MAINTAINERS: update input subsystem patterns
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135 };
136
137 /*
138 * cgroup_event represents events which userspace want to receive.
139 */
140 struct mem_cgroup_event {
141 /*
142 * memcg which the event belongs to.
143 */
144 struct mem_cgroup *memcg;
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_t wait;
174 struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182 * Types of charges to be moved.
183 */
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
217 NR_CHARGE_TYPE,
218 };
219
220 /* for encoding cft->private value on file */
221 enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
225 _KMEM,
226 _TCP,
227 };
228
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241 }
242
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 return (memcg == root_mem_cgroup);
251 }
252
253 #ifndef CONFIG_SLOB
254 /*
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
261 *
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
264 */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271 void memcg_get_cache_ids(void)
272 {
273 down_read(&memcg_cache_ids_sem);
274 }
275
276 void memcg_put_cache_ids(void)
277 {
278 up_read(&memcg_cache_ids_sem);
279 }
280
281 /*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
292 */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295
296 /*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304
305 struct workqueue_struct *memcg_kmem_cache_wq;
306
307 #endif /* !CONFIG_SLOB */
308
309 /**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
319 */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 struct mem_cgroup *memcg;
323
324 memcg = page->mem_cgroup;
325
326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 memcg = root_mem_cgroup;
328
329 return &memcg->css;
330 }
331
332 /**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358 }
359
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 int nid = page_to_nid(page);
364
365 return memcg->nodeinfo[nid];
366 }
367
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 return soft_limit_tree.rb_tree_per_node[nid];
372 }
373
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 int nid = page_to_nid(page);
378
379 return soft_limit_tree.rb_tree_per_node[nid];
380 }
381
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
384 unsigned long new_usage_in_excess)
385 {
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_node *mz_node;
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412 }
413
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
416 {
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421 }
422
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
429 __mem_cgroup_remove_exceeded(mz, mctz);
430 spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443 }
444
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 unsigned long excess;
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
450
451 mctz = soft_limit_tree_from_page(page);
452 if (!mctz)
453 return;
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 mz = mem_cgroup_page_nodeinfo(memcg, page);
460 excess = soft_limit_excess(memcg);
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mz, mctz);
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
477 spin_unlock_irqrestore(&mctz->lock, flags);
478 }
479 }
480 }
481
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
487
488 for_each_node(nid) {
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
493 }
494 }
495
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_node *mz;
501
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz, mctz);
515 if (!soft_limit_excess(mz->memcg) ||
516 !css_tryget_online(&mz->memcg->css))
517 goto retry;
518 done:
519 return mz;
520 }
521
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 struct mem_cgroup_per_node *mz;
526
527 spin_lock_irq(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock_irq(&mctz->lock);
530 return mz;
531 }
532
533 /*
534 * Return page count for single (non recursive) @memcg.
535 *
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
552 * implemented.
553 */
554
555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 enum memcg_event_item event)
557 {
558 unsigned long val = 0;
559 int cpu;
560
561 for_each_possible_cpu(cpu)
562 val += per_cpu(memcg->stat->events[event], cpu);
563 return val;
564 }
565
566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567 struct page *page,
568 bool compound, int nr_pages)
569 {
570 /*
571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 * counted as CACHE even if it's on ANON LRU.
573 */
574 if (PageAnon(page))
575 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576 else {
577 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578 if (PageSwapBacked(page))
579 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580 }
581
582 if (compound) {
583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585 }
586
587 /* pagein of a big page is an event. So, ignore page size */
588 if (nr_pages > 0)
589 __this_cpu_inc(memcg->stat->events[PGPGIN]);
590 else {
591 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 nr_pages = -nr_pages; /* for event */
593 }
594
595 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 }
597
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 int nid, unsigned int lru_mask)
600 {
601 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602 unsigned long nr = 0;
603 enum lru_list lru;
604
605 VM_BUG_ON((unsigned)nid >= nr_node_ids);
606
607 for_each_lru(lru) {
608 if (!(BIT(lru) & lru_mask))
609 continue;
610 nr += mem_cgroup_get_lru_size(lruvec, lru);
611 }
612 return nr;
613 }
614
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616 unsigned int lru_mask)
617 {
618 unsigned long nr = 0;
619 int nid;
620
621 for_each_node_state(nid, N_MEMORY)
622 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 return nr;
624 }
625
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 enum mem_cgroup_events_target target)
628 {
629 unsigned long val, next;
630
631 val = __this_cpu_read(memcg->stat->nr_page_events);
632 next = __this_cpu_read(memcg->stat->targets[target]);
633 /* from time_after() in jiffies.h */
634 if ((long)next - (long)val < 0) {
635 switch (target) {
636 case MEM_CGROUP_TARGET_THRESH:
637 next = val + THRESHOLDS_EVENTS_TARGET;
638 break;
639 case MEM_CGROUP_TARGET_SOFTLIMIT:
640 next = val + SOFTLIMIT_EVENTS_TARGET;
641 break;
642 case MEM_CGROUP_TARGET_NUMAINFO:
643 next = val + NUMAINFO_EVENTS_TARGET;
644 break;
645 default:
646 break;
647 }
648 __this_cpu_write(memcg->stat->targets[target], next);
649 return true;
650 }
651 return false;
652 }
653
654 /*
655 * Check events in order.
656 *
657 */
658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 {
660 /* threshold event is triggered in finer grain than soft limit */
661 if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 MEM_CGROUP_TARGET_THRESH))) {
663 bool do_softlimit;
664 bool do_numainfo __maybe_unused;
665
666 do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 MEM_CGROUP_TARGET_SOFTLIMIT);
668 #if MAX_NUMNODES > 1
669 do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 MEM_CGROUP_TARGET_NUMAINFO);
671 #endif
672 mem_cgroup_threshold(memcg);
673 if (unlikely(do_softlimit))
674 mem_cgroup_update_tree(memcg, page);
675 #if MAX_NUMNODES > 1
676 if (unlikely(do_numainfo))
677 atomic_inc(&memcg->numainfo_events);
678 #endif
679 }
680 }
681
682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683 {
684 /*
685 * mm_update_next_owner() may clear mm->owner to NULL
686 * if it races with swapoff, page migration, etc.
687 * So this can be called with p == NULL.
688 */
689 if (unlikely(!p))
690 return NULL;
691
692 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693 }
694 EXPORT_SYMBOL(mem_cgroup_from_task);
695
696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697 {
698 struct mem_cgroup *memcg = NULL;
699
700 rcu_read_lock();
701 do {
702 /*
703 * Page cache insertions can happen withou an
704 * actual mm context, e.g. during disk probing
705 * on boot, loopback IO, acct() writes etc.
706 */
707 if (unlikely(!mm))
708 memcg = root_mem_cgroup;
709 else {
710 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 if (unlikely(!memcg))
712 memcg = root_mem_cgroup;
713 }
714 } while (!css_tryget_online(&memcg->css));
715 rcu_read_unlock();
716 return memcg;
717 }
718
719 /**
720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
721 * @root: hierarchy root
722 * @prev: previously returned memcg, NULL on first invocation
723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
724 *
725 * Returns references to children of the hierarchy below @root, or
726 * @root itself, or %NULL after a full round-trip.
727 *
728 * Caller must pass the return value in @prev on subsequent
729 * invocations for reference counting, or use mem_cgroup_iter_break()
730 * to cancel a hierarchy walk before the round-trip is complete.
731 *
732 * Reclaimers can specify a zone and a priority level in @reclaim to
733 * divide up the memcgs in the hierarchy among all concurrent
734 * reclaimers operating on the same zone and priority.
735 */
736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737 struct mem_cgroup *prev,
738 struct mem_cgroup_reclaim_cookie *reclaim)
739 {
740 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741 struct cgroup_subsys_state *css = NULL;
742 struct mem_cgroup *memcg = NULL;
743 struct mem_cgroup *pos = NULL;
744
745 if (mem_cgroup_disabled())
746 return NULL;
747
748 if (!root)
749 root = root_mem_cgroup;
750
751 if (prev && !reclaim)
752 pos = prev;
753
754 if (!root->use_hierarchy && root != root_mem_cgroup) {
755 if (prev)
756 goto out;
757 return root;
758 }
759
760 rcu_read_lock();
761
762 if (reclaim) {
763 struct mem_cgroup_per_node *mz;
764
765 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 iter = &mz->iter[reclaim->priority];
767
768 if (prev && reclaim->generation != iter->generation)
769 goto out_unlock;
770
771 while (1) {
772 pos = READ_ONCE(iter->position);
773 if (!pos || css_tryget(&pos->css))
774 break;
775 /*
776 * css reference reached zero, so iter->position will
777 * be cleared by ->css_released. However, we should not
778 * rely on this happening soon, because ->css_released
779 * is called from a work queue, and by busy-waiting we
780 * might block it. So we clear iter->position right
781 * away.
782 */
783 (void)cmpxchg(&iter->position, pos, NULL);
784 }
785 }
786
787 if (pos)
788 css = &pos->css;
789
790 for (;;) {
791 css = css_next_descendant_pre(css, &root->css);
792 if (!css) {
793 /*
794 * Reclaimers share the hierarchy walk, and a
795 * new one might jump in right at the end of
796 * the hierarchy - make sure they see at least
797 * one group and restart from the beginning.
798 */
799 if (!prev)
800 continue;
801 break;
802 }
803
804 /*
805 * Verify the css and acquire a reference. The root
806 * is provided by the caller, so we know it's alive
807 * and kicking, and don't take an extra reference.
808 */
809 memcg = mem_cgroup_from_css(css);
810
811 if (css == &root->css)
812 break;
813
814 if (css_tryget(css))
815 break;
816
817 memcg = NULL;
818 }
819
820 if (reclaim) {
821 /*
822 * The position could have already been updated by a competing
823 * thread, so check that the value hasn't changed since we read
824 * it to avoid reclaiming from the same cgroup twice.
825 */
826 (void)cmpxchg(&iter->position, pos, memcg);
827
828 if (pos)
829 css_put(&pos->css);
830
831 if (!memcg)
832 iter->generation++;
833 else if (!prev)
834 reclaim->generation = iter->generation;
835 }
836
837 out_unlock:
838 rcu_read_unlock();
839 out:
840 if (prev && prev != root)
841 css_put(&prev->css);
842
843 return memcg;
844 }
845
846 /**
847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848 * @root: hierarchy root
849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850 */
851 void mem_cgroup_iter_break(struct mem_cgroup *root,
852 struct mem_cgroup *prev)
853 {
854 if (!root)
855 root = root_mem_cgroup;
856 if (prev && prev != root)
857 css_put(&prev->css);
858 }
859
860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861 {
862 struct mem_cgroup *memcg = dead_memcg;
863 struct mem_cgroup_reclaim_iter *iter;
864 struct mem_cgroup_per_node *mz;
865 int nid;
866 int i;
867
868 while ((memcg = parent_mem_cgroup(memcg))) {
869 for_each_node(nid) {
870 mz = mem_cgroup_nodeinfo(memcg, nid);
871 for (i = 0; i <= DEF_PRIORITY; i++) {
872 iter = &mz->iter[i];
873 cmpxchg(&iter->position,
874 dead_memcg, NULL);
875 }
876 }
877 }
878 }
879
880 /*
881 * Iteration constructs for visiting all cgroups (under a tree). If
882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
883 * be used for reference counting.
884 */
885 #define for_each_mem_cgroup_tree(iter, root) \
886 for (iter = mem_cgroup_iter(root, NULL, NULL); \
887 iter != NULL; \
888 iter = mem_cgroup_iter(root, iter, NULL))
889
890 #define for_each_mem_cgroup(iter) \
891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
892 iter != NULL; \
893 iter = mem_cgroup_iter(NULL, iter, NULL))
894
895 /**
896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897 * @memcg: hierarchy root
898 * @fn: function to call for each task
899 * @arg: argument passed to @fn
900 *
901 * This function iterates over tasks attached to @memcg or to any of its
902 * descendants and calls @fn for each task. If @fn returns a non-zero
903 * value, the function breaks the iteration loop and returns the value.
904 * Otherwise, it will iterate over all tasks and return 0.
905 *
906 * This function must not be called for the root memory cgroup.
907 */
908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 int (*fn)(struct task_struct *, void *), void *arg)
910 {
911 struct mem_cgroup *iter;
912 int ret = 0;
913
914 BUG_ON(memcg == root_mem_cgroup);
915
916 for_each_mem_cgroup_tree(iter, memcg) {
917 struct css_task_iter it;
918 struct task_struct *task;
919
920 css_task_iter_start(&iter->css, &it);
921 while (!ret && (task = css_task_iter_next(&it)))
922 ret = fn(task, arg);
923 css_task_iter_end(&it);
924 if (ret) {
925 mem_cgroup_iter_break(memcg, iter);
926 break;
927 }
928 }
929 return ret;
930 }
931
932 /**
933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934 * @page: the page
935 * @zone: zone of the page
936 *
937 * This function is only safe when following the LRU page isolation
938 * and putback protocol: the LRU lock must be held, and the page must
939 * either be PageLRU() or the caller must have isolated/allocated it.
940 */
941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
942 {
943 struct mem_cgroup_per_node *mz;
944 struct mem_cgroup *memcg;
945 struct lruvec *lruvec;
946
947 if (mem_cgroup_disabled()) {
948 lruvec = &pgdat->lruvec;
949 goto out;
950 }
951
952 memcg = page->mem_cgroup;
953 /*
954 * Swapcache readahead pages are added to the LRU - and
955 * possibly migrated - before they are charged.
956 */
957 if (!memcg)
958 memcg = root_mem_cgroup;
959
960 mz = mem_cgroup_page_nodeinfo(memcg, page);
961 lruvec = &mz->lruvec;
962 out:
963 /*
964 * Since a node can be onlined after the mem_cgroup was created,
965 * we have to be prepared to initialize lruvec->zone here;
966 * and if offlined then reonlined, we need to reinitialize it.
967 */
968 if (unlikely(lruvec->pgdat != pgdat))
969 lruvec->pgdat = pgdat;
970 return lruvec;
971 }
972
973 /**
974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
975 * @lruvec: mem_cgroup per zone lru vector
976 * @lru: index of lru list the page is sitting on
977 * @zid: zone id of the accounted pages
978 * @nr_pages: positive when adding or negative when removing
979 *
980 * This function must be called under lru_lock, just before a page is added
981 * to or just after a page is removed from an lru list (that ordering being
982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
983 */
984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985 int zid, int nr_pages)
986 {
987 struct mem_cgroup_per_node *mz;
988 unsigned long *lru_size;
989 long size;
990
991 if (mem_cgroup_disabled())
992 return;
993
994 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 lru_size = &mz->lru_zone_size[zid][lru];
996
997 if (nr_pages < 0)
998 *lru_size += nr_pages;
999
1000 size = *lru_size;
1001 if (WARN_ONCE(size < 0,
1002 "%s(%p, %d, %d): lru_size %ld\n",
1003 __func__, lruvec, lru, nr_pages, size)) {
1004 VM_BUG_ON(1);
1005 *lru_size = 0;
1006 }
1007
1008 if (nr_pages > 0)
1009 *lru_size += nr_pages;
1010 }
1011
1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013 {
1014 struct mem_cgroup *task_memcg;
1015 struct task_struct *p;
1016 bool ret;
1017
1018 p = find_lock_task_mm(task);
1019 if (p) {
1020 task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 task_unlock(p);
1022 } else {
1023 /*
1024 * All threads may have already detached their mm's, but the oom
1025 * killer still needs to detect if they have already been oom
1026 * killed to prevent needlessly killing additional tasks.
1027 */
1028 rcu_read_lock();
1029 task_memcg = mem_cgroup_from_task(task);
1030 css_get(&task_memcg->css);
1031 rcu_read_unlock();
1032 }
1033 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 css_put(&task_memcg->css);
1035 return ret;
1036 }
1037
1038 /**
1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040 * @memcg: the memory cgroup
1041 *
1042 * Returns the maximum amount of memory @mem can be charged with, in
1043 * pages.
1044 */
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046 {
1047 unsigned long margin = 0;
1048 unsigned long count;
1049 unsigned long limit;
1050
1051 count = page_counter_read(&memcg->memory);
1052 limit = READ_ONCE(memcg->memory.limit);
1053 if (count < limit)
1054 margin = limit - count;
1055
1056 if (do_memsw_account()) {
1057 count = page_counter_read(&memcg->memsw);
1058 limit = READ_ONCE(memcg->memsw.limit);
1059 if (count <= limit)
1060 margin = min(margin, limit - count);
1061 else
1062 margin = 0;
1063 }
1064
1065 return margin;
1066 }
1067
1068 /*
1069 * A routine for checking "mem" is under move_account() or not.
1070 *
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1073 * caused by "move".
