to" is never removed. So, we don't check rmdir
2541 * status here.
2542 */
2543 move_unlock_page_cgroup(pc, &flags);
2544 ret = 0;
2545 unlock:
2546 unlock_page_cgroup(pc);
2547 /*
2548 * check events
2549 */
2550 memcg_check_events(to, page);
2551 memcg_check_events(from, page);
2552 out:
2553 return ret;
2554 }
2555
2556 /*
2557 * move charges to its parent.
2558 */
2559
2560 static int mem_cgroup_move_parent(struct page *page,
2561 struct page_cgroup *pc,
2562 struct mem_cgroup *child,
2563 gfp_t gfp_mask)
2564 {
2565 struct cgroup *cg = child->css.cgroup;
2566 struct cgroup *pcg = cg->parent;
2567 struct mem_cgroup *parent;
2568 unsigned int nr_pages;
2569 unsigned long uninitialized_var(flags);
2570 int ret;
2571
2572 /* Is ROOT ? */
2573 if (!pcg)
2574 return -EINVAL;
2575
2576 ret = -EBUSY;
2577 if (!get_page_unless_zero(page))
2578 goto out;
2579 if (isolate_lru_page(page))
2580 goto put;
2581
2582 nr_pages = hpage_nr_pages(page);
2583
2584 parent = mem_cgroup_from_cont(pcg);
2585 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2586 if (ret || !parent)
2587 goto put_back;
2588
2589 if (nr_pages > 1)
2590 flags = compound_lock_irqsave(page);
2591
2592 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2593 if (ret)
2594 __mem_cgroup_cancel_charge(parent, nr_pages);
2595
2596 if (nr_pages > 1)
2597 compound_unlock_irqrestore(page, flags);
2598 put_back:
2599 putback_lru_page(page);
2600 put:
2601 put_page(page);
2602 out:
2603 return ret;
2604 }
2605
2606 /*
2607 * Charge the memory controller for page usage.
2608 * Return
2609 * 0 if the charge was successful
2610 * < 0 if the cgroup is over its limit
2611 */
2612 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2613 gfp_t gfp_mask, enum charge_type ctype)
2614 {
2615 struct mem_cgroup *mem = NULL;
2616 unsigned int nr_pages = 1;
2617 struct page_cgroup *pc;
2618 bool oom = true;
2619 int ret;
2620
2621 if (PageTransHuge(page)) {
2622 nr_pages <<= compound_order(page);
2623 VM_BUG_ON(!PageTransHuge(page));
2624 /*
2625 * Never OOM-kill a process for a huge page. The
2626 * fault handler will fall back to regular pages.
2627 */
2628 oom = false;
2629 }
2630
2631 pc = lookup_page_cgroup(page);
2632 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2633
2634 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2635 if (ret || !mem)
2636 return ret;
2637
2638 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2639 return 0;
2640 }
2641
2642 int mem_cgroup_newpage_charge(struct page *page,
2643 struct mm_struct *mm, gfp_t gfp_mask)
2644 {
2645 if (mem_cgroup_disabled())
2646 return 0;
2647 /*
2648 * If already mapped, we don't have to account.
2649 * If page cache, page->mapping has address_space.
2650 * But page->mapping may have out-of-use anon_vma pointer,
2651 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2652 * is NULL.
2653 */
2654 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2655 return 0;
2656 if (unlikely(!mm))
2657 mm = &init_mm;
2658 return mem_cgroup_charge_common(page, mm, gfp_mask,
2659 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2660 }
2661
2662 static void
2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 enum charge_type ctype);
2665
2666 static void
2667 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2668 enum charge_type ctype)
2669 {
2670 struct page_cgroup *pc = lookup_page_cgroup(page);
2671 /*
2672 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2673 * is already on LRU. It means the page may on some other page_cgroup's
2674 * LRU. Take care of it.
2675 */
2676 mem_cgroup_lru_del_before_commit(page);
2677 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2678 mem_cgroup_lru_add_after_commit(page);
2679 return;
2680 }
2681
2682 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2683 gfp_t gfp_mask)
2684 {
2685 struct mem_cgroup *mem = NULL;
2686 int ret;
2687
2688 if (mem_cgroup_disabled())
2689 return 0;
2690 if (PageCompound(page))
2691 return 0;
2692 /*
2693 * Corner case handling. This is called from add_to_page_cache()
2694 * in usual. But some FS (shmem) precharges this page before calling it
2695 * and call add_to_page_cache() with GFP_NOWAIT.
2696 *
2697 * For GFP_NOWAIT case, the page may be pre-charged before calling
2698 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2699 * charge twice. (It works but has to pay a bit larger cost.)
2700 * And when the page is SwapCache, it should take swap information
2701 * into account. This is under lock_page() now.
2702 */
2703 if (!(gfp_mask & __GFP_WAIT)) {
2704 struct page_cgroup *pc;
2705
2706 pc = lookup_page_cgroup(page);
2707 if (!pc)
2708 return 0;
2709 lock_page_cgroup(pc);
2710 if (PageCgroupUsed(pc)) {
2711 unlock_page_cgroup(pc);
2712 return 0;
2713 }
2714 unlock_page_cgroup(pc);
2715 }
2716
2717 if (unlikely(!mm))
2718 mm = &init_mm;
2719
2720 if (page_is_file_cache(page)) {
2721 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2722 if (ret || !mem)
2723 return ret;
2724
2725 /*
2726 * FUSE reuses pages without going through the final
2727 * put that would remove them from the LRU list, make
2728 * sure that they get relinked properly.
2729 */
2730 __mem_cgroup_commit_charge_lrucare(page, mem,
2731 MEM_CGROUP_CHARGE_TYPE_CACHE);
2732 return ret;
2733 }
2734 /* shmem */
2735 if (PageSwapCache(page)) {
2736 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2737 if (!ret)
2738 __mem_cgroup_commit_charge_swapin(page, mem,
2739 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2740 } else
2741 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2742 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2743
2744 return ret;
2745 }
2746
2747 /*
2748 * While swap-in, try_charge -> commit or cancel, the page is locked.
2749 * And when try_charge() successfully returns, one refcnt to memcg without
2750 * struct page_cgroup is acquired. This refcnt will be consumed by
2751 * "commit()" or removed by "cancel()"
2752 */
2753 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2754 struct page *page,
2755 gfp_t mask, struct mem_cgroup **ptr)
2756 {
2757 struct mem_cgroup *mem;
2758 int ret;
2759
2760 *ptr = NULL;
2761
2762 if (mem_cgroup_disabled())
2763 return 0;
2764
2765 if (!do_swap_account)
2766 goto charge_cur_mm;
2767 /*
2768 * A racing thread's fault, or swapoff, may have already updated
2769 * the pte, and even removed page from swap cache: in those cases
2770 * do_swap_page()'s pte_same() test will fail; but there's also a
2771 * KSM case which does need to charge the page.
2772 */
2773 if (!PageSwapCache(page))
2774 goto charge_cur_mm;
2775 mem = try_get_mem_cgroup_from_page(page);
2776 if (!mem)
2777 goto charge_cur_mm;
2778 *ptr = mem;
2779 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2780 css_put(&mem->css);
2781 return ret;
2782 charge_cur_mm:
2783 if (unlikely(!mm))
2784 mm = &init_mm;
2785 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2786 }
2787
2788 static void
2789 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2790 enum charge_type ctype)
2791 {
2792 if (mem_cgroup_disabled())
2793 return;
2794 if (!ptr)
2795 return;
2796 cgroup_exclude_rmdir(&ptr->css);
2797
2798 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2799 /*
2800 * Now swap is on-memory. This means this page may be
2801 * counted both as mem and swap....double count.
2802 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2803 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2804 * may call delete_from_swap_cache() before reach here.
2805 */
2806 if (do_swap_account && PageSwapCache(page)) {
2807 swp_entry_t ent = {.val = page_private(page)};
2808 unsigned short id;
2809 struct mem_cgroup *memcg;
2810
2811 id = swap_cgroup_record(ent, 0);
2812 rcu_read_lock();
2813 memcg = mem_cgroup_lookup(id);
2814 if (memcg) {
2815 /*
2816 * This recorded memcg can be obsolete one. So, avoid
2817 * calling css_tryget
2818 */
2819 if (!mem_cgroup_is_root(memcg))
2820 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2821 mem_cgroup_swap_statistics(memcg, false);
2822 mem_cgroup_put(memcg);
2823 }
2824 rcu_read_unlock();
2825 }
2826 /*
2827 * At swapin, we may charge account against cgroup which has no tasks.
2828 * So, rmdir()->pre_destroy() can be called while we do this charge.
2829 * In that case, we need to call pre_destroy() again. check it here.
2830 */
2831 cgroup_release_and_wakeup_rmdir(&ptr->css);
2832 }
2833
2834 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2835 {
2836 __mem_cgroup_commit_charge_swapin(page, ptr,
2837 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2838 }
2839
2840 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2841 {
2842 if (mem_cgroup_disabled())
2843 return;
2844 if (!mem)
2845 return;
2846 __mem_cgroup_cancel_charge(mem, 1);
2847 }
2848
2849 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2850 unsigned int nr_pages,
2851 const enum charge_type ctype)
2852 {
2853 struct memcg_batch_info *batch = NULL;
2854 bool uncharge_memsw = true;
2855
2856 /* If swapout, usage of swap doesn't decrease */
2857 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2858 uncharge_memsw = false;
2859
2860 batch = &current->memcg_batch;
2861 /*
2862 * In usual, we do css_get() when we remember memcg pointer.
2863 * But in this case, we keep res->usage until end of a series of
2864 * uncharges. Then, it's ok to ignore memcg's refcnt.
2865 */
2866 if (!batch->memcg)
2867 batch->memcg = mem;
2868 /*
2869 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2870 * In those cases, all pages freed continuously can be expected to be in
2871 * the same cgroup and we have chance to coalesce uncharges.
2872 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2873 * because we want to do uncharge as soon as possible.
2874 */
2875
2876 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2877 goto direct_uncharge;
2878
2879 if (nr_pages > 1)
2880 goto direct_uncharge;
2881
2882 /*
2883 * In typical case, batch->memcg == mem. This means we can
2884 * merge a series of uncharges to an uncharge of res_counter.
2885 * If not, we uncharge res_counter ony by one.