1074 */
1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076 {
1077 struct mem_cgroup *from;
1078 struct mem_cgroup *to;
1079 bool ret = false;
1080 /*
1081 * Unlike task_move routines, we access mc.to, mc.from not under
1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 */
1084 spin_lock(&mc.lock);
1085 from = mc.from;
1086 to = mc.to;
1087 if (!from)
1088 goto unlock;
1089
1090 ret = mem_cgroup_is_descendant(from, memcg) ||
1091 mem_cgroup_is_descendant(to, memcg);
1092 unlock:
1093 spin_unlock(&mc.lock);
1094 return ret;
1095 }
1096
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 {
1099 if (mc.moving_task && current != mc.moving_task) {
1100 if (mem_cgroup_under_move(memcg)) {
1101 DEFINE_WAIT(wait);
1102 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 /* moving charge context might have finished. */
1104 if (mc.moving_task)
1105 schedule();
1106 finish_wait(&mc.waitq, &wait);
1107 return true;
1108 }
1109 }
1110 return false;
1111 }
1112
1113 unsigned int memcg1_stats[] = {
1114 MEMCG_CACHE,
1115 MEMCG_RSS,
1116 MEMCG_RSS_HUGE,
1117 NR_SHMEM,
1118 NR_FILE_MAPPED,
1119 NR_FILE_DIRTY,
1120 NR_WRITEBACK,
1121 MEMCG_SWAP,
1122 };
1123
1124 static const char *const memcg1_stat_names[] = {
1125 "cache",
1126 "rss",
1127 "rss_huge",
1128 "shmem",
1129 "mapped_file",
1130 "dirty",
1131 "writeback",
1132 "swap",
1133 };
1134
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1136 /**
1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1140 *
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142 * enabled
1143 */
1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145 {
1146 struct mem_cgroup *iter;
1147 unsigned int i;
1148
1149 rcu_read_lock();
1150
1151 if (p) {
1152 pr_info("Task in ");
1153 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 pr_cont(" killed as a result of limit of ");
1155 } else {
1156 pr_info("Memory limit reached of cgroup ");
1157 }
1158
1159 pr_cont_cgroup_path(memcg->css.cgroup);
1160 pr_cont("\n");
1161
1162 rcu_read_unlock();
1163
1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 K((u64)page_counter_read(&memcg->memory)),
1166 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 K((u64)page_counter_read(&memcg->memsw)),
1169 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 K((u64)page_counter_read(&memcg->kmem)),
1172 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 pr_info("Memory cgroup stats for ");
1176 pr_cont_cgroup_path(iter->css.cgroup);
1177 pr_cont(":");
1178
1179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181 continue;
1182 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183 K(memcg_page_state(iter, memcg1_stats[i])));
1184 }
1185
1186 for (i = 0; i < NR_LRU_LISTS; i++)
1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189
1190 pr_cont("\n");
1191 }
1192 }
1193
1194 /*
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1197 */
1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 {
1200 int num = 0;
1201 struct mem_cgroup *iter;
1202
1203 for_each_mem_cgroup_tree(iter, memcg)
1204 num++;
1205 return num;
1206 }
1207
1208 /*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212 {
1213 unsigned long limit;
1214
1215 limit = memcg->memory.limit;
1216 if (mem_cgroup_swappiness(memcg)) {
1217 unsigned long memsw_limit;
1218 unsigned long swap_limit;
1219
1220 memsw_limit = memcg->memsw.limit;
1221 swap_limit = memcg->swap.limit;
1222 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 limit = min(limit + swap_limit, memsw_limit);
1224 }
1225 return limit;
1226 }
1227
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229 int order)
1230 {
1231 struct oom_control oc = {
1232 .zonelist = NULL,
1233 .nodemask = NULL,
1234 .memcg = memcg,
1235 .gfp_mask = gfp_mask,
1236 .order = order,
1237 };
1238 bool ret;
1239
1240 mutex_lock(&oom_lock);
1241 ret = out_of_memory(&oc);
1242 mutex_unlock(&oom_lock);
1243 return ret;
1244 }
1245
1246 #if MAX_NUMNODES > 1
1247
1248 /**
1249 * test_mem_cgroup_node_reclaimable
1250 * @memcg: the target memcg
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 int nid, bool noswap)
1260 {
1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 return true;
1263 if (noswap || !total_swap_pages)
1264 return false;
1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 return true;
1267 return false;
1268
1269 }
1270
1271 /*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 {
1279 int nid;
1280 /*
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1283 */
1284 if (!atomic_read(&memcg->numainfo_events))
1285 return;
1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 return;
1288
1289 /* make a nodemask where this memcg uses memory from */
1290 memcg->scan_nodes = node_states[N_MEMORY];
1291
1292 for_each_node_mask(nid, node_states[N_MEMORY]) {
1293
1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 node_clear(nid, memcg->scan_nodes);
1296 }
1297
1298 atomic_set(&memcg->numainfo_events, 0);
1299 atomic_set(&memcg->numainfo_updating, 0);
1300 }
1301
1302 /*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 {
1316 int node;
1317
1318 mem_cgroup_may_update_nodemask(memcg);
1319 node = memcg->last_scanned_node;
1320
1321 node = next_node_in(node, memcg->scan_nodes);
1322 /*
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
1326 */
1327 if (unlikely(node == MAX_NUMNODES))
1328 node = numa_node_id();
1329
1330 memcg->last_scanned_node = node;
1331 return node;
1332 }
1333 #else
1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 {
1336 return 0;
1337 }
1338 #endif
1339
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341 pg_data_t *pgdat,
1342 gfp_t gfp_mask,
1343 unsigned long *total_scanned)
1344 {
1345 struct mem_cgroup *victim = NULL;
1346 int total = 0;
1347 int loop = 0;
1348 unsigned long excess;
1349 unsigned long nr_scanned;
1350 struct mem_cgroup_reclaim_cookie reclaim = {
1351 .pgdat = pgdat,
1352 .priority = 0,
1353 };
1354
1355 excess = soft_limit_excess(root_memcg);
1356
1357 while (1) {
1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 if (!victim) {
1360 loop++;
1361 if (loop >= 2) {
1362 /*
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1366 */
1367 if (!total)
1368 break;
1369 /*
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1374 */
1375 if (total >= (excess >> 2) ||
1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 break;
1378 }
1379 continue;
1380 }
1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382 pgdat, &nr_scanned);
1383 *total_scanned += nr_scanned;
1384 if (!soft_limit_excess(root_memcg))
1385 break;
1386 }
1387 mem_cgroup_iter_break(root_memcg, victim);
1388 return total;
1389 }
1390
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map = {
1393 .name = "memcg_oom_lock",
1394 };
1395 #endif
1396
1397 static DEFINE_SPINLOCK(memcg_oom_lock);
1398
1399 /*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404 {
1405 struct mem_cgroup *iter, *failed = NULL;
1406
1407 spin_lock(&memcg_oom_lock);
1408
1409 for_each_mem_cgroup_tree(iter, memcg) {
1410 if (iter->oom_lock) {
1411 /*
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1414 */
1415 failed = iter;
1416 mem_cgroup_iter_break(memcg, iter);
1417 break;
1418 } else
1419 iter->oom_lock = true;
1420 }
1421
1422 if (failed) {
1423 /*
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1426 */
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 if (iter == failed) {
1429 mem_cgroup_iter_break(memcg, iter);
1430 break;
1431 }
1432 iter->oom_lock = false;
1433 }
1434 } else
1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436
1437 spin_unlock(&memcg_oom_lock);
1438
1439 return !failed;
1440 }
1441
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443 {
1444 struct mem_cgroup *iter;
1445
1446 spin_lock(&memcg_oom_lock);
1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448 for_each_mem_cgroup_tree(iter, memcg)
1449 iter->oom_lock = false;
1450 spin_unlock(&memcg_oom_lock);
1451 }
1452
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 {
1455 struct mem_cgroup *iter;
1456
1457 spin_lock(&memcg_oom_lock);
1458 for_each_mem_cgroup_tree(iter, memcg)
1459 iter->under_oom++;
1460 spin_unlock(&memcg_oom_lock);
1461 }
1462
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 {
1465 struct mem_cgroup *iter;
1466
1467 /*
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470 */
1471 spin_lock(&memcg_oom_lock);
1472 for_each_mem_cgroup_tree(iter, memcg)
1473 if (iter->under_oom > 0)
1474 iter->under_oom--;
1475 spin_unlock(&memcg_oom_lock);
1476 }
1477
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480 struct oom_wait_info {
1481 struct mem_cgroup *memcg;
1482 wait_queue_t wait;
1483 };
1484
1485 static int memcg_oom_wake_function(wait_queue_t *wait,
1486 unsigned mode, int sync, void *arg)
1487 {
1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 struct mem_cgroup *oom_wait_memcg;
1490 struct oom_wait_info *oom_wait_info;
1491
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 oom_wait_memcg = oom_wait_info->memcg;
1494
1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497 return 0;
1498 return autoremove_wake_function(wait, mode, sync, arg);
1499 }
1500
1501 static void memcg_oom_recover(struct mem_cgroup *memcg)
1502 {
1503 /*
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1510 */
1511 if (memcg && memcg->under_oom)
1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 }
1514
1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516 {
1517 if (!current->memcg_may_oom)
1518 return;
1519 /*
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1523 *
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1527 *
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
1532 */
1533 css_get(&memcg->css);
1534 current->memcg_in_oom = memcg;
1535 current->memcg_oom_gfp_mask = mask;
1536 current->memcg_oom_order = order;
1537 }
1538
1539 /**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541 * @handle: actually kill/wait or just clean up the OOM state
1542 *
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
1545 *
1546 * Memcg supports userspace OOM handling where failed allocations must
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551 * the end of the page fault to complete the OOM handling.
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
1554 * completed, %false otherwise.
1555 */
1556 bool mem_cgroup_oom_synchronize(bool handle)
1557 {
1558 struct mem_cgroup *memcg = current->memcg_in_oom;
1559 struct oom_wait_info owait;
1560 bool locked;
1561
1562 /* OOM is global, do not handle */
1563 if (!memcg)
1564 return false;
1565
1566 if (!handle)
1567 goto cleanup;
1568
1569 owait.memcg = memcg;
1570 owait.wait.flags = 0;
1571 owait.wait.func = memcg_oom_wake_function;
1572 owait.wait.private = current;
1573 INIT_LIST_HEAD(&owait.wait.task_list);
1574
1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 mem_cgroup_mark_under_oom(memcg);
1577
1578 locked = mem_cgroup_oom_trylock(memcg);
1579
1580 if (locked)
1581 mem_cgroup_oom_notify(memcg);
1582
1583 if (locked && !memcg->oom_kill_disable) {
1584 mem_cgroup_unmark_under_oom(memcg);
1585 finish_wait(&memcg_oom_waitq, &owait.wait);
1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 current->memcg_oom_order);
1588 } else {
1589 schedule();
1590 mem_cgroup_unmark_under_oom(memcg);
1591 finish_wait(&memcg_oom_waitq, &owait.wait);
1592 }
1593
1594 if (locked) {
1595 mem_cgroup_oom_unlock(memcg);
1596 /*
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1600 */
1601 memcg_oom_recover(memcg);
1602 }
1603 cleanup:
1604 current->memcg_in_oom = NULL;
1605 css_put(&memcg->css);
1606 return true;
1607 }
1608
1609 /**
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
1612 *
1613 * This function protects unlocked LRU pages from being moved to
1614 * another cgroup and stabilizes their page->mem_cgroup binding.
1615 */
1616 void lock_page_memcg(struct page *page)
1617 {
1618 struct mem_cgroup *memcg;
1619 unsigned long flags;
1620
1621 /*
1622 * The RCU lock is held throughout the transaction. The fast
1623 * path can get away without acquiring the memcg->move_lock
1624 * because page moving starts with an RCU grace period.
1625 */
1626 rcu_read_lock();
1627
1628 if (mem_cgroup_disabled())
1629 return;
1630 again:
1631 memcg = page->mem_cgroup;
1632 if (unlikely(!memcg))
1633 return;
1634
1635 if (atomic_read(&memcg->moving_account) <= 0)
1636 return;
1637
1638 spin_lock_irqsave(&memcg->move_lock, flags);
1639 if (memcg != page->mem_cgroup) {
1640 spin_unlock_irqrestore(&memcg->move_lock, flags);
1641 goto again;
1642 }
1643
1644 /*
1645 * When charge migration first begins, we can have locked and
1646 * unlocked page stat updates happening concurrently. Track
1647 * the task who has the lock for unlock_page_memcg().
1648 */
1649 memcg->move_lock_task = current;
1650 memcg->move_lock_flags = flags;
1651
1652 return;
1653 }
1654 EXPORT_SYMBOL(lock_page_memcg);
1655
1656 /**
1657 * unlock_page_memcg - unlock a page->mem_cgroup binding
1658 * @page: the page
1659 */
1660 void unlock_page_memcg(struct page *page)
1661 {
1662 struct mem_cgroup *memcg = page->mem_cgroup;
1663
1664 if (memcg && memcg->move_lock_task == current) {
1665 unsigned long flags = memcg->move_lock_flags;
1666
1667 memcg->move_lock_task = NULL;
1668 memcg->move_lock_flags = 0;
1669
1670 spin_unlock_irqrestore(&memcg->move_lock, flags);
1671 }
1672
1673 rcu_read_unlock();
1674 }
1675 EXPORT_SYMBOL(unlock_page_memcg);
1676
1677 /*
1678 * size of first charge trial. "32" comes from vmscan.c's magic value.
1679 * TODO: maybe necessary to use big numbers in big irons.
1680 */
1681 #define CHARGE_BATCH 32U
1682 struct memcg_stock_pcp {
1683 struct mem_cgroup *cached; /* this never be root cgroup */
1684 unsigned int nr_pages;
1685 struct work_struct work;
1686 unsigned long flags;
1687 #define FLUSHING_CACHED_CHARGE 0
1688 };
1689 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1690 static DEFINE_MUTEX(percpu_charge_mutex);
1691
1692 /**
1693 * consume_stock: Try to consume stocked charge on this cpu.
1694 * @memcg: memcg to consume from.
1695 * @nr_pages: how many pages to charge.
1696 *
1697 * The charges will only happen if @memcg matches the current cpu's memcg
1698 * stock, and at least @nr_pages are available in that stock. Failure to
1699 * service an allocation will refill the stock.
1700 *
1701 * returns true if successful, false otherwise.
1702 */
1703 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1704 {
1705 struct memcg_stock_pcp *stock;
1706 unsigned long flags;
1707 bool ret = false;
1708
1709 if (nr_pages > CHARGE_BATCH)
1710 return ret;
1711
1712 local_irq_save(flags);
1713
1714 stock = this_cpu_ptr(&memcg_stock);
1715 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1716 stock->nr_pages -= nr_pages;
1717 ret = true;
1718 }
1719
1720 local_irq_restore(flags);
1721
1722 return ret;
1723 }
1724
1725 /*
1726 * Returns stocks cached in percpu and reset cached information.
1727 */
1728 static void drain_stock(struct memcg_stock_pcp *stock)
1729 {
1730 struct mem_cgroup *old = stock->cached;
1731
1732 if (stock->nr_pages) {
1733 page_counter_uncharge(&old->memory, stock->nr_pages);
1734 if (do_memsw_account())
1735 page_counter_uncharge(&old->memsw, stock->nr_pages);
1736 css_put_many(&old->css, stock->nr_pages);
1737 stock->nr_pages = 0;
1738 }
1739 stock->cached = NULL;
1740 }
1741
1742 static void drain_local_stock(struct work_struct *dummy)
1743 {
1744 struct memcg_stock_pcp *stock;
1745 unsigned long flags;
1746
1747 local_irq_save(flags);
1748
1749 stock = this_cpu_ptr(&memcg_stock);
1750 drain_stock(stock);
1751 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1752
1753 local_irq_restore(flags);
1754 }
1755
1756 /*
1757 * Cache charges(val) to local per_cpu area.
1758 * This will be consumed by consume_stock() function, later.
1759 */
1760 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1761 {
1762 struct memcg_stock_pcp *stock;
1763 unsigned long flags;
1764
1765 local_irq_save(flags);
1766
1767 stock = this_cpu_ptr(&memcg_stock);
1768 if (stock->cached != memcg) { /* reset if necessary */
1769 drain_stock(stock);
1770 stock->cached = memcg;
1771 }
1772 stock->nr_pages += nr_pages;
1773
1774 local_irq_restore(flags);
1775 }
1776
1777 /*
1778 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1779 * of the hierarchy under it.
1780 */
1781 static void drain_all_stock(struct mem_cgroup *root_memcg)
1782 {
1783 int cpu, curcpu;
1784
1785 /* If someone's already draining, avoid adding running more workers. */
1786 if (!mutex_trylock(&percpu_charge_mutex))
1787 return;
1788 /* Notify other cpus that system-wide "drain" is running */
1789 get_online_cpus();
1790 curcpu = get_cpu();
1791 for_each_online_cpu(cpu) {
1792 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1793 struct mem_cgroup *memcg;
1794
1795 memcg = stock->cached;
1796 if (!memcg || !stock->nr_pages)
1797 continue;
1798 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1799 continue;
1800 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1801 if (cpu == curcpu)
1802 drain_local_stock(&stock->work);
1803 else
1804 schedule_work_on(cpu, &stock->work);
1805 }
1806 }
1807 put_cpu();
1808 put_online_cpus();
1809 mutex_unlock(&percpu_charge_mutex);
1810 }
1811
1812 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1813 {
1814 struct memcg_stock_pcp *stock;
1815
1816 stock = &per_cpu(memcg_stock, cpu);
1817 drain_stock(stock);
1818 return 0;
1819 }
1820
1821 static void reclaim_high(struct mem_cgroup *memcg,
1822 unsigned int nr_pages,
1823 gfp_t gfp_mask)
1824 {
1825 do {
1826 if (page_counter_read(&memcg->memory) <= memcg->high)
1827 continue;
1828 mem_cgroup_event(memcg, MEMCG_HIGH);
1829 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1830 } while ((memcg = parent_mem_cgroup(memcg)));
1831 }
1832
1833 static void high_work_func(struct work_struct *work)
1834 {
1835 struct mem_cgroup *memcg;
1836
1837 memcg = container_of(work, struct mem_cgroup, high_work);
1838 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1839 }
1840
1841 /*
1842 * Scheduled by try_charge() to be executed from the userland return path
1843 * and reclaims memory over the high limit.
1844 */
1845 void mem_cgroup_handle_over_high(void)
1846 {
1847 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1848 struct mem_cgroup *memcg;
1849
1850 if (likely(!nr_pages))
1851 return;
1852
1853 memcg = get_mem_cgroup_from_mm(current->mm);
1854 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1855 css_put(&memcg->css);
1856 current->memcg_nr_pages_over_high = 0;
1857 }
1858
1859 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1860 unsigned int nr_pages)
1861 {
1862 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1863 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1864 struct mem_cgroup *mem_over_limit;
1865 struct page_counter *counter;
1866 unsigned long nr_reclaimed;
1867 bool may_swap = true;
1868 bool drained = false;
1869
1870 if (mem_cgroup_is_root(memcg))
1871 return 0;
1872 retry:
1873 if (consume_stock(memcg, nr_pages))
1874 return 0;
1875
1876 if (!do_memsw_account() ||
1877 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1878 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1879 goto done_restock;
1880 if (do_memsw_account())
1881 page_counter_uncharge(&memcg->memsw, batch);
1882 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1883 } else {
1884 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1885 may_swap = false;
1886 }
1887
1888 if (batch > nr_pages) {
1889 batch = nr_pages;
1890 goto retry;
1891 }
1892
1893 /*
1894 * Unlike in global OOM situations, memcg is not in a physical
1895 * memory shortage. Allow dying and OOM-killed tasks to
1896 * bypass the last charges so that they can exit quickly and
1897 * free their memory.
1898 */
1899 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1900 fatal_signal_pending(current) ||
1901 current->flags & PF_EXITING))
1902 goto force;
1903
1904 /*
1905 * Prevent unbounded recursion when reclaim operations need to
1906 * allocate memory. This might exceed the limits temporarily,
1907 * but we prefer facilitating memory reclaim and getting back
1908 * under the limit over triggering OOM kills in these cases.
1909 */
1910 if (unlikely(current->flags & PF_MEMALLOC))
1911 goto force;
1912
1913 if (unlikely(task_in_memcg_oom(current)))
1914 goto nomem;
1915
1916 if (!gfpflags_allow_blocking(gfp_mask))
1917 goto nomem;
1918
1919 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1920
1921 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1922 gfp_mask, may_swap);
1923
1924 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1925 goto retry;
1926
1927 if (!drained) {
1928 drain_all_stock(mem_over_limit);
1929 drained = true;
1930 goto retry;
1931 }
1932
1933 if (gfp_mask & __GFP_NORETRY)
1934 goto nomem;
1935 /*
1936 * Even though the limit is exceeded at this point, reclaim
1937 * may have been able to free some pages. Retry the charge
1938 * before killing the task.
1939 *
1940 * Only for regular pages, though: huge pages are rather
1941 * unlikely to succeed so close to the limit, and we fall back
1942 * to regular pages anyway in case of failure.
1943 */
1944 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1945 goto retry;
1946 /*
1947 * At task move, charge accounts can be doubly counted. So, it's
1948 * better to wait until the end of task_move if something is going on.
1949 */
1950 if (mem_cgroup_wait_acct_move(mem_over_limit))
1951 goto retry;
1952
1953 if (nr_retries--)
1954 goto retry;
1955
1956 if (gfp_mask & __GFP_NOFAIL)
1957 goto force;
1958
1959 if (fatal_signal_pending(current))
1960 goto force;
1961
1962 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1963
1964 mem_cgroup_oom(mem_over_limit, gfp_mask,
1965 get_order(nr_pages * PAGE_SIZE));
1966 nomem:
1967 if (!(gfp_mask & __GFP_NOFAIL))
1968 return -ENOMEM;
1969 force:
1970 /*
1971 * The allocation either can't fail or will lead to more memory
1972 * being freed very soon. Allow memory usage go over the limit
1973 * temporarily by force charging it.
1974 */
1975 page_counter_charge(&memcg->memory, nr_pages);
1976 if (do_memsw_account())
1977 page_counter_charge(&memcg->memsw, nr_pages);
1978 css_get_many(&memcg->css, nr_pages);
1979
1980 return 0;
1981
1982 done_restock:
1983 css_get_many(&memcg->css, batch);
1984 if (batch > nr_pages)
1985 refill_stock(memcg, batch - nr_pages);
1986
1987 /*
1988 * If the hierarchy is above the normal consumption range, schedule
1989 * reclaim on returning to userland. We can perform reclaim here
1990 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1991 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1992 * not recorded as it most likely matches current's and won't
1993 * change in the meantime. As high limit is checked again before
1994 * reclaim, the cost of mismatch is negligible.