2886 */
2887 if (batch->memcg != mem)
2888 goto direct_uncharge;
2889 /* remember freed charge and uncharge it later */
2890 batch->nr_pages++;
2891 if (uncharge_memsw)
2892 batch->memsw_nr_pages++;
2893 return;
2894 direct_uncharge:
2895 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2896 if (uncharge_memsw)
2897 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2898 if (unlikely(batch->memcg != mem))
2899 memcg_oom_recover(mem);
2900 return;
2901 }
2902
2903 /*
2904 * uncharge if !page_mapped(page)
2905 */
2906 static struct mem_cgroup *
2907 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2908 {
2909 struct mem_cgroup *mem = NULL;
2910 unsigned int nr_pages = 1;
2911 struct page_cgroup *pc;
2912
2913 if (mem_cgroup_disabled())
2914 return NULL;
2915
2916 if (PageSwapCache(page))
2917 return NULL;
2918
2919 if (PageTransHuge(page)) {
2920 nr_pages <<= compound_order(page);
2921 VM_BUG_ON(!PageTransHuge(page));
2922 }
2923 /*
2924 * Check if our page_cgroup is valid
2925 */
2926 pc = lookup_page_cgroup(page);
2927 if (unlikely(!pc || !PageCgroupUsed(pc)))
2928 return NULL;
2929
2930 lock_page_cgroup(pc);
2931
2932 mem = pc->mem_cgroup;
2933
2934 if (!PageCgroupUsed(pc))
2935 goto unlock_out;
2936
2937 switch (ctype) {
2938 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2939 case MEM_CGROUP_CHARGE_TYPE_DROP:
2940 /* See mem_cgroup_prepare_migration() */
2941 if (page_mapped(page) || PageCgroupMigration(pc))
2942 goto unlock_out;
2943 break;
2944 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2945 if (!PageAnon(page)) { /* Shared memory */
2946 if (page->mapping && !page_is_file_cache(page))
2947 goto unlock_out;
2948 } else if (page_mapped(page)) /* Anon */
2949 goto unlock_out;
2950 break;
2951 default:
2952 break;
2953 }
2954
2955 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2956
2957 ClearPageCgroupUsed(pc);
2958 /*
2959 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2960 * freed from LRU. This is safe because uncharged page is expected not
2961 * to be reused (freed soon). Exception is SwapCache, it's handled by
2962 * special functions.
2963 */
2964
2965 unlock_page_cgroup(pc);
2966 /*
2967 * even after unlock, we have mem->res.usage here and this memcg
2968 * will never be freed.
2969 */
2970 memcg_check_events(mem, page);
2971 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2972 mem_cgroup_swap_statistics(mem, true);
2973 mem_cgroup_get(mem);
2974 }
2975 if (!mem_cgroup_is_root(mem))
2976 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2977
2978 return mem;
2979
2980 unlock_out:
2981 unlock_page_cgroup(pc);
2982 return NULL;
2983 }
2984
2985 void mem_cgroup_uncharge_page(struct page *page)
2986 {
2987 /* early check. */
2988 if (page_mapped(page))
2989 return;
2990 if (page->mapping && !PageAnon(page))
2991 return;
2992 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2993 }
2994
2995 void mem_cgroup_uncharge_cache_page(struct page *page)
2996 {
2997 VM_BUG_ON(page_mapped(page));
2998 VM_BUG_ON(page->mapping);
2999 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3000 }
3001
3002 /*
3003 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3004 * In that cases, pages are freed continuously and we can expect pages
3005 * are in the same memcg. All these calls itself limits the number of
3006 * pages freed at once, then uncharge_start/end() is called properly.
3007 * This may be called prural(2) times in a context,
3008 */
3009
3010 void mem_cgroup_uncharge_start(void)
3011 {
3012 current->memcg_batch.do_batch++;
3013 /* We can do nest. */
3014 if (current->memcg_batch.do_batch == 1) {
3015 current->memcg_batch.memcg = NULL;
3016 current->memcg_batch.nr_pages = 0;
3017 current->memcg_batch.memsw_nr_pages = 0;
3018 }
3019 }
3020
3021 void mem_cgroup_uncharge_end(void)
3022 {
3023 struct memcg_batch_info *batch = &current->memcg_batch;
3024
3025 if (!batch->do_batch)
3026 return;
3027
3028 batch->do_batch--;
3029 if (batch->do_batch) /* If stacked, do nothing. */
3030 return;
3031
3032 if (!batch->memcg)
3033 return;
3034 /*
3035 * This "batch->memcg" is valid without any css_get/put etc...
3036 * bacause we hide charges behind us.
3037 */
3038 if (batch->nr_pages)
3039 res_counter_uncharge(&batch->memcg->res,
3040 batch->nr_pages * PAGE_SIZE);
3041 if (batch->memsw_nr_pages)
3042 res_counter_uncharge(&batch->memcg->memsw,
3043 batch->memsw_nr_pages * PAGE_SIZE);
3044 memcg_oom_recover(batch->memcg);
3045 /* forget this pointer (for sanity check) */
3046 batch->memcg = NULL;
3047 }
3048
3049 #ifdef CONFIG_SWAP
3050 /*
3051 * called after __delete_from_swap_cache() and drop "page" account.
3052 * memcg information is recorded to swap_cgroup of "ent"
3053 */
3054 void
3055 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3056 {
3057 struct mem_cgroup *memcg;
3058 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3059
3060 if (!swapout) /* this was a swap cache but the swap is unused ! */
3061 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3062
3063 memcg = __mem_cgroup_uncharge_common(page, ctype);
3064
3065 /*
3066 * record memcg information, if swapout && memcg != NULL,
3067 * mem_cgroup_get() was called in uncharge().
3068 */
3069 if (do_swap_account && swapout && memcg)
3070 swap_cgroup_record(ent, css_id(&memcg->css));
3071 }
3072 #endif
3073
3074 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3075 /*
3076 * called from swap_entry_free(). remove record in swap_cgroup and
3077 * uncharge "memsw" account.
3078 */
3079 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3080 {
3081 struct mem_cgroup *memcg;
3082 unsigned short id;
3083
3084 if (!do_swap_account)
3085 return;
3086
3087 id = swap_cgroup_record(ent, 0);
3088 rcu_read_lock();
3089 memcg = mem_cgroup_lookup(id);
3090 if (memcg) {
3091 /*
3092 * We uncharge this because swap is freed.
3093 * This memcg can be obsolete one. We avoid calling css_tryget
3094 */
3095 if (!mem_cgroup_is_root(memcg))
3096 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3097 mem_cgroup_swap_statistics(memcg, false);
3098 mem_cgroup_put(memcg);
3099 }
3100 rcu_read_unlock();
3101 }
3102
3103 /**
3104 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3105 * @entry: swap entry to be moved
3106 * @from: mem_cgroup which the entry is moved from
3107 * @to: mem_cgroup which the entry is moved to
3108 * @need_fixup: whether we should fixup res_counters and refcounts.
3109 *
3110 * It succeeds only when the swap_cgroup's record for this entry is the same
3111 * as the mem_cgroup's id of @from.
3112 *
3113 * Returns 0 on success, -EINVAL on failure.
3114 *
3115 * The caller must have charged to @to, IOW, called res_counter_charge() about
3116 * both res and memsw, and called css_get().
3117 */
3118 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3119 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3120 {
3121 unsigned short old_id, new_id;
3122
3123 old_id = css_id(&from->css);
3124 new_id = css_id(&to->css);
3125
3126 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3127 mem_cgroup_swap_statistics(from, false);
3128 mem_cgroup_swap_statistics(to, true);
3129 /*
3130 * This function is only called from task migration context now.
3131 * It postpones res_counter and refcount handling till the end
3132 * of task migration(mem_cgroup_clear_mc()) for performance
3133 * improvement. But we cannot postpone mem_cgroup_get(to)
3134 * because if the process that has been moved to @to does
3135 * swap-in, the refcount of @to might be decreased to 0.
3136 */
3137 mem_cgroup_get(to);
3138 if (need_fixup) {
3139 if (!mem_cgroup_is_root(from))
3140 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3141 mem_cgroup_put(from);
3142 /*
3143 * we charged both to->res and to->memsw, so we should
3144 * uncharge to->res.
3145 */
3146 if (!mem_cgroup_is_root(to))
3147 res_counter_uncharge(&to->res, PAGE_SIZE);
3148 }
3149 return 0;
3150 }
3151 return -EINVAL;
3152 }
3153 #else
3154 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3155 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3156 {
3157 return -EINVAL;
3158 }
3159 #endif
3160
3161 /*
3162 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3163 * page belongs to.
3164 */
3165 int mem_cgroup_prepare_migration(struct page *page,
3166 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3167 {
3168 struct mem_cgroup *mem = NULL;
3169 struct page_cgroup *pc;
3170 enum charge_type ctype;
3171 int ret = 0;
3172
3173 *ptr = NULL;
3174
3175 VM_BUG_ON(PageTransHuge(page));
3176 if (mem_cgroup_disabled())
3177 return 0;
3178
3179 pc = lookup_page_cgroup(page);
3180 lock_page_cgroup(pc);
3181 if (PageCgroupUsed(pc)) {
3182 mem = pc->mem_cgroup;
3183 css_get(&mem->css);
3184 /*
3185 * At migrating an anonymous page, its mapcount goes down
3186 * to 0 and uncharge() will be called. But, even if it's fully
3187 * unmapped, migration may fail and this page has to be
3188 * charged again. We set MIGRATION flag here and delay uncharge
3189 * until end_migration() is called
3190 *
3191 * Corner Case Thinking
3192 * A)
3193 * When the old page was mapped as Anon and it's unmap-and-freed
3194 * while migration was ongoing.
3195 * If unmap finds the old page, uncharge() of it will be delayed
3196 * until end_migration(). If unmap finds a new page, it's
3197 * uncharged when it make mapcount to be 1->0. If unmap code
3198 * finds swap_migration_entry, the new page will not be mapped
3199 * and end_migration() will find it(mapcount==0).
3200 *
3201 * B)
3202 * When the old page was mapped but migraion fails, the kernel
3203 * remaps it. A charge for it is kept by MIGRATION flag even
3204 * if mapcount goes down to 0. We can do remap successfully
3205 * without charging it again.
3206 *
3207 * C)
3208 * The "old" page is under lock_page() until the end of
3209 * migration, so, the old page itself will not be swapped-out.
3210 * If the new page is swapped out before end_migraton, our
3211 * hook to usual swap-out path will catch the event.
3212 */
3213 if (PageAnon(page))
3214 SetPageCgroupMigration(pc);
3215 }
3216 unlock_page_cgroup(pc);
3217 /*
3218 * If the page is not charged at this point,
3219 * we return here.
3220 */
3221 if (!mem)
3222 return 0;
3223
3224 *ptr = mem;
3225 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3226 css_put(&mem->css);/* drop extra refcnt */
3227 if (ret || *ptr == NULL) {
3228 if (PageAnon(page)) {
3229 lock_page_cgroup(pc);
3230 ClearPageCgroupMigration(pc);
3231 unlock_page_cgroup(pc);
3232 /*
3233 * The old page may be fully unmapped while we kept it.
3234 */
3235 mem_cgroup_uncharge_page(page);
3236 }
3237 return -ENOMEM;
3238 }
3239 /*
3240 * We charge new page before it's used/mapped. So, even if unlock_page()
3241 * is called before end_migration, we can catch all events on this new
3242 * page. In the case new page is migrated but not remapped, new page's
3243 * mapcount will be finally 0 and we call uncharge in end_migration().
3244 */
3245 pc = lookup_page_cgroup(newpage);
3246 if (PageAnon(page))
3247 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3248 else if (page_is_file_cache(page))
3249 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3250 else
3251 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3252 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3253 return ret;
3254 }
3255
3256 /* remove redundant charge if migration failed*/
3257 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3258 struct page *oldpage, struct page *newpage, bool migration_ok)
3259 {
3260 struct page *used, *unused;
3261 struct page_cgroup *pc;
3262
3263 if (!mem)
3264 return;
3265 /* blocks rmdir() */
3266 cgroup_exclude_rmdir(&mem->css);
3267 if (!migration_ok) {
3268 used = oldpage;
3269 unused = newpage;
3270 } else {
3271 used = newpage;
3272 unused = oldpage;
3273 }
3274 /*
3275 * We disallowed uncharge of pages under migration because mapcount
3276 * of the page goes down to zero, temporarly.
3277 * Clear the flag and check the page should be charged.
3278 */
3279 pc = lookup_page_cgroup(oldpage);
3280 lock_page_cgroup(pc);
3281 ClearPageCgroupMigration(pc);
3282 unlock_page_cgroup(pc);
3283
3284 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3285
3286 /*
3287 * If a page is a file cache, radix-tree replacement is very atomic
3288 * and we can skip this check. When it was an Anon page, its mapcount
3289 * goes down to 0. But because we added MIGRATION flage, it's not
3290 * uncharged yet. There are several case but page->mapcount check
3291 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3292 * check. (see prepare_charge() also)
3293 */
3294 if (PageAnon(used))
3295 mem_cgroup_uncharge_page(used);
3296 /*
3297 * At migration, we may charge account against cgroup which has no
3298 * tasks.
3299 * So, rmdir()->pre_destroy() can be called while we do this charge.
3300 * In that case, we need to call pre_destroy() again. check it here.
3301 */
3302 cgroup_release_and_wakeup_rmdir(&mem->css);
3303 }
3304
3305 /*
3306 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3307 * Calling hierarchical_reclaim is not enough because we should update
3308 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3309 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3310 * not from the memcg which this page would be charged to.
3311 * try_charge_swapin does all of these works properly.
3312 */
3313 int mem_cgroup_shmem_charge_fallback(struct page *page,
3314 struct mm_struct *mm,
3315 gfp_t gfp_mask)
3316 {
3317 struct mem_cgroup *mem;
3318 int ret;
3319
3320 if (mem_cgroup_disabled())
3321 return 0;
3322
3323 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3324 if (!ret)
3325 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3326
3327 return ret;
3328 }
3329
3330 #ifdef CONFIG_DEBUG_VM
3331 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3332 {
3333 struct page_cgroup *pc;
3334
3335 pc = lookup_page_cgroup(page);
3336 if (likely(pc) && PageCgroupUsed(pc))
3337 return pc;
3338 return NULL;
3339 }
3340
3341 bool mem_cgroup_bad_page_check(struct page *page)
3342 {
3343 if (mem_cgroup_disabled())
3344 return false;
3345
3346 return lookup_page_cgroup_used(page) != NULL;
3347 }
3348
3349 void mem_cgroup_print_bad_page(struct page *page)
3350 {
3351 struct page_cgroup *pc;
3352
3353 pc = lookup_page_cgroup_used(page);
3354 if (pc) {
3355 int ret = -1;
3356 char *path;
3357
3358 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3359 pc, pc->flags, pc->mem_cgroup);
3360
3361 path = kmalloc(PATH_MAX, GFP_KERNEL);
3362 if (path) {
3363 rcu_read_lock();
3364 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3365 path, PATH_MAX);
3366 rcu_read_unlock();
3367 }
3368
3369 printk(KERN_CONT "(%s)\n",
3370 (ret < 0) ? "cannot get the path" : path);
3371 kfree(path);
3372 }
3373 }
3374 #endif
3375
3376 static DEFINE_MUTEX(set_limit_mutex);
3377
3378 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379 unsigned long long val)
3380 {
3381 int retry_count;
3382 u64 memswlimit, memlimit;
3383 int ret = 0;
3384 int children = mem_cgroup_count_children(memcg);
3385 u64 curusage, oldusage;
3386 int enlarge;
3387
3388 /*
3389 * For keeping hierarchical_reclaim simple, how long we should retry
3390 * is depends on callers. We set our retry-count to be function
3391 * of # of children which we should visit in this loop.
3392 */
3393 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3394
3395 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3396
3397 enlarge = 0;
3398 while (retry_count) {
3399 if (signal_pending(current)) {
3400 ret = -EINTR;
3401 break;
3402 }
3403 /*
3404 * Rather than hide all in some function, I do this in
3405 * open coded manner. You see what this really does.
3406 * We have to guarantee mem->res.limit < mem->memsw.limit.
3407 */
3408 mutex_lock(&set_limit_mutex);
3409 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3410 if (memswlimit < val) {
3411 ret = -EINVAL;
3412 mutex_unlock(&set_limit_mutex);
3413 break;
3414 }
3415
3416 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3417 if (memlimit < val)
3418 enlarge = 1;
3419
3420 ret = res_counter_set_limit(&memcg->res, val);
3421 if (!ret) {
3422 if (memswlimit == val)
3423 memcg->memsw_is_minimum = true;
3424 else
3425 memcg->memsw_is_minimum = false;
3426 }
3427 mutex_unlock(&set_limit_mutex);
3428
3429 if (!ret)
3430 break;
3431
3432 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3433 MEM_CGROUP_RECLAIM_SHRINK,
3434 NULL);
3435 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3436 /* Usage is reduced ? */
3437 if (curusage >= oldusage)
3438 retry_count--;
3439 else
3440 oldusage = curusage;
3441 }
3442 if (!ret && enlarge)
3443 memcg_oom_recover(memcg);
3444
3445 return ret;
3446 }
3447
3448 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3449 unsigned long long val)
3450 {
3451 int retry_count;
3452 u64 memlimit, memswlimit, oldusage, curusage;
3453 int children = mem_cgroup_count_children(memcg);
3454 int ret = -EBUSY;
3455 int enlarge = 0;
3456
3457 /* see mem_cgroup_resize_res_limit */
3458 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3459 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3460 while (retry_count) {
3461 if (signal_pending(current)) {
3462 ret = -EINTR;
3463 break;
3464 }
3465 /*
3466 * Rather than hide all in some function, I do this in
3467 * open coded manner. You see what this really does.
3468 * We have to guarantee mem->res.limit < mem->memsw.limit.
3469 */
3470 mutex_lock(&set_limit_mutex);
3471 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3472 if (memlimit > val) {
3473 ret = -EINVAL;
3474 mutex_unlock(&set_limit_mutex);
3475 break;
3476 }
3477 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3478 if (memswlimit < val)
3479 enlarge = 1;
3480 ret = res_counter_set_limit(&memcg->memsw, val);
3481 if (!ret) {
3482 if (memlimit == val)
3483 memcg->memsw_is_minimum = true;
3484 else
3485 memcg->memsw_is_minimum = false;
3486 }
3487 mutex_unlock(&set_limit_mutex);
3488
3489 if (!ret)
3490 break;
3491
3492 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3493 MEM_CGROUP_RECLAIM_NOSWAP |
3494 MEM_CGROUP_RECLAIM_SHRINK,
3495 NULL);
3496 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3497 /* Usage is reduced ? */
3498 if (curusage >= oldusage)
3499 retry_count--;
3500 else
3501 oldusage = curusage;
3502 }
3503 if (!ret && enlarge)
3504 memcg_oom_recover(memcg);
3505 return ret;
3506 }
3507
3508 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3509 gfp_t gfp_mask,
3510 unsigned long *total_scanned)
3511 {
3512 unsigned long nr_reclaimed = 0;
3513 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3514 unsigned long reclaimed;
3515 int loop = 0;
3516 struct mem_cgroup_tree_per_zone *mctz;
3517 unsigned long long excess;
3518 unsigned long nr_scanned;
3519
3520 if (order > 0)
3521 return 0;
3522
3523 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3524 /*
3525 * This loop can run a while, specially if mem_cgroup's continuously
3526 * keep exceeding their soft limit and putting the system under
3527 * pressure
3528 */
3529 do {
3530 if (next_mz)
3531 mz = next_mz;
3532 else
3533 mz = mem_cgroup_largest_soft_limit_node(mctz);
3534 if (!mz)
3535 break;
3536
3537 nr_scanned = 0;
3538 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3539 gfp_mask,
3540 MEM_CGROUP_RECLAIM_SOFT,
3541 &nr_scanned);
3542 nr_reclaimed += reclaimed;
3543 *total_scanned += nr_scanned;
3544 spin_lock(&mctz->lock);
3545
3546 /*
3547 * If we failed to reclaim anything from this memory cgroup
3548 * it is time to move on to the next cgroup
3549 */
3550 next_mz = NULL;
3551 if (!reclaimed) {
3552 do {
3553 /*
3554 * Loop until we find yet another one.
3555 *
3556 * By the time we get the soft_limit lock
3557 * again, someone might have aded the
3558 * group back on the RB tree. Iterate to
3559 * make sure we get a different mem.
3560 * mem_cgroup_largest_soft_limit_node returns
3561 * NULL if no other cgroup is present on
3562 * the tree
3563 */
3564 next_mz =
3565 __mem_cgroup_largest_soft_limit_node(mctz);
3566 if (next_mz == mz)
3567 css_put(&next_mz->mem->css);
3568 else /* next_mz == NULL or other memcg */
3569 break;
3570 } while (1);
3571 }
3572 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3573 excess = res_counter_soft_limit_excess(&mz->mem->res);
3574 /*
3575 * One school of thought says that we should not add
3576 * back the node to the tree if reclaim returns 0.
3577 * But our reclaim could return 0, simply because due
3578 * to priority we are exposing a smaller subset of
3579 * memory to reclaim from. Consider this as a longer
3580 * term TODO.
3581 */
3582 /* If excess == 0, no tree ops */
3583 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3584 spin_unlock(&mctz->lock);
3585 css_put(&mz->mem->css);
3586 loop++;
3587 /*
3588 * Could not reclaim anything and there are no more
3589 * mem cgroups to try or we seem to be looping without
3590 * reclaiming anything.
3591 */
3592 if (!nr_reclaimed &&
3593 (next_mz == NULL ||
3594 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3595 break;
3596 } while (!nr_reclaimed);
3597 if (next_mz)
3598 css_put(&next_mz->mem->css);
3599 return nr_reclaimed;
3600 }
3601
3602 /*
3603 * This routine traverse page_cgroup in given list and drop them all.