1995 */
1996 do {
1997 if (page_counter_read(&memcg->memory) > memcg->high) {
1998 /* Don't bother a random interrupted task */
1999 if (in_interrupt()) {
2000 schedule_work(&memcg->high_work);
2001 break;
2002 }
2003 current->memcg_nr_pages_over_high += batch;
2004 set_notify_resume(current);
2005 break;
2006 }
2007 } while ((memcg = parent_mem_cgroup(memcg)));
2008
2009 return 0;
2010 }
2011
2012 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2013 {
2014 if (mem_cgroup_is_root(memcg))
2015 return;
2016
2017 page_counter_uncharge(&memcg->memory, nr_pages);
2018 if (do_memsw_account())
2019 page_counter_uncharge(&memcg->memsw, nr_pages);
2020
2021 css_put_many(&memcg->css, nr_pages);
2022 }
2023
2024 static void lock_page_lru(struct page *page, int *isolated)
2025 {
2026 struct zone *zone = page_zone(page);
2027
2028 spin_lock_irq(zone_lru_lock(zone));
2029 if (PageLRU(page)) {
2030 struct lruvec *lruvec;
2031
2032 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2033 ClearPageLRU(page);
2034 del_page_from_lru_list(page, lruvec, page_lru(page));
2035 *isolated = 1;
2036 } else
2037 *isolated = 0;
2038 }
2039
2040 static void unlock_page_lru(struct page *page, int isolated)
2041 {
2042 struct zone *zone = page_zone(page);
2043
2044 if (isolated) {
2045 struct lruvec *lruvec;
2046
2047 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2048 VM_BUG_ON_PAGE(PageLRU(page), page);
2049 SetPageLRU(page);
2050 add_page_to_lru_list(page, lruvec, page_lru(page));
2051 }
2052 spin_unlock_irq(zone_lru_lock(zone));
2053 }
2054
2055 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2056 bool lrucare)
2057 {
2058 int isolated;
2059
2060 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2061
2062 /*
2063 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2064 * may already be on some other mem_cgroup's LRU. Take care of it.
2065 */
2066 if (lrucare)
2067 lock_page_lru(page, &isolated);
2068
2069 /*
2070 * Nobody should be changing or seriously looking at
2071 * page->mem_cgroup at this point:
2072 *
2073 * - the page is uncharged
2074 *
2075 * - the page is off-LRU
2076 *
2077 * - an anonymous fault has exclusive page access, except for
2078 * a locked page table
2079 *
2080 * - a page cache insertion, a swapin fault, or a migration
2081 * have the page locked
2082 */
2083 page->mem_cgroup = memcg;
2084
2085 if (lrucare)
2086 unlock_page_lru(page, isolated);
2087 }
2088
2089 #ifndef CONFIG_SLOB
2090 static int memcg_alloc_cache_id(void)
2091 {
2092 int id, size;
2093 int err;
2094
2095 id = ida_simple_get(&memcg_cache_ida,
2096 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2097 if (id < 0)
2098 return id;
2099
2100 if (id < memcg_nr_cache_ids)
2101 return id;
2102
2103 /*
2104 * There's no space for the new id in memcg_caches arrays,
2105 * so we have to grow them.
2106 */
2107 down_write(&memcg_cache_ids_sem);
2108
2109 size = 2 * (id + 1);
2110 if (size < MEMCG_CACHES_MIN_SIZE)
2111 size = MEMCG_CACHES_MIN_SIZE;
2112 else if (size > MEMCG_CACHES_MAX_SIZE)
2113 size = MEMCG_CACHES_MAX_SIZE;
2114
2115 err = memcg_update_all_caches(size);
2116 if (!err)
2117 err = memcg_update_all_list_lrus(size);
2118 if (!err)
2119 memcg_nr_cache_ids = size;
2120
2121 up_write(&memcg_cache_ids_sem);
2122
2123 if (err) {
2124 ida_simple_remove(&memcg_cache_ida, id);
2125 return err;
2126 }
2127 return id;
2128 }
2129
2130 static void memcg_free_cache_id(int id)
2131 {
2132 ida_simple_remove(&memcg_cache_ida, id);
2133 }
2134
2135 struct memcg_kmem_cache_create_work {
2136 struct mem_cgroup *memcg;
2137 struct kmem_cache *cachep;
2138 struct work_struct work;
2139 };
2140
2141 static void memcg_kmem_cache_create_func(struct work_struct *w)
2142 {
2143 struct memcg_kmem_cache_create_work *cw =
2144 container_of(w, struct memcg_kmem_cache_create_work, work);
2145 struct mem_cgroup *memcg = cw->memcg;
2146 struct kmem_cache *cachep = cw->cachep;
2147
2148 memcg_create_kmem_cache(memcg, cachep);
2149
2150 css_put(&memcg->css);
2151 kfree(cw);
2152 }
2153
2154 /*
2155 * Enqueue the creation of a per-memcg kmem_cache.
2156 */
2157 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2158 struct kmem_cache *cachep)
2159 {
2160 struct memcg_kmem_cache_create_work *cw;
2161
2162 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2163 if (!cw)
2164 return;
2165
2166 css_get(&memcg->css);
2167
2168 cw->memcg = memcg;
2169 cw->cachep = cachep;
2170 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2171
2172 queue_work(memcg_kmem_cache_wq, &cw->work);
2173 }
2174
2175 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2176 struct kmem_cache *cachep)
2177 {
2178 /*
2179 * We need to stop accounting when we kmalloc, because if the
2180 * corresponding kmalloc cache is not yet created, the first allocation
2181 * in __memcg_schedule_kmem_cache_create will recurse.
2182 *
2183 * However, it is better to enclose the whole function. Depending on
2184 * the debugging options enabled, INIT_WORK(), for instance, can
2185 * trigger an allocation. This too, will make us recurse. Because at
2186 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2187 * the safest choice is to do it like this, wrapping the whole function.
2188 */
2189 current->memcg_kmem_skip_account = 1;
2190 __memcg_schedule_kmem_cache_create(memcg, cachep);
2191 current->memcg_kmem_skip_account = 0;
2192 }
2193
2194 static inline bool memcg_kmem_bypass(void)
2195 {
2196 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2197 return true;
2198 return false;
2199 }
2200
2201 /**
2202 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2203 * @cachep: the original global kmem cache
2204 *
2205 * Return the kmem_cache we're supposed to use for a slab allocation.
2206 * We try to use the current memcg's version of the cache.
2207 *
2208 * If the cache does not exist yet, if we are the first user of it, we
2209 * create it asynchronously in a workqueue and let the current allocation
2210 * go through with the original cache.
2211 *
2212 * This function takes a reference to the cache it returns to assure it
2213 * won't get destroyed while we are working with it. Once the caller is
2214 * done with it, memcg_kmem_put_cache() must be called to release the
2215 * reference.
2216 */
2217 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2218 {
2219 struct mem_cgroup *memcg;
2220 struct kmem_cache *memcg_cachep;
2221 int kmemcg_id;
2222
2223 VM_BUG_ON(!is_root_cache(cachep));
2224
2225 if (memcg_kmem_bypass())
2226 return cachep;
2227
2228 if (current->memcg_kmem_skip_account)
2229 return cachep;
2230
2231 memcg = get_mem_cgroup_from_mm(current->mm);
2232 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2233 if (kmemcg_id < 0)
2234 goto out;
2235
2236 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2237 if (likely(memcg_cachep))
2238 return memcg_cachep;
2239
2240 /*
2241 * If we are in a safe context (can wait, and not in interrupt
2242 * context), we could be be predictable and return right away.
2243 * This would guarantee that the allocation being performed
2244 * already belongs in the new cache.
2245 *
2246 * However, there are some clashes that can arrive from locking.
2247 * For instance, because we acquire the slab_mutex while doing
2248 * memcg_create_kmem_cache, this means no further allocation
2249 * could happen with the slab_mutex held. So it's better to
2250 * defer everything.
2251 */
2252 memcg_schedule_kmem_cache_create(memcg, cachep);
2253 out:
2254 css_put(&memcg->css);
2255 return cachep;
2256 }
2257
2258 /**
2259 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2260 * @cachep: the cache returned by memcg_kmem_get_cache
2261 */
2262 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2263 {
2264 if (!is_root_cache(cachep))
2265 css_put(&cachep->memcg_params.memcg->css);
2266 }
2267
2268 /**
2269 * memcg_kmem_charge: charge a kmem page
2270 * @page: page to charge
2271 * @gfp: reclaim mode
2272 * @order: allocation order
2273 * @memcg: memory cgroup to charge
2274 *
2275 * Returns 0 on success, an error code on failure.
2276 */
2277 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2278 struct mem_cgroup *memcg)
2279 {
2280 unsigned int nr_pages = 1 << order;
2281 struct page_counter *counter;
2282 int ret;
2283
2284 ret = try_charge(memcg, gfp, nr_pages);
2285 if (ret)
2286 return ret;
2287
2288 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2289 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2290 cancel_charge(memcg, nr_pages);
2291 return -ENOMEM;
2292 }
2293
2294 page->mem_cgroup = memcg;
2295
2296 return 0;
2297 }
2298
2299 /**
2300 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2301 * @page: page to charge
2302 * @gfp: reclaim mode
2303 * @order: allocation order
2304 *
2305 * Returns 0 on success, an error code on failure.
2306 */
2307 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2308 {
2309 struct mem_cgroup *memcg;
2310 int ret = 0;
2311
2312 if (memcg_kmem_bypass())
2313 return 0;
2314
2315 memcg = get_mem_cgroup_from_mm(current->mm);
2316 if (!mem_cgroup_is_root(memcg)) {
2317 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2318 if (!ret)
2319 __SetPageKmemcg(page);
2320 }
2321 css_put(&memcg->css);
2322 return ret;
2323 }
2324 /**
2325 * memcg_kmem_uncharge: uncharge a kmem page
2326 * @page: page to uncharge
2327 * @order: allocation order
2328 */
2329 void memcg_kmem_uncharge(struct page *page, int order)
2330 {
2331 struct mem_cgroup *memcg = page->mem_cgroup;
2332 unsigned int nr_pages = 1 << order;
2333
2334 if (!memcg)
2335 return;
2336
2337 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2338
2339 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2340 page_counter_uncharge(&memcg->kmem, nr_pages);
2341
2342 page_counter_uncharge(&memcg->memory, nr_pages);
2343 if (do_memsw_account())
2344 page_counter_uncharge(&memcg->memsw, nr_pages);
2345
2346 page->mem_cgroup = NULL;
2347
2348 /* slab pages do not have PageKmemcg flag set */
2349 if (PageKmemcg(page))
2350 __ClearPageKmemcg(page);
2351
2352 css_put_many(&memcg->css, nr_pages);
2353 }
2354 #endif /* !CONFIG_SLOB */
2355
2356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2357
2358 /*
2359 * Because tail pages are not marked as "used", set it. We're under
2360 * zone_lru_lock and migration entries setup in all page mappings.
2361 */
2362 void mem_cgroup_split_huge_fixup(struct page *head)
2363 {
2364 int i;
2365
2366 if (mem_cgroup_disabled())
2367 return;
2368
2369 for (i = 1; i < HPAGE_PMD_NR; i++)
2370 head[i].mem_cgroup = head->mem_cgroup;
2371
2372 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2373 HPAGE_PMD_NR);
2374 }
2375 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2376
2377 #ifdef CONFIG_MEMCG_SWAP
2378 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2379 bool charge)
2380 {
2381 int val = (charge) ? 1 : -1;
2382 this_cpu_add(memcg->stat->count[MEMCG_SWAP], val);
2383 }
2384
2385 /**
2386 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2387 * @entry: swap entry to be moved
2388 * @from: mem_cgroup which the entry is moved from
2389 * @to: mem_cgroup which the entry is moved to
2390 *
2391 * It succeeds only when the swap_cgroup's record for this entry is the same
2392 * as the mem_cgroup's id of @from.
2393 *
2394 * Returns 0 on success, -EINVAL on failure.
2395 *
2396 * The caller must have charged to @to, IOW, called page_counter_charge() about
2397 * both res and memsw, and called css_get().
2398 */
2399 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2400 struct mem_cgroup *from, struct mem_cgroup *to)
2401 {
2402 unsigned short old_id, new_id;
2403
2404 old_id = mem_cgroup_id(from);
2405 new_id = mem_cgroup_id(to);
2406
2407 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2408 mem_cgroup_swap_statistics(from, false);
2409 mem_cgroup_swap_statistics(to, true);
2410 return 0;
2411 }
2412 return -EINVAL;
2413 }
2414 #else
2415 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2416 struct mem_cgroup *from, struct mem_cgroup *to)
2417 {
2418 return -EINVAL;
2419 }
2420 #endif
2421
2422 static DEFINE_MUTEX(memcg_limit_mutex);
2423
2424 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2425 unsigned long limit)
2426 {
2427 unsigned long curusage;
2428 unsigned long oldusage;
2429 bool enlarge = false;
2430 int retry_count;
2431 int ret;
2432
2433 /*
2434 * For keeping hierarchical_reclaim simple, how long we should retry
2435 * is depends on callers. We set our retry-count to be function
2436 * of # of children which we should visit in this loop.
2437 */
2438 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2439 mem_cgroup_count_children(memcg);
2440
2441 oldusage = page_counter_read(&memcg->memory);
2442
2443 do {
2444 if (signal_pending(current)) {
2445 ret = -EINTR;
2446 break;
2447 }
2448
2449 mutex_lock(&memcg_limit_mutex);
2450 if (limit > memcg->memsw.limit) {
2451 mutex_unlock(&memcg_limit_mutex);
2452 ret = -EINVAL;
2453 break;
2454 }
2455 if (limit > memcg->memory.limit)
2456 enlarge = true;
2457 ret = page_counter_limit(&memcg->memory, limit);
2458 mutex_unlock(&memcg_limit_mutex);
2459
2460 if (!ret)
2461 break;
2462
2463 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2464
2465 curusage = page_counter_read(&memcg->memory);
2466 /* Usage is reduced ? */
2467 if (curusage >= oldusage)
2468 retry_count--;
2469 else
2470 oldusage = curusage;
2471 } while (retry_count);
2472
2473 if (!ret && enlarge)
2474 memcg_oom_recover(memcg);
2475
2476 return ret;
2477 }
2478
2479 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2480 unsigned long limit)
2481 {
2482 unsigned long curusage;
2483 unsigned long oldusage;
2484 bool enlarge = false;
2485 int retry_count;
2486 int ret;
2487
2488 /* see mem_cgroup_resize_res_limit */
2489 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2490 mem_cgroup_count_children(memcg);
2491
2492 oldusage = page_counter_read(&memcg->memsw);
2493
2494 do {
2495 if (signal_pending(current)) {
2496 ret = -EINTR;
2497 break;
2498 }
2499
2500 mutex_lock(&memcg_limit_mutex);
2501 if (limit < memcg->memory.limit) {
2502 mutex_unlock(&memcg_limit_mutex);
2503 ret = -EINVAL;
2504 break;
2505 }
2506 if (limit > memcg->memsw.limit)
2507 enlarge = true;
2508 ret = page_counter_limit(&memcg->memsw, limit);
2509 mutex_unlock(&memcg_limit_mutex);
2510
2511 if (!ret)
2512 break;
2513
2514 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2515
2516 curusage = page_counter_read(&memcg->memsw);
2517 /* Usage is reduced ? */
2518 if (curusage >= oldusage)
2519 retry_count--;
2520 else
2521 oldusage = curusage;
2522 } while (retry_count);
2523
2524 if (!ret && enlarge)
2525 memcg_oom_recover(memcg);
2526
2527 return ret;
2528 }
2529
2530 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2531 gfp_t gfp_mask,
2532 unsigned long *total_scanned)
2533 {
2534 unsigned long nr_reclaimed = 0;
2535 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2536 unsigned long reclaimed;
2537 int loop = 0;
2538 struct mem_cgroup_tree_per_node *mctz;
2539 unsigned long excess;
2540 unsigned long nr_scanned;
2541
2542 if (order > 0)
2543 return 0;
2544
2545 mctz = soft_limit_tree_node(pgdat->node_id);
2546
2547 /*
2548 * Do not even bother to check the largest node if the root
2549 * is empty. Do it lockless to prevent lock bouncing. Races
2550 * are acceptable as soft limit is best effort anyway.
2551 */
2552 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2553 return 0;
2554
2555 /*
2556 * This loop can run a while, specially if mem_cgroup's continuously
2557 * keep exceeding their soft limit and putting the system under
2558 * pressure
2559 */
2560 do {
2561 if (next_mz)
2562 mz = next_mz;
2563 else
2564 mz = mem_cgroup_largest_soft_limit_node(mctz);
2565 if (!mz)
2566 break;
2567
2568 nr_scanned = 0;
2569 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2570 gfp_mask, &nr_scanned);
2571 nr_reclaimed += reclaimed;
2572 *total_scanned += nr_scanned;
2573 spin_lock_irq(&mctz->lock);
2574 __mem_cgroup_remove_exceeded(mz, mctz);
2575
2576 /*
2577 * If we failed to reclaim anything from this memory cgroup
2578 * it is time to move on to the next cgroup
2579 */
2580 next_mz = NULL;
2581 if (!reclaimed)
2582 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2583
2584 excess = soft_limit_excess(mz->memcg);
2585 /*
2586 * One school of thought says that we should not add
2587 * back the node to the tree if reclaim returns 0.
2588 * But our reclaim could return 0, simply because due
2589 * to priority we are exposing a smaller subset of
2590 * memory to reclaim from. Consider this as a longer
2591 * term TODO.
2592 */
2593 /* If excess == 0, no tree ops */
2594 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2595 spin_unlock_irq(&mctz->lock);
2596 css_put(&mz->memcg->css);
2597 loop++;
2598 /*
2599 * Could not reclaim anything and there are no more
2600 * mem cgroups to try or we seem to be looping without
2601 * reclaiming anything.
2602 */
2603 if (!nr_reclaimed &&
2604 (next_mz == NULL ||
2605 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2606 break;
2607 } while (!nr_reclaimed);
2608 if (next_mz)
2609 css_put(&next_mz->memcg->css);
2610 return nr_reclaimed;
2611 }
2612
2613 /*
2614 * Test whether @memcg has children, dead or alive. Note that this
2615 * function doesn't care whether @memcg has use_hierarchy enabled and
2616 * returns %true if there are child csses according to the cgroup
2617 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2618 */
2619 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2620 {
2621 bool ret;
2622
2623 rcu_read_lock();
2624 ret = css_next_child(NULL, &memcg->css);
2625 rcu_read_unlock();
2626 return ret;
2627 }
2628
2629 /*
2630 * Reclaims as many pages from the given memcg as possible.
2631 *
2632 * Caller is responsible for holding css reference for memcg.
2633 */
2634 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2635 {
2636 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2637
2638 /* we call try-to-free pages for make this cgroup empty */
2639 lru_add_drain_all();
2640 /* try to free all pages in this cgroup */
2641 while (nr_retries && page_counter_read(&memcg->memory)) {
2642 int progress;
2643
2644 if (signal_pending(current))
2645 return -EINTR;
2646
2647 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2648 GFP_KERNEL, true);
2649 if (!progress) {
2650 nr_retries--;
2651 /* maybe some writeback is necessary */
2652 congestion_wait(BLK_RW_ASYNC, HZ/10);
2653 }
2654
2655 }
2656
2657 return 0;
2658 }
2659
2660 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2661 char *buf, size_t nbytes,
2662 loff_t off)
2663 {
2664 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2665
2666 if (mem_cgroup_is_root(memcg))
2667 return -EINVAL;
2668 return mem_cgroup_force_empty(memcg) ?: nbytes;
2669 }
2670
2671 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2672 struct cftype *cft)
2673 {
2674 return mem_cgroup_from_css(css)->use_hierarchy;
2675 }
2676
2677 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2678 struct cftype *cft, u64 val)
2679 {
2680 int retval = 0;
2681 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2682 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2683
2684 if (memcg->use_hierarchy == val)
2685 return 0;
2686
2687 /*
2688 * If parent's use_hierarchy is set, we can't make any modifications
2689 * in the child subtrees. If it is unset, then the change can
2690 * occur, provided the current cgroup has no children.
2691 *
2692 * For the root cgroup, parent_mem is NULL, we allow value to be
2693 * set if there are no children.
2694 */
2695 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2696 (val == 1 || val == 0)) {
2697 if (!memcg_has_children(memcg))
2698 memcg->use_hierarchy = val;
2699 else
2700 retval = -EBUSY;
2701 } else
2702 retval = -EINVAL;
2703
2704 return retval;
2705 }
2706
2707 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2708 {
2709 struct mem_cgroup *iter;
2710 int i;
2711
2712 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2713
2714 for_each_mem_cgroup_tree(iter, memcg) {
2715 for (i = 0; i < MEMCG_NR_STAT; i++)
2716 stat[i] += memcg_page_state(iter, i);
2717 }
2718 }
2719
2720 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2721 {
2722 struct mem_cgroup *iter;
2723 int i;
2724
2725 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2726
2727 for_each_mem_cgroup_tree(iter, memcg) {
2728 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2729 events[i] += memcg_sum_events(iter, i);
2730 }
2731 }
2732
2733 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2734 {
2735 unsigned long val = 0;
2736
2737 if (mem_cgroup_is_root(memcg)) {
2738 struct mem_cgroup *iter;
2739
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 val += memcg_page_state(iter, MEMCG_CACHE);
2742 val += memcg_page_state(iter, MEMCG_RSS);
2743 if (swap)
2744 val += memcg_page_state(iter, MEMCG_SWAP);
2745 }
2746 } else {
2747 if (!swap)
2748 val = page_counter_read(&memcg->memory);
2749 else
2750 val = page_counter_read(&memcg->memsw);
2751 }
2752 return val;
2753 }
2754
2755 enum {
2756 RES_USAGE,
2757 RES_LIMIT,
2758 RES_MAX_USAGE,
2759 RES_FAILCNT,
2760 RES_SOFT_LIMIT,
2761 };
2762
2763 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2764 struct cftype *cft)
2765 {
2766 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2767 struct page_counter *counter;
2768
2769 switch (MEMFILE_TYPE(cft->private)) {
2770 case _MEM:
2771 counter = &memcg->memory;
2772 break;
2773 case _MEMSWAP:
2774 counter = &memcg->memsw;
2775 break;
2776 case _KMEM:
2777 counter = &memcg->kmem;
2778 break;
2779 case _TCP:
2780 counter = &memcg->tcpmem;
2781 break;
2782 default:
2783 BUG();
2784 }
2785
2786 switch (MEMFILE_ATTR(cft->private)) {
2787 case RES_USAGE:
2788 if (counter == &memcg->memory)
2789 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2790 if (counter == &memcg->memsw)
2791 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2792 return (u64)page_counter_read(counter) * PAGE_SIZE;
2793 case RES_LIMIT:
2794 return (u64)counter->limit * PAGE_SIZE;
2795 case RES_MAX_USAGE:
2796 return (u64)counter->watermark * PAGE_SIZE;
2797 case RES_FAILCNT:
2798 return counter->failcnt;
2799 case RES_SOFT_LIMIT:
2800 return (u64)memcg->soft_limit * PAGE_SIZE;
2801 default:
2802 BUG();
2803 }
2804 }
2805
2806 #ifndef CONFIG_SLOB
2807 static int memcg_online_kmem(struct mem_cgroup *memcg)
2808 {
2809 int memcg_id;
2810
2811 if (cgroup_memory_nokmem)
2812 return 0;
2813
2814 BUG_ON(memcg->kmemcg_id >= 0);
2815 BUG_ON(memcg->kmem_state);
2816
2817 memcg_id = memcg_alloc_cache_id();
2818 if (memcg_id < 0)
2819 return memcg_id;
2820
2821 static_branch_inc(&memcg_kmem_enabled_key);
2822 /*
2823 * A memory cgroup is considered kmem-online as soon as it gets
2824 * kmemcg_id. Setting the id after enabling static branching will
2825 * guarantee no one starts accounting before all call sites are
2826 * patched.
2827 */
2828 memcg->kmemcg_id = memcg_id;
2829 memcg->kmem_state = KMEM_ONLINE;
2830 INIT_LIST_HEAD(&memcg->kmem_caches);
2831
2832 return 0;
2833 }
2834
2835 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2836 {
2837 struct cgroup_subsys_state *css;
2838 struct mem_cgroup *parent, *child;
2839 int kmemcg_id;
2840
2841 if (memcg->kmem_state != KMEM_ONLINE)
2842 return;
2843 /*
2844 * Clear the online state before clearing memcg_caches array
2845 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2846 * guarantees that no cache will be created for this cgroup
2847 * after we are done (see memcg_create_kmem_cache()).
2848 */
2849 memcg->kmem_state = KMEM_ALLOCATED;
2850
2851 memcg_deactivate_kmem_caches(memcg);
2852
2853 kmemcg_id = memcg->kmemcg_id;
2854 BUG_ON(kmemcg_id < 0);
2855
2856 parent = parent_mem_cgroup(memcg);
2857 if (!parent)
2858 parent = root_mem_cgroup;
2859
2860 /*
2861 * Change kmemcg_id of this cgroup and all its descendants to the
2862 * parent's id, and then move all entries from this cgroup's list_lrus
2863 * to ones of the parent. After we have finished, all list_lrus
2864 * corresponding to this cgroup are guaranteed to remain empty. The
2865 * ordering is imposed by list_lru_node->lock taken by
2866 * memcg_drain_all_list_lrus().
2867 */
2868 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2869 css_for_each_descendant_pre(css, &memcg->css) {
2870 child = mem_cgroup_from_css(css);
2871 BUG_ON(child->kmemcg_id != kmemcg_id);
2872 child->kmemcg_id = parent->kmemcg_id;
2873 if (!memcg->use_hierarchy)
2874 break;
2875 }
2876 rcu_read_unlock();
2877
2878 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2879
2880 memcg_free_cache_id(kmemcg_id);
2881 }
2882
2883 static void memcg_free_kmem(struct mem_cgroup *memcg)
2884 {
2885 /* css_alloc() failed, offlining didn't happen */
2886 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2887 memcg_offline_kmem(memcg);
2888
2889 if (memcg->kmem_state == KMEM_ALLOCATED) {
2890 memcg_destroy_kmem_caches(memcg);
2891 static_branch_dec(&memcg_kmem_enabled_key);
2892 WARN_ON(page_counter_read(&memcg->kmem));
2893 }
2894 }
2895 #else
2896 static int memcg_online_kmem(struct mem_cgroup *memcg)
2897 {
2898 return 0;
2899 }
2900 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2901 {
2902 }
2903 static void memcg_free_kmem(struct mem_cgroup *memcg)
2904 {
2905 }
2906 #endif /* !CONFIG_SLOB */
2907
2908 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2909 unsigned long limit)
2910 {
2911 int ret;
2912
2913 mutex_lock(&memcg_limit_mutex);
2914 ret = page_counter_limit(&memcg->kmem, limit);
2915 mutex_unlock(&memcg_limit_mutex);
2916 return ret;
2917 }
2918
2919 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2920 {
2921 int ret;
2922
2923 mutex_lock(&memcg_limit_mutex);
2924
2925 ret = page_counter_limit(&memcg->tcpmem, limit);
2926 if (ret)
2927 goto out;
2928
2929 if (!memcg->tcpmem_active) {
2930 /*
2931 * The active flag needs to be written after the static_key
2932 * update. This is what guarantees that the socket activation
2933 * function is the last one to run. See mem_cgroup_sk_alloc()
2934 * for details, and note that we don't mark any socket as
2935 * belonging to this memcg until that flag is up.
2936 *
2937 * We need to do this, because static_keys will span multiple
2938 * sites, but we can't control their order. If we mark a socket
2939 * as accounted, but the accounting functions are not patched in
2940 * yet, we'll lose accounting.
2941 *
2942 * We never race with the readers in mem_cgroup_sk_alloc(),
2943 * because when this value change, the code to process it is not
2944 * patched in yet.
2945 */
2946 static_branch_inc(&memcg_sockets_enabled_key);
2947 memcg->tcpmem_active = true;
2948 }
2949 out:
2950 mutex_unlock(&memcg_limit_mutex);
2951 return ret;
2952 }
2953
2954 /*
2955 * The user of this function is...
2956 * RES_LIMIT.
2957 */
2958 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2959 char *buf, size_t nbytes, loff_t off)
2960 {
2961 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2962 unsigned long nr_pages;
2963 int ret;
2964
2965 buf = strstrip(buf);
2966 ret = page_counter_memparse(buf, "-1", &nr_pages);
2967 if (ret)
2968 return ret;
2969
2970 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2971 case RES_LIMIT:
2972 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2973 ret = -EINVAL;
2974 break;
2975 }
2976 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2977 case _MEM:
2978 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2979 break;
2980 case _MEMSWAP:
2981 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2982 break;
2983 case _KMEM:
2984 ret = memcg_update_kmem_limit(memcg, nr_pages);
2985 break;
2986 case _TCP:
2987 ret = memcg_update_tcp_limit(memcg, nr_pages);
2988 break;
2989 }
2990 break;
2991 case RES_SOFT_LIMIT:
2992 memcg->soft_limit = nr_pages;
2993 ret = 0;
2994 break;
2995 }
2996 return ret ?: nbytes;
2997 }
2998
2999 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3000 size_t nbytes, loff_t off)
3001 {
3002 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3003 struct page_counter *counter;
3004
3005 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3006 case _MEM:
3007 counter = &memcg->memory;
3008 break;
3009 case _MEMSWAP:
3010 counter = &memcg->memsw;
3011 break;
3012 case _KMEM:
3013 counter = &memcg->kmem;
3014 break;
3015 case _TCP:
3016 counter = &memcg->tcpmem;
3017 break;
3018 default:
3019 BUG();
3020 }
3021
3022 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3023 case RES_MAX_USAGE:
3024 page_counter_reset_watermark(counter);
3025 break;
3026 case RES_FAILCNT:
3027 counter->failcnt = 0;
3028 break;
3029 default:
3030 BUG();
3031 }
3032
3033 return nbytes;
3034 }
3035
3036 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3037 struct cftype *cft)
3038 {
3039 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3040 }
3041
3042 #ifdef CONFIG_MMU
3043 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3044 struct cftype *cft, u64 val)
3045 {
3046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3047
3048 if (val & ~MOVE_MASK)
3049 return -EINVAL;
3050
3051 /*
3052 * No kind of locking is needed in here, because ->can_attach() will
3053 * check this value once in the beginning of the process, and then carry
3054 * on with stale data. This means that changes to this value will only
3055 * affect task migrations starting after the change.
3056 */
3057 memcg->move_charge_at_immigrate = val;
3058 return 0;
3059 }
3060 #else
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 struct cftype *cft, u64 val)
3063 {
3064 return -ENOSYS;
3065 }
3066 #endif
3067
3068 #ifdef CONFIG_NUMA
3069 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3070 {
3071 struct numa_stat {
3072 const char *name;
3073 unsigned int lru_mask;
3074 };
3075
3076 static const struct numa_stat stats[] = {
3077 { "total", LRU_ALL },
3078 { "file", LRU_ALL_FILE },
3079 { "anon", LRU_ALL_ANON },
3080 { "unevictable", BIT(LRU_UNEVICTABLE) },
3081 };
3082 const struct numa_stat *stat;
3083 int nid;
3084 unsigned long nr;
3085 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3086
3087 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3088 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3089 seq_printf(m, "%s=%lu", stat->name, nr);
3090 for_each_node_state(nid, N_MEMORY) {
3091 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3092 stat->lru_mask);
3093 seq_printf(m, " N%d=%lu", nid, nr);
3094 }
3095 seq_putc(m, '\n');
3096 }
3097
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 struct mem_cgroup *iter;
3100
3101 nr = 0;
3102 for_each_mem_cgroup_tree(iter, memcg)
3103 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3104 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3105 for_each_node_state(nid, N_MEMORY) {
3106 nr = 0;
3107 for_each_mem_cgroup_tree(iter, memcg)
3108 nr += mem_cgroup_node_nr_lru_pages(
3109 iter, nid, stat->lru_mask);
3110 seq_printf(m, " N%d=%lu", nid, nr);
3111 }
3112 seq_putc(m, '\n');
3113 }
3114
3115 return 0;
3116 }
3117 #endif /* CONFIG_NUMA */
3118
3119 /* Universal VM events cgroup1 shows, original sort order */
3120 unsigned int memcg1_events[] = {
3121 PGPGIN,
3122 PGPGOUT,
3123 PGFAULT,
3124 PGMAJFAULT,
3125 };
3126
3127 static const char *const memcg1_event_names[] = {
3128 "pgpgin",
3129 "pgpgout",
3130 "pgfault",
3131 "pgmajfault",
3132 };
3133
3134 static int memcg_stat_show(struct seq_file *m, void *v)
3135 {
3136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137 unsigned long memory, memsw;
3138 struct mem_cgroup *mi;
3139 unsigned int i;
3140
3141 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3145 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3146 continue;
3147 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3148 memcg_page_state(memcg, memcg1_stats[i]) *
3149 PAGE_SIZE);
3150 }
3151
3152 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3153 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3154 memcg_sum_events(memcg, memcg1_events[i]));
3155
3156 for (i = 0; i < NR_LRU_LISTS; i++)
3157 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3158 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3159
3160 /* Hierarchical information */
3161 memory = memsw = PAGE_COUNTER_MAX;
3162 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3163 memory = min(memory, mi->memory.limit);
3164 memsw = min(memsw, mi->memsw.limit);
3165 }
3166 seq_printf(m, "hierarchical_memory_limit %llu\n",
3167 (u64)memory * PAGE_SIZE);
3168 if (do_memsw_account())
3169 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3170 (u64)memsw * PAGE_SIZE);
3171
3172 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3173 unsigned long long val = 0;
3174
3175 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3176 continue;
3177 for_each_mem_cgroup_tree(mi, memcg)
3178 val += memcg_page_state(mi, memcg1_stats[i]) *
3179 PAGE_SIZE;
3180 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3181 }
3182
3183 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3184 unsigned long long val = 0;
3185
3186 for_each_mem_cgroup_tree(mi, memcg)
3187 val += memcg_sum_events(mi, memcg1_events[i]);
3188 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3189 }
3190
3191 for (i = 0; i < NR_LRU_LISTS; i++) {
3192 unsigned long long val = 0;
3193
3194 for_each_mem_cgroup_tree(mi, memcg)
3195 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3196 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3197 }
3198
3199 #ifdef CONFIG_DEBUG_VM
3200 {
3201 pg_data_t *pgdat;
3202 struct mem_cgroup_per_node *mz;
3203 struct zone_reclaim_stat *rstat;
3204 unsigned long recent_rotated[2] = {0, 0};
3205 unsigned long recent_scanned[2] = {0, 0};
3206
3207 for_each_online_pgdat(pgdat) {
3208 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3209 rstat = &mz->lruvec.reclaim_stat;
3210
3211 recent_rotated[0] += rstat->recent_rotated[0];
3212 recent_rotated[1] += rstat->recent_rotated[1];
3213 recent_scanned[0] += rstat->recent_scanned[0];
3214 recent_scanned[1] += rstat->recent_scanned[1];
3215 }
3216 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3217 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3218 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3219 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3220 }
3221 #endif
3222
3223 return 0;
3224 }
3225
3226 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3227 struct cftype *cft)
3228 {
3229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231 return mem_cgroup_swappiness(memcg);
3232 }
3233
3234 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3235 struct cftype *cft, u64 val)
3236 {
3237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238
3239 if (val > 100)
3240 return -EINVAL;
3241
3242 if (css->parent)
3243 memcg->swappiness = val;
3244 else
3245 vm_swappiness = val;
3246
3247 return 0;
3248 }
3249
3250 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3251 {
3252 struct mem_cgroup_threshold_ary *t;
3253 unsigned long usage;
3254 int i;
3255
3256 rcu_read_lock();
3257 if (!swap)
3258 t = rcu_dereference(memcg->thresholds.primary);
3259 else
3260 t = rcu_dereference(memcg->memsw_thresholds.primary);
3261
3262 if (!t)
3263 goto unlock;
3264
3265 usage = mem_cgroup_usage(memcg, swap);
3266
3267 /*
3268 * current_threshold points to threshold just below or equal to usage.
3269 * If it's not true, a threshold was crossed after last
3270 * call of __mem_cgroup_threshold().
3271 */
3272 i = t->current_threshold;
3273
3274 /*
3275 * Iterate backward over array of thresholds starting from
3276 * current_threshold and check if a threshold is crossed.
3277 * If none of thresholds below usage is crossed, we read
3278 * only one element of the array here.
3279 */
3280 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3281 eventfd_signal(t->entries[i].eventfd, 1);
3282
3283 /* i = current_threshold + 1 */
3284 i++;
3285
3286 /*
3287 * Iterate forward over array of thresholds starting from
3288 * current_threshold+1 and check if a threshold is crossed.
3289 * If none of thresholds above usage is crossed, we read
3290 * only one element of the array here.
3291 */
3292 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3293 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295 /* Update current_threshold */
3296 t->current_threshold = i - 1;
3297 unlock:
3298 rcu_read_unlock();
3299 }
3300
3301 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3302 {
3303 while (memcg) {
3304 __mem_cgroup_threshold(memcg, false);
3305 if (do_memsw_account())
3306 __mem_cgroup_threshold(memcg, true);
3307
3308 memcg = parent_mem_cgroup(memcg);
3309 }
3310 }
3311
3312 static int compare_thresholds(const void *a, const void *b)
3313 {
3314 const struct mem_cgroup_threshold *_a = a;
3315 const struct mem_cgroup_threshold *_b = b;
3316
3317 if (_a->threshold > _b->threshold)
3318 return 1;
3319
3320 if (_a->threshold < _b->threshold)
3321 return -1;
3322
3323 return 0;
3324 }
3325
3326 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3327 {
3328 struct mem_cgroup_eventfd_list *ev;
3329
3330 spin_lock(&memcg_oom_lock);
3331
3332 list_for_each_entry(ev, &memcg->oom_notify, list)
3333 eventfd_signal(ev->eventfd, 1);
3334
3335 spin_unlock(&memcg_oom_lock);
3336 return 0;
3337 }
3338
3339 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3340 {
3341 struct mem_cgroup *iter;
3342
3343 for_each_mem_cgroup_tree(iter, memcg)
3344 mem_cgroup_oom_notify_cb(iter);
3345 }
3346
3347 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3348 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3349 {
3350 struct mem_cgroup_thresholds *thresholds;
3351 struct mem_cgroup_threshold_ary *new;
3352 unsigned long threshold;
3353 unsigned long usage;
3354 int i, size, ret;
3355
3356 ret = page_counter_memparse(args, "-1", &threshold);
3357 if (ret)
3358 return ret;
3359
3360 mutex_lock(&memcg->thresholds_lock);
3361
3362 if (type == _MEM) {
3363 thresholds = &memcg->thresholds;
3364 usage = mem_cgroup_usage(memcg, false);
3365 } else if (type == _MEMSWAP) {
3366 thresholds = &memcg->memsw_thresholds;
3367 usage = mem_cgroup_usage(memcg, true);
3368 } else
3369 BUG();
3370
3371 /* Check if a threshold crossed before adding a new one */
3372 if (thresholds->primary)
3373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3374
3375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3376
3377 /* Allocate memory for new array of thresholds */
3378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3379 GFP_KERNEL);
3380 if (!new) {
3381 ret = -ENOMEM;
3382 goto unlock;
3383 }
3384 new->size = size;
3385
3386 /* Copy thresholds (if any) to new array */
3387 if (thresholds->primary) {
3388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3389 sizeof(struct mem_cgroup_threshold));
3390 }
3391
3392 /* Add new threshold */
3393 new->entries[size - 1].eventfd = eventfd;
3394 new->entries[size - 1].threshold = threshold;
3395
3396 /* Sort thresholds. Registering of new threshold isn't time-critical */
3397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3398 compare_thresholds, NULL);
3399
3400 /* Find current threshold */
3401 new->current_threshold = -1;
3402 for (i = 0; i < size; i++) {
3403 if (new->entries[i].threshold <= usage) {
3404 /*
3405 * new->current_threshold will not be used until
3406 * rcu_assign_pointer(), so it's safe to increment
3407 * it here.