3604 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3605 */
3606 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3607 int node, int zid, enum lru_list lru)
3608 {
3609 struct zone *zone;
3610 struct mem_cgroup_per_zone *mz;
3611 struct page_cgroup *pc, *busy;
3612 unsigned long flags, loop;
3613 struct list_head *list;
3614 int ret = 0;
3615
3616 zone = &NODE_DATA(node)->node_zones[zid];
3617 mz = mem_cgroup_zoneinfo(mem, node, zid);
3618 list = &mz->lists[lru];
3619
3620 loop = MEM_CGROUP_ZSTAT(mz, lru);
3621 /* give some margin against EBUSY etc...*/
3622 loop += 256;
3623 busy = NULL;
3624 while (loop--) {
3625 struct page *page;
3626
3627 ret = 0;
3628 spin_lock_irqsave(&zone->lru_lock, flags);
3629 if (list_empty(list)) {
3630 spin_unlock_irqrestore(&zone->lru_lock, flags);
3631 break;
3632 }
3633 pc = list_entry(list->prev, struct page_cgroup, lru);
3634 if (busy == pc) {
3635 list_move(&pc->lru, list);
3636 busy = NULL;
3637 spin_unlock_irqrestore(&zone->lru_lock, flags);
3638 continue;
3639 }
3640 spin_unlock_irqrestore(&zone->lru_lock, flags);
3641
3642 page = lookup_cgroup_page(pc);
3643
3644 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3645 if (ret == -ENOMEM)
3646 break;
3647
3648 if (ret == -EBUSY || ret == -EINVAL) {
3649 /* found lock contention or "pc" is obsolete. */
3650 busy = pc;
3651 cond_resched();
3652 } else
3653 busy = NULL;
3654 }
3655
3656 if (!ret && !list_empty(list))
3657 return -EBUSY;
3658 return ret;
3659 }
3660
3661 /*
3662 * make mem_cgroup's charge to be 0 if there is no task.
3663 * This enables deleting this mem_cgroup.
3664 */
3665 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3666 {
3667 int ret;
3668 int node, zid, shrink;
3669 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3670 struct cgroup *cgrp = mem->css.cgroup;
3671
3672 css_get(&mem->css);
3673
3674 shrink = 0;
3675 /* should free all ? */
3676 if (free_all)
3677 goto try_to_free;
3678 move_account:
3679 do {
3680 ret = -EBUSY;
3681 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3682 goto out;
3683 ret = -EINTR;
3684 if (signal_pending(current))
3685 goto out;
3686 /* This is for making all *used* pages to be on LRU. */
3687 lru_add_drain_all();
3688 drain_all_stock_sync();
3689 ret = 0;
3690 mem_cgroup_start_move(mem);
3691 for_each_node_state(node, N_HIGH_MEMORY) {
3692 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3693 enum lru_list l;
3694 for_each_lru(l) {
3695 ret = mem_cgroup_force_empty_list(mem,
3696 node, zid, l);
3697 if (ret)
3698 break;
3699 }
3700 }
3701 if (ret)
3702 break;
3703 }
3704 mem_cgroup_end_move(mem);
3705 memcg_oom_recover(mem);
3706 /* it seems parent cgroup doesn't have enough mem */
3707 if (ret == -ENOMEM)
3708 goto try_to_free;
3709 cond_resched();
3710 /* "ret" should also be checked to ensure all lists are empty. */
3711 } while (mem->res.usage > 0 || ret);
3712 out:
3713 css_put(&mem->css);
3714 return ret;
3715
3716 try_to_free:
3717 /* returns EBUSY if there is a task or if we come here twice. */
3718 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3719 ret = -EBUSY;
3720 goto out;
3721 }
3722 /* we call try-to-free pages for make this cgroup empty */
3723 lru_add_drain_all();
3724 /* try to free all pages in this cgroup */
3725 shrink = 1;
3726 while (nr_retries && mem->res.usage > 0) {
3727 int progress;
3728
3729 if (signal_pending(current)) {
3730 ret = -EINTR;
3731 goto out;
3732 }
3733 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3734 false, get_swappiness(mem));
3735 if (!progress) {
3736 nr_retries--;
3737 /* maybe some writeback is necessary */
3738 congestion_wait(BLK_RW_ASYNC, HZ/10);
3739 }
3740
3741 }
3742 lru_add_drain();
3743 /* try move_account...there may be some *locked* pages. */
3744 goto move_account;
3745 }
3746
3747 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3748 {
3749 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3750 }
3751
3752
3753 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3754 {
3755 return mem_cgroup_from_cont(cont)->use_hierarchy;
3756 }
3757
3758 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3759 u64 val)
3760 {
3761 int retval = 0;
3762 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3763 struct cgroup *parent = cont->parent;
3764 struct mem_cgroup *parent_mem = NULL;
3765
3766 if (parent)
3767 parent_mem = mem_cgroup_from_cont(parent);
3768
3769 cgroup_lock();
3770 /*
3771 * If parent's use_hierarchy is set, we can't make any modifications
3772 * in the child subtrees. If it is unset, then the change can
3773 * occur, provided the current cgroup has no children.
3774 *
3775 * For the root cgroup, parent_mem is NULL, we allow value to be
3776 * set if there are no children.
3777 */
3778 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3779 (val == 1 || val == 0)) {
3780 if (list_empty(&cont->children))
3781 mem->use_hierarchy = val;
3782 else
3783 retval = -EBUSY;
3784 } else
3785 retval = -EINVAL;
3786 cgroup_unlock();
3787
3788 return retval;
3789 }
3790
3791
3792 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3793 enum mem_cgroup_stat_index idx)
3794 {
3795 struct mem_cgroup *iter;
3796 long val = 0;
3797
3798 /* Per-cpu values can be negative, use a signed accumulator */
3799 for_each_mem_cgroup_tree(iter, mem)
3800 val += mem_cgroup_read_stat(iter, idx);
3801
3802 if (val < 0) /* race ? */
3803 val = 0;
3804 return val;
3805 }
3806
3807 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3808 {
3809 u64 val;
3810
3811 if (!mem_cgroup_is_root(mem)) {
3812 if (!swap)
3813 return res_counter_read_u64(&mem->res, RES_USAGE);
3814 else
3815 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3816 }
3817
3818 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3819 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3820
3821 if (swap)
3822 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3823
3824 return val << PAGE_SHIFT;
3825 }
3826
3827 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3828 {
3829 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3830 u64 val;
3831 int type, name;
3832
3833 type = MEMFILE_TYPE(cft->private);
3834 name = MEMFILE_ATTR(cft->private);
3835 switch (type) {
3836 case _MEM:
3837 if (name == RES_USAGE)
3838 val = mem_cgroup_usage(mem, false);
3839 else
3840 val = res_counter_read_u64(&mem->res, name);
3841 break;
3842 case _MEMSWAP:
3843 if (name == RES_USAGE)
3844 val = mem_cgroup_usage(mem, true);
3845 else
3846 val = res_counter_read_u64(&mem->memsw, name);
3847 break;
3848 default:
3849 BUG();
3850 break;
3851 }
3852 return val;
3853 }
3854 /*
3855 * The user of this function is...
3856 * RES_LIMIT.
3857 */
3858 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3859 const char *buffer)
3860 {
3861 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3862 int type, name;
3863 unsigned long long val;
3864 int ret;
3865
3866 type = MEMFILE_TYPE(cft->private);
3867 name = MEMFILE_ATTR(cft->private);
3868 switch (name) {
3869 case RES_LIMIT:
3870 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3871 ret = -EINVAL;
3872 break;
3873 }
3874 /* This function does all necessary parse...reuse it */
3875 ret = res_counter_memparse_write_strategy(buffer, &val);
3876 if (ret)
3877 break;
3878 if (type == _MEM)
3879 ret = mem_cgroup_resize_limit(memcg, val);
3880 else
3881 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3882 break;
3883 case RES_SOFT_LIMIT:
3884 ret = res_counter_memparse_write_strategy(buffer, &val);
3885 if (ret)
3886 break;
3887 /*
3888 * For memsw, soft limits are hard to implement in terms
3889 * of semantics, for now, we support soft limits for
3890 * control without swap
3891 */
3892 if (type == _MEM)
3893 ret = res_counter_set_soft_limit(&memcg->res, val);
3894 else
3895 ret = -EINVAL;
3896 break;
3897 default:
3898 ret = -EINVAL; /* should be BUG() ? */
3899 break;
3900 }
3901 return ret;
3902 }
3903
3904 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3905 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3906 {
3907 struct cgroup *cgroup;
3908 unsigned long long min_limit, min_memsw_limit, tmp;
3909
3910 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3911 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3912 cgroup = memcg->css.cgroup;
3913 if (!memcg->use_hierarchy)
3914 goto out;
3915
3916 while (cgroup->parent) {
3917 cgroup = cgroup->parent;
3918 memcg = mem_cgroup_from_cont(cgroup);
3919 if (!memcg->use_hierarchy)
3920 break;
3921 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3922 min_limit = min(min_limit, tmp);
3923 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3924 min_memsw_limit = min(min_memsw_limit, tmp);
3925 }
3926 out:
3927 *mem_limit = min_limit;
3928 *memsw_limit = min_memsw_limit;
3929 return;
3930 }
3931
3932 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3933 {
3934 struct mem_cgroup *mem;
3935 int type, name;
3936
3937 mem = mem_cgroup_from_cont(cont);
3938 type = MEMFILE_TYPE(event);
3939 name = MEMFILE_ATTR(event);
3940 switch (name) {
3941 case RES_MAX_USAGE:
3942 if (type == _MEM)
3943 res_counter_reset_max(&mem->res);
3944 else
3945 res_counter_reset_max(&mem->memsw);
3946 break;
3947 case RES_FAILCNT:
3948 if (type == _MEM)
3949 res_counter_reset_failcnt(&mem->res);
3950 else
3951 res_counter_reset_failcnt(&mem->memsw);
3952 break;
3953 }
3954
3955 return 0;
3956 }
3957
3958 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3959 struct cftype *cft)
3960 {
3961 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3962 }
3963
3964 #ifdef CONFIG_MMU
3965 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3966 struct cftype *cft, u64 val)
3967 {
3968 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3969
3970 if (val >= (1 << NR_MOVE_TYPE))
3971 return -EINVAL;
3972 /*
3973 * We check this value several times in both in can_attach() and
3974 * attach(), so we need cgroup lock to prevent this value from being
3975 * inconsistent.