3408 */
3409 ++new->current_threshold;
3410 } else
3411 break;
3412 }
3413
3414 /* Free old spare buffer and save old primary buffer as spare */
3415 kfree(thresholds->spare);
3416 thresholds->spare = thresholds->primary;
3417
3418 rcu_assign_pointer(thresholds->primary, new);
3419
3420 /* To be sure that nobody uses thresholds */
3421 synchronize_rcu();
3422
3423 unlock:
3424 mutex_unlock(&memcg->thresholds_lock);
3425
3426 return ret;
3427 }
3428
3429 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430 struct eventfd_ctx *eventfd, const char *args)
3431 {
3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3433 }
3434
3435 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3436 struct eventfd_ctx *eventfd, const char *args)
3437 {
3438 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3439 }
3440
3441 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3442 struct eventfd_ctx *eventfd, enum res_type type)
3443 {
3444 struct mem_cgroup_thresholds *thresholds;
3445 struct mem_cgroup_threshold_ary *new;
3446 unsigned long usage;
3447 int i, j, size;
3448
3449 mutex_lock(&memcg->thresholds_lock);
3450
3451 if (type == _MEM) {
3452 thresholds = &memcg->thresholds;
3453 usage = mem_cgroup_usage(memcg, false);
3454 } else if (type == _MEMSWAP) {
3455 thresholds = &memcg->memsw_thresholds;
3456 usage = mem_cgroup_usage(memcg, true);
3457 } else
3458 BUG();
3459
3460 if (!thresholds->primary)
3461 goto unlock;
3462
3463 /* Check if a threshold crossed before removing */
3464 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3465
3466 /* Calculate new number of threshold */
3467 size = 0;
3468 for (i = 0; i < thresholds->primary->size; i++) {
3469 if (thresholds->primary->entries[i].eventfd != eventfd)
3470 size++;
3471 }
3472
3473 new = thresholds->spare;
3474
3475 /* Set thresholds array to NULL if we don't have thresholds */
3476 if (!size) {
3477 kfree(new);
3478 new = NULL;
3479 goto swap_buffers;
3480 }
3481
3482 new->size = size;
3483
3484 /* Copy thresholds and find current threshold */
3485 new->current_threshold = -1;
3486 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3487 if (thresholds->primary->entries[i].eventfd == eventfd)
3488 continue;
3489
3490 new->entries[j] = thresholds->primary->entries[i];
3491 if (new->entries[j].threshold <= usage) {
3492 /*
3493 * new->current_threshold will not be used
3494 * until rcu_assign_pointer(), so it's safe to increment
3495 * it here.
3496 */
3497 ++new->current_threshold;
3498 }
3499 j++;
3500 }
3501
3502 swap_buffers:
3503 /* Swap primary and spare array */
3504 thresholds->spare = thresholds->primary;
3505
3506 rcu_assign_pointer(thresholds->primary, new);
3507
3508 /* To be sure that nobody uses thresholds */
3509 synchronize_rcu();
3510
3511 /* If all events are unregistered, free the spare array */
3512 if (!new) {
3513 kfree(thresholds->spare);
3514 thresholds->spare = NULL;
3515 }
3516 unlock:
3517 mutex_unlock(&memcg->thresholds_lock);
3518 }
3519
3520 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522 {
3523 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3524 }
3525
3526 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3527 struct eventfd_ctx *eventfd)
3528 {
3529 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3530 }
3531
3532 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3533 struct eventfd_ctx *eventfd, const char *args)
3534 {
3535 struct mem_cgroup_eventfd_list *event;
3536
3537 event = kmalloc(sizeof(*event), GFP_KERNEL);
3538 if (!event)
3539 return -ENOMEM;
3540
3541 spin_lock(&memcg_oom_lock);
3542
3543 event->eventfd = eventfd;
3544 list_add(&event->list, &memcg->oom_notify);
3545
3546 /* already in OOM ? */
3547 if (memcg->under_oom)
3548 eventfd_signal(eventfd, 1);
3549 spin_unlock(&memcg_oom_lock);
3550
3551 return 0;
3552 }
3553
3554 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3555 struct eventfd_ctx *eventfd)
3556 {
3557 struct mem_cgroup_eventfd_list *ev, *tmp;
3558
3559 spin_lock(&memcg_oom_lock);
3560
3561 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3562 if (ev->eventfd == eventfd) {
3563 list_del(&ev->list);
3564 kfree(ev);
3565 }
3566 }
3567
3568 spin_unlock(&memcg_oom_lock);
3569 }
3570
3571 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3572 {
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3574
3575 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3576 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3577 return 0;
3578 }
3579
3580 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581 struct cftype *cft, u64 val)
3582 {
3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585 /* cannot set to root cgroup and only 0 and 1 are allowed */
3586 if (!css->parent || !((val == 0) || (val == 1)))
3587 return -EINVAL;
3588
3589 memcg->oom_kill_disable = val;
3590 if (!val)
3591 memcg_oom_recover(memcg);
3592
3593 return 0;
3594 }
3595
3596 #ifdef CONFIG_CGROUP_WRITEBACK
3597
3598 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599 {
3600 return &memcg->cgwb_list;
3601 }
3602
3603 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604 {
3605 return wb_domain_init(&memcg->cgwb_domain, gfp);
3606 }
3607
3608 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609 {
3610 wb_domain_exit(&memcg->cgwb_domain);
3611 }
3612
3613 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614 {
3615 wb_domain_size_changed(&memcg->cgwb_domain);
3616 }
3617
3618 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619 {
3620 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621
3622 if (!memcg->css.parent)
3623 return NULL;
3624
3625 return &memcg->cgwb_domain;
3626 }
3627
3628 /**
3629 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630 * @wb: bdi_writeback in question
3631 * @pfilepages: out parameter for number of file pages
3632 * @pheadroom: out parameter for number of allocatable pages according to memcg
3633 * @pdirty: out parameter for number of dirty pages
3634 * @pwriteback: out parameter for number of pages under writeback
3635 *
3636 * Determine the numbers of file, headroom, dirty, and writeback pages in
3637 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3638 * is a bit more involved.
3639 *
3640 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3641 * headroom is calculated as the lowest headroom of itself and the
3642 * ancestors. Note that this doesn't consider the actual amount of
3643 * available memory in the system. The caller should further cap
3644 * *@pheadroom accordingly.
3645 */
3646 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647 unsigned long *pheadroom, unsigned long *pdirty,
3648 unsigned long *pwriteback)
3649 {
3650 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651 struct mem_cgroup *parent;
3652
3653 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3654
3655 /* this should eventually include NR_UNSTABLE_NFS */
3656 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3657 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658 (1 << LRU_ACTIVE_FILE));
3659 *pheadroom = PAGE_COUNTER_MAX;
3660
3661 while ((parent = parent_mem_cgroup(memcg))) {
3662 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663 unsigned long used = page_counter_read(&memcg->memory);
3664
3665 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666 memcg = parent;
3667 }
3668 }
3669
3670 #else /* CONFIG_CGROUP_WRITEBACK */
3671
3672 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673 {
3674 return 0;
3675 }
3676
3677 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682 {
3683 }
3684
3685 #endif /* CONFIG_CGROUP_WRITEBACK */
3686
3687 /*
3688 * DO NOT USE IN NEW FILES.
3689 *
3690 * "cgroup.event_control" implementation.
3691 *
3692 * This is way over-engineered. It tries to support fully configurable
3693 * events for each user. Such level of flexibility is completely
3694 * unnecessary especially in the light of the planned unified hierarchy.
3695 *
3696 * Please deprecate this and replace with something simpler if at all
3697 * possible.
3698 */
3699
3700 /*
3701 * Unregister event and free resources.
3702 *
3703 * Gets called from workqueue.
3704 */
3705 static void memcg_event_remove(struct work_struct *work)
3706 {
3707 struct mem_cgroup_event *event =
3708 container_of(work, struct mem_cgroup_event, remove);
3709 struct mem_cgroup *memcg = event->memcg;
3710
3711 remove_wait_queue(event->wqh, &event->wait);
3712
3713 event->unregister_event(memcg, event->eventfd);
3714
3715 /* Notify userspace the event is going away. */
3716 eventfd_signal(event->eventfd, 1);
3717
3718 eventfd_ctx_put(event->eventfd);
3719 kfree(event);
3720 css_put(&memcg->css);
3721 }
3722
3723 /*
3724 * Gets called on POLLHUP on eventfd when user closes it.
3725 *
3726 * Called with wqh->lock held and interrupts disabled.
3727 */
3728 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3729 int sync, void *key)
3730 {
3731 struct mem_cgroup_event *event =
3732 container_of(wait, struct mem_cgroup_event, wait);
3733 struct mem_cgroup *memcg = event->memcg;
3734 unsigned long flags = (unsigned long)key;
3735
3736 if (flags & POLLHUP) {
3737 /*
3738 * If the event has been detached at cgroup removal, we
3739 * can simply return knowing the other side will cleanup
3740 * for us.
3741 *
3742 * We can't race against event freeing since the other
3743 * side will require wqh->lock via remove_wait_queue(),
3744 * which we hold.
3745 */
3746 spin_lock(&memcg->event_list_lock);
3747 if (!list_empty(&event->list)) {
3748 list_del_init(&event->list);
3749 /*
3750 * We are in atomic context, but cgroup_event_remove()
3751 * may sleep, so we have to call it in workqueue.
3752 */
3753 schedule_work(&event->remove);
3754 }
3755 spin_unlock(&memcg->event_list_lock);
3756 }
3757
3758 return 0;
3759 }
3760
3761 static void memcg_event_ptable_queue_proc(struct file *file,
3762 wait_queue_head_t *wqh, poll_table *pt)
3763 {
3764 struct mem_cgroup_event *event =
3765 container_of(pt, struct mem_cgroup_event, pt);
3766
3767 event->wqh = wqh;
3768 add_wait_queue(wqh, &event->wait);
3769 }
3770
3771 /*
3772 * DO NOT USE IN NEW FILES.
3773 *
3774 * Parse input and register new cgroup event handler.
3775 *
3776 * Input must be in format '<event_fd> <control_fd> <args>'.
3777 * Interpretation of args is defined by control file implementation.
3778 */
3779 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780 char *buf, size_t nbytes, loff_t off)
3781 {
3782 struct cgroup_subsys_state *css = of_css(of);
3783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784 struct mem_cgroup_event *event;
3785 struct cgroup_subsys_state *cfile_css;
3786 unsigned int efd, cfd;
3787 struct fd efile;
3788 struct fd cfile;
3789 const char *name;
3790 char *endp;
3791 int ret;
3792
3793 buf = strstrip(buf);
3794
3795 efd = simple_strtoul(buf, &endp, 10);
3796 if (*endp != ' ')
3797 return -EINVAL;
3798 buf = endp + 1;
3799
3800 cfd = simple_strtoul(buf, &endp, 10);
3801 if ((*endp != ' ') && (*endp != '\0'))
3802 return -EINVAL;
3803 buf = endp + 1;
3804
3805 event = kzalloc(sizeof(*event), GFP_KERNEL);
3806 if (!event)
3807 return -ENOMEM;
3808
3809 event->memcg = memcg;
3810 INIT_LIST_HEAD(&event->list);
3811 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813 INIT_WORK(&event->remove, memcg_event_remove);
3814
3815 efile = fdget(efd);
3816 if (!efile.file) {
3817 ret = -EBADF;
3818 goto out_kfree;
3819 }
3820
3821 event->eventfd = eventfd_ctx_fileget(efile.file);
3822 if (IS_ERR(event->eventfd)) {
3823 ret = PTR_ERR(event->eventfd);
3824 goto out_put_efile;
3825 }
3826
3827 cfile = fdget(cfd);
3828 if (!cfile.file) {
3829 ret = -EBADF;
3830 goto out_put_eventfd;
3831 }
3832
3833 /* the process need read permission on control file */
3834 /* AV: shouldn't we check that it's been opened for read instead? */
3835 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836 if (ret < 0)
3837 goto out_put_cfile;
3838
3839 /*
3840 * Determine the event callbacks and set them in @event. This used
3841 * to be done via struct cftype but cgroup core no longer knows
3842 * about these events. The following is crude but the whole thing
3843 * is for compatibility anyway.
3844 *
3845 * DO NOT ADD NEW FILES.
3846 */
3847 name = cfile.file->f_path.dentry->d_name.name;
3848
3849 if (!strcmp(name, "memory.usage_in_bytes")) {
3850 event->register_event = mem_cgroup_usage_register_event;
3851 event->unregister_event = mem_cgroup_usage_unregister_event;
3852 } else if (!strcmp(name, "memory.oom_control")) {
3853 event->register_event = mem_cgroup_oom_register_event;
3854 event->unregister_event = mem_cgroup_oom_unregister_event;
3855 } else if (!strcmp(name, "memory.pressure_level")) {
3856 event->register_event = vmpressure_register_event;
3857 event->unregister_event = vmpressure_unregister_event;
3858 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859 event->register_event = memsw_cgroup_usage_register_event;
3860 event->unregister_event = memsw_cgroup_usage_unregister_event;
3861 } else {
3862 ret = -EINVAL;
3863 goto out_put_cfile;
3864 }
3865
3866 /*
3867 * Verify @cfile should belong to @css. Also, remaining events are
3868 * automatically removed on cgroup destruction but the removal is
3869 * asynchronous, so take an extra ref on @css.
3870 */
3871 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872 &memory_cgrp_subsys);
3873 ret = -EINVAL;
3874 if (IS_ERR(cfile_css))
3875 goto out_put_cfile;
3876 if (cfile_css != css) {
3877 css_put(cfile_css);
3878 goto out_put_cfile;
3879 }
3880
3881 ret = event->register_event(memcg, event->eventfd, buf);
3882 if (ret)
3883 goto out_put_css;
3884
3885 efile.file->f_op->poll(efile.file, &event->pt);
3886
3887 spin_lock(&memcg->event_list_lock);
3888 list_add(&event->list, &memcg->event_list);
3889 spin_unlock(&memcg->event_list_lock);
3890
3891 fdput(cfile);
3892 fdput(efile);
3893
3894 return nbytes;
3895
3896 out_put_css:
3897 css_put(css);
3898 out_put_cfile:
3899 fdput(cfile);
3900 out_put_eventfd:
3901 eventfd_ctx_put(event->eventfd);
3902 out_put_efile:
3903 fdput(efile);
3904 out_kfree:
3905 kfree(event);
3906
3907 return ret;
3908 }
3909
3910 static struct cftype mem_cgroup_legacy_files[] = {
3911 {
3912 .name = "usage_in_bytes",
3913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914 .read_u64 = mem_cgroup_read_u64,
3915 },
3916 {
3917 .name = "max_usage_in_bytes",
3918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919 .write = mem_cgroup_reset,
3920 .read_u64 = mem_cgroup_read_u64,
3921 },
3922 {
3923 .name = "limit_in_bytes",
3924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925 .write = mem_cgroup_write,
3926 .read_u64 = mem_cgroup_read_u64,
3927 },
3928 {
3929 .name = "soft_limit_in_bytes",
3930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931 .write = mem_cgroup_write,
3932 .read_u64 = mem_cgroup_read_u64,
3933 },
3934 {
3935 .name = "failcnt",
3936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937 .write = mem_cgroup_reset,
3938 .read_u64 = mem_cgroup_read_u64,
3939 },
3940 {
3941 .name = "stat",
3942 .seq_show = memcg_stat_show,
3943 },
3944 {
3945 .name = "force_empty",
3946 .write = mem_cgroup_force_empty_write,
3947 },
3948 {
3949 .name = "use_hierarchy",
3950 .write_u64 = mem_cgroup_hierarchy_write,
3951 .read_u64 = mem_cgroup_hierarchy_read,
3952 },
3953 {
3954 .name = "cgroup.event_control", /* XXX: for compat */
3955 .write = memcg_write_event_control,
3956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957 },
3958 {
3959 .name = "swappiness",
3960 .read_u64 = mem_cgroup_swappiness_read,
3961 .write_u64 = mem_cgroup_swappiness_write,
3962 },
3963 {
3964 .name = "move_charge_at_immigrate",
3965 .read_u64 = mem_cgroup_move_charge_read,
3966 .write_u64 = mem_cgroup_move_charge_write,
3967 },
3968 {
3969 .name = "oom_control",
3970 .seq_show = mem_cgroup_oom_control_read,
3971 .write_u64 = mem_cgroup_oom_control_write,
3972 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973 },
3974 {
3975 .name = "pressure_level",
3976 },
3977 #ifdef CONFIG_NUMA
3978 {
3979 .name = "numa_stat",
3980 .seq_show = memcg_numa_stat_show,
3981 },
3982 #endif
3983 {
3984 .name = "kmem.limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "kmem.usage_in_bytes",
3991 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.failcnt",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
4000 {
4001 .name = "kmem.max_usage_in_bytes",
4002 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003 .write = mem_cgroup_reset,
4004 .read_u64 = mem_cgroup_read_u64,
4005 },
4006 #ifdef CONFIG_SLABINFO
4007 {
4008 .name = "kmem.slabinfo",
4009 .seq_start = memcg_slab_start,
4010 .seq_next = memcg_slab_next,
4011 .seq_stop = memcg_slab_stop,
4012 .seq_show = memcg_slab_show,
4013 },
4014 #endif
4015 {
4016 .name = "kmem.tcp.limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018 .write = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "kmem.tcp.usage_in_bytes",
4023 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.failcnt",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
4032 {
4033 .name = "kmem.tcp.max_usage_in_bytes",
4034 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035 .write = mem_cgroup_reset,
4036 .read_u64 = mem_cgroup_read_u64,
4037 },
4038 { }, /* terminate */
4039 };
4040
4041 /*
4042 * Private memory cgroup IDR
4043 *
4044 * Swap-out records and page cache shadow entries need to store memcg
4045 * references in constrained space, so we maintain an ID space that is
4046 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4047 * memory-controlled cgroups to 64k.
4048 *
4049 * However, there usually are many references to the oflline CSS after
4050 * the cgroup has been destroyed, such as page cache or reclaimable
4051 * slab objects, that don't need to hang on to the ID. We want to keep
4052 * those dead CSS from occupying IDs, or we might quickly exhaust the
4053 * relatively small ID space and prevent the creation of new cgroups
4054 * even when there are much fewer than 64k cgroups - possibly none.
4055 *
4056 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4057 * be freed and recycled when it's no longer needed, which is usually
4058 * when the CSS is offlined.
4059 *
4060 * The only exception to that are records of swapped out tmpfs/shmem
4061 * pages that need to be attributed to live ancestors on swapin. But
4062 * those references are manageable from userspace.
4063 */
4064
4065 static DEFINE_IDR(mem_cgroup_idr);
4066
4067 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4068 {
4069 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4070 atomic_add(n, &memcg->id.ref);
4071 }
4072
4073 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4074 {
4075 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4076 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4077 idr_remove(&mem_cgroup_idr, memcg->id.id);
4078 memcg->id.id = 0;
4079
4080 /* Memcg ID pins CSS */
4081 css_put(&memcg->css);
4082 }
4083 }
4084
4085 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4086 {
4087 mem_cgroup_id_get_many(memcg, 1);
4088 }
4089
4090 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4091 {
4092 mem_cgroup_id_put_many(memcg, 1);
4093 }
4094
4095 /**
4096 * mem_cgroup_from_id - look up a memcg from a memcg id
4097 * @id: the memcg id to look up
4098 *
4099 * Caller must hold rcu_read_lock().
4100 */
4101 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4102 {
4103 WARN_ON_ONCE(!rcu_read_lock_held());
4104 return idr_find(&mem_cgroup_idr, id);
4105 }
4106
4107 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108 {
4109 struct mem_cgroup_per_node *pn;
4110 int tmp = node;
4111 /*
4112 * This routine is called against possible nodes.
4113 * But it's BUG to call kmalloc() against offline node.
4114 *
4115 * TODO: this routine can waste much memory for nodes which will
4116 * never be onlined. It's better to use memory hotplug callback
4117 * function.
4118 */
4119 if (!node_state(node, N_NORMAL_MEMORY))
4120 tmp = -1;
4121 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4122 if (!pn)
4123 return 1;
4124
4125 lruvec_init(&pn->lruvec);
4126 pn->usage_in_excess = 0;
4127 pn->on_tree = false;
4128 pn->memcg = memcg;
4129
4130 memcg->nodeinfo[node] = pn;
4131 return 0;
4132 }
4133
4134 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4135 {
4136 kfree(memcg->nodeinfo[node]);
4137 }
4138
4139 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4140 {
4141 int node;
4142
4143 for_each_node(node)
4144 free_mem_cgroup_per_node_info(memcg, node);
4145 free_percpu(memcg->stat);
4146 kfree(memcg);
4147 }
4148
4149 static void mem_cgroup_free(struct mem_cgroup *memcg)
4150 {
4151 memcg_wb_domain_exit(memcg);
4152 __mem_cgroup_free(memcg);
4153 }
4154
4155 static struct mem_cgroup *mem_cgroup_alloc(void)
4156 {
4157 struct mem_cgroup *memcg;
4158 size_t size;
4159 int node;
4160
4161 size = sizeof(struct mem_cgroup);
4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163
4164 memcg = kzalloc(size, GFP_KERNEL);
4165 if (!memcg)
4166 return NULL;
4167
4168 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 1, MEM_CGROUP_ID_MAX,
4170 GFP_KERNEL);
4171 if (memcg->id.id < 0)
4172 goto fail;
4173
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto fail;
4177
4178 for_each_node(node)
4179 if (alloc_mem_cgroup_per_node_info(memcg, node))
4180 goto fail;
4181
4182 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 goto fail;
4184
4185 INIT_WORK(&memcg->high_work, high_work_func);
4186 memcg->last_scanned_node = MAX_NUMNODES;
4187 INIT_LIST_HEAD(&memcg->oom_notify);
4188 mutex_init(&memcg->thresholds_lock);
4189 spin_lock_init(&memcg->move_lock);
4190 vmpressure_init(&memcg->vmpressure);
4191 INIT_LIST_HEAD(&memcg->event_list);
4192 spin_lock_init(&memcg->event_list_lock);
4193 memcg->socket_pressure = jiffies;
4194 #ifndef CONFIG_SLOB
4195 memcg->kmemcg_id = -1;
4196 #endif
4197 #ifdef CONFIG_CGROUP_WRITEBACK
4198 INIT_LIST_HEAD(&memcg->cgwb_list);
4199 #endif
4200 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201 return memcg;
4202 fail:
4203 if (memcg->id.id > 0)
4204 idr_remove(&mem_cgroup_idr, memcg->id.id);
4205 __mem_cgroup_free(memcg);
4206 return NULL;
4207 }
4208
4209 static struct cgroup_subsys_state * __ref
4210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211 {
4212 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 struct mem_cgroup *memcg;
4214 long error = -ENOMEM;
4215
4216 memcg = mem_cgroup_alloc();
4217 if (!memcg)
4218 return ERR_PTR(error);
4219
4220 memcg->high = PAGE_COUNTER_MAX;
4221 memcg->soft_limit = PAGE_COUNTER_MAX;
4222 if (parent) {
4223 memcg->swappiness = mem_cgroup_swappiness(parent);
4224 memcg->oom_kill_disable = parent->oom_kill_disable;
4225 }
4226 if (parent && parent->use_hierarchy) {
4227 memcg->use_hierarchy = true;
4228 page_counter_init(&memcg->memory, &parent->memory);
4229 page_counter_init(&memcg->swap, &parent->swap);
4230 page_counter_init(&memcg->memsw, &parent->memsw);
4231 page_counter_init(&memcg->kmem, &parent->kmem);
4232 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233 } else {
4234 page_counter_init(&memcg->memory, NULL);
4235 page_counter_init(&memcg->swap, NULL);
4236 page_counter_init(&memcg->memsw, NULL);
4237 page_counter_init(&memcg->kmem, NULL);
4238 page_counter_init(&memcg->tcpmem, NULL);
4239 /*
4240 * Deeper hierachy with use_hierarchy == false doesn't make
4241 * much sense so let cgroup subsystem know about this
4242 * unfortunate state in our controller.
4243 */
4244 if (parent != root_mem_cgroup)
4245 memory_cgrp_subsys.broken_hierarchy = true;
4246 }
4247
4248 /* The following stuff does not apply to the root */
4249 if (!parent) {
4250 root_mem_cgroup = memcg;
4251 return &memcg->css;
4252 }
4253
4254 error = memcg_online_kmem(memcg);
4255 if (error)
4256 goto fail;
4257
4258 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259 static_branch_inc(&memcg_sockets_enabled_key);
4260
4261 return &memcg->css;
4262 fail:
4263 mem_cgroup_free(memcg);
4264 return ERR_PTR(-ENOMEM);
4265 }
4266
4267 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268 {
4269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270
4271 /* Online state pins memcg ID, memcg ID pins CSS */
4272 atomic_set(&memcg->id.ref, 1);
4273 css_get(css);
4274 return 0;
4275 }
4276
4277 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4278 {
4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280 struct mem_cgroup_event *event, *tmp;
4281
4282 /*
4283 * Unregister events and notify userspace.
4284 * Notify userspace about cgroup removing only after rmdir of cgroup
4285 * directory to avoid race between userspace and kernelspace.
4286 */
4287 spin_lock(&memcg->event_list_lock);
4288 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4289 list_del_init(&event->list);
4290 schedule_work(&event->remove);
4291 }
4292 spin_unlock(&memcg->event_list_lock);
4293
4294 memcg_offline_kmem(memcg);
4295 wb_memcg_offline(memcg);
4296
4297 mem_cgroup_id_put(memcg);
4298 }
4299
4300 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
4304 invalidate_reclaim_iterators(memcg);
4305 }
4306
4307 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4308 {
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4312 static_branch_dec(&memcg_sockets_enabled_key);
4313
4314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4315 static_branch_dec(&memcg_sockets_enabled_key);
4316
4317 vmpressure_cleanup(&memcg->vmpressure);
4318 cancel_work_sync(&memcg->high_work);
4319 mem_cgroup_remove_from_trees(memcg);
4320 memcg_free_kmem(memcg);
4321 mem_cgroup_free(memcg);
4322 }
4323
4324 /**
4325 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4326 * @css: the target css
4327 *
4328 * Reset the states of the mem_cgroup associated with @css. This is
4329 * invoked when the userland requests disabling on the default hierarchy
4330 * but the memcg is pinned through dependency. The memcg should stop
4331 * applying policies and should revert to the vanilla state as it may be
4332 * made visible again.
4333 *
4334 * The current implementation only resets the essential configurations.
4335 * This needs to be expanded to cover all the visible parts.
4336 */
4337 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4338 {
4339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4340
4341 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4344 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4345 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4346 memcg->low = 0;
4347 memcg->high = PAGE_COUNTER_MAX;
4348 memcg->soft_limit = PAGE_COUNTER_MAX;
4349 memcg_wb_domain_size_changed(memcg);
4350 }
4351
4352 #ifdef CONFIG_MMU
4353 /* Handlers for move charge at task migration. */
4354 static int mem_cgroup_do_precharge(unsigned long count)
4355 {
4356 int ret;
4357
4358 /* Try a single bulk charge without reclaim first, kswapd may wake */
4359 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4360 if (!ret) {
4361 mc.precharge += count;
4362 return ret;
4363 }
4364
4365 /* Try charges one by one with reclaim, but do not retry */
4366 while (count--) {
4367 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4368 if (ret)
4369 return ret;
4370 mc.precharge++;
4371 cond_resched();
4372 }
4373 return 0;
4374 }
4375
4376 union mc_target {
4377 struct page *page;
4378 swp_entry_t ent;
4379 };
4380
4381 enum mc_target_type {
4382 MC_TARGET_NONE = 0,
4383 MC_TARGET_PAGE,
4384 MC_TARGET_SWAP,
4385 };
4386
4387 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4388 unsigned long addr, pte_t ptent)
4389 {
4390 struct page *page = vm_normal_page(vma, addr, ptent);
4391
4392 if (!page || !page_mapped(page))
4393 return NULL;
4394 if (PageAnon(page)) {
4395 if (!(mc.flags & MOVE_ANON))
4396 return NULL;
4397 } else {
4398 if (!(mc.flags & MOVE_FILE))
4399 return NULL;
4400 }
4401 if (!get_page_unless_zero(page))
4402 return NULL;
4403
4404 return page;
4405 }
4406
4407 #ifdef CONFIG_SWAP
4408 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4409 pte_t ptent, swp_entry_t *entry)
4410 {
4411 struct page *page = NULL;
4412 swp_entry_t ent = pte_to_swp_entry(ptent);
4413
4414 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4415 return NULL;
4416 /*
4417 * Because lookup_swap_cache() updates some statistics counter,
4418 * we call find_get_page() with swapper_space directly.
4419 */
4420 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4421 if (do_memsw_account())
4422 entry->val = ent.val;
4423
4424 return page;
4425 }
4426 #else
4427 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4428 pte_t ptent, swp_entry_t *entry)
4429 {
4430 return NULL;
4431 }
4432 #endif
4433
4434 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4435 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4436 {
4437 struct page *page = NULL;
4438 struct address_space *mapping;
4439 pgoff_t pgoff;
4440
4441 if (!vma->vm_file) /* anonymous vma */
4442 return NULL;
4443 if (!(mc.flags & MOVE_FILE))
4444 return NULL;
4445
4446 mapping = vma->vm_file->f_mapping;
4447 pgoff = linear_page_index(vma, addr);
4448
4449 /* page is moved even if it's not RSS of this task(page-faulted). */
4450 #ifdef CONFIG_SWAP
4451 /* shmem/tmpfs may report page out on swap: account for that too. */
4452 if (shmem_mapping(mapping)) {
4453 page = find_get_entry(mapping, pgoff);
4454 if (radix_tree_exceptional_entry(page)) {
4455 swp_entry_t swp = radix_to_swp_entry(page);
4456 if (do_memsw_account())
4457 *entry = swp;
4458 page = find_get_page(swap_address_space(swp),
4459 swp_offset(swp));
4460 }
4461 } else
4462 page = find_get_page(mapping, pgoff);
4463 #else
4464 page = find_get_page(mapping, pgoff);
4465 #endif
4466 return page;
4467 }
4468
4469 /**
4470 * mem_cgroup_move_account - move account of the page
4471 * @page: the page
4472 * @compound: charge the page as compound or small page
4473 * @from: mem_cgroup which the page is moved from.
4474 * @to: mem_cgroup which the page is moved to. @from != @to.
4475 *
4476 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4477 *
4478 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4479 * from old cgroup.
4480 */
4481 static int mem_cgroup_move_account(struct page *page,
4482 bool compound,
4483 struct mem_cgroup *from,
4484 struct mem_cgroup *to)
4485 {
4486 unsigned long flags;
4487 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4488 int ret;
4489 bool anon;
4490
4491 VM_BUG_ON(from == to);
4492 VM_BUG_ON_PAGE(PageLRU(page), page);
4493 VM_BUG_ON(compound && !PageTransHuge(page));
4494
4495 /*
4496 * Prevent mem_cgroup_migrate() from looking at
4497 * page->mem_cgroup of its source page while we change it.
4498 */
4499 ret = -EBUSY;
4500 if (!trylock_page(page))
4501 goto out;
4502
4503 ret = -EINVAL;
4504 if (page->mem_cgroup != from)
4505 goto out_unlock;
4506
4507 anon = PageAnon(page);
4508
4509 spin_lock_irqsave(&from->move_lock, flags);
4510
4511 if (!anon && page_mapped(page)) {
4512 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4513 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4514 }
4515
4516 /*
4517 * move_lock grabbed above and caller set from->moving_account, so
4518 * mod_memcg_page_state will serialize updates to PageDirty.
4519 * So mapping should be stable for dirty pages.
4520 */
4521 if (!anon && PageDirty(page)) {
4522 struct address_space *mapping = page_mapping(page);
4523
4524 if (mapping_cap_account_dirty(mapping)) {
4525 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4526 nr_pages);
4527 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4528 nr_pages);
4529 }
4530 }
4531
4532 if (PageWriteback(page)) {
4533 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4534 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4535 }
4536
4537 /*
4538 * It is safe to change page->mem_cgroup here because the page
4539 * is referenced, charged, and isolated - we can't race with
4540 * uncharging, charging, migration, or LRU putback.
4541 */
4542
4543 /* caller should have done css_get */
4544 page->mem_cgroup = to;
4545 spin_unlock_irqrestore(&from->move_lock, flags);
4546
4547 ret = 0;
4548
4549 local_irq_disable();
4550 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4551 memcg_check_events(to, page);
4552 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4553 memcg_check_events(from, page);
4554 local_irq_enable();
4555 out_unlock:
4556 unlock_page(page);
4557 out:
4558 return ret;
4559 }
4560
4561 /**
4562 * get_mctgt_type - get target type of moving charge
4563 * @vma: the vma the pte to be checked belongs
4564 * @addr: the address corresponding to the pte to be checked
4565 * @ptent: the pte to be checked
4566 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4567 *
4568 * Returns
4569 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4570 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4571 * move charge. if @target is not NULL, the page is stored in target->page
4572 * with extra refcnt got(Callers should handle it).
4573 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4574 * target for charge migration. if @target is not NULL, the entry is stored
4575 * in target->ent.
4576 *
4577 * Called with pte lock held.
4578 */
4579
4580 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4581 unsigned long addr, pte_t ptent, union mc_target *target)
4582 {
4583 struct page *page = NULL;
4584 enum mc_target_type ret = MC_TARGET_NONE;
4585 swp_entry_t ent = { .val = 0 };
4586
4587 if (pte_present(ptent))
4588 page = mc_handle_present_pte(vma, addr, ptent);
4589 else if (is_swap_pte(ptent))
4590 page = mc_handle_swap_pte(vma, ptent, &ent);
4591 else if (pte_none(ptent))
4592 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4593
4594 if (!page && !ent.val)
4595 return ret;
4596 if (page) {
4597 /*
4598 * Do only loose check w/o serialization.
4599 * mem_cgroup_move_account() checks the page is valid or
4600 * not under LRU exclusion.
4601 */
4602 if (page->mem_cgroup == mc.from) {
4603 ret = MC_TARGET_PAGE;
4604 if (target)
4605 target->page = page;
4606 }
4607 if (!ret || !target)
4608 put_page(page);
4609 }
4610 /* There is a swap entry and a page doesn't exist or isn't charged */
4611 if (ent.val && !ret &&
4612 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4613 ret = MC_TARGET_SWAP;
4614 if (target)
4615 target->ent = ent;
4616 }
4617 return ret;
4618 }
4619
4620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4621 /*
4622 * We don't consider swapping or file mapped pages because THP does not
4623 * support them for now.
4624 * Caller should make sure that pmd_trans_huge(pmd) is true.
4625 */
4626 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627 unsigned long addr, pmd_t pmd, union mc_target *target)
4628 {
4629 struct page *page = NULL;
4630 enum mc_target_type ret = MC_TARGET_NONE;
4631
4632 page = pmd_page(pmd);
4633 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4634 if (!(mc.flags & MOVE_ANON))
4635 return ret;
4636 if (page->mem_cgroup == mc.from) {
4637 ret = MC_TARGET_PAGE;
4638 if (target) {
4639 get_page(page);
4640 target->page = page;
4641 }
4642 }
4643 return ret;
4644 }
4645 #else
4646 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 unsigned long addr, pmd_t pmd, union mc_target *target)
4648 {
4649 return MC_TARGET_NONE;
4650 }
4651 #endif
4652
4653 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4654 unsigned long addr, unsigned long end,
4655 struct mm_walk *walk)
4656 {
4657 struct vm_area_struct *vma = walk->vma;
4658 pte_t *pte;
4659 spinlock_t *ptl;
4660
4661 ptl = pmd_trans_huge_lock(pmd, vma);
4662 if (ptl) {
4663 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4664 mc.precharge += HPAGE_PMD_NR;
4665 spin_unlock(ptl);
4666 return 0;
4667 }
4668
4669 if (pmd_trans_unstable(pmd))
4670 return 0;
4671 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4672 for (; addr != end; pte++, addr += PAGE_SIZE)
4673 if (get_mctgt_type(vma, addr, *pte, NULL))
4674 mc.precharge++; /* increment precharge temporarily */
4675 pte_unmap_unlock(pte - 1, ptl);
4676 cond_resched();
4677
4678 return 0;
4679 }
4680
4681 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4682 {
4683 unsigned long precharge;
4684
4685 struct mm_walk mem_cgroup_count_precharge_walk = {
4686 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4687 .mm = mm,
4688 };
4689 down_read(&mm->mmap_sem);
4690 walk_page_range(0, mm->highest_vm_end,
4691 &mem_cgroup_count_precharge_walk);
4692 up_read(&mm->mmap_sem);
4693
4694 precharge = mc.precharge;
4695 mc.precharge = 0;
4696
4697 return precharge;
4698 }
4699
4700 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701 {
4702 unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704 VM_BUG_ON(mc.moving_task);
4705 mc.moving_task = current;
4706 return mem_cgroup_do_precharge(precharge);
4707 }
4708
4709 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710 static void __mem_cgroup_clear_mc(void)
4711 {
4712 struct mem_cgroup *from = mc.from;
4713 struct mem_cgroup *to = mc.to;
4714
4715 /* we must uncharge all the leftover precharges from mc.to */
4716 if (mc.precharge) {
4717 cancel_charge(mc.to, mc.precharge);
4718 mc.precharge = 0;
4719 }
4720 /*
4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 * we must uncharge here.
4723 */
4724 if (mc.moved_charge) {
4725 cancel_charge(mc.from, mc.moved_charge);
4726 mc.moved_charge = 0;
4727 }
4728 /* we must fixup refcnts and charges */
4729 if (mc.moved_swap) {
4730 /* uncharge swap account from the old cgroup */
4731 if (!mem_cgroup_is_root(mc.from))
4732 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733
4734 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4735
4736 /*
4737 * we charged both to->memory and to->memsw, so we
4738 * should uncharge to->memory.
4739 */
4740 if (!mem_cgroup_is_root(mc.to))
4741 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4742
4743 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4744 css_put_many(&mc.to->css, mc.moved_swap);
4745
4746 mc.moved_swap = 0;
4747 }
4748 memcg_oom_recover(from);
4749 memcg_oom_recover(to);
4750 wake_up_all(&mc.waitq);
4751 }
4752
4753 static void mem_cgroup_clear_mc(void)
4754 {
4755 struct mm_struct *mm = mc.mm;
4756
4757 /*
4758 * we must clear moving_task before waking up waiters at the end of
4759 * task migration.