3976 */
3977 cgroup_lock();
3978 mem->move_charge_at_immigrate = val;
3979 cgroup_unlock();
3980
3981 return 0;
3982 }
3983 #else
3984 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3985 struct cftype *cft, u64 val)
3986 {
3987 return -ENOSYS;
3988 }
3989 #endif
3990
3991
3992 /* For read statistics */
3993 enum {
3994 MCS_CACHE,
3995 MCS_RSS,
3996 MCS_FILE_MAPPED,
3997 MCS_PGPGIN,
3998 MCS_PGPGOUT,
3999 MCS_SWAP,
4000 MCS_PGFAULT,
4001 MCS_PGMAJFAULT,
4002 MCS_INACTIVE_ANON,
4003 MCS_ACTIVE_ANON,
4004 MCS_INACTIVE_FILE,
4005 MCS_ACTIVE_FILE,
4006 MCS_UNEVICTABLE,
4007 NR_MCS_STAT,
4008 };
4009
4010 struct mcs_total_stat {
4011 s64 stat[NR_MCS_STAT];
4012 };
4013
4014 struct {
4015 char *local_name;
4016 char *total_name;
4017 } memcg_stat_strings[NR_MCS_STAT] = {
4018 {"cache", "total_cache"},
4019 {"rss", "total_rss"},
4020 {"mapped_file", "total_mapped_file"},
4021 {"pgpgin", "total_pgpgin"},
4022 {"pgpgout", "total_pgpgout"},
4023 {"swap", "total_swap"},
4024 {"pgfault", "total_pgfault"},
4025 {"pgmajfault", "total_pgmajfault"},
4026 {"inactive_anon", "total_inactive_anon"},
4027 {"active_anon", "total_active_anon"},
4028 {"inactive_file", "total_inactive_file"},
4029 {"active_file", "total_active_file"},
4030 {"unevictable", "total_unevictable"}
4031 };
4032
4033
4034 static void
4035 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4036 {
4037 s64 val;
4038
4039 /* per cpu stat */
4040 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4041 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4042 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4043 s->stat[MCS_RSS] += val * PAGE_SIZE;
4044 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4045 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4046 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4047 s->stat[MCS_PGPGIN] += val;
4048 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4049 s->stat[MCS_PGPGOUT] += val;
4050 if (do_swap_account) {
4051 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4052 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4053 }
4054 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4055 s->stat[MCS_PGFAULT] += val;
4056 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4057 s->stat[MCS_PGMAJFAULT] += val;
4058
4059 /* per zone stat */
4060 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4061 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4062 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4063 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4064 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4065 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4066 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4067 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4068 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4069 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4070 }
4071
4072 static void
4073 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4074 {
4075 struct mem_cgroup *iter;
4076
4077 for_each_mem_cgroup_tree(iter, mem)
4078 mem_cgroup_get_local_stat(iter, s);
4079 }
4080
4081 #ifdef CONFIG_NUMA
4082 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4083 {
4084 int nid;
4085 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4086 unsigned long node_nr;
4087 struct cgroup *cont = m->private;
4088 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4089
4090 total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4091 seq_printf(m, "total=%lu", total_nr);
4092 for_each_node_state(nid, N_HIGH_MEMORY) {
4093 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4094 seq_printf(m, " N%d=%lu", nid, node_nr);
4095 }
4096 seq_putc(m, '\n');
4097
4098 file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4099 seq_printf(m, "file=%lu", file_nr);
4100 for_each_node_state(nid, N_HIGH_MEMORY) {
4101 node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4102 seq_printf(m, " N%d=%lu", nid, node_nr);
4103 }
4104 seq_putc(m, '\n');
4105
4106 anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4107 seq_printf(m, "anon=%lu", anon_nr);
4108 for_each_node_state(nid, N_HIGH_MEMORY) {
4109 node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4110 seq_printf(m, " N%d=%lu", nid, node_nr);
4111 }
4112 seq_putc(m, '\n');
4113
4114 unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4115 seq_printf(m, "unevictable=%lu", unevictable_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
4117 node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4118 nid);
4119 seq_printf(m, " N%d=%lu", nid, node_nr);
4120 }
4121 seq_putc(m, '\n');
4122 return 0;
4123 }
4124 #endif /* CONFIG_NUMA */
4125
4126 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4127 struct cgroup_map_cb *cb)
4128 {
4129 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4130 struct mcs_total_stat mystat;
4131 int i;
4132
4133 memset(&mystat, 0, sizeof(mystat));
4134 mem_cgroup_get_local_stat(mem_cont, &mystat);
4135
4136
4137 for (i = 0; i < NR_MCS_STAT; i++) {
4138 if (i == MCS_SWAP && !do_swap_account)
4139 continue;
4140 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4141 }
4142
4143 /* Hierarchical information */
4144 {
4145 unsigned long long limit, memsw_limit;
4146 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4147 cb->fill(cb, "hierarchical_memory_limit", limit);
4148 if (do_swap_account)
4149 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4150 }
4151
4152 memset(&mystat, 0, sizeof(mystat));
4153 mem_cgroup_get_total_stat(mem_cont, &mystat);
4154 for (i = 0; i < NR_MCS_STAT; i++) {
4155 if (i == MCS_SWAP && !do_swap_account)
4156 continue;
4157 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4158 }
4159
4160 #ifdef CONFIG_DEBUG_VM
4161 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4162
4163 {
4164 int nid, zid;
4165 struct mem_cgroup_per_zone *mz;
4166 unsigned long recent_rotated[2] = {0, 0};
4167 unsigned long recent_scanned[2] = {0, 0};
4168
4169 for_each_online_node(nid)
4170 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4171 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4172
4173 recent_rotated[0] +=
4174 mz->reclaim_stat.recent_rotated[0];
4175 recent_rotated[1] +=
4176 mz->reclaim_stat.recent_rotated[1];
4177 recent_scanned[0] +=
4178 mz->reclaim_stat.recent_scanned[0];
4179 recent_scanned[1] +=
4180 mz->reclaim_stat.recent_scanned[1];
4181 }
4182 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4183 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4184 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4185 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4186 }
4187 #endif
4188
4189 return 0;
4190 }
4191
4192 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4193 {
4194 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4195
4196 return get_swappiness(memcg);
4197 }
4198
4199 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4200 u64 val)
4201 {
4202 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4203 struct mem_cgroup *parent;
4204
4205 if (val > 100)
4206 return -EINVAL;
4207
4208 if (cgrp->parent == NULL)
4209 return -EINVAL;
4210
4211 parent = mem_cgroup_from_cont(cgrp->parent);
4212
4213 cgroup_lock();
4214
4215 /* If under hierarchy, only empty-root can set this value */
4216 if ((parent->use_hierarchy) ||
4217 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4218 cgroup_unlock();
4219 return -EINVAL;
4220 }
4221
4222 memcg->swappiness = val;
4223
4224 cgroup_unlock();
4225
4226 return 0;
4227 }
4228
4229 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4230 {
4231 struct mem_cgroup_threshold_ary *t;
4232 u64 usage;
4233 int i;
4234
4235 rcu_read_lock();
4236 if (!swap)
4237 t = rcu_dereference(memcg->thresholds.primary);
4238 else
4239 t = rcu_dereference(memcg->memsw_thresholds.primary);
4240
4241 if (!t)
4242 goto unlock;
4243
4244 usage = mem_cgroup_usage(memcg, swap);
4245
4246 /*
4247 * current_threshold points to threshold just below usage.
4248 * If it's not true, a threshold was crossed after last
4249 * call of __mem_cgroup_threshold().
4250 */
4251 i = t->current_threshold;
4252
4253 /*
4254 * Iterate backward over array of thresholds starting from
4255 * current_threshold and check if a threshold is crossed.
4256 * If none of thresholds below usage is crossed, we read
4257 * only one element of the array here.
4258 */
4259 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4260 eventfd_signal(t->entries[i].eventfd, 1);
4261
4262 /* i = current_threshold + 1 */
4263 i++;
4264
4265 /*
4266 * Iterate forward over array of thresholds starting from
4267 * current_threshold+1 and check if a threshold is crossed.
4268 * If none of thresholds above usage is crossed, we read
4269 * only one element of the array here.
4270 */
4271 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4272 eventfd_signal(t->entries[i].eventfd, 1);
4273
4274 /* Update current_threshold */
4275 t->current_threshold = i - 1;
4276 unlock:
4277 rcu_read_unlock();
4278 }
4279
4280 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4281 {
4282 while (memcg) {
4283 __mem_cgroup_threshold(memcg, false);
4284 if (do_swap_account)
4285 __mem_cgroup_threshold(memcg, true);
4286
4287 memcg = parent_mem_cgroup(memcg);
4288 }
4289 }
4290
4291 static int compare_thresholds(const void *a, const void *b)
4292 {
4293 const struct mem_cgroup_threshold *_a = a;
4294 const struct mem_cgroup_threshold *_b = b;
4295
4296 return _a->threshold - _b->threshold;
4297 }
4298
4299 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4300 {
4301 struct mem_cgroup_eventfd_list *ev;
4302
4303 list_for_each_entry(ev, &mem->oom_notify, list)
4304 eventfd_signal(ev->eventfd, 1);
4305 return 0;
4306 }
4307
4308 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4309 {
4310 struct mem_cgroup *iter;
4311
4312 for_each_mem_cgroup_tree(iter, mem)
4313 mem_cgroup_oom_notify_cb(iter);
4314 }
4315
4316 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4317 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4318 {
4319 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4320 struct mem_cgroup_thresholds *thresholds;
4321 struct mem_cgroup_threshold_ary *new;
4322 int type = MEMFILE_TYPE(cft->private);
4323 u64 threshold, usage;
4324 int i, size, ret;
4325
4326 ret = res_counter_memparse_write_strategy(args, &threshold);
4327 if (ret)
4328 return ret;
4329
4330 mutex_lock(&memcg->thresholds_lock);
4331
4332 if (type == _MEM)
4333 thresholds = &memcg->thresholds;
4334 else if (type == _MEMSWAP)
4335 thresholds = &memcg->memsw_thresholds;
4336 else
4337 BUG();
4338
4339 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4340
4341 /* Check if a threshold crossed before adding a new one */
4342 if (thresholds->primary)
4343 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4344
4345 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4346
4347 /* Allocate memory for new array of thresholds */
4348 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4349 GFP_KERNEL);
4350 if (!new) {
4351 ret = -ENOMEM;
4352 goto unlock;
4353 }
4354 new->size = size;
4355
4356 /* Copy thresholds (if any) to new array */
4357 if (thresholds->primary) {
4358 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4359 sizeof(struct mem_cgroup_threshold));
4360 }
4361
4362 /* Add new threshold */
4363 new->entries[size - 1].eventfd = eventfd;
4364 new->entries[size - 1].threshold = threshold;
4365
4366 /* Sort thresholds. Registering of new threshold isn't time-critical */
4367 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4368 compare_thresholds, NULL);
4369
4370 /* Find current threshold */
4371 new->current_threshold = -1;
4372 for (i = 0; i < size; i++) {
4373 if (new->entries[i].threshold < usage) {
4374 /*
4375 * new->current_threshold will not be used until
4376 * rcu_assign_pointer(), so it's safe to increment
4377 * it here.