4760 */
4761 mc.moving_task = NULL;
4762 __mem_cgroup_clear_mc();
4763 spin_lock(&mc.lock);
4764 mc.from = NULL;
4765 mc.to = NULL;
4766 mc.mm = NULL;
4767 spin_unlock(&mc.lock);
4768
4769 mmput(mm);
4770 }
4771
4772 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4773 {
4774 struct cgroup_subsys_state *css;
4775 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4776 struct mem_cgroup *from;
4777 struct task_struct *leader, *p;
4778 struct mm_struct *mm;
4779 unsigned long move_flags;
4780 int ret = 0;
4781
4782 /* charge immigration isn't supported on the default hierarchy */
4783 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4784 return 0;
4785
4786 /*
4787 * Multi-process migrations only happen on the default hierarchy
4788 * where charge immigration is not used. Perform charge
4789 * immigration if @tset contains a leader and whine if there are
4790 * multiple.
4791 */
4792 p = NULL;
4793 cgroup_taskset_for_each_leader(leader, css, tset) {
4794 WARN_ON_ONCE(p);
4795 p = leader;
4796 memcg = mem_cgroup_from_css(css);
4797 }
4798 if (!p)
4799 return 0;
4800
4801 /*
4802 * We are now commited to this value whatever it is. Changes in this
4803 * tunable will only affect upcoming migrations, not the current one.
4804 * So we need to save it, and keep it going.
4805 */
4806 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4807 if (!move_flags)
4808 return 0;
4809
4810 from = mem_cgroup_from_task(p);
4811
4812 VM_BUG_ON(from == memcg);
4813
4814 mm = get_task_mm(p);
4815 if (!mm)
4816 return 0;
4817 /* We move charges only when we move a owner of the mm */
4818 if (mm->owner == p) {
4819 VM_BUG_ON(mc.from);
4820 VM_BUG_ON(mc.to);
4821 VM_BUG_ON(mc.precharge);
4822 VM_BUG_ON(mc.moved_charge);
4823 VM_BUG_ON(mc.moved_swap);
4824
4825 spin_lock(&mc.lock);
4826 mc.mm = mm;
4827 mc.from = from;
4828 mc.to = memcg;
4829 mc.flags = move_flags;
4830 spin_unlock(&mc.lock);
4831 /* We set mc.moving_task later */
4832
4833 ret = mem_cgroup_precharge_mc(mm);
4834 if (ret)
4835 mem_cgroup_clear_mc();
4836 } else {
4837 mmput(mm);
4838 }
4839 return ret;
4840 }
4841
4842 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4843 {
4844 if (mc.to)
4845 mem_cgroup_clear_mc();
4846 }
4847
4848 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4849 unsigned long addr, unsigned long end,
4850 struct mm_walk *walk)
4851 {
4852 int ret = 0;
4853 struct vm_area_struct *vma = walk->vma;
4854 pte_t *pte;
4855 spinlock_t *ptl;
4856 enum mc_target_type target_type;
4857 union mc_target target;
4858 struct page *page;
4859
4860 ptl = pmd_trans_huge_lock(pmd, vma);
4861 if (ptl) {
4862 if (mc.precharge < HPAGE_PMD_NR) {
4863 spin_unlock(ptl);
4864 return 0;
4865 }
4866 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4867 if (target_type == MC_TARGET_PAGE) {
4868 page = target.page;
4869 if (!isolate_lru_page(page)) {
4870 if (!mem_cgroup_move_account(page, true,
4871 mc.from, mc.to)) {
4872 mc.precharge -= HPAGE_PMD_NR;
4873 mc.moved_charge += HPAGE_PMD_NR;
4874 }
4875 putback_lru_page(page);
4876 }
4877 put_page(page);
4878 }
4879 spin_unlock(ptl);
4880 return 0;
4881 }
4882
4883 if (pmd_trans_unstable(pmd))
4884 return 0;
4885 retry:
4886 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4887 for (; addr != end; addr += PAGE_SIZE) {
4888 pte_t ptent = *(pte++);
4889 swp_entry_t ent;
4890
4891 if (!mc.precharge)
4892 break;
4893
4894 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4895 case MC_TARGET_PAGE:
4896 page = target.page;
4897 /*
4898 * We can have a part of the split pmd here. Moving it
4899 * can be done but it would be too convoluted so simply
4900 * ignore such a partial THP and keep it in original
4901 * memcg. There should be somebody mapping the head.
4902 */
4903 if (PageTransCompound(page))
4904 goto put;
4905 if (isolate_lru_page(page))
4906 goto put;
4907 if (!mem_cgroup_move_account(page, false,
4908 mc.from, mc.to)) {
4909 mc.precharge--;
4910 /* we uncharge from mc.from later. */
4911 mc.moved_charge++;
4912 }
4913 putback_lru_page(page);
4914 put: /* get_mctgt_type() gets the page */
4915 put_page(page);
4916 break;
4917 case MC_TARGET_SWAP:
4918 ent = target.ent;
4919 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4920 mc.precharge--;
4921 /* we fixup refcnts and charges later. */
4922 mc.moved_swap++;
4923 }
4924 break;
4925 default:
4926 break;
4927 }
4928 }
4929 pte_unmap_unlock(pte - 1, ptl);
4930 cond_resched();
4931
4932 if (addr != end) {
4933 /*
4934 * We have consumed all precharges we got in can_attach().
4935 * We try charge one by one, but don't do any additional
4936 * charges to mc.to if we have failed in charge once in attach()
4937 * phase.
4938 */
4939 ret = mem_cgroup_do_precharge(1);
4940 if (!ret)
4941 goto retry;
4942 }
4943
4944 return ret;
4945 }
4946
4947 static void mem_cgroup_move_charge(void)
4948 {
4949 struct mm_walk mem_cgroup_move_charge_walk = {
4950 .pmd_entry = mem_cgroup_move_charge_pte_range,
4951 .mm = mc.mm,
4952 };
4953
4954 lru_add_drain_all();
4955 /*
4956 * Signal lock_page_memcg() to take the memcg's move_lock
4957 * while we're moving its pages to another memcg. Then wait
4958 * for already started RCU-only updates to finish.
4959 */
4960 atomic_inc(&mc.from->moving_account);
4961 synchronize_rcu();
4962 retry:
4963 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4964 /*
4965 * Someone who are holding the mmap_sem might be waiting in
4966 * waitq. So we cancel all extra charges, wake up all waiters,
4967 * and retry. Because we cancel precharges, we might not be able
4968 * to move enough charges, but moving charge is a best-effort
4969 * feature anyway, so it wouldn't be a big problem.
4970 */
4971 __mem_cgroup_clear_mc();
4972 cond_resched();
4973 goto retry;
4974 }
4975 /*
4976 * When we have consumed all precharges and failed in doing
4977 * additional charge, the page walk just aborts.
4978 */
4979 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4980
4981 up_read(&mc.mm->mmap_sem);
4982 atomic_dec(&mc.from->moving_account);
4983 }
4984
4985 static void mem_cgroup_move_task(void)
4986 {
4987 if (mc.to) {
4988 mem_cgroup_move_charge();
4989 mem_cgroup_clear_mc();
4990 }
4991 }
4992 #else /* !CONFIG_MMU */
4993 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4994 {
4995 return 0;
4996 }
4997 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4998 {
4999 }
5000 static void mem_cgroup_move_task(void)
5001 {
5002 }
5003 #endif
5004
5005 /*
5006 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5007 * to verify whether we're attached to the default hierarchy on each mount
5008 * attempt.
5009 */
5010 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5011 {
5012 /*
5013 * use_hierarchy is forced on the default hierarchy. cgroup core
5014 * guarantees that @root doesn't have any children, so turning it
5015 * on for the root memcg is enough.
5016 */
5017 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5018 root_mem_cgroup->use_hierarchy = true;
5019 else
5020 root_mem_cgroup->use_hierarchy = false;
5021 }
5022
5023 static u64 memory_current_read(struct cgroup_subsys_state *css,
5024 struct cftype *cft)
5025 {
5026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5027
5028 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5029 }
5030
5031 static int memory_low_show(struct seq_file *m, void *v)
5032 {
5033 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5034 unsigned long low = READ_ONCE(memcg->low);
5035
5036 if (low == PAGE_COUNTER_MAX)
5037 seq_puts(m, "max\n");
5038 else
5039 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5040
5041 return 0;
5042 }
5043
5044 static ssize_t memory_low_write(struct kernfs_open_file *of,
5045 char *buf, size_t nbytes, loff_t off)
5046 {
5047 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5048 unsigned long low;
5049 int err;
5050
5051 buf = strstrip(buf);
5052 err = page_counter_memparse(buf, "max", &low);
5053 if (err)
5054 return err;
5055
5056 memcg->low = low;
5057
5058 return nbytes;
5059 }
5060
5061 static int memory_high_show(struct seq_file *m, void *v)
5062 {
5063 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064 unsigned long high = READ_ONCE(memcg->high);
5065
5066 if (high == PAGE_COUNTER_MAX)
5067 seq_puts(m, "max\n");
5068 else
5069 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5070
5071 return 0;
5072 }
5073
5074 static ssize_t memory_high_write(struct kernfs_open_file *of,
5075 char *buf, size_t nbytes, loff_t off)
5076 {
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5078 unsigned long nr_pages;
5079 unsigned long high;
5080 int err;
5081
5082 buf = strstrip(buf);
5083 err = page_counter_memparse(buf, "max", &high);
5084 if (err)
5085 return err;
5086
5087 memcg->high = high;
5088
5089 nr_pages = page_counter_read(&memcg->memory);
5090 if (nr_pages > high)
5091 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5092 GFP_KERNEL, true);
5093
5094 memcg_wb_domain_size_changed(memcg);
5095 return nbytes;
5096 }
5097
5098 static int memory_max_show(struct seq_file *m, void *v)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5101 unsigned long max = READ_ONCE(memcg->memory.limit);
5102
5103 if (max == PAGE_COUNTER_MAX)
5104 seq_puts(m, "max\n");
5105 else
5106 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5107
5108 return 0;
5109 }
5110
5111 static ssize_t memory_max_write(struct kernfs_open_file *of,
5112 char *buf, size_t nbytes, loff_t off)
5113 {
5114 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5115 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5116 bool drained = false;
5117 unsigned long max;
5118 int err;
5119
5120 buf = strstrip(buf);
5121 err = page_counter_memparse(buf, "max", &max);
5122 if (err)
5123 return err;
5124
5125 xchg(&memcg->memory.limit, max);
5126
5127 for (;;) {
5128 unsigned long nr_pages = page_counter_read(&memcg->memory);
5129
5130 if (nr_pages <= max)
5131 break;
5132
5133 if (signal_pending(current)) {
5134 err = -EINTR;
5135 break;
5136 }
5137
5138 if (!drained) {
5139 drain_all_stock(memcg);
5140 drained = true;
5141 continue;
5142 }
5143
5144 if (nr_reclaims) {
5145 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5146 GFP_KERNEL, true))
5147 nr_reclaims--;
5148 continue;
5149 }
5150
5151 mem_cgroup_event(memcg, MEMCG_OOM);
5152 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5153 break;
5154 }
5155
5156 memcg_wb_domain_size_changed(memcg);
5157 return nbytes;
5158 }
5159
5160 static int memory_events_show(struct seq_file *m, void *v)
5161 {
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5163
5164 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5165 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5166 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5167 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5168
5169 return 0;
5170 }
5171
5172 static int memory_stat_show(struct seq_file *m, void *v)
5173 {
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175 unsigned long stat[MEMCG_NR_STAT];
5176 unsigned long events[MEMCG_NR_EVENTS];
5177 int i;
5178
5179 /*
5180 * Provide statistics on the state of the memory subsystem as
5181 * well as cumulative event counters that show past behavior.
5182 *
5183 * This list is ordered following a combination of these gradients:
5184 * 1) generic big picture -> specifics and details
5185 * 2) reflecting userspace activity -> reflecting kernel heuristics
5186 *
5187 * Current memory state:
5188 */
5189
5190 tree_stat(memcg, stat);
5191 tree_events(memcg, events);
5192
5193 seq_printf(m, "anon %llu\n",
5194 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5195 seq_printf(m, "file %llu\n",
5196 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5197 seq_printf(m, "kernel_stack %llu\n",
5198 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5199 seq_printf(m, "slab %llu\n",
5200 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5201 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5202 seq_printf(m, "sock %llu\n",
5203 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5204
5205 seq_printf(m, "shmem %llu\n",
5206 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5207 seq_printf(m, "file_mapped %llu\n",
5208 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5209 seq_printf(m, "file_dirty %llu\n",
5210 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5211 seq_printf(m, "file_writeback %llu\n",
5212 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5213
5214 for (i = 0; i < NR_LRU_LISTS; i++) {
5215 struct mem_cgroup *mi;
5216 unsigned long val = 0;
5217
5218 for_each_mem_cgroup_tree(mi, memcg)
5219 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5220 seq_printf(m, "%s %llu\n",
5221 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5222 }
5223
5224 seq_printf(m, "slab_reclaimable %llu\n",
5225 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5226 seq_printf(m, "slab_unreclaimable %llu\n",
5227 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5228
5229 /* Accumulated memory events */
5230
5231 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5232 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5233
5234 seq_printf(m, "workingset_refault %lu\n",
5235 stat[WORKINGSET_REFAULT]);
5236 seq_printf(m, "workingset_activate %lu\n",
5237 stat[WORKINGSET_ACTIVATE]);
5238 seq_printf(m, "workingset_nodereclaim %lu\n",
5239 stat[WORKINGSET_NODERECLAIM]);
5240
5241 return 0;
5242 }
5243
5244 static struct cftype memory_files[] = {
5245 {
5246 .name = "current",
5247 .flags = CFTYPE_NOT_ON_ROOT,
5248 .read_u64 = memory_current_read,
5249 },
5250 {
5251 .name = "low",
5252 .flags = CFTYPE_NOT_ON_ROOT,
5253 .seq_show = memory_low_show,
5254 .write = memory_low_write,
5255 },
5256 {
5257 .name = "high",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .seq_show = memory_high_show,
5260 .write = memory_high_write,
5261 },
5262 {
5263 .name = "max",
5264 .flags = CFTYPE_NOT_ON_ROOT,
5265 .seq_show = memory_max_show,
5266 .write = memory_max_write,
5267 },
5268 {
5269 .name = "events",
5270 .flags = CFTYPE_NOT_ON_ROOT,
5271 .file_offset = offsetof(struct mem_cgroup, events_file),
5272 .seq_show = memory_events_show,
5273 },
5274 {
5275 .name = "stat",
5276 .flags = CFTYPE_NOT_ON_ROOT,
5277 .seq_show = memory_stat_show,
5278 },
5279 { } /* terminate */
5280 };
5281
5282 struct cgroup_subsys memory_cgrp_subsys = {
5283 .css_alloc = mem_cgroup_css_alloc,
5284 .css_online = mem_cgroup_css_online,
5285 .css_offline = mem_cgroup_css_offline,
5286 .css_released = mem_cgroup_css_released,
5287 .css_free = mem_cgroup_css_free,
5288 .css_reset = mem_cgroup_css_reset,
5289 .can_attach = mem_cgroup_can_attach,
5290 .cancel_attach = mem_cgroup_cancel_attach,
5291 .post_attach = mem_cgroup_move_task,
5292 .bind = mem_cgroup_bind,
5293 .dfl_cftypes = memory_files,
5294 .legacy_cftypes = mem_cgroup_legacy_files,
5295 .early_init = 0,
5296 };
5297
5298 /**
5299 * mem_cgroup_low - check if memory consumption is below the normal range
5300 * @root: the highest ancestor to consider
5301 * @memcg: the memory cgroup to check
5302 *
5303 * Returns %true if memory consumption of @memcg, and that of all
5304 * configurable ancestors up to @root, is below the normal range.
5305 */
5306 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5307 {
5308 if (mem_cgroup_disabled())
5309 return false;
5310
5311 /*
5312 * The toplevel group doesn't have a configurable range, so
5313 * it's never low when looked at directly, and it is not
5314 * considered an ancestor when assessing the hierarchy.
5315 */
5316
5317 if (memcg == root_mem_cgroup)
5318 return false;
5319
5320 if (page_counter_read(&memcg->memory) >= memcg->low)
5321 return false;
5322
5323 while (memcg != root) {
5324 memcg = parent_mem_cgroup(memcg);
5325
5326 if (memcg == root_mem_cgroup)
5327 break;
5328
5329 if (page_counter_read(&memcg->memory) >= memcg->low)
5330 return false;
5331 }
5332 return true;
5333 }
5334
5335 /**
5336 * mem_cgroup_try_charge - try charging a page
5337 * @page: page to charge
5338 * @mm: mm context of the victim
5339 * @gfp_mask: reclaim mode
5340 * @memcgp: charged memcg return
5341 * @compound: charge the page as compound or small page
5342 *
5343 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5344 * pages according to @gfp_mask if necessary.
5345 *
5346 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5347 * Otherwise, an error code is returned.
5348 *
5349 * After page->mapping has been set up, the caller must finalize the
5350 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5351 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5352 */
5353 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5354 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5355 bool compound)
5356 {
5357 struct mem_cgroup *memcg = NULL;
5358 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5359 int ret = 0;
5360
5361 if (mem_cgroup_disabled())
5362 goto out;
5363
5364 if (PageSwapCache(page)) {
5365 /*
5366 * Every swap fault against a single page tries to charge the
5367 * page, bail as early as possible. shmem_unuse() encounters
5368 * already charged pages, too. The USED bit is protected by
5369 * the page lock, which serializes swap cache removal, which
5370 * in turn serializes uncharging.
5371 */
5372 VM_BUG_ON_PAGE(!PageLocked(page), page);
5373 if (page->mem_cgroup)
5374 goto out;
5375
5376 if (do_swap_account) {
5377 swp_entry_t ent = { .val = page_private(page), };
5378 unsigned short id = lookup_swap_cgroup_id(ent);
5379
5380 rcu_read_lock();
5381 memcg = mem_cgroup_from_id(id);
5382 if (memcg && !css_tryget_online(&memcg->css))
5383 memcg = NULL;
5384 rcu_read_unlock();
5385 }
5386 }
5387
5388 if (!memcg)
5389 memcg = get_mem_cgroup_from_mm(mm);
5390
5391 ret = try_charge(memcg, gfp_mask, nr_pages);
5392
5393 css_put(&memcg->css);
5394 out:
5395 *memcgp = memcg;
5396 return ret;
5397 }
5398
5399 /**
5400 * mem_cgroup_commit_charge - commit a page charge
5401 * @page: page to charge
5402 * @memcg: memcg to charge the page to
5403 * @lrucare: page might be on LRU already
5404 * @compound: charge the page as compound or small page
5405 *
5406 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5407 * after page->mapping has been set up. This must happen atomically
5408 * as part of the page instantiation, i.e. under the page table lock
5409 * for anonymous pages, under the page lock for page and swap cache.
5410 *
5411 * In addition, the page must not be on the LRU during the commit, to
5412 * prevent racing with task migration. If it might be, use @lrucare.
5413 *
5414 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5415 */
5416 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5417 bool lrucare, bool compound)
5418 {
5419 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5420
5421 VM_BUG_ON_PAGE(!page->mapping, page);
5422 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5423
5424 if (mem_cgroup_disabled())
5425 return;
5426 /*
5427 * Swap faults will attempt to charge the same page multiple
5428 * times. But reuse_swap_page() might have removed the page
5429 * from swapcache already, so we can't check PageSwapCache().