4378 */
4379 ++new->current_threshold;
4380 }
4381 }
4382
4383 /* Free old spare buffer and save old primary buffer as spare */
4384 kfree(thresholds->spare);
4385 thresholds->spare = thresholds->primary;
4386
4387 rcu_assign_pointer(thresholds->primary, new);
4388
4389 /* To be sure that nobody uses thresholds */
4390 synchronize_rcu();
4391
4392 unlock:
4393 mutex_unlock(&memcg->thresholds_lock);
4394
4395 return ret;
4396 }
4397
4398 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4399 struct cftype *cft, struct eventfd_ctx *eventfd)
4400 {
4401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4402 struct mem_cgroup_thresholds *thresholds;
4403 struct mem_cgroup_threshold_ary *new;
4404 int type = MEMFILE_TYPE(cft->private);
4405 u64 usage;
4406 int i, j, size;
4407
4408 mutex_lock(&memcg->thresholds_lock);
4409 if (type == _MEM)
4410 thresholds = &memcg->thresholds;
4411 else if (type == _MEMSWAP)
4412 thresholds = &memcg->memsw_thresholds;
4413 else
4414 BUG();
4415
4416 /*
4417 * Something went wrong if we trying to unregister a threshold
4418 * if we don't have thresholds
4419 */
4420 BUG_ON(!thresholds);
4421
4422 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4423
4424 /* Check if a threshold crossed before removing */
4425 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4426
4427 /* Calculate new number of threshold */
4428 size = 0;
4429 for (i = 0; i < thresholds->primary->size; i++) {
4430 if (thresholds->primary->entries[i].eventfd != eventfd)
4431 size++;
4432 }
4433
4434 new = thresholds->spare;
4435
4436 /* Set thresholds array to NULL if we don't have thresholds */
4437 if (!size) {
4438 kfree(new);
4439 new = NULL;
4440 goto swap_buffers;
4441 }
4442
4443 new->size = size;
4444
4445 /* Copy thresholds and find current threshold */
4446 new->current_threshold = -1;
4447 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4448 if (thresholds->primary->entries[i].eventfd == eventfd)
4449 continue;
4450
4451 new->entries[j] = thresholds->primary->entries[i];
4452 if (new->entries[j].threshold < usage) {
4453 /*
4454 * new->current_threshold will not be used
4455 * until rcu_assign_pointer(), so it's safe to increment
4456 * it here.
4457 */
4458 ++new->current_threshold;
4459 }
4460 j++;
4461 }
4462
4463 swap_buffers:
4464 /* Swap primary and spare array */
4465 thresholds->spare = thresholds->primary;
4466 rcu_assign_pointer(thresholds->primary, new);
4467
4468 /* To be sure that nobody uses thresholds */
4469 synchronize_rcu();
4470
4471 mutex_unlock(&memcg->thresholds_lock);
4472 }
4473
4474 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4475 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4476 {
4477 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4478 struct mem_cgroup_eventfd_list *event;
4479 int type = MEMFILE_TYPE(cft->private);
4480
4481 BUG_ON(type != _OOM_TYPE);
4482 event = kmalloc(sizeof(*event), GFP_KERNEL);
4483 if (!event)
4484 return -ENOMEM;
4485
4486 mutex_lock(&memcg_oom_mutex);
4487
4488 event->eventfd = eventfd;
4489 list_add(&event->list, &memcg->oom_notify);
4490
4491 /* already in OOM ? */
4492 if (atomic_read(&memcg->oom_lock))
4493 eventfd_signal(eventfd, 1);
4494 mutex_unlock(&memcg_oom_mutex);
4495
4496 return 0;
4497 }
4498
4499 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4500 struct cftype *cft, struct eventfd_ctx *eventfd)
4501 {
4502 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4503 struct mem_cgroup_eventfd_list *ev, *tmp;
4504 int type = MEMFILE_TYPE(cft->private);
4505
4506 BUG_ON(type != _OOM_TYPE);
4507
4508 mutex_lock(&memcg_oom_mutex);
4509
4510 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4511 if (ev->eventfd == eventfd) {
4512 list_del(&ev->list);
4513 kfree(ev);
4514 }
4515 }
4516
4517 mutex_unlock(&memcg_oom_mutex);
4518 }
4519
4520 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4521 struct cftype *cft, struct cgroup_map_cb *cb)
4522 {
4523 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4524
4525 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4526
4527 if (atomic_read(&mem->oom_lock))
4528 cb->fill(cb, "under_oom", 1);
4529 else
4530 cb->fill(cb, "under_oom", 0);
4531 return 0;
4532 }
4533
4534 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4535 struct cftype *cft, u64 val)
4536 {
4537 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4538 struct mem_cgroup *parent;
4539
4540 /* cannot set to root cgroup and only 0 and 1 are allowed */
4541 if (!cgrp->parent || !((val == 0) || (val == 1)))
4542 return -EINVAL;
4543
4544 parent = mem_cgroup_from_cont(cgrp->parent);
4545
4546 cgroup_lock();
4547 /* oom-kill-disable is a flag for subhierarchy. */
4548 if ((parent->use_hierarchy) ||
4549 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4550 cgroup_unlock();
4551 return -EINVAL;
4552 }
4553 mem->oom_kill_disable = val;
4554 if (!val)
4555 memcg_oom_recover(mem);
4556 cgroup_unlock();
4557 return 0;
4558 }
4559
4560 #ifdef CONFIG_NUMA
4561 static const struct file_operations mem_control_numa_stat_file_operations = {
4562 .read = seq_read,
4563 .llseek = seq_lseek,
4564 .release = single_release,
4565 };
4566
4567 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4568 {
4569 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4570
4571 file->f_op = &mem_control_numa_stat_file_operations;
4572 return single_open(file, mem_control_numa_stat_show, cont);
4573 }
4574 #endif /* CONFIG_NUMA */
4575
4576 static struct cftype mem_cgroup_files[] = {
4577 {
4578 .name = "usage_in_bytes",
4579 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4580 .read_u64 = mem_cgroup_read,
4581 .register_event = mem_cgroup_usage_register_event,
4582 .unregister_event = mem_cgroup_usage_unregister_event,
4583 },
4584 {
4585 .name = "max_usage_in_bytes",
4586 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4587 .trigger = mem_cgroup_reset,
4588 .read_u64 = mem_cgroup_read,
4589 },
4590 {
4591 .name = "limit_in_bytes",
4592 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4593 .write_string = mem_cgroup_write,
4594 .read_u64 = mem_cgroup_read,
4595 },
4596 {
4597 .name = "soft_limit_in_bytes",
4598 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4599 .write_string = mem_cgroup_write,
4600 .read_u64 = mem_cgroup_read,
4601 },
4602 {
4603 .name = "failcnt",
4604 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4605 .trigger = mem_cgroup_reset,
4606 .read_u64 = mem_cgroup_read,
4607 },
4608 {
4609 .name = "stat",
4610 .read_map = mem_control_stat_show,
4611 },
4612 {
4613 .name = "force_empty",
4614 .trigger = mem_cgroup_force_empty_write,
4615 },
4616 {
4617 .name = "use_hierarchy",
4618 .write_u64 = mem_cgroup_hierarchy_write,
4619 .read_u64 = mem_cgroup_hierarchy_read,
4620 },
4621 {
4622 .name = "swappiness",
4623 .read_u64 = mem_cgroup_swappiness_read,
4624 .write_u64 = mem_cgroup_swappiness_write,
4625 },
4626 {
4627 .name = "move_charge_at_immigrate",
4628 .read_u64 = mem_cgroup_move_charge_read,
4629 .write_u64 = mem_cgroup_move_charge_write,
4630 },
4631 {
4632 .name = "oom_control",
4633 .read_map = mem_cgroup_oom_control_read,
4634 .write_u64 = mem_cgroup_oom_control_write,
4635 .register_event = mem_cgroup_oom_register_event,
4636 .unregister_event = mem_cgroup_oom_unregister_event,
4637 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4638 },
4639 #ifdef CONFIG_NUMA
4640 {
4641 .name = "numa_stat",
4642 .open = mem_control_numa_stat_open,
4643 },
4644 #endif
4645 };
4646
4647 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4648 static struct cftype memsw_cgroup_files[] = {
4649 {
4650 .name = "memsw.usage_in_bytes",
4651 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4652 .read_u64 = mem_cgroup_read,
4653 .register_event = mem_cgroup_usage_register_event,
4654 .unregister_event = mem_cgroup_usage_unregister_event,
4655 },
4656 {
4657 .name = "memsw.max_usage_in_bytes",
4658 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4659 .trigger = mem_cgroup_reset,
4660 .read_u64 = mem_cgroup_read,
4661 },
4662 {
4663 .name = "memsw.limit_in_bytes",
4664 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4665 .write_string = mem_cgroup_write,
4666 .read_u64 = mem_cgroup_read,
4667 },
4668 {
4669 .name = "memsw.failcnt",
4670 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4671 .trigger = mem_cgroup_reset,
4672 .read_u64 = mem_cgroup_read,
4673 },
4674 };
4675
4676 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4677 {
4678 if (!do_swap_account)
4679 return 0;
4680 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4681 ARRAY_SIZE(memsw_cgroup_files));
4682 };
4683 #else
4684 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4685 {
4686 return 0;
4687 }
4688 #endif
4689
4690 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4691 {
4692 struct mem_cgroup_per_node *pn;
4693 struct mem_cgroup_per_zone *mz;
4694 enum lru_list l;
4695 int zone, tmp = node;
4696 /*
4697 * This routine is called against possible nodes.
4698 * But it's BUG to call kmalloc() against offline node.
4699 *
4700 * TODO: this routine can waste much memory for nodes which will
4701 * never be onlined. It's better to use memory hotplug callback
4702 * function.
4703 */
4704 if (!node_state(node, N_NORMAL_MEMORY))
4705 tmp = -1;
4706 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4707 if (!pn)
4708 return 1;
4709
4710 mem->info.nodeinfo[node] = pn;
4711 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4712 mz = &pn->zoneinfo[zone];
4713 for_each_lru(l)
4714 INIT_LIST_HEAD(&mz->lists[l]);
4715 mz->usage_in_excess = 0;
4716 mz->on_tree = false;
4717 mz->mem = mem;
4718 }
4719 return 0;
4720 }
4721
4722 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4723 {
4724 kfree(mem->info.nodeinfo[node]);
4725 }
4726
4727 static struct mem_cgroup *mem_cgroup_alloc(void)
4728 {
4729 struct mem_cgroup *mem;
4730 int size = sizeof(struct mem_cgroup);
4731
4732 /* Can be very big if MAX_NUMNODES is very big */
4733 if (size < PAGE_SIZE)
4734 mem = kzalloc(size, GFP_KERNEL);
4735 else
4736 mem = vzalloc(size);
4737
4738 if (!mem)
4739 return NULL;
4740
4741 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4742 if (!mem->stat)
4743 goto out_free;
4744 spin_lock_init(&mem->pcp_counter_lock);
4745 return mem;
4746
4747 out_free:
4748 if (size < PAGE_SIZE)
4749 kfree(mem);
4750 else
4751 vfree(mem);
4752 return NULL;
4753 }
4754
4755 /*
4756 * At destroying mem_cgroup, references from swap_cgroup can remain.
4757 * (scanning all at force_empty is too costly...)
4758 *
4759 * Instead of clearing all references at force_empty, we remember
4760 * the number of reference from swap_cgroup and free mem_cgroup when
4761 * it goes down to 0.
4762 *
4763 * Removal of cgroup itself succeeds regardless of refs from swap.
4764 */
4765
4766 static void __mem_cgroup_free(struct mem_cgroup *mem)
4767 {
4768 int node;
4769
4770 mem_cgroup_remove_from_trees(mem);
4771 free_css_id(&mem_cgroup_subsys, &mem->css);
4772
4773 for_each_node_state(node, N_POSSIBLE)
4774 free_mem_cgroup_per_zone_info(mem, node);
4775
4776 free_percpu(mem->stat);
4777 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4778 kfree(mem);
4779 else
4780 vfree(mem);
4781 }
4782
4783 static void mem_cgroup_get(struct mem_cgroup *mem)
4784 {
4785 atomic_inc(&mem->refcnt);
4786 }
4787
4788 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4789 {
4790 if (atomic_sub_and_test(count, &mem->refcnt)) {
4791 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4792 __mem_cgroup_free(mem);
4793 if (parent)
4794 mem_cgroup_put(parent);
4795 }
4796 }
4797
4798 static void mem_cgroup_put(struct mem_cgroup *mem)
4799 {
4800 __mem_cgroup_put(mem, 1);
4801 }
4802
4803 /*
4804 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4805 */
4806 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4807 {
4808 if (!mem->res.parent)
4809 return NULL;
4810 return mem_cgroup_from_res_counter(mem->res.parent, res);
4811 }
4812
4813 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814 static void __init enable_swap_cgroup(void)
4815 {
4816 if (!mem_cgroup_disabled() && really_do_swap_account)
4817 do_swap_account = 1;
4818 }
4819 #else
4820 static void __init enable_swap_cgroup(void)
4821 {
4822 }
4823 #endif
4824
4825 static int mem_cgroup_soft_limit_tree_init(void)
4826 {
4827 struct mem_cgroup_tree_per_node *rtpn;
4828 struct mem_cgroup_tree_per_zone *rtpz;
4829 int tmp, node, zone;
4830
4831 for_each_node_state(node, N_POSSIBLE) {
4832 tmp = node;
4833 if (!node_state(node, N_NORMAL_MEMORY))
4834 tmp = -1;
4835 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836 if (!rtpn)
4837 return 1;
4838
4839 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840
4841 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842 rtpz = &rtpn->rb_tree_per_zone[zone];
4843 rtpz->rb_root = RB_ROOT;
4844 spin_lock_init(&rtpz->lock);
4845 }
4846 }
4847 return 0;
4848 }
4849
4850 static struct cgroup_subsys_state * __ref
4851 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4852 {
4853 struct mem_cgroup *mem, *parent;
4854 long error = -ENOMEM;
4855 int node;
4856
4857 mem = mem_cgroup_alloc();
4858 if (!mem)
4859 return ERR_PTR(error);
4860
4861 for_each_node_state(node, N_POSSIBLE)
4862 if (alloc_mem_cgroup_per_zone_info(mem, node))
4863 goto free_out;
4864
4865 /* root ? */
4866 if (cont->parent == NULL) {
4867 int cpu;
4868 enable_swap_cgroup();
4869 parent = NULL;
4870 root_mem_cgroup = mem;
4871 if (mem_cgroup_soft_limit_tree_init())
4872 goto free_out;
4873 for_each_possible_cpu(cpu) {
4874 struct memcg_stock_pcp *stock =
4875 &per_cpu(memcg_stock, cpu);
4876 INIT_WORK(&stock->work, drain_local_stock);
4877 }
4878 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4879 } else {
4880 parent = mem_cgroup_from_cont(cont->parent);
4881 mem->use_hierarchy = parent->use_hierarchy;
4882 mem->oom_kill_disable = parent->oom_kill_disable;
4883 }
4884
4885 if (parent && parent->use_hierarchy) {
4886 res_counter_init(&mem->res, &parent->res);
4887 res_counter_init(&mem->memsw, &parent->memsw);
4888 /*
4889 * We increment refcnt of the parent to ensure that we can
4890 * safely access it on res_counter_charge/uncharge.
4891 * This refcnt will be decremented when freeing this
4892 * mem_cgroup(see mem_cgroup_put).
4893 */
4894 mem_cgroup_get(parent);
4895 } else {
4896 res_counter_init(&mem->res, NULL);
4897 res_counter_init(&mem->memsw, NULL);
4898 }
4899 mem->last_scanned_child = 0;
4900 mem->last_scanned_node = MAX_NUMNODES;
4901 INIT_LIST_HEAD(&mem->oom_notify);
4902
4903 if (parent)
4904 mem->swappiness = get_swappiness(parent);
4905 atomic_set(&mem->refcnt, 1);
4906 mem->move_charge_at_immigrate = 0;
4907 mutex_init(&mem->thresholds_lock);
4908 return &mem->css;
4909 free_out:
4910 __mem_cgroup_free(mem);
4911 root_mem_cgroup = NULL;
4912 return ERR_PTR(error);
4913 }
4914
4915 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4916 struct cgroup *cont)
4917 {
4918 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4919
4920 return mem_cgroup_force_empty(mem, false);
4921 }
4922
4923 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4924 struct cgroup *cont)
4925 {
4926 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4927
4928 mem_cgroup_put(mem);
4929 }
4930
4931 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4932 struct cgroup *cont)
4933 {
4934 int ret;
4935
4936 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4937 ARRAY_SIZE(mem_cgroup_files));
4938
4939 if (!ret)
4940 ret = register_memsw_files(cont, ss);
4941 return ret;
4942 }
4943
4944 #ifdef CONFIG_MMU
4945 /* Handlers for move charge at task migration. */
4946 #define PRECHARGE_COUNT_AT_ONCE 256
4947 static int mem_cgroup_do_precharge(unsigned long count)
4948 {
4949 int ret = 0;
4950 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4951 struct mem_cgroup *mem = mc.to;
4952
4953 if (mem_cgroup_is_root(mem)) {
4954 mc.precharge += count;
4955 /* we don't need css_get for root */
4956 return ret;
4957 }
4958 /* try to charge at once */
4959 if (count > 1) {
4960 struct res_counter *dummy;
4961 /*
4962 * "mem" cannot be under rmdir() because we've already checked
4963 * by cgroup_lock_live_cgroup() that it is not removed and we
4964 * are still under the same cgroup_mutex. So we can postpone
4965 * css_get().
4966 */
4967 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4968 goto one_by_one;
4969 if (do_swap_account && res_counter_charge(&mem->memsw,
4970 PAGE_SIZE * count, &dummy)) {
4971 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4972 goto one_by_one;
4973 }
4974 mc.precharge += count;
4975 return ret;
4976 }
4977 one_by_one:
4978 /* fall back to one by one charge */
4979 while (count--) {
4980 if (signal_pending(current)) {
4981 ret = -EINTR;
4982 break;
4983 }
4984 if (!batch_count--) {
4985 batch_count = PRECHARGE_COUNT_AT_ONCE;
4986 cond_resched();
4987 }
4988 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4989 if (ret || !mem)
4990 /* mem_cgroup_clear_mc() will do uncharge later */
4991 return -ENOMEM;
4992 mc.precharge++;
4993 }
4994 return ret;
4995 }
4996
4997 /**
4998 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4999 * @vma: the vma the pte to be checked belongs
5000 * @addr: the address corresponding to the pte to be checked
5001 * @ptent: the pte to be checked
5002 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5003 *
5004 * Returns
5005 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5006 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5007 * move charge. if @target is not NULL, the page is stored in target->page
5008 * with extra refcnt got(Callers should handle it).
5009 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5010 * target for charge migration. if @target is not NULL, the entry is stored
5011 * in target->ent.
5012 *
5013 * Called with pte lock held.
5014 */
5015 union mc_target {
5016 struct page *page;
5017 swp_entry_t ent;
5018 };
5019
5020 enum mc_target_type {
5021 MC_TARGET_NONE, /* not used */
5022 MC_TARGET_PAGE,
5023 MC_TARGET_SWAP,
5024 };
5025
5026 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5027 unsigned long addr, pte_t ptent)
5028 {
5029 struct page *page = vm_normal_page(vma, addr, ptent);
5030
5031 if (!page || !page_mapped(page))
5032 return NULL;
5033 if (PageAnon(page)) {
5034 /* we don't move shared anon */
5035 if (!move_anon() || page_mapcount(page) > 2)
5036 return NULL;
5037 } else if (!move_file())
5038 /* we ignore mapcount for file pages */
5039 return NULL;
5040 if (!get_page_unless_zero(page))
5041 return NULL;
5042
5043 return page;
5044 }
5045
5046 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5047 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5048 {
5049 int usage_count;
5050 struct page *page = NULL;
5051 swp_entry_t ent = pte_to_swp_entry(ptent);
5052
5053 if (!move_anon() || non_swap_entry(ent))
5054 return NULL;
5055 usage_count = mem_cgroup_count_swap_user(ent, &page);
5056 if (usage_count > 1) { /* we don't move shared anon */
5057 if (page)
5058 put_page(page);
5059 return NULL;
5060 }
5061 if (do_swap_account)
5062 entry->val = ent.val;
5063
5064 return page;
5065 }
5066
5067 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5068 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5069 {
5070 struct page *page = NULL;
5071 struct inode *inode;
5072 struct address_space *mapping;
5073 pgoff_t pgoff;
5074
5075 if (!vma->vm_file) /* anonymous vma */
5076 return NULL;
5077 if (!move_file())
5078 return NULL;
5079
5080 inode = vma->vm_file->f_path.dentry->d_inode;
5081 mapping = vma->vm_file->f_mapping;
5082 if (pte_none(ptent))
5083 pgoff = linear_page_index(vma, addr);
5084 else /* pte_file(ptent) is true */
5085 pgoff = pte_to_pgoff(ptent);
5086
5087 /* page is moved even if it's not RSS of this task(page-faulted). */
5088 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5089 page = find_get_page(mapping, pgoff);
5090 } else { /* shmem/tmpfs file. we should take account of swap too. */
5091 swp_entry_t ent;
5092 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5093 if (do_swap_account)
5094 entry->val = ent.val;
5095 }
5096
5097 return page;
5098 }
5099
5100 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5101 unsigned long addr, pte_t ptent, union mc_target *target)
5102 {
5103 struct page *page = NULL;
5104 struct page_cgroup *pc;
5105 int ret = 0;
5106 swp_entry_t ent = { .val = 0 };
5107
5108 if (pte_present(ptent))
5109 page = mc_handle_present_pte(vma, addr, ptent);
5110 else if (is_swap_pte(ptent))
5111 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5112 else if (pte_none(ptent) || pte_file(ptent))
5113 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5114
5115 if (!page && !ent.val)
5116 return 0;
5117 if (page) {
5118 pc = lookup_page_cgroup(page);
5119 /*
5120 * Do only loose check w/o page_cgroup lock.
5121 * mem_cgroup_move_account() checks the pc is valid or not under
5122 * the lock.
5123 */
5124 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5125 ret = MC_TARGET_PAGE;
5126 if (target)
5127 target->page = page;
5128 }
5129 if (!ret || !target)
5130 put_page(page);
5131 }
5132 /* There is a swap entry and a page doesn't exist or isn't charged */
5133 if (ent.val && !ret &&
5134 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5135 ret = MC_TARGET_SWAP;
5136 if (target)
5137 target->ent = ent;
5138 }
5139 return ret;
5140 }
5141
5142 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5143 unsigned long addr, unsigned long end,
5144 struct mm_walk *walk)
5145 {
5146 struct vm_area_struct *vma = walk->private;
5147 pte_t *pte;
5148 spinlock_t *ptl;
5149
5150 split_huge_page_pmd(walk->mm, pmd);
5151
5152 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5153 for (; addr != end; pte++, addr += PAGE_SIZE)
5154 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5155 mc.precharge++; /* increment precharge temporarily */
5156 pte_unmap_unlock(pte - 1, ptl);
5157 cond_resched();
5158
5159 return 0;
5160 }
5161
5162 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5163 {
5164 unsigned long precharge;
5165 struct vm_area_struct *vma;
5166
5167 down_read(&mm->mmap_sem);
5168 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5169 struct mm_walk mem_cgroup_count_precharge_walk = {
5170 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5171 .mm = mm,
5172 .private = vma,
5173 };
5174 if (is_vm_hugetlb_page(vma))
5175 continue;
5176 walk_page_range(vma->vm_start, vma->vm_end,
5177 &mem_cgroup_count_precharge_walk);
5178 }
5179 up_read(&mm->mmap_sem);
5180
5181 precharge = mc.precharge;
5182 mc.precharge = 0;
5183
5184 return precharge;
5185 }
5186
5187 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5188 {
5189 unsigned long precharge = mem_cgroup_count_precharge(mm);
5190
5191 VM_BUG_ON(mc.moving_task);
5192 mc.moving_task = current;
5193 return mem_cgroup_do_precharge(precharge);
5194 }
5195
5196 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5197 static void __mem_cgroup_clear_mc(void)
5198 {
5199 struct mem_cgroup *from = mc.from;
5200 struct mem_cgroup *to = mc.to;
5201
5202 /* we must uncharge all the leftover precharges from mc.to */
5203 if (mc.precharge) {
5204 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5205 mc.precharge = 0;
5206 }
5207 /*
5208 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5209 * we must uncharge here.
5210 */
5211 if (mc.moved_charge) {
5212 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5213 mc.moved_charge = 0;
5214 }
5215 /* we must fixup refcnts and charges */
5216 if (mc.moved_swap) {
5217 /* uncharge swap account from the old cgroup */
5218 if (!mem_cgroup_is_root(mc.from))
5219 res_counter_uncharge(&mc.from->memsw,
5220 PAGE_SIZE * mc.moved_swap);
5221 __mem_cgroup_put(mc.from, mc.moved_swap);
5222
5223 if (!mem_cgroup_is_root(mc.to)) {
5224 /*
5225 * we charged both to->res and to->memsw, so we should
5226 * uncharge to->res.
5227 */
5228 res_counter_uncharge(&mc.to->res,
5229 PAGE_SIZE * mc.moved_swap);
5230 }
5231 /* we've already done mem_cgroup_get(mc.to) */
5232 mc.moved_swap = 0;
5233 }
5234 memcg_oom_recover(from);
5235 memcg_oom_recover(to);
5236 wake_up_all(&mc.waitq);
5237 }
5238
5239 static void mem_cgroup_clear_mc(void)
5240 {
5241 struct mem_cgroup *from = mc.from;
5242
5243 /*
5244 * we must clear moving_task before waking up waiters at the end of
5245 * task migration.
5246 */
5247 mc.moving_task = NULL;
5248 __mem_cgroup_clear_mc();
5249 spin_lock(&mc.lock);
5250 mc.from = NULL;
5251 mc.to = NULL;
5252 spin_unlock(&mc.lock);
5253 mem_cgroup_end_move(from);
5254 }
5255
5256 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5257 struct cgroup *cgroup,
5258 struct task_struct *p)
5259 {
5260 int ret = 0;
5261 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5262
5263 if (mem->move_charge_at_immigrate) {
5264 struct mm_struct *mm;
5265 struct mem_cgroup *from = mem_cgroup_from_task(p);
5266
5267 VM_BUG_ON(from == mem);
5268
5269 mm = get_task_mm(p);
5270 if (!mm)
5271 return 0;
5272 /* We move charges only when we move a owner of the mm */
5273 if (mm->owner == p) {
5274 VM_BUG_ON(mc.from);
5275 VM_BUG_ON(mc.to);
5276 VM_BUG_ON(mc.precharge);
5277 VM_BUG_ON(mc.moved_charge);
5278 VM_BUG_ON(mc.moved_swap);
5279 mem_cgroup_start_move(from);
5280 spin_lock(&mc.lock);
5281 mc.from = from;
5282 mc.to = mem;
5283 spin_unlock(&mc.lock);
5284 /* We set mc.moving_task later */
5285
5286 ret = mem_cgroup_precharge_mc(mm);
5287 if (ret)
5288 mem_cgroup_clear_mc();
5289 }
5290 mmput(mm);
5291 }
5292 return ret;
5293 }
5294
5295 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5296 struct cgroup *cgroup,
5297 struct task_struct *p)
5298 {
5299 mem_cgroup_clear_mc();
5300 }
5301
5302 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5303 unsigned long addr, unsigned long end,
5304 struct mm_walk *walk)
5305 {
5306 int ret = 0;
5307 struct vm_area_struct *vma = walk->private;
5308 pte_t *pte;
5309 spinlock_t *ptl;
5310
5311 split_huge_page_pmd(walk->mm, pmd);
5312 retry:
5313 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5314 for (; addr != end; addr += PAGE_SIZE) {
5315 pte_t ptent = *(pte++);
5316 union mc_target target;
5317 int type;
5318 struct page *page;
5319 struct page_cgroup *pc;
5320 swp_entry_t ent;
5321
5322 if (!mc.precharge)
5323 break;
5324
5325 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5326 switch (type) {
5327 case MC_TARGET_PAGE:
5328 page = target.page;
5329 if (isolate_lru_page(page))
5330 goto put;
5331 pc = lookup_page_cgroup(page);
5332 if (!mem_cgroup_move_account(page, 1, pc,
5333 mc.from, mc.to, false)) {
5334 mc.precharge--;
5335 /* we uncharge from mc.from later. */
5336 mc.moved_charge++;
5337 }
5338 putback_lru_page(page);
5339 put: /* is_target_pte_for_mc() gets the page */
5340 put_page(page);
5341 break;
5342 case MC_TARGET_SWAP:
5343 ent = target.ent;
5344 if (!mem_cgroup_move_swap_account(ent,
5345 mc.from, mc.to, false)) {
5346 mc.precharge--;
5347 /* we fixup refcnts and charges later. */
5348 mc.moved_swap++;
5349 }
5350 break;
5351 default:
5352 break;
5353 }
5354 }
5355 pte_unmap_unlock(pte - 1, ptl);
5356 cond_resched();
5357
5358 if (addr != end) {
5359 /*
5360 * We have consumed all precharges we got in can_attach().
5361 * We try charge one by one, but don't do any additional
5362 * charges to mc.to if we have failed in charge once in attach()
5363 * phase.
5364 */
5365 ret = mem_cgroup_do_precharge(1);
5366 if (!ret)
5367 goto retry;
5368 }
5369
5370 return ret;
5371 }
5372
5373 static void mem_cgroup_move_charge(struct mm_struct *mm)
5374 {
5375 struct vm_area_struct *vma;
5376
5377 lru_add_drain_all();
5378 retry:
5379 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5380 /*
5381 * Someone who are holding the mmap_sem might be waiting in
5382 * waitq. So we cancel all extra charges, wake up all waiters,
5383 * and retry. Because we cancel precharges, we might not be able
5384 * to move enough charges, but moving charge is a best-effort
5385 * feature anyway, so it wouldn't be a big problem.
5386 */
5387 __mem_cgroup_clear_mc();
5388 cond_resched();
5389 goto retry;
5390 }
5391 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5392 int ret;
5393 struct mm_walk mem_cgroup_move_charge_walk = {
5394 .pmd_entry = mem_cgroup_move_charge_pte_range,
5395 .mm = mm,
5396 .private = vma,
5397 };
5398 if (is_vm_hugetlb_page(vma))
5399 continue;
5400 ret = walk_page_range(vma->vm_start, vma->vm_end,
5401 &mem_cgroup_move_charge_walk);
5402 if (ret)
5403 /*
5404 * means we have consumed all precharges and failed in
5405 * doing additional charge. Just abandon here.
5406 */
5407 break;
5408 }
5409 up_read(&mm->mmap_sem);
5410 }
5411
5412 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5413 struct cgroup *cont,
5414 struct cgroup *old_cont,
5415 struct task_struct *p)
5416 {
5417 struct mm_struct *mm = get_task_mm(p);
5418
5419 if (mm) {
5420 if (mc.to)
5421 mem_cgroup_move_charge(mm);
5422 put_swap_token(mm);
5423 mmput(mm);
5424 }
5425 if (mc.to)
5426 mem_cgroup_clear_mc();
5427 }
5428 #else /* !CONFIG_MMU */
5429 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5430 struct cgroup *cgroup,
5431 struct task_struct *p)
5432 {
5433 return 0;
5434 }
5435 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5436 struct cgroup *cgroup,
5437 struct task_struct *p)
5438 {
5439 }
5440 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5441 struct cgroup *cont,
5442 struct cgroup *old_cont,
5443 struct task_struct *p)
5444 {
5445 }
5446 #endif
5447
5448 struct cgroup_subsys mem_cgroup_subsys = {
5449 .name = "memory",
5450 .subsys_id = mem_cgroup_subsys_id,
5451 .create = mem_cgroup_create,
5452 .pre_destroy = mem_cgroup_pre_destroy,
5453 .destroy = mem_cgroup_destroy,
5454 .populate = mem_cgroup_populate,
5455 .can_attach = mem_cgroup_can_attach,
5456 .cancel_attach = mem_cgroup_cancel_attach,
5457 .attach = mem_cgroup_move_task,
5458 .early_init = 0,
5459 .use_id = 1,
5460 };
5461
5462 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5463 static int __init enable_swap_account(char *s)
5464 {
5465 /* consider enabled if no parameter or 1 is given */
5466 if (!strcmp(s, "1"))
5467 really_do_swap_account = 1;
5468 else if (!strcmp(s, "0"))
5469 really_do_swap_account = 0;
5470 return 1;
5471 }
5472 __setup("swapaccount=", enable_swap_account);
5473
5474 #endif