5430 */
5431 if (!memcg)
5432 return;
5433
5434 commit_charge(page, memcg, lrucare);
5435
5436 local_irq_disable();
5437 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5438 memcg_check_events(memcg, page);
5439 local_irq_enable();
5440
5441 if (do_memsw_account() && PageSwapCache(page)) {
5442 swp_entry_t entry = { .val = page_private(page) };
5443 /*
5444 * The swap entry might not get freed for a long time,
5445 * let's not wait for it. The page already received a
5446 * memory+swap charge, drop the swap entry duplicate.
5447 */
5448 mem_cgroup_uncharge_swap(entry);
5449 }
5450 }
5451
5452 /**
5453 * mem_cgroup_cancel_charge - cancel a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @compound: charge the page as compound or small page
5457 *
5458 * Cancel a charge transaction started by mem_cgroup_try_charge().
5459 */
5460 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5461 bool compound)
5462 {
5463 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5464
5465 if (mem_cgroup_disabled())
5466 return;
5467 /*
5468 * Swap faults will attempt to charge the same page multiple
5469 * times. But reuse_swap_page() might have removed the page
5470 * from swapcache already, so we can't check PageSwapCache().
5471 */
5472 if (!memcg)
5473 return;
5474
5475 cancel_charge(memcg, nr_pages);
5476 }
5477
5478 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5479 unsigned long nr_anon, unsigned long nr_file,
5480 unsigned long nr_kmem, unsigned long nr_huge,
5481 unsigned long nr_shmem, struct page *dummy_page)
5482 {
5483 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5484 unsigned long flags;
5485
5486 if (!mem_cgroup_is_root(memcg)) {
5487 page_counter_uncharge(&memcg->memory, nr_pages);
5488 if (do_memsw_account())
5489 page_counter_uncharge(&memcg->memsw, nr_pages);
5490 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5491 page_counter_uncharge(&memcg->kmem, nr_kmem);
5492 memcg_oom_recover(memcg);
5493 }
5494
5495 local_irq_save(flags);
5496 __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5497 __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5498 __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5499 __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5500 __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5501 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5502 memcg_check_events(memcg, dummy_page);
5503 local_irq_restore(flags);
5504
5505 if (!mem_cgroup_is_root(memcg))
5506 css_put_many(&memcg->css, nr_pages);
5507 }
5508
5509 static void uncharge_list(struct list_head *page_list)
5510 {
5511 struct mem_cgroup *memcg = NULL;
5512 unsigned long nr_shmem = 0;
5513 unsigned long nr_anon = 0;
5514 unsigned long nr_file = 0;
5515 unsigned long nr_huge = 0;
5516 unsigned long nr_kmem = 0;
5517 unsigned long pgpgout = 0;
5518 struct list_head *next;
5519 struct page *page;
5520
5521 /*
5522 * Note that the list can be a single page->lru; hence the
5523 * do-while loop instead of a simple list_for_each_entry().
5524 */
5525 next = page_list->next;
5526 do {
5527 page = list_entry(next, struct page, lru);
5528 next = page->lru.next;
5529
5530 VM_BUG_ON_PAGE(PageLRU(page), page);
5531 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5532
5533 if (!page->mem_cgroup)
5534 continue;
5535
5536 /*
5537 * Nobody should be changing or seriously looking at
5538 * page->mem_cgroup at this point, we have fully
5539 * exclusive access to the page.
5540 */
5541
5542 if (memcg != page->mem_cgroup) {
5543 if (memcg) {
5544 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5545 nr_kmem, nr_huge, nr_shmem, page);
5546 pgpgout = nr_anon = nr_file = nr_kmem = 0;
5547 nr_huge = nr_shmem = 0;
5548 }
5549 memcg = page->mem_cgroup;
5550 }
5551
5552 if (!PageKmemcg(page)) {
5553 unsigned int nr_pages = 1;
5554
5555 if (PageTransHuge(page)) {
5556 nr_pages <<= compound_order(page);
5557 nr_huge += nr_pages;
5558 }
5559 if (PageAnon(page))
5560 nr_anon += nr_pages;
5561 else {
5562 nr_file += nr_pages;
5563 if (PageSwapBacked(page))
5564 nr_shmem += nr_pages;
5565 }
5566 pgpgout++;
5567 } else {
5568 nr_kmem += 1 << compound_order(page);
5569 __ClearPageKmemcg(page);
5570 }
5571
5572 page->mem_cgroup = NULL;
5573 } while (next != page_list);
5574
5575 if (memcg)
5576 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5577 nr_kmem, nr_huge, nr_shmem, page);
5578 }
5579
5580 /**
5581 * mem_cgroup_uncharge - uncharge a page
5582 * @page: page to uncharge
5583 *
5584 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5585 * mem_cgroup_commit_charge().
5586 */
5587 void mem_cgroup_uncharge(struct page *page)
5588 {
5589 if (mem_cgroup_disabled())
5590 return;
5591
5592 /* Don't touch page->lru of any random page, pre-check: */
5593 if (!page->mem_cgroup)
5594 return;
5595
5596 INIT_LIST_HEAD(&page->lru);
5597 uncharge_list(&page->lru);
5598 }
5599
5600 /**
5601 * mem_cgroup_uncharge_list - uncharge a list of page
5602 * @page_list: list of pages to uncharge
5603 *
5604 * Uncharge a list of pages previously charged with
5605 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5606 */
5607 void mem_cgroup_uncharge_list(struct list_head *page_list)
5608 {
5609 if (mem_cgroup_disabled())
5610 return;
5611
5612 if (!list_empty(page_list))
5613 uncharge_list(page_list);
5614 }
5615
5616 /**
5617 * mem_cgroup_migrate - charge a page's replacement
5618 * @oldpage: currently circulating page
5619 * @newpage: replacement page
5620 *
5621 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5622 * be uncharged upon free.
5623 *
5624 * Both pages must be locked, @newpage->mapping must be set up.
5625 */
5626 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5627 {
5628 struct mem_cgroup *memcg;
5629 unsigned int nr_pages;
5630 bool compound;
5631 unsigned long flags;
5632
5633 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5634 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5635 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5636 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5637 newpage);
5638
5639 if (mem_cgroup_disabled())
5640 return;
5641
5642 /* Page cache replacement: new page already charged? */
5643 if (newpage->mem_cgroup)
5644 return;
5645
5646 /* Swapcache readahead pages can get replaced before being charged */
5647 memcg = oldpage->mem_cgroup;
5648 if (!memcg)
5649 return;
5650
5651 /* Force-charge the new page. The old one will be freed soon */
5652 compound = PageTransHuge(newpage);
5653 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5654
5655 page_counter_charge(&memcg->memory, nr_pages);
5656 if (do_memsw_account())
5657 page_counter_charge(&memcg->memsw, nr_pages);
5658 css_get_many(&memcg->css, nr_pages);
5659
5660 commit_charge(newpage, memcg, false);
5661
5662 local_irq_save(flags);
5663 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5664 memcg_check_events(memcg, newpage);
5665 local_irq_restore(flags);
5666 }
5667
5668 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5669 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5670
5671 void mem_cgroup_sk_alloc(struct sock *sk)
5672 {
5673 struct mem_cgroup *memcg;
5674
5675 if (!mem_cgroup_sockets_enabled)
5676 return;
5677
5678 /*
5679 * Socket cloning can throw us here with sk_memcg already
5680 * filled. It won't however, necessarily happen from
5681 * process context. So the test for root memcg given
5682 * the current task's memcg won't help us in this case.
5683 *
5684 * Respecting the original socket's memcg is a better
5685 * decision in this case.
5686 */
5687 if (sk->sk_memcg) {
5688 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5689 css_get(&sk->sk_memcg->css);
5690 return;
5691 }
5692
5693 rcu_read_lock();
5694 memcg = mem_cgroup_from_task(current);
5695 if (memcg == root_mem_cgroup)
5696 goto out;
5697 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5698 goto out;
5699 if (css_tryget_online(&memcg->css))
5700 sk->sk_memcg = memcg;
5701 out:
5702 rcu_read_unlock();
5703 }
5704
5705 void mem_cgroup_sk_free(struct sock *sk)
5706 {
5707 if (sk->sk_memcg)
5708 css_put(&sk->sk_memcg->css);
5709 }
5710
5711 /**
5712 * mem_cgroup_charge_skmem - charge socket memory
5713 * @memcg: memcg to charge
5714 * @nr_pages: number of pages to charge
5715 *
5716 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5717 * @memcg's configured limit, %false if the charge had to be forced.
5718 */
5719 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5720 {
5721 gfp_t gfp_mask = GFP_KERNEL;
5722
5723 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5724 struct page_counter *fail;
5725
5726 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5727 memcg->tcpmem_pressure = 0;
5728 return true;
5729 }
5730 page_counter_charge(&memcg->tcpmem, nr_pages);
5731 memcg->tcpmem_pressure = 1;
5732 return false;
5733 }
5734
5735 /* Don't block in the packet receive path */
5736 if (in_softirq())
5737 gfp_mask = GFP_NOWAIT;
5738
5739 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5740
5741 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5742 return true;
5743
5744 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5745 return false;
5746 }
5747
5748 /**
5749 * mem_cgroup_uncharge_skmem - uncharge socket memory
5750 * @memcg - memcg to uncharge
5751 * @nr_pages - number of pages to uncharge
5752 */
5753 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5754 {
5755 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5756 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5757 return;
5758 }
5759
5760 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5761
5762 page_counter_uncharge(&memcg->memory, nr_pages);
5763 css_put_many(&memcg->css, nr_pages);
5764 }
5765
5766 static int __init cgroup_memory(char *s)
5767 {
5768 char *token;
5769
5770 while ((token = strsep(&s, ",")) != NULL) {
5771 if (!*token)
5772 continue;
5773 if (!strcmp(token, "nosocket"))
5774 cgroup_memory_nosocket = true;
5775 if (!strcmp(token, "nokmem"))
5776 cgroup_memory_nokmem = true;
5777 }
5778 return 0;
5779 }
5780 __setup("cgroup.memory=", cgroup_memory);
5781
5782 /*
5783 * subsys_initcall() for memory controller.
5784 *
5785 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5786 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5787 * basically everything that doesn't depend on a specific mem_cgroup structure
5788 * should be initialized from here.
5789 */
5790 static int __init mem_cgroup_init(void)
5791 {
5792 int cpu, node;
5793
5794 #ifndef CONFIG_SLOB
5795 /*
5796 * Kmem cache creation is mostly done with the slab_mutex held,
5797 * so use a workqueue with limited concurrency to avoid stalling
5798 * all worker threads in case lots of cgroups are created and
5799 * destroyed simultaneously.
5800 */
5801 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5802 BUG_ON(!memcg_kmem_cache_wq);
5803 #endif
5804
5805 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5806 memcg_hotplug_cpu_dead);
5807
5808 for_each_possible_cpu(cpu)
5809 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5810 drain_local_stock);
5811
5812 for_each_node(node) {
5813 struct mem_cgroup_tree_per_node *rtpn;
5814
5815 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5816 node_online(node) ? node : NUMA_NO_NODE);
5817
5818 rtpn->rb_root = RB_ROOT;
5819 spin_lock_init(&rtpn->lock);
5820 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5821 }
5822
5823 return 0;
5824 }
5825 subsys_initcall(mem_cgroup_init);
5826
5827 #ifdef CONFIG_MEMCG_SWAP
5828 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5829 {
5830 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5831 /*
5832 * The root cgroup cannot be destroyed, so it's refcount must
5833 * always be >= 1.
5834 */
5835 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5836 VM_BUG_ON(1);
5837 break;
5838 }
5839 memcg = parent_mem_cgroup(memcg);
5840 if (!memcg)
5841 memcg = root_mem_cgroup;
5842 }
5843 return memcg;
5844 }
5845
5846 /**
5847 * mem_cgroup_swapout - transfer a memsw charge to swap
5848 * @page: page whose memsw charge to transfer
5849 * @entry: swap entry to move the charge to
5850 *
5851 * Transfer the memsw charge of @page to @entry.
5852 */
5853 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5854 {
5855 struct mem_cgroup *memcg, *swap_memcg;
5856 unsigned short oldid;
5857
5858 VM_BUG_ON_PAGE(PageLRU(page), page);
5859 VM_BUG_ON_PAGE(page_count(page), page);
5860
5861 if (!do_memsw_account())
5862 return;
5863
5864 memcg = page->mem_cgroup;
5865
5866 /* Readahead page, never charged */
5867 if (!memcg)
5868 return;
5869
5870 /*
5871 * In case the memcg owning these pages has been offlined and doesn't
5872 * have an ID allocated to it anymore, charge the closest online
5873 * ancestor for the swap instead and transfer the memory+swap charge.
5874 */
5875 swap_memcg = mem_cgroup_id_get_online(memcg);
5876 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5877 VM_BUG_ON_PAGE(oldid, page);
5878 mem_cgroup_swap_statistics(swap_memcg, true);
5879
5880 page->mem_cgroup = NULL;
5881
5882 if (!mem_cgroup_is_root(memcg))
5883 page_counter_uncharge(&memcg->memory, 1);
5884
5885 if (memcg != swap_memcg) {
5886 if (!mem_cgroup_is_root(swap_memcg))
5887 page_counter_charge(&swap_memcg->memsw, 1);
5888 page_counter_uncharge(&memcg->memsw, 1);
5889 }
5890
5891 /*
5892 * Interrupts should be disabled here because the caller holds the
5893 * mapping->tree_lock lock which is taken with interrupts-off. It is
5894 * important here to have the interrupts disabled because it is the
5895 * only synchronisation we have for udpating the per-CPU variables.
5896 */
5897 VM_BUG_ON(!irqs_disabled());
5898 mem_cgroup_charge_statistics(memcg, page, false, -1);
5899 memcg_check_events(memcg, page);
5900
5901 if (!mem_cgroup_is_root(memcg))
5902 css_put(&memcg->css);
5903 }
5904
5905 /*
5906 * mem_cgroup_try_charge_swap - try charging a swap entry
5907 * @page: page being added to swap
5908 * @entry: swap entry to charge
5909 *
5910 * Try to charge @entry to the memcg that @page belongs to.
5911 *
5912 * Returns 0 on success, -ENOMEM on failure.
5913 */
5914 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5915 {
5916 struct mem_cgroup *memcg;
5917 struct page_counter *counter;
5918 unsigned short oldid;
5919
5920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5921 return 0;
5922
5923 memcg = page->mem_cgroup;
5924
5925 /* Readahead page, never charged */
5926 if (!memcg)
5927 return 0;
5928
5929 memcg = mem_cgroup_id_get_online(memcg);
5930
5931 if (!mem_cgroup_is_root(memcg) &&
5932 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5933 mem_cgroup_id_put(memcg);
5934 return -ENOMEM;
5935 }
5936
5937 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5938 VM_BUG_ON_PAGE(oldid, page);
5939 mem_cgroup_swap_statistics(memcg, true);
5940
5941 return 0;
5942 }
5943
5944 /**
5945 * mem_cgroup_uncharge_swap - uncharge a swap entry
5946 * @entry: swap entry to uncharge
5947 *
5948 * Drop the swap charge associated with @entry.
5949 */
5950 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5951 {
5952 struct mem_cgroup *memcg;
5953 unsigned short id;
5954
5955 if (!do_swap_account)
5956 return;
5957
5958 id = swap_cgroup_record(entry, 0);
5959 rcu_read_lock();
5960 memcg = mem_cgroup_from_id(id);
5961 if (memcg) {
5962 if (!mem_cgroup_is_root(memcg)) {
5963 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 page_counter_uncharge(&memcg->swap, 1);
5965 else
5966 page_counter_uncharge(&memcg->memsw, 1);
5967 }
5968 mem_cgroup_swap_statistics(memcg, false);
5969 mem_cgroup_id_put(memcg);
5970 }
5971 rcu_read_unlock();
5972 }
5973
5974 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5975 {
5976 long nr_swap_pages = get_nr_swap_pages();
5977
5978 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5979 return nr_swap_pages;
5980 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5981 nr_swap_pages = min_t(long, nr_swap_pages,
5982 READ_ONCE(memcg->swap.limit) -
5983 page_counter_read(&memcg->swap));
5984 return nr_swap_pages;
5985 }
5986
5987 bool mem_cgroup_swap_full(struct page *page)
5988 {
5989 struct mem_cgroup *memcg;
5990
5991 VM_BUG_ON_PAGE(!PageLocked(page), page);
5992
5993 if (vm_swap_full())
5994 return true;
5995 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5996 return false;
5997
5998 memcg = page->mem_cgroup;
5999 if (!memcg)
6000 return false;
6001
6002 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6003 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6004 return true;
6005
6006 return false;
6007 }
6008
6009 /* for remember boot option*/
6010 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6011 static int really_do_swap_account __initdata = 1;
6012 #else
6013 static int really_do_swap_account __initdata;
6014 #endif
6015
6016 static int __init enable_swap_account(char *s)
6017 {
6018 if (!strcmp(s, "1"))
6019 really_do_swap_account = 1;
6020 else if (!strcmp(s, "0"))
6021 really_do_swap_account = 0;
6022 return 1;
6023 }
6024 __setup("swapaccount=", enable_swap_account);
6025
6026 static u64 swap_current_read(struct cgroup_subsys_state *css,
6027 struct cftype *cft)
6028 {
6029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6030
6031 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6032 }
6033
6034 static int swap_max_show(struct seq_file *m, void *v)
6035 {
6036 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6037 unsigned long max = READ_ONCE(memcg->swap.limit);
6038
6039 if (max == PAGE_COUNTER_MAX)
6040 seq_puts(m, "max\n");
6041 else
6042 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6043
6044 return 0;
6045 }
6046
6047 static ssize_t swap_max_write(struct kernfs_open_file *of,
6048 char *buf, size_t nbytes, loff_t off)
6049 {
6050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6051 unsigned long max;
6052 int err;
6053
6054 buf = strstrip(buf);
6055 err = page_counter_memparse(buf, "max", &max);
6056 if (err)
6057 return err;
6058
6059 mutex_lock(&memcg_limit_mutex);
6060 err = page_counter_limit(&memcg->swap, max);
6061 mutex_unlock(&memcg_limit_mutex);
6062 if (err)
6063 return err;
6064
6065 return nbytes;
6066 }
6067
6068 static struct cftype swap_files[] = {
6069 {
6070 .name = "swap.current",
6071 .flags = CFTYPE_NOT_ON_ROOT,
6072 .read_u64 = swap_current_read,
6073 },
6074 {
6075 .name = "swap.max",
6076 .flags = CFTYPE_NOT_ON_ROOT,
6077 .seq_show = swap_max_show,
6078 .write = swap_max_write,
6079 },
6080 { } /* terminate */
6081 };
6082
6083 static struct cftype memsw_cgroup_files[] = {
6084 {
6085 .name = "memsw.usage_in_bytes",
6086 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6087 .read_u64 = mem_cgroup_read_u64,
6088 },
6089 {
6090 .name = "memsw.max_usage_in_bytes",
6091 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6092 .write = mem_cgroup_reset,
6093 .read_u64 = mem_cgroup_read_u64,
6094 },
6095 {
6096 .name = "memsw.limit_in_bytes",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6098 .write = mem_cgroup_write,
6099 .read_u64 = mem_cgroup_read_u64,
6100 },
6101 {
6102 .name = "memsw.failcnt",
6103 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6104 .write = mem_cgroup_reset,
6105 .read_u64 = mem_cgroup_read_u64,
6106 },
6107 { }, /* terminate */
6108 };
6109
6110 static int __init mem_cgroup_swap_init(void)
6111 {
6112 if (!mem_cgroup_disabled() && really_do_swap_account) {
6113 do_swap_account = 1;
6114 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6115 swap_files));
6116 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6117 memsw_cgroup_files));
6118 }
6119 return 0;
6120 }
6121 subsys_initcall(mem_cgroup_swap_init);
6122
6123 #endif /* CONFIG_MEMCG_SWAP